-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathtutorial_rnnlm.py
121 lines (97 loc) · 3.06 KB
/
tutorial_rnnlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from collections import Counter, defaultdict
from itertools import count
import random
import dynet as dy
import numpy as np
# format of files: each line is "word1/tag2 word2/tag2 ..."
train_file="CHAR_TRAIN"
test_file="CHAR_DEV"
class Vocab:
def __init__(self, w2i=None):
if w2i is None: w2i = defaultdict(count(0).next)
self.w2i = dict(w2i)
self.i2w = {i:w for w,i in w2i.iteritems()}
@classmethod
def from_corpus(cls, corpus):
w2i = defaultdict(count(0).next)
for sent in corpus:
[w2i[word] for word in sent]
return Vocab(w2i)
def size(self): return len(self.w2i.keys())
def read(fname):
"""
Read a file where each line is of the form "word1 word2 ..."
Yields lists of the form [word1, word2, ...]
"""
with file(fname) as fh:
for line in fh:
sent = line.strip().split()
sent.append("<s>")
yield sent
train=list(read(train_file))
test=list(read(test_file))
words=[]
wc=Counter()
for sent in train:
for w in sent:
words.append(w)
wc[w]+=1
vw = Vocab.from_corpus([words])
S = vw.w2i["<s>"]
nwords = vw.size()
# DyNet Starts
model = dy.Model()
trainer = dy.AdamTrainer(model)
# Lookup parameters for word embeddings
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64))
# Word-level LSTM (layers=1, input=64, output=128, model)
RNN = dy.LSTMBuilder(1, 64, 128, model)
# Softmax weights/biases on top of LSTM outputs
W_sm = model.add_parameters((nwords, 128))
b_sm = model.add_parameters(nwords)
# Build the language model graph
def calc_lm_loss(sent):
dy.renew_cg()
# parameters -> expressions
W_exp = dy.parameter(W_sm)
b_exp = dy.parameter(b_sm)
# initialize the RNN
f_init = RNN.initial_state()
# get the word ids
wids = [vw.w2i[w] for w in sent]
# start the rnn by inputting "<s>"
s = f_init.add_input(WORDS_LOOKUP[wids[-1]])
# feed word vectors into the RNN and predict the next word
losses = []
for wid in wids:
# calculate the softmax and loss
score = W_exp * s.output() + b_exp
loss = dy.pickneglogsoftmax(score, wid)
losses.append(loss)
# update the state of the RNN
s = s.add_input(WORDS_LOOKUP[wid])
return dy.esum(losses)
num_tagged = cum_loss = 0
for ITER in xrange(50):
random.shuffle(train)
for i,s in enumerate(train,1):
if i % 500 == 0:
trainer.status()
print cum_loss / num_tagged
cum_loss = 0
num_tagged = 0
if i % 10000 == 0 or i == len(train)-1:
dev_loss = dev_words = 0
for sent in test:
loss_exp = calc_lm_loss(sent)
dev_loss += loss_exp.scalar_value()
dev_words += len(sent)
print dev_loss / dev_words
# train on sent
loss_exp = calc_lm_loss(s)
cum_loss += loss_exp.scalar_value()
num_tagged += len(s)
loss_exp.backward()
trainer.update()
print "epoch %r finished" % ITER
trainer.update_epoch(1.0)