-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdata_utils_record.py
executable file
·260 lines (208 loc) · 13 KB
/
data_utils_record.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import pickle
from collections import defaultdict
import logging
import gensim
import time
import numpy as np
from random import shuffle
import codecs
import concurrent.futures
from datetime import datetime
from keras.preprocessing.sequence import pad_sequences
import tensorflow as tf
def load_file(input_file, word2idx_file, char2idx_file, isshuffle = True):
word2idx = pickle.load(open(word2idx_file, 'rb'))
char2idx = pickle.load(open(char2idx_file, 'rb'))
revs = []
response_set = []
with codecs.open(input_file, 'r', 'utf-8') as f:
for k, line in enumerate(f):
parts = line.strip().split("\t")
label = parts[0]
context = parts[1:-1] # multi-turn
#context = " ".join(parts[1:-1]) # single-turn
response = parts[-1]
data = {"y": label, "c": context, "r": response}
#print(context, response, label)
revs.append(data)
response_set.append(response)
print("processed dataset with %d context-response pairs " % (len(revs)))
if isshuffle == True:
shuffle(revs)
return revs, response_set, word2idx, char2idx
def get_char_word_idx_from_sent(sent, word_idx_map, char_idx_map, max_word_len=50, max_char_len=16):
"""
Transforms sentence into a list of indices. Pad with zeroes.
"""
token_ids = [word_idx_map.get(word.encode("utf-8"), 0) for word in sent.split()]
x = pad_sequences([token_ids], padding='post', maxlen=max_word_len)[0]
x_mask = pad_sequences([len(token_ids)*[1]], padding='post', maxlen=max_word_len)[0]
x_len = min(len(token_ids), max_word_len)
x_char = np.zeros([max_word_len, max_char_len], dtype=np.int32)
x_char_mask = np.zeros([max_word_len, max_char_len], dtype=np.int32)
x_char_len = np.zeros([max_word_len], dtype=np.int32)
# get char index
for i, word in enumerate(sent.split()):
if i >= max_word_len: continue
char_ids = [char_idx_map.get(c.encode("utf-8"), 0) for c in word]
x_char[i] = pad_sequences([char_ids], padding='post', maxlen=max_char_len)[0]
x_char_mask[i] = pad_sequences([len(char_ids)*[1]], padding='post', maxlen=max_char_len)[0]
x_char_len[i] = len(char_ids)
return x, x_mask, x_len, x_char, x_char_mask, x_char_len
def get_char_word_idx_from_sent_msg(sents, word_idx_map, char_idx_map, max_turn=10, max_word_len=50, max_char_len=16):
word_turns = []
word_masks = []
word_lens = []
char_turns = []
char_masks = []
char_lens = []
for sent in sents:
words = sent.split()
token_ids = [word_idx_map.get(word.encode("utf-8"), 0) for word in words]
x = pad_sequences([token_ids], padding='post', maxlen=max_word_len)[0]
x_mask = pad_sequences([len(token_ids)*[1]], padding='post', maxlen=max_word_len)[0]
word_turns.append(x)
word_masks.append(x_mask)
word_lens.append(min(len(words), max_word_len))
x_char = np.zeros([max_word_len, max_char_len], dtype=np.int32)
x_char_mask = np.zeros([max_word_len, max_char_len], dtype=np.int32)
x_char_len = np.zeros([max_word_len], dtype=np.int32)
for i, word in enumerate(words):
if i >= max_word_len: continue
char_ids = [char_idx_map.get(c.encode("utf-8"), 0) for c in word]
x_char[i] = pad_sequences([char_ids], padding='post', maxlen=max_char_len)[0]
x_char_mask[i] = pad_sequences([len(char_ids)*[1]], padding='post', maxlen=max_char_len)[0]
x_char_len[i] = len(char_ids)
char_turns.append(x_char)
char_masks.append(x_char_mask)
char_lens.append(x_char_len)
word_turns_new = np.zeros([max_turn, max_word_len], dtype=np.int32)
word_masks_new = np.zeros([max_turn, max_word_len], dtype=np.int32)
word_lens_new = np.zeros([max_turn], dtype=np.int32)
char_turns_new = np.zeros([max_turn, max_word_len, max_char_len], dtype=np.int32)
char_masks_new = np.zeros([max_turn, max_word_len, max_char_len], dtype=np.int32)
char_lens_new = np.zeros([max_turn, max_word_len], dtype=np.int32)
if len(word_turns) <= max_turn:
word_turns_new[-len(word_turns):]= word_turns
word_masks_new[-len(word_turns):] = word_masks
word_lens_new[-len(word_turns):] = word_lens
char_turns_new[-len(word_turns):]= char_turns
char_masks_new[-len(word_turns):] = char_masks
char_lens_new[-len(word_turns):] = char_lens
if len(word_turns) > max_turn:
word_turns_new[:] = word_turns[len(word_turns)-max_turn:len(word_turns)]
word_masks_new[:] = word_masks[len(word_turns)-max_turn:len(word_turns)]
word_lens_new[:] = word_lens[len(word_turns)-max_turn:len(word_turns)]
char_turns_new[:] = char_turns[len(word_turns)-max_turn:len(word_turns)]
char_masks_new[:] = char_masks[len(word_turns) - max_turn:len(word_turns)]
char_lens_new[:] = char_lens[len(word_turns) - max_turn:len(word_turns)]
# print("sents: ", sents)
# print("word_turns_new: ", word_turns_new)
# print("word_masks_new: ", word_masks_new)
# print("word_lens_new: ", word_lens_new)
# print("char_turns_new: ", char_turns_new)
# print("char_masks_new: ", char_masks_new)
# print("char_lens_new: ", char_lens_new)
# print("\n")
# time.sleep(5)
return word_turns_new, word_masks_new, word_lens_new, char_turns_new, char_masks_new, char_lens_new
def build_records(data_file, word2idx_file, char2idx_file, records_name, max_turn=10, max_utterance_len=50, max_word_len=16, isshuffle=False, max_mum=100000000):
revs, response_set, word2idx, char2idx= load_file(data_file, word2idx_file, char2idx_file, isshuffle)
print("load data done ...")
writer = tf.python_io.TFRecordWriter(records_name)
for k, rev in enumerate(revs):
context, content_mask, context_len, char_context, char_content_mask, char_context_len = \
get_char_word_idx_from_sent_msg(rev["c"], word2idx, char2idx, max_turn, max_utterance_len, max_word_len)
response, response_mask, response_len, char_response, char_response_mask, char_response_len = \
get_char_word_idx_from_sent(rev['r'], word2idx, char2idx, max_utterance_len, max_word_len)
y_label = int(rev["y"])
features = {
'context': tf.train.Feature(bytes_list=tf.train.BytesList(value=[context.tostring()])),
'content_mask': tf.train.Feature(bytes_list=tf.train.BytesList(value=[content_mask.tostring()])),
'context_len': tf.train.Feature(bytes_list=tf.train.BytesList(value=[context_len.tostring()])),
'response': tf.train.Feature(bytes_list=tf.train.BytesList(value=[response.tostring()])),
'response_mask': tf.train.Feature(bytes_list=tf.train.BytesList(value=[response_mask.tostring()])),
'response_len': tf.train.Feature(int64_list=tf.train.Int64List(value=[response_len])),
'char_context': tf.train.Feature(bytes_list=tf.train.BytesList(value=[char_context.tostring()])),
'char_content_mask': tf.train.Feature(bytes_list=tf.train.BytesList(value=[char_content_mask.tostring()])),
'char_context_len': tf.train.Feature(bytes_list=tf.train.BytesList(value=[char_context_len.tostring()])),
'char_response': tf.train.Feature(bytes_list=tf.train.BytesList(value=[char_response.tostring()])),
'char_response_mask': tf.train.Feature(bytes_list=tf.train.BytesList(value=[char_response_mask.tostring()])),
'char_response_len': tf.train.Feature(bytes_list=tf.train.BytesList(value=[char_response_len.tostring()])),
'y_label': tf.train.Feature(int64_list=tf.train.Int64List(value=[y_label]))
}
tf_features = tf.train.Features(feature=features)
tf_example = tf.train.Example(features=tf_features)
tf_serialized = tf_example.SerializeToString()
writer.write(tf_serialized)
if((k+1)%10000==0):
print('Write {} examples to {}'.format(k+1, records_name))
if (k+1)>=max_mum:
break
writer.close()
def get_record_parser(FLAGS):
def _parser(example_proto):
dics = {
'context': tf.FixedLenFeature(shape=[], dtype=tf.string),
'content_mask': tf.FixedLenFeature(shape=[], dtype=tf.string),
'context_len': tf.FixedLenFeature(shape=[], dtype=tf.string),
'response': tf.FixedLenFeature(shape=[], dtype=tf.string),
'response_mask': tf.FixedLenFeature(shape=[], dtype=tf.string),
'response_len': tf.FixedLenFeature(shape=[], dtype=tf.int64),
'char_context': tf.FixedLenFeature(shape=[], dtype=tf.string),
'char_content_mask': tf.FixedLenFeature(shape=[], dtype=tf.string),
'char_context_len': tf.FixedLenFeature(shape=[], dtype=tf.string),
'char_response': tf.FixedLenFeature(shape=[], dtype=tf.string),
'char_response_mask': tf.FixedLenFeature(shape=[], dtype=tf.string),
'char_response_len': tf.FixedLenFeature(shape=[], dtype=tf.string),
'y_label': tf.FixedLenFeature(shape=[], dtype=tf.int64)
}
parsed_example = tf.parse_single_example(serialized=example_proto,features=dics)
context = tf.reshape(tf.decode_raw(parsed_example["context"], tf.int32), [FLAGS.max_turn, FLAGS.max_utterance_len])
content_mask = tf.reshape(tf.decode_raw(parsed_example["content_mask"], tf.int32), [FLAGS.max_turn, FLAGS.max_utterance_len])
context_len = tf.reshape(tf.decode_raw(parsed_example["context_len"], tf.int32), [FLAGS.max_turn])
response = tf.reshape(tf.decode_raw(parsed_example["response"], tf.int32), [FLAGS.max_utterance_len])
response_mask = tf.reshape(tf.decode_raw(parsed_example["response_mask"], tf.int32), [FLAGS.max_utterance_len])
response_len = parsed_example["response_len"]
char_context = tf.reshape(tf.decode_raw(parsed_example["char_context"], tf.int32), [FLAGS.max_turn, FLAGS.max_utterance_len, FLAGS.max_word_len])
char_content_mask = tf.reshape(tf.decode_raw(parsed_example["char_content_mask"], tf.int32), [FLAGS.max_turn, FLAGS.max_utterance_len, FLAGS.max_word_len])
char_context_len = tf.reshape(tf.decode_raw(parsed_example["char_context_len"], tf.int32), [FLAGS.max_turn, FLAGS.max_utterance_len])
char_response = tf.reshape(tf.decode_raw(parsed_example["char_response"], tf.int32), [FLAGS.max_utterance_len, FLAGS.max_word_len])
char_response_mask = tf.reshape(tf.decode_raw(parsed_example["char_response_mask"], tf.int32), [FLAGS.max_utterance_len, FLAGS.max_word_len])
char_response_len = tf.reshape(tf.decode_raw(parsed_example["char_response_len"], tf.int32), [FLAGS.max_utterance_len])
y_label = parsed_example["y_label"]
return context, content_mask, context_len, response, response_mask, response_len, \
char_context, char_content_mask, char_context_len, char_response, char_response_mask, char_response_len, y_label
return _parser
def get_batch_dataset(record_file, parser, batch_size, num_threads, capacity, is_test=False):
num_threads = tf.constant(num_threads, dtype=tf.int32)
if is_test:
dataset = tf.data.TFRecordDataset(record_file).map(parser, num_parallel_calls=num_threads).repeat(1).batch(batch_size)
else:
dataset = tf.data.TFRecordDataset(record_file).map(parser, num_parallel_calls=num_threads).shuffle(capacity).repeat().batch(batch_size)
return dataset
def process_word_embeddings(embedding_file, total_words, word_embedding_size, outfile):
word_dict = dict()
vectors = [list(np.zeros(word_embedding_size))]
with open(embedding_file,'r') as f:
lines = f.readlines() # there exits an useless line in word2vec
for i, line in enumerate(lines):
line = line.strip().split(' ')
word_dict[line[0]] = i + 1
vectors.append(list(map(float, line[1:])))
if i > total_words:
break
with open(os.path.join(outfile, 'char_emb_matrix.pkl'), 'wb') as f:
pickle.dump(vectors, f) #
with open(os.path.join(outfile, 'char_dict.pkl'), 'wb') as f:
pickle.dump(word_dict, f)
if __name__ == "__main__":
if 0:
build_records('ubuntu/train.txt', 'ubuntu/word_dict.pkl', 'ubuntu/char_dict.pkl', 'ubuntu/train.char.small.tfrecords', isshuffle=True, max_mum=20000)
build_records('ubuntu/valid.txt', 'ubuntu/word_dict.pkl', 'ubuntu/char_dict.pkl', 'ubuntu/valid.char.small.tfrecords', max_mum=10000)
build_records('ubuntu/test.txt', 'ubuntu/word_dict.pkl', 'ubuntu/char_dict.pkl', 'ubuntu/test.char.small.tfrecords', max_mum=10000)
else:
build_records('ubuntu/train.txt', 'ubuntu/word_dict.pkl', 'ubuntu/char_dict.pkl', 'ubuntu/train.char.tfrecords', isshuffle=True)
build_records('ubuntu/valid.txt', 'ubuntu/word_dict.pkl', 'ubuntu/char_dict.pkl', 'ubuntu/valid.char.tfrecords')
build_records('ubuntu/test.txt', 'ubuntu/word_dict.pkl', 'ubuntu/char_dict.pkl', 'ubuntu/test.char.tfrecords')