-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdecision_boundary_nonlinear_data.py
51 lines (43 loc) · 1.59 KB
/
decision_boundary_nonlinear_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Imports
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_moons
from mlxtend.plotting import plot_decision_regions
# Configuration options
num_samples_total = 1000
training_split = 250
# Generate data
X, targets = make_moons(n_samples = num_samples_total)
targets[np.where(targets == 0)] = -1
X_training = X[training_split:, :]
X_testing = X[:training_split, :]
Targets_training = targets[training_split:]
Targets_testing = targets[:training_split]
# Generate scatter plot for training data
plt.scatter(X_training[:,0], X_training[:,1])
plt.title('Nonlinear data')
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
# Set the input shape
feature_vector_shape = len(X_training[0])
input_shape = (feature_vector_shape,)
print(f'Feature shape: {input_shape}')
# Create the model
model = Sequential()
model.add(Dense(50, input_shape=input_shape, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(1, activation='tanh'))
# Configure the model and start training
model.compile(loss='squared_hinge', optimizer='adam', metrics=['accuracy'])
model.fit(X_training, Targets_training, epochs=50, batch_size=25, verbose=1, validation_split=0.2)
# Test the model after training
test_results = model.evaluate(X_testing, Targets_testing, verbose=1)
print(f'Test results - Loss: {test_results[0]} - Accuracy: {test_results[1]*100}%')
# Plot decision boundary
plot_decision_regions(X_testing, Targets_testing, clf=model, legend=2)
plt.show()