-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathrun_bungee.py
634 lines (506 loc) · 26.5 KB
/
run_bungee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import os, sys
import numpy as np
import imageio
import json
import random
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from run_nerf_helpers import *
from load_multiscale import load_multiscale_data
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
np.random.seed(0)
def batchify(fn, chunk):
if chunk is None:
return fn
def ret(inputs):
return torch.cat([fn(inputs[i:i+chunk]) for i in range(0, inputs.shape[0], chunk)], 0)
return ret
def run_network(means, cov_diags, viewdirs, fn, embed_fn, embeddirs_fn, netchunk=1024*64):
means_flat = torch.reshape(means, [-1, means.shape[-1]])
cov_diags_flat = torch.reshape(cov_diags, [-1, cov_diags.shape[-1]])
inputs_flat = torch.cat((means_flat, cov_diags_flat), -1)
embedded = embed_fn(inputs_flat)
input_dirs = viewdirs[:,None].expand(means.shape)
input_dirs_flat = torch.reshape(input_dirs, [-1, input_dirs.shape[-1]])
embedded_dirs = embeddirs_fn(input_dirs_flat)
embedded = torch.cat([embedded, embedded_dirs], -1)
outputs_flat = batchify(fn, netchunk)(embedded)
outputs = torch.reshape(outputs_flat, list(means.shape[:-1]) + list(outputs_flat.shape[1:]))
return outputs
def batchify_rays(rays_flat, stage, radii, chunk=1024*32, **kwargs):
all_ret = {}
for i in range(0, rays_flat.shape[0], chunk):
ret = render_rays(rays_flat[i:i+chunk], stage, radii[i:i+chunk], **kwargs)
for k in ret:
if k not in all_ret:
all_ret[k] = []
all_ret[k].append(ret[k])
all_ret = {k : torch.cat(all_ret[k], 0) for k in all_ret}
return all_ret
def render(H, W, focal, radii, chunk=1024*32, rays=None, stage=None, c2w=None, **kwargs):
if c2w is not None:
rays_o, rays_d = get_rays(H, W, focal, c2w)
else:
rays_o, rays_d = rays
rays_d = rays_d / torch.norm(rays_d, dim=-1, keepdim=True)
sh = rays_d.shape
rays_o = torch.reshape(rays_o, [-1,3]).float()
rays_d = torch.reshape(rays_d, [-1,3]).float()
radii = torch.reshape(radii, [-1,1]).float()
rays = torch.cat([rays_o, rays_d], -1)
all_ret = batchify_rays(rays, stage, radii, chunk, **kwargs)
for k in all_ret:
k_sh = list(sh[:-1]) + list(all_ret[k].shape[1:])
all_ret[k] = torch.reshape(all_ret[k], k_sh)
k_extract = ['rgb_map', 'disp_map', 'acc_map', 'depth_map']
ret_list = [all_ret[k] for k in k_extract]
ret_dict = {k : all_ret[k] for k in all_ret if k not in k_extract}
return ret_list + [ret_dict]
def render_path(render_poses, hwf, chunk, render_kwargs, stage=0, savedir=None, render_factor=0):
H, W, focal = hwf
if render_factor!=0:
H = H//render_factor
W = W//render_factor
focal = focal/render_factor
rgbs = []
radii = get_radii_for_test(H, W, focal, render_poses)
t = time.time()
for i, c2w in enumerate(tqdm(render_poses)):
print(i, time.time() - t)
t = time.time()
rgb, _, _, _, _ = render(H, W, focal, radii[i], chunk=chunk, stage=stage, c2w=c2w[:3,:4], **render_kwargs)
rgbs.append(rgb.cpu().numpy())
if i==0:
print(rgb.shape)
if savedir is not None:
rgb8 = to8b(rgbs[-1])
imageio.imwrite(os.path.join(savedir, '{:03d}.png'.format(i)), rgb8)
rgbs = np.stack(rgbs, 0)
return rgbs
def create_nerf(args):
"""Instantiate NeRF's MLP model.
"""
embed_fn, input_ch = get_mip_embedder(args.multires, args.min_multires, args.i_embed, log_sampling=True)
embeddirs_fn, input_ch_views = get_embedder(args.multires_views, args.min_multires, args.i_embed)
model = Bungee_NeRF_block(num_resblocks=args.cur_stage, net_width=args.netwidth, input_ch=input_ch, input_ch_views=input_ch_views).to(device)
print(model)
model = nn.DataParallel(model)
grad_vars = list(model.parameters())
network_query_fn = lambda means, cov_diags, viewdirs, network_fn : run_network(means, cov_diags, viewdirs, network_fn,
embed_fn=embed_fn,
embeddirs_fn=embeddirs_fn,
netchunk=args.netchunk)
optimizer = torch.optim.Adam(params=grad_vars, lr=args.lrate, betas=(0.9, 0.999))
start = 0
total_iter = 0
basedir = args.basedir
expname = args.expname
if args.ft_path is not None and args.ft_path!='None':
ckpts = [args.ft_path]
else:
ckpts = [os.path.join(basedir, expname, f) for f in sorted(os.listdir(os.path.join(basedir, expname))) if 'tar' in f]
print('Found ckpts', ckpts)
if len(ckpts) > 0:
ckpt_path = ckpts[-1]
print('Reloading from', ckpt_path)
ckpt = torch.load(ckpt_path)
start = ckpt['global_step']
total_iter = ckpt['total_iter']
model.load_state_dict(ckpt['network_fn_state_dict'], strict=False)
try:
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
except:
print('Start a new training stage, reset optimizer.')
start = 0
if args.render_test:
model.eval()
render_kwargs_train = {
'network_query_fn' : network_query_fn,
'perturb' : args.perturb,
'N_importance' : args.N_importance,
'N_samples' : args.N_samples,
'network_fn' : model,
'white_bkgd' : args.white_bkgd,
'raw_noise_std' : args.raw_noise_std,
}
render_kwargs_test = {k : render_kwargs_train[k] for k in render_kwargs_train}
render_kwargs_test['perturb'] = False
render_kwargs_test['raw_noise_std'] = 0.
return render_kwargs_train, render_kwargs_test, start, total_iter, grad_vars, optimizer
def raw2outputs(raw, z_vals, rays_d, stage, raw_noise_std=0, white_bkgd=False):
raw2alpha = lambda raw, dists, act_fn=F.softplus: 1.-torch.exp(-act_fn(raw-1)*dists)
z_vals = .5 * (z_vals[...,1:] + z_vals[...,:-1])
dists = z_vals[...,1:] - z_vals[...,:-1]
dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape)], -1)
dists = dists * torch.norm(rays_d[...,None,:], dim=-1)
acc_rgb = torch.sum(raw[...,:stage+1,:3], dim=2)
rgb = (1+2*0.001)/(1+torch.exp(-acc_rgb))-0.001
acc_alpha = torch.sum(raw[...,:stage+1,3], dim=2)
noise = 0.
if raw_noise_std > 0.:
noise = torch.randn(acc_alpha.shape) * raw_noise_std
alpha = raw2alpha(acc_alpha + noise, dists)
weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)), 1.-alpha + 1e-10], -1), -1)[:, :-1]
rgb_map = torch.sum(weights[...,None] * rgb, -2)
depth_map = torch.sum(weights * z_vals, -1)
disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map), depth_map / (torch.sum(weights, -1)+1e-8))
acc_map = torch.sum(weights, -1)
if white_bkgd:
rgb_map = rgb_map + (1.-acc_map[...,None])
return rgb_map, disp_map, acc_map, weights, depth_map
def cast(origin, direction, radius, t):
t0, t1 = t[..., :-1], t[..., 1:]
c, d = (t0 + t1)/2, (t1 - t0)/2
t_mean = c + (2*c*d**2) / (3*c**2 + d**2)
t_var = (d**2)/3 - (4/15) * ((d**4 * (12*c**2 - d**2)) / (3*c**2 + d**2)**2)
r_var = radius**2 * ((c**2)/4 + (5/12) * d**2 - (4/15) * (d**4) / (3*c**2 + d**2))
mean = origin[...,None,:] + direction[..., None, :] * t_mean[..., None]
null_outer_diag = 1 - (direction**2) / torch.sum(direction**2, -1, keepdims=True)
cov_diag = (t_var[..., None] * (direction**2)[..., None, :] + r_var[..., None] * null_outer_diag[..., None, :])
return mean, cov_diag
def render_rays(ray_batch,
stage,
radii,
network_fn,
network_query_fn,
N_samples,
perturb=0.,
N_importance=0,
white_bkgd=False,
raw_noise_std=0.,
ray_nearfar=None,
scene_origin=None,
scene_scaling_factor=None):
N_rays = ray_batch.shape[0]
rays_o, rays_d = ray_batch[:,:3], ray_batch[:,-3:]
t_vals = torch.linspace(0., 1., steps=N_samples)
if ray_nearfar == 'sphere': ## treats earth as a sphere and computes the intersection of a ray and a sphere
globe_center = torch.tensor(np.array(scene_origin) * scene_scaling_factor).float()
# 6371011 is earth radius, 250 is the assumed height limitation of buildings in the scene
earth_radius = 6371011 * scene_scaling_factor
earth_radius_plus_bldg = (6371011+250) * scene_scaling_factor
## intersect with building upper limit sphere
delta = (2*torch.sum((rays_o-globe_center) * rays_d, dim=-1))**2 - 4*torch.norm(rays_d, dim=-1)**2 * (torch.norm((rays_o-globe_center), dim=-1)**2 - (earth_radius_plus_bldg)**2)
d_near = (-2*torch.sum((rays_o-globe_center) * rays_d, dim=-1) - delta**0.5) / (2*torch.norm(rays_d, dim=-1)**2)
rays_start = rays_o + (d_near[...,None]*rays_d)
## intersect with earth
delta = (2*torch.sum((rays_o-globe_center) * rays_d, dim=-1))**2 - 4*torch.norm(rays_d, dim=-1)**2 * (torch.norm((rays_o-globe_center), dim=-1)**2 - (earth_radius)**2)
d_far = (-2*torch.sum((rays_o-globe_center) * rays_d, dim=-1) - delta**0.5) / (2*torch.norm(rays_d, dim=-1)**2)
rays_end = rays_o + (d_far[...,None]*rays_d)
## compute near and far for each ray
new_near = torch.norm(rays_o - rays_start, dim=-1, keepdim=True)
near = new_near * 0.9
new_far = torch.norm(rays_o - rays_end, dim=-1, keepdim=True)
far = new_far * 1.1
# disparity sampling for the first half and linear sampling for the rest
t_vals_lindisp = torch.linspace(0., 1., steps=N_samples)
z_vals_lindisp = 1./(1./near * (1.-t_vals_lindisp) + 1./far * (t_vals_lindisp))
z_vals_lindisp_half = z_vals_lindisp[:,:int(N_samples*2/3)]
linear_start = z_vals_lindisp_half[:,-1:]
t_vals_linear = torch.linspace(0., 1., steps=N_samples-int(N_samples*2/3)+1)
z_vals_linear_half = linear_start * (1-t_vals_linear) + far * t_vals_linear
z_vals = torch.cat((z_vals_lindisp_half, z_vals_linear_half[:,1:]), -1)
z_vals, _ = torch.sort(z_vals, -1)
z_vals = z_vals.expand([N_rays, N_samples])
elif ray_nearfar == 'flat': ## treats earth as a flat surface and computes the intersection of a ray and a plane
normal = torch.tensor([0, 0, 1]).to(rays_o) * scene_scaling_factor
p0_far = torch.tensor([0, 0, 0]).to(rays_o) * scene_scaling_factor
p0_near = torch.tensor([0, 0, 250]).to(rays_o) * scene_scaling_factor
near = (p0_near - rays_o * normal).sum(-1) / (rays_d * normal).sum(-1)
far = (p0_far - rays_o * normal).sum(-1) / (rays_d * normal).sum(-1)
near = near.clamp(min=1e-6)
near, far = near.unsqueeze(-1), far.unsqueeze(-1)
# disparity sampling for the first half and linear sampling for the rest
t_vals_lindisp = torch.linspace(0., 1., steps=N_samples)
z_vals_lindisp = 1./(1./near * (1.-t_vals_lindisp) + 1./far * (t_vals_lindisp))
z_vals_lindisp_half = z_vals_lindisp[:,:int(N_samples*2/3)]
linear_start = z_vals_lindisp_half[:,-1:]
t_vals_linear = torch.linspace(0., 1., steps=N_samples-int(N_samples*2/3)+1)
z_vals_linear_half = linear_start * (1-t_vals_linear) + far * t_vals_linear
z_vals = torch.cat((z_vals_lindisp_half, z_vals_linear_half[:,1:]), -1)
z_vals, _ = torch.sort(z_vals, -1)
z_vals = z_vals.expand([N_rays, N_samples])
else:
pass
if perturb > 0.:
mids = .5 * (z_vals[...,1:] + z_vals[...,:-1])
upper = torch.cat([mids, z_vals[...,-1:]], -1)
lower = torch.cat([z_vals[...,:1], mids], -1)
t_rand = torch.rand(z_vals.shape)
z_vals = lower + (upper - lower) * t_rand
means, cov_diags = cast(rays_o, rays_d, radii, z_vals)
raw = network_query_fn(means, cov_diags, rays_d, network_fn)
rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, stage, raw_noise_std, white_bkgd)
if N_importance > 0:
rgb_map_0, disp_map_0, acc_map_0, depth_map_0 = rgb_map, disp_map, acc_map, depth_map
weights_pad = torch.cat([
weights[..., :1],
weights,
weights[..., -1:],
], axis=-1)
weights_max = torch.maximum(weights_pad[..., :-1], weights_pad[..., 1:])
weights_blur = 0.5 * (weights_max[..., :-1] + weights_max[..., 1:])
weights_prime = weights_blur + 0.01
z_samples = sorted_piecewise_constant_pdf(z_vals, weights_prime, N_importance, randomized=(perturb>0.))
z_samples = z_samples.detach()
z_vals, _ = torch.sort(z_samples, -1)
means, cov_diags = cast(rays_o, rays_d, radii, z_vals)
raw = network_query_fn(means, cov_diags, rays_d, network_fn)
rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, stage, raw_noise_std, white_bkgd)
ret = {'rgb_map' : rgb_map, 'disp_map' : disp_map, 'acc_map' : acc_map, 'depth_map' : depth_map}
ret['raw'] = raw
if N_importance > 0:
ret['rgb0'] = rgb_map_0
ret['disp0'] = disp_map_0
ret['acc0'] = acc_map_0
ret['depth0'] = depth_map_0
ret['z_std'] = torch.std(z_samples, dim=-1, unbiased=False)
for k in ret:
if (torch.isnan(ret[k]).any() or torch.isinf(ret[k]).any()):
print(f"! [Numerical Error] {k} contains nan or inf.")
return ret
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--expname", type=str,
help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/',
help='where to store ckpts and logs')
parser.add_argument("--datadir", type=str,
help='input data directory')
# training options
parser.add_argument("--N_iters", type=int, default=200000,
help='number of iters to run at current stage')
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--N_rand", type=int, default=32*32*4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--lrate", type=float, default=5e-4,
help='learning rate')
parser.add_argument("--lrate_decay", type=int, default=250,
help='exponential learning rate decay (in 1000 steps)')
parser.add_argument("--chunk", type=int, default=1024*32,
help='number of rays processed in parallel, decrease if running out of memory')
parser.add_argument("--netchunk", type=int, default=1024*64,
help='number of pts sent through network in parallel, decrease if running out of memory')
parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
parser.add_argument("--cur_stage", type=int, default=0,
help='current training stage: smaller value means further scale')
parser.add_argument("--use_batching", action='store_true',
help='recommand set to False at later training stage for speed up')
parser.add_argument("--precrop_iters", type=int, default=0,
help='number of steps to train on central crops')
parser.add_argument("--precrop_frac", type=float,
default=.5, help='fraction of img taken for central crops')
parser.add_argument("--ray_nearfar", type=str, default='sphere', help='options: sphere/flat')
# rendering options
parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--min_multires", type=int, default=0,
help='log2 of min freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
parser.add_argument("--render_test", action='store_true',
help='render the test set instead of render_poses path')
parser.add_argument("--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
# dataset options
parser.add_argument("--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for blender)')
parser.add_argument("--factor", type=int, default=None,
help='downsample factor for images')
parser.add_argument("--holdout", type=int, default=8,
help='will take every 1/N images as test set')
# logging/saving options
parser.add_argument("--i_print", type=int, default=100,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_weights", type=int, default=10000,
help='frequency of weight ckpt saving')
return parser
def train():
parser = config_parser()
args = parser.parse_args()
# Load data
images, poses, scene_scaling_factor, scene_origin, scale_split = load_multiscale_data(args.datadir, args.factor)
if args.white_bkgd:
images = images[...,:3]*images[...,-1:] + (1.-images[...,-1:])
else:
images = images[...,:3]
n_images = len(images)
images = images[scale_split[args.cur_stage]:]
poses = poses[scale_split[args.cur_stage]:]
if args.holdout > 0:
print('Auto holdout,', args.holdout)
i_test = np.arange(images.shape[0])[::args.holdout]
i_train = np.array([i for i in np.arange(int(images.shape[0])) if
(i not in i_test)])
hwf = poses[0,:3,-1]
poses = poses[:,:3,:4]
H, W, focal = hwf
H, W = int(H), int(W)
hwf = [H, W, focal]
if args.render_test:
render_poses = np.array(poses[i_test])
basedir = args.basedir
expname = args.expname
os.makedirs(os.path.join(basedir, expname), exist_ok=True)
f = os.path.join(basedir, expname, 'args.txt')
with open(f, 'w') as file:
for arg in sorted(vars(args)):
attr = getattr(args, arg)
file.write('{} = {}\n'.format(arg, attr))
if args.config is not None:
f = os.path.join(basedir, expname, 'config.txt')
with open(f, 'w') as file:
file.write(open(args.config, 'r').read())
render_kwargs_train, render_kwargs_test, start_iter, total_iter, grad_vars, optimizer = create_nerf(args)
scene_stat = {
'ray_nearfar' : args.ray_nearfar,
'scene_origin' : scene_origin,
'scene_scaling_factor' : scene_scaling_factor,
}
render_kwargs_train.update(scene_stat)
render_kwargs_test.update(scene_stat)
global_step = start_iter
if args.render_test:
render_poses = torch.Tensor(render_poses).to(device)
print('RENDER TEST')
with torch.no_grad():
testsavedir = os.path.join(basedir, expname, 'render_{:06d}'.format(start_iter))
os.makedirs(testsavedir, exist_ok=True)
# By default it uses the deepest output head to render result (i.e. cur_stage).
# Sepecify 'stage' to shallower output head for lower level of detail rendering.
rgbs = render_path(render_poses, hwf, args.chunk, render_kwargs_test, stage=args.cur_stage, savedir=testsavedir, render_factor=args.render_factor)
print('Done rendering, saved in ', testsavedir)
imageio.mimwrite(os.path.join(testsavedir, 'video.mp4'), to8b(rgbs), fps=30, quality=8)
return
scale_codes = []
prev_spl = n_images
cur_scale = 0
for spl in scale_split[:args.cur_stage+1]:
scale_codes.append(np.tile(np.ones(((prev_spl-spl),1,1,1))*cur_scale, (1,H,W,1)))
prev_spl = spl
cur_scale += 1
scale_codes = np.concatenate(scale_codes, 0)
scale_codes = scale_codes.astype(np.int64)
if args.use_batching:
rays = np.stack([get_rays_np(H, W, focal, p) for p in poses], 0)
directions = rays[:,1,:,:,:]
dx = np.sqrt(
np.sum((directions[:, :-1, :, :] - directions[:, 1:, :, :])**2, -1))
dx = np.concatenate([dx, dx[:, -2:-1, :]], 1)
radii = dx[..., None] * 2 / np.sqrt(12)
rays_rgb = np.concatenate([rays, images[:,None]], 1)
rays_rgb = np.transpose(rays_rgb, [0,2,3,1,4])
rays_rgb = np.stack([rays_rgb[i] for i in i_train], 0)
radii = np.stack([radii[i] for i in i_train], 0)
scale_codes = np.stack([scale_codes[i] for i in i_train], 0)
rays_rgb = np.reshape(rays_rgb, [-1,3,3])
radii = np.reshape(radii, [-1, 1])
scale_codes = np.reshape(scale_codes, [-1, 1])
print('shuffle rays')
rand_idx = torch.randperm(rays_rgb.shape[0])
rays_rgb = rays_rgb[rand_idx.cpu().data.numpy()]
radii = radii[rand_idx.cpu().data.numpy()]
scale_codes = scale_codes[rand_idx.cpu().data.numpy()]
print('done')
i_batch = 0
print('Begin')
print('TRAIN views are', i_train)
print('TEST views are', i_test)
writer = SummaryWriter(os.path.join(basedir, 'summaries', expname))
for i in trange(start_iter+1, args.N_iters+1):
if args.use_batching:
batch = torch.tensor(rays_rgb[i_batch : i_batch+args.N_rand]).to(device)
batch_radii = torch.tensor(radii[i_batch : i_batch+args.N_rand]).to(device)
batch_scale_codes = torch.tensor(scale_codes[i_batch : i_batch+args.N_rand]).to(device)
batch = torch.transpose(batch, 0, 1)
batch_rays, target_s = batch[:2], batch[2]
i_batch += args.N_rand
if i_batch >= rays_rgb.shape[0]:
print("Shuffle data after an epoch!")
rand_idx = torch.randperm(rays_rgb.shape[0])
rays_rgb = rays_rgb[rand_idx.cpu().data.numpy()]
radii = radii[rand_idx.cpu().data.numpy()]
scale_codes = scale_codes[rand_idx.cpu().data.numpy()]
i_batch = 0
else:
img_i = np.random.choice(i_train)
target = torch.tensor(images[img_i]).to(device)
scale_code = torch.tensor(scale_codes[img_i]).to(device)
pose = poses[img_i]
rays_o, rays_d = get_rays(H, W, focal, torch.Tensor(pose))
dx = torch.sqrt(torch.sum((rays_d[:-1, :, :] - rays_d[1:, :, :])**2, -1))
dx = torch.cat([dx, dx[-2:-1, :]], 0)
radii = dx[..., None] * 2 / np.sqrt(12)
if i < args.precrop_iters:
dH = int(H//2 * args.precrop_frac)
dW = int(W//2 * args.precrop_frac)
coords = torch.stack(
torch.meshgrid(
torch.linspace(H//2 - dH, H//2 + dH - 1, 2*dH),
torch.linspace(W//2 - dW, W//2 + dW - 1, 2*dW)
), -1)
else:
coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, W-1, W)), -1)
coords = torch.reshape(coords, [-1,2])
select_inds = np.random.choice(coords.shape[0], size=[args.N_rand], replace=False)
select_coords = coords[select_inds].long()
rays_o = rays_o[select_coords[:, 0], select_coords[:, 1]]
rays_d = rays_d[select_coords[:, 0], select_coords[:, 1]]
batch_rays = torch.stack([rays_o, rays_d], 0)
target_s = target[select_coords[:, 0], select_coords[:, 1]]
batch_radii = radii[select_coords[:, 0], select_coords[:, 1]]
batch_scale_codes = scale_code[select_coords[:, 0], select_coords[:, 1]]
optimizer.zero_grad()
for stage in range(max(batch_scale_codes)+1):
rgb, _, _, _, extras = render(H, W, focal, batch_radii, chunk=args.chunk, rays=batch_rays, stage=stage, **render_kwargs_train)
img_loss = img2mse(rgb*(batch_scale_codes<=stage), target_s*(batch_scale_codes<=stage))
psnr = mse2psnr(img_loss)
loss = img_loss
if 'rgb0' in extras:
loss += img2mse(extras['rgb0']*(batch_scale_codes<=stage), target_s*(batch_scale_codes<=stage))
loss.backward()
optimizer.step()
decay_rate = 0.1
decay_steps = args.lrate_decay * 1000
new_lrate = args.lrate * (decay_rate ** (global_step / decay_steps))
for param_group in optimizer.param_groups:
param_group['lr'] = new_lrate
if i%args.i_weights==0:
path = os.path.join(basedir, expname, '{:06d}.tar'.format(i))
torch.save({
'global_step': global_step,
'total_iter': total_iter,
'network_fn_state_dict': render_kwargs_train['network_fn'].state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, path)
print('Saved checkpoints at', path)
if i%args.i_print==0:
tqdm.write(f"[TRAIN] Iter: {i} Loss: {loss.item()} PSNR: {psnr.item()}")
writer.add_scalar('Train/loss', loss, total_iter)
writer.add_scalar('Train/psnr', psnr, total_iter)
global_step += 1
total_iter += 1
if __name__=='__main__':
torch.set_default_tensor_type('torch.cuda.FloatTensor')
train()