k8s的 Event 事件是一种资源对象,用于展示集群内发生的情况,k8s 系统中的各个组件会将运行时发生的各种事件上报给 apiserver 。可以通过kubectl get event 或 kubectl describe pod podName 命令显示事件,查看k8s集群中发生了哪些事件。
apiserver 会将 Event 事件存在 etcd 集群中,为避免磁盘空间被填满,故强制执行保留策略:在最后一次的事件发生后,删除1小时之前发生的事件。
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 19s default-scheduler Successfully assigned default/hpatest-bbb44c476-8d45v to 192.168.13.130
Normal Pulled 15s kubelet, 192.168.13.130 Container image "nginx" already present on machine
Normal Created 15s kubelet, 192.168.13.130 Created container hpatest
Normal Started 13s kubelet, 192.168.13.130 Started container hpatest
Event 事件管理机制主要有三部分组成:
- EventRecorder:是事件生成者,k8s组件通过调用它的方法来生成事件;
- EventBroadcaster:事件广播器,负责消费EventRecorder产生的事件,然后分发给broadcasterWatcher;
- broadcasterWatcher:用于定义事件的处理方式,如上报apiserver;
// pkg/apis/core/types.go
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Event is a report of an event somewhere in the cluster. Events
// have a limited retention time and triggers and messages may evolve
// with time. Event consumers should not rely on the timing of an event
// with a given Reason reflecting a consistent underlying trigger, or the
// continued existence of events with that Reason. Events should be
// treated as informative, best-effort, supplemental data.
// TODO: Decide whether to store these separately or with the object they apply to.
type Event struct {
metav1.TypeMeta
// 标准对象的元数据。
metav1.ObjectMeta
// The object that this event is about. Mapped to events.Event.regarding
// +optional
// 与此 event 有直接关联的资源对象(触发event的资源对象)
InvolvedObject ObjectReference
// Optional; this should be a short, machine understandable string that gives the reason
// for this event being generated. For example, if the event is reporting that a container
// can't start, the Reason might be "ImageNotFound".
// TODO: provide exact specification for format.
// +optional
// 这应该是一个简短的,机器可理解的字符串,该字符串给出了转换为对象当前状态的原因。
Reason string
// Optional. A human-readable description of the status of this operation.
// TODO: decide on maximum length. Mapped to events.Event.note
// +optional
// 此操作状态的可读描述。(给一个更易让人读懂的详细说明)
Message string
// Optional. The component reporting this event. Should be a short machine understandable string.
// +optional
// 报告此事件的组件。 应该是机器可以理解的短字符串。
Source EventSource
// The time at which the event was first recorded. (Time of server receipt is in TypeMeta.)
// +optional
// 首次记录事件的时间。 (服务器收到时间以TypeMeta表示。)
FirstTimestamp metav1.Time
// The time at which the most recent occurrence of this event was recorded.
// +optional
// 最近一次记录此事件的时间。
LastTimestamp metav1.Time
// The number of times this event has occurred.
// +optional
// 此事件发生的次数。
Count int32
// Type of this event (Normal, Warning), new types could be added in the future.
// +optional
// 此事件的类型(正常,警告),将来可能会添加新的类型
Type string
// Time when this Event was first observed.
// +optional
// 首次观察到此事件的时间。
EventTime metav1.MicroTime
// Data about the Event series this event represents or nil if it's a singleton Event.
// +optional
Series *EventSeries
// What action was taken/failed regarding to the Regarding object.
// +optional
Action string
// Optional secondary object for more complex actions.
// +optional
Related *ObjectReference
// Name of the controller that emitted this Event, e.g. `kubernetes.io/kubelet`.
// +optional
ReportingController string
// ID of the controller instance, e.g. `kubelet-xyzf`.
// +optional
ReportingInstance string
}
- EventRecorder
在 client-go 中的 staging/src/k8s.io/client-go/tools/record/event.go 中定义的 EventRecorder 接口:
// EventRecorder 知道如何记录事件源产生的时间
// EventRecorder knows how to record events on behalf of an EventSource.
type EventRecorder interface {
// Event constructs an event from the given information and puts it in the queue for sending.
// 'object' is the object this event is about. Event will make a reference-- or you may also
// pass a reference to the object directly.
// 'eventtype' of this event, and can be one of Normal, Warning. New types could be added in future
// 'reason' is the reason this event is generated. 'reason' should be short and unique; it
// should be in UpperCamelCase format (starting with a capital letter). "reason" will be used
// to automate handling of events, so imagine people writing switch statements to handle them.
// You want to make that easy.
// 'message' is intended to be human readable.
//
// The resulting event will be created in the same namespace as the reference object.
Event(object runtime.Object, eventtype, reason, message string)
// Eventf is just like Event, but with Sprintf for the message field.
Eventf(object runtime.Object, eventtype, reason, messageFmt string, args ...interface{})
// AnnotatedEventf is just like eventf, but with annotations attached
AnnotatedEventf(object runtime.Object, annotations map[string]string, eventtype, reason, messageFmt string, args ...interface{})
}
EventRecorder 接口定义了记录 Event 的三种方法,用以帮助kubernetes组件记录Event。其中Event是以来记录刚发生的事件;Eventf通过使用fmt.Sprintf格式化输出事件的格式;AnnotatedEventf功能和Eventf一致,但是附加了注释字段。
- recordImpl
结构体recorderImpl是EventRecorder接口的实现:
type recorderImpl struct {
//k8s资源注册表
scheme *runtime.Scheme
//上报事件的组件,例如kubelet,kube-controller-manager
source v1.EventSource
*watch.Broadcaster
clock clock.PassiveClock
}
// NewRecorder returns an EventRecorder that records events with the given event source.
func (e *eventBroadcasterImpl) NewRecorder(scheme *runtime.Scheme, source v1.EventSource) EventRecorder {
return &recorderImpl{scheme, source, e.Broadcaster, clock.RealClock{}}
}
func (recorder *recorderImpl) Event(object runtime.Object, eventtype, reason, message string) {
recorder.generateEvent(object, nil, eventtype, reason, message)
}
func (recorder *recorderImpl) Eventf(object runtime.Object, eventtype, reason, messageFmt string, args ...interface{}) {
recorder.Event(object, eventtype, reason, fmt.Sprintf(messageFmt, args...))
}
func (recorder *recorderImpl) AnnotatedEventf(object runtime.Object, annotations map[string]string, eventtype, reason, messageFmt string, args ...interface{}) {
recorder.generateEvent(object, annotations, eventtype, reason, fmt.Sprintf(messageFmt, args...))
}
recorderImpl实现了EventRecorder接口定义的三个方法,以Event方法为例,调用链为: recorderImpl.Event方法→ recorderImpl.generateEvent方法→Broadcaster.ActionOrDrop方法:
func (recorder *recorderImpl) Event(object runtime.Object, eventtype, reason, message string) {
recorder.generateEvent(object, nil, eventtype, reason, message)
}
func (recorder *recorderImpl) generateEvent(object runtime.Object, annotations map[string]string, eventtype, reason, message string) {
ref, err := ref.GetReference(recorder.scheme, object)
if err != nil {
klog.Errorf("Could not construct reference to: '%#v' due to: '%v'. Will not report event: '%v' '%v' '%v'", object, err, eventtype, reason, message)
return
}
if !util.ValidateEventType(eventtype) {
klog.Errorf("Unsupported event type: '%v'", eventtype)
return
}
event := recorder.makeEvent(ref, annotations, eventtype, reason, message)
event.Source = recorder.source
// NOTE: events should be a non-blocking operation, but we also need to not
// put this in a goroutine, otherwise we'll race to write to a closed channel
// when we go to shut down this broadcaster. Just drop events if we get overloaded,
// and log an error if that happens (we've configured the broadcaster to drop
// outgoing events anyway).
sent, err := recorder.ActionOrDrop(watch.Added, event)
if err != nil {
klog.Errorf("unable to record event: %v (will not retry!)", err)
return
}
if !sent {
klog.Errorf("unable to record event: too many queued events, dropped event %#v", event)
}
}
// Action distributes the given event among all watchers, or drops it on the floor
// if too many incoming actions are queued up. Returns true if the action was sent,
// false if dropped.
func (m *Broadcaster) ActionOrDrop(action EventType, obj runtime.Object) (bool, error) {
m.incomingBlock.Lock()
defer m.incomingBlock.Unlock()
// Ensure that if the broadcaster is stopped we do not send events to it.
select {
case <-m.stopped:
return false, fmt.Errorf("broadcaster already stopped")
default:
}
select {
case m.incoming <- Event{action, obj}:
return true, nil
default:
return false, nil
}
}
makeEvent方法会创建Event资源实例
func (recorder *recorderImpl) makeEvent(ref *v1.ObjectReference, annotations map[string]string, eventtype, reason, message string) *v1.Event {
t := metav1.Time{Time: recorder.clock.Now()}
namespace := ref.Namespace
if namespace == "" {
namespace = metav1.NamespaceDefault
}
return &v1.Event{
ObjectMeta: metav1.ObjectMeta{
Name: fmt.Sprintf("%v.%x", ref.Name, t.UnixNano()),
Namespace: namespace,
Annotations: annotations,
},
InvolvedObject: *ref,
Reason: reason,
Message: message,
FirstTimestamp: t,
LastTimestamp: t,
Count: 1,
Type: eventtype,
}
}
generateEvent方法调用ActionOrDrop方法,将事件写入到incoming中:
- EventBroadcaster
在client-go中的tools/record/event.go中定义了EventBroadcaster接口:
// EventBroadcaster knows how to receive events and send them to any EventSink, watcher, or log.
type EventBroadcaster interface {
// StartEventWatcher starts sending events received from this EventBroadcaster to the given
// event handler function. The return value can be ignored or used to stop recording, if
// desired.
StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface
// StartRecordingToSink starts sending events received from this EventBroadcaster to the given
// sink. The return value can be ignored or used to stop recording, if desired.
StartRecordingToSink(sink EventSink) watch.Interface
// StartLogging starts sending events received from this EventBroadcaster to the given logging
// function. The return value can be ignored or used to stop recording, if desired.
StartLogging(logf func(format string, args ...interface{})) watch.Interface
// StartStructuredLogging starts sending events received from this EventBroadcaster to the structured
// logging function. The return value can be ignored or used to stop recording, if desired.
StartStructuredLogging(verbosity klog.Level) watch.Interface
// NewRecorder returns an EventRecorder that can be used to send events to this EventBroadcaster
// with the event source set to the given event source.
NewRecorder(scheme *runtime.Scheme, source v1.EventSource) EventRecorder
// Shutdown shuts down the broadcaster
Shutdown()
}
EventBroadcaster作为 Event 消费者,消费 EventRecorder 记录的事件并将其分发给目前所有已连接的broadcasterWatcher。
结构体 eventBroadcasterImpl 是其实现:
type eventBroadcasterImpl struct {
*watch.Broadcaster
sleepDuration time.Duration
options CorrelatorOptions
}
eventBroadcasterImpl结构体中,同样包含Broadcaster结构体对象地址,因此可以调用Broadcaster实现的方法。sleepDuration是最终watcher在记录事件的时候报错后会重试,这个参数代表了每次重试的时间间隔。options这个参数在记录事件的过程中很重要,不赋值的话,系统会使用默认的一组值,用来对事件进行聚合处理,我们知道事件里面有一个count属性,表明此事件发生了多少次,这个值就是通过对事件的聚合而生成的值,k8s为了防止大量事件的产生对etcd造成冲击,就搞了这么一个聚合机制,把相似的事件聚合成一个event。
在apimachinery中的pkg/watch/mux.go中定义了Broadcaster结构体:
// Broadcaster distributes event notifications among any number of watchers. Every event
// is delivered to every watcher.
type Broadcaster struct {
watchers map[int64]*broadcasterWatcher
nextWatcher int64
distributing sync.WaitGroup
// incomingBlock allows us to ensure we don't race and end up sending events
// to a closed channel following a broadcaster shutdown.
incomingBlock sync.Mutex
incoming chan Event
stopped chan struct{}
// How large to make watcher's channel.
watchQueueLength int
// If one of the watch channels is full, don't wait for it to become empty.
// Instead just deliver it to the watchers that do have space in their
// channels and move on to the next event.
// It's more fair to do this on a per-watcher basis than to do it on the
// "incoming" channel, which would allow one slow watcher to prevent all
// other watchers from getting new events.
fullChannelBehavior FullChannelBehavior
}
client-go的tools/record/event.go中,提供的实例化eventBroadcasterImpl的函数:
// Creates a new event broadcaster.
func NewBroadcaster() EventBroadcaster {
return &eventBroadcasterImpl{
Broadcaster: watch.NewLongQueueBroadcaster(maxQueuedEvents, watch.DropIfChannelFull),
sleepDuration: defaultSleepDuration,
}
}
Broadcaster实际由apimachinery/pkg/watch/mux.go中的NewLongQueueBroadcaster函数创建:
func NewLongQueueBroadcaster(queueLength int, fullChannelBehavior FullChannelBehavior) *Broadcaster {
m := &Broadcaster{
watchers: map[int64]*broadcasterWatcher{}, //观察者
incoming: make(chan Event, queueLength), //事件接收缓冲
stopped: make(chan struct{}),
watchQueueLength: queueLength,
fullChannelBehavior: fullChannelBehavior, //broadcasterWatcher存放事件的result通道缓存满了之后再来写入的事件是否抛弃事件,这里默认都是抛弃,逻辑在下面的distribute()方法里面
}
m.distributing.Add(1) // sysc.WaitGroup
go m.loop() // 死循环消费事件直到incoming通道关闭
return m
}
创建时,会在内部启动goroutine,通过m.loop方法监控m.incoming;
// k8s.io/apimachinery/pkg/watch/mux.go
func (m *Broadcaster) loop() {
//获取m.incoming管道中的数据,死循环直到incoming通道关闭
for event := range m.incoming {
if event.Type == internalRunFunctionMarker {
event.Object.(functionFakeRuntimeObject)()
continue
}
//事件下发给观察者
m.distribute(event)
}
// incoming通道关闭后清理资源(关闭所有观察者)
m.closeAll()
m.distributing.Done()
}
可以看到loop方法,一直从m.incoming里面获取值,然后调用distribute方法,下发给所有已连接的BroadcasterWatcher处理具体的事件,除非m.incoming被close,否则for循环将一直维持。
func (m *Broadcaster) distribute(event Event) {
if m.fullChannelBehavior == DropIfChannelFull {
for _, w := range m.watchers { //遍历所有观察者
select {
case w.result <- event: //把事件分发给每一个观察者
case <-w.stopped: //如果观察者被停止
default: //非阻塞分发,如果w.result满了,则丢弃事件
}
}
} else {
for _, w := range m.watchers {
select {
case w.result <- event: //阻塞分发,如果w.result满了,则一直等待事件被处理后在放入事件
case <-w.stopped:
}
}
}
}
这个方法做的事情就是把从incoming里面获取的事件拿到之后,遍历所有的watcher,然后把事件放到每一个watcher接收事件的result通道里面。watcher在注册的时候,会启动一个for循环从result通道里面获取事件,执行记录逻辑,后面会看到的。
分发过程有两种机制,分别是非阻塞(Non-Blocking)分发机制和阻塞(Blocking)分发机制。在非阻塞分发机制(默认)下使用DropIfChannelFull标识。DropIfChannelFull标识位于select多路复用中,使用default关键字做非阻塞分发,当w.result缓冲区满的时候,事件会丢失。在阻塞分发机制下使用WaitIfChannelFull标识。WaitIfChannelFull标识也位于select多路复用中,没有default关键字,当w.result缓冲区满的时候,分发过程会阻塞并等待。
这里之所以需要丢失事件,是因为随着k8s集群越来越大,上报事件也随之增多,那么每次上报都要对etcd进行读写,这样会给etcd集群带来压力。但是事件丢失并不会影响集群的正常工作,所以非阻塞分发机制下事件会丢失。
这里再分析一下关闭“事件消费者”相关方法:
Shutdown方案和下文实例化watcher那里类似,将关闭“事件消费者”作为事件交于核心逻辑loop方法处理,这样可以保障调用shutdown方法前加入到incoming通道的事件都可以被消费,直到处理完调用shutdown方法前加入到incoming通道的事件才限制往incoming通道加入数据,通过m.distributing.Wait()阻塞可以保障调用Shutdown()后incoming通道的事件都被消费
//停止事件消费者
func (e *eventBroadcasterImpl) Shutdown() {
e.Broadcaster.Shutdown()
}
func (m *Broadcaster) Shutdown() {
m.blockQueue(func() {
close(m.stopped)
close(m.incoming)
})
m.distributing.Wait()
}
//这里再粘贴下核心逻辑loop方法,incoming通道关闭后,等incoming中的事件都消费完后,会调用m.closeAll()方法关闭当前“事件消费者”关联的观察者
func (m *Broadcaster) loop() {
// Deliberately not catching crashes here. Yes, bring down the process if there's a
// bug in watch.Broadcaster.
for event := range m.incoming {
if event.Type == internalRunFunctionMarker {
event.Object.(functionFakeRuntimeObject)()
continue
}
m.distribute(event)
}
m.closeAll()
m.distributing.Done()
}
func (m *Broadcaster) closeAll() {
for _, w := range m.watchers {
close(w.result)
}
// Delete everything from the map, since presence/absence in the map is used
// by stopWatching to avoid double-closing the channel.
m.watchers = map[int64]*broadcasterWatcher{}
}
关闭了incoming,从loop方法可以看出来,将会结束对incoming的遍历动作,关闭所有watcher的result通道,清空watcher。
eventBroadcasterImpl实现的三种Event的处理方法:
(1)StartLogging:将事件写入日志中。
func (e *eventBroadcasterImpl) StartLogging(logf func(format string, args ...interface{})) watch.Interface {
return e.StartEventWatcher(
func(e *v1.Event) {
logf("Event(%#v): type: '%v' reason: '%v' %v", e.InvolvedObject, e.Type, e.Reason, e.Message)
})
}
(2)StartStructuredLogging:将事件写入结构化日志中。
func (e *eventBroadcasterImpl) StartStructuredLogging(verbosity klog.Level) watch.Interface {
return e.StartEventWatcher(
func(e *v1.Event) {
klog.V(verbosity).InfoS("Event occurred", "object", klog.KRef(e.InvolvedObject.Namespace, e.InvolvedObject.Name), "kind", e.InvolvedObject.Kind, "apiVersion", e.InvolvedObject.APIVersion, "type", e.Type, "reason", e.Reason, "message", e.Message)
})
}
(3)StartRecordingToSink:将事件存储到相应的sink。
func (e *eventBroadcasterImpl) StartRecordingToSink(sink EventSink) watch.Interface {
eventCorrelator := NewEventCorrelatorWithOptions(e.options)
return e.StartEventWatcher(
func(event *v1.Event) {
recordToSink(sink, event, eventCorrelator, e.sleepDuration)
})
}
NewEventCorrelatorWithOptions方法返回一个EventCorrelator对象(事件相关因子),它主要是用来做事件的聚合的,我们知道一个pod在运行过程中会产生很多事件,比如拉取镜像失败,pod会重试拉取镜像,那么就会产生很多相似的事件,这些事件如果不加以处理,就有可能产生过多的事件资源,对etcd造成很大的压力。 eventBroadcasterImpl实现的三种Event的处理方法都依赖StartEventWatcher方法:
func (e *eventBroadcasterImpl) StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface {
watcher := e.Watch() //注册watcher到watchers里面
go func() {
defer utilruntime.HandleCrash()
for watchEvent := range watcher.ResultChan() {
event, ok := watchEvent.Object.(*v1.Event)
if !ok {
continue
}
//回调传入的方法
eventHandler(event)
}
}()
return watcher
}
逻辑很简单,注册watcher到watchers里面,然后一个for循环,监听watcher的result,有事件的话,就调用传入的参数方法(eventHandler)去处理事件 我们看看e.Watch() 这个方法如何注册的,这块代码很艺术!
// 实例化观察者对象(broadcasterWatcher)并注册到watchers里,键自增
func (m *Broadcaster) Watch() Interface {
var w *broadcasterWatcher
m.blockQueue(func() {
id := m.nextWatcher
m.nextWatcher++
w = &broadcasterWatcher{
result: make(chan Event, m.watchQueueLength),
stopped: make(chan struct{}),
id: id,
m: m,
}
m.watchers[id] = w
})
if w == nil {
// The panic here is to be consistent with the previous interface behavior
// we are willing to re-evaluate in the future.
panic("broadcaster already stopped")
}
return w
}
// 参数f fun()提供了watcher的创建方式
func (m *Broadcaster) blockQueue(f func()) {
select {
case <-m.stopped:
return
default:
}
var wg sync.WaitGroup
wg.Add(1)
m.incoming <- Event{
Type: internalRunFunctionMarker,
Object: functionFakeRuntimeObject(func() { //将func(){ defer wg.Done() f() }强制转换成functionFakeRuntimeObject类型,functionFakeRuntimeObject类型实现了runtime.object接口
defer wg.Done()
f()
}),
}
wg.Wait()
}
Watch方法做了3件事,声明一个broadcasterWatcher对象,调用blockQueue方法(提供了watcher的创建方式),返回watcher。 blockQueue方法给incoming里面写入了一个事件,而我们生成watcher的方法(入参)被放倒了Event的对象里面,也就是把注册watcher这个动作当成了一个”注册Event“,交给了事件核心处理逻辑去处理了,还记得核心逻辑loop方法吗,再贴一遍loop代码
func (m *Broadcaster) loop() {
// Deliberately not catching crashes here. Yes, bring down the process if there's a
// bug in watch.Broadcaster.
for event := range m.incoming {
if event.Type == internalRunFunctionMarker { //来看这里!!!!!
event.Object.(functionFakeRuntimeObject)() //调用创建watcher的方法,方法来自blockQueue方法形参
continue
}
m.distribute(event)
}
m.closeAll()
m.distributing.Done()
}
在接收到一个事件的时候,首先进行了一个事件类型判断,如果是internalRunFunctionMarker (”注册Event“),然后调用里面的方法,完成了watcher的注册。这样有什么好处呢?为什么要搞的这么麻烦,直接注册进去不行吗?我理解这里的意思主要是watcher不监视已经发生的历史数据,只是从注册发生起之后的事件,因为我们的事件都是按照时间顺序排队执行的,所以把注册当成一个事件排在队列里,那么它就能获取到”注册事件“发生之后所有的事件,之前已经产生的事件都不在它的处理范围之内。 前面的sync.WaitGroup问题是因为直到注册动作完成之前都不算注册成功,所以要加一个wait,直到整个注册事件被loop方法执行完成才算注册成功。避免以为注册成功,但是却没有接收到事件的问题。好了,到这里注册的逻辑我们就理清楚了,下面看看StartEventWatcher方法里整个协程里面的动作
func (e *eventBroadcasterImpl) StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface {
watcher := e.Watch()
go func() {
defer utilruntime.HandleCrash()
for watchEvent := range watcher.ResultChan() {
event, ok := watchEvent.Object.(*v1.Event)
if !ok {
// This is all local, so there's no reason this should
// ever happen.
continue
}
eventHandler(event)
}
}()
return watcher
}
// 下面是broadcasterWatcher 的结构,以及ResultChan方法,都比较简单,主要是用来说明watcher.ResultChan()
type broadcasterWatcher struct {
result chan Event //待处理时间存放的缓冲通道
stopped chan struct{}
stop sync.Once
id int64 //watcher编号
m *Broadcaster //核心结构体,上面有介绍,这里主要是为了停止对应的wather
}
// ResultChan returns a channel to use for waiting on events.
func (mw *broadcasterWatcher) ResultChan() <-chan Event {
return mw.result
}
对于StartLogging、StartStructuredLogging方式,都是把事件信息当做日志打印了一下。这里主要看一下StartRecordingToSink方法,StartRecordingToSink封装的StartEventWatcher方法里面会处理事件消费者分发的事件,并回调recordToSink方法,对收到 events 后会进行缓存、过滤、聚合而后发送到 apiserver,apiserver 会将 events 保存到 etcd 中。下面着重分析下recordToSink方法。
func recordToSink(sink EventSink, event *v1.Event, eventCorrelator *EventCorrelator, sleepDuration time.Duration) {
// Make a copy before modification, because there could be multiple listeners.
// Events are safe to copy like this.
eventCopy := *event
event = &eventCopy // 复制event
result, err := eventCorrelator.EventCorrelate(event) // 聚合
if err != nil {
utilruntime.HandleError(err)
}
if result.Skip { // 跳过记录此事件
return
}
tries := 0 // 重试
for {
if recordEvent(sink, result.Event, result.Patch, result.Event.Count > 1, eventCorrelator) { //记录事件,true代表成功或者忽略错误,跳出循环
break
}
tries++
if tries >= maxTriesPerEvent { //重试12次退出
klog.Errorf("Unable to write event '%#v' (retry limit exceeded!)", event)
break
}
// Randomize the first sleep so that various clients won't all be
// synced up if the master goes down.
if tries == 1 {
time.Sleep(time.Duration(float64(sleepDuration) * rand.Float64())) //第一次间隔事件随机
} else {
time.Sleep(sleepDuration) //从个第二次起间隔事件正常。
}
}
}
recordToSink方法首先会调用EventCorrelate方法对event做预处理,聚合相同的事件,避免产生的事件过多,增加 etcd 和 apiserver 的压力,如果传入的Event太多了,那么result.Skip 就会返回false;
接下来会调用recordEvent方法把事件发送到 apiserver,它会重试很多次(默认是 12 次),并且每次重试都有一定时间间隔(默认是 10 秒钟)。
下面我们分别来看看EventCorrelate方法和recordEvent方法。
- EventCorrelate
文件位置:client-go/tools/record/events_cache.go
// client-go/tools/record/events_cache.go
func (c *EventCorrelator) EventCorrelate(newEvent *v1.Event) (*EventCorrelateResult, error) {
if newEvent == nil {
return nil, fmt.Errorf("event is nil")
}
aggregateEvent, ckey := c.aggregator.EventAggregate(newEvent)
observedEvent, patch, err := c.logger.eventObserve(aggregateEvent, ckey)
if c.filterFunc(observedEvent) {
return &EventCorrelateResult{Skip: true}, nil
}
return &EventCorrelateResult{Event: observedEvent, Patch: patch}, err
}
EventCorrelate方法会调用EventAggregate、eventObserve进行聚合,调用filterFunc会调用到spamFilter.Filte方法进行过滤。
func (e *EventAggregator) EventAggregate(newEvent *v1.Event) (*v1.Event, string) {
now := metav1.NewTime(e.clock.Now())
var record aggregateRecord
eventKey := getEventKey(newEvent)
aggregateKey, localKey := e.keyFunc(newEvent)
e.Lock()
defer e.Unlock()
// 查找缓存里面是否也存在这样的记录
value, found := e.cache.Get(aggregateKey)
if found {
record = value.(aggregateRecord)
}
// maxIntervalInSeconds默认时间是600s,这里校验缓存里面的记录是否太老了
// 如果是那么就创建一个新的
// 如果record在缓存里面找不到,那么lastTimestamp是零,那么也创建一个新的
maxInterval := time.Duration(e.maxIntervalInSeconds) * time.Second
interval := now.Time.Sub(record.lastTimestamp.Time)
if interval > maxInterval {
record = aggregateRecord{localKeys: sets.NewString()}
}
record.localKeys.Insert(localKey)
record.lastTimestamp = now
// 重新加入到LRU缓存中
e.cache.Add(aggregateKey, record)
// 如果没有达到阈值,那么不进行聚合
if uint(record.localKeys.Len()) < e.maxEvents {
return newEvent, eventKey
}
record.localKeys.PopAny()
eventCopy := &v1.Event{
ObjectMeta: metav1.ObjectMeta{
Name: fmt.Sprintf("%v.%x", newEvent.InvolvedObject.Name, now.UnixNano()),
Namespace: newEvent.Namespace,
},
Count: 1,
FirstTimestamp: now,
InvolvedObject: newEvent.InvolvedObject,
LastTimestamp: now,
// 将Message进行聚合
Message: e.messageFunc(newEvent),
Type: newEvent.Type,
Reason: newEvent.Reason,
Source: newEvent.Source,
}
return eventCopy, aggregateKey
}
EventAggregate方法也考虑了很多,首先是去缓存里面查找有没有相同的聚合记录aggregateRecord,如果没有的话,那么会在校验时间间隔的时候顺便创建聚合记录aggregateRecord;
由于缓存时lru缓存,所以再将聚合记录重新Add到缓存的头部;
接下来会判断缓存是否已经超过了阈值,如果没有达到阈值,那么直接返回不进行聚合;
如果达到阈值了,那么会重新copy传入的Event,并调用messageFunc方法聚合Message;
- eventObserve
func (e *eventLogger) eventObserve(newEvent *v1.Event, key string) (*v1.Event, []byte, error) {
var (
patch []byte
err error
)
eventCopy := *newEvent
event := &eventCopy
e.Lock()
defer e.Unlock()
// 检查是否在缓存中
lastObservation := e.lastEventObservationFromCache(key)
// 如果大于0说明存在,并且对Count进行自增
if lastObservation.count > 0 {
event.Name = lastObservation.name
event.ResourceVersion = lastObservation.resourceVersion
event.FirstTimestamp = lastObservation.firstTimestamp
event.Count = int32(lastObservation.count) + 1
eventCopy2 := *event
eventCopy2.Count = 0
eventCopy2.LastTimestamp = metav1.NewTime(time.Unix(0, 0))
eventCopy2.Message = ""
newData, _ := json.Marshal(event)
oldData, _ := json.Marshal(eventCopy2)
patch, err = strategicpatch.CreateTwoWayMergePatch(oldData, newData, event)
}
// 最后重新更新缓存记录
e.cache.Add(
key,
eventLog{
count: uint(event.Count),
firstTimestamp: event.FirstTimestamp,
name: event.Name,
resourceVersion: event.ResourceVersion,
},
)
return event, patch, err
}
eventObserve方法里面会去查找缓存中的记录,然后对count进行自增后更新到缓存中。
const (
// SuccessSynced is used as part of the Event 'reason' when a Foo is synced
successSynced = "Synced"
// is synced successfully
messageResourceSynced = "User synced successfully"
)
//创建事件消费者
eventBroadcaster := record.NewBroadcaster()
//以打印日志的方式处理事件消费者分发的事件
eventBroadcaster.StartLogging(klog.Infof)
//以上报apiserver方式处理事件消费者分发的事件
eventBroadcaster.StartRecordingToSink(&typedcorev1.EventSinkImpl{Interface: k8sClient.CoreV1().Events("")})
//创建事件生产者
recorder := eventBroadcaster.NewRecorder(scheme.Scheme, corev1.EventSource{Component: controllerName})
//事件生产者创建事件
c.recorder.Event(user, corev1.EventTypeNormal, successSynced, messageResourceSynced)
StartRecordingToSink会调用StartEventWatcher,StartEventWatcher方法里面会异步的调用 watcher.ResultChan()方法获取到broadcasterWatcher的result管道,result管道里面的数据就是Broadcaster的distribute方法进行分发的。
了解完 events 的整个处理流程后,再梳理一下整个流程:
- 首先是初始化 EventBroadcaster 对象,同时会初始化一个 Broadcaster 对象,并开启一个loop循环接收所有的 events 并进行广播;
- 定义处理事件的方式,EventBroadcaster 会调用StartStructuredLogging或StartRecordingToSink方法调用封装好的StartEventWatcher方法,并执行自己的逻辑;
- 然后通过 EventBroadcaster 对象的 NewRecorder() 方法初始化 EventRecorder 对象,EventRecorder 对象会生成 events 并通过ActionOrDrop() 方法发送 events 到 Broadcaster 的 channel 队列中;
- StartRecordingToSink封装的StartEventWatcher方法里面会处理事件消费者分发的事件,并调用recordToSink方法,对收到 events 后会进行缓存、过滤、聚合而后发送到 apiserver,apiserver 会将 events 保存到 etcd 中。