-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
829 lines (632 loc) · 28.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
import os
import os.path as osp
import random
import sys
from collections import defaultdict
from datetime import datetime
from time import time
import numpy as np
import pandas as pd
import scipy.sparse as sp
import torch
from sklearn.metrics import average_precision_score, roc_auc_score
from torch import nn
from torch.optim.lr_scheduler import LinearLR
from torch.utils.tensorboard import SummaryWriter
from torch_geometric.loader import TemporalDataLoader, DataLoader
from torch_geometric.nn.models.tgn import (
IdentityMessage,
LastNeighborLoader,
)
from tqdm import tqdm
from dataset.cig_dataset import CIGDataset
from model.last_aggregator import LastAggregator
from model.sequential import GNNModel
sys.path.insert(0, osp.join(os.getcwd(), "src"))
from model.graph_attention_embedding import GraphAttentionEmbedding
from model.link_predictor import LinkPredictor
from model.memory import Memory
from utils.utils_logging import setup_logger
import const
from arguments import args, args_static_modeling
from dataset.reddit_dataset import RedditDataset
from utils.utils_eval import get_eval_df, save_results_to_excel, \
get_ranking_results
from utils.utils_training import set_directories_from_args
from utils.utils_neg_sampling import sample_neg_items
from utils.utils_misc import project_setup
module_names = ['gnn', 'link_pred', 'memory', 'neighbor_loader',
"model_static"]
optimizer_names = ['optimizer_dense', 'optimizer_sparse',
'optimizer_session']
lr_scheduler_names = ['scheduler_dense', 'scheduler_sparse',
'optimizer_session']
project_setup()
args.model = "INPAC"
def load_model(args, **kwargs):
names = module_names + optimizer_names + lr_scheduler_names
path = osp.join(args.model_full_dir,
f'{args.comment}_ep{args.load_checkpoint_from_epoch}.pt')
print(f"\t[Load] Loading model from {path}")
d = torch.load(path)
for name in names:
if kwargs.get(name) is not None:
if isinstance(kwargs[name], (nn.Module, torch.optim.Optimizer,
torch.optim.lr_scheduler._LRScheduler)):
kwargs[name].load_state_dict(d[name])
else:
kwargs[name] = d[name]
def save_model(epoch, args, **kwargs):
print(f"\t[Save] Epoch {epoch} saving model to {args.model_dir}")
names = module_names + optimizer_names + lr_scheduler_names
d = {}
for name in names:
if kwargs.get(name) is not None:
if isinstance(kwargs[name], (nn.Module, torch.optim.Optimizer,
torch.optim.lr_scheduler._LRScheduler)):
d[name] = kwargs[name].state_dict()
else:
d[name] = kwargs[name]
path = osp.join(args.model_full_dir, f'{args.comment}_ep{epoch}.pt')
torch.save(d, path)
def train(neg_items_df: pd.DataFrame, epoch: int):
memory.train()
gnn.train()
link_pred.train()
if epoch == args.load_checkpoint_from_epoch:
return
# Start with a fresh memory.
memory.reset_state()
# Start with an empty graph.
neighbor_loader.reset_state()
if epoch == 0:
return
total_loss = 0.
# Train for static modeling
if args.do_static_modeling:
model_static.train()
mean_loss_session = 0.0
updates_per_epoch = len(cig_train_loader)
for i, batch in enumerate(tqdm(cig_train_loader,
desc=f"Train Ep.{epoch} Static Modeling")):
optimizer_session.zero_grad()
scores, last_hidden_session = model_static(batch.to(args.device))
targets = batch.y - 1
loss_session = model_static.loss_function(scores, targets)
loss_session.backward()
optimizer_session.step()
writer.add_scalar('Loss/SRGNN_step', loss_session.item(),
epoch * updates_per_epoch + i)
if args.verbose and (i + 1) % 10 == 0:
print(
f"Epoch {epoch} | Batch {i + 1} | Session Loss {loss_session.item()}")
mean_loss_session += loss_session / batch.num_graphs
writer.add_scalar('Loss/SRGNN_epoch', mean_loss_session, epoch)
# Dynamic modeling
for idx_batch, batch in enumerate(
tqdm(train_loader, desc=f"Train Ep.{epoch} Dynamic Modeling")):
batch = batch.to(args.device)
optimizer_dense.zero_grad()
if optimizer_sparse is not None:
optimizer_sparse.zero_grad()
# src is always smaller than dst
src, pos_dst, t, msg = batch.src, batch.dst, batch.t, batch.msg
# Sample negative destination nodes. The RANDOM method is the fastest.
if args.train_sample_method == const.PER_INTERACTION:
src_np = src.cpu().numpy()
neg_dst = torch.tensor([random.sample(neg_items_df.loc[x].neg_items,
args.train_neg_sampling_ratio)
for x
in src_np], dtype=torch.long, device=device)
# flatten list of list into list
neg_dst = neg_dst.reshape(-1)
elif args.train_sample_method == const.RANDOM:
neg_dst = torch.randint(min_dst_idx, max_dst_idx + 1,
(src.size(0),),
dtype=torch.long, device=device)
else:
raise NotImplementedError
# unique nodes in all of source and destination nodes (pos and neg)
n_id = torch.cat([src, pos_dst, neg_dst]).unique()
n_id, edge_index, e_id = neighbor_loader(n_id)
assoc[n_id] = torch.arange(n_id.size(0), device=device)
# Get updated memory of all nodes involved in the computation.
z, last_update = memory(n_id)
if args.do_static_modeling:
"""Use the concatenation of node representations as the message."""
node_embeds = torch.empty((z.shape[0], args.embedding_dim),
dtype=torch.float, device=args.device)
node_mask = (n_id >= dataset.num_src)
node_embeds[node_mask] = model_static.get_embeddings(
n_id[node_mask] - dataset.num_src + 1)
node_embeds[~node_mask] = memory.compute_resource_embeds(
n_id[~node_mask])
message_node1 = node_embeds[edge_index[0]]
message_node2 = node_embeds[edge_index[1]]
message = torch.cat([message_node1, message_node2], dim=1)
else:
"""Use the original message"""
message = data.msg[e_id].to(args.device)
z = gnn(z.to(args.device), last_update, edge_index,
data.t[e_id].to(args.device),
message)
z_pos_dst = z[assoc[pos_dst]]
z_neg_dst = z[assoc[neg_dst]]
pos_out = link_pred(z[assoc[src]], z_pos_dst)
neg_out = link_pred(z[assoc[
src.repeat(args.train_neg_sampling_ratio, 1).T.reshape(-1)]],
z_neg_dst)
if args.loss == const.BCE:
loss = torch.nn.BCELoss()(pos_out,
torch.ones_like(pos_out))
loss += torch.nn.BCELoss()(neg_out,
torch.zeros_like(neg_out))
elif args.loss == const.BPR:
maxi = nn.LogSigmoid()(pos_out - neg_out)
loss = -1 * torch.mean(maxi)
else:
raise NotImplementedError
# Update memory and neighbor loader with ground-truth state.
memory.update_state(src, pos_dst, t, msg)
neighbor_loader.insert(src, pos_dst)
loss.backward()
optimizer_dense.step()
if optimizer_sparse is not None:
optimizer_sparse.step()
memory.detach()
total_loss += float(loss) * batch.num_events
return total_loss / train_data.num_events
@torch.no_grad()
def test(loader, epoch: int, neg_items_df: pd.DataFrame, eval_collection: dict,
split: str = "",
**kwargs):
memory.eval()
gnn.eval()
link_pred.eval()
aps, aucs = [], []
pred_and_true_df_li = []
all_y_pred = []
all_y_true = []
full_li = []
y_true_mat_li = []
# ----------------- Static Modeling -----------------
if args.do_static_modeling:
model_static.eval()
cig_eval_loader = kwargs['cig_eval_loader']
mean_loss_session = 0.0
for i, batch in enumerate(tqdm(cig_eval_loader,
desc=f"Eval Ep.{epoch} Static Modeling")):
scores, last_hidden_session = model_static(batch.to(args.device))
targets = batch.y - 1
loss_session = model_static.loss_function(scores, targets)
if args.verbose and (i + 1) % 10 == 0:
print(
f"Epoch {epoch} | Batch {i + 1} | Session Loss {loss_session.item()}")
mean_loss_session += loss_session / batch.num_graphs
writer.add_scalar('Loss/SRGNN_epoch', mean_loss_session, epoch)
# ----------------- Dynamic Modeling -----------------
desc = f"{split.capitalize()} Ep.{epoch}"
for idx_batch, batch in tqdm(enumerate(loader), position=0, leave=True,
total=len(loader),
desc=desc):
batch = batch.to(args.device)
src, pos_dst, t, msg = batch.src, batch.dst, batch.t, batch.msg
# Note that eval set should be fixed
src_np = src.cpu().numpy()
assert (neg_items_df.neg_items.apply(
len) == args.eval_neg_sampling_ratio).all()
neg_dst = torch.tensor([neg_items_df.loc[x].neg_items for x
in src_np], dtype=torch.long, device=device)
# flatten list of list into list
neg_dst = neg_dst.reshape(-1)
assert len(src) == len(pos_dst) == len(
neg_dst) // args.eval_neg_sampling_ratio
n_id = torch.cat([src, pos_dst, neg_dst]).unique()
n_id, edge_index, e_id = neighbor_loader(n_id)
assoc[n_id] = torch.arange(n_id.size(0), device=device)
# z: (num_nodes, 64)
z, last_update = memory(n_id)
if args.do_static_modeling:
"""Use the concatenation of node representations as the message."""
node_embeds = torch.empty((n_id.shape[0], args.embedding_dim),
dtype=torch.float, device=args.device)
node_mask = (n_id >= dataset.num_src)
node_embeds[node_mask] = model_static.get_embeddings(
n_id[node_mask] - dataset.num_src + 1)
node_embeds[~node_mask] = memory.compute_resource_embeds(
n_id[~node_mask])
message_node1 = node_embeds[edge_index[0]]
message_node2 = node_embeds[edge_index[1]]
message = torch.cat([message_node1, message_node2], dim=1)
else:
"""Use the original message"""
message = data.msg[e_id].to(args.device)
z = gnn(z.to(args.device), last_update, edge_index,
data.t[e_id].to(args.device),
message)
# [Batch] Start: Eval using K Negative Samples
if args.do_static_modeling:
# This is setting the session graph embedding AFTER training on the dynamic graph
pos_dst_session_graph = pos_dst + 1 - dataset.num_resource
neg_dst_session_graph = neg_dst + 1 - dataset.num_resource
assert min(pos_dst_session_graph) >= 1
assert max(pos_dst_session_graph) <= dataset.num_subreddit
z_pos_dst = z[assoc[pos_dst]] + model_static.embedding(
pos_dst_session_graph)
z_neg_dst = z[assoc[neg_dst]] + model_static.embedding(
neg_dst_session_graph)
else:
z_pos_dst = z[assoc[pos_dst]]
z_neg_dst = z[assoc[neg_dst]]
pos_out = link_pred(z[assoc[src]], z_pos_dst)
neg_out = link_pred(
z[assoc[
src.repeat(args.eval_neg_sampling_ratio, 1).T.reshape(-1)]],
z_neg_dst)
"""
1, 0, ..., 0 (K negatives), 1, 0, ..., 0, 1, 0, ..., 0
"""
y_pred, y_true = [], []
pos_out, neg_out = pos_out.squeeze().tolist(), neg_out.squeeze().tolist()
dst_sorted = []
pos_dst_li = pos_dst.tolist()
neg_dst_li = neg_dst.tolist()
for i in range(len(batch)):
y_pred += [pos_out[i]] + neg_out[
(i * args.eval_neg_sampling_ratio): (
(
i + 1) * args.eval_neg_sampling_ratio)]
y_true += [1] + [0] * args.eval_neg_sampling_ratio
dst_sorted += [pos_dst_li[i]] + neg_dst_li[
(
i * args.eval_neg_sampling_ratio): (
(
i + 1) * args.eval_neg_sampling_ratio)]
y_pred = np.array(y_pred)
y_true = np.array(y_true)
# Count correct predictions
y_pred_label = (np.array(y_pred) > 0.5)
all_y_pred += [y_pred]
all_y_true += [y_true]
# eval_index is for the convenience of calculating NDCG@K, Recall@K, etc.
eval_index = np.arange(idx_batch * args.batch_size,
idx_batch * args.batch_size + len(batch))
pred_and_true_df = pd.DataFrame(
[src.cpu().numpy().repeat(args.eval_neg_sampling_ratio + 1),
dst_sorted, y_pred,
y_pred_label.squeeze().tolist(), y_true,
eval_index.repeat(args.eval_neg_sampling_ratio + 1)]).T
assert pred_and_true_df.isnull().sum().sum() == 0
pred_and_true_df.columns = [const.SRC, const.DST, const.PRED,
const.Y_PRED, const.Y_TRUE,
const.EVAL_INDEX]
pred_and_true_df[const.RESOURCE] = pred_and_true_df.src.apply(
lambda x: dataset.mappings['idx2resource'][x])
# Pad by #resources
pred_and_true_df[const.SUBREDDIT] = pred_and_true_df.dst.apply(
lambda x: dataset.mappings['idx2subreddit'][
x - dataset.num_resource])
pred_and_true_df = pred_and_true_df.astype({
const.SRC: int,
const.DST: int,
const.PRED: float,
const.Y_TRUE: int,
const.EVAL_INDEX: int,
const.SUBREDDIT: str,
const.RESOURCE: str,
})
full = get_eval_df(pred_and_true_df, args)
full_li += [full]
y_true_mat = np.array(
full.groupby(const.EVAL_INDEX)[const.Y_TRUE].apply(
list).tolist())
row, col = y_true_mat.nonzero()
y_true_mat = sp.csr_matrix((y_true_mat[row, col], (row, col)),
shape=y_true_mat.shape)
assert y_true_mat.nnz == len(pos_out)
y_true_mat_li.append(y_true_mat)
pred_and_true_df_li += [pred_and_true_df]
aps.append(average_precision_score(y_true, y_pred))
aucs.append(roc_auc_score(y_true, y_pred))
memory.update_state(src, pos_dst, t, msg)
neighbor_loader.insert(src, pos_dst)
# [Summary] Start: Eval using K Negative Samples
"""
Sample 1 positive item per user, plus K negatives
"""
if args.verbose:
print(f"[{split}] Epoch {epoch}")
full = pd.concat(full_li).reset_index(drop=True)
get_ranking_results(full, dataset, eval_collection, epoch, split,
args, writer)
t0 = time()
def print_time():
if args.verbose:
print(f"\t[Time elapsed] {time() - t0:.2f} second s")
datetime_str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
if args.verbose:
print("Experiment time:", datetime_str)
set_directories_from_args(args)
device = args.device
cache_dir = args.cache_dir
logger = setup_logger(osp.basename(__file__), log_dir=args.log_dir)
dataset = RedditDataset(dataset_name=args.dataset_name, args=args,
logger=logger)
memory_dim = time_dim = embedding_dim = args.embedding_dim
print_time()
train_df, val_df, test_df, pos_items_train_val_test = dataset.train_val_test_split()
print_time()
if args.do_static_modeling:
path = osp.join(cache_dir, "community_influence_graph")
os.makedirs(path, exist_ok=True)
cig_train_dataset = CIGDataset(path, df=train_df,
phrase=const.TRAIN,
num_src=dataset.num_resource,
num_dst=dataset.num_subreddit,
args=args,
mappings=dataset.mappings)
cig_train_loader = DataLoader(cig_train_dataset,
batch_size=args_static_modeling.batch_size,
shuffle=True)
cig_val_dataset = CIGDataset(path, df=val_df,
phrase=const.VAL,
num_src=dataset.num_resource,
num_dst=dataset.num_subreddit,
args=args,
mappings=dataset.mappings,
)
cig_val_loader = DataLoader(cig_val_dataset,
batch_size=args_static_modeling.batch_size,
shuffle=True)
cig_test_dataset = CIGDataset(path, df=test_df,
phrase=const.TEST,
num_src=dataset.num_resource,
num_dst=dataset.num_subreddit,
args=args,
mappings=dataset.mappings)
cig_test_loader = DataLoader(cig_test_dataset,
batch_size=args_static_modeling.batch_size,
shuffle=True)
model_static = GNNModel(hidden_size=args_static_modeling.hidden_size,
n_node=dataset.urls_df_ge_k_interactions[
const.DST].nunique(), args=args).to(
args.device)
optimizer_session = torch.optim.Adam(model_static.parameters(),
lr=args_static_modeling.lr,
weight_decay=args_static_modeling.l2)
del path
else:
cig_train_loader = cig_test_loader = None
model_static = optimizer_session = None
if args.evaluate_on_each_subset:
dataset.get_cold_start_resources()
print_time()
data = dataset[0]
data = data.to(args.device)
min_dst_idx, max_dst_idx = int(data.dst.min()), int(data.dst.max())
train_data, val_data, test_data = data.train_val_test_split(val_ratio=0.15,
test_ratio=0.15)
train_src_set = set(train_data.src.tolist())
val_src_set = set(val_data.src.tolist())
test_src_set = set(test_data.src.tolist())
train_val_overlap = train_src_set & val_src_set
train_test_overlap = train_src_set & test_src_set
if args.verbose:
print("#URLS:")
print(
f"\tTrain:\t{len(train_src_set)}\n\tVal:\t{len(val_src_set)}\n\tTest:\t{len(test_src_set)}")
# Stats on overlapping nodes between train and val/test:
print(
f"\tTrain val overlap: {len(train_val_overlap)} ({len(train_val_overlap) / len(val_src_set) * 100:.2f}% of val)")
print(
f"\tTrain test overlap:\t{len(train_test_overlap)} ({len(train_test_overlap) / len(test_src_set) * 100:.2f}% of test)")
print(f"\tVal test overlap:\t{len(val_src_set & test_src_set)}")
print("\tVal URL not in train dataset:",
len(set(val_data.src.tolist()) - set(train_data.src.tolist())))
print("\tTest URL not in train dataset:",
len(set(test_data.src.tolist()) - set(train_data.src.tolist())))
print('\tVal URL test dataset not in train:',
len((set(val_data.src.tolist()) | set(test_data.src.tolist())) - set(
train_data.src.tolist())))
def get_pos_items_df(data):
"""Negative sampling for training should rely on no knowledge about the test set"""
pos_items_df_split = pd.DataFrame({
args.resource: data.src.tolist(),
const.SUBREDDIT: data.dst.tolist(),
})
pos_items_df_split = pos_items_df_split.groupby(args.resource).agg(list)
return pos_items_df_split
# This method contains duplicate (repetitive) interactions
pos_items_df_train = get_pos_items_df(train_data)
pos_items_df_val = pos_items_df_test = None
logger.info(
f'train-test overlap: {len(set(train_data.dst.tolist()) & set(test_data.dst.tolist()))}')
logger.info(
f'train-val overlap: {len(set(train_data.dst.tolist()) & set(val_data.dst.tolist()))}')
val_collection = {
"All": defaultdict(dict),
"Cold": defaultdict(dict),
"Warm": defaultdict(dict),
"Cold Video Warm Subreddit": defaultdict(dict),
"Cold Video Cold Subreddit": defaultdict(dict),
"Warm Video Warm Subreddit": defaultdict(dict),
"Warm Video Cold Subreddit": defaultdict(dict),
}
test_collection = {
"All": defaultdict(dict),
"Cold": defaultdict(dict),
"Warm": defaultdict(dict),
"Cold Video Warm Subreddit": defaultdict(dict),
"Cold Video Cold Subreddit": defaultdict(dict),
"Warm Video Warm Subreddit": defaultdict(dict),
"Warm Video Cold Subreddit": defaultdict(dict),
}
train_loader = TemporalDataLoader(train_data, batch_size=args.batch_size)
test_loader = TemporalDataLoader(test_data, batch_size=args.batch_size)
# Check Information Leaks
assert train_data.t.max() <= val_data.t.min()
if args.do_val:
val_loader = TemporalDataLoader(val_data, batch_size=args.batch_size)
assert val_data.t.max() <= test_data.t.min()
neighbor_loader = LastNeighborLoader(data.num_nodes, size=args.num_neighbors,
device=device)
memory_dim = time_dim = embedding_dim = args.embedding_dim
"""
Dynamic Modeling in Section 3.3 - 3.4 of KDD 2023 Paper
"""
memory = Memory(
data.num_nodes,
data.msg.size(-1),
memory_dim,
time_dim,
message_module=IdentityMessage(data.msg.size(-1), memory_dim, time_dim),
aggregator_module=LastAggregator(),
args=args,
mappings=dataset.mappings,
dataset=dataset,
).to(args.device)
gnn = GraphAttentionEmbedding(
args,
in_channels=memory_dim,
out_channels=embedding_dim,
msg_dim=data.msg.size(-1),
time_enc=memory.time_enc,
).to(args.device)
link_pred = LinkPredictor(in_channels=embedding_dim,
args=args).to(args.device)
gnn_params = [p for n, p in gnn.named_parameters()]
gnn_params_names = [n for n, p in gnn.named_parameters()]
link_pred_params = [p for n, p in link_pred.named_parameters() if
n not in gnn_params_names]
link_pred_params_names = [n for n, p in link_pred.named_parameters() if
n not in gnn_params_names]
memory_params = [p for n, p in memory.named_parameters() if
n not in set(["pretrained_subreddit_embeddings.weight",
"resource_embeds.weight",
"channel_embeds.weight"]) | set(
gnn_params_names) | set(link_pred_params_names)]
if args.do_static_modeling:
# Only update the embeddings in the rare case we want it to be learnable
# Not recommended due to potential dataset leak
sparse_params_names = ["resource_embeddings.weight",
"channel_embeddings.weight"]
sparse_params = [p for n, p in memory.named_parameters() if
n in sparse_params_names]
else:
sparse_params = []
optimizer_dense = torch.optim.Adam([
{
'params': gnn_params,
'name': 'gnn',
},
{
'params': link_pred_params,
'name': 'link_pred',
},
{
'params': memory_params,
'name': 'memory',
}
], lr=args.lr)
scheduler_dense = LinearLR(optimizer=optimizer_dense,
start_factor=0.5,
end_factor=1.,
total_iters=args.scheduler_total_iters)
if len(sparse_params) > 0:
optimizer_sparse = torch.optim.SparseAdam(sparse_params, lr=args.lr)
scheduler_sparse = LinearLR(optimizer=optimizer_sparse,
start_factor=0.5,
end_factor=1.,
total_iters=args.scheduler_total_iters)
else:
optimizer_sparse = scheduler_sparse = None
# Helper vector to map global node indices to local ones.
assoc = torch.empty(data.num_nodes, dtype=torch.long, device=device)
writer = SummaryWriter(args.log_dir)
kwargs = {
'gnn': gnn,
'memory': memory,
'link_pred': link_pred,
'neighbor_loader': neighbor_loader,
'optimizer_dense': optimizer_dense,
'optimizer_sparse': optimizer_sparse,
'scheduler_dense': scheduler_dense,
'scheduler_sparse': scheduler_sparse,
'model_static': model_static,
'optimizer_session': optimizer_session,
}
start_epoch = 1
if args.load_checkpoint_from_epoch >= 0:
start_epoch = args.load_checkpoint_from_epoch
neg_items_df_train = neg_items_df_val = neg_items_df_test = None
if args.do_val:
neg_items_df_val = sample_neg_items(pos_items_df_val,
dataset=dataset,
split=const.VAL,
mode=args.eval_sample_method,
min_dst_idx=min_dst_idx,
max_dst_idx=max_dst_idx)
neg_items_df_test = sample_neg_items(pos_items_df_test, dataset=dataset,
split=const.TEST,
mode=args.eval_sample_method,
min_dst_idx=min_dst_idx,
max_dst_idx=max_dst_idx)
for epoch in range(start_epoch, args.epochs + 1):
# Redo negative sampling of training/val/test dataset
if args.train_sample_method != const.RANDOM:
if epoch == 1 or epoch % args.resample_every == 0:
print(f"Epoch {epoch}\tResampling negative items")
neg_items_df_train = sample_neg_items(pos_items_df_train,
dataset=dataset,
split=const.TRAIN,
mode=args.train_sample_method)
else:
assert neg_items_df_train is None
if args.load_checkpoint_from_epoch >= 0 and epoch == args.load_checkpoint_from_epoch:
# Only for the purpose of resetting the model
# For epoch 0, we only run the initial part of `train()` to initialize the training pipeline
train(neg_items_df_train, epoch=0)
load_model(args, **kwargs)
# Epoch 0 will directly return
loss = train(neg_items_df_train, epoch)
if loss is not None:
# Evaluate with the randomly initialized model when epoch = 0
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}')
writer.add_scalar(f"Train/loss", loss, epoch)
if epoch % args.eval_every == 0:
if args.do_val:
with torch.no_grad():
test(val_loader, epoch, neg_items_df_val, val_collection, split=const.VAL, cig_eval_loader=cig_val_loader)
with torch.no_grad():
test(test_loader, epoch, neg_items_df_test, test_collection, split=const.TEST, cig_eval_loader=cig_test_loader)
# for split, performances in performances_d.items():
# print(f"{split.capitalize()}")
# log_str = "\t"
# count = 0
# for metric, value in performances.items():
# writer.add_scalar(
# f"{split.capitalize()}/{metric.capitalize()}", value,
# epoch)
#
# log_str += f"{metric.capitalize()}: {value:.4f}\t"
# count += 1
# if count % 3 == 0 and args.verbose:
# print(log_str)
# log_str = "\t"
#
# print(log_str)
save_results_to_excel(args,
results_val=val_collection if args.do_val else None,
results_test=test_collection)
writer.add_scalar(f"Train/lr_dense", scheduler_dense.get_last_lr()[-1],
epoch)
if epoch >= 1:
scheduler_dense.step()
if scheduler_sparse is not None:
scheduler_sparse.step()
writer.add_scalar(f"Train/lr_sparse",
scheduler_sparse.get_last_lr()[-1],
epoch)
if epoch % args.save_model_every == 0 and epoch > 0:
save_model(epoch, args, **kwargs)
print('Done!')