Skip to content

Optimal hyperparameters for variable-rate CPC #3

@Saurabhbhati

Description

@Saurabhbhati

Based on the README and the paper I am using the following hyper-parameters for training the variable-rate CPC

python cpc/train.py --pathDB /path_datasets/LibriSpeech/train-clean-100 --file_extension '.flac' --pathCheckpoint ./hcpc --normMode layerNorm --dropout --n_process_loader 1 --batchSizeGPU 32 --CPCCTC --nPredicts 12 --CPCCTCNumMatched 12 --limitNegsInBatch 8 --nEpoch 50 --nGPU 1 --nLevelsGRU 2 --schedulerRamp 10 --multiLevel --segmentationMode boundaryPredictor --nPredictsSegment 2 --CPCCTCNumMatchedSegment 2 --adjacentNegatives --targetQuantizerSegment robustKmeans

However, the phone segmentation results (R-value 73.23) are lower than the ones in the paper (R-value 81.98) for Librispeech dataset. I seem to be missing something. Could you please take a look and share the optimal parameters?

Thank you.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions