-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
44 lines (27 loc) · 1.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from perceptron import Perceptron
DATASET_IRIS_PATH = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
print("esercizio 1")
print("loading iris dataset from" , DATASET_IRIS_PATH)
df = pd.read_csv(DATASET_IRIS_PATH , header=None , encoding='utf-8')
print("dataset loaded")
print("dataset has" , df.shape[0] , "examples")
assert df.shape[0] > 0 , 'incorrect dataset loaded'
num_examples = 100
y = df.iloc[0:num_examples , 4].values
y = np.where(y == 'Iris-setosa' , -1 , 1)
X = df.iloc[0:num_examples , [0 , 2]].values
plt.scatter(X[:50 , 0] , X[:50 , 1] , color="red" , marker="o" , label="setosa")
plt.scatter(X[50:num_examples , 0] , X[50:num_examples , 1] , color="blue" , marker="x" , label="versicolor")
plt.title("tipo di fiore per caratteristiche stelo/petali")
plt.xlabel("lunghezza stelo [cm]")
plt.ylabel("lunghezza petali [cm]")
plt.legend(loc="upper left")
plt.show()
ppn = Perceptron(X.shape[0])
ppn.fit(X , y)
plt.plot(range(1 , len))