-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtry.py
executable file
·42 lines (32 loc) · 1.07 KB
/
try.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Author: Jake Vanderplas <[email protected]>
#
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.neighbors import KernelDensity
#----------------------------------------------------------------------
# Plot the progression of histograms to kernels
np.random.seed(1)
N = 20
X = np.concatenate((np.random.normal(0, 1, 0.3 * N),
np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis]
#print(X)
X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]
bins = np.linspace(-5, 10, 10)
#print(X_plot)
print(X.shape)
print(X_plot.shape)
fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
fig.subplots_adjust(hspace=0.05, wspace=0.05)
# histogram 1
ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True)
ax[0, 0].text(-3.5, 0.31, "Histogram")
# histogram 2
ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True)
ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted")
X_plot = np.linspace(-6, 6, 1000)[:, None]
print(X_plot.shape)
a = [1, 2, 3]
b = [1, 3, 10]
dist = np.linalg.norm(np.array(a)-np.array(b))
print(dist)