-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestDeltaModel.py
724 lines (682 loc) · 29.6 KB
/
testDeltaModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# -*- coding: utf-8 -*-
"""
##
## Simulation of the electrophysiology of the beta-cell and hubs effects.
## Using package NEURON yale.
##
## Created by Chon Lei
## Last updated: August 2017
##
"""
try:
from neuron import h
except Exception:
raise Exception("Please properly install NEURON package: http://www.neuron.yale.edu/neuron/download")
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pylab as plt
import random as random
import os.path as path
import sys
sys.path.append("../src/")
import modelSetup
import pickle
######
## Define model and setup; for testing only
######
"""
model
gjmodel
morphology
species # 0: mouse; 1: human; 2: cubic lattice
pyseed
isImitateExp # if True, simulate whole islet but only analyse imaged cells
mode # 0: WT; 1: silent hubs; 2: silent non hubs
silenceStart # I clamp hubs to silence them, compare results from Johnston et al., 2016
silenceDur
silenceAmp #-100#mV #-0.005#uA
pHubs # percentage/fraction of hubs in islet (if <1) else number of hubs in islet (i.e. >1)
methodToPickHubs # 0: random; 1: top GJ links; 2: bottom GJ links
whichHub # indix of imaged hub/non-hub to silence
ggap # model 1,2: ~1/6.*5.1*0.385*1e-4; model 3: ~0.12 [nS]
ggaphub
pggaphubstd # fraction of ggaphub as std
pggapstd # fraction of ggap as std
gjtau
dthres # spatial cutoff distance to def GJ connection
isletsize # islet size of interest (None for whole islet)
hetVar # it is % of mean's standard deviation
tstop # usually in [ms]
dt # usually in [ms]
downSampling # down sample the output -> output_timestep = dt*downSampling
tbatch # split simulation into batches; same unit as tstop
"""
modelParam = {'model' : 5, \
'gjmodel' : 1, \
'morphology' : 5, \
'species' : 1, \
'pyseed' : 11, \
'isImitateExp' : 1, \
'mode' : 1, \
'silenceStart' : 320e3, \
'silenceDur' : 50e3, \
'silenceAmp' : 0.12, \
'pHubs' : 0.1, \
'methodToPickHubs' : 0 , \
'whichHub' : 0 , \
'ggap' : 0., \
'ggaphub' : 0., \
'pggaphubstd' : 0., \
'pggapstd' : 0., \
'gjtau' : 100.0, \
'dthres' : 17.5, \
'isletsize' : 40 , \
'hetVar' : 0.1, \
'tstop' : 600e3, \
'dt' : 0.1 , \
'downSampling' : 10, \
'tbatch' : 600e3}
#modelParam['model_kwargs'] = {'beta':{'gamma':(0.985,0.0) , 'useDistribution':None , 'applytime':0e3} , 'betahub':{'hubgamma':1.0 , 'applytime':0e3}}
#modelParam['model_kwargs'] = {'beta':{'gkatp':(6.5,6.5) , 'useDistribution':'sq' , 'applytime':0e3} , 'betahub':{'hubgkatp':11.0 , 'applytime':0e3}}
modelParam['model_kwargs'] = {'beta':{'glu':(6.0,7.0) , 'useDistribution':'sq' , 'applytime':50e3} , \
'betahub':{'hubglu':11.0 , 'applytime':50e3}}
def main(modelParam=modelParam, hubsList_temp=[]):
######
## Define model and setup
######
model = modelParam['model' ]
gjmodel = modelParam['gjmodel']
morphology = modelParam['morphology']
species = modelParam['species']
pyseed = modelParam['pyseed']
isImitateExp = modelParam['isImitateExp']
mode = modelParam['mode']
silenceStart = modelParam['silenceStart']
silenceDur = modelParam['silenceDur']
silenceAmp = modelParam['silenceAmp']
pHubs = modelParam['pHubs']
##TODO need to do methodToPickHubs
methodToPickHubs = modelParam['methodToPickHubs']
whichHub = modelParam['whichHub']
ggap = modelParam['ggap']
ggaphub = modelParam['ggaphub']
try:
pggaphubstd = modelParam['pggaphubstd']
except Exception:
pggaphubstd = 0.0
try:
pggapstd = modelParam['pggapstd']
except Exception:
pggapstd = 0.0
gjtau = modelParam['gjtau']
dthres = modelParam['dthres']
isletsize = modelParam['isletsize']
hetVar = modelParam['hetVar']
tstop = modelParam['tstop']
dt = modelParam['dt']
downSampling = modelParam['downSampling']
tbatch = modelParam['tbatch']
try:
# model 1 default: {'beta':{} , 'betahub':{'hubkatp':-5.8}}
# model 2 default: {'beta':{'gkatp':(6.5,0.0) , 'useDistribution':None} , 'betahub':{'hubgkatp':10}}
# model 3 default: {'beta':{'gkatp':(6.5,0.0) , 'useDistribution':None , 'applytime':5e3} , 'betahub':{'hubgkatp':10 , 'applytime':5e3}}
model_kwargs = modelParam['model_kwargs']
except:
model_kwargs = { 'beta':{} , 'betahub':{} }
try:
p_connect = modelParam['p_connect']
except:
p_connect = 1.0
if isImitateExp:
isletsize = None # force to use whole islet
# Create output directories and log file
try:
parentout = modelParam['parentout']
subidx = modelParam['subidx']
outputidx, outputdir = modelSetup.outputSetup_sub(model,morphology,pyseed,mode,parentout,subidx)
except Exception:
outputidx, outputdir = modelSetup.outputSetup(model,morphology,pyseed,mode)
outlog = path.join(outputdir, outputidx+'.log')
outCa = path.join(outputdir, 'Ca_'+outputidx)
outVm = path.join(outputdir, 'Vm_'+outputidx)
outDeltaCa = path.join(outputdir, 'DeltaCa_'+outputidx)
outDeltaVm = path.join(outputdir, 'DeltaVm_'+outputidx)
# save modelParam
with open(path.join(outputdir,'modelParam.pkl'), 'wb') as f:
pickle.dump(modelParam, f, pickle.HIGHEST_PROTOCOL)
# log model setup as txt file
with open(outlog, 'w') as f:
f.write('#model = %d \n#gjmodel = %d \n#morphology = %d \n#species = %d \n#pyseed = %d \n#isImitateExp = %d \n#mode = %d \n#silenceStart = %f \n#silenceDur = %f \n#silenceAmp = %f \n#pHubs = %f \n#methodToPickHubs = %d \n#ggap = %f \n#ggaphub = %f \n#gjtau = %f \n#dthres = %f \n#isletsize = '%(model,gjmodel,morphology,species,pyseed,isImitateExp,mode,silenceStart,silenceDur,silenceAmp,pHubs,methodToPickHubs,ggap,ggaphub,gjtau,dthres)+str(isletsize)+' \n')
f.write('#hetVar = %f \n#tstop = %f \n#dt = %f \n#downSampling = %d \n#tbatch = %f \n\n'%(hetVar,tstop,dt,downSampling,tbatch))
if model == 1:
## Created by Chon Lei
## The current version is based on the model from
## M. Meyer-Hermann 2007 Biophysical Journal Vol. 93
## Last updated: 18/02/2017
pathToModel = "../models/betacell_hermann2007_vFinal/"
modelSetup.setupHetDict(varp=hetVar)
loadHetero = modelSetup.loadHeteroHermann2007
setHetero = modelSetup.setHeteroHermann2007
HetDict = modelSetup.HetDictHermann2007
#h.load_file (pathToModel+"betahub.hoc")
def defineBeta(cellList,i,**kwargs):
# define beta cell
cellList.append(h.betacell())
if hetVar>0:
setHetero(cellList[i],HetMatrix,i)
def defineBetaHub(cellList,i,hubkatp=-5.8):
# define beta hub cell
cellList.append(h.betahub())
cellList[i].soma(0.5).nkatp_katp = hubskatp
elif model == 2:
## Created by Chon Lei
## The current version is based on the model from
## M. Meyer-Hermann 2007 Biophysical Journal Vol. 93
## Last updated: 18/02/2017
pathToModel = "../models/betacell_hermann2007_vMetabolic/"
modelSetup.setupHetDict(varp=hetVar)
loadHetero = modelSetup.loadHeteroHermann2007
setHetero = modelSetup.setHeteroHermann2007
HetDict = modelSetup.HetDictHermann2007
def defineBeta(cellList,i,gkatp=(6.5,0.0),useDistribution=None):
# define beta cell
cellList.append(h.betacell())
if hetVar>0:
setHetero(cellList[i],HetMatrix,i)
if useDistribution == None:
cellList[i].soma(0.5).gammatoset_katp = gkatp[0]
elif useDistribution == 'sq':
cellList[i].soma(0.5).gammatoset_katp = np.random.uniform(gkatp[0],gkatp[1])
elif useDistribution == 'normal':
cellList[i].soma(0.5).gammatoset_katp = gkatp[0] + np.random.normal(0.0,1.0)*np.sqrt(gkatp[1])
else:
cellList[i].soma(0.5).gammatoset_katp = gkatp[0]
def defineBetaHub(cellList,i,hubgkatp=10.0):
# define beta hub cell
cellList.append(h.betacell())
cellList[i].soma(0.5).gammatoset_katp = hubgkatp
elif model==3:
## Created by Chon Lei
## The current version is based on the model from
## Cha et al. 2011 The Journal of General Physiology
## Last updated: 18/08/2017
pathToModel = "../models/betacell_cha2011_vMetabolic/"
#TODO
modelSetup.setupHetDict(varp=hetVar)
#loadHetero = modelSetup.setHeteroCha2011
setHetero = modelSetup.setHeteroCha2011
setOrigin = modelSetup.setOriginCha2011
HetDict = modelSetup.HetDictCha2011
def defineBeta(cellList,i,gkatp=(6.0,0.0),useDistribution=None,applytime=5e3):
# define beta cell
cellList.append(h.betacell())
cellList[i].soma(0.5).gammaapplytime_bcellcha = applytime
if hetVar>0:
setHetero(cellList[i],HetMatrix,i)
else:
setOrigin(cellList[i])
if useDistribution == None:
cellList[i].soma(0.5).gammatoset_bcellcha = gkatp[0]
elif useDistribution == 'sq':
cellList[i].soma(0.5).gammatoset_bcellcha = np.random.uniform(gkatp[0],gkatp[1])
elif useDistribution == 'normal':
cellList[i].soma(0.5).gammatoset_bcellcha = gkatp[0] + np.random.normal(0.0,1.0)*np.sqrt(gkatp[1])
else:
cellList[i].soma(0.5).gammatoset_bcellcha = gkatp[0]
def defineBetaHub(cellList,i,hubgkatp=10.0,applytime=5e3):
# define beta hub cell
cellList.append(h.betacell())
setOrigin(cellList[i])
cellList[i].soma(0.5).gammaapplytime_bcellcha = applytime
cellList[i].soma(0.5).gammatoset_bcellcha = hubgkatp
elif model==4:
## Created by Chon Lei
## The current version is based on the model from
## Cha et al. 2011 The Journal of General Physiology and Hraha et al. 2014 PLOS Computational Biology
## Last updated: 21/08/2017
pathToModel = "../models/betacell_cha2011_hraha2014/"
#TODO
modelSetup.setupHetDict(varp=hetVar)
#loadHetero = modelSetup.setHeteroCha2011
setHetero = modelSetup.setHeteroCha2011
setOrigin = modelSetup.setOriginCha2011
HetDict = modelSetup.HetDictCha2011
def defineBeta(cellList,i,gamma=(0.5,0.0),useDistribution=None,applytime=5e3):
# define beta cell
cellList.append(h.betacell())
cellList[i].soma(0.5).gammaapplytime_bcellcha = applytime
if hetVar>0:
setHetero(cellList[i],HetMatrix,i)
else:
setOrigin(cellList[i])
if useDistribution == None:
cellList[i].soma(0.5).gammamut_bcellcha = gamma[0]
elif useDistribution == 'sq':
cellList[i].soma(0.5).gammamut_bcellcha = np.random.uniform(gamma[0],gamma[1])
elif useDistribution == 'normal':
cellList[i].soma(0.5).gammamut_bcellcha = gamma[0] + np.random.normal(0.0,1.0)*np.sqrt(gamma[1])
else:
cellList[i].soma(0.5).gammamut_bcellcha = gamma[0]
def defineBetaHub(cellList,i,hubgamma=1.0,applytime=5e3):
# define beta hub cell
cellList.append(h.betacell())
setOrigin(cellList[i])
cellList[i].soma(0.5).gammaapplytime_bcellcha = applytime
cellList[i].soma(0.5).gammamut_bcellcha = hubgamma
elif model==5:
## Created by Chon Lei
## The current version is based on the model from
## Cha et al. 2011 The Journal of General Physiology and Hraha et al. 2014 PLOS Computational Biology
## Last updated: 21/08/2017
pathToModel = "../models/betacell_cha2011_vMetabolic2/"
#TODO
modelSetup.setupHetDict(varp=hetVar)
#loadHetero = modelSetup.setHeteroCha2011
setHetero = modelSetup.setHeteroCha2011all
setOrigin = modelSetup.setOriginCha2011all
HetDict = modelSetup.HetDictCha2011all
def defineBeta(cellList,i,glu=(0.5,0.0),useDistribution=None,applytime=5e3):
# define beta cell
cellList.append(h.betacell())
cellList[i].soma(0.5).gammaapplytime_bcellcha = applytime
if hetVar>0:
setHetero(cellList[i],HetMatrix,i)
else:
setOrigin(cellList[i])
if useDistribution == None:
cellList[i].soma(0.5).gammatoset_bcellcha = glu[0]
elif useDistribution == 'sq':
cellList[i].soma(0.5).gammatoset_bcellcha = np.random.uniform(glu[0],glu[1])
elif useDistribution == 'normal':
cellList[i].soma(0.5).gammatoset_bcellcha = glu[0] + np.random.normal(0.0,1.0)*np.sqrt(glu[1])
else:
cellList[i].soma(0.5).gammatoset_bcellcha = glu[0]
#cellList[i].soma(0.5).gKATP_bcellcha = 2.31*1.5 + np.random.normal(0.0,1.0)*2.31*hetVar
#cellList[i].soma(0.5).PCaL_bcellcha = 48.9*0.7 + np.random.normal(0.0,1.0)*48.9*hetVar
def defineBetaHub(cellList,i,hubglu=1.0,applytime=5e3):
# define beta hub cell
cellList.append(h.betacell())
setOrigin(cellList[i])
cellList[i].soma(0.5).gammaapplytime_bcellcha = applytime
cellList[i].soma(0.5).gammatoset_bcellcha = hubglu
#cellList[i].soma(0.5).gKATP_bcellcha = 2.31*0.5 + np.random.normal(0.0,1.0)*2.31*hetVar
#cellList[i].soma(0.5).PCaL_bcellcha = 48.9*1.5 + np.random.normal(0.0,1.0)*48.9*hetVar
# Delta cell model
def defineDelta(cellList,i):
# define delta cell
cellList.append(h.deltacell())
#setOrigin(cellList[i]) #TODO: check if we need this
if gjmodel==1:
pathToGJModel = "../models/gapjunction_pedersen2015/"
elif gjmodel==2:
pathToGJModel = "../models/gapjunction_hermann2010/"
if species==0:
pathToMorphology = "../morphologies/mouse/Mouse 40-%d.txt"%morphology
elif species==1:
pathToMorphology = "../morphologies/human/H4-1-%d.txt"%morphology
elif species==2:
pathToMorphology = "../morphologies/cubic_lattice/cubic%d.txt"%morphology
random.seed(pyseed)
np.random.seed(pyseed)
modelSetup.SetRandomSeed(pyseed)
######
## Import system setup files (.hoc files and system matrix)
######
CoorDataTmp = np.loadtxt(pathToMorphology)
# process CoorData to be acceptable format in modelSetup.genCoupleMatrix()
if mode==3: #species==1 and morphology>3:
CoorData = CoorDataTmp[np.abs(CoorDataTmp[:,0]-11)<0.1][:,1:4]
# Load delta cells' coordinates
DeltaCoorData = CoorDataTmp[np.abs(CoorDataTmp[:,0]-6)<0.1][:,1:4]
# Control the number of delta cells
temp = range(len(DeltaCoorData))
random.shuffle(temp)
DeltaCoorData = DeltaCoorData[temp[0:50],:] # say 50 of delta cells
# Begin: Work out the coupling matrix for delta cells and beta cells
# (row for delta cell index and column for beta cell index)
DeltaCoupledMatrix = np.zeros([np.shape(DeltaCoorData)[0], np.shape(CoorData)[0]])
for i in xrange(np.shape(DeltaCoorData)[0]):
for j in xrange(np.shape(CoorData)[0]):
diff = DeltaCoorData[i,:] - CoorData[j,:]
DeltaCoupledMatrix[i,j] = np.inner(diff,diff)
HubListByDeltaCell = np.argmin(DeltaCoupledMatrix, axis=1)
DeltaCoupledMatrix = np.zeros([np.shape(DeltaCoorData)[0], np.shape(CoorData)[0]])
for i in xrange(np.shape(DeltaCoorData)[0]):
DeltaCoupledMatrix[i, HubListByDeltaCell[i]] = 1
# End
# Return: HubListByDeltaCell, DeltaCoupledMatrix
ndeltacells = DeltaCoupledMatrix.shape[0]
else:
CoorData = CoorDataTmp[CoorDataTmp[:,0]==11][:,1:4] # assume all use `11' as beta cell
CoupledMatrix = modelSetup.genCoupleMatrix(CoorData,dthres,isletsize,True)
tempCoupledMatrix = CoupledMatrix + CoupledMatrix.T
ncells = CoupledMatrix.shape[0]
nSpatialLinks = np.sum(CoupledMatrix+CoupledMatrix.T,1)
if ncells != CoupledMatrix.shape[1]:
raise Exception("CoupledMatrix invalid dimensions.")
Total = (ncells*ncells)/2 - ncells # maximum number of gapjunctions that could be formed
if isImitateExp==1:
imagedCells = modelSetup.getImagedCellIdx(CoorData,topDir=2,imageDepth=10,Ncells=100,method=0)
else:
imagedCells = []
with open(outlog, 'a') as f:
f.write('#imagedCells = ')
f.write(','.join(map(str, imagedCells)))
f.write('\n\n')
try:
# assumed using x64 bits; change if needed
h('nrn_load_dll("%sx86_64/.libs/libnrnmech.so")'%pathToModel)
h('nrn_load_dll("%sx86_64/.libs/libnrnmech.so")'%pathToGJModel)
h.load_file (pathToModel+"betahub.hoc")
h.load_file (pathToModel+"betacell.hoc")
h.load_file (pathToGJModel+"gapjunction.hoc")
except Exception:
raise Exception("Please make sure files has been compiled using \n$ nrnivmodl\n")
try:
# add delta cell
h('nrn_load_dll("%sx86_64/.libs/libnrnmech.so")'%'./deltacell/')
#h.load_file (path.join('./deltacell', 'deltacell.hoc'))
h.load_file ('./deltacell/deltacell.hoc')
except Exception:
raise Exception("Please make sure files has been compiled using \n$ nrnivmodl\n")
a = []
HetMatrix = np.zeros((10,10))
# Beta cell
defineBetaHub(a, 0, **model_kwargs['betahub'])
#defineBeta(a, 0, **(model_kwargs['beta']))
betacell = a[0]
# Delta cell
defineDelta(a, 1)
deltacell = a[1]
# Link beta cell and delta cell
syn = h.sst(0.5, sec=betacell.soma)
h.setpointer(deltacell.soma(0.5)._ref_T_rel, 'cp', syn)
# Stimulate delta cell
iclampList = []
iclampList.append(h.IClamp (0.5, sec = deltacell.soma) )
delay, dur, amp = silenceStart,silenceDur,silenceAmp
iclampList[-1].delay = delay
iclampList[-1].dur = dur
iclampList[-1].amp = amp
"""
######
## System set-up
######
print("*************************")
print("Starting system set-up...")
# Define beta hubs cells
numHubs = int(pHubs*ncells) if pHubs<=1 else pHubs
temp = range(ncells)
random.shuffle(temp)
hubsList = temp[0:numHubs]
if hubsList_temp!=None and hubsList_temp!=[]:
hubsList = hubsList_temp
imagedHubs = list(set(hubsList).intersection(imagedCells))
numImHubs = int(pHubs*len(imagedCells)) if pHubs<=1 else len(imagedCells)/ncells*pHubs
if isImitateExp and len(imagedHubs) < max(numImHubs,1):
nMorehubs = max(numImHubs,1) - len(imagedHubs)
tempCellsToPick = [x for x in imagedCells if x not in imagedHubs]
random.shuffle(tempCellsToPick)
hubsList += tempCellsToPick[0:nMorehubs]
imagedHubs += tempCellsToPick[0:nMorehubs]
# Use a previously generated indices
# Uncomment this to set specific hubs
#hubsList = [self_def_list]
print(hubsList)
with open(outlog, 'a') as f:
f.write('#hubsList = \n')
f.write(','.join(map(str, hubsList)))
f.write('\n\n')
f.write('#imagedHubs = ')
f.write(','.join(map(str, imagedHubs)))
f.write('\n\n')
# Randomly pick some non-hubs cells
numNonHubsToPick = numHubs
temp = [i for i in range(ncells) if i not in hubsList]
random.shuffle(temp)
nonHubsToPickList = temp[0:numNonHubsToPick]
imagedNonHubs = []
if isImitateExp:
temp = [i for i in imagedCells if i not in imagedHubs]
random.shuffle(temp)
imagedNonHubs = temp[0:len(imagedHubs)]
print(nonHubsToPickList)
with open(outlog, 'a') as f:
f.write('#nonHubsToPickList = ')
f.write(','.join(map(str, nonHubsToPickList)))
f.write('\n\n')
f.write('#imagedNonHubs = ')
f.write(','.join(map(str, imagedNonHubs)))
f.write('\n\n')
# Declare heterogeneity matrix
HetMatrix = np.zeros((len(HetDict)+1,ncells))
# Use a previously generated heterogeneity matrix
# Comment this out and use setHeteroHermann2007() to run another simulation
#HetMatrix = np.loadtxt('HetMatrix-mouse40-3.txt')
##TODO: Add function to silent cells
def silenceCellV(iclampList,cell,delay=250e3,dur=250e3,amp=-100.0):
# vclamp cell to imitate cell silencing in experiments
iclampList.append(h.SEClamp (0.5, sec = cell.soma) )
iclampList[-1].dur1 = silenceStart
iclampList[-1].rs = 1e9
iclampList[-1].dur2 = dur
iclampList[-1].amp2 = amp
def silenceCell(iclampList,cell,delay=250e3,dur=250e3,amp=-0.005):
# iclamp cell to imitate cell silencing in experiments
# all spiking: -0.0005; all stay -120mV: -0.005; all stay -72mV: -0.001; all stay -90mV: -0.002;
iclampList.append(h.IClamp (0.5, sec = cell.soma) )
iclampList[-1].delay = delay
iclampList[-1].dur = dur
iclampList[-1].amp = amp
print "Defining cells..."
# Define as beta hub cell if in the hubsList
# Introduce heterogeneity to each defined cell
cell = []
iclamp_hubs = []
tempCoupledMatrix = CoupledMatrix + CoupledMatrix.T
toPick = random.randint(0,len(hubsList))
for i in range(ncells):
if i not in hubsList:
defineBeta(cell,i)#,**model_kwargs['beta'])
if isImitateExp:
#if i in list(np.arange(ncells)[tempCoupledMatrix[:,imagedHubs[whichHub]]>0]):
if (i == imagedNonHubs[whichHub]) and (mode==2):
print "silencing cell ",i
with open(outlog, 'a') as f:
f.write('#silencedCell = %d\n'%i)
f.write('#cell%d_nSpatialLinks = %d\n'%(i,nSpatialLinks[i]))
silenceCell(iclamp_hubs,cell[i],silenceStart,silenceDur,silenceAmp)
else:
if (i == nonHubsToPickList[toPick]) and (mode==2):
print "silencing cell ",i
with open(outlog, 'a') as f:
f.write('#silencedCell = %d\n'%i)
f.write('#cell%d_nSpatialLinks = %d\n'%(i,nSpatialLinks[i]))
silenceCell(iclamp_hubs,cell[i],silenceStart,silenceDur,silenceAmp)
else:
defineBetaHub(cell,i)#,**model_kwargs['betahub'])
if isImitateExp:
if mode==1 and i==imagedHubs[whichHub]:
#or i in list(np.arange(ncells)[tempCoupledMatrix[:,imagedHubs[whichHub]]>0]):
print "silencing cell ",i
with open(outlog, 'a') as f:
f.write('#silencedCell = %d\n'%i)
f.write('#cell%d_nSpatialLinks = %d\n'%(i,nSpatialLinks[i]))
silenceCell(iclamp_hubs,cell[i],silenceStart,silenceDur,silenceAmp)
else:
if mode==1 and i==hubsList[toPick]:
print "silencing cell ",i
with open(outlog, 'a') as f:
f.write('#silencedCell = %d\n'%i)
f.write('#cell%d_nSpatialLinks = %d\n'%(i,nSpatialLinks[i]))
silenceCell(iclamp_hubs,cell[i],silenceStart,silenceDur,silenceAmp)
# Declare heterogeneity GJ matrix
HetGjMatrix = np.zeros(CoupledMatrix.shape)
# Use a previously generated heterogeneity GJ matrix
#HetMatrix = np.loadtxt('')
#TODO can put this in modelSetup.py too
print "Defining gap junction connections..."
gap = []
for i in range(ncells):
for j in range(ncells):
if CoupledMatrix[i,j] > 0 and ((i in hubsList) or (j in hubsList)):
if pggaphubstd > 0:
HetGjMatrix[i,j] = max(ggaphub * (1.0 + np.random.normal(0.0,1.0)*pggaphubstd), 0)
else:
HetGjMatrix[i,j] = ggaphub
gap.append(h.gapjunction(cell[i], cell[j], 0.5, 0.5, HetGjMatrix[i,j]*CoupledMatrix[i,j],gjtau))
elif CoupledMatrix[i,j] > 0: #and ((i not in nonHubsToPickList) or (j not in nonHubsToPickList)):
if pggapstd > 0:
HetGjMatrix[i,j] = max(ggap * (1.0 + np.random.normal(0.0,1.0)*pggapstd), 0)
else:
HetGjMatrix[i,j] = ggap
gap.append(h.gapjunction(cell[i], cell[j], 0.5, 0.5, HetGjMatrix[i,j]*CoupledMatrix[i,j],gjtau))
"""
######
## External stimulation
######
"""
stimulus = h.IClamp (0.5, sec = cell[0].soma)
stimulus.delay = 100
stimulus.dur = 300
stimulus.amp = 0.5
"""
"""
######
## System recorder initalisation
######
print("Creating recorder vectors...")
t = h.Vector()
t.record(h._ref_t)
vrec = []
carec = []
deltavrec = []
deltacarec = []
for i in range(ncells):
vrec.append(h.Vector())
carec.append(h.Vector())
vrec[i].record(cell[i].soma(0.5)._ref_v)
carec[i].record(cell[i].soma(0.5)._ref_cai)
for i in range(ndeltacells):
deltavrec.append(h.Vector())
deltacarec.append(h.Vector())
deltavrec[i].record(delta_cell[i].soma(0.5)._ref_v)
deltacarec[i].record(delta_cell[i].soma(0.5)._ref_cai)
"""
vm1 = h.Vector()
vm1.record (betacell.soma(0.5)._ref_v)
ca1 = h.Vector()
ca1.record (betacell.soma(0.5)._ref_cai)
t_rel = h.Vector()
t_rel.record (deltacell.soma(0.5)._ref_T_rel)
vm2 = h.Vector()
vm2.record (deltacell.soma(0.5)._ref_v)
ca2 = h.Vector()
ca2.record (deltacell.soma(0.5)._ref_cai)
######
## Main simulation
######
h.load_file("stdrun.hoc")
h.init()
h.dt = dt
h.steps_per_ms = 1./h.dt
print("Running main simulation...")
temptstop = 0 # tstop for current batch
nbatch = int(tstop/tbatch) # split simulation into nbatch
print("Dividing simulation into %d batches..."%nbatch)
tremain = tstop%tbatch # remaining simulation time after nbatch
for i in xrange(nbatch):
if temptstop >= silenceStart and False:
for iclamp in iclamp_hubs:
iclamp.rs = 0.001
#if temptstop > 150e3:
# for iclamp in iclamp_hubs:
# iclamp.amp = -10.0
#if temptstop > 200e3:
# for iclamp in iclamp_hubs:
# iclamp.amp = -20.0
#if temptstop > 250e3:
# for iclamp in iclamp_hubs:
# iclamp.amp = -30.0
#if temptstop > 300e3:
# for iclamp in iclamp_hubs:
# iclamp.amp = -40.0
temptstop += tbatch # tstop for current batch
h.frecord_init() # reuse all recording vectors
h.continuerun(temptstop)
# exporting Ca time series
#tosave = modelSetup.convertSimOutput(carec,downSampling,reuse=True)
#modelSetup.savedat(outCa,tosave,'Ca',outlog,idx=i)
# exporting Vm time series
#tosave = modelSetup.convertSimOutput(vrec,downSampling,reuse=True)
#modelSetup.savedat(outVm,tosave,'Vm',outlog,idx=i)
print("Finished section %d out of %d."%(i+1,nbatch))
if tremain > 0:
print("Running final section...")
h.frecord_init() # reuse all recording vectors
h.continuerun(tstop) # run until the end
# exporting Ca time series
#tosave = modelSetup.convertSimOutput(carec,downSampling,reuse=True)
#modelSetup.savedat(outCa,tosave,'Ca',outlog,idx=i+1)
# exporting Vm time series
#tosave = modelSetup.convertSimOutput(vrec,downSampling,reuse=True)
#modelSetup.savedat(outVm,tosave,'Vm',outlog,idx=i+1)
print("Simulation completed! :)")
print("*************************")
vm1 = np.array(vm1)
vm2 = np.array(vm2)
ca1 = np.array(ca1)
ca2 = np.array(ca2)
t_rel = np.array(t_rel)
plt.plot(np.arange(len(vm1))*1e-4, vm1, 'r-',label='b-cell')
plt.plot(np.arange(len(vm1))*1e-4, vm2, 'b-',label='d-cell')
plt.legend()
plt.xlabel("time [s]", fontsize=20)
plt.ylabel("V [mV]", fontsize=20)
plt.savefig("vm.png")
plt.figure(2)
plt.plot(np.arange(len(vm1))*1e-4, ca1, 'r-',label='b-cell')
plt.plot(np.arange(len(vm1))*1e-4, ca2, 'b-',label='d-cell')
plt.legend()
plt.xlabel("time [s]", fontsize=20)
plt.ylabel(r"[Ca]$_i$ [mM]", fontsize=20)
plt.savefig("ca.png")
plt.figure(3)
plt.plot(np.arange(len(vm1))*1e-4, t_rel)
plt.xlabel("time [s]", fontsize=20)
plt.ylabel(r"$T_{rel}$", fontsize=20)
plt.savefig("t_rel.png")
#plt.show()
np.savetxt('quicksim/vm_bcell.txt', vm1[::downSampling])
np.savetxt('quicksim/vm_dcell.txt', vm2[::downSampling])
np.savetxt('quicksim/ca_bcell.txt', ca1[::downSampling])
np.savetxt('quicksim/ca_dcell.txt', ca2[::downSampling])
np.savetxt('quicksim/t_rel_dcell.txt', t_rel[::downSampling])
######
## Visualisation
######
toVisual = False
if toVisual:
t = np.array(t)
membranepotential = np.array(vrec[0])
plt.plot(t, membranepotential)
membranepotential2 = np.array(vrec[102])
plt.plot(t, membranepotential2)
plt.show()
##########
## End ##
##########
if __name__== '__main__':
try:
print("Loading external model parameters from %s"%sys.argv[1])
modelParam = pickle.load(open(sys.argv[1],'rb'))
except Exception:
print("Cannot read external model parameters...\nUsing default parameters...\n\n")
#modelParam['pHubs'] = 0.05
#modelParam['whichHub'] = 3
#modelParam['ggaphub'] = 0.4
#modelParam['silenceAmp'] = -30.0
# just try to run main(), but not expecting to be used in this way
main(modelParam)
##