forked from raphaelvallat/yasa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_visbrain.py
43 lines (34 loc) · 1.44 KB
/
run_visbrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""This file shows how to use YASA in combination with Visbrain.
"""
import numpy as np
from visbrain.gui import Sleep
from yasa import spindles_detect, sw_detect
# Load the data and hypnogram
data = np.load("data_full_6hrs_100Hz_Cz+Fz+Pz.npz").get("data")
ch_names = ["Cz", "Fz", "Pz"]
hypno = np.load("data_full_6hrs_100Hz_hypno.npz").get("hypno")
# Initialize a Visbrain.gui.Sleep instance
sl = Sleep(data=data, channels=ch_names, sf=100, hypno=hypno)
# Define spindles function
def fcn_spindle(data, sf, time, hypno):
"""Replace Visbrain built-in spindles detection by YASA algorithm.
See http://visbrain.org/sleep.html#use-your-own-detections-in-sleep
"""
# Apply on the full recording
# sp = spindles_detect(data, sf).summary()
# NREM sleep only
sp = spindles_detect(data, sf, hypno=hypno).summary()
return (sp[["Start", "End"]].values * sf).astype(int)
# Define slow-waves function
def fcn_sw(data, sf, time, hypno):
"""Replace Visbrain built-in slow-wave detection by YASA algorithm."""
# On N2 / N3 sleep only
# Note that if you want to apply the detection on N3 sleep only, you should
# use sw_detect(..., include=(3)).summary()
sw = sw_detect(data, sf, hypno=hypno).summary()
return (sw[["Start", "End"]].values * sf).astype(int)
# Replace the native Visbrain detections
sl.replace_detections("spindle", fcn_spindle)
sl.replace_detections("sw", fcn_sw)
# Launch the Graphical User Interface
sl.show()