From 2bac3b6a53d366609f6610b2ac342628c64f5633 Mon Sep 17 00:00:00 2001 From: elisno Date: Thu, 15 Aug 2024 19:38:51 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@280db6acac455fd07347f9bd9bb8efec2c960500 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 114895 -> 116536 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16798573 -> 16801453 bytes master/.doctrees/index.doctree | Bin 43029 -> 43029 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1622 +++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1350 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 352 +- .../datalab/datalab_quickstart.ipynb | 162 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3770 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1246 +++--- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 612 +-- .../tutorials/improving_ml_performance.ipynb | 320 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 600 +-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1296 +++--- .../tutorials/token_classification.ipynb | 183 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 64488 -> 64488 bytes .../tutorials/clean_learning/text.doctree | Bin 233886 -> 233886 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333645 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 145906 -> 145956 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 454494 -> 454494 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 121626 -> 121626 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 150907 -> 150907 bytes .../tutorials/datalab/workflows.doctree | Bin 425652 -> 425652 bytes .../tutorials/dataset_health.doctree | Bin 329657 -> 329657 bytes master/.doctrees/tutorials/faq.doctree | Bin 199351 -> 199353 bytes .../improving_ml_performance.doctree | Bin 372312 -> 372312 bytes .../tutorials/indepth_overview.doctree | Bin 224033 -> 224033 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 68223 -> 68223 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 107891 -> 107897 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 20514 -> 20514 bytes master/.doctrees/tutorials/regression.doctree | Bin 110660 -> 110660 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176715 -> 176679 bytes .../issue_manager/underperforming_group.html | 46 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- .../datalab/internal/issue_manager/index.html | 2 +- .../issue_manager/underperforming_group.html | 24 +- master/genindex.html | 4 +- master/objects.inv | Bin 38696 -> 38694 bytes master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1622 +++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1350 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 352 +- .../tutorials/datalab/datalab_quickstart.html | 12 +- .../datalab/datalab_quickstart.ipynb | 162 +- master/tutorials/datalab/image.html | 52 +- master/tutorials/datalab/image.ipynb | 3770 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 476 +-- master/tutorials/datalab/workflows.ipynb | 1246 +++--- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 612 +-- .../tutorials/improving_ml_performance.html | 14 +- .../tutorials/improving_ml_performance.ipynb | 320 +- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 600 +-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1296 +++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 183 +- versioning.js | 2 +- 187 files changed, 12984 insertions(+), 13412 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index fa24fb80e..090b18663 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 63711693cfa13a0efc08c95b499d72cd +config: 6445ae1d00eb1a3108faa51045e355ef tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index f455e7903fac1ff5d320bc953a1a1659c1e1ba6d..9d925c15fc65dedc0f1213406120944fea9fae71 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^HX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN Yp{YT#iFu;g<_^XHPBOG{axZ5D099Qgvj6}9 delta 117 zcmdlWxj}M6IHO^9Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Yg@L(IN}`GJ<_^XHPBOG{axZ5D09{@p;Q#;t diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index d36ab97a159e447bbe21c04c681298d2d0faa218..7033a59297a91c38d748e165afa6d8888375ed57 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>ROjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O delta 1464 zcmX^3o8{ndmJRWYhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OMF`47b=88A@ZWoi_R!wUhcCObNM{K=RNbD_neujrSz$# z^ywDn>KPci7VZwYomEvAt6ZgONDBtbOEq_gs+E;#?ZL`wHCXCaHMgrm?I^F*+{PID z0LUUY7i#s5v$8c(ZA~>+_=GQZ^o|Gf_e1gqW6i(HF==GYZ@<5+7=tZ50di=5)&9i+ zDg8!hunk-EHp72Cs>Dv!b1kw_IGq1$ie>H4AF}L21 zoe>=kpN_pK(Lk?bSLrj^EM&}o?n}h9UB<%KdlITumh*vzH8Xb^b3abP-077?SX=Nb z4bJ>_&49T%e=fkxRj*`Rpi6 zepJAo!{kpztQDLCO*E^r?^)QOZ=&3KHtYe!{~y#&3g2dd5x_-s*(vg+O07;z+!%Sk znn)EM$p>7H%y!!{upE}&?7|t4al1j zHg$ShA-C#t$+C@jKA%7?i>3_;n-j>m*e>M|ZB+8dEpaSo9o0;5K7ctilURZSK=mXF jn2D=!T@-Gm(H!}_1t*to{@w9m&n%5g~xxLM8T6ww4yRS7|<~D}e zM?e<6HCL&xomH&S1J-n7NsI>KM{jwsU@s)EF;;@h0+U8pg7ycCs?paVk|2lr*UeuX zkTPgQ`kJssZ!&^6Vru+UJ>Q~edS$WVkH&^vhB6Qa_}fh?JFj-Pv=@{*doOpHPu#7y zWoN{Ox=zPmlx(0k@vHR7Toy5AKKCSJ+74sx>wS)D)x|=fVa?1P#`KSqFn3~U9@g&p zl>ujdw_?EDygwIU?atL2sOku4s*`LmC!{m^K zJ%Y(2HZ}{Bg`GWz$rTRfgUMOh>=HmG*(5Jv=
20+)x2Wh+6H<&z8z^=gLsX}%X zCO_W8UcltpV%7-GfjXLUvF|z9ps%C+YBt~l#Qz`EPU^bDLW6*d?6Ol7Nau}COk5lN zu$)XD9}fVRBeUH$3@nHF+Z}iUi*7r|RXP*kCE#Ig#;}ldIc^1G(5H6(GX)hN>E=Dz zm^kq8CbQ`?i#&@$_c+-Tae2SYlj+qnK5`6msnugD%On}58|{Y;2N`5A4b9+NVHO!%&zX8INuX%>b?2C0cDDJDjVX2}ML#>R4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2YdqPzJ delta 3571 zcmX@QLh$Gc!3~~_hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL1JmPd2| diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 3a744ad88741d88991dc2ad09b9bd5cc2e800c7a..d8f3da8895204a88dfb9689cb880095e27d1620a 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSohWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RaMErUr&-NvWx(X{M=$=H{se#^yaMvkq|0W~4M5|P5;Mw?{svPcaLQYh>=W(nKu7RhcsYUyfpNOpFM`~Wan z3O2Jv%_&{^MirG8H6}S@NC0#p)xl(=VH1Rgn8oDO0;m*hWh*<6R6^)EmN9=o8kT|` zZ1qr!1G3Hllo+nuHeAJ~rEa9(LMp^2qV32&sp$Rg2!)ysu{%8vQS0O09@ILSaH7`O zH7{yCoAjX8!vh0=l@(HdQDbPx1sG*@9qhO7X@GSgxiD)RUPf*vlDop*js8Tks_4nF zK_sh+`p2WF)t^qG*2|eJYJH|WL9MHgG$=YU(Tk#EQ!QxL`1E_!x-f(MD9h?fu-Uh$ z)tLQ?qWv!}0f&x}+z@K4c@;oW-RsjpvtqhF_T`NaTL&MTn%{4P?j<*C%6DQ`x7?Jk zWCuPkAdeT4bF+9sLe23)6}wpcT>)lZDt$CysJv7%G4o1^W4O}#oEZ7Y6!C7s3UE;% zUgJE$anFH`BYdcn7=q#6GG6zaSS8KJCEeTBXiKD|q4rt>3^5v|Lo_ z+YYti;idr1V>i1;5$qn`*G{Xkqw7h})$rN~&0yjG01NMyzIEn1q`XBkN+&N1-=|6p!AJ+f? delta 4228 zcmbuC-%FEG7{@thZMiLN*$?v~vIhOSacj|?Ugun9r~%wlqC0aWsLvXz}jY9aJ2%a}hP4NLw$ zwtA?;0a<4ON(@)-8mnV7(g4zLDH&kda4)h?Dtd1qM4_ew>~{14YJD^qMXl3uCu)sc z^`h1@!yeRncw_{yvQqLdY7C6J0Hds~L+h=(8eknrA;`MMmXVu@6t1v$6F-rxDtclv zg=AIHo~bZu?MWw5>*Y)ywLViGqt?}j8WbJR4x;E}t^>^)n|Y5~7iN(kWm#PbHun~_ z8uMRKbm+xJ;LtHr7)6Z@uY4$~dwmLMR!p~>eRo>n0ckbFd#(%SDy>dT<7(*T^|g&UgPJ#ch~Z z*?W-cd6?2^N-B-X5WA`s$-|X^2h%k55H#J^b1Y hnm1K1Ra|KSKe)MW{_xR RXljsbVxDNWxtyh&2LNF~5|RJ_ delta 62 zcmZotYEs(Z#$uRVSy7c$Wn8RpXkwOPY>;S}m~3ibn3j~9YMN%6YG`hrYG7=hlxApQ RVPI~Ql4xSQxtyh&2LNKp5~%zX8INuX%>b?2C0cDDJDjVX2}ML#>RErUr&-NvWx(X{M=$=H{se#^yK8 diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 052409f0e6eb9652715218b6ca0f5cf712518191..edfb27e77cc90c34acec0a71a856cd3c1b2f0dd6 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1gDX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN Rp{YT#iFu;g<{rk?x&WJ06WIU& delta 62 zcmdlUw>@q{G^1g5Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ<{rk?x&WNq6Yu~4 diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 820c9d91152b3ff93a20182193914df5d215ccce..59d5eaa1d274faf7a58a002edbb984d19d430af5 100644 GIT binary patch delta 81 zcmX@Gg8#q@{tc;&M){>x6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RErUr&-NvWx(X{M=$=H{se#^y(^b diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 0436becc1c7407575fd6a1b0c9907169227e35e7..d4985f4d85b6654c51fb5bda848b75a7b92520a2 100644 GIT binary patch delta 5702 zcmbtYZD?C%6y|ihX}6@eX-a8>bLmF9POB#A)->HZ+S!(MtgfMDVXRx)*bl09?LKVj zx@Mi|CdypvUgeePSbyw~Ftu`U?++&q^p_w+aEJ;jC@5pKq7=lB;d^t3^!M|^{rh~J zbDneW;VypQS=7%Sij7Z9PaPW@iboQO;Y6%1I+Ph4++LT74@5KDwq>3iY-o%Q*2SZl zc&t7;u)QG@7gMwZph|1^^G^i}h@ghb+pklJ2w2B4W#KI^<8sfnwJ^MbySxWM^IE-v zcNHHjfYmGc5q}@9UdfvSPlM|0Ef;GbPd@2Rm;8X%nTj zc?y0i8Ng=m!oA(kVcm1!%W&zH{AMbPP2CZ;MdXmh@Ab~$-iyWAj4eJ(--T;%8T#7y z@k0N3GzC8de0*bgzy$vGXaSl4M}6nm!v^YNZgQQtck&ysi`qb*;f>TjzBy5kCPLF( zI_=>Xr?Y4v93!Dw=XLO?_;WTWHnz2i=$SseEDp^sfqmuqb6*#N%Jb(e{{59TXdpCP z_k(i~{yR2T-F+UrD|&>zVsrf;2f!e)y)uhMxJ&d`S@MNO8sX`GE7w5- zbvY^u3A=6baP@K#P1pwV8eb-51$7v3bZw%L%(c=l>X{(*V##!yp_#&Jd;_JhfvzGM z+en8EoG9(&0cDOUk5i8U$KqZJDV_3eG!~8#O%hhQJ$S&KW@?f-G~551Sn4D) zti&h(4%1e3JxL8{!0y}esZ-tbP?5oOsyfM*7b8@oGQE^Av6E*y9i!dq#1ZPiLu;w# zA!;+gOO0PI14rpMxG$E=@#+|1H%FJqRa^4o6I80Q<1~cl#U*jBm;A+`=1-cez$!L1 zH$lhnWmv`JTtw=fDU+?pvjyZoVI9NK8I!GWnbeLmv=!fqJc&mwou^TJAzTuvNlK*t V3N)*_mniIm61iXL|FPe${SVaxy}$qf delta 5702 zcmbtYZD>Z* zPRE9`o$tmSeqew2XP~a*Fy9|KCTzb3gA68P8*GCOHpH$&DU5x{-kU3TG-{<3; z^PGDRcjjZ)jC!_F(&4(;{!FC4 zJ{((jFtxr;jL;bksprb%(JzKG{Gc(FFw@ZUk<_(u1o6RSnTrjKv}aXGP_ zbDQ^oeG^TMg?zth1RHcx#9Mvh%Vf29+WZ+-1IJsxG9YM|@b2=6JDEQAx8DcSCQ57b z6#Q!3ht1xByF1Td-Lv6yaOstNC6UFZZVQ_tw8!8NyT@_w#o~0z6kjAC!8JGxJ*_)< zy7xSqf}eaIzLPni1OK4E08N0czIkA+hPs#>ULu|jeg}3@8OSrdpV-0ohN5U96wRfR zE`DPyiw43r5}2@G2QP|0C;VbXON$7f>cPw6z{D)rSDrfeZ6T;Ub7jCrqc|?6qHAoQ34z20+N9h zv{%E4R8F45cEg#=T#zz4MJRlUHQq^E6KU1Z8d;9&o#viewVa_Wvek+le$Q z@mPNcX^p%Yrx+TrXLdYtw3D7M(wI(FJDJwS5Y@<3H`VLd$upgd&{lbTAGP73HDqI& zS~T#M!Y{RaN9Yf@FNVYM&H!OIM~BE&8`h`CsZ?fTLtzX8INuX%>b?2C0cDDJDjVX2}ML#>RHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqK2ZPw delta 2705 zcmex*o8{|mmJOkdhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqzX8INuX%>b?2C0cDDJDjVX2}ML#>RErUr&-NvWx(X{M=$=H{se#^y`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~-#9Olf delta 1125 zcmeBu&(!;#X+t=pVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgzRMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~1ccwJEd diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index c6f1db7da7714ea367758f5bada1342598141607..c601b5d9d15aa7c50fde729e00b52f40ff50a75a 100644 GIT binary patch delta 62 zcmew$^+9TbE0bYzX8INuX%>b?2C0cDDJDjVX2}ML#>Rk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<055tx-T(jq delta 2628 zcmccdp5?}SmJQL2hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<01-7ny8r+H diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 683bb6fa5d48984f687d87e5589ff7c3ea8c9807..a307468bb0837a734c4b8ba356042a007b960540 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7w)v%16$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OVlJJvaaW delta 2632 zcmaERn&s_jmJNZ7w%L^xRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^ylB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OTFPK<5Ae diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 5da59bf8fdfc8cf15e3a8c96d4015a534100284a..9da1ab5c3eb1adb3d8a27965f8f31aeaeb9e5ebd 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7w)v%16$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qErUr&-NvWx(X{M=$=H{se#^yHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qzX8INuX%>b?2C0cDDJDjVX2}ML#>R)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NRcsTrUE delta 2506 zcmbRCjb++5mJN}NhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NS%aUD1S diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 6a712d260ae4c8a90f81964c07b88372e1a26ab0..1fc60fb88ea444e7d9f1a3bc5d1d06344d7665d7 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>Rh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>kL=E2GU delta 3034 zcmZ3sg>~5$)(xJFhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>kme8w>V diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 4d9685987182ba297dbdc79f8a9e152700453d83..16c664db820369e1fcce8e9244b58da55021561b 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#69X;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN Rp{YT#iFu;g<`%|>JOGfh6Se>V delta 62 zcmaDV^HgR-Fr#61Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ<`%|>JOGkA6U_hs diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index c81e1549be9ee4042f43839faaa74dc5e9ced8ab..d8bb3b8e4c98efac57c43034bf27a527ba78c205 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RbfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+ErUr&-NvWx(X{M=$=H{se#^ybfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+zX8INuX%>b?2C0cDDJDjVX2}ML#>R3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~w1z!YTj& delta 3021 zcmdmUn03!#)(zf_hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~z()#(Dq% diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index b15f1987430a4411c30ab7a8cf71d040dfa5243e..610e14ecd02e1ecfe7ac1bfc8aae0d635a467515 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0wb1XBFTo9+w+-PTSXQK>JtQ0pR$;)9B3bidVc}dEJrg_K(dAUKk zu=z<`X|)?Su25vj_1p+o@^Qyj43z0#()n=$6l+m8P0IM5dH3CQ8To(_S6`ZHB!V>JX0#qY>V7oxAe8mA^rKifKRIulZa}hB9ZZD&% z+Hth!M136^c&5>XqDxH=NZ@E>iaFhdWNGO_?(i>8PInMFg2~>b^h)VIOegC>puUhm2D!?A5T~ ywU!#L63Dzm@fCW%8wTDq3dJ=#FtqT(kt-2FXWaA3)6rX=2DFF2cnW;nXZ`?y`(nue delta 2688 zcmbuA-77<39LF0wbG9}U$pvu=&5gF>>^P&$M6pubAj!+dR_sP?@-lfz%7vzR$OU=1 zLAkK`NnA;}apMX_mRxfqT*=$XU*Nkx;M3>(eSXjHd9IhV*Gt-1y{0TMIx;peCIzjc zy}VDdc|=dIY!m%npHKG7K2cG8Hc9dNMTf(tl=XS+l9kn@+S#UsqXSJlC;ppfkCg*# zMW0E>X>}SHpMuB;-588o2xYWw&co`4nM>d(nC<2vvx@UHm|ujQR+wDEHy%8T2~E|k z%A$v|M~ExAKo5MebPB7?=*GI50tIFyOY^98Rz5|oe8nzcrN_#~RIulZa}F^6ZZD&% znqjo(NL?)&c(TEbqVtXSNZ_;hICHk-lhoXW+~HrGoGlULl>f|ywAOZl2QQ@J4o@=n z)=p@P)ZXho3(1&2z42svPxvk1z}R}fiMj)O$aAL-O$eFjeCWskETxJ+lxL7KZ8d|q zdD%z>(P!kfSM4f(zVeQIQ!2i>kxrql8Pu-g2RnypQ1@BNi-mw2M`!ViT*x@iVnH2? yTp6hT@(G!DG_gqUw*lZyqi8~B0z(Tg9J!z3=!|<_dD?%=(Si2Z7f<1jyYwF^$7a0% diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 6e78eb86d7b653d191dcdc1d6e9f803d40c47a31..3813f9a37bef0907e9ef2ad62d78b9737988a38a 100644 GIT binary patch delta 2967 zcmaF)oaNzX8INuX%>b?2C0cDDJDjVX2}ML#>RpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6Yx$;R delta 2967 zcmaF)oaNErUr&-NvWx(X{M=$=H{se#^ypF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6?DeY4 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 0683fecf5f1a8025fc1302e52fe3052d390594c5..16a611c46041d3ac095f8bd7779f21bdef0c5185 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#69X;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN Rp{YT#iFu;g<`%|>JOGfh6Se>V delta 62 zcmaDV^HgR-Fr#61Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ<`%|>JOGkA6U_hs diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 7766178b3900ec07cf2f5bad106441e304173420..a82f5e94d63e396d30f9a962144dc2758ffb51f9 100644 GIT binary patch delta 3483 zcmbuC(MwZd7{>W(XIgU;Tj|6SB#4O0vuVe5QFt{_D2Ity5_Q_N#Yl6p5f(Odfs|VK zF?Lan)hdL7EnnOR5qVK`CApjEX3+?`=q7du>Y^B(<4xY~*&pzGpZ9s*_x%p1ylyV9 zo3lO4IUb(8c4cftX?MFv-A-c#YDb59!QXXM_PZ2WRh&m;UuT!9&?M6U zj5B$fx0<4r3mW92#ZG?dy9uM0E%RFeQVYD~sa`AHs2@gzwLp&E?3_ZfGSIzEf3`qP z=SXU~Cjlsv({!orqOEe2nEV3q$>e7|*khr)E~&9{RedoG{1iayqoq`@4N1wEP23wr z>>B9b{vtZow}W%2s&d+dT|kc7&Mu*<*>h#oYuq=Bs+vY$1FED2j-yxJIJSVMdnZ%? zn$d||Ce#luj?Kp@y#XLr+!yw#zD=~!&P)aeK8v{iOnXw zvxlqbK%a<%CT{3eL zflIIEEg-(9;Cpr_BfKU!(uCxJy6qG<6Qw*Mg>EgmHM zx2zS4&%j&a1!keSpNn;PiIoB??T7HBxPO2hLMN9G)`+Bx^Q+^v;<3U`n4#Whc&1^u zSUtwRVu!oICv;vC5f6LbfH#rQhS&g(i(O~fhaDK7_!4HVV&yW6fFTIIz!PkJXAJS? bgg1to-{8f>Ef#Kq+#A0}^;VY(i~&!^4w`B??UWv7uuCbR=o z*Kq00yaB}b-7@mhxd_v_V5q7c{O?VTD@(3Hkak1wN`>+e+6JI7-yI8)=!e9tOE$|du-x*E3 cHQ|b(<~MmUew$6UK<>3)qeijxhz;-j2RgJ$TL1t6 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 49844ae7bbb5af25ed3215c25b868475508ef53a..9d0ffef9d27c12d38f0392745de469a76ece072c 100644 GIT binary patch delta 11655 zcmd5?3tW{|wr6eLF9i>r2j{^7l!qXKm=6qu)XdZp%d%4807u|U9&#WxQNalO1o=+`@C?(JM-E6ewW|xeEU0l z@Adkxz1CiPA3kgee(kZ~fabtWiCqD9$gXXCaA{qQeay&l;}(v~9+hRcm6wkmWgAnL zWy{I2m6nekpH)6;OqOj-_6=EOqsQ9D$WOvIDyZ70x5*8GL!5W|m#Gmd$eUFO?sfht zC?!x8={rt{M0KPu%d@fqoy#@PM5~g_$wOXA4pRpfr`E{%$zjgG)aqc>3f!lPve&sK z`wMlT9d<4q*R0Ou!_Kq0mzgSs4?924Z&NF^yfD#UrPQV=yVOdJyX9sTQl0J7$Etv8x zWRJXIg+<_Np?8fD5(vx@m!+fRmW~x2sg;4!!Vo_{ zrAympx{7+(JPKla@X1=uv}i8SBz0w2+$26OFq@CRTCD%U+~v zk~^(Oo7Cxj!1?I!ey@Vm+5X9tFqO7Oelf)P?w2>Jbu%Zw`0a=&Rnqs$$C{&^n#%_u zbQ62mPx+IN|D2DjO`z@01hcxetFZ0K3xJj=)0(SfI`@_-w;ZeXNpAzEs&30jyo{%Wb!EzluS@-^}=Zr8$`{JH+%=QpyUx{iPT>9ZeZ>)@3Eb9MA( zZBL*crUgLWwXJC}L0`(Xty$Y4`T6_#wN1P>rx(m{Q~#8Hl?)$-l@`eUB}`8oV4EWJ zEz_aWDBZ2W76%w*!K@wEK_xNHG7};M*(R*Mr zyQq;r>lnjW3_=o2#D|80HNc;%myifIv$z=iU>)e0DMrlJ$0)OtmDv>`ZgIFg2{KuJ z4DL>XI9A}Ae506rt6<$jtY<*T+#p(ih4mG3^ba|vvfBE3yQ8kQrktuxYeTJ-*O*p^ zt(qXiy{V9Z1t}1oKBuN?aiiVpsz$BTCOfS5rSwgqs;RAVEOU=JussEIQ)bvo?Tf6n z3w`;8)z#a}i|guZOC8qKn!1L}+a?#**V~q*GX~w#LfGZKYLb4yO9KqhqJ$yAsKTX6<8 z1)XF{rK!@t(tKN`<+jGsN^RTB`GmzJQSvJw|6lIOaPxGcISmRXU4`ePoaaC5zuCWt z|2kSbM0skII%9DA;q=k+;1OfKLyCVAeu|Pe3BB&_FOQ8V=#BRth&K zMEUu-E8Mo_v+WIy^)-&%uz>>FC%SX3slGVcYRat*mG-K7tAil5J2I?y*Va24e6a4< zgL~3Ji>HUv>ig8Y`Uc^wbO;FT^Id}T>i>nx;I4Ft|JO?RAsrIgxft2DH4CR_KsfvM z3g7hk`sO7*V`U7sYhVO^kpZi;`dB|dX+ao04E(KFyvf_U(&XO1-PH5N2>1-xs94$d z;(V_|k=0S80uSm^}M&Xj%QARO4K zSiC$JOqezvHo+M@IG(ckxmc0Qy0w2wV;q1#;x%Zrw8ngz}mh{p( zh`@;tL5wk4>p2kmI~wYJVo`&~CxKbsb|IAw)+)P+S&I)e;PvDcygCK19oOJ>@+PnnFS#YngvLpv&+DAW zXp=+|mHZ!Q<%!A%D%a%QlVBM9hccP#5(4oHKMLTK-^yh}dyEHBpJK1h?Z z-j5yZRYNk7M)I*=Q--<~ronVC)l{7veJBm?QF;XLsV?3Xo>?JNiJUtEH{1%=aPRIl z)gvsjpD?-bZ4C?1QJgp6S2JK7v|_?cC@`(zd@9qWu~cbQniZ{Fu^z0WSU1WC&xFg# z_c~!cmz_bYKVXm)#L*OMc%4qJJv<^ZnD+?3nRN23t_j*5)FV8!lfNk*+NmQC4G-Yt z@>`U1H{1^I1028wMKBtE>oJZU&{5jTnew`aY1@hGaN6`Gcwjaav;QRo&~k|Ia+dmV z zamv$cAcnWIR#I?Ld+1)s=Pku{7UU@$@N_an$+uq&W*OAa3#IB|R5hjPF}eea*t5P` zZ|kS^#CfoZ9nj;YCa|zxms)A76pLLz%S3tj5d@$^HH>6;K5GMDHuUy&8P35^jJG#L&_HL&a4v3%(FTpBv;0e@KIi z{F_BSXEMR(SR_$J!Q$k_##xNUi-u&#Ssw=raT?U#4^x>jP83|aI8M&e_++y}uEX|P z(BP0o1mjr2gC==-bS;7=Hp@jmLy#}&FCE%)Bj$pHc66R^_T}q|3l7LRek$khX7K;$fJvTK#GO#In zlo}y}4!(SzI}!aDClV30ym;(<0G85?#!pRzq`@e1Q7lHcKs;uJ(p5r|Q3*OYgzv9_ zT!`jF8eFxJk~DEp5)!pMA;FJ$ehJ*oCK>qwA@XCck!5-SW- zaV6O%ELaU%)@1aWwpp0=q|3BUAJca9H*KTWG-$$8Yao`I+gDP)B7PT^P`$ia>c}qCQ^rSfNGCfr^C zX?UuYs^en8soJE}{-l~x`+GR`tNlq~ckK_Cghwt3kC6F_M{?-*N!D)S3(oBkBYEVK z@W?X?bU6{1uJp+0hhaCojHe%_8#Q93IOK2FaLCR_XrCpAEUAKV>;vHtcRU?6iFl$` zIgItLhbfdc-(Lp?_LU31KMJG&+XLV6$7lmTZNln}lt+kCi6d&2I68{SZIBN~aogi$ z-MfU8sM4>#SpL)od0e;j`(YGIGb@Y5t=llO(2ZJ;ZmiHOE(s@@MYK=E=uTJVF_Q{q zI@*zcxq>i(k7O~TR`jD*DLkkxc^oG4eg(Nig@ICdTwO)$1}Nn!ez}P5C?D#tVzWy{ zY84enx5HG}f=%rZhc|A5F4Ee0|yMs+NBA>Z+6|Uy}{)YE3AUB8sI#i%*@I&&9hmTF2&E@FY^+ zzSkxCE+M+yBYMwfNN^|Obc&1F7W`y0OkmVdcvgI7sUkv^hI+QQ$IDrt+wQzadK5^8{TTa+7}F0Q+h_1nI=j*^IObS^&yLAc~; z+G~zjWO!*jyn}f=NY_6QROM8ezJqmJ3G;Voa7SK*SFZFnW^V(Hzx0wt*~KfKff4MY zMcKvoKLdkIe<2lpj$&_fjm0@)57|IRv8X>A=q55eVvolb!ShCKV7wcNApWKx5ftx1 z;_NosW@%5|z6)-hVx$=^B+gtH5_A*}#2220xiE@zHjA@rX1q8D7btx)orCEv_0t#W zIw3QjBNFMAFO7&-${KCFyR1o6cplsdA#6dsg3P&{5M?SRm3@#I!7UKT=;M8niPU>+ zvmQbM5EKvE~ZVHtn0*v&RAlmfrq@@oS$dwjgtnLrSYL7XbB?seU>Jeb{@izsG zJ~tRaa@uOMavs5HFT-T*m!8RAc_x3wCnxqCei`;NX0-PFYA*~5U<<62R#LH`n~qKI zy$a#_d#ysndDK$iOLR9*)zf?{o_&>SiW<-K=!9yT(H2xwmq{1m9o#AxiEfCSq`sR- zR(eS?2O_!8P2#=s&4uL>#=`;p8p`BXz4@W?V{i6r8f*DzZ1XT2l2@lI9O-t z;b;r3u~pj}metuE^q(&hA9%!3nLz&pBb~(wJy3H~8eMBi{9aZHpcA0PFKnc4{@}L_ zQYqy-i5~(eW6*46HmoQr+~QlJNyzXrv+ZjOGbw31Ml8u()* zAtUX>3$MXU_`R6=5mx*L^58>!>~%1hf;sXovNS$9oax{H<`sPsG83! zRepd8f`-q;K0H z2$hlU5OWfJ?F;(6&|8sYPVT=as;4rrICUR!R8&v9?|=$F#R|+&MA>fNWc^ARXh-ey zhBYWN`KbL$Y6nxK@KO8cqneaToppC)cZE_HX1=Oas_woq3Z&Ybvxh2$=)m|Y1ro*P z?4$O64;Co3bN)jHrBa(7UanMX&zT=7h3TXGzbH`H-d0@gqtJ`A<)0~0*1F<7ag#L| z-m-VEsDYrzDr;)%@{8xpt*tAm5m(s~?T2kUl&EA~amrp@w@eB2ob=|S84BQgI=gw%rBC3X3ocfpcd*!$M6FFiF-|I8nz zs$6Ca{T*h1U3Ltr#Ok#C-`+)xpRkr0jMPgykxjZOD8S>)!hCcSnjsqZm^z}gghu^b~_HOh~JYdnj zz7mYeoOmZ^c#zO0>a5v1xLN)a7e4yd;YRHPaHOIA-`Q^5h zshe({!59q`jA*)%P*+jK|Nrqmi2~zRwvJ{kIVCf2rUgte8Be5x2G?4^ zxULy|9lau9G2o_^5Qyjdfr{EPbv>!i-h1j6{StYf_HRV-x<(0O4j2{SbT|OBHfu_r+-2*}2<H#llo#{EbL>L!5Y{Ul#(!lIjORJd0J~>fSJl_WD1AAiaOAs#~`* zLs|DSsjNc>Ay_NhnKy2?%_^y>Dyb>0tf?rs%{Jd7*O%t3 zd*iSm3AA`Q5r(lEuRWP=CEIP%o+OS@#PU}w_$eZdWKXE@&}2yDSorw{lEn=&9;A;8 zk3c6Ly*M6dNroNj?F5UE*OMMQ_*=gGhSg;-$B~l)7l0j8;i*?4EAz112b#XSqr@Us zt_sBYL*Y&KsR}1fhvDp;3a_O?GCQNfSBAmE><8!fYo70w!(k>}XIO`T5p#xt5d!dP zDuo1*q@}`R(BEsyB2D?9k#~G0=8S+y96ti?fi$mG!(9vro&lI{fZjnK6NS@++ShCG zgoH1A%)`C7${?+EG4= z+>+IX;i2WwW@scbXUg`ux4gK{%axztdYLez6r$PUFtJTAi93gAVHFm6VsZd2!g{;m{^=fJZQGG(>XBHh&0naS$K48qNMr z4E%_}afyLgu+blX^#c=o$IXPD3B!r^KqBcOre7PNSwMD3DFAZ4Ojv-HGzb?%(tWU@ z7Z}NE?sgQNek1+_e+g)DB3tFKWI`jb4krlv$3QgrYn5Y31dnB9%?s? zDtu}zSP6tT$3kSxPkb9p*?zQ59WG1!%!Q@YI-0%g=_DXd77*_(Al4&bn74qSP6BXD z7VT0;nAjL&5NDn5%f_pv93F5#9f*<&;(_y8*MjfQ_h$uN7hu&m7y=zGe6`*JZib21 zzKGP`kZo!shE@DkO4Y(o(iWikA?Ou!&>g+x+E}Q9Vd`aS@?a_Sm-9C%^p}%`W$=h2 z_tfj0qBK`C%_c;x>~H(8^w_02G*t)Lk`8TBWkgE z=Wza4$96LxERM7wk9c9XdhL5^yqN=8>@#`k$7-?hy%=`c!-~FeRzJJu@%~BVy!4fL zMRwvPIReZrDk+QLM~Wr4MR-olW4sn~9;Cb!u93sL?Li1P=rrW^WdntwKx9VJM5ZRl zH>&Z_9x#X(*7wA~$zaDb6DXKpOafKl2G1%J{yG`rgEqRcBo=%ljAFt`lX@6&mp5ZL zf0H(2xQ1^=Om|@enX>O5$Bl>Jp8%8aovDxl)6qJfXg}L-WRo-$YRQ@7iO{)AXO-_# zbM|9+upabyb_xVz&cl!am0Z-gKo5VxhX3<0l)+L-2Pq%3Mvaui;c;xA4ylpei@9Eu z7dzpcrIB%7Jp+cYtxlXT&!9AFb1o-fvo$=8if3^m?3B&T2<|hY=})unWG?hzts4Aq zJV?x9%*m%@N+YFr13r;YPI+A; zRfF(7U+zrkS2eCo#5y$iQYl!u!HZ)kV_niP+jQ?wqv_mQKFDuxI)S*KaxHO%*RYnkx zg|i`IodLoi7E^7s*W;WsW4vd6vB7<;$T^eeJ@a}c6tnsA40|+OTyrJ{TjzjDykao& zzdts`uyx^-hI9B|6GP*~6KX$_HK!V;vt3TQR*8=7=j)8(w*~`i4af2t^2XybDJ}4j z>S|#j`?r(yf=qhdLwX?`hu4wu-E@*vTHqnQUI(QtTqjqBVLGlYi{|SjsSt)Y=aMrF zmMLl8Ny%b46S;_s^aeAW_N;5>`B5uno^{)yFPa4C5zr#na#M72vOo72j0w^^Dai$I zXekK|z{&GqIm_3Hr=k)uxE_>Td^l5U49vu@>!FO*kwgmHfNCA7X%zI~Yp)m_t@9xY z*f|Yuu7EfuN=xEgIcK#_&N(znIp@+6n8#Xmm|jd3&kmg&=zrC@1KpvM1D$N+fzGz- z)a9Bq~k?O$VyJ77nadLjo8yVv2eE@w=}{oZf&j& z;z5ONiy*G2;LNZgddXS{!S>};_Djab=_O++Flea}3o>8;d298P&_^uj*N+X;cQTkt zbDBzI#EIKWobpydUm8An5@x_O&chnyv@?WsqjlddqJ&r~DT1FY1^>Vhy~kJw85;^v zCkr<(qjEh&@3NEH6G@K?mqUKv)_0ddBe&I1NlHH}iE!K6?6kF++q%cFgA0|fce?fp zyJX>#<*gpe_j)Yn%>vt|NAumF=A)-uIHi}ng%7-Vobd4Y)Wc)cXs~cvsb6sNkotum zhz0K#ev(;S9ZmK3cODjW5K6tm6dmsswA;vzTYH6V95aL5Cy?RN)-=mo)6BOxwJtS zDygwAGRTFx(;4#&a_G@0h2GUQ)EUkKEUw5HNRjcC5i?(a5$r3E5(o><%)DY^)pOzzj0zK-EJ;7Nk@IGPr0qM z(ses6tROnC2G7NYupMpU4PJWCXt#+Z#M8U2r_XXVxq-h)7;SK3G<6%y17>$(w9Cz) z>GB<6B%Vz3#n9Ja8aw8}=&+2@X$d2C*n~l?5CMlhAbG?KhqxwPL3&LFiAtkHc3s8@ zr)`H2!*{gW3mO+OL9^Wn&33nC#M%u_Soa7QG(P-Ig2u;T-T_|&o!+Nj1LNA42W5uS zoYQr#+z~98w}&o+ChUeObP-D236SFkh{KD!Ar?mQFRAobU@Kk8#6?hsNQ?A{76x)H zx^MO`yR*$QoD^J&Td5174%tl78`$) z5V1w@fJ(qsb|_aba4%TsUa(MF5b22j8|-6jSA^rz8xZUR*Chn0@Cm~BeQ;ObCcm1J zQd?m~NsDlWXt{bXt0|Q;Vayhr9>Boh`9zCs;; zBoG?HI5QQuI!rtaNl-4YFU6AwAq|Q#xE)L`vKYQNfN-pYPrC-y;3z$S90WAXdL@B`Z)f!`dVE8}ryY&KB=8TB^Z zq+Bw~$LQB)-10Wm!Y^EC1m*hRfSV+ke41t+I0_Fz7H&BT3HogMDwOg^1AlPi1+JnO pG65KJ4CeakEaWhvHQ3^#7c>@LVPNG^`a$8tW3;bX*l`R}{})o$QgHwP diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index d616a13871119dab4a1b3c18ecf4f6ccefb6fe2a..8e5b77cdd6cd079ce386a4c614a15de747d86a16 100644 GIT binary patch delta 4920 zcmb_gTS!v@80OTLbE~adAuy6sksg`~P3NMTHkp=av}Q_a;>urI zSL&^oYSm8;q>D)rVlOig%QCE>Gzlq#kZxx?L+G(@J?!zj{Qvp>?;JM$UNQY%acj4b zez3N_&Q(=mGG=8tveGle3Y*=YnPD@Pi?;RaZDn@zM$w*O5^bjR4Ptqw*=FKaK?T6* zcFrD7p1ptezbl5Jv^?$@gmjWetLL4nP9+9skG32e*U6swS7%|WlIa9~t{()IBkSkzNi6rm4naf*2kwsjs`Gl9;mFzLy-R?WV&AyAzZree%@B;q>r z%UBkE+435LH?eU`A#l}vJEsR*b_=iB>cY&n@UGkmz^qh3)%-5cf@QLjdWtl($(O>P z3eDKemE2P_0IIWStpHU?w5oY?iCP5&GvuxzU6qpdj@7cG!h@KXDOB8XUQ=nYE<(*1!v^+kwn-$bBElYslTkd3CP`aXifqHiwu zoi0HSN9$Ml^Am-%4*yNifW*MX=bXs#NDLXK5(qp7&NrJQWsR_7pe$+n!z$C@PbSb2w($FYyB~dhg9@vLm zNf^H8NgSE2sg(Aj3p5}x_=l2&JRW(u4rvL=1@ovHX^D{AK?T#=j!7l&9h*W{5M{VC zIf5MhjJ}Faedz}F_ZNYNetzAClkoV|YUJRf9%y_@PX)P34t-DmA2bhtfFB+X|E+i- z^{!Q@0d0iw#$cyHfGR{RZ|a2) zaGWA=4fUPg7HnTEEW&R~cQ#&7`3n+-VcbiYf=bS94<;`YRw5lEXIvlroGc7$03Y(7 MPrBefQCKkR4;d{xaR2}S delta 4920 zcmb_gTS!v@80O^6xz$!pZJ`z+f@Qh0yd04-g1|^BMS5r|sJVr=P-Zua*1AxdIP;fg zH|njIYU)o8MDs!sVlOiY(=sffG!Zd_kZxxl33}{X4}1JB|9`&!JBKYys1_zvt%n42 z*{PE?r8S9mlQ}7+I8iJ#7amR)&9)+|HQAPIHA|9JOq7aj=G0VC+E!ecl*o008h}yT zt^$q;Dh>K~ML(3*hn$0u<>b&Ac)z+i7=yDzcNiPDoE@v~EyGl0(`)&q;T5R72+xnW z6^QzSb>{<7e;?@zL_Kyx4*I~tW2NQT)_F318l72{Vj$BN4Z9MCL3L84L7P5#_!?2kpJ2 z6h_yR8#slLqx+$Eq~gHHQBRScB^l0^=PAIIbKl@J0FxC@&~2ZZ@_pmLl`NroW~csVs2@WVq|8J zXl7_?kZfX}XtueA@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeHq)$ delta 1062 zcmeC{X6ox^+ThJ-m|a;>l~rY2tZ!&ymSSv>XqcF6YG9a_l$vUqW}0efZk}pjY@U>6 zXklSsZj_Q}V!XMA@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je42dKPmOMnev6~TeV|XQmP+J!ULF}r#g3c@Y2b^zzz~}uuKfdq#?$^BgHSgO| zk2W`7Dn7_(jq|3NGc{dgrESM`X=H?q#pH~g7!bB@2x(~jA`?$YgNvSTUiTPT(FxjX zEn_7A_Jwh2kY4!nfLNM2e$}yoh^0BpKTfr@0#++}lOKi#yC8Iu1|tXVNw%V2+T3H# zQgig!y7W|U2Vgbcvi=<%Z#WS|;w#PS38>gves{qS7)fPea_AarO%B7>pCb#X^=~qc z_PTTV4r={0eh#%hxe8k!O(<`sQiwd6`A* zR#b3(a}U|KgF5C;j#QwjALG8Q3=)+ioGR6J>f1g;;YA+@-V1OBhmBOKe~|lqTuJjo w8~1JB{+|k*Bf#v_$?*WM*C4yPxC&qRIEo}t;bON_ZGnrQ!FMjjV)u2|KlcQ~9{>OV delta 3077 zcmbuA-%C?r7{^)Dp_8Ugb`vxRlno4e&(7vK8I{4%R8o$NQ7OimJ11%(j0)Ev5u}TZ zAbc(*7!isnEP0T2qc;fcfY1AReth5eJ*;{UtKN4* z9wqmrP`qDMA6`)6eOXnQiaC=Iik-2ngq^SyO|yimWo$*)g%-=2ag__6uU_{U8PPF1 zXf9zS|MG=#X^`IfX92OP+q~ZP1`(Tjj=#4zH3L>7dXpc8`a2yK-5sP#`W zj`q4Ycn7t996pa)UyZ`n7h@wx2tY|1HGSZw3@XXip--&c}B?pv8g?Go>OoyYz=LAABBd}h@` z>_${@ZS4Trw}U$74vv(esh{A!tr;XL|8Oc-TB&=dhr&;N9C$Cl85}oKuKY&s_emv< x-4^cNx&1#CI7filr_;j$UaCTNd2uB^_hAT0pv1*~hui`eK7sFCipBm$=U>n%$Fu+d diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 6c948d3136aae01570021857ea9d2271af87a924..d8b96a522e6313ee05ed040fdbd4230a049677f4 100644 GIT binary patch delta 62 zcmew@^;>E~3zK1fX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN Rp{YT#iFu;g=B-S}xB#W^6eR!v delta 62 zcmew@^;>E~3zK1XWkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Rg@L(IN}`GJ=B-S}xB#bj6g&U` diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index c648086a061ab13ba799e9443715b294fbf38c4f..04b1bdc874248e53b7f89dc597a8caf1797a424a 100644 GIT binary patch delta 1253 zcmdlng>AzX8INuX%>b?2C0cDDJDjVX2}ML#>Rg*W3#8}h6-0u~hf+c$SGwlV?$;AeJ8 delta 1253 zcmdlng>AErUr&-NvWx(X{M=$=H{se#^yg*W3#8}h6-0u~hf+c$SGwlV?$KPGq; diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 3ebfe7f813c6b00ec2230e96ebc14a8af1dbbcf1..4852cab17787bc7f3fc001e951a6652d8b28e3d5 100644 GIT binary patch delta 13101 zcmbuG`BRl;6vyYh3wnXeWp!T)MFuynAc&R%V&oVis3;~V2$R3=y(6c-(nitB+cCd-=Eb1=DevEiVK zNiB;FK9<}x&3e*!MS(05Ex{dHSswcOh`Zy+!y4n&9Sg7wNmOOl$e(`5+GV^!A_ns6r~Qy+K)t zVo~a!bKzX8^O8{N_X{SYxt8bWqSEtA3sLE#<%wvnbsr8xspTstpw!aBSd_Yb?K6}b zvThJcHEak)sh2lSLaDzLN2AmuTcS{E(Wg&Ps{i&(l-lic6Ds|A*Ai5Ed(U(<*9Uv& zqf|QJhf1wq!PJVwFm>S(c;}4zwgIj14IYA)>DV!NHkBOTfl}*FZ9=8(%g>_H{0jJ_ zn|W?6O0`s8M%UF)1@~~L3s+ET@x{$(t`#-UQR<}2+fk~xdKaa3y)hl72Gqr&RFB^e zpwy&W@JSbXXB$e*z88t+8vEb`O5OSQXp~yiP>E8XK7pSR|M<5Cr6#|CyD7TqDM;mN zqOo9!xk9CXP;OEy@5Mm`kSpzrg>Nf6W_o;Zb!K*SEQaVotDic`2| zIz__b-Lpt--SV4qTi8k5Yd*aJ97m#HgPI_cmyn-$kxy3uy3K&4L9q)c7CD7v62|M= zRIdAo+>!FxV~{rU-Ow1OTIeTG%ik2!uC}09G#(+Nh&`csiVuuRI0qe~1mL@#eHmGL z&4GL19@7ml363kJNxp#C-nr%~3WIwm`;si*!C`7F53HsV;4E=ePTG_pThG3Gnr@P- z__CIM1u9_gTxk$*1jWMqm|8b$ppFlz80`U;UcKP%yV^*H(9J8P*uXw7={#JAd>_S) zbBxMbI05M}0ukG~SeVktoyWCT+|gF%-?}On;06x!S9StlSsmlQYJg&D)T$vwwJmGbYbZd1^f)g@sNIBAab8r!TW7Ip&81QGq)T5qG zIb2IpJ)J3oi;xbkyllK$+s2td#K*a+Q9NM^5N&hR`_5Rgw3^Tbb4YcBAd1w|mK(5~ z`2<&?>j}-k?)%iMzEO*P4yf1Bu^{X=OUqP)cwDMBwY&_kf??^B-NP9N zQ5&SS7R&2ZjhEJ`x6otlIuyer zac_j~)$9Q{J4`P_Pac+DchH_>&q&=H?gA+`a!Hh)-y3WIad4Ji1!}o*w!UEmDt0@j z=c7dvQfy?O(|RTP_{Wnk=!NhUkYZP!Q>|}72LP|Wtp~x4A97!R0PJ{9e5yY~a+bPe zzW7{kf-kiCc)ECSnyX73y5cMyIskt)uzyex@mcaluBMYqp=-;#)%Fh+mVYz3=Jg-P C_qlrj delta 13101 zcmbuG`%{!<6vyYh7j%JTxq818iVWUZz!kI<6eGtJK}9h|QGpaMcnL4-B`FoP6mikV z94$4|QF0`=I^x~YAsdTy49vj`(#5-3C?-1Cv%Ag6uYC6p_A4(L!ssHELdXM6cc%QRYbzlcreA5m}QnGc8$`%!ugdOmkH9Li0VSoq=U618eN=pzKct^w=h2Bs&XhL8 zzAH5oX)%X%_qgr=)lO-bQDScTFo0-t1Uqr^K$O})a~~>QF?9qgoj3g@nyYEn7?i5c zNkFN8&V_TW$W1}1-!GVm=6c3D8e2 zk?Z=RRKtcSlzOFb0!sa*XaGt*v^fr?7JOQVQiHc;pwv#En^5V`JC~r++qR8x3y@6Z*YIKOh=Buv#I3Rc9eSeQ zew3PW3qI+h?rcS=+4p17ToWE1N2xph9)VH|YR{w8r*-f%;vfH3qSVwEa5oKTcnVUv zf@l<2VlGqZAC#NYjQmlp=1FT%ZC4}pK(&ue^Z?Z^3!vU;os)y89OWKsMd`@xk$h?A z()P3(7-rRf0Eaf!rt`_UIDw`&{?M!BYVvY_0XgD4*5o_?D~qS~*AP$8CIsWC<*wk=UhgX zUUT3cxX*M0OoE4&(u6=j?Ce}~Ia%P|$-XShS3F2f;64>p0-PnT%1N6NWa~M1Ps2^} z6kk@;uRsNyohuCzji6YVpHTBg4b=7#6`?)A(yJTXeOK%00J?dF6dO3;C0&5)U=2{b zILD~0g%gktLlCi}i-jqjym@qM#T#v9{;i{O5pG~hu(AXA%IX^b<ImPS)mVo0gE3xP~$!fL2W{@lj{8dkJ zD@6?v*?#J7(1oQ-9Pl$3*F!>5XSFpt7ljo2a(#$;pdA>y!@)!Jj92ftW5AycQV;vO zwEV9zr^J^0F~%bqjX_5g*T1jiQbzM6}FNAGl-1(rRo6%puJcf+$c+n{L2z z<`Z0nj>k0vd+$}R0{0QFli%SWq=P@N*soqk$AWO$EIq0k#FJ9Bq3LCK6%0$4>@My& zi0Uw{xmbQz)p%)*dJCOauAE+Z)!$RMTHK8*NK~)Wd^tW?3jlsS*r-Y}t}Q*>iY6{i zYbiSHRei;yby^y)O4ZEhYlE{?EDfKByBm^^h%1yG86KD}PN$2q2?Lm*cw`bh)0Al$;JcZApCJ3oCB{BqFHO~x)?4z|O1=}-iZ z#62;(U!w=$Y>R#rJ$YDq-9dYjePeZhxC^A%$R%;QwL91VqIjlW4r;l6mcC&KD)u^} zThXEkDK>JzDg8Y9_{S43>iO^#kYZ1sQ=xB02LP|Wt%t#lANfFk2<&)HeyTr1a+bPO zzVuvgfG@Oq_{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm906b|M+5i9m delta 1676 zcmeDE&D8swX+tohZFXfvRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iLri4esZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Q)^2M*si- diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index ed4310e77f0b9955196be499744d45fb095ea1ab..5b221b6a76e9724573f237d3a3f042214ebd8da5 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^HX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN Yp{YT#iFu;g<_<6QR(e2%?J?6$^qg?IZzF6OaZOkfwnM zf<)_}S1l+Kv|tNruW%4dTOUC|RJti{yAT9d3W*9XywfbQo-=>I_x*lz?>+ZUeyuIP z*7hs~q4cD2DRUvA_Qzt$SSYL{G+mE|HFZMKA`xv|ABZb@SXDGNv`?9c4rnUB1DyoS z9Ihn!P}9y1`-vN9RW3BqP;(*RGkb$F5Bo-%$qGLY`GMZR&)2s_iRpYHut-Zznd!bT z?+rdB;ym4V%|%)=D|r`R>}M@BoUf}vHxa#m;4>{X$9Ei2yGf}z-kdl-Mnb2}_NB{2 zGQRwZM)J9p{j@2b=H{C?4b7WV?`G`x<-?W3)WE^_ckKs?3n$O7ez>mNN7+mPCUI#m zjCiQiz>h` zx8Wic-l*R_3ws<1d=KD?BSEGFTO0{a&%tX)g4#U93C~+&3tOH;nK0xH!95OtB`2rw zEJBJncSXEWhEIe?$Esgs0(Rl<3bYb_jx2-0l&|1n^EL3YM`akt6RV&Q+ZZTZ9|=!y zy-4N<`0(X7a1&S3Kw+3_r|qM`a(}>$k85y<8ecb*{=vyET8AtSn1* z+=eU)&9P1PJK)bA=^SPK1XslE5vk<2A1WTq6k8dUWK0~D-V*KsOMpV~gmCZ#n>4Gk L2fb&cUmgDe1Y!$% delta 3290 zcmbuB%WD%+6o)y}rt}df(NIi%MkLrSq%)a38lljl2%?J?6$^rrn3+ITS||n`kfwnM zf<)_}S1l+Kv|tNruW%4dTOUC|RJti{yAT9d3W*9XywfbQo|8Y|`+mQ<_nvzvx7wCl zZF`mm_3WjK=BTMn^s3=#N>dVQ;!H$QjijzejEJtrV!EQml7`yXr^G_3L|Ef@U?Tyu z2FnH?Xxh=?JaHYZ$oVE3YRw0HR(DY5A>U9lS>flZALtGId~Iu(n9k<|3$*04HP#d2 z-NC0soR9TfbCH(JPTt8EdRYq%=WEfRn~2`u|CyGW<=YQOyGW^7-mD)RA)!-N`{HFH z8DDxuBl+y|KH3ydaqCT-hUTovchk=M^1<>UYGD8SyUqi}g_Gk~KU_~aN7-~9F5u!` z81hiz7ya;?Fm$!#;R7HK5R;iJ4=0_oC_Y(hblPbV3 zw_$<`uh;LIf!z%Wd=KDCLxS-lY;H(!Y8GBMB&g0oobbHWx3J|oln6s!7u@6US8C)G zjv}Oqb63C{CHO>mbnN;CCSVutDnl#b=g2mgO!*2PHdh5NdsKoX9$x{4*v3TR`bcY?1yaWE+Bb}qHpWq6(O_Pd#=b_@kOta--Nk;vM^pT+$a~az|BQkh9Zg8AuoMASmpIJHigQ9zF+z9CZviR0 zl|Bwi`GXf~b!IxGE_Dvfyk~->cITc&=}2QI=G&c>*40Q;yQC*=6HuxnZ!JJ|Cgz_* ziO%KF=5^(HY~=wUScglhme^2fNa+BYYyIkcl-gpSfl|-D2ItyRmVr`RHWZ_|-gzAk z_|fLypwwwwXQR1J{q>6|HDNn67`b{lX-6hXow4&Fn(M##ER=e+auQ0d-?Iv(ep!`> zQvX^#2c@3*?bj&PR{IJ{-BcHdN)rxNpwd^5f)wyRQgu)MO12Pfp0p~7kf}@R_kSSUBCJg?qOql z8%o{PQH$n!^V)w=YQ^yZ6p40IQ9rl|3g>D(i)>y4zp> z9;Ht2OF(mds=pbf?jOhosdR|3uRtutDhwSHDO%5NqTIh27}`;_CkHX)bwh-KaKf1dBkmo#AW%)mDsRv1px(#;^{Q+c%Ca#$I#mq&&$g zQEsZ4RiOE9jAjm$d)mUbq1tcaSryvP)26Uwlxum0eS&K1l2{E;XWH;AJC8CSCbLX{ z>AL)=Kb0X5P?~nk3v4gSElFeZ(R^2@GYiU{m%%bn?z~L)9I8#pW_wXBU&xTp1teyw zUX*z{m#qT!9`9Mt3i!by7DQK;u{duW!l+?6OF`EYv4!_Kv@XlewYPJb< zD59D*Y?$KtGdPJASOa|B;99xd_qVV`!0p7VM@e(}qU|h%KdfL^Jr7zlAYpJ;MaBC$ z<4CQw(1kdVT6VJ{KM>EKIKX^(b1iEG4M-R`hk#=K<~ioi^D?9vRCk)q2fD_+0K#Sy zy!_vuX9oUG6KeyLAYt%IFd%j{F8_0(Si#V1EDdg;?k+YII4#}1FU0<|>lUj*cAnOP zf9z#9f#e@+4g5G~CO&nul0k1jVD|>0Uh55#4-HYIPP7q7I6MotV5(6%gKlHm5iGU) zd!9InBHjlhUPNOer7T3OwQYNe=$r6~k_B$tR*Q547>3*%etNw0I`CDiyXUVwF9p(q znbIQ|FC4ys6JL-ay^Yje+c83HppDtmi-^N)yOc>wtkQ0zQ8jV-QmGO+>PUz;BKuP4 zUZTP>=@N3kX%U~_Djh`Ae63Z=pz<2&XFwn%Y%F5| zysKU4cg@mUNT+DMCd9t<$rn;Q>Oh;@qwKyHlza~!J2i)dkK_(?gLBQ{;HR=bvH<_jf(r*yIKerKkC;hJ@97%?HE}Tri}OQ7!eMkeB?fzi5GsZd!A~B zDHZ5RKp&1#Eb#IOaS)Y9D(iqL-92`_IaN7<;;A7?c@G`C=Q&fn3TqER%%l*EiY(Q266FhYoy}Ol$U`5 zx`HR+av7N4w8Xn_E57as{?Vmu1e!pLK)CD#PJ-h{)$KsX3uG2GD(VAxr$1*@@sCGa zgH=CtdZOW@RU5F*?)MWR4j@yc8UVc2(QJ#l9(g+Xv{zj~3!hfwLp^VDu8BvdtI#R0 ziCgEYJu5&m7vdnE|B;%E8Q2{IGXtpLjM|7SnFzm({@I|$Avc^RZfaClAd|i(zWFyb z2`0B)P?29QyVkpmuC=K3FnP{Jbpf37!pmwZOwMdmcfjPzcC`g2kG!fPKhtnmds(N7 ze7Efu&$_OzhjV_dODzFz3^)1R+v+vAU{QBfpzE$o~gn z1o5Uc{ZRMU#r7BU9{`K-Lq8IJ(+!?imPBQJfvL|$CsEY3<2+|Rjy#3_zD*xH4L8W* u>0v%QDer~qeZGc&b4VYNMBM>AN&ve#d;71|((gS`t20v}^=ik!%=>0YYIE#el!`QVe1XkTnY{*SYNzy6?gW%-&tC^n9q|R{ zQKDlRw0WI*9$#?~2-fbDs-?N8G-&kznrr=<0+iZfn}Jf#y#eRiQkI5NTQ-)Ux!!#f z4*2nwU!v4$+h(J=PW{EpC^c>eG#EL1IALcxN}aLm5t{2i`7D%rtuhj&*6&@3QopQ< zN2!0Qo`X`){^o0xnp^uSO5I%Nk4obXRiM(>juxP~Za@AOO07Q;gi6akfT_n%!qn2! z@XjeX^8l@|b}j`ilXMb)p*jFHyq7{aYi8M)Lw@~h%jSTIm+EarV@;W1COj>GU zbI~&Ao0$RS1_d)STB^@N*dA0HGJ=Jn+RjimfNCp7v1qi;#ba0p%IzD+7GtkDHd3Bu zl_)pa!Ya^wH%(%8lzYa?wxil_Vp$d1&(o%`M3ifNj(vh^>k?QEP-oisJiCB0A0@JM zfa$#as6Uw@4^X;x%u8$^$}LS{^U-|Qq%teYotMVaQ0}~R_5!L+%4GXcEnmox&jloA zs$P_NCWoyA_8#xqzzX@HVirJGm$Dd7973pJ8B0PPNW}0nRP0P3gpRCYPkH9BaShuH zIuujQS~g5^{~4Ub3akabZg8$#&ih;0BH(u7)uW`je9;aT#2;0#YwicF8;~$Kr=sEm zoN=VqdgwyzPc3^`u@8vnPaR}lyt$S&f(9fE978}cfBQW1<@ssS45~ZB<^x^hS^#0Q z8D9QxFEAtjRTFCilOSR6Y9JtXHZK2Dkyydt>nsIspzba<6gVwiy)VSRwEH%zLUx|s zf`8~`w}9lIXpQ^?XJ$Tii;_m~K4kX?p&+8HRd z`?{Yvi6TA#BVI&f!levEtha4@spy-~iINp=+g7V|6BveE8-9AM^d|6CtE=a)z9{+A zf|=4|7%v>YffHYlCcTT)UEeW6Y@|(@(#wd$Y@3u$OR}XsNTcfF@;s>$IO<4 z0lc$a=(o+%J4mPKy(Yxo^vM@eEb2g8+N63QXV)HYyedugLldv~my`rwX+j)GD<4WZ z77)+V$IDkhExjKu&lwDeOIFD9$^KJ$C~~an;+QG&u@NAd-^rAH`1<*BCul&z;J67B z=TcOWJP62}MBXcq=~b^+VYxgOfO1_t>@7Jp6i8R!ny(y?efdBQRBZiV5C#p%p{CQ1 zPBwT`{b~6=Ja+01aUaPY=mzJy!=X=QUt|IPp9L2V-h5fMWTu=JIp&AxdWdKSlci5K zdVAz>Q8r{+K?f2s%+o-zvz(z+7jH;=+5-n8RTLWYUNmgKp~>Tr{^zx|&M+?AgSfmY?sG#gdL!yR&xJ!Mb+j59hl7ETrPojfS44;d zDY4IR4;>0zS=0>}j3+KCcF$@dTzshCp!C3>1@vQNZHO}7vtvX!1oM&m4Q5{Sx#2~s z8KzXACjospMzO-nBg6qz94q5&XSN*#tC!9)WP#1)KyYj;T9IUTL?%B4%K-56twV!n0~4vScFsGWth@8iU+$y11!PU5-rpy7<;# z)dZN_c2Pxsx$Io;GP>TP*2CmEm(&Gt&I_-o$uK#+P2CBTE8Eo;m^|{Diu_E&Rqdsn zD)Qa7OFZj_x&hAljV`qmxG`MhU*A!$!v%}Dry{?7aFGu`Q11g|61_bhPWRv=bw6;` z@!7JroVp*Y$Y4rByc)PFoMp<|-J>eIFQ^JFG-)4$X@6&OI#9cWMna=TX)>^2dK%;y ztyLl9_)IOA-?V7gfUCo)rL0NXzk!Kd{C&{MkLGG&{O)sFII(9n@PDc<7ZNTzf&9N0 zMgVV0(T2LdF1Ed-eE=-R_x(utO*gt4k*= diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 577def0e72e325746e3419ec238678717304374e..729b9500bbb8476e266e1504098fef9b35e748cb 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>R#f$7u)rVXi#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yLXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3{@-Ag delta 1139 zcmeBrz}oeIb%QsfVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgtb#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3qc>tR diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 3915e3b739af8065d08dd9faa885c0b26842fbca..080f9e83b0e605ecf397bc23a672e260481325fa 100644 GIT binary patch delta 117 zcmdm@yhV9~KciuOX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN Yp{YT#iFu;g<_5-YW-_$duvYK@0BGAH{Qv*} delta 117 zcmdm@yhV9~KciuGWkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Yg@L(IN}`GJ<_5-YW-_$duvYK@0C3zRD*ylh diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 0a92bd7e88e34f3f517cd6a0b9e08495c11bdc33..da21c011763ea46971d0996497ce9296c089cdb6 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^AhWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>R%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?ErUr&-NvWx(X{M=$=H{se#^y%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?zX8INuX%>b?2C0cDDJDjVX2}ML#>Rmhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi7Gs1WG@ delta 1690 zcmaDdi}lGY)(z2&hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^ymhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5HEE8=2 diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index d1851c563d2a0278a18e7b5350a2b79e8eef86b0..f4494749c56758cd31875a2f0f60692bb889c9bd 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>Rdx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$ErUr&-NvWx(X{M=$=H{se#^ydx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$+$Fe{0Q@{HP~4`~F_Ll@A}%r3*xnZU7fOf+-sa;)r5 z3_Cguk`&QH7qHskHY(D3=|V+BM3jh9L6p@)^$=z4Glo)cv!*}bx7PZ;{p}0;Mac3Z zWVx)8MYRphP5!N3S5{u$raWi1;#EDK+-%iVrKmYMYNcmkzT(MtDXPo4K&i@IsJgN| zwN>?5^|cM#s=O@d&SZDU182l4k}T&bF<%IV>h1Tbjh!{sVK_e(cgcjItk0gp-z7AF z!Nd5lwTxo!yw5&_J3DyIq~oBo4DR6VDRX0?;4Mrkwei-e2e7Vd{QC4JtZt3JnOTn2 ztnp8?mZPpiv%5jpvuoyoBpY#CD;^eHE=()f(?ue;b%B9&}p(OkNKfUs*Yf zqQl-B$VjSzqw=7#^8LOPWGvM{kZ<(&Assf*pWAjL^%`hFV+eH(HR*sWR|87`j2U6Q zyP!+RK)bZNXq}7q?LY$u4&$#)LfNjn*f_oEygGCMacwxsh5M}A!sXY0j z(}Fp(o!u5T)b$mk`Ofa?6EKwdADQ`*dwy(rePO)x!TaRM-Fe;M9mKV6u!M`(vEw3l zWOai@-1(syb1mW-A5S5NqT!nR1?sSYPWiSJ*ahKQpMT$q)_VQNFThprjUkQtYn^6_ zHcH|Fb0HNDE5Oxm%KGc!LKSHXOb{p-?N3p>pebV632>(78j+8SzIV5 z(AdacjAls^Jr!iLEy^tGqToem4ar6xBco+Vfr;$1UADEByh3i1KT2uBT2GEg5hYER z0wYl>wv%39hsbwbcx}=|PYW?w@wQrYcLOo&Z3ASo*nWh>At%$HEF)54N{}=If%Gf$ zX|2-%+uVC#)37#((qYcEL+DkJ1V z%>-vGyvi1FXn;JOgUy&vx7q3Vu0+}f?A4Jr7y>5~sYzr_q{V5G#}IN{pMVWGA_|+$Fe{0Qa!#XJ4`~F_Ll@A}%r3)GM{uT68#Ht5a;)r5 z3_CgukrdHGC0K268y0E3bfF?5B1%N5Aj;~YdWf?28AGYJS<@fzTWfva{`Q6aB4l|H zvRqNg65r0oCU29=pQU6ktaLe5MXktjDplnkPfk^iN6F3gI9<8rRm!48&fEo+YPKt@ zvZlhH<*%vVUg2RucP6_-9w-s3NV1ft#C#zbs-M13ZS1_M4#WAGxONkUvOaqXf0s}X z1`p%I))I=j^FI3!?(E>cNhd&O8Qj57r_7Cof;Tf~v5mJ(J&1K(W@af? zv&KKoT8X+2&F%tS&##*Yl6<^#Gm56VPNAi$ISDb)RA@YXaS1jN)!dfvvqP@c%$9HB zsfDRnydh2-}4k_m;I_RcpL$<85HJc+hPDFnK*_e0BLS ziVk~jAS0;;j>&_{$`5!`kg-$)LB6@R59zRh{@lI?snrt;*= ziUo6KySglFsPijE^IcujCtxV6ePrg#?$u(;>kZ?@58fw7?#}B5?;x&qgGF4tjvW`d zBdZ%M;L3+4%(Z}Ld_033iiT_U7pTJqI_2APU>AgIeg1tLT5I=@Ux2IL8$%lO*E-D< zt(3$A=0YkQaRO@_bgyS^nd8K(Z1UC|1-~YboJ+!ZeeYHhulIO~NgOXET3nPWW^t*M zKw~3&F`6Yw^pue;wkWe~h=La#KC%FLjEt5c1tzl3cG=b%@(Q_4{wSphtDl^RB1)Pr z1xBKj?I69t4w3J=@Y=;Zzm^#17lPnNu+m>H;%|VI;sE+xxsq%Tm5n+`ku?lkZ)&k z^B%bdOvc|*4l(C3i3Mi;UzvAL$i@F4v+5Z^{$0k>2-%+uVC#)37#((q>o189l@W5G zW`Z*oUS*3oJV2h#!Dh^>+w63FXCiF{_UcF*41rUL)FiSd(!#XJV+c8}PrwEo6?qCR zngN*huBGMik#oA_8pM4!O`R4wY@D-V>t31+R2ya!TWH4Q$bF5_o7mEYnPNbvivja7 SfrlYlfW3rDh5Q}PqrU+K3OhCc diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 480d362edfb9e38c22d1a1b87a2a5b9847e86875..5b1907c70fcd85bb4893c79e1821262e78e9a896 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tVSZ^1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGoT?rpdL delta 1199 zcmey>$@Hs}X+u1tVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgtKj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGl=LvMrt diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 6e241cc7025434d8abcfb521337931f728e84873..4789cf7c76e5473409e236b7dec9ce73a0eae921 100644 GIT binary patch delta 122 zcmX?Va@1slKciuOX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN fp{YT#iFu;g<_5;oJVqpI)1Ry$Aia48-&$?}O>HGH delta 122 zcmX?Va@1slKciuGWkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK fg@L(IN}`GJ<_5;oJVqpI)1Ry$Aia48-&$?}R#YWl diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index a821461eab95bc5c9fc8cd8a71b0cf5b4bfd0175..638abaab8e1bd1bcda3db224b577902e7f614c0a 100644 GIT binary patch delta 1928 zcmbRJif#5Qwhe)dw)v%16$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~!i*SSSDh delta 1928 zcmbRJif#5Qwhe)dw%L^xRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~z;|TG{{r diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index bbad241fd53b268b9a109cdbc4a0db695bd5ad4b..923289a868c103c9c4e0154db9429a4200e4522f 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVSZ^j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0P7V#zyJUM delta 1023 zcmZo!!_=~dX@fVTVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgzd#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0OVvqM*si- diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index d6e473d872767419ca6ef9038630814fcad0babc..8c7817a8f2d2e15390f8a89fb3016108908b92f9 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>R0u kYW*hWCr*~u)%*mT?RlQ>d0IU6=jQ{`u delta 527 zcmX@{m+{13#tq(#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y0u kYW*hWCr*~u)%*mT?RlQ>d0C_T@TmS$7 diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 334c7e5931faf0dfcf9399e454df364e4e5afafc..286ab22264b21c4ba6c8a5d2460fb4a6282fef94 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>Rg=ATrGErUr&-NvWx(X{M=$=H{se#^yg=ATrGuax diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index d93417627086e92c4b990fc369f8f08ce4bdfe3a..de709d73155fb3b251d23fa13232771b6b2c5f6a 100644 GIT binary patch delta 1705 zcmdlyhh_5|mJP*>w)v%16$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RW4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5deIp4SoOs delta 1705 zcmdlyhh_5|mJP*>w%L^xRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yW4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dg~s5CQ-I diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index a05d03d7c79e8b03ccb50e2d989f13a49459c08c..e8ebd89add507cd26b5b9705b5b1529080fc986d 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyND=ijSCaud9Ni()eMkWrhqp*Qc#x_ldk~vYb zB?}pR#hbn0%r+LX7dCfU&M+8_lVvV}pbkxNDqv##L4?FPOCrQ?%iJIE@CQ84=Q-!z zbG|q2*rIW4(Rj6(_Vwa{v9ZF zVOIxA&1|p(RC%cJE=s%~a0A51!F<=^MX5LUtwX6@Z|+B_=YsVp_0n4dD0QK&6Qx=Y zeF{*erF{@3`a5<3MD;o}$hyNNTIekpkfoh3q14=C_f~<_OFcapH6W)%2ijrn$pw_! z+gpiJkAHjvrOuyeK&cCT7f|ZPewgaH*pE`XFBhV$z958Q?XJzQ;%(nW%>MX6K0TZTVs&!knS;D zuDC;5y2V&!BIY4Zdzg_g7cTL?iP$~K<7uLdnN3g}xA@%066p0BmVtdk9~#8ev$wGu>K0pq zES-{C*&sF{4-K{-WI5PRLN1ZdlLQ@rOBpRT)5XiI1?&H^{*+|> z=ycBg&2(b!2No-0=9ro8-C?~(tP~NpBGpQtumS_+7q5|mv&@9fMmR;-MC=HuS37f# z8L-9g3fGe^T4$M6{P=+VgV&T!RUuZsf)u*z*?jFv`q7ik9~Zapuy~>NLr;G&9tUng zYL4blf_GJ@+9XOd^Ru9Va;4Tp&n5CwaQQ~`(HT654(p!%deQ9QT3X8E1!xhEOs=ix z$78T-rG!mBE9C|nE#U{iy%jbg)g&z%4q>3OSNKt!Z=i}Q-i_+V55!WShDU*;p@j7z zKR=QR)}M1QT|Cpr6DaE)K7|&cno#HayvTrspbcI82zr2>@0sa^Q{0a(gOonr0BXfy z$xWgonwu$hfa}0vBGu&rs8xziB+<|izYlKah(7O2ehuV@UvU;uKgr{$^)_z;&p+Zq zyYKQgAcpYG@N#OLq&v_mvRJw(}{+)jUM0jLHs#PPHMd=+- zKaM3lk!Bz8E9j?1HKCLxz6O1SW?M9=;-*OhzB5SGe*|V1iy4}f})gW*ZCH3!A$vXBdpe$ugHfP=_Ws6)-XWAVT7tB@yDcW$q7n_yeBj^PF?< zIp3Rhe91VzWV}|$?EBmN0dK(3y1|~a(c`eW?e5xKo4vlKt}eGex6YoIS7&qN)zsVb z^KE(A9(RsI@v})lHDfK1BV5NZsR(Y=m=u?`1(G+&VqKvHk~T?O;&!A{z=ErPgPZqtw^d?*gcD#ySkhlo_i}Zps`%r5`-ogGxtj0aW_4;{qyu zDz6TeKC`(4J=3Bs0-#EZGXju>&-CUC#i;b`wpO&xp_g`|)N@7c09BS2&!WU{OB?_( z+}-m#51`Z=Wze@GG^eL_A-5jsqC{pLZGdfwlFQZK(Xh*B5ZyHKk2 z@TUM(S~`YMqNj5&Kvb`TSJodX(n4=RpDgKm8Kv5f-(Le#FZcFhRG*v{ooI)(rxsCa zUtc9kJ@N5Pl)7-%i&7W+FQU|~12DDt(f~^Bxv~kZ)qCwPRQj)ML8V55@33pQ3Za%( zG|PgKlM&F+mCNeUclDT5sUFqJrm^@~NbXc#pN^K=*#>M|tjHIBn>2%T+d6}E1$9s0 za>W(Y(rv~n<1r6$rkEM&Od|UgJ3D9CK&S><(qynN)~+Uob1UmxRSeZ2nGO`QI2{<{ z_-(#MNq3mZ@CwVu_JvdYZzA?h@mQKHV`dW+$0a^@vpCvc%hIrK=p%!u2KF{~LtSEr zpQTblfDK_2^2lKKA(n;xB;*unAF>$Ice4vv0w<{kQ3=oiIF+$NGhMpETCo1F=ub;F zfKKQ9-%Kawe_+ufYMz^=hZj zGXu8xouPVCMPQCu#g7l!KX^^4R25|9t4N`{k;&JurXRhT{7G@=E{hdvKlJnm<1yeC zq~=KeGS~V@13T+*=_NQcY4K;SdHYdzBx<`39<};ytK-qAi+ywLAhG4JD)x zdic>~u>Pz=sp7eQ9!DAP@M*LN)r7j<=LH5V1a0Z&N6`c9de2NRp5`8O86@>{FQ^qq zBsYo9NN%R+L9PRbiBy-1pjIh3nLxwC`~kR`!}^>r`E`&Vdc|2p!xWF9z#ZNMo`2Yd z_TA&{Kn&rY<>k~k#lHf2K&p5GfU3XRth`{wp9?%jsB{Z`{X72zi165oRI5fXi_$l! zejJN#4-&9rEe#VwNtd}olV{|L-3meMpyE2HR6)MSBeB-Q0u OBDBN`Nc}(fd;NbbAHcT& diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 0887700a3ef6350c9b2d421f7f5f0683b34409d6..209d12ae4e642b7c20f0548358c50107fedf9d4a 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2w)v%16$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VErUr&-NvWx(X{M=$=H{se#^yRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VBZ~k4 diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index fd09b1f51a4c57f9ee3bf805c545c79c343789f1..64a7cc57e8490b34f67a35ed15393f9203ac8c09 100644 GIT binary patch delta 117 zcmaE(_C{@kH=|*GX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN Yp{YT#iFu;g<{HMuY-DH);E>@40HHx6KmY&$ delta 117 zcmaE(_C{@kH=|*8Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK Yg@L(IN}`GJ<{HMuY-DH);E>@40I5PFZU6uP diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index e6d35fd22bf503a66a0beecf8dc604933ac82e2c..bbc05c07d2350d586cc0247573fa3c2a78396630 100644 GIT binary patch delta 4131 zcmbuC-%Ha`7{+3(JAR2G#^Y9yxl-KN`&30`P9&@EU*7lll>Wto|@g{(n}c_CH^ zCpZ?OBap7L!2!>e)G8scz>3HV8FaJIE*f-UkwVA0y7xVQ!1J8X`=0Z@4`*v3e`_H> z;RZ{8BszHGdeC0ybcUQ3s}l4F0`*qEy<73yZ2qo*qfrT1?TX)SX;8ZB9ez8D!k}vR zGLmd_vCe|^YMhjMAH#mKXbq#}9ujLduqE50Jha@%{y2yBO2~_wzVE@wS**E4y?ZH3 zw*A!XUM4Qe$DF=WT&+I#;r#qz+^Iwt?m{U&Br&NYO4Pu#ktysI3k#-1gNTU`9s5UM zWR6%EdCj>ZjI86%8CeSZuv?a*^6pVtiu5RzrKlL2lBKvb9+IU9J_yKC^iFiiQuLE{ z+)!@6&O+*SftmEtH@FdFiOEy>I4McR3rQO_ljY9_@_Z(Nb784?4HAHjJ z>np(l6D3(h>w4f8yZX8rvA?rxMR>5rcjvT71k>t18jHb27WqzNO+-U55LV7pyY0Pwj8u1v#DZBKbCRr|L>t@$A7otW^c!XWj0$5$uSGROfE%cP9I zZ-Nb6j))diLMdsbRrGcXyhTD}J=WrvdE;qV!GefNbhOR~YChc#dR(Grmzs_Xmut9i zbkiaW6w{#r(2~_pz2$xY@SY}^{o*uam c8d94!)0J^}fqy1?E{qoSC<7N4f9<)vzqU0U2mk;8 delta 4131 zcmbuC-%Ha`7{+pZ7iIeIL&DLc#Vz zLBb1a@6EwjPs~1GQ|lYL>`FilTy`jGI2Z~!!j6#YbcPhWGZ2DW5>n1_~|*dN!>UI}?=)Av0%Ig5LYn%t!< z+4{36cbT{-KXduZaJBl`hx5-5<4z^IND!s;k;J5qC@}-mMyIe>EG(E33n3;#bnG92 zi8BRdnx@nZm^I(`UW>*EHQbi04F7Dv&E#9TFCNe19>)+z`3xs*%~AO8+($*MV62K zdfI2i0TU%zLT%k}gY~@jAoh1=tq2d+`0kt*iC|vcN8@q0$f93rkc*L-S4VI$;v>`R zMdU>4D-vF)*@JKMg($g~o~-~aNpIz|r60?<_W$?Lu;ag5aI?4T!O~mJhve$e(3d9Y zM0zBwU?tk<0siqI%;6q_mkN_wUQr1a+%C)-Y?xsLw+XWb#$$j?rmVr51uh^7xadI` zSw5erhEK?IcYCir3CJ|`aS?@mQa|!W&P+3Km3EqN6rHX!vv+=y8dfS!y~iT(055 z(MwBID5XRFpd*{F2KZbzbYOS%juRJ7y||FfqRb3KJ{M6*vD-0&AzVgrVVQX$dV1s@ d6p`ALg|3Xl3;Z+Db78coM;W-e_-oJS{RNAlBFF#$ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index e708f15e740068bd261aa35f15e0f0d2bbbbc3b1..6424e9797e71ccab9f8e8a341577a169a4554f0d 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVSZ^n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y(4^3b6nH delta 1709 zcmX@x#dWreYeO`nVRmIjRaTX8vA&^+S&FeiqG4jPsexfyQfjJcnrW(`xp}IAv3XLO zp@oHkxlu}@iSgtf#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y-B?4K)A& diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index f7232c91e33b1effdc7f0f051eb8b21c489dc2a9..e136dd8f756b4e5219e9db64977c146b083fc79b 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVSZ^WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgZSzZWbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgR@fabN%d diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 56fb8c8bb7d36d2e54620444bd58f935b6035c9d..d5a54066dd034041c6b66a3a25c4687f47795591 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVSZ^X;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN up{YT#iFu-#eoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6I)Oe*gH delta 139 zcmdm@wnc42A){S(Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK ug@L(IN}`FeeoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6I^x+@(3 diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index ec4647bc664d3995cb7182347bdb354abc15e1fd..ff3c9f8d1e0239cc3d5fedb06abf9629ebdc0650 100644 GIT binary patch delta 760 zcmaF+p6Ts-rVZ|lhWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vzH{fs delta 760 zcmaF+p6Ts-rVZ|lhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vRu1Ue diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index e4edfa1d715dd59aeb58f37dc918d0d8408b683b..bbab8149e13a4d3f8d125dc309ddd6ac755c8d93 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RErUr&-NvWx(X{M=$=H{se#^yyg_K&uExmT2)bymujYOVUcEGXk?I@n37^*lxUW0kZ5e2n3Q5}X^>)MW{_xR XXljsbVxDNWc>-fEIokY~_i+ONOPnJZ delta 117 zcmeB?>yg_K&uExkSy7c$Wn8RpXkwOPY>;S}m~3ibn3j~9YMN%6YG`hrYG7=hlxApQ XVPI~Ql4xSQc>-fEIokY~_i+ONQ=KD5 diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 7e01f78be6461d30a64422960cceb7ea4b96deb3..7eedd2253a5e77418c61ea6cfb17cb42b5fcd629 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RHk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0AlzFT>t<8 delta 1704 zcmdlyiF5NL&JFI2hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yHk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0MN1v;Q#;t diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 1c6fd7eb2a07389a993a66feb3b889fba458c286..42fc330992ab809505b34967f78f7898372e9437 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^)&_&vk=$hD~gFbGhCMmVVEQqxXMa*=8hC$qmg`-Stuc0b(Mw1 z$gGrlaY}Ylva_`?jaVul3oGTyUog)f@Oz&3yrCS1p0YfOBP8ucGsdkw%Qu_UlUyMvd*)GID(G)MMNn5}C;TPBwvE zmHHphTg}Fc!3mB6tkMiPSpgqwXE)flpmHlEy#$<~bDD|9R=j|#L8jZV5N?HNj?^uG zSYz>`)SYR$5YOFb3>}^*mL>)mCFBn2=%iwOhOI{$?NG?*EdwmBhQSNx0}2zQDDc MmM!NOgThG1FAvcD1poj5 delta 2429 zcmbW&%_~Gv7zXgp^*xA~#l$uFielp4x#lAi!Z1lJaFvy2%$M0y2`?0 zWL8SOI3+tN+1Xl{Ml6+&g_UyUFPP^K_&v{i-qY!99#}RHEN4SZo?Tju&BT=XR=Ld` zR-~XDoN`HWB&2Dsh)a__9!*j_p@{7DN*-r8*rw>Ki~yDPjp?b}GW|~2!!$i*EejYm zi`OB!MkV>*1rXh!tFm2Wy=mVD{aA0YqsA#}d&gSiBvzh)t%;}|l;o(nM5$5#j2^Y6 z@g8kGZCXKFQ;uV>HQ|*&NpDUKrFrf=l-_vX07_|}KMQ(paeC~!1{(FWFHVEKgE>&^ z94P})3rGWFha(VGX*!uG#;87>tfTXb(N>Jp_UlU_M)mF2Dzbj=G-KQt7MaNXb~cG! zmHHphSI;JF-~>kjR%-<8tdx&;up8`KP`R0sT>(zeHOoYOD_P3b5DVvHA>0fJS~Iu& zVT~orGk1pRrg+glTL@*2&F87=j`jv4#e^KAzr);p&o}!3cmJ2f%_QE9O~OUL@CB~j NFl{xz7!pQ1e*s6f0IUE2 diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 64c5b364e1b60e190427c8b0f4135d88c6d5b7c8..e16f648a9ccbc90c79b42002edd6f0c2ed249ed8 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+m|t2|QIMBvrf*@9W?^V#keZm1Vq%nNmTZt{Y@C>sVs2@WVq|8J zXl7_?kZfX}Xg0Zy@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WQL-_&dX delta 1486 zcmZo@W@~6>+u+M+m|a;>l~rY2tZ!&ymSSv>XqcF6YG9a_l$vUqW}0efZk}pjY@U>6 zXklSsZj_Q}Vm!Hy@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WR07S@yi diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 82065bf6a1ebe1451246bdb1c796cf32e7ec0d42..8ad678de08feff37441f620f69ccc022bc3d3179 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RP|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DC2MD_ delta 2066 zcmZ4ggKhl}whiu#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yP|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D;ZACd diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 6575994705135143cf9bac12199d1795d792104c..efb4a00ddce08478a3a2195cf48ee2614d198592 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#69X;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN cp{YT#iFu;g<`%|wGPF&ez$m&oklB+P0Ni>b+W-In delta 121 zcmbOwJ4<#$Fr#61Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK cg@L(IN}`GJ<`%|wGPF&ez$m&oklB+P0Od0z2><{9 diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 547e21cd46ce02a7d279693c106822bf831a22e0..66523adb375d22b976a04efeb7658862e84ea60c 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tURMOW0X&6pas=<>q0swN3F!sMklNu6tM?0 z&^ppCCZ>WekVTiBE(k0NMG}&jmu?2rTMz5*vQ0AR6$*(?E30=XQZ;WyKM!+6|UG%0F#Xr5_hjVP_*X82LKhuZP?Lq=QZG% z%JbyC185h8?;k^5Pd_>XxC+nX3~ZW)#2mc?98)E#esT-V^YX-2)V1?j7`qmgQiP<)HQ-{AY}9SQ1WC4MfM)Ah80c-1Z{6=U z>lI7Bkt1YpX05=PC*cM@5n&pw>|}0W;HDHvDzrL)*q>*qJLqaJ8v|B2Pr_WnPI}+Z z>N5fRKi`Y>^zj1g(-)wSPxeVRP-$I(WEOp3_BHgRFwea8KaDT>oe=I3i7mfW5cL}IG!UI|I~^ceS#b<2ww7ygao7b?tZ-MqLMAl%lTQ z=`qwbG8;!-Epwfy>zY^PsOyh;cx;!)v$5S=Cl=mJI-zAzC$z6EZRSyWctD9G3t4iF zw9>1Dv&@@vrH<9`{x&6@vfGtYz-IkV!O^WGHkgk=Ufx<>m8)d)n3b)fXjJjom!fjS z&a8BHTYwn-;#$&K!I=DuYVYvts&eWeMPHWNIlnl5(3e;BYiPT*_8cUJiSU z2cglGT;|chAWn>HT;IjgXtb26*qy45ND-1E*MN&fvQc*e6C~N5UYf6GVW783zIDG_ z%vUV=M(!eOfCYgwPr{9Ss*7o~wu3o=ftykwsSvaQu|LmJchl8=HUX?~o`kuC?eu<- zHDm(zf4&!+>Ei`9pf5oopRChtsM5Rw$t(uI>}%zX8INuX%>b?2C0cDDJDjVX2}ML#>Rw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7ErUr&-NvWx(X{M=$=H{se#^yw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7zX8INuX%>b?2C0cDDJDjVX2}ML#>RErUr&-NvWx(X{M=$=H{se#^yjdq#FcIHO^HX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN fp{YT#iFu;g<_^YMMkA87=}(@(BDUF=xt<#UFa;!| delta 122 zcmX>jdq#FcIHO^9Wkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK fg@L(IN}`GJ<_^YMMkA87=}(@(BDUF=xt<#UIP4_R diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 3da0423784c09ed903ce15552bc81f8d26955c11..62c3132baa3ec9a0301efe91e2b49b29bf8079e5 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>R9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A&Vkxq delta 707 zcmX>!f%(t`<_+$QhS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^y9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-ALUG%2 diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 17cb88bcb9934d7181a5614cafb79de7d3100b34..3915c0627c9fe9bc2e30785f041a95623e3adf16 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>RikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20lNr04*&oF delta 1026 zcmbO`n`Q27mJPm)hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20gtXce*gdg diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 7e487f3b736715a9306368e4b64ca8bd67562d01..0e285abd59293623532209c982d12c52543d913a 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hWVvc6$N>zX8INuX%>b?2C0cDDJDjVX2}ML#>Rn?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dauHmoWeU delta 483 zcmX?gh4IuC#tq(#hS`-BRasTW#rlROW+}!7iH3>ErUr&-NvWx(X{M=$=H{se#^yn?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dgp$m+1fi diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 172d9bb105c8d09c22960589b3a7d67f75a4bea7..64dce7d14c98c60195135a051c3e1e011f2e9675 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BJX;no*UaFbCg+-c$p^-sqVoHjMQKDJ0L87s7Vp58^r9q03nL(nN fp{YT#iFu;g<{6CZ8I4HRrayTfi`?ev%*VL_T)idZ delta 122 zcmca7cTa9ZI-_BBWkpq1m2t7Yp@~_Fu|c9?VzQ}$VOmmZs%e^Os-d}gs)4b2QktQK fg@L(IN}`GJ<{6CZ8I4HRrayTfi`?ev%*VL_Wuzt% diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 4d4ce6605e4262d48dcfef5965128ec3e360c19a..8619515731e972de13e0b112e27418fc524c1df6 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVSZ^zX8INuX%>b?2C0cDDJDjVX2}ML#>R5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVcErUr&-NvWx(X{M=$=H{se#^y5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVcdCsdn#B}wjS zRM1dx)+$fv(R)B-@0tk(W_yaTLsdsq&03YJ*NTdCRER|Xa;FeTlspy*kKjoIEWP~ZRw&i*El+Pj}rm7DF` zYhZFh%D{xgh#?6n1DGx4EeumG6qM+KRifPNAf`=_Kkz%+TCL5^R`FGn64H?s(wW%4 zQG$wK`Gd|CQQZJ0rl*#f)m6f*4y(W{=%)kGk`XfIZcy|bml^eXJ3q>Ss=0vrOPe63 zR#$H(zDEGlE~FweG$<6D+S}SB%nk=xSIdQ?T2_#?ceIt6U9JKvinpX+N>cJjW_;gz z%$Kk*rj5(VtmtDxlGbJtFNQFxFcafS4rPim6sTb7bG3lWi5ItwIlmQ_YfgWV+f2wCDCI$=KKwaE1n7JDgDsTd|rjwINb2*UE>Sk5- zpd`AEVop*m=3GTP>ZS@4SHTOkD9z9^oyvtGbPdSUxh>3@un4(d`mprWA^j4VtX}@i z*lr4-ii}kXa>2n-hCpFABfXu1AO~X#cZLZngcc1&e;t@sjHvb83bGnc5%w2*wk%q zK6SE}c+Vmxi1m{Vq-`H3L*ZSAjbCAQAh;d#ED&AgLXwY|Z~2F=*}!t|=Qd_ck{O3| zTm>6*r9u!%K-46`3WJ$Aq!X8G2)!EXBmoIK64x_bdNvc3|B?8EgPcs|AgjmGox^>Y zry+J`Yk89(5X6`_1tNC^$w;h%n6$u3K$SY*#uQg{d<)I*goXHhP`f_6cSb-@T?gHi}-uZy9Ex}w+&(D~9g}K#3 zIPN*-uFU$1uU!}aUk2*FOKssr*7#TP#Zr|7b7wH;C-BAGLCmewaojeJv#Rj5d6;Y7 zT8p_um|HPRhq)rmO&<|}xsRCZ(bb5#0>ouZlLZXm*oF9F{W~Un@e}51_bZ3FrI<6V z55e3z%yl}(agQ(uPgcO!Zewn#EE;ofFsHx4akDXZ>96|u+76b>kooExU>4$wozgju z!CZSyBYZ6vb3^(!#@t2BjWIXJ++NIWmbSp$Da^$NbKH8&HR;?6U;7nvTfFlS92g1N((J3b?WW1nHRkM9V4F&}edS8?1?%#Cb65?{N8xz7VR z?il8F#E!z({={6;v(cFQ1#`mWF_2MY0UjFmE$gB zZrn+Z+km+@S2*q(=2pj=FR}S^A9Lr;?=UwXbBk}Tyux1Fj=9O5y|1#|X3WJ-7<@H@ zWnW|V_3g3uSndGkz-Ny83v=yn`rc=+{f@b1U+-h?EatL)ZuXG9wh41nhCIgHBFs(i zwB!+c?KjNXKX!V|a&s^T<+?xjWgzwvX7Ae(i@3#@YZx;QbNew@!&v7Dd+iS9svo(B zxw)9ze82lM_S#L%^$Uo{++)lw_`f;N*=xHnS8sm72bSB3xlW%i{Jqc41P^U0*u$g_ ztt2?X4Bnw<{ut_H)@%(_>q%-}`+nUZrZCb174u?@92B)zdWmy$`rlPv;SAH^9{m4D>AgSbc%BN zmonqWbWyOA3tQYB$=;CJGuF%;UC)AaV|s5X#~fL&Mzk8FO*F`uA16mM7sn=f=k#ai zAhuCBD+0*ZnU&1daX%~A$%rkk#;7yGfn%Xt&h*NOVs{i;#yQ#rBHxtLGqW;MKw7_w zT1J%_2~>40-pspEF02At2h>9?BS6Ujn~Kp+Zou@L6ak{2+kFJN%)#uMj3%?TpfSdd zG=>|PAGeuV;h1$FEC$M>3P#L6J|GLJ779Y zj#jW!h#e_|*_WL<*)}m)S!}?#vKz8>>;_5?u#M%_CE)RBf- z7|q(Y3U1q z(~X&`U}tl-G!(~JYsvt? z*8IerncJ3m1_GGqx#dx3?Cj3L#>};{TTLIvy&y@j4gUy)e^N6WfPzUGy z)!h2bvDrpu_b?{{U?+VRpa+w%vJvC8U@T7m-~}z%PWU0f%D7P)v3PmiVpLuTk6j+1 zcFcB6c=l^x8+9S$7r zklDDo1~YK6S;np%JP6l^RY0|JQLQlM-s(yi0S#}c>>@5>kq<1{gdO5qAA!pEGMQO= zJf6L1)m}Siy$h9{Vg>=WOvA)4t1DQ~9Nf~1$Jy@B}<)OSrHBer+$D_-- z7Yw(s8WJi7$~Len2d;SJPoognYK)~h#$3zjoWmQ}~2 z2kQ?smfw@soPsT35aAf2+X69^fE6fgN&Jo6npL$WFkG2x4^;JcC;0gpa~*h zu$75g(~MbMSe-erAPOZjyHr9T*%N`&m^%=pOqp&%rR2%$@yN;OvO! z3S^Wy%;2JN1t|yR0>*H-H*=$i6`Wl`v8a=ntV83$m&wl+Ova%psP-LHdmvCf-m7N( zj%G1A$1<2%C$bpT5%l-CmtZW&O5Zz-Q5{C?(M-ng1p0Rj{X3q?%sQ!H<{upmHjhE- z7>%wxuTIRsTD8XI)|JC^ayP204%Lz&`eU)i(DPC}i*>I_@ zU{As0OG5?!{$?(STA>aAUGqu%mOaC@;pZ~{cN zRW@Nx-rfH1QLsp8;c5eO8@5aWeyyz<=8q>fX2ks@3b3s|36l!a9()kfwH?RkOY`WO z#xq49Di#cRdQ%FDc8^mt39m2E163(_|K_NW13LRYkrJq&=tBkvQV{p)4-tl&`-5OH zB^*+)3S1-*Jm)aMBC()1B^1n&2xbVdKrmb;_=Aupg#Z%rju%gE@DbeOga^x10*XT# zfTDtRPZg-p2u?_Fx8SZ`kW48(hVnKFRuQR+EP`!ifvRc~3?Vk%=@2B81?sv}(3V)R zo=fn72-vKgU~^eecZUe}astB16$EQN9fS#fkx;?{)rwLBoLyPaSq>Jw9j}95YYS!* zX_wa%&_+B5yCGW8k%+5lAZS6zltzLLobO?13&8;~7kwXM1(&#fVM#l|H73TmC%;w*(si zMSft`?xzy4uwly{aNb1W3Yz6y0u)7q=cPhBi2O;cf>$OB{}h7gxQc3cewy&Ek|U2T z5bhFiN)=KFh@a(trCg8<>pGqM0RJsfJyG3s(H1t44fh$2G zWf=e>;r3wBZ$z=2@}fUUEKjc~`b!1kg2Oa$R&!AoQsM7bqVZxbfTy+3^2a%cN z$fr)CZlttdchN?Y4Z+Exu@bIXL4Q#v0%l1OeI>4NflT_HAAv!}yCQDRADkM!5Wf8&NP8LliBIL~AO9OL6=SW>~u4o~R zQ%MBlP*DTrQ(-( zvk%z1UNoB)=I#d3CL+!9P4v>N-z?G*Y0hpH0a|Hf1tQd%oe98+LK(&YbVAiPlle5Peg$jM(8tiD)UU9U|_C4pIAJ&OOmEB7@-}y)Rll5*?ZsDRoR?_Y{W5E(LG)7xRk8__9hI|RPx?QrdH`j`y(Bx*^y@M{ZX z!-km)#o{y@Uig7Rr&tS$dW%eOTcCIk8MnprvLF@y6DklbHOe`NN zK1|53<;Ca@2;LKP4HK)$YGqs%@d;9)V>R(FWYwVkLEIUg7qa_@am~cHaRgxRv z*J0wXobjOFXz_WnpnEk%oI_N}ohjZ$R#Wkecp{PX^+NGWDJRI=<-7%oSBis)R> zWUEh#6@)x+Myw#suAUR0BU%ZVyVu zZwbQFzr>!2a{X)Z2+}O-y?B!sSNFM4a+@IB7E4|b@{Uxph16Z)B{@V&hxtg-h`euA z5*MjZ-e2O`U%u8!E|R*}^pd%xZl*=@6Xmk=M>yFb`I&gn5+bSN!%5x0ilmc;BhSZ4 zJ`=;-ZYSAIbI0O#q9h*dk4n@6M@)nMaBUZfK+Nsa_QgwHQHTx^;t67&J-sEKRGZsZ zGLG29HAo^QE~+&|5=|*}2avz}i5x5oNHlVyXOEP~i0JFaN_1t0m4X9-iBj0Aa7!_hh~7T9VJp9wSOOUg?)`|n>O2`dYjFYtRdSPI9l zlFTRWD7TK6AKeeGN8Hh7v!oZ1|44x(mjqn@J(3bJw?XVyBzZ|=O{7&DP#p4A4NHzn zel~y^JJIfc)Gf)6loKlf>v>0#N<=StAeldipM$YdGtKcHj<1r2!@OaiAEm*RYl>Ka5eyxq6$M;`cJ3$@c~MvoO=!(Q zW?yMVpjy?u9qf=O-9i&zEDS_2wT0|$$=~(#8 z99@g%N#jX$c`cSUrdaDiq;voAbYUvrtn zsau%9S3Q&{J5H)D>c>~@GQd+6iU#p@kEF=*NZsMX__|d`@O5vF!r;!w;!DKkm+X{~iHE zEs%GIngMbH&1{4l?;Ir0;|vA*rOBtz%8)Tw-k&BdunZ$c$cGadzKoKOqm@B1M((Cb zd@RGB@$v;khU6^yBw86p{Uq;B?Te&|yd9oQmeWj{Se18Ew%j`CEg%zXg?KveoB7b2Yd<{tAiz1RhH{{Pb)!?Mta`c!W z&Xm@7<>xrN!N>>lI5O4E{!^|dbqk)#qq$K6ieJgmV?4Oo_1E$^QlZX!`5s@cR3TL) z2C$?Cj9QmoT;ztEXCe%^9BMALsP+baBBi$l^qmjY{mVHu~V83*x*`VVhV*-7;g#psKy%7cWlmQ#}-qR2+FEP2sWQj3Ek-9aD!X>{716 zvN4K6Zsvx)Co5XWxza$G=de@E5g0Fm`Ev5XeeR=BAi4biu(YsL1_`M z!I@tbIuZ%5k139m_&9x1@h2%gepa!LI4|qG;wu50eO=Lucvtd3(L%;)oA6X|l;+_B z?A^>vg#jY({^ZB0T+PR;24!MJ02Yi56&XP8lmdytOAU&;$yKnu(z}uXEYf>fK+m(W zY7o~?Q3bB`_wpEFOR`Cm-E_0nhgx|dadN_ zG580sF~p*u>v|=Ss7h_-^*4!>(e1si5sN0rd!b_poJF;IdKD4UJJD+sAy4%3T29C@ z$zDs!Vj4Z1HPEX)>G(~$*ZN9yAzB0U+*m4ye(StaxHtvp*Ljg_Jh08HlAX%;KDehg&b^6o>s+D(xVeSX7IV4hRE4;f<+-3WQRZi($Oma-F@xI{0N&D31ts;Yq zGRWH#X%EYJ7t-v3wpQ~Q&YuT$7Q!7Bz1I-43=H?aO(HhFj(3nB*L`kFZ%^<#V!i($ z(c;s|+Y_d@J9~R<47+-JY&^U>Pgd>W9YTDUlH{$R*-)YJs|GAd_1+%94GQZgdAFq* z<5?Vla6<7tdLYa3cEEyc?AC7+vA(`YrH9mLTiYWkce z&TC)a=hy#*^CFx3cvA6U3m;D^UhU$eAgTDOpO1-XU>oe?@mQacJ|2(xj`Im74r%z4 zk0(KmKl^wR^!Y>|Pl9fq%#(wr@?^#7KFtZj|AP9rge3ewe zUd^Wocycq^8|?e7r4H&x`Yx7o!G3(auNTc08O380*gVVk2cjmJ?CV*6_L%DHS$@W3 z`+An2eR6y~i-Ksz*K_OAINx_78LGA{^j%4Ys$MI7HALe{>wKrsXp9!=+`Ubho$os| zSa6bkvOf!CUG^PLvCKnvc1<95OQ{mXUGcq40T8pL)Cl69*{t)P_1cbf>=sm&eVO=Z;33=yo8Vwwd16wV1lAN!`!tR8uk z!Y97Re34Fr1I7OE`g`ArO2J8(C{u2fpuc{;%F6=u_n}hR&I89^&U*VovK_#$X})_7ZbA644#zC zQkny}x>2i@e|U4Gb*r+Mlp|+DABJxvv9aR3N1e|)H@T_ur831kY zTCwsLWuD+jwZXRMmGLAF4qjB!JZ_Bzf~tNps%t&BTt!N*Aq@;Ql9kw1hoV zPA!vCvCowqD94UI>^pY;u+1CgTQ0Xjr%$xek_xAMMnfT;Dyci>_@Rf*v1d#oKgwiI zgf+x|B3cpPA5uT`7C)9DUg1ZX!l`hEmtQ4n8G88o%_TBORDP6mT`H`t_M1j6L$bf0 zCueU4_|d%Gg|Z|SdK>)CP^N1t9A)y`Ozcp@>PPdG29{yC&F=!W41YTO))N_4x%`$; zMmD_d_CxQ}vSBqZ#4qjNqd=qyddd~Y<;#kGl!HYoG==+Jr;dqvQGP!XTYRicFN3?P z-v*j{F31FJU|cP~vy{$k15jfrm{B=iH*ZDX^6EM?~D+dRY9bsw(zjX53LUZexH40Gm^78>H zg-#QUP4;{44YoZTrGxDT`%xXte?xqB$m$DwrTZ=L!wCR=fA;&0ELk5<^b_j2(oc*1 z>LhbybD`=sS@ixOQynvMrT$J;NDxQ1YOMN|;t4Vs6RV2w!)k$@-Bnu9v#K9@1t?xc z^^z9?>s*+iLJxVdX$@;7t0Ktadh`I*UZP-=K`Qi6E3QyDL^Y38=srqyi;%4{RqF^T zovhkQz>ZH>^`*J%fQ_DUSt|p_2ezyXAIwrMq7Ety(>J1(31l7&E)Sc|QN>Zmd5=eE ze^aw@Vr6hEz$k%T7OIv|%Z0Jb0p(2~Z>d=Zx|}zuKyk2L0&EYJ7I=QKYOn6!576v> zwZ*)ncO_6&prU%$%>w`sfCR|WymjDKFMBXtvO~2nfKnjz)lroKv_6mimsuF91%f}V3Dq%irTN<(sJia_m2z4jt?I4R9ls5g@=Z0D!m zLv!C7XI8#Ntpc}(I5{9DVX;7#d zz2Sw2lIP{s=sr0&s#H|hAcMx&NOd~pCZZ*LQB55y;D*Ky)zoBY%&MXOi&7zkSWAr_ z%ECe}s-q4i6>;{E5TlW zTN@BNN?8FsZ=nw3bi-Hiupi%2J&W9t`Vy!n zI%+zruTZX=T7U|D)IPu~yt)=nj8|ugxp*`8Qs>gn5)dJJGXHab^Bx#Nf zSJOPmfXxDzk5{94kIf3uY=S48Vt!U%q7J9rN$PAeCPmFw-=}%o2RV$psR`FDR_6!= z3)n9vqGR1A0txK8R2_nj0Dp{9gWTn6ihF<%9Xzz;5a7(!>I)LVT^8N~GJa7Xr5OJa zoSXgi8w1?7QH>rd&+DItJ}8v0?k(iV<^}5QUL5JSUo9|mr1PrUO)7NwL+vEwlpE@H z1fle{`V{(lFbj6#xq70ABYV73zakZSy;r{%aHRwPR#zkl>p!U{qhGFJo5d(Kt4XtW zY7KgA6_-BNYMMw$1*7JsS@0HrjuP~#swtw>9{n6g0Gv}zgFao6HZNHX<7;YWNI3FS zT@4xwap}=$joTZvyWhDfcpY|E1?sodP(444%*_;qO5hKzG&{WntKplDnshPx+rOLU zy+g2@(`Lgs&2CCZ_q3!V1I4W)FP#I@--=h+`El$Hg3CS0YNBN zs5wI_NOx&Y5rn&YHA$qj(*aF4LLND&nL^0;!@3YG#t&_I}ZXaHTumXn9|WwCIg=+?i9VMIQjdq{vI_vFS)3E&471F1?`C zqGx0=8RW0sPx^hW)1qm)Re@dyipFZafUij_gZ=bcPhhMzYSFvixYcyC*8d+>;eLzO zEaxu$>DGEeEi6Rq3ANuVXg#5(4(AbDMe^b=sigI|xms0ieF5nCJF@nSYT9O`%ZJsq zTL`(frWPHpV?p9;YwL2h0;sMp-2a2N5mC~=p4JnaN9$`nv8isP?LsPyZK6dX?Z`n9 zP`8=(G%2;T)OrH)Lo9E+l(t$=CY1chHp9Iy@1XT$Lch*hPw1Jt^SveaV0(*xgSt4E zK;+lJIlZ)-NN;hywH~iN@24eRg&_lZyNpcHqH`47TWPws^FNFZ>WxDF88Dm|?8ZoK zPXgO|jJ7*h6(U#q5ZB!JnRkt23h$aD(|Om3XY#Iz&f!JKnZtJ>oXhL}>pWif=?i#E z*IB~rK4lqi=~v77X4_Y4J*m&E;VqrEfw%PijeKt%xA4sjTlwBf3V2J;hJ0_=ck#V7 z*~>P=epT$}Eq$zrw{-8ryrq{N<<)$CTziLD`p#KxZ}bIqcI51QL5se^fJw_`Z7V{K zzN#HgDhO_B-;i*SmGHRHclf$X?`cQMID~SgTF(Hs{F(NH4_ErjM{PTT>-R-_Rm+ur zQ2TqrY`50`0O?|y&i^DKllA`Su{_o0 z{^$u3T-r6}QrB#yr(Kn-T zv-N%aLlqo(H_hLZsw;>1?;u_DOZRV2?0a@JuUpPo{}h7Ym+60O*<8LGJ z+hdV`Z<tQva1`E6#do+7=$H#a92f#4T+L{n1A(aD||qyqXVp`J=~CaOsvk{&56X zb=W_H_#&^^e+<#BVhP{u*=_&(q}jc@{&PqdlOOpHBH~C&{bv$!R(;}|_5R|YNGeP6Od-Rth&3T z!X~@UqUS1HtERh7oOLWlhfYUuv)G2Z7o=`nV;%Ym9WJfYRCkipHMG-pByP#c!>8QRs^nqziCJ)q&BbI!XuDeIne3YsCK$`tEK^H>o zTOmj1arXvBx1acU)Dqnd0eF#$?9g|aZkU?GeU{H!2Y0b`o9+_<+rLBSnMo%=-F9M~ zrh9ceNnQ1RT^*7PJ$}=nr5i>FJ*_)VMq*L1PKLoW(DJ*^GwYr_uX{)8{(e#CnJL4s z=q`|swSVw#k=)RsXWKFErJFkR5(*}(-_^|_%3ph?%O=f6ywt@JQ(yV0OD8t#{#A#b zna9nV$^%Xdz}eX-l!Ltj))T9jr~?KN>vS^*>?C!A+yT7^!h&)Et4M{`Q32>i1O_u# z4yZvoPO2J^N$l{Zen2FVp<1heK7`!dF~AeQ6}twkC1CfG0z7f{ws*jN&)hR8;IWeH z;=$Me^!^;~t#?+yP?9Zw<^(h$xb+tWXvylLcV56#B16*VfN0Xi4j2$YM!7d919lLF z_M8cLjViDUvV&IwF3Y)i*l;^wQ$xXVZub=3B+CS61?$B$cU9O;4pY=q0-sjYqb~*d zJ?W%|FiMXWE13MdiXJUiFuAOT9xYZdd9#)tEq^d+s-s71Ell>Wr$?&+OkR)CqhT78 zOB(3WY5Cw6vS7_N*k0wVe0FwlYe&CqXiQtC-l^#X$6y?6M5YINxV3d`smT(1Xrj&fEVYdLA*GE zG``uP!Mr#Fhw9G~+?K=jXkCmE!ba=Sx)_t|#_H`tEDYxI!~f3Sb2-V1z&dKnyAz{kgy9eOlF;>vTO-rrLhqRJvUSN?ku zA8xwCe7NmC#)sR76FgkiQ@r#O&+x9cozvGx$Pif^E%0z>XV2@=Y>UZR7xidijLF8A z^>vAVZguK?XM)3?F4&jol7| zXIS{`GI)lC73B=!1mbq6!80saEAp}o3O9I$g13l`c^e~h6Phi12-&a zVDH+7&IGr(4&Q8cJ%eW~NULw~j0LS48$4sdp{9IqRa)@P-n8U<+ZSu_WPM6I(wiFY zYH#p3*xiY5cE7X1WAatqc#}8i$(wv^BCqDDBtyDPPzquO8Xi;Jpm-^EJ3ze~=yM34 zd!(c9mrWFQ0I+o$ehg6tKMgWGmkUZ^>2SjaA?l<}uXH`!Jjzgm;+8EleT)@+-rX8~ zLSlzX2Bt1XH)?xk818{|CaNj=C1*o0*p_Lad5RM0P>%go+NTuy-=1!04K`<)q+s%| zasE&`!C<2~m+-*Y!F01J9ylf$Xg<%2P?ES0XWyS>KzII@m9L}*(&>f`|6VbOuo5XX z83;>e8pa8^?o(zPXdb3P-4BEd=NL+9Zu{cKuDOP3M27uJQ&8HGC0qW|6EkO!)U+`5x5luLi2$mGan13lM@7`W-bG%NSNC4CtAS$A)n5`WV%?>XFDB zrkyZQ{VoZQ05-R}Cxw5UH5h1)yuQJtT{5VF_ZvecaOAwWKNURP(^~j(AId=_mIO7Jpd|=}VT)A%0f}Cqc6O1e|#F8A!xnrO?sN{QrsFz`s zA@NO4B^dq?DPB)zRKdgd4W}u`i4Gv=_!Dn%^G|~>L@{QemWzdf2<94P9%DgNF!rUv zOc`1j!3)H`F{mILT4hm%z@V_oql~B?Q2EthA>&d#k&zph)ZmoFNEtmn078_*3sPfu zO4SI$3AwQ|H+;j&KE~dZ=1u@#G)4ue_}EYjq^OJ!=#rR2fzQ>(a}y4o{Xk{_Jr<0$c+<0pk0OM@N29(j#4(fxAqh#EuGd##hMxEcoj19kbgGg>n>@**KO6xi0*pgx&g7q zgD#GIG{lHr7saLf(v3?fhs<{H<_KebqD$0Rqe0I>c43Tinnz3Utca{k@opmAI^T#s zuFPr#rY|-!6aj(|hA}VR$l<9a#$^O*>~bT`D;+Eph`9@u82ddQha00;p+&luT82WqzVs|5S+FdkD-SQz;?78E@| zSf9@r<#7K2V~K)G^yGt{L@zmEY)FS9x(qk9fEUE3D>S*fJlXUk$Qyi53I>@?GFaEo z6eH!fmbp3;dNcu#v~3NhX%wFO4%-)|8%-%R>V5}9^Fc%mpmLkaaksa)gt=-p4JPV! zb(qQm8v)ljO;owU3I>s2>xm#IgH053BJk)J0SzIhRGJLI2$`pzpqLCZU8HsrMnErw zT&2kiEJKOSBt?(#n(k4{z#;&IpyBdjZynQB%Dm_d?M+S1NH&aX&1XaHHniE$8OF9X zjipqrGeC`%px2KksyCpMP07%D&sawQ4|U)pzhP(E$WI0cEC8>gW_O{EehvjXx|@C? zDNxXZHU<76ksyI84Im1^A86LdsNDdN6Jcrw5A`)=QwDz*;5*cWUds}iDuc+{C=KlC zCaQS~N%IX0z4bEObdg3RbRWDmM28bw#DW*xW2jdPqN;$alT6gdBqdKu{XpSl(<_R} zaRWw^q1T&7C<^oolhO_d_SYujGXYcXg zMQKkte7e^3Bc+l1fY0|$J`({w81H z{?5K_x=gzs^(KkWR_^bko2VxF34KFNcC#?LDd$>6GIrcV?Wga}|aYn|*@ zregy1_s2J;qwHVvJCl%=%l65%h0e8{ToXQz0Y(W}1XS%_rf-*sBQhev1A90!Rawhd9jmZBOnU!@sJTHLOf{ur}5*Uu4I{ z=XJ~{ScC1VXU3VH8DnllwdE*p?h8uJKJftq7n>{L7j!|5Y4)IkfOi!hnYn*w*nFF;CVIvlEdfY%zIcVXNMVeuqey?8-g9Z?q zoO|Q7!9=r?6};_K^C?zv`*d?vR^axt&2DzC96it6h%)&4f*hk+4tp*(x1)AGivSRU z3hXRyq+{RH*2A2o=KAa)gJbw%p82H=$$531xgyPy7>8KiE^{cDo>NJIRM>O7 z`3^D&?gc#BW=20IxXxsPKNp%O(3qa>2cmxZutt?1FkfJee&bj3+_D(g3PVns89sQ6 zPn(yq`J8sn+>jbJZvH*=dfp%CefTdxq6KLwBie$Km(Axq2G74@ZcJ+cz=A^rzKIpH z^(}LI%0*~*aO;WL3|l_nMl-?n9y&1jzFEWhDDSa(D^0|qX{ROrtr48+u-VX9t!PQdBIHBMvbSW%Z?BCVimK-ViTTNpb#q#<7mNx8Pq25v? zLVtfXSvHipZ<=*7FFb5!w`@V8fDeI|brg2wfdB&H?t1ieTc{>l4;1-;)?ei<&BREs zA0o;mSSs8YX`%X}j7OeS7*p9&jNAq^)hxTpV53yXRJUBANvUt5RIX+DjTPnV50;&j zqCgb1S#0#piLp@qjHpMNHsDKViySD@yftt_Q_Fcf!tB`BQXP2>{p^5cJo{HU*wT{y z+jW>_3j6ooD9a!0-=guBwd~)%6D(+acnZCySf+ZTzqyR18_T~0mY>+a>5IAc2lFg* zSpLV=mTqjlt@)OYEU(zX)yv++)w{Znt2gkFrHJML-lJPHpgM0+!J8*7xe{bcToOAyP~xMyjJx`h)TbMoO1rZ!LLkqITbiglx)5WL*pdKgHoYNfoj7y@R#Dn;*M;HSt7TdUxY)vSFfb|p*{ zV}|nD)?|U85T^WKHOd4JxO<;x8(23|j6~?^@G$hrn^GTmzoB&}`iakGay8uC)LIF> zfX0$9n_EpZQ=>Y;8V_c+u`1!ZR#x;We-;d+#93!k$jD+rgf$EOL@O&(cn51oBHp}C z)=8u^th<%!4hSzPK$5D#ntAAkYhh=rGP-|&?En5RyMX$xD@4dSoN!=UvX$of4TO*h zidDf1_@%dXBF#XG5c)$~s&$bJ{B~8YgJ*_YM-p#z9A%~Wo(I5)@uRJsX>KaAjR9(` zggwVwRp{5AS$}3tvpR?qx6QQHCghhn*2T0M<1PT|g7|ZRpUuD40cuZTok83RYasVg z(Y(dhMB-TOa_b7ZknRr=U@m2D^=G9i57)1@UMJq1x6YbRDF}z0;|A>3%eZ$th39aDn^up%o}nk{CLP3C?_MqZ`PIQwH!8x?p&~< zujgTM|0Syo{dzcCdg->cKl*u9mTdDFO{W}L?}@by`hixqbomSG3G`#REIH<#^(d*( z_Jb8Y?uJVxAFb${QkXpT$-15NHd|^#Z*Sw$`QA1g#YoP@R8Nh~0d~$(g~Mek8`bZA z<8(wY1`%iJ89G}&abs(vt)g7;5WkNK=R0lNX;u?xf~X4WNJB&6A1>Ql0VwI%3K=`d zhL)8p*dHW#M-g-wv*c~51{7DYZKD7{bM$!jbMs1AFU&^uWCM=?ZbjH=&Z}ek*fw+L zSly#+PB9ob5`DvcR#n?Q3Uv@xA?#A!)`4QYgGiGHzChd@eUtKfOPgH8N%AJvM!Ap7 z14Y}*Nnv^$+a{WLLE;dE_w8)&DHH-c0yy5rrUow}Z1JFYvdtgVK4GJIQo`dYf7m$Q zCXsOV>DJ3ebIgG~B}%sWQVeDgHAe5$<3Ksu-*$jDPzDaP87aC4SoVRbw#!0Jh98I6 z4%5o;b*PQ%GwxW1kHc+f*1~ppG|F~_R)*X$wyM;2$RBUJO=MV+WurN0!m7khuq~w- z{1fKccH_0gyvBXS@Wm9{L2d*Q)CXyEZB2mJOxs8byCB#@aM&zc0F7O6ArL^P4@t6k+;;ghi34?jax6b6%!dER@wIadlPUn+*obv zO0)k&GOPj-ey&+?@g|!;CkQ;a#kO03QwC;lwbi9Ld_lMiK+gd-^rIKhEdkHwgieKF zd-xvO?&Eu~9FGvLOPJovd&Jow@>wtCdy@l{=a!dcgN-0jzG z==A}1B!N?J+R*26FxjSr@6B?DFTHoyCZg{6MX5~-4?nYYp_$OIT}pnvhrTP*&9MT` zduO{L<|gbZpKLEEhmQrogDB&c#a)H=j@;}5f0fu9apMWPuVbG|vy{g&M;^WBJMUDe z2{J1CC=nJJO!Tv(gQe;=6Kw5oPbM86*4xFD`L+PCy@2BLp}ugV(SC{q{8WqmEOBQ) zn>~fb>}Va426|pso9C4}yTcd3_D(dW=21Y;MJ^MxRpgbDM;Z2$yeLM%34jX3QM99jc?KW-=1rsyuSBTavCfM6hhgtEpC+H{G z@`8*Y?4x5UR8F%iNfd--+dWDBW(F_g-dXl#)SaOb5Dk8RM_54DW%fa^V4mGYI(s)_-VO)w>Oww6xS4d*<@cs;ZwX*ihgeQnrnY5fyOO%ADXH4 z_6>VFIJwnMbwqW;z6$SiKuVxf3fmUgABupgaT_&g4(-<{R6@dRgo0i6S5#SY!#)$F z{BD=e&9A71XNv49U$9<_-Ul+CM#GZhy2At=XY7}RoP@G-cB)Mf>I9-r`p^t%NIfi} z5=^~h=We%y%-4~jp!9;hn9f|^@Mt!wNFeM$fB5CH{ehUX%$w_WiiHhCSZS02xDkfm zwr?knd3D#mo6Z&+;k5hqla!9x2%{d^(fSgHum2M}%?=QU@77W~)z$+y{`I*XeZUjT zu>3DO%{CCj)Ol^MOfg)+Z)%0Dc&(K;*bb zOtDVt*h>)-JX9;W<7=5@sp{=Ozxj#nqE}MO0$vz9ptmjk9J^_S0hynb3YegA93j$F z*Ewh&4dpF!DZtT&W~@a33%QL*md$}SBCKiP8VAyhBL@dMf@n4(2zM6fdB^Srdsc9) zB)Iz+S65$h-_9saOcq{spq&UN$Nk|zI}uE7z2iVT5llusbfBFGCZ9iXprt$} zZ7&^YCxS`Y8%Gn`NS*h=Ap!AuK_-YcB7nrv#m{`=F8Rt!mn3lJ(00QPe*fHq)R#Na z9t2B2+{;OyXLdib2jR9hP1HQ>7_D;-O#+~W2HrT>;W@KYihf#!ebmoxb<%ES=J`DJ zg*9wWCCy-^Ug}H-`+5i3ftS-s^V_=!U>3O9(MjG*NBf!QBH&of{<>_i^AC!}hX>FG z%Y``aP$UL|c;Mf`91@)26AUT*iN~r_Kqnuh$)DZpp*!UVww6nniC)ak; z>})*UDd8VKIJ?rUP`ybU z{YN)FS~E&K*Dg+qJsA!mSht(=5w$z97UCYfAdeHA2g_h>8=TV1Nwq!tX46Hzo#=DE*eqlE zIcfH3->{4WoHQFH*04Ds^Zh;Vc}bz=Vg13*U$~$KUxv{}42K7L&av6xsu9k&lrH-x z%+I5pSBa%k#yR)V`R$*8x(w&*|AAbuvYaQ0TxWj%U&u9Vl9TF8hj$}qcGFbnaU$2N z=}uU7d*#k>QoViZk;?~UZgCHU&biJ56uT*iVD`{FgNnQN?3PU6z|rtt(EN*Y63sFe zW8sa-i@Tv}U~ih(0X{EuP7#8-gZ*?cdzZ5t<%FLD5G>i9G&<;1gXlU=vO7uL=R~^` zJj?9*)j67GF^1*NKj!2PIm{=W=#b;nJCzQuKkY<6f`+l1opVxcOn7W=V-j-Si8dw} zQF6(NHYS+7f7xlLS(hR3d7wDNr+9D&-PsAc!`Gg@6|wg6hCvNnk$B=?F3zh6#tu z0|L>01j`g?4n+GAOy;@*(S8Jz*%boOegu;p!UEBL1e4Z?K(rshWSeS%Xg`9II_x2qyP83`F}8Os;Jj*qkypX9Gv+Ju$l>83f(2fi6nx&1H`}2EoxC0?Sh( z22GaARtq zUV{D}P7gdS5nSNWYXJ3_K*|TUt1>S#mGI-3K)Oe5{GV0_`SGqsAoion4ob!c((G4a z2ufQ}bTg1_TIyy7t`&jQBQ4e7?S#OK6!!ZL)dp8i3_ME{7T;i6T?#V8CNlyrOTd_Y zEp`F!nj1*-4YhB*oc_V7M0f52vuM^P-(ajK(Ec&3Fi-`0 z-t&{dv;~2$!pmet1W0qN_Dv#>Z~Xz{~_1U*8=wtx#DgF(%dNL0U?s>L7Bn}_Pia4 zelQ8AXY9Q|n$_h$q`4nR^#Y#t&gusvShA!8FUc@8k-F z3*Q7DCZ>ayKu$VvdINi0@uC&fk;Xo?%DMSnCjRbr~1s=Rpn5#wEz>6!n$Qe}AYP|S^YPirD z6xO7EEf<=}FzNLJ-|xjbeCd*UuJJTyP~R-5{ODK*$2WJO2WfCWOIq^a$*o;zNsCJ> z#<{xEtWCf5gFN-mJK4n@THa zL;I=b?Fg*`-}QBcajO+rGsV@gY@?Y6pL-4uTo{JDk5?G%AsQ$i;tB(*KPpy)9f!C| zB%E=Yj&!vzo8gt`o&F$G#Xj^B)1W_mJl^FJ?cvDgReC%LHhuHXENx-o%{ zIW8s4nc~_{T-#&13vFO=5A|la8kH$o@afm$xi0i;TkPTyg83+B%Q6>0^q5`-(f`F# z7utwoLHDn8p^Ydee_88lMH^AD=VsS>KTcHJepfA8QDIS$>oO5--4PesgksT5XIy9# zib>5S7utkk^7>^yV^>~vp-m_*y<3X(4P4jtT zf)oeh0)okgs-eQY3T@S|wpW7>KJJqgq4!Tv8_ZF~Awf9Y zh;O#23E!-BGrpOwh5I>arfcnL~Yyvf93Ij2r!SB{tgC@$O&B3J2R{x~bl@BBpNxN@lv9uxO$iy#a`&x-_jU$%yen zVSKim>I>-}snBo9xjz#xKAY{Pxqab*VigR9;}|#9LGbq|b?3Q{5vc+exM|)i{~mAI zLifiqL_9I}&?Rp6(4Ni1DtZ3{srD^*Q=KS&uUnf{ZuE1MSSr=pvg8fXl3C}DD#HSz z4ajR09L${ym7;@1ntS!%6fC(l z8H7GDNS3QIRZv-$`fUK)7esvxCzhD23mQx-Jje?QO2(UIc*7iYP)vjbk4-`7RW>1d z+^@tD)RHV*>$roc_ROr6AnK?(!Fd!C#Gdl9t~*{n=y{nkIxR8?KZ4o^-mMh0hc<1{ z7OLjA_u)3z4XRFa*h`{;L*gDi-PRxoJ$i~&4QUd@9{sXfziko39{sZ9-PoX(WiUWZ zfZvM?>lieJ=H!=`7@=_Q#*OV8#GU}NqJ171#GU}NWa_XW_5_$E`-}@>Pk>o6DkI3V zIeDKM#GU~EKjywXK8m7g*qHXB>6qHM0K#=QEQA7xboB}~^Z zdfby0U?HvwW6uUb=^f_?<IIl?x?EjZ{7p)Xp0yw$%rp(g>`2kG zCy0GlvMWXIeowS#)$*y~aCVojksvHZS+hH3uO6kr&htUdLo^3zbxb&%ADY&PJ}JK) zOc{r{(~VON@LXbGFbq9}Rk%F@l?tHJszVM0>s3d z@PnpPO*KKf)z8N6&i~2x&( z_nfG_Bd?|Cc_j=XD#};aQ*@;UXy+j}Q#PqI)VrOsS;y?5V2<2L(Ul0GooD==a+J~V z)+Ez6dPztWO}e6fN6|4LpjD}tYWh{TeL<3}N>!T)uL+?-`Yp|*=ZLarcvfYh)1)gB)gW|snRctx*c<2- z_G^;ODxlz{8c*Jxt+x{B%b7>9Y~+9mc1h@&bQ% zunG5%=^(}qHR1j-eQYw^i!yM8w{+J?Q<=_XX+GqyvYSErprrvirka9b(|2uZvjDH& zGp4x#+QP3Kd(PBMudXO1FPJv6xvYHlq6wp5I-D0?@;+w0V#0u!mPWp2!ho1Q?wMga zpmzJR&~#3Z8%tPRG%`61w!9o)S$nZB;BA%F5sKv<6MFv?-}MEifjZ?lPK&kjmYTBl z#9BxygTmsh`Jb6E&Z2ZxTV=vHi#{Iz(u8pqecZX;G*+j-H;%414HL#! z^zq|6CXBD>4lsAps|ZkB%~YAb^2hETnG$TSAwuUIG!-8i&7N5{D%9+y zG0a?~8=2JYY!woN)n+f~CDkzFX$d-<9<|I<^@3Fv$Ceb+K+Y5> z)hy=E_^DoOH{%tDlu}VPdnU&&mzOPb>zkYDUQQ8j9p#ILW;`HIQ4}^YW9o!H<~1|F ztV>$Wp5*5T06Ff->%bC66$y@TPc{CgoEOB5pr1ppN z9n7JSlVh&bY^I|BQd$ahca~Y*$ZporTp6zlh~is31UnFSh<_9;5v8 zq&Y&RA)$|Xi9Q;}0D@^u?}vE5uX(v1gN7raP!g4DgUovZp?TwkDCPPvb7MUbpBES) zuqw)pk>=5CjLL+u=CAQ?SY)}p2S|d z#;hwo_dE_<{B2GL;<%HxrXXOBZi7Z&e@1Za0%VdI^(~ zzcJ_HCBEdbXs5Z2+U>VJ=307ehaZVJW5+e!S)pkP>QR8nznGWcbVnDvDD3U+R#%D?QaSML+huSyzNlI~#s8<1sSIf}@wrdiFahn4BwST_Ha0 zJh;rfL8Za@hgr|p)F_xQZ z-=ilUq+F6(r`CW)-y}byY;K!6Q8$TSC{y>(W$z&TD@># zajiI`QaUCTBL^}Sl%K|>V&p&{KcA3#Q@7rrz=P=fwFfSPapq$D;2|j`gmr3s;&#Z5XBt!Qf>VusWWwWnF>M( zQoXIJN-75Wl%D6dq+*~?AII-V^|)>=en`b2nwAFsn2LcueQdlh6$5?xxc*=&2Kw}I z(y>$w^y%YAC8-$b)5kZ?q}uiBVNu~(8t0EvPX3m9O)nHc#i-0)r@dL0dRsS`kf?-U za$BfdiMpL?)@heUD;QCx2ry^J8?msmq00^(0xS!3_y9D%Eo^$Z3N%=kSw|TaXt^37 z98vmJvFOSLhxfO*6}!Pws%M!aodG+?!A}D%{h?`1OC*$5vg$FG2x<=7PBm4t;5QnN zz<~(MAszfdK=YM})h$2hu_xI1Iryg}g`Vk#()W7@E7f8wUsXbK#*%~GClW0Gi1^3x zWQ&fC9`JwgKZHU^ zb4UpFS0FN~QzMJ6TTX}&_cylaiJSG@-DzRbbzu;Jk>ARqD|Vs;RBvrr zM+o?_t!2AjHSW>QqAPHs1U%WnvYHT3rITfwUIONJw&;qQC;=&1mS+h8i@RF%gpL$O z{1cWf#2A$H&^zJgD+7C3z9BHo{VY1ZM5!Phjr6P?Wos?ZLsmnJVcj6h$7C)n9j0q8 zc;PS?yQ$l9OOLJAz+jver&Jwf`GN@N>oFERrw24>^m?T1v6d?pBZ`8FnqYaC5VdBK zE@}G_mHv$7_Cp}5+H;oA2vM7+JPb}{O|=}akT$Vh(g`nHsv}X#Yp6c7}OqM`BBf-Boo9U3%*XY#B!O?x%)%Q0Yc{oA6s^i-w~fM z3=NmDzyDco*{%bVf|&mBuFiKhTH5G|s1V3(cBksg|G`Doc+sNXTC{45rAcL^_P1{> zeRT`1_`|ay>vmZt5gnpV#EjjRNo1)O_gSjz)=vUe!S65}A>3Vd&~lP+_4UJ+fx7A3 zI?;kVthLfAgZUl&#M%B67F{U@Dtiws+(0AO0KI(5lH`@r=5v--K}hUBmn{OC#dX&# z-{X(+!%fR2!j*M*EU%H@^nWa0RY0RFlZfzb<r^tz;=0zK$mka)S?TC!n61gWCAcU%4X;ZfUu6h%Sn*rAN0dm( zN~hZ~+4>z(koW6Z2k8bcHMZh)uumq|VjH3vO|3};$KdAH&U#@g16o_x5FincT0gD| zA2i8nU)06=z7BVVhDF7XUN*p!nR&S|J0M1a^r10Tl+UuPWA)53{6L2V(q~y8gUwy7 zdJc$s0E}f}O~WUwhXaJ&P_3u6M926%&?YO}ds&ToCWZ$>AGXu9FxPq}9Om)UugYaCk!&%CMz}GwCaj^v~k3}W!*&>atW+Eb&{fl&9}DJ<4R~$q`YhW znox0ip>>B&Di}kiEVk;3!8B58eqeo>kh16_tDaa`1LRn0{gDXy&N8c>pg{vP<1=e9 z0n~SuRnNbYXGA%c{%M^c!2u9xEnXcEkR? z`ju1Td)|Jlu1l9RqE@VQJfj>rYMrhpW2}Km54dC`hgWN{w?tn*V;!f*fz<%6yljnT z8(Zn6)?X?H>&n!+_`=v<*6BvQCXRA^@wT%;N^(`(a6LI&@5q!kVYby3ff6fjnzqJ4s7=H@f4X^TO6PvEs^FGk{neU(Nl@&`f z8(DLen=Nb@iSAYowz7rjc2cQM51NaL9y+=z+Se&grDxdHjLwTD~)q)7{~2aQU=?G=vGBaE`5t~#z$YIn&z1nP)GWctopqKLs zYTjSE%{7XR28(gZb3fT?3vlpJb9*?x+xCeL+epLNyy14k+*Y}jl)v`adIbvG0AHAF z0O{-P;mU#ow%kBi+x&~zxrd_|b{368Hv)AD+oci`R+q6KW zr~OsixBBSOK-N|6l-dk>Ru3P_>MGZ++ir+R)PhFl=x)3nY3$fwqHeAD~;{;`g$yg2eY0tik`kq_tX=pF^%jyh@8(fu^*_o zoIh%2*Oh7TA+4_RWJ~*Zgs9jI`~Hd(b-cA*SI)tYsCkdt&k&*}x3?duI8m)0x9dtl z_z{)c*?y7`m62sXTydf*ceU$E1NafO@d^7Ugs4G1>_1h6sCB*U24WbE{p@=x0*Bbz zy2|(c?bnFa*f`K$Tybd646^G=3Q$(9de+{8Uc(Ietttm9ac=u+GS0oD_0K^B`KYom z&%R$zcFjZ7ql$aH9a8~opxq?9o~z_FK-HhIU(id6f`f@8qAH$JK`Itbwd)G|wQ+Qv zW4uem?rbVOz^W`=Wj_~$?4}{{yp{GyD4uPvt?XHE$IR~<#jwd9 zp;xQGgC%I)X8Wt5dQCvq&vuF3vzxQc6sFAn$=;FZ2X#!Y?yW*jBqFFIk#GH-M)l<4W{&pJx51Os~`j;@p<0( z(~j}$8l~@DJI1eT)^l$TH$Fvdp!-8vP6WF(1!n>xm(8C(f{7zseQVV;fwbcyQA89pdz z;g|_iuBF8(=dY$6(X&cE<)wze(sMbqM`qQP=gp4Om5?tvX^s;*CIJHaQEBRQ=!(5*=R30F zsE7poT;HMRMR5vaMMH$v#e zqbBqIM`dz5$330;_@gqRgQE!{U_~cKsa^u!$#h)SO~8xUj_ZW^Pe0-KRWAYEpLFQT z9Z>ew>gCu(2sqfsq33-J3ggp$4m|5u1j}R17pu1_#(7_W1P&q-ybjQFz@1H2PwzC}dLqGf(*9l?Uo1X^}-#!%gY zh<3pMve@942_~O~>H>9*2UgIzhx#TBOUkP+dFvwm$PpJD*zMxI&Ce@k0Fse6`rI zS&w<81mu6{ck5Wvl9J;QiL0ex9(L4J=I(c_*9{>n;!>Q_p~P`TPvVLW zr8we72p;)NsHHT&AvYWobegplKw)0p9&3c|f2%GkkPk;GQ*S%)O@Sh1 z!#&3jdXfy3;=IU9)#1s)r)$C0bFq=od|2vJN??#vAo@vZuU*yoj&9l!dSunNDm@}R zLjJ+WMrS+7n=W)w+J-o%APQxBHRoOdf9Hj>-yxCCugTxZQO?Rb4cH1OjCV#VF-gw( z-a+h4aelAUtgGOrTb&VTwG>EWgbsJI-)1r+__oWrF{IMVUMmfACYaKoG|riRzlGlZ zbCX)|(?`z7gmEx7!(3q#@xtTt|=*OKWI7$rT z=e;t|T|eZJM`pItI)V^vh=LUzot=D^jq=x#{7%lE4{apEcx7K_rzF7avL}Ng+75qe zLZ9KIC)neMj2x3Yp`Se-s&;WE!}FhysQFgT;5b-ZZA22JyTdBOk4MLZ!%A=l!8hGU zSNAJZ^1C?eqF%zHEazS*JZo~n{A_19I9t?-giYDb&#-EES7&diR_w%N`V&qg{CGJz zT+G@7WA7wKfi%oyfxg|a#~6ng0R`P?562VOV_1{4WY%N()Rb`8`GhlOuJl(pl-wL? z3)sF#gl#*7MBy7K=;U-k@wb63#I1WE!atLi(i!Q9UE{Cq31fpc;NyE{mg@)U(=v>hLRCM zmA#{*qz2<%r<7D98maQssvCyt*mcwBskw&UXmKZAb_8a{ex z{OB>m$4~aujSn7~J8)a1n(#Fe8NHAB9 z^x^tHy_`-@4+?Lp3h!i<8nJVwvMR8(H%<{1BZ1jx27&p1QBc8}pkURy&b2+rOOnur zecQ(wE)1aRSJeDbDyOo=X&I0;z!_Y%s=Ip7BagTrF9!Mj#3*R-$>1veng%~H5!I{D z{U(F6A5G&^H71RZ&mBD|e!{T9!^g#se`?IQ!Q<`mJ;sb1KY?SUS^{DJ{80n`?&qum zzx2f=VVSQQ1;f;S&LHt)rb~Ut{lB0j^#1{xqFvTdVIvvqaACbB3mm6M7U3ca;Z93u zM_4hyxh?ukvG|DlNHvtrS@Lw0J;B}=oNp_!xlVk)>>mQn1v$o)=E5CV@RTz~p9j4H zN=G&2+OP+)Ypie7o#F6@PjA?A)^$X>{tx6gTHZj8w*r;L731UCBMf{nuJRFK`_i()ZbMtU# zrZ|y@GggCh>bHcZuy{??8qs$MlcIV4di=5 z5}M;TogG8m3-)3c7cSiH4{)ICohDe6hF3*~jdHe*G?Ka+2(F{Rrplkiu&txBiL!8% zv$`NI-wUgw9d#hAa%dQwd@f~az=pjdB($iLAZ|qTZ#zee3esEdBK7TFnA0k;zKBRO z>ft&SR_wHiU+jgwj?cOb}115RW|w;zbSOYO?Y@KhBv%AT61i zQpW=k!fy4JL}4E+nQlrD1NIRjTR`E9)g4oUi13M$Hpy8ei1qhTHb7X_SV?TT4}{bdo0zT= zUGh(qi~}j3yN@HyGm~u$G$lE{GfMXCQrPfvJY*4L**&!DBHVB`BD;IV~e)qV4 z7!uNuk=O`Ir#Qo-KOrjXHy51P^SC`D`p@#`Nyhh<&QV_z=1`NfnLJUGvso#A!FfRx z5ATC*>m8%S1N-3awX`~VEse7~2Dsj1eIk@)R;vTqFFAX{w;!O^=Uq-qfWrSE)bRaq>Kwk% zmb4$1yy)yl{-#*u{S-@;@crT=69>AhLFbp8Nig6QX9#KHMHp2sLOAuhGgjQa&uc+C zLH?`G#$uQK%yyK#>Z~PZ?T50tiIEXVp0D}X3-PZxZ-_mxeyg)bWU+t!6NrDCqhr+G z^2SO~XGf1ls+pX|kS8jqF*u?ZoQ(tA#i&ac5^|L@Gn{`3!mCg+%h^dRWaAZIMSlF2 z&{3EUN8Zr2T;zV@e3M+&C4RJ@>O=H&LV=%1KHLupMM=}djr-|B0@V5|$a=Dre1Tko zr0fTETwOgWMx2VwQLS@@1`9p$}H^~J^44PzEw5V=x@eE>5cl3b# zc}_iVnvxOHmkY#G`(g8!4l|Vg6x3h5O`&#%RpZ5A!%ac}U1C0j>>}rKG4ueP%tcd# zU@`arOD1x z5#mXQ_5^goH8j5-6pLRCsO9}5t9?oX@<+y5XAdEWVJKW0fJ>CkW)Swn>cEr?@%ny{ z-%fEt`i4sN#Sx5pHnw30w6UF9;5;q9jC3@!n#EUDqNo2G(QooZcMx2r{`LbXn{iBpy5fLYI^j@vutGfq$dsSDu; zcEmNW@~A67F@(I2OIoqYv7h{j+@uk?w;;I@EY3wCqi&#;=nUz7k_=JhPXS_5qig+) z+@vP8HhH2`wf4`CYq=_KuaC)Uip`tuv8*2iJ| z3XCF&zZhK(ba$7Z$+V4uMJtoO6^H!H&E0`Nv$@+Je|x126kp&gpVca}d#Cggi}=bn zxyq`E6T}sK<+7h)TTF5TVG|Uua`qST&xCQd2I9`2L8yjVLi{^pZBj=Ou~N74x9?2d z#nU{1lPZ8R1_1v|2uW-p-cteK-yQ(epOiuqpAl+8_zv`%^ZN9+i`5S@0!*w-T4$$a z2qdbgcUY=WpOvR??AAu84h2^*evkjqScg!wBrNf1p)&`og9@t;2Mfz`M_HQ*!#Ow| zeBo#w>;ptX4WjjDuR-ht@#``Ed>yjZJI6IgzgPKJYK4HMO=7yOK2ayVD4^f9!uQd--iifAv7KHz>CdHd`OyU;g1)4=+ z3&`I&*NMjtQmY~yCr!rS-7Ez=oXzexg6FXry2v=(ZAZ}vZkUL%4r;&-XKc|V(MEt0 zL&$)}0I`Ff=dItzKZ)iqd^bk@rL`Nkh*(01q^t^LuHP0Y{sFUcQMAq6lHYJ@^o$FR z-a^{>PCWOLgE00NoEmxGg&LuByYn4bWl0NxF1_Nu5RyFoYr-m}YXihDeB+nSR0gxLGg z16j^^Hf0Tkt+Gaajz1h51}n{JkE46wpD@NBgs}GqXGaX5 zNF$9w>4zT3AZ7Qy_&`DU(9=U@3B`-=R?G@-A-2FVXC!7Yo?H~ZWfV|$Y*X2>jg;*V zIF6SIlR!#1$=Xm}9D5KiF8cCC46JHdr->*Wrm>U|0ILss(unsS z1T^F@$KdKLoI;=^oKk@nRgH~;5-H6lrW~dbm0)Io<5!PqE+!p*faK)EG@$b6^`iY4 z`5|BuR58GHK)O?>jfgCvQluc391) zentw_Z0#ox;>J3j&5gtlu^p-~0xUS=^uR50CfD|$AUQRN9~bBJ6j05YfpjpZ4lcdW(@zR$Jq7=^BD1$dW`v_!-qqS3z#C`^K8{fXnKLB z$j@JJw)5!A(#c^dF!-XggNS{oE9mJfUBv943P(C2RDuD|#dRdDh&w1|ASRVXSDcNZ zB)L_vu#Oq3unsBV!bfCrY7FroRW+ck*F414j9Tg;8dn_Qto^o0Ne!U%a?%8G7h)wz zirp$tcRq-xhdG|AbLu;6ON`d`Bg9b@w;-r4$r<7b{3ZV3`;?YGVx^-jW+qO!Q9R0# zQTBGqGBM^ToVsmE73*R%l6a|o^Z~Ok^(Z&3Bf)yv8OxbJ8=E=NN1^v+=VK!NQr<-# zWkiYii$n?U6JE6z3W>STg!~DWf}`#C`)tIkqMqOYLN4_LbI23*1apouPcW_2xj+yn zAEhCcFcBJG(-oZ2UCeu>PWD=_IP)kAdSAr>kkI-a#6~M>+4~&<$srxc(>$b?rAX5xD`YNvQh@0m1ts;~@8@b5QiS@z)=;%Sv1C*jI%{rte~dG>0ucvI!aHO3Di5cV3RdNffWT!ZYp zPLqgL-rzs_WI1$~sVq6lvjiQoL~;zE5=eifRuL1A5$2d-Rqv!~V$w0joH7E8XU;E- zIlq*TgfJ(%-Z2kz>XRqRochO@%FMavTqd9cibG&2V6nq7_)L&=XJ%RrbFc&LLJs2# zP0RE>Ms-IRt?^34vavl9Q=pDPiUG`~+G%nox&xunPlNg#V;a;Jxu6F0t*X8ydN#qE zSCU$YGby`FaP>P|xHyZkE3yv(#rC4~(D7C;nL%t|5M5-Z-gyIk>MYzS+)EtPpH_SE-On&4MOToM;^HSZ9 zkTi7xZ7Wv!g&4PXP&jEbeq`AwRaJ2`VciCgcdx+KQ|7r>v7fbs@-_J1c=sBuD24U+Mr>G9npr9@L&Q%T55Q#V#(vS{d$M>LU|furP!YJXdT0~KpP zHEDzp2dipIt;LvMh*gb(Ya4hS_%Cgk5{0M2J_-rw34VQ)pqgb7r z)d|nS%19|em;ietrB=oXgi<&8Z?@X}71n&Z+I%)^{u*r_^crc2dvDo86T3tD@Bx)! zag_AB`1vnn4GCEGiwJYpgj9!jqNP5#^MZ8BkW*g>hr;D?!A7iBLzcWvAfLC%kkv6S z6_(bJ(xYQYT|@F;7WvOj{zDRQ08OD$P3ajF3?20WN*2b133cP3Z7r#pu$`T=-%(3y zY`8(X(fM!{3R+2Rq4-cpaOO3wlsu83Y35k{VLcwrH$!3W<#0GrTRK`U^!fUspR!6h z%8(dox@d?z?lYRq*a%X<&rp73us7Y+OiVfsW#6Wl4EUvEUrywgMFxur82U|5PRB!% z_4Mo)5Zd5&ycBBS5JUD;(x7s=u(m>6m_|>ZD!mh>aiaM6agc+PhmhZGR}u$8&f$Py zct1t@QOr9I1q&pLVVv)PQ$dOsnu(*2Q+EXNCbS9{pFfVyzSRY5a?BcNE3{lziJq|*c+(4JFK-DewgsN`%;KRd+3{t>bh1!Ig)?$ql zOxr$eB&{%X=XzC?XF^vm0w0!9W$VxsmF;(@ul~ZCL5k zib<;anpWX~J@caq*;{mXB-bt1Ucb;V1SPy_z&|ZRoq?4Gy zTH7+-z%>H2%8BCT6CgB_`$Egsa+O$Yrk*|+M4rf>FSB!m_)MdR*a%X=PphjO%OPQ2 zVxDn0X~Nu%UtpVLO@Phw5*^}rjGpEtCKx7a)x;aYcgo56xv@AJJet6kq^T!qRBWVF zyjul5Q$!zHl$Z#kf*R>u4X7YP#o@>;lO-c|j{i7@Xk=kP1c^~fx6YDVFubjm12qwK zg%K4Z!FWHW-@8cF1;bJf6PanTAA4z3^TfVA|8}&8!q6%%!$#kZZCP?;Jt?KBa8yK^ z9C@v)w98QJ*O=ygcAcboALA~qQWaf#VWq0j<=enYQ27ZdPB;UmC(x}pr?ul`_$x2N z((+`O*$so8oLjd)fx1 zLAC2dm&0}UVB36cRuO~J)#;}B_9VB#t95y*&_lMTuE#D#yV zl;fcw&*PjqPTeo%5yPY$eNr9?NNOGOC15e;6n-#Su49PdNXT9m%jSfJQ5C1^28 zde%_oSD$Htm%5YFUxB~UG@~J!tEDa`R>+T;q9E%zbNv9*ub9%Q9GYxM<(g5gpw3J( z0`WRCu3xD$6T&+)A_#|K8xUl~ZH+ExpzeTQS;F$tDdM2@OQyb=OkU{->pW)A;E`P> zPRN@$!7(UzLhd|vVl?Yl=>Dt}CuaZ3T(tl~8?OvkIDSG|@1$PQdO5{P0YY#yu_dxPchN}D7NVhAg2SSlNoPoFswHR1 z6V;NlOiQA9E%Ef5fMdZ!fiUT1>AiCG)pHD5%1egWX-{v{zxG%B_cOZ%Y6TW=io) zU${n0Uv4mciPrQbonWW>(*86UXGxF8)*&Ul!rbB*!4&4%0(q5S$nqsTGxkr?knh=9 zYoRI(4+|Spg~4G_g&9g(Q-v8uo~XhM!#Xr8HOf;MLgMkxki}lupqT zy+9{KAYH9fDzHTJT@PKZ9S%zZYzG{|X z7jlstmi_)T%`!xl3yWyv+X0(St4Ri~4O7UMPjg8IY^Lhs-{gt>=}9tdI?YzD<)ngF zu~$ifC#8T%1}7}KB8@VNXSiaTY3SQV?kyV6u;h2BR?V157H1(Ca#wpC-oY9MZOfrS6Ql+<>4Y5_P|`uxv-d#;ZQ$^-@P{k#PK&Sg+jT@T0s4F*v8$os z^*^Px;_x#pz#V=@IrX9RxDYrSM+YS}Fy5KtJ5Dv;nZ=2H!5Ny2Hu{J?e?oE+hk*1F8}F(o@RE;)#OA z%ki|;5LmKJYERxJBx9nHd^tMi&OO5-`POGiByTdbJ?pg(!~l3T9ucxR8q>p{Ko0DK zb@@Bpx~z;{BYh%>!_G48#a|l5OF1or;p&&t>A*LTWEQp;`Vz0I@l3)kbx-A;v;V5b zE7xMYS(tgQ3QQd!N9qtT(mI!h@voj`Vf?EcNmRa{kpfs%1T4yhR5PN{r5#nD6gR_UA{-%hY09Xrd#>9t5B)eXT>WJcx?Fg&-T&#@g; z>_)d33(vzK+}-NmFL!xdq$N*w|fla?vrB0p66)%g$JoSeJ`bnE6%~k6avR`tPs{<9-QoyM<5wbQ(L2%*)42@14klr+8XanRFp@mlJ zRfLCycw}@r(A{0mGacA=2saR^4sflQ4m3K?vL>1i3?XDv9T-h?pigWUQou{TDK`*4 z2%e;slVNAZHu3K{UTdKS!8|NPLq&*W(;#>jX-!4{26>{Qf8$?7-vq}(M1OO-T%U=) z@k<^Hjow=&c;zLz#{Fh`)p4npVW~zLC$bN;Qm@F?RLD$E1WHNzNolg-D-AlqshZ?< zI6^%BYxth4rIs8kwA||9^J;GODAx>uu#I9o3_jj8%WKh1e0c)=xl!6n`Y&Xe<~b52@vf6gP| zyfo9$jCAMI9c{P*DxYQ-Sh}N;R^e5emHL$iPw?bIah*#wAoHU1ilL_lT~$<)^C$+x5-v%d@GL0)pc_Okb$9?cdbncP z1vT%%HDV^nb%D!!U^CVFd`h0kpPszOFjc{NkP2SG>XU-|^BybsVlD5n9`J8E&ze^kpg z`qZNqEw4$zg5kJU&W>8--H;v5CQ%nz)QP_|>MZ#(HyHlxEW02-Laqx7KEhaGOH(Nr zX5N-Y1U9?qNvO2ICy#-khL|2AZE}&@|6ag!GbOqf*Mz;hiTnFJbA# zfw}IQ?7YABTE*V6mFvd@_>;;Zda(X~UorhBDqWx5wf^29ykthK{u@(%{H4ktb`sA3 z|4>CfAK3IaPs*h^KHaD2LSrbXE~|#K-EaS*=gF`&POb{i43NWNz{i92Dmx(^FIf4F zG|}8aPg1}ux=iS6EjoVVaxNpeUIih#^4Zj+6H@S{aSsBjNjBsGIYmvAR{7QB z(}8ml8_T@B#pCrHq!#9I99+aW7|B}-9MF4s$`9WP5c0d9W|Hm0%&J$U|E-#-&xkh!Brq*R2Ls>sf*v7tEDa^R^TablOcwyAbFSQa>n4U^E-9Wg}|al za(@wBlTIj;_Uh^(UQ#)U1KSdEViFKdKzVcImU^kGTZgEEw5SjxfR zp7%S8t~VsgHWpoTt*C1&JWoUuMSWVDUs+BFrLpxFOib&Njd!bG#Y zs$4lM6`WS3F_+@t=mFf&NU_L6441XhaMHf0m3pQ9P!KOaD7mA{f$siGmGlXlY-N(> zS}{qVCX$ZUBpq=H8A>Hx`x0!i%l%{jB4qPYKF5uNPopG~u6zRRtbflqt%WLO9v1ed z(n6|O(($rF`wQ&`T;&R=NX|31@U4x-iL(cJl?s?avtw;xKOFooX6XYCp70#T=_{o zL5!CI14jXi^tb}=G^xPJ5Q?cV%O}gR?J^7W@E1>pd;mEEKT!@apdRSxq5?>oE2Sxt@_~rbi*@8Ii0J=oRTa9^xUmu6XJ)OJtnl2%%v~r7M0K ze}WQ4--I}JndLH~uBaQoC`$4g#9<|`tDGQ+O|H-rA5uljNGxGL47C=Bm;keZ~Gs+|=%4}z>*fOn>C z8-~dbL_pQ%5F*?ty$Z#3FGa)2jnY8&G;t3o-p+h2sda=n>mgH%|5k!qZKT^Q!WkWX3dU%6__eGAeTrV6( zX2g0T5Wd%FZ!ZsbXl{Zi9p)y)uTkkp25`d_ngNXBl;2~W-RqTnw;Un(m~wgsQM)ag?h-R;Z3N*3xXm1+JEOZFr~3 zkTIBy_?|1L$%t|Yckj5$b_-WsrTfWMsnbGYUN|)g7am+$f`e!{RJjzkJ&k#joq2M& z7*xvqmmLHJFOoGHPSq{uORzDGa1bd?P}C^J66zM$Bu~^Wu3758XV?Rm1@aOGo(Wl* zS&k4Z$oz@KSX70rKT1u&F+t8XxCkx$`a-i&4z2VdNnJx+i6tw_LE%m>WyuPZhI$-? zYsK8nRLIT87}hH}cMn1;71{tQw7#+Fq=c7~jT;T0sTiu26HhWT*6QDLkk&$tVR=}H zhDsR8rkRQtNNXzLspN@Dcq)@H7sOJb(tg%b?$J7X!bg zm3pPC9~B^~Y2+P=A<^Xkb}v-piW5=L1jPu_or-fL zd7|PR3EO7MCN4pNhFD8b@R6zq8iwaIK{442?O89hXDKu;?|hADdO~2TJM1`wydh_^ z_hXnWJVJH{;4LxFN+Eiw#B0VblPeBKoG=4e~_a zVS1UoA3op$t2RfgwD^CN1Cuc zO`d2%^Kp_jpgFD+cjn>8hIbmz-#1_7zsr$Mb?FW zhawZ9f9J3um=RDdEXrLj9l4J^9`8%X>d&m5BkybbT^YOgAuk~=7z&%Yf}+Zii~Czh zcvpu1Ud!jobMZRdCGw*oK2V{sO-^rE^`2}KZPy^Dg{xM%+Au@6HhA#1fOi+lI}PdA zG~FA!NY0FHMGAP^#*@dcK+C$uu0ZR`^+mmHi@Q&51Kv7GZ$Ohew9xSukcYZQjlO6@ zEKilohYu^vhej~wwXmwntoP;ig81|`7DD4MhS2I=7mGiXON95J;3LfSEaHYt<^#rr z0ZwtjHM;!VubZEu-6a>I!N>A={VKvp1SBzu(AbbV) zmdWuxdvwli?r#`kYDut;G|*Xr}fIn`o%^4~8bizmkkb zjQoRqo`HT@!BEeyMbVLG+rZdMmtSnv#}$=C8oLnptc>>jT6DyrW8wGn;_P^&Mwj2x?Q%%l0Gc%+C-=#e|k1? zhGRRtk2$s{X~Hj04M+iVp32xJ&cbIyTN$@$!$J?9+#I%bTQ|G#BVKGRrxYN1o&Lwam5stS!f*9e-;0Daet?@b zTG1iF+r)rc@lw9n*NWpu;l}KcErz>V6E@0Q4;p1oR)vgLzKgrLFeQ&TevA@=Zv9tG$ z2Pn-j#!e&8P6%7(!V4<*)s6-)-U%g?gu-^mdU$}P$v2d^kJ!qW%k#K1d*oZL0| zBKci^*4%m!YbxKQQ_+`}t%v0QK}z=y$qjvJLG#*KY=P>I-$oFd-hk}$Ne&Q>$X^+p zH+`oOoftMueBcK!j5e)Oof!R(%I^d`c2k7nQdfeZgH}&xf$%6^z>k}0^m||TF}52U zO$a{|L};}c?MmS@uBx!;`C9Qp27%CCL<;ELeH;aBD)<%DfaK%y1Ybg_0d)QuZiEHW z4IA7&F4qc}>>>F%f0Cd6HSWSm0pH;$$w!_I-)r?u zFyH*!DEF18W;spL>}V&bG!QM728WhO!>^zQ%sL})HFBk8WM%IxEG=i4wa($zvZ3mq z<>+6fKbihj(kfN`D;yo(DarPyf>XEN}T9V>^Mjn%K92DJH2{@lowmO-{VF#$@Q&FzM4jxr)WkZkywbgnUhSp(vS z1cmv6pzOjAKGI>}r@R5E8SuXy;ToV+eSD~Lz`WGMsurMvE>5xs-Kc~kyIeB>6$A15ap#9NxWdvgZ( zq2qs1TjMQuq=Gk_%z?32hJ~3U{EFny85PL*Gy)G*qVpDnKWAwz{0TG-P=>fav37+w z@5%=PdfgIXNso#672v<+>V`fX4V1N6Q!EnZ5y@u2{n?no<#Bb!KXT8Cq-F@!ko9dw zRYY6owrn5k)q9g73o1UVh!%vwh80N$2(9dT)9{;yhK1ydpEuZv zgvm`(zoJ0NXIIOi#eM1)+!vOH!J}1Nb#R3nn;2N#$oFEw=+0Z-U^KY~4L{xVM0(h5 z6b0Q6ta%$h+U#l_dy0_73ul)`ry7RF-H~55#FL(C#6l-Y@rB1KI!VG{*tW+ zAg!LoLpiq}F!4s?9iJFp8f%gsY7h;?*%13;7xIlP#7S3R4kufI{R;51|0Gv8BUj42 z4YAE_wp6C@92Njh;y>5D~O8JKx~dGgMGt2#2gAJ@uFnjK zgcNlic&tg&%(_~s*M>YyykStavI`7NG&IbH&~G<4K%NjIBHv*~q#R=0(w+N_h|^;~ z_zui|)Vx!^{TM(9p!Q?v9XJ`|dOTJlCA|HpqtVFh2VE4#Xr**fh^_74Z=}|Ow*oI} z#hew$C#6*5Yv19lz}tR}sTG)ahgpGnS|x78@eZs?%(=j7UslzN6izZ#hH z7yW9WVIbF@jsQQw`rr|aynh5mf#wuW>(tLn_twCok8?e#h0&)Zqf=U@HW;xTvXgvV za0(ez>u6qOIl6^ijyjP3d6>iSjs~3#l78T`{BBBan(K%le)1P&bWF{zQGO$I83#9h zESjHV9>h4qsny&FI|Pk=-TA=bt^5n1`hIYW(B{y4wqM zHv?+afPP7pHy&2Xt_+5Yshn3qaA%sG%lNj8oy))v%+9Xox|nr{Ks|u}d5>j~67Ean zK0v-ELj2=7auq^5o?-Y4gaAu>aE=L0G1k6|5GdW%@4}M565FsZgVo@Qu>sN1nZtCi zEI>~(#E-gM1r9cHeInZKLVjb{2xA(Dg*(vD5R3f|G#DH6O_%(FyNh`VRc&JZyVPh^ z|I7bKL+iWjNJHIJ(vezhHAhO2A`_~SAyonChbGa!bkIG{`+8aK`W-5$Q4WjT*bSD< z5+h+%?Sz_eq?v2je;=Yi!Uh+9^QyTkG{gr5J7Lfw#vK8Bj@t0canHB{1LwJi-({x_ zeA=oKdquy*JVaDh>a=vFi^dmt{_ky_)H!yFm$3qKO?V2}frB^h(gO#^LcX)y-P~E6 zd6%6w$osRO4!2rkky~}b3_^TZ^xNjnJn!l+?O-lV-p6 zuE&f&^Qfs_-|-jPKBR?&w0rKdlLnQBx<(p9|K^MW5q9L~{{0Mp(|*DpNa#qCLCv~^ zi@Vf0LiYWIwWOk>xCU87w*6P2Dv)jea-`$_{4NV?CwFp<@)aoE_D}2V+G%`}Cy8wP z8~gJm1;3|u6QBH>?fZA-YCIY+vw|AXe1eO90&0wLJO>?6p19lmSJkG`z|kHT5ANpix8LGO`MBtC(iHezahISZYegulHJ+3(!ZIo z9I|`48XCXmEB1bZEL#3I&QbV@yy^vS^o!-oNhHpjzlxPIZ8E&ls zZuxP4l4XV?;wYY`KA=dE)~ZK zzJ}t!8ajkad<_M^%NIPJwpC9KJV32!iY6t z3${A{O@pnXuzHCp!y2S z2fG}4tu&gGP%-Wvdo}biLI*#z7@jbCbby-WOuiU>wa&0|yh}&=oh+Z-fRJGH!8CT5 zYl^WSkA&F%x_!Om1+ayl?}Vw6n?VkkJKWU`?^O*O>572>x2vUbA`gZv`NB9@;C5vg z$MF?(P14|3V(>@bqnn>KMsQ7$Lo`sr#*pw>mD=#t2v>LEErPMD@g1%qP-Fm`M&bep ze1#vf$_&}u{|&NJqg*$QTX|p<3x2G3j4Ru?iLda(q6S{;{|7ALA3W0xwk)Y16?-2y zVtDA=jwNLn&+sMGXQzP{-%w*0V4xKPQ^&eCiq}xPNw8IZLlFw2>(`<02M36c1i;>` z=DDju**C80wO*RXzKl&XZ`nL6h#!XuePo5YgL$9D z=z|DaG<1b>76T0yln#zfAg+5&IGKyrayy@O>A9AhPGEFO>k1uU^~-3=I`G616^s}~ zN_eBvj!@fLZ1V_gn^w;O|NP);XUyljQHyf#$!@wW3MFWY7meJdVTPFg2$XGU&>n6~ zacvD;is&HwCv=8B^+8OS`O&{I^NaGCnKPp%WhNf;egV}nJl~~bdyQE`O8XMV%q2W= zl$qa>5}uh0*(evN%>1?hP2OR?+rwez&t5b>%sliWGV>mygDF2FGX;U0q*OD}m3pvd z8iaB+Q)6a+0-kUE<0Y4#uas$;iD_}7nYVeaP-eywa(QOnWTU*UGPD0tWTxaZCbHI5 zSToZgel|`3MB~HER)qtC;Xkjr_67DpoY486E6v!;2Rn(`x(kpHSg+~*G22s&n?9bw z))}tedOZWGh}lr~Hu5f;Cxh~CA}Qf{m&pdzQDC#WyHL*z8>bI5!ns+P(|nZ&@NiV} zB`-oBE*8$4R0(oy)hfa5*{Z$cRMu{&UoXd4!gqT(3_b2e^8kicD?)|_ zi2;ukWgtJR;)B<}rRju9=nd+2C>fVk=rcbtgTMSwV8wUb#LG!UlPulrD}!FLr(dlW`1>o_IUr z2;}W-7rx5yd^JOiKPkMg!j7!)C8`Tnfg>wqWqO9(6j5E-yU=A61LlgV_cB*x-isvV zSArEwT-$^VkoUgJY~09?fNF>GAno{;YKM>An)87xTc6#^7ruabAG(r_U+@G_=^r8` zy!2O5o@R)jBiD&1^43SLg~s3cesp4O&26nyA@fCY9rJ7#MM1S>8J^N2UI>2U(+G*5 zxORvU0r2}LE~~M60H>{V?F<8Xv#Z(tv#BoRu6Nb*;a9a~uI@Vd6<`bqC~DL--iW`x z(k)qJzJ` z?`k%V@Ic~eA81ffn z$ap;n9w_ipl)^7v7M+SBz83&<*43-+ODi4XxBf$X$2&xi7_-kd>rHkqyWopvdS13IcK_5KuVatO$x`&X}5# zC7RmcRng`&#Zp!|TiLa4rZ&-FIdm({N^LSr6U)jmdDe3{eEa;M_a8m% zz4n^d-fNFf2K?3Od>dF;G9nyyJ=xsVhZ^l;G{ca>j=>*uen_fT{$7T|5By2@KdBpT z*SjO82FFSu_bN|I-Cv9GSKS4Ya4U|wi|Q4VgW&w0?44SXKWuyu*$ixM)3yUtPtT5k%(7wxcj4}jIP>|LYU z$!#H89U;@w3f+^i`*8MW=9R@G?_}ebisT&q^VhR$gNr$RGH_p3;x;g}Xv?NT(YyQ2 z>?y&c8FsR=Wdzh5#|@IHyn>88B0w2=F0UcSz?!8;u?rZ%Ydltt_8~!4c>shT&W_V^ z1Hf`9yQ0`IblZx`Yp==}(Qm+rej`T?8eXb@zquB1uke?3YgPoY+S}Gt+2kjTR_ne{ zE_vX-kk6SSU!Wz4dwDVWLY{ZawI&extzVAI?F&khvgn->nw(*m{6)^NOF2WdFK5UL zfc**9O6dDe_RWo4;+^2vIB{}>S6InE#)R;6s3__jNzmr~ClF@c811>?AFw6*Qd4PSD!7QW5^X#K^7s z5+^}crL~d7RtV=F{K%>Yyj#YZK%`YUF1J+`UuDq_2~AdY%3owvXDbSEpH@9UR-FQ~ zPG;X+YU){{GA!QaX&)xP9jz;iOeV z_Q2q47T^DeX^Q z-nxlo^GYSDV3NY63)#c8QLSO?y21f5MP>msb?BAg5x6Z|o6Od_0aBtqf$*?WS2<$&amKN0J_;Nrur1oSKpO@Mo6c8tjW zT>_r`=wJW3y=onPvZ9LV9Cvu;S9QTXq^bq7hBBk?TKmD$X_v(Z;}63V$e(OK;_jiT zm}I%A%W_)Dq8%ikQYXt}c-V16UaIaE3-TCdur-j;!MRZ}$nC)<8y3DYHnzU@=j`?t zTn4z<+BzcIHwg&;HG5z*?=RfsvCqRar*lA6TciwU-f!PETK-Za${6{JMwBsuO^+zp zGfo8uVEGL0p%ZH zWLEGhhFFayK1fxq3{>gkj6mww**qZ{j{TM$(^_@y53F5h?Phs!?S5;!_>~ed@87TD zl&F9A+9LQb2cVw5${WXa4pJ#^^=ILk=HR`&m?CSBETNvQDp2+GA%51y+IuL+2wSJ% z_jv>Az2AW(e`{XjO_h&PV(hp>ACN8djvF^mkDY82A8)XyA4fRK(SGS~9T99Q!H|m9 z)^>q1ked|zI*J!(>O9`4o{-SVlv}rn=Q2i86 z^=+(o`3$Fj4-LW*rbeOOoJGIf&B?e=Q>m{&bGWfa?7tvSDJ*h6*h&(A&-}}Ib1WWL9yj(VoGn(q>pjlIOhBNF~`|xPancEdnUA>k&heaQg zNXZM|lE26c-%?)ab0uIP>`SmtfwU;=a-UAPtc6ba`oR%xA!S`y1}u%X-V=PD%S=;+ z?|BJ%;(6tX=U9c?6aN8j#ss$sLdCc{2sufJ@<9rtvpmfj4@Wy#L!o0#k1+LXUk7yH zM2>*Gv15?(#+V@GjXn|L;Rm_U@UiknoM0~QXie7o2Eo>j){^)@iIn@_r%Zl&02SnN zc*sCTT)%>j>*1-vWvm>Iy^=mm8yKV(rFjdwfgFEUqUN;vnHtNfD5viBvA`hZV{;@l z`Pf|fi+pS@5^HL;>8$jz&waYrk`}tx(?>`2hS^Eh6~QaG2;^C7cnM8HSD=~XB=mMx z<94lP@!KVO zZns-FJz9LAmG`5(m^!7Ky<5Iv0+ANyxZD=su3P+b2~8G1Cx4N}&nb)hTzt4WNR4e> zQ>-`nwEN-~*?oxWQD&!Fmj`PC8FEK6**%DtP>+JU-nmwsfZ|GT>7Pt+x9wZT&5Gbe zPLY-!d{C)M5HzCIebv4^x`}$~Ab$4Peqg#aUMmoAWx6##K0y-U#{Z2;qB;oLE$Gjg zA>;ol0eQ<}6NofE$K^IY@=HU?1PM*XpD2Hk@h6I=6PsUk{u>zZ$T+!eq@ zu^ znZf~CLNkSGp=Jsj9o8GQlgPiEDSX5m&@#dY$gIz8wsR<|oGLsln|MtX4F2?~!h0O= zf*fmUu&IP*-){?=9as)X+q$&9LQM|1Xl^e?{A_X%9gG}!dJFfwJKA?cIXQ@fqrI(L zEnQ&gAe?nK0Y?)AZV@+ew6!ro$dj}wj`HO%ilhACrsD{;P7{ROg8!f5=pz|NC4Gyt zVOt;T9l@hbx}obkyo5&3(ZOm29l>h;sX!uj5;{)q0GA4_IlPPUAZqeSK{K~Gn^xLhmU^1X%(-d7%KH{zJh}oG4ud0rWo2H zODKj)gFP`64{gW(5C`Ly+zp$AZw7dOw&Ttl)Qd0g%! z(|&fY+;O5k&wcV2?RpK6%j~o*F+(oN(2`bvIUS%0^vC!sy^3Zp%Vg3(DeBMi7bPs$ z$gY{jw4u_}7>`gMmwctX)$D|TGVA5q=n$yvl9#2{a7Knm=fyi+$q9*mvr%5U;4F27 zcYB|ZkF>`@*<~>iFnM(7dt#21ij;((!@1Jd2_}!QW{VqG>FVRwQa=QPOP7T@P4LIA zunvPoBdyK3r`qfO@C4XACNw4Z8iN*c{@>nFkWgWrq}@$2^@cKASTKBD9+4cknhbzT z$V2o1V=dumds{TTae3(d;(h}k%sFcWj`*&8Blt^4fM#c(pa5 z{^EG+98LI#x_zkuic;;JVC5w15Wmn+Jf3uHMkIVQ$(ka<7)lGI4YG>g>=Q{6e z>an5nkPtmV6Ap*R;;`Jd(mE>APqyb{ihn3vS82^_O#F1EwZFd=!Qspzd|m6sxz=Q1 z_om*f3F>`y>buf9MdBM7N3XRGimLKK+Yi1D4u~}o$EYZcZv@IU4@*ZB6=)MeVc&?N zR56M1L>@s;$&JGv-l|_F>O0NajPsrz>i}A(6%3s^Eii<0;Ri(%1E=_OiThgY5+l^% z+>6t#FKT`_OAnA&i*81(%Bw|5pW=n^pVm(cgR+I6g+Pz1tl3btVOmz*bM_zzxym}j z?-7&JJjzr=PP4rUvpr2_%l1pd=Bsa57z5SI@!{LOv#k05?`I6%`Wve~7z(q;^hp&D zGB%`@BM!;}?u=Wd)m+-9P&!9ezx5hxsYRS*&9Fln2CEh|r_1#4V>v-oESq5U&DhV= z1@rZx>KO07Io8kp{o0zGJ^=qzU3>#b?P->_D!pkGb8Xww!8|REJbq+LboPg?vp<;d zq_bqn4c8gIFeG*MlhPR+ns0qX*cr?JgvzvR6d8{_QJ$g;r>VT zyj*7`d4soS*6hR+(-BLoFZn&y)(I&zZkB%! zu`HFHn0_H+k^J2Y(c%t1AFkPI4TMSUrsG|j+pS|nAA=06{?a-%+6UdLf-tqc^x7TPv!a5v zNWRNjp_PTf(qGUlQ&`3RUsQ!iB%8q0}=d#~zHEj#gaK`%%>*#$4!5RQ|E}gV)Xy!wBA}jF)TU@woq7Es1FUc3; z3!xjW`EdoZn2(OBhELRoZ^DH@@hfAO`s`naw`8E9Kn@i@F|2YfRljkoH5ebZjxZce zc6f1tvVa)WpCs^Z2pI=#&xshXb_qs1{b6y|F2t|SuU!V*^^z@5>k$FvZEb@@CPP3o z&~&_)RP=18c!57W=?u+S3&U&kiq*`ENiH5I((4n%Lw`Y+Z!9sF$Q!f+7v!gB5|g|C>PVYqlxTCR6DH5-KM2 zQR^o00wcHku&q|S%nFR@%nPt}hc(v(Ed^%o6sq`Pv|#vS))H~b8=pL~mB_%Dt=z5| z4y!NrjjT`DY2ECneHB4#T7T1|J?wV2j)Xs>?DgUgZ<2CGru`BDVKMd+@e8Y^SuRa9 z!y`>OcO?F4%DLM{Hj#73M|$SD5!(0RG}VkmzjMnHtMu{<)IM$PXd>>VKpl{229oNn zi$!0?3K?YAwOUYczAU9BQXG@%=;@ZM={x+!M*6|-!0>KjJZrUkylt8`MhOtnXwopf z?p3SZ4|_2vjF>n`tB9mym7GQnGcnpT3vp*NJ*Zg6!(|`_2+$Sz4)`$ zU$w`2B2YZ)4NbP$9!ck8#dcOpw&}Y;WcuwxQgb$l?&1KeCZS$zN~qU8Le*}>9>*|8 zyfVl3`US6A<1HqF*co+&mkweA^D(0%1KzS7MjW!9HbG14v0hQf`=HShSCYb`=VZb- zum!_~89$`M#bf_&1AFhYg<1ZBEpOl^Nx#EZhwyJ_xZ1JPsAx+&c<(Sqj)hmqiGv|U zS0%+Ck<{~PzeYmkhQ3ko(d*XzxapGo9^&5f22O;!a}oz<^j-n52_JO(LM5h9zq9~qnlm2X?Eu;qw#fC;744byoy#ce0J^f68p z-OT>?sP%ozIK}LiW7dIUG9x7wVVR(qoxsZ7%vOuJtdu(C3GHC?+txLLgL^TOq8Pc{ z!$|Vy1?}p0ykouAV!2y#GC}}DOH8a$Osrw$#6vzu?nI-v%xw;v}dJc3j|L;W4*pHc-YwKg`$TK zaCs5b1n$Lc55+BhqX2yfKPQEK5H6k6J=IFREz~G9cp$>kvZ82s;uGr=qLh)A`B1#k zFkMkFHQapyFW_(0JHA@#_$;~dzZ}?7iJ#Koo%N+pt)a2|GGG z>1JWoCF=yyhe1jCEWM%T7wpxCvT|yTQ$L!mjAa$XK~3%SVyOPvI#hEbrs?OkX1EH= zY=w9!D<{OWqm^i@ScOM4Y~@C6%s#i9AuB8oD%4N2azg!}j{1MB!a)6?2Q^LGY4Ul> z3|WC|ourPhSUI6Sp`-qVRT!vGm{A*3&xjb4{VKH380Ah$tbzz&1z9|URd@)tWdUs!HULgVv+AQYTb(9=$sp&W zdH-0S(P^!}``a9xk2MCt5Y;t57hu~d9x{q)-!EaCETD$^gLb?j?nubj`9fRUX8AoE zgB#E#{bB)H+eU~N86M9BCiHnMb*C+k-f-rYuI=HY;u)>rnm}7uA#2^Lp@GMstxtFB z;aITE74@V6=|?ND!h%%Cz>B z{YIr4D9kn)qfI5Q^lAT015Qo*r@L9hA7<8Q+P{#M5^K|S);PEqYx*pB%HOdTN3;IT zNI}i|w|djs*q+V$4bj^w(eG3EqkW1V19H|MWipgLSKJ0GqivhTK1Piu{RdfrCuX#L z?P0^~wj2|ju*#g^a(17ir36&EDK$?TwI;+#<|!=nId7rYn?AQRNEsWhn13-WOb;&qPy)XOJn%ode~fIaASBSCr9t) zRh^Zb=^dabw|^8=Z+P6l-kEMYq=_jE8}%q^#4eR38XNY)) zRC=Ka3LD2jw|rYiQz^M{?U6avBJ*z>UtVClta0OuWitce(*j$mDEeCrkM*(5Y>Z*y zH$x|jk$>Abu@F~?x#fuWWrem)V%py}mR~nCHOAo5KXi0|2ep2(8Lj+zLC^XHE?c-J z?qn#Xvs!M2GbK2B-^$7jXWbO5oOKJUCD+*yOU~MO!R-;aG{R>0_$u?AzRFjTkn$Z) zk$h(#BSOA&YbHYB%Mc$htosA)!-Lr0)b`>)TXy5N z!w2Eo_<08Fv+c0GbBaxEshg_4tF)8&leLxIlnG1{u3KBy2?}o**2z?3APDPdgpyAL zkT}%#aO1|*Np||%#vPt5OMz3jmL|dEXUjs&XrvGA3n^`7i8Z^>OQp7Dni#-vlM5Bs zjYkhEX2s+|VZR5YXyZE4IaV=&)shEY-m!`9?#hlvcb6PBwF`5h{>p`rl5!zVl3ZvJ zqe3oJ+)=p@ha?yBDu{v1%Yq_IGLQ>39C^kc&Q;j*1u)dq33*|NuHQ7uHr~=01r3Z3 z|4r){ID46GRpZ86#@H5%=l`}bbpxCsqZ=sf$ZeQWKYy&Pmqj!%lw`w`WW$rJm~2?R zwqqNZb$nV1eunbK@wmP8BZDA2e%q8C{}o4e#6e`;1Y0H>w1y}vp43glX_9HY3Syvi zqU{C2OUX1rA5I%965@;?A**mO3U5*kFEvzi!las>_2(wrZbSnzlr)_8MM3a=3(=QV zkaCVbCAw*s#limH`Xr0XSuH7MR9q7deuYvD^^wUxSvoV-lquCnigG+}L@_KSw5#93 zIGi8K&*m*+Bn}e1TMREQD2w#QFjidn+jit|To}XQ^5b|c_JoF=y94TjuC}$)L`1yd$P|#F zuzDf(s-djh7?-=nt8qD%)soY7iEqN`@NrdnIl$MzJVrSkQc}GtCrP#+$f%I*L*te0 zIV9QMs~`qwVCJPVbnBM;XNV~bDcPSxA+qTDTd%bZvX~S=asT@~+e9(%|7yMeL-d~W zug?iHHNG_8Hd@@u+Ii-JW-ysg9$0`!FE~RqEMJ%&mLu-v805Il!N~Q<0eC4nz`hqQ zYh{Ty*}wj|>urlP@dCq0rhitM{#jNoO<(s&X$E4T*~8ncjtqaKDZ`&?+VGQ<;gJqh zo|)D$h~Xr=f5!^Q?$7FW=bVwWEo=oF7nb5NyqdsbznKYsb^k8yEv{lXvD>%R^(*XU zNoXSO=O@7G;e}R;`)}Tw5d*&lm1eRvjHguw( zJW)SUFp{++iH0XO;UyCgmwR-OX9`$KGDSHEQailX_NAK|c4>V1R0pyf1la+Ba?4^k zdY`Qa90yxEe6WSsmHi1mt2W_YTd}Ayn$aQ{qdr|x|97J5IB!T)X91?(higy|NUWp9 zcHUZI-3B%5Fmu?(%aL7%^-6_xs~6TS>uvM3gNd;94Qod@yV+JI-rzVS?$_Yt2HQCC z8ZS5Fo}qBRV#Zzn+eVwqBEIA8B))F|HrtZKH>@1H-cE{oK$77lq_1ya>yubl)8zpxb>gdLEeVn-N5@c=t{zEK3yb)vTOwFVS&tW)%i*taalyHesJJ zgH~9cRJdPZ<%Ii5Y%P!fzQZaE+_F~g!MYU__SO|6#RW5Hh2;x{`!`ljxW7n-QhsXkA zRKK#x+VNe(NuAWL;Z%k|X1soto%CHp{Nc&ED9NQ=!v(BV!fTbC)UF{1r+(kyMBg!; z(22&$=&=S0cUM<6q?0-=Tt{r_+lK26K(%dnubVggVdjmt4R^3o;_Y6YHxBN_n|_jc z&EN8-P75DH5^CS@ZEs>nI&{FI;gDZU_mr+#vcM+Wp#S%XH3LFDt7OVgL4ciGnEvYkY z;5Es8?ZwEB>U40nH*!i9Gdio&!5OTUl6pKH?0`2i?R`WEtCE?$hHdEBnyHOh!VW4Y zV5|cj>Yc)I$^3ir`$L70g_PXZB&jpKwUyW1=(ngdE@r)I=_Ho0MwF~B>`cjO<1L0e zAo&z-F<{>TMaz0xwd*>o?E6}VfwJ#vRGWMsby8>bKI(X+Md|m`W=MU1?+I@X>wAA- z>ueE+y`iN}#jC6o7aUSe1(b{z-g9}X-)XmeXBa%mcd9A*zB1&y(m8pN2yt7`HNDs&Rv>F z&FaqBX86d=>UW;8`CCN3M4+G3F;cS}qts1&#f|?!YF1s^r7eU;c5MwiMy5r=>!0AJ z&Jcr^I_Bqtc-7!8>X_d*bMZ0a$IfEDR>_*-Xj!36zz1ODg|OMIg2q>@pu<^{vfL$Q?a;!BWr=0CD10@`<;wftRP@nvPi6|y93Y`zUW8?H8 ze)n|qgX0_V;^JBZfQ}eO8YuMJaI3qi>~N(4>F#Z-mUNTZA#S~D_TiRCpj@+8h(`@L zZ;bk(#qEEOvHm7Md%8uu)HE(Vi{7hnMfv0o<^;CqUF~;MduBFn0ccdz7H!U-nyqK-Z;1yZ~BG2t|`ic zn&wUA@Kcb4%HgMa6PujEa(F{{JzE~H2t@fLAe|rwHg~){EyiRnJ+DM$kUYD+p2y$B z2vZ)voE3QTcuSN{GktD^jUZ;Hy_O>JcUZV1*ovIt8xoQ)FP;M68on`2XHwOPBW8@{=0?*d8Z zgW76=sVa;2XJ{ykx1_2p{$h&C;xC|gQx-qK45?@FC9>4R=AXH?`uF4Q4{2huH#E(R z#v?0oZ+|?irQ|)Ub76|#JhyBMST)Huw<+0bOtN)lop6HEHd4H=ll^uRMd@&?OVT07 z7)0GY{wtmB3$?AOD)=XMv5yrG89+3F$5ruyOnXo904pa~nbp;Py?BO|l9xP?3de5A zDPn9UDKA`996l{asggQwOhqE ztXyte!M>jYv$U_8QsghGYU2t=ZkT-e+!z>oV_?^II8LE?X_mIw`(lpt6TE2liS0f;6`h12gP%wV^r-kYOJx${9|gUaC_sWffkbeg&%{K1zM^ zp`WWAZ03Wu1NPk-9~*CQtec$sn_Al+rH5Wgs(Nw%0)?PHgXG-?%^+D8<>~pbtDqU= zgOX>OL2i@3Xa>2hJIx?N`1LUSe*KR76YJMl?Yly>hr6qnB?egNkmx#&w z`l1qljzm5~*)AZp$|B!a+CRM{iV&;0riY>Lq0D7>`5_|xQ8fGomFvRK_1!NSdr|(Q z$%C?g;bHFiRgdFw-$iRut7PRJRB`+Ks#v{{fQbW1a(_*14-KE=Do-uQ?fnnDTV}kB zRm7#Fn;zZd!wd9=!%BJYg|5^{hO2&&|ICyNr?doXm5D9p$ns6TC4o{OcunMY`QqCE zxYQqm_y;L3spuP6{k>g(@$FlqRQ{5^>57@no{j^)_!bQx4X~dr^@X_k&%MB$bM~_O z$%E{H77^LQ5Ttx+PH9|(EZ|8#qYZO*Iiumb!S*F0nYG(G44;MDJj8yt=*~(}Ed@~H zZwY{Xme7EhG_2A;7E{^9{jr$j9@LF8qI%Zeh-k<#`yHYWLytsjMSoV{MQ@-ldVLzv z(^LFL^p1`XOw}gz&|h;ilPLij1IP7H8ClI5{LtTT!|ly@&W$VqXo*%)LoBNQW1Muy zbX30PW-8L%s`;F!Tug zHPYTqJj!%%=}G$)+IAEl-&2K#ZB^lxr{PS6{el1Y*PA@dMBj7qhd{h@*k!amSv<&S zS=Kp9BM->}?vz_e_eI*K9`aGPo^_A6@27oWl+lMf*X#DtpJ&P%V;`a|?Li;!)E4!C zO9!%t#Q0Ec)xS|I_?>M0V8O+no&7@6@KnH_gmzGym>e$JrWxTvaZjEg(v&A$jB79A zy;(JpXxgA#o8M1hIG5K=w#Uoo`6BBVjqGq z28k0<-{Y86WZTP7Ah&I`X^5e~k&Q3sXHBw~HqXYAzpmQIG)S3j?=40$dSu`0WC6Et z8ELdg8%BQ)mpNiQZ1Awhp+w;LW&3>DBn{k6m)2~|}F-ko{!0MKn7Q*J^qo40i$BE3x z26ou`ALrC)ALOdeq^UL7=dZL+6hHG8CC&=%dsK;B#Jq?S%7?Y8-yJVt^1I`+L|D4v z+gl}QaJmOnt}?~=CWhB6CkBjz+pFwWzq9CdXYywy2?h#hR@*yiucblJ$Ic2^vdA77 zhG6>oQh}s-7H+u8o)ULPmU1U}o$+3lAPQTzuMcb7el5S8tCpX{f(27nNEKON)%i=g$hhpoEWGIrwQpsIK?BF9!|BAu>4cM`;EWp)%G}a6LV}$Vj8Y}H>Vdo zb$`)iVl87lIojC?hHY~8(>CLW#2zT>BDS*Hq7QPWX&X_a?qS06U)a6GZWqJ?y`p{( zTv}o;Zr*r7aS*8AN?zMjWr;6H`n-dzIRISday@j~W%i)fp0u(j~Zz)sh4w zxdfGeFM;j|$O%cnsOb{05|RL4+{n7y?$X=>R4up96e}4U9s%xD0^G^!NC4V}zCQ!A zD7nl2Agd+`wr~j^BMD5dzyB_KGBbg`Mt!F)0HdZ0z)F+=x0wY9Uu7RHK4e^Y1URk) zIL_)w0J=u@O@_Qi*13@jUEu8hM(l@j7s6#|`Sn32fqseoxGn)Br%S*}lmzd1B*0I^ zI-#LU-yrSto@!C@J?sndyRq8aJ>?e>T*3$deSlspoVn0o&Fu=q*Vq%=v)FTwv{ll< zq5RW9HaOh1xGfx7V~?;5g}WZZ$x3Oa5i)WdOdM?vXkqbNO(X26yWP_)iIq$NGPep#Ogt1iwx=`|JU zlirOj%B`x@^W|eV*dGn^dpT2|AHAHZo-coEhy6LrSIT`ZFlps{2#*A!pz5>BG~d;J z!d5sZGKKt$1&$2qt$`5xVo^90?rH9dz+B6xuyvO`UVO^(iCqkg7lZ|gG}Ia#`W$B z8{a9i3zrY@p6?c=nZS{!VQ}&7<~$56*V*P;y2AeV?7iyxM}})C0yhS&`Sm?$e?q&q z7lgiF)J@E19FYy?$i{i9`&;5e{TRy`aO5C%e}i9ZzQbM(Mek!ic{QU>rdTZtc+Xd5 z$Z};b71y>8i`I*6tRn4 z695%Q?0fw`LPj8KRdHw0z*r&$pJWRD(uaa+eA!p+41|gBS!+1bP!!aXK}LHY)i&AD zMZC`#AzlA23%IV|^~j~YMY_&}6>EyG7Gc?j>$jkT&_c51`e~8nEtAs7Cr`YK!`sex zar@Sp4e9UUNR!KmO1){gQ0=GE&z3xkalT`kjDuWZ;qq_Cst#h8#f ziyS2jxXv<^Oj;VYSZ2+DhI80g%w)})sjy>*9M@WOec@8xCmtuG@2qV8(0)Lx&4#q| zMP0?+j2dZbCD+sjADSW;+jYv`shQ)A-<{d|po~8}y&@^-F>eLkrYq=XT|rxRI0wVQ z)41b(fVHKm%+SZ2ncC~wu;?*oPw^(Jo%3T(4iql(OV?iGqP?FDmyWosrtECj6VBAS z8y(F!jYfT^b|71w3*pR>U|)I*wpX{#&D=V$`B}dpsQ<*i*+0Z8XIICI6GdD6&Ip)?+?Fr2^kk;C&9Jn6$O{IgX2BNHfiGq`GGY1W z_K~75YuijOmcx;jZ&2W4QO0l#(igt4@9>*$^@G|&1CqrIMv)XXl`Cql4@Ip!jf$GR z^|N4TGuaW@Ty0IZ!o^HSXEB-4CvDyAt*r^VEMu9r>dqIB6!)^GEm785g8)~Skwty@ zjs3scUhCRFU0uX}MwImR0@v4JrLS=FguiNIAe`A#7z>lTpO1nMFWF<8tF>o!AA6Q@ zL0UWIt+l6hp`OsSmgMicPh4WnXao=OE6EVQuu?gKTP{Jv_n0ekXe8321WEha;D;-D z=f~)gpZsWlKU5h|`SzpPzRx| zRB;OrZ;5Ii*Hv?! zNi|ToesTbu*Bp=fowVsIiXSnGq?Zr4Ue5W@3(jvc;8TA`QuE?+R`}XN_sgra7xtd6 ztM?cuq^n=Ob@jHctE1#gpU1fF6`^(`04PW&^(#pi(X5ox>`=Q(vpIN+qg2?{$aK`K zc091{=mAScm86Lq7y?ptVegy_ zv6PicRr?_rRE{ob50f0O?xsd9R`>#gLEbG+ejihsXFIu4U|)UWIFhla?(1xD+H2e z<)leR9U}@@d&5Wju~Hhd3n00Rqu2!9V(08_FxE)J-y}HR@LzyjK={I(?&5mJ4{3HD z*X%N%n$3n6pZF{s`uteXrUlanOSRH-HRFKvyhavqJzuTFvEcd!CfumzTCtrqGL*ZE zm6CGt`}LDWC7P`u`WTO(=%0ECKj`1E$KlQ8pwHkC%rKS zKR4UYl~VV#JrwS>JKDlptK(5^n-l)%k7Lh&7@=O9>mk5x%%4dgxo_^&x#The76hpOI=LK9yqpuEL-#}J2GsCvcZAox1Zu~X}Ww~z82T}781 zBg)7oNjZl5Y8g3=XHB>uRn}a4#O0_SA&yZc0SaXS_umf4h8)|Xv4y@?7YqBYbj8By zzK#*1f+1*$CzmTSmS`v%?QpLR*LCO?1Ys`68Eqj}kH+zT5hF)hx`AuyHXmBT1Rw*l zdY%u36_>eMmNw1LfrhJHy~KRR1S#!4Z>7!El{Q;fTIrZv`Rqwi2<*Jv^{Cjv5VS;T zkLXI9tt+h_Hy{%%mUm#^AV*K}9-~6KdW-9-LFp>Qw9o-7qXs8Hbz1zx zzp4A#n~WDy*|***JFKhhpsuoA&*JwfCS9M~9WpB%6V$KSGhD@@Rjv^zEm59dE;%+n zWW+oUsO!9}%;AD9SGfAoydD1?wm5*V)C0 zu|aTpg5wqc(?|&B%o^NHoM9wMU8lIZzVe|i+9R)-h!gbsXvvmwCQD4ErfJ1lnc|2x~#M zpk?=lEelXx_?Q091exytb{KCwOfDo2L6hY=^;t>U`dsB~xAOu}5z345y?tzgDdS44|; zVVCy?$1;~)EN4uR-gbKH?RH&nwIyu@0yL~r|az1?Eg+qgfw2GxI9?eMo) zzJ!K34x2d72$HVOab5lBLsy~KIwm%=PqUnbuz5J6Im?KWZUXbXeCmv@n~$V!){8h< z-}2K>T8BIpj~|)U(zaE%p!%z>a|Btm;yk$SdWTc=V-!g*McC9cTn^9k5r1DEb|pet z=6U?*E>|FYb3^mj8VmAZ=Z%i;qJVKhimLQhRBv4(XPz1=zuwz_o|w;?wZx0&8pwI~ zwPmX-5?);A3dIxC4u5!Iv7=aaWNl#fV#gzRh%k1Eqqo?^cpwF?;|koa6le;<(i+Fq z<~mj#gx~H+6LpLz>FYUfechvrR7?8Ggh|UBSBp1UvzF-Vuz{TGD-^l})&KWqN3uox zArJQsTm|AMMv=7h9oLQ}pWG|bl;{2nH}wAXF9@5`zkOZS`L1v@F|Q3A+0e520Y1D+ ziu;D~LyC*c_ln5#x@=$Qj#gMQV1Y=HP%V#3{G4s&I)_U`++1(yXZU8?T1QOXN=FB{ zajUBv)YSC|f=9NxdK={l_q#f3rTMVsK<^Il=Jf+oL>c2sDi==?BYJ*zaja6X$^8!9 z<+!Su?xzhz@^Y{o$S6xSM$Gb7V?UDA;)3MOI9A@b&9z?Cutv%4^18y7T1SDnot4sB zRZTwp{t)g3b8w{5q772ZBBgj&zDe=>-YE-$yn7rcwP*98`YKd@`$t^u#Pf_L(rdl9 zUSIa1R~%c%G*_=ry;u+ea68D9MhWV+m<`v*n^HFaR(zx zdfOojxNG04i*}Q)w>P&rUKRU!Gr7S1*9q+T4zW_%Y4{~%TBUp~Nl?Q_MOz-ft|Bna;GA=w{R}Dwh#RIx+_VnWlWH&p7mDM-MXq)Nmacs-e3)A=$Lf(fL_}1K5*%5UZyy~ zYCU6z_AVFf69mN*i{=S>)=^iF<_;XkKEY$6ec<9}m>(>u$KCm1$6TQyj8D90Q+{N4 z66|~qXLY|a4!3@uSE{|yM@1290Hlc@yfyKfZrD|3!^>b5Dp8#ncv*Lc(1oC+`K_k zdBD-Pxud~&*m~5V-cX9X*;|Iol??cC69jT^G{BDdRNOK9(1qWEdf5>RJO1Z*NPD2K z+FshmL?F9tW!!5!eb|N8-ZEaswYQzGG&>uxY=moG#pHD(BTr`8?=8|g-7KJ+<=0*V zpBC@3W-aNQ-qQ62CVlmtYYl?)m2J^jk{6j<2wJgg`$zdN*l zquDO(_anLx-FLztp8SoJ6&HI7iSQZpTR-z%R>YAiQ8DKmiX1p3b!_>&@|}L0p}j?JF?;D|%6DZ;x`lJ?BGjbSChk^?WP%=nHu#oUii}#jQ*lGRQI}jaKW!AasQRK6fDcamiX)w1{pp(pi8pPf8{vne+mh~!Bz!b#c4*8 z)b$}(*B44%?R>1`t$?D!g7&cGIeQ4~wVe-whHo(5OIsDUsGqbPhYerjy76(w7OC<# zS->6q9bLv_x+*&a7FUb5E+ZP{P4$QunQXZ_2u)ivElToB--K z(_NCTN{2KaTvaZ0 z?Ywr)f&iGD);0j1{Si0h)7utzqz!reYn*>A$_6VtI=hRznUvCREGwmee2H=cBJ{qI zPCN4Fe{_Vvf}fk4qZx7}Snh-(KW7JVCu2r>OT=TcfSdg`W%irV4EpPAXkPLJEFw=> z>Vivq?E`^sMh^YWam4a5#QlyFz_ScFN!s8o>DN9arAgrA`#y_-52BKS;Of@SX21C2 zHd_K--Xw8PGLA^xe-(R)dqTFNSR2>c+04`WTpcyKI%*gcx@)v<_)eIrxHljd@_I%LlWFaL#U-{U*qYwJq<` z+Q5OAT6ch}cZ?5#54TJVhf_1~MZd5T!++_Gtl$#$c3hhh*d2;*$NAu?#}X zt+TgR@2oIbdS?Z%dRfApqoe7aD|%kVA<5D6Dt$`e>M&>TIK*Y{g1$4vhw2^9ETCsG z`ZGRp$S;Lctp>NGr)bmO)bABD^zwX7%SzS-bk`NGCqKeI;vy zIph#+4vuW{5w2@l1-(Qx8#V2jTP-S~C&EP^38lZnRU6~%6lsvuKS6M13A|=4-fAKw z-Mlg66-Z!JwiBw86NBP!P%qFhhTYCpRZ#-vb90NLndUupfhEvuxpP?bcF7mLL-Vlw zMeoo&Tte^A2=)#Qtp3_L1D3@)?`-VtXA_<6ATzf(5N3CD4ipENKFIH1Gz#40SFCTL z-+%R^BNX0?b50fS8ra!`fX7N;>G5p4_{6)m@X1zbmSd2W;B<&f-j(t#L9Bcw0SAC% ztPnx1$mt zACjME1n4nER^Zl?j=L;6sh`_S$?_MODY;)0W_mH%xuleJN^Wc|(fXO=y~`l0Z*hM} z?(Cc{@+24f@JL2>8U_C(x%TjA7v~Z&!oUvnuwQ9EsD0R(CnmEB>gKS5-t-&XPd$2g z@ssZT#PtkHHusy?4;NeOllzEUSq-(HXSAmex%iN)YEVBixYnzmeDiMfQEH20^b(F=TF~OXeuB zUy;BR*ssc8hFblGPaj8wVFJ7C#x-fo$^~hLU_K^&8!`9}OuUEZX)*3EZA2-^&!}qB;~=&E4#4)mf42`nmM=!SfE$ELkAE70S>lrLf zf#;zHJpW4g%wkw9mfoe>%>L?SxiS6K z%W|Xo%a`SfOfr^E$-yJ)ql&*3&$8y__d81?3>ozg+dNfY*4sJ5B93`MMjDX%tAua# zhw`2|8SvMb;v2=s99+IpY=G;CPxpsoH#v(mY&PeVvxouc_+CRvQgVy%z2)#e&i@K+ z04hQEIB5>nK!42tRT9}*w>30Kd#Vvuo$TWZYYelUJBX@~N3bj$m<&n7{o#uBo-Th;tfvoXVsw~Y=&-VdksDXy6p*qmECcqsoMoavQxo+T zE~CIL!HR!?=8a;4fmn4Emk&@~z^DO~>qh&aTvahZb>jI0+?{x0e`hS7r|I3_>5Qw8 zD0vUim(ide;D!FqGvZcON}KZZ)YM8=N?YK!4p2``ad6|QsV!dMeh3D6(~IYr(9^o* ziRs1Z_^I9G!OkAyY1RzGHWSLq0vy`oD7rg#{q`ZE%Kt^+dB)Zj0h3ZnT0{O2XF|I^ zvMHBNQv5nNAl5`tCZBPQKyTt?WmoetE1<6Cv@D>mrq2M_dNBWY?GM!T2RU8EUksE| z<=+^$TAP6?RbC{aR3}q6+?k{Ogr2Xtx?(iMdCmN)B{oK+42)^>7iygAf|5J z>lSEfG2a=j-QHJ)!olj4?EczC{EEbL`1nkG>vEkId!1w_mDs8_Zk5VM-DdUMnT|;{7K?r#-Ep*`dg~oNY1I^ISwiNM+31A zS+7&Z7Lqb^G96$zLqVUWxj4B)P}A1<_t&|D#0RVmjgkgg{hM6OnvnG0-cj{mFDTXm zv~vUH*I9-zF7yv&ad_my70o&Uk2_#LLVfUGl05an{~Cn9s1N?vAnJpC=35vWly4oL zjQK4~*3}Ba>PqKjqJu=_PHp50LX=V9roW;EZ`o7c@$-`6dC@))SEUS69c0)b>L8Om zll>LJnB!(lnLcZF<-A^wHEPYSF~^9u;qetU=;HV4`V5iwcJ@6{i`HQ!StK_MZxr&3Z}-Z5>u+3i+mfb%ZTAC4e8LW~aAN*H!9;{+r45nC5G-6#)tk0i5ecIe>^-!NV7`M zSvNRe*0!Q-&*yd%4={KdJU63C+-Z=uV=x7O@JtD%&t728y~R0x>j&fJ?ikTg;17?L zDbw1#&}r3P9t=m)^1FyvSuLS|iK9QJ&0sN{dCnr}77C z$d7NpfFUXinRtuyDlv@{mf4npS5F-(bv~bYptwRT;NWIHb?|F-KCv04B8~6`Fch9t zL@*OT*zL{{qK<)iIk}#F@FtjjMAu)q-FcG*d-XYYI)}y?boJzegH!Usqstu(7`K#s zJTIwJf4N8gqW*HvkfxIl3?fQCvQ{`(HcmbQ?s8U%cbPymeLH3pxV>&g%ijOSO`es` zdE%UbSgqj7HCpZL5a^ZQw2L3TYw3e8SX-N15HHTMTF)wNln+*`K7pEA=L8Wk)Cdgf zBMDvTP_ke4=d3=Ss9{w+t-IsZ!3)6HnJ}Dd{k@N zM;SU4*58Bc$is%J_2W;Zq`bF%lZj62$E?6@psG)ZR9W-{$s9SzMEQ#xWa7{!RtUzg z^_7x#s>77@IwmA}#kEF(n`nzu(#xMI4uee#a;HZ5z+QC=oO#e0uU#|Ld#Iwc^okiX zXHA_u?HYZos)PIQbr!_kBDv(st2WqHn^E){>}FO<3woTmE@15(eoq=6k+q_ zFN(1F!0T;^r&-0v=4!* zHV#w$>n+2mi@^Pv-ye0xS$>5MJDhoO8zn~G7u?QB;L_es;a6&S6D5Q6+;K>$dhWO_ zt2HhUh*B1j9ZJ=uvtK1<6_J3?9e0ns&6~DgsX7M8Nz%GoBglVovb&r+LU4BMj%oMR zfg!t{S)#xw2f8|7FNODZJ4XuE01UCpb+JaWW`bBu4hTvN);~(i@VaeZg^kss&J`T3oFo}&^~u+y;c9_r z9)~nDps(`GAqML5`-N-RNDiHhNgdmG-9X_B!lQjNMhiaC%pW{Vqf1f1Y?Pc(z-*Gg zC}1`XZ({iD|Elx4#!=#b&^cPvGl?ilo-hjBL|gJnNLs3U<4tEU-0^M6?cz-XyIQ1q zZMa&bIms&Ih-P^WF1?21;g_u3SfjyKa!|CqA~iW8+6T{7FJpM%DHH9n;qKUb<8@~T zO_ag8*PXVwmnB{ve7hJS{GQ;XI{Ef_yE25*7qckAZRVHw+**hb;T+@foSpUe9dS;y zgmgBFO+ntPOa-~ssHY&;GRxTbSx}||Tu3M*z_qk8wOX6TT2q9NWCaxA2uZ889MT=( zTIVwL`NB@J73oYLjJPnKXti7mN$+C+JD<^@9Mfp7Z~M+c8RWSviqr%>QW;LS|5ag2 z*!q3(n_?BmDI?Xusej&Wc^NI!Jaw_3zeW7#Z^0iZQ(5u8pNa>HXE?abiW^~n3N?XS z-waKBsee6MfFY z)6RvaKF8AFyi4TEhJ1B6$0%^qTd}HzgYv{LoS_hu;f$>Ns(pF14+>R-%T?!KEvL>Q z!B|lUlIyoqXV0H9YnnbK9#;-ee(cPN8!S2HJ%-(2UG3DIu$17w@l;lf!PW`r_5WF{ zR7RX1f~lPv25$=en~_Jk34AMSN#px6*nQqKzSowk@E<23S@R z!XF_i{5hm2{HKX#&8{DvHANe<{n zy^iRlVoYwjM)~9kHeYZKie?VuVHZ7-Vk>?G3QMt-Ab(M8C5-SHTNh1XMc?y2_>Hqt zIAuc~TUMjMO>f1z=EoM^!>WL*HH@ul!@0iqO{)*pl_kq3Ya}p^| zJL*wa{BO<1-o6{cmx#Wkd=`DjnHT9wIeON{!*gutiA-@sgPew-`7_2XgD|x^o z!Wbc%KPM%W^w45Q!e1}tcNKB0mU`g!a4a0ZI9=m!!E0>Ws=~EyBVp_Bef~e%-aD|$ z+WQ~(c`gDrEu*C^qd?iarHuAYpr!3?8Koe57m#rowrmh+%aT20MA<_bE~oICjV{=xhA&+XIXTo-uP~75>Z!0(&6{Y^&Ki!s9R5~t0;xKYvy^s2cjAY?g5P|ZQa2hCaR&{G^ zZA+dJ=GQZENqfa9=Rnqz2*q`6-44`yzi!>-)O-Y`6bM;UDg->NyV}3iT`p;B0>!FJ zcSP?o#P8l{=_wC>z1|`#h6E~K9{3)|@D)M@4Bsoo6Nc}V-Gj&QeNom+!DIN>m8=8U zo)aV(nzG^CVe-#<+7LfreaK5IfOtqzHDR zpG5+8BCsFdC|&)j&P2094{jW?)nbu7Alo|#!TOq6t_PWV#{t!wEnBg-1rr(idHi8p zGc&A*+~-}I6vuZumLBq*&d<;c#XFrV-Q_zSswi|LI4vc%F%utq>t9q8wznRFHMX~& z;tAVZ&mO_;4bLL|5pSIq+~`VbS##L^L`7_LqjiE;=pFAoKHk_G!E4sB4vPuF-7~X? zYtKplQ~jId;xf%2A_1MP)>QulO5ZZgaJ5WBn0lLt z2TIDRS4>Y}p}Gu4ZOv1S-jO|J)NVj2#oS9%s<~HPzOtn?2^UnM5YE3ejp9}wX?T%X zPz|k^Tu>#=#-}v2JnT%lLKEyvUBwf2rmj7MI}-%&QG8T$>+Imp)FR0`lzE6n*qMgw z1h3FLj^M{q;G;Ez%G;xO`6tsotXPY{RaMxP4^Hc3OcQ^^Hx2HIjR~QKXKGK`>+*Vf zd)-T|Al`4~XIoiQt4|eNX|Efq#WdpAx~IR$9@i=2)j@5JU-o*2q+*8yGVx`vR6lya zJe_%d#Ejc++~9=DY$uV0=oq+(SyW!a>K<3n)~Nz(MCOk${5^R00k<_dBgi%o@Gq4!U?kkC7*? z7a4RK_mYFoRv}jnI=&rrX60UT;K)<4mmGQS>LuaVKeF4LThgGSpC18!HRk80 z+ar0IcGfd2kMP0Xtj$$hwFdN(d*gER(wi9kc$U?-4Izkh64)`_x|b~?Omz)CL{dc! z!G#SQ)2&&4)WYLYns2!D_=CM9xC8#UUqKTn9mj+5uwTJ)e=oR&YGb-H6(W+myMyL-zzdb}fytE|?)(pT>-%^KJlLR||=F2c0d zOR-Pn#t^F&PjEp=4AVh0Rgs2^Wim6iH@`XGnq`7of;cXSm>9}^>($|;V}bd*(sN>H zP$FGQ#PsN~LT!xcZ~}iAL)pt)#?A(NUhg#RNDU@7< z15K`8!%Y;@(o85NdN;{e>;_3~aK)TxfXAPVmZGvi1%;_N;N%Xuf!bLt(X(T7<-E@9|;} zfVAdTqaw_-;kjE(2sJ!!^^v`QUmtJpA28Zl8*UaU8f|sQy(PHPX8kM?BhFuXKX*BY zT_-tuh%);E1J!sDvjLgJY?K}`+tWkuyKT${&Zx%zAR1`QR*h(&5kVc2ibH3$z7n$q zkt1en9fBM&8zo1~R#i|^%tp1s{(LXtg_tc@Bw&Ar%E10ycY<|~Ij%4N?69o?%O~`R z*~auGm~DDriP^3R;}vEzUbSVKBl}9YHjETUxR%!!;hF(2c8j1l=gu|4%+7t~VgXfF z!?l_`{WG?Y@WH;UEmfWGslE~lJpFKbD}%iqKpz=If0V~hx9($S38Ai_uShCZ(AmCx zQ@YjdM~;|H^HrGbbYJ;4{irZ7ElTGrJzoU}h;!tJc&(Y%Y~!h0kUb7=7I~#1f z(@g6e7S~TV<^UHc7*)9+?|Q(R$p4vTUBH?Va@`|ZlT=}t(Tu-8&reOot8qUGJ%OhP zcGa~Vir{hWB8Ay9imfMDA0i+?O9iTW^ph3!=4@*{gBAQM{aCO{9OR!r*Se6+Cgf;U z{+q2z@pkj9$!rnHLepjknx+&eRHgxAVH&9-Md0a&Rb-CnC*d4uEC}PY4-_Hs0fBR* z87nwP;+8i8i_nJ=|6QRrM*L&q2_ycoejy|NSl)Xfp!cA2qIDKQ*#DN8k7573PVfr7 zZN~NIpDwj# z#{D9A(xCqZ5u$>=l{ed)9><&4Np`Y&{dKp{?YtRD6^+3HWHRzo`a6#N;E!soHj#yq zf7-tE6)cmaqF#GT(p#|{l8Sl(8PEH)RFy#bdOY{V^jd6iDEcMOrYHE(W9-imq%`(Z zz3{BjxmDH!hB>vrIO%NXxveUM^Q`C7YsBf2>f9DBi55NleEKD}fav10h>zKT6Js<6 zD5Nm~q|zAPd83ciSimf-#sjPmENb)g$@5S`yf%LF8v%y-1AA1DWHQxv*1R^@F zvpPc-Y05qcptcCzw;o8Z9z?%3Zha|!zs*Jo(CgXvZMNyQxux{@O0+&8e2N^&+?qYPG`uoShV)lVQfC=5vX ztXJXN^v$@jtykYZp++tUrJ!Y_(eb$kCQ=0hAWSzJ(ttHk{92O&`XF1<(u5 zh-#<>0WCWw*mRuUe74=%-(WKcN0fsLWOGTXFx!~H|9Z@t9ZdcH7;9o!0I>yl^1*LH zwv@>crhV0u*Mr2u+Rrqga~k{@+|&DDZ!MkMzMVTDNUlt@4%2O$=b z+_-ns_nN;9PzQVnJtDbl0|=74IY1)0IMH~$t8d-|KITsYB%HfQcp#knZh%~UJ2gPQ z_xWIegmScTYAEMCk^Tuw9;n+qA_U#C8%R@I3{(i={q*Jr%lTLO4g)1ZX!?xx1vZG1 z!!#~Rv#&4N_a7*s4HU!iUlS<#?tyYuEq$PculNX7)j*-pl!*f+O8fjd>ms(CN){U* zHRHxo@?xdv@Q>5yuq}ifTPtGyT_jbsR&xtzD^}Hlm~B*M08^n{^&o;o%}OD(-Jhf% zW5;x|JXNI&CP+2kQvPpvHodmNz6qd@45B~Ba}QYev)>3I8iXU>KO_|m`Yp&HCH7}! z(77OQD}v8uy%=ZtIDuuPNjBoyU&1OIK^9(wB+v=MvNnUDl_D%_ zE1nRRwH*`!mWeA7+aHEi(jZu79Ij-tn%ba_?Bf`R-at!(u{k z_Y5C|fXnE@PkvJ0Bm)|ox^x3_@s#6`!E!bfLSawdU^yG=Fc@b;Rdw$yBYNkk{7I^F?&PVbtS#g6 zge2NII}y=v#N!#Zmn7g`l{-1V1pZ*W`Dtru_LOE@0+=hpj5wrIXn!`|;}zgC9(F=! z%hMh24kmcx40uj#G1)1oNPm748inZ3Z<5m3pRbSv?9V`n{h3nw`tu=Z&@gJo9TcU| zU23x;F@x*=Sw2tp&x(0KuA(*e6kT3zUyA@r@4f*(<_l}tSi;fU3_Vaxob5>9%WkIc zVNEDk(Ni^7wX)nG4-t<%;L-kH$=l{hz=H=ox>IryQ-Zj6&6B+wiec{#B5>x(1rHmj zaW*B(1a(3a*3FY=JmylF{uZg_p(0dq7+XUr{k2nPJRVZoK?xkrwRVbCUBUuinr-Pn zoQ09*fM+~NKk!upbS{iO2L%U=K8M5;MxR4@w}?LHFNAt$w*PzUO7;oS1VhkAI>9S+ z$(_D4+Z>Y-%LlNG-Rz3yF5}Q8Xnb(1sd0fHzGNNF$_&x16^}(*hR8S-O)@Y}K?Yt9 zREK2fI0dE71c1_V%()h(bF zKNORZ7OY=>&5W`<{&#D>D5^KJN=6e(DG!FD`z|Q=T_okuecw{mez}GF>W9`WuNpM4pz3N@ z-sa-DhOHuBR^C>P7aBIP;R0VFiXGVevSD-L#&qs5Z54RA+=})5sw?4dYjSibPr%0< zrWMrk6NppnAlgE0WJ&pdtThalGF104Y*SEY4NIj$D$l!Yt6)*2-U;mE(62n^T!> zKqh_{k%Ss9`d3Jqmn+zsQJL6myAvs**_xmnu44pw%76@U^D=lW!1c}gA7-|XTCCg;;=x&Rci;sPhN7ST3&+Qio3gZ1-VF3KBih{ zZk!F?sa+x}1h_~oCSE`nmE5dud(>cM?$fOktIBd8zfsdxlUYaxy6ww_Zab?&QZXO_ z8Bcw&c6C2``~>>V1#TB>5jc#XsYbGNNk>t+L6Bfz z-?$1e8fQC0go-%Z87iJ|wlj42EoM7ATiX8rxi@uSvMqw2Xl0wtW)hd-tZAA~@G5`D z_fLVi2{9oUdlnCulZy$%y_1W6DYiIc1D~2=bHptcs!-%SS?h*togD6jtI7|LNUO@f zY@6JTJx21y3PIeYKn~jo1-__xktE=Yn&(9VzNnc5O8MXR_R(;8+uO&aP|_m%aNU^A zbHj1zBz%J)k#m)%@+Q;c(9H2BQ+V)&D(o+K)!U!L<(r`EBv&l7!fiLcu40xNAs1!{ zcXHF4kboDNQVHHwm)LhSV{gTJz(07ADSS8qge36_+4U-#&x4iXtlYCQO>EYVC4TcO z+%7L;J8L^a8-#I8yIn1uI!4GiHgiZuf0j$h1>g%J?>s`H4k(7GBZ$B{LcZF0GR?M! zjidYo-qYl2UC5)v*Vt}*ixm>`Yujy^>_L(sqJ{-1c+ndft^7zu*dUzM+UyLaDM-MW z5hU75nEN&rM~8GLH{37@+(!xov|$B@Nnv?OdfcdthfMR(2zg1mRzX2DN)IZe#gJ~~ zt4!#L7@s~C;xRs*7Ec(TPLII&6!Kau=p=Y8)>DgZWq9*Ww%H-?dA`#fjk%p|r`R>( z84OiF=>)GGcf5%PBt?mPo}Xl8N9tCMi!7x^$_1Pll7WjXkO7M<(LDcyjM}U&$%WRW zR+|NhSZTRyq`XrPE|I>Mxd0Nd`)Q3|u1WLozgT$n|4>Xi~;FHlC0o^KpuK z5y?R2kb%sXkqpfoa=pxPjVOfEJvT?lmsl5gYA>7kzShINY_*L&{6H_8JMN~aB^t$l z(A6fRcusHIuj~aP9ozlIz;gQu1;*}UBmrah+advD_r(zyyGxGuwUsxxH4hdpiVoOf z`M^8`sUooQ<9XgSi)uq`$>DoMVH&ZG^St69TMXY@IlpWe5rr{3-Z?OeSGW*X)51o< zcXozH)MgQ*bb~>pQ{<}K)VyaDnJ>lyt=L-aFKpkIjMh?EoOvD^$U$2hGjWtW3z|fj z;(NDdgrDgEDzQ*cbjP!xmh&SOID-fO!3M9*zIT*7^wT4ddsoVRPzdgL=qLa6F%?XZ zP-~Z`Dx(s7gU#n!thZ}=phD$fbCw%}y@So$(7eQ8^M*_lgG~&nXi^w%MzFOmDI8|o zZLoDjZya%SV^K>2Ye(^}_LQ0>%@<_AYw{;3Jq$UKnqIA=>?&zD()N(SUJ0O#(v&LX zzX&dZb(FOiGs6fQmAR{ArNQf`QNnQf1tL%u$2l!a5v>AQVx#Hus~P2a zgK@T&{EsmG>a*z`A|lNVJ3LwXr}4a&MHceqZtV& zjle|g{t%FGG|Ld;aWu;mPdJ)odTu?MLD+!NYzW^q!L}&mK*sNIYySHaZBMYl#3?wC z_16hr6PElBBvs;V_qQJ&6N0;EoJRuho*pmoUNXg2$0+1`r`WQqj}!XPkllwU$ctah z$mWBl+J0sWbh7+zK<~hU^9TjT>p7m9ouy)FAZ3U9-Me+bmE`%|F7*!?-7@x^ZA4Bt0LEK7KAU9nsM zdW_$G;zayLaRu$GR5kZ`WCXwIkrCV&t;Hjt|0jT}$wtd4PMFFlE=Wr3ChI#=K%vz)Mm}4e};I40n79uc=QxPJJ^W0?vo5pCjcpIh%>R5*H$Aukf<|7^% z!Pkm^ty~=Ui6PZa%JJoMZ3mc#Xj^ zIvT^40RVQbEeS8;%zdjs5d+p?Asz$P5%Gip>&WO^2Q26_UiiH*WWf3#An($A#omkv z{=#zjZd~+I+e-E+@e#(a(>lRh-Tw<9j)I?IKWpytP3z^+5{Tb523({z1PCN+T;_Qz zY))2=r2Bv@WJ3E;r=EV`c`IR&xB($Vj9h1oDe&|$@u#-@2*f{U2l8CU~kbvVktluQkT9T9m7*c0s<=BXzR$%-kMy=_!#`? z1!tO<$~-FEh$n_&Z37Sq?1!Ue zgq`|?ZF$HD`^X(aLRfJq&G#P9Xu~f)Y1_#567OJeeNrd*g6scEW(A)Ae%-tI(@)!W zvNyFH8D?J_D}&)Fl7YbrGITKfn&e`{DjGJcy#W+rx#Q4SvfS}Ep~PtTrxFl04l07i z@jrR|eu(3hNxCl>no!D*H?DRh5mMycY@AfSEy+OTAp;|AXOf|rL#~%Ou6BfQzUSar z8D@8k^@iEMpSRTu8wU*W6?85d(I9Y&q&}UAHyDzY~mvvLNj!Nw@cmeg;*eS6C11<%Q3Tmz8rSO zkqjJmAOnY;86-mwJCKXRPVaoV89ju;o?iKK*lC;Z9dhpJsDrxJ~6)r2Z+x^eoN>@G&awJ-@H3PVaMUMuWYTuHwq%ZwVu!O)ldZw z{zDbU`Z5JF*56a0bCLVq1)94VRUqR$Vb3wn3-0({m2&sR`7>Iiw{dyEs~G3akMrdb zyrW>BxO(wbs9^DdNa843NPQskaGA`@EQcryvA#>Bkb^a>-fDIzkSFmRT@`_wu+Y(! zRsug;A+sy{gwTl=UR`riahjGX*;+C4al`zsKn7J!t0FO>6%(Yi7}6(wwGQ1HgX%v* zGzQfh;t7N54RGzPzDESz2ZQQkKik#^A8&i`7u!4*J6<<;jDt}+!7G2s<~y3c^x=d5 z168}{ugoakZneD}fB%%bJ4?`VWLRuGUS2&=f4q!uAr$e{8!zKqx$)lk*7^@yldv4% zrC{}uUu;!)+~@YPeDNQ)#On2g6dLj>XtDTp+l{Q3PT_dm=KbP+w|OxXT3U^DCmb<6 zZupPwTQ;1eB0_%px-AFptp4XZOk>8AOy3SDa~!zD8`vx}#;ZM@!deyDc#LJ}!uos*1sQ6Hx?%@p_Sf!5Ewm!T4A6#qqG|-QJ8HAfy;6 zONhGW(eW55!-=*{xlt#xgZb=uc@}vODUWB7pByg(;rj715Izho0Ro|)KjADgTpgM1 zIL-bh#Rbld)W)gk^JmExi``>bs!o7ShU?vJSlk4#MNJ}60pm~b)pd?=`_hm|?#|BF^x^kM*lm1Ygnbd)O&o{8>oJ|+3ts;N zap8PGdHYIsSaX*l>t$#@aGb|{VS-%3xZK;>fv>M>7v~;uh2f(Bf`b+9{n^z(Ha|{~ zfba&%KtKo?2nfR`>b9i;A><+;1nIaA5yE&+$pjfNH&5^e%vp0CvHbX$rlrMMEI5{;kRh>i#ucSYNKvSgwlqQ0$xH4T>bOLEeaoYh;0}$q z-L=>bk}aC5xeb)^q7!2;-)gnD3a8b_pMJ+(GcrizI{saAds9DYXv7;=B1jahPp@lu!kFl@6nLkdFJKHalqG-hr)QUgR3cuJ8(BG8b z)=iR|#))$BNL7%zTvhFaz^YZ8yjA;hYZx|I-O2uqku(L>7~?0)Dcax^dtcKrSz6^H z#n39-WL-BF_v8>UFTgIvz4c^iS8Ku$U;Svi6lIIa5{iI60%4GPRs^ZSV5?kVYXgnw zpTSjdh0SOh=m}Mz(IkW<;k2{zq=7KydXQ)n5S^;XE=tPC1+8{Y`!D92$#T}El~;!? zC^^o$$gt)M5HNNk>UmN~N7VC_ctX_k6!-~dUC~zrbtMS-9=tt7MnAr?js36S`PPSR z?Ju!6h$#qJUeyU+$xAlf(R`~fUp_4J2>VJ< zAeKf5k#!rzI+tW1Ysf&>14)Kv-G;E9%%%_;1Pn;%6shHun>X040c&DvL;Q zMOXWC2D?Gk>1XfDN>9}-Q;ZiDppYkUDX9i*l|#{gIwkWNKh{Wp;!%5Z);NG3K1|%U zr+t$jwRT&Zsmg8bNHL$=3@6VUYOl_(zB@Y6>@YR7*CMqm)W(Jzd}(j{y?zn{e5MGg z&%_2vo1(_2ptnoD6;_=O%u2^+5TK#GI%^t5g%Ki;==rUMS z?e+iS`-nLfAm9g57 zv$=&85JtL_O(UtO4v_JJA?^l#^j-7q{f(u3#YBL2%Sj1b!&y9yM5ITig{YKT=Q3Lm z^%P_%n8x30=V<9CNZY-Ki18^l_&zv38`_W~0rW-zzc~RWc$6B=I3>+EP3X~#52+dF zZ)FCFtUfc~<>fb-P5dNj2me9j2s=zL`{oe{Z&Wb}lh(vHj)e)IumtN8PTGW(w$nNPBB2qSIwk0ce% z{wB!mdeVpIrP;tUz-%Q9%*NC8qSBA=>?B{`Lj(*>T?g8Yc*BHi$F(2Otveu+HkQI` zJW#ULVjpE#+C88akJCsQ?6GYgAc3dT10ezrEO$GiJ-WUWZ#%HWHDh@2Uo#FOO@2VG z8ILBExMn}(u?{bX6=VW!y)zntm2ochoKPF*Qv1ad&ZYK0aEle>_?7mp!PBU+580n($BFqk zje18Xc!e(6cIVTmGCX%_T3P;b27HZV&nb5luUV40fPJfl$*I+OXbR$9r_XuP8hcmv z56Q==#(!vj3@>`OLn*%Hj6Ih{&(JLZXDbzF$mvxbl7TEB1Lr_VBm*j5ogEapu$c}N zSoyGhGV4HykZq=7+nZz{TgX7R!%2o_D{{piz0W~^arsjSFMB?FKu&{>Li715r3aks z`*giM!FZ5|ZLklD`%JikPJG@ZzQKvlGPPqia*N$ zUDSbWstW?`e|Fd>nUxSWy;H7Tai(tJ1!7iFg(L`#%!)Jl%e(DY z{3ru7Qs=;^2+-(FGbu=!Xc@jKC8GWeB2}P%mL?Jq^?$~bp0fXD4xTAN{}4inaem-T z66eRvlyRQax_YhIccy%;*^`vV*P8dvl&>|@X3E!^ZD-2Ynp8&(^}Fn|pEKEZ!UP8> z?QS*tZJtS>excP-mGAv1b11KH!`_JJ@3(hn&k+_rT+5$6=xaFUb2E9{oAv~MN&)4y zFm?CJzL^rrzwm;6uE8HTIKDy&Jnl5uCqxL;Zau#IC3|ajj--kzwg8z#^^{(~Ve?n` zDBwgW@;fPlUjLbT{jOOdypFJ5s~RV3{*##!)>BD7^I6O+-5PzGA*`qLK1=xLuWNS! z=RIkThJH4q4bEB8hBkyb+F+kWT29ujY^W5%28HQED#Zp8IoPK^;Wv)hll&AzNZy=Hfk_Mn|yZkj!Q?MwD1eBg%6a(<#U)>}!o@0pCC%zY(a9<{eO*nYxJSLrJxbzgy_i#ZFv>%9Z^ntcBzAbVN{ zF{|dTI?}#b5~_c3DRV0OgfP=~oFl2yj#+_rD9m~aG6dKHrU4ffM*mzgF=Z~>lRAX z8Yv0mf|S`nB8x_?H2Aju2v94*C0+n2pbetdT|#X{t-Hk&qSoDow?M6HPT3y|My8!~-4a!vl_tmK;f zr_bzV!V-YLS~1UComN9^-*Q%eUuZ*t;{mOn+PRfN^g__s?$Gqx1dS8qLU}8~5iv~L zFYUh=ER!VT`=<<%Kp`G2h*;^B^Y%x~?nM$SX>xVSjFKbF>rmR=!DK^-91P&Fy`d?; ze#zcSUZgpUulmuh?$A8=jk#N`R<@c+zVuX5{UAxVtg9H+NQM-NL*mg~RFoNC%)4FyqiPrH zz9>YQHHxKCds~f;G>g@XUfM2hRat!CHG6G8tMD~^8WA8uv_-U_ebH`zXCpojY5_sb zdQ(^T2s5IuW(jZb^IonR&sRKUUu%vmmWbP<^W{b3!<9|v9`jT*Cl<>wirAzO_mE;l z+-Bcm97N)@KI+5*)d%i_jp0Y*+#~q$UND)j7FM=`@81aS{*QekTTAp1-JG-qg@Ydg z#Q>(@{irqPs(nI4iZ_URKoxmK>T}oa=_cDpIg8^WT2+NYo`U*?yGZchD+f4#oxMuR zXteVVNfp&&yvp0$v?uyg3k3;T}nL7=mxzPkmxOj5D(flLB- zN{^t|oGn3bsoAn2{`6=ET_Y|xJ46K{c-K0{%V_mou>|i_nzp?z5e3?Hj#y); z-IyMsC&GAIQrng6Uoyx1u6XT4dqY1jpj91|Rh>uyv?_~O)x5*#NaI#Uk#6lXN}>7C zx{V>CgwH`Yxk69LajJ?3c7W|LArIB(1%T4Lu}G8-X%H0?Z4U-%u|+PuJY z)aEO~9g&g2HNl??cjWpxNc4HqtdwqX!WOxW#ymD#V%?V{F$s8z_;J#IeONd4 zRspKm?smseSOr$#iU`0q#J#z~48*-%#S`M*u5)gIdk^Pj!co4;j%~rQ#VPH^;kJ`b14fE8}B+uBKyj z^{Ij{#k@ncphlpq`!V*VPLZb-HZ7fco0wO7E1Z2s*dp+4Q`-@3u*)PFf$vWufdXGz z5P|O(bsWXU-+XXgN2fSVU0TL>N{zVpi@J`U1`C@DT-CmOjC2TjD$SLUCx+xA+}Fx%^54$Ntdbc(o*lgu=W-l0)5GKa9VWw5eXQFzy*oT94UT^A(jhrR!~(* zEVov3^uuzG&Xrhhht8K+ZX2=5+&fo70pdZ0 z51==JJ+8GY(N^7=@$iXTE&2aw&CC8XmD$|i= zyv#diI^66aDdj_F=1W9H<1OCR?P$eFPv9%ujx^E|w5RunJG%I_0fb^frqlrbY7sS< z4Kyep6odAQP)u`B4f{LjD?TW8ofv^oOp~kC&fn)LC{}sCf?`$Y>lTmI5;LE)ue$R? zv@Z$6f_O&)ON3$Y;2Rup1viMa+HJ$Du*LT}o(%?H^SV2BvmL|}2)?%I1aAOb^28m1uRgr|boW~Jie@aAA76wP zAeJBZ&zI*qLrC^KH($b{jq?N73G1)z?r2a(9##6BukY*peSiG5s9yqZ8O~) z*>@xrT0=d)Wks@!T_&j*nShLMp5?CNM-Tn0Gv9kE^)|m8gs!M1mlVI&0!wc8bKGOF zau0(33hiLODlHPwpu6Sx684~cCGlXfdkm{d$;GNf5P95#vhhMOY`j4PWgf)FTbbzM zt#pqd78fs7DH%D(y~to~i8u^{HRrh#n46@c+klMkp6AXBrcasgPG@}r=*_mE!Vq|Q z7Q}vRO9YAgo>|c2hRwRPx@e>v^L($_WEGRwJy7+_z@8>~8hcN&&+48Wp+ATP5 z4d5&kUq0MX(~lenx-W*q_Q+>LkPjZ=sP0FOZd|_D-H;s(LEdbn!|q4!Q=6R*L7q73 zmdacVCSU7u#Gy0c!`78J>hM#QmGcIG#3GEm9E2&_NHmlguUy^ljLPTS`mYqtS$_HWm?^W&^ep2yG?^y0`%{mil*un+ouBe)L$C*aQa!(3`au zaAQ2wyq{4b?%+pM3IfP2g8i|z?gBr0tkX83n$n1 z%y48IoBl7_^^!K+&$C5a-8nI2?D2(E7|q1s9o=dnn2LjUYw?7GcWYj-)KNd=Y3VS2 zahp4yZ(%91d`7rEfsZP5)CeBWj~6pgc9t(G+U<>^w&k_6*6?@#JYx)HeZo zd7<0^Ayn|LB^VDn5|i$qG<|CRxcib5t=8ezq!!KZ%NsVVRg1jjq0RGJw#*wcEXCG* zSc~N5dC5twn-6W3l9$ZEgJaDd3*~V-suxDq<3a$nXFE|2H!OWg67ZP9XCeW?A@~iC z*Ir);eM%g!{hQE=%N(nMoBcP-97U{; zC{3Gv51rr@x@7(B!`NCY92Z!=<|$kJm_@S1k6a{M{JSe*inkz;YObcj79T=2&xl2` z#pf>aw)pj{91X&D0Wb9eJZVF6G=F(!C255H~L_k}ddK!US9JSBqo|KDkJ? z;Ny#A3#O{V);oL2u|saaBP|vKYl_UZjq2o7!s3#Z8yzDI*5THqYPB(Qu>|pW1iT+5 z7a(49R(C1&UMxX86hjcN2^7Efi*asVGUBKkHr`F648Hd)|Bjku~ z7A=OOTyMEMFnI9Uj3EIE$ephBOViv~((;=*q5uRu&4}u3#KBy`f>Ls9pRfRzX zi}MU-yT$Udtb|(;Hd&0wC7iV4M*QUafJR7k@P>0U4#p@-3>k{$2V2>l74}R8B##qTmKI^zIZlsVvWA(j6WNv&)%~kO? zDwI@y&H;yX){!inP2M~MXWq7vRO|>qChsSu^f(7uzB3s%?gr4q6$r0C?}+!~j?`P4 zR4B!pyRw?IH-d|7E^#ytQRGlsGW#Te+FZAUCml|!?nkcm{~>@J^y%>;TyPYm{T9Le z?_lbQFToN4rADySO%PJYa#Av{aY|YY@wB(qh`PgeUwtW*#&%yrJYl=9u@u{V$gfp( zTOuw^8^TAu>{t{GL!i}`;i<1UCbAU4jW*quI>D>N9e$ys8^8Z+_X{jXGnP%a!&3Qz zvOmed7nG2J7Y2Dq1~eq~f)aA^1!d+^+2TVe?8#UvTYSP&FG9(A)ltV-%*Vg#$d1bp zd}&QICxQ@$JKju7<6+;s$FbEUO8}EqgD>3z482i_Qrwe7SBp0j8@>dS#ajQ--nX zlu|%sEnHodQ+2t7$WTHcs5niaSgj+5`(C|-lZt7?A2G6WVo22TMrslGaJa}6YT$6; z7Ed@_xR>7oCbj&+u{3y$DD$PGfDI<*;0jHDo!}LECo43?-@yt^;oVu&*c8nehXw2O~Jm2$Dax3;8(Q7NjHlV+H!I2fxn6iBA_l`zz!2|yu zEc%+1)E0e7E&54XRFPT)wrwoS^T&$?`Kjp@qC9U2KGeNi*8bq=bxVaUD}dY!JV0S{ z3p7vBy@`d`y{iW?-l#QJE5oNNWKCtY2}kUtx}e&)Q)7jUHy0~r6-2buKagcyF=U3phDQSb={v_J8=)}<; zp$T^4(c%d^F?{gmMyQq7C$2gk4DQ3zt~rLXxzwPYDZ_G#bb?prk~OzKBZB7Hm6xlW zH6H;N~MLH8r1Gp}VBz)fMX2+3kW>ZLi9EH946d{M~VzT@r1MQp*}o z$~F@Bk>F45*-ex~+;E;GAa3|VBw&*OS0Qfr8(b!E!wo`;uPv?dN}07^s+l+uS9ekR2cHC%zlEY?xKfKuXu?@!_51L9s=YN1|7 zCH3fSW1=bG;M7Yfg6+Duc*1twdu8z8v@gm!ihp{;5&BEJcW{+Hw%EUKI^JXBiBE8R z8>bVzdN27ONGi|!v5aW`m*HH-7HSb3=R5OO@)f&N9E_6;Jns$}IMpd$DVJ=&w>Sr} zJpok46Wl1{OlGf;bY%MkG>{HX2YZ)f=xG$>`tiU!t>q%M9vq3~Y&U`$9 z<@yr}oH99DW=%5KSdxq@g_B5v=!ozQpeiWQef1-kOl)+XK zhC;PST~Ng*m`T-hTKV9fcZbzzqb7rdnYXEXJS%yHf2`3ZzeYNLGT3gy7gu1)MLX?m zA4wJJTY!vLbY!*lqsN!PMUJf2?6pwz_`RAS{0AtV3Ei5$ zvZU{@N@AqzwVYSjAVQ8-R;lA`%|?(^VWl}}72jRQnd(Q5Eqz)DN(6b7aezD2tM>k@ zB)9^75L{`)l%j6%7wqyYIbP4%%wSuIqyR^#Q%@U}VQU&V7qMpuIkxOh4W0GbOC%Ky zduElyq?9~BUA4b)k5U(;1gNXTd)2+!$XQ^puZScBH2G_)-NR#>ILq;xdA2IXkNkKO zXFYbAkRby20gU#p{1|`oeNCY{dWxp6Fb#aPx*=)esttU_n>2IA`3c2M3)-iO@C)Um zoO`n_@eZw=uz?)s;x$+6){c&eUCn1DIx`dvM;GE1SV z0PiWqzA*Lk64YX7W}=I&Y5h^ zzmgZOmL24qR?fL>H6<6*eeF`keWf%FjwhdQ=OiC(4I-SeTJGeS#-B=dW*Z~?>EnXv z6G_|9%LFuL@CpO6y0SL{R3x0#UQbd+UOQW8b)GOkS}l+LYQYVpzbH8fPKzPqrEegC zF&F1BmxOf0dOwOM#CkvS0=u(*$YpC7fACu$Z6AzWsR$tik5;noj8br2*sk z(2bZ8nL5F1!IJ-hq_X^=%UQ^(Ywi;8RaqkeUlWpnD60xD= zV_Q3UxeVtRwu>+l;63_Lo#3rT&kcSf!}%;bsIzc+$#{uZbOUNWM$(06jhEJTa5~vp zk_-V)B3USd)zjQ+R5YJg_47)WvorgJkYg=ek=%{7x}hQWE6BY(N!Hx2Xzs@IYdbop zv4(^WL2})-5+o;+48hlg3E)9qD|b&Q8~`KeBi>Y`eh5i zo{`->t2k{Ix_Z?H->t-Icr(~Hnj}#F=Qwj?Ckw?e4oneG7zf~qZ<>)+H(cL8J!K6) zIoUm!C(O*M=vV6%bDeA1Qeque_(GjP1UBjFe3)(5S@Lz$=C$%o>H4*BDYA1aI}k`v zqMZ9S$w22q20HgN$x?sn%*(f_NY+>)(8<0Q-C*OZYaHBxqA5&)U3Q zwAnQF9`1EY&Brsz(j>yUyoL|0HbZFUwhB`a^TXR+C+MXn$Fcgpk zVhwPtD;sO9o^K+thk4H$5GDAV3`L; zIUDeZe2`fBKItb- zOgZ9$s+U5FmE)a5*cU{B09c}?aI}b6ec|Vhq_j6LKg?^LN^!HR0p%mLNHxp(QCK9W z0AeAg=4`dvK=|su0ucx90B%-tbzN4r$-*Ad4IgJQnt4Ns%1b|j^Zd0_o!_$Bgc`fa z%}rT}mZp!um13K-8nFbDjkC(ekC0iVl_wQCTZfYl(v<&nDyso;wz@Q-_9J}9bZ0w1 zaX7Ek$|=ekkH|Sw(F4wItQQe498DOj1AN^dQ7=|NuNKaW!3zy}vOH?zly*Z@P-?z>CDChW>}+Sc!QP_$#BNFL=en{HysrHG+Z^XQ zc7~Gs`&mu=K33wPn7^MDJFobi^PDjT`-AX9KOgh7y@#KBGOL-zSZCoCo`Q{8mUX(F zqNi^XPn!|zJw1;zYrR_wrLypOpuXi)9(G4eiU=v*O*Es!ownwDJx3-kS{Z2#(MBCDtOI?)Y= zv9XlWzh)GrM`;Nqgy3qv9-#6qv@RZp4{Bc>TqVp8Ft1qV?9P@32qIyynN*3y9x?Zi zE*ZDnnGj~KUneL3x?&Q8>2dN;=7zrD1=CA>(esQDk7(&x@q~l?v+HiXY3;^pIs5Ow z9%jw>DH<;l6?4AY8=T|VF=7$Euz5=-c;zoyd54Px8#g*vu&*^^IcxtC>Ovd={dAq0 znQwA-V1E%RoTB{^Ks9(m#=R_Rz3vuBRerq$!L>*R0yxOPy>E#mLt{6{MGy=s;M-}Uz09eFJF@` zCZrg19t0nH7fH=E>t)Qz6;yJS6kn6hSubCc&LO4oHR%&10X&~$z*RB3VGyB&zPF@> zgc#qF&R8$sl8%O&5^qUIu9t5~se!(IRVBMlX4QqoV8R3k_YooiD?@Fo|6)B3?!4&3 ztnb)$Las;mQXAChUU~x*R{aLuVQwJqsIURu5l-A8hxbS=RPA24&W*jWs87XV1P&tn zeZ3srKidl-Cy|IR-eKz!>9a-cnrON~24E0vSli{lzO+_EX}aRDgIz0OG{}U|i+z?{{XK;QG*XpF$TFd&8Cyi2(|#Ddr+n za2VT6DE)O)uc9_6-JpPw8K+&NIDJa1-W&GAN!x0~lfHzlVWjhVgQAEF7?j@_3{ZoD%=GK}OUv8+G%?hzc1PQKLzQj;N4}5%t;z zxyLMo!k()eWJEo)!Mj>|`H-`!nY@vQ9d;(iT@|X((D^CR4MS(nFKL5WTOuDr=iv`3 z+;-?Zal{$LoP;C3Z_bTN-wyBiNHWHU_!{Yr&E6aN&DUU7*O%mCc<8y2gok0U6A})? zvSdLeqve{e);g6si~rF^wL}X-4Z<55QaFf3!!I9)~Qbdd-Y^O-Tk>o1h@|N=-^XNu7ki1DK(KWA8 zZBGWf1_zQu8|6T9h?K^G+OA zekvx2af?kd2=6}W%w~NEAN^`DkEEhM`fTDmK7b}k$We_6AqerUF(H&Ye}mNMxd{gs zqXjpY&ZH~7&}NQ z1-#c9sI%<{l$yJ>;5bdB*u@ey`UM}U{zkmkuJoK35^lUPR)j1J_7?;X4EEoPCk*!A zZ@NXWpK``IB{-(HKI^=f8Jl&>!odEIR?aJQ$=n%Hm8>$A1Urw+N}DC@uCQ4~ z=n#@USHvx;fm%-{Lk*($EQ;7KF&b*;VJW%y~S?C)4A5siWK^4-~u z&5oOS*RPW6v(6+J))t4E*`SygW?Fh}R;Mtmf=ouvrrcE~yAD5b&UxE$9$XS$R?fUq zH}kRQopmCJmauOX@1c!9;aF`>1Rsc9gOiD#7{$gDJlBp0Xcy1W9T&jBUe3WYnE z_|xCP?ij+++X6jM48NSkS43n_VjobhVnVLDDy(-L>b99R0gn1OC$g_8x#+e*StO(=x0 zFo@f`L~~!Hhzac=zU8NstQgV(e9nVTgfYV*bi$b76i*m4oLg=YGm3w5P7010uFDWJ zdJx+%W^~mFUZG2t++obP`Ky!hg+He+U}H3Qi3mq-k%(|Q$v{L18MrZW0m;ya5OVST z$S`y~7w<=6LTK(8x<$sEPFpbMRMqqBGGd-RHGh(tV(;eFesQ*p8!DvHE|EjTuQ+8L z#N(fAU5an6n%#vxL$VMn?wQcywqppms3O}#Ii9xeDcKU2J>eFmQYGxEIG18#*)LL z6vdv@79C3}Zk4elYAcX?L6GRiy1Y8eRURn4v83h=wFpm`dK;$)O3HAu>}L8N){HV1 z;Y2f5BX*;$h_3cu&43+(8UIS2x>ZJ>!+*5TVm&FjzuJoXy<27Ufnqo#4HDmGE8-f{ z0cxC0$udEm(1i83N=P%G%JjELeXD3TsyK{sO6jkiTESVZw1W~Dq_lR5Rei$37o_~! zW$|~`E-|E6`04?=8b+qWf(1sVBjO1o(~+&Wh)f6Wb`=Llra7fu31#5jpK;e+ckw-? zU2WJ|q8Em#k9C4qgC!5$VVJs{ko^?9rWuO})x&^lz)x0?bPP~GK?B`ygU?rP(@j|i zD9FVr>&2}S5QWg!^ZiyCoK9}_0-|ZmRl`i!#vfs>HgVqzi8K~{NL0WnYqOTwXIKi6 zkAP@aKUnd1w#rVlq;9kDajmjju=a#TzzqX7AXRhGo6|dQlS@tsg3^nOHn+}h&aV!; z-7j6_a`0$HJ}x=Cw3)Jv7nFB3@zeImXnU7xLLN1;6;TzZhWR7`7a7Nj1e_Xz1MzB) z#b77iPP3HIimN>gxK763PQH!YP(zKC_j?#{)nYYQ^|h1DCajn+6O%o-@*MJDfA+@G zVdhw{2PS-mN2YDbGr|~E9VUGazR{6=j2$Oz5N8Y$323rfYO`7F1V0s`e+iij` zLKD7;gnmBW9Ovp1Lpp^w5QvV2p{S>@9z#(t@r0qM*Y;b4qMOxSMSh{kIG2*j->u=w zW%st&Cw#nG`|sV_gv{FX5n_8 zR3oJ|TN#+U;Qsvfp|fY!b{T<2Z1+Z>b+uj9jXnH@ z+O9Zr?{;1*J|!w{mf%PG=qMsUY$S;x30{9F-nlV{1+g3t#FHEkWF?S2We+vuN%yvF zFYk96)D#G1tM##)-BhUBh+lpB-a0YIeLPS2c%BHV*q=FAU#nC@Pld+3emz&V+{_xl z*V34GO>3QMu{5@nB-JUKZipwovSo`437-hwr{HIT=NY)>cMVzHT-mb)f->Ou?l94~~QO5*9wOkSb6YdY`WQkUD`63XR|9TaO`9KmO_aK#zB zc=_h8L|)Xg(`x2=6ojgQ1;t!%CB?+YT!d-}l7M9&;0eiEz=O$3K>UYLNlQwN88z;{ z)g8+Q6+Jozm17eEMIK9WbpxdyXyK}Ej<{bCC7^O^ZCXeln+sq_qKg4x#a6CLif}sH z9ms8y9k{*AJGTaI@I84SH@?WB*?sNsIU^&S$I18GEl-nmogY`fUIc+ zG4QQRpBQ#MfZY7!QL%KD#J9BSRGsg(LEVWD&IO5+Os2Ew$NX!=jD$l|SiWtin(^Xm zAYK>82l0T9r-=Gz%>#Kfqdde_)?Oaff_T8K-)PJnr|T=$F_2M~VstpIQ^QzsL1s{S zxLUY*8&|!uVqYP|x=noFz=>J>u{N%x@X4!73RvkB zw~yS-4;$s~j#&kH%42zTy}foJcc;6y2XU&!V>4VM!yo-W*zE|-ZskNVCpcnOtiC`L zrb9mUH9uJycCYr!bnOg(B|u1L<3--z?dl)?BF*U9vvp^}Qmq#Hu`KSE>M~D1#t(N( zZ5V!r7T%iW>TI5Z<|9@EidMG>a69WP!ukA_Y*)DmDjB|6H?ZuGkQIFgmz0C7 zsn2(Gy=Gc&JO;?%KjrQ-Z$Q&MkUE4f&vE@_*4@FEba6EcufN0FX`yB34M-be*4`l( ztm8))RWzIL5VMsezBAYLz->SZ(4xq!v4fxL>avH|prS;LM70+ww34fV?By*|&B{CY zk=ZR1c;ReUxA0!HTrD@;R(?1y?Kb^iWOmmgw%(JHX6)eC4zAxMQb0rJOQ;2d7TC`bR&;|LEuX#W>9`^>?)lKSQOWQ%+H*e65{QexPg6?KIB? z`Mj$%f9p*0|6}dD1EZ+AzMV-Z$=!s6KtM zz(tsXkK9%5@2u;XNJT;TJ{BnyKKRh9Fo>}xe2oS`klISC(Viy(llS7e*E{hB&L_(882+e9%y5O~*OP8WH-(7ojs! z{!@rhl{udlZJZ2@2%D> z*49Uw>uryg%A=n*MmXR0=|rQeB-Z9zM>;n<+AkyC-~E#sJu};o6v)GIS}tBr26O4b zXTI$0;OI>V^VG79d&UM}mDOt*Z@s)m9Di$+^FNL;w91K@8Euu91TxLlVaw!!(J^m1 zBY5#M&L|GQN;}^1D-SP%(emT_R%ATurDszdEB%Uof<={KeD_%AAjdwx{9RsBaM>-E zKN#oi+{oNy+6-9wT>3pr>7u`-jWwg6@atEKYYdsD-C=k?B{Xi-rfP%X0@e)V0( z^GtMBjqfFrsl&FU;tg3{Gg%HSDv3%sg@myW`fLv0lSYFmQbCJ!l&2(Hud3ac&xp)l zjW2r38LoP!4(o=g;SQ%Lh-=7T9hbvgFYt12KodPr>!;?|Tc{o2^hc)}#T^}J&XBqp ziClk=h4Fh~T3L0_a=wc@D>{bIGKs3zOC7MB4CclFDcFfq%Pi*?<~pks%n-#9C-bUi z2YzC*(}z{`+f6FknJ4zE5zFiR$63LiJabpG7HYfYJatx@OKlB&ufc3MjOO?#wcAu`FD-*g?W9T_396L22)s-xWn+a(*-|`872{o|I14yzd8pY^AI&nR zI)^!)P}xwk-%ZVar#Uk>7@2DH3VwNmQQi@=f?Azuqyj6fMpEMWg!#_25HM)I+o-H5J zV+G7B4k$^EUNj#Ys2f#iprz3LnrfMt41o+;$9e2(2oC&dZ34 zFYpB5gTbNs0%zHLe+v3aK7KAjE8}?L%S`>9w3V6cs+m;Oh~4qXG=kwi;2-P?Q)^b&9!U}HsWgXOQrR2 zHFLQj?W{Q~YYEKaD&3X^^b;PZ3`_jkj#(tM#P?piDmzi`)L!AjgZ za`YC<6S!{r!cuV)zAumY$T>gY62gZ$Uyg!at!;MZQfHXr*l0st45`+W6jSsmx#Y!x zS3H0A3s@+g_ldK)<8#774z2<)&Dyt84z4CGbH433ORI>%mHI6h1nizWuG1VCyR?G` z(clhrERSCSqv=O97soG956|~}&AYFLiCKx2&X$e>t3XrFcmb)iRg!u<&B2ioxmf1@?p1e&a4$9>-k(RN{JPmnczM4z{KVru+Hy_0F2{`$Q@oYptPBwoa&7 zLc9de2R-YY@0d-69r9Yu7V)cnYtN)b5;r(qv6LRLLLY%PM;}=!N~4dg62H(#R;@xG ziKRZ`skeG1?>-V%z(#-Od?%o{EY6*`@Tm0LvHa1n)N1_EM&}mCeyR=5MD~&tQ>rQd zCrnReJG(kg5$e)o0`SZFW|j1qQ=6T09Jgo{wCQWBUbC_`TiERC28!2w`c$0a#^yyjq%YhyAc^v4d8@8TA%vKO5m? z{ISk~j#GXGPFMwQ)r#e}z666j`=ztKvwC+Ec$! z6z;kJwhp|}c7sTdw!0jd`PnY5AZ>TrYG2zG6{YP~6a1I+caJ#J;y)It)OKf5WxTeF zt9`Yo+-SQqd~2uCA{dG(Jz#~l3oU`6xTPqK#@kB#LgQ_25)9uK+7ErbsxyqxT z*32h-O!elt>qTe=hR=Um8%3_&>WmokNnB0g`S6GK7LZoLj1^2&Qgwxw3L`r!=f^p z66`dCNsBGV8$b}|pzwI(k5`<|m`_9vM9f^I0*1I;U}K0=H(QFBqbYj@@mhR$^^kC7 z7f-n6oZyIE2lPC~j2aYNCp9QYb5Mih8(CSk;yS+PPc6|=nP#Kt<@tn%aG(OEP6r}V z>IpZTWr)<~Dikn5sclS9YFi3Q4VO6{ifyCORidTT$^6t!=lhPHR00&et0{U{nggPj z;tAy%=Hn%AJL|&o^08l?F2^WZ1jQdg#DC2z{>(eh`b2zl(Fqu#_%=o;zAXjk%SRtM zGaR;L)T)zBtCXLeOC6t4nNXp1rb6pz4z|Uu-<);eL-OT*haHGRG#7Q*PjvaltINgv z&e}v5^MpL`KwWG+P#0SY3ccDUG#F4aZ~Oq7LRs%?MNdr0pHSKCO`#TE&yWA=G#o`} zZ6UuJvz{!LB(C?^l22ophvQtceJ6BVT)vf zFk<~Vlje9^MD4Slm;W7t{tGl4Rq91m8tPTar%lYyod6e9$;Jg$vZV;w)n@B)vCrcg z+x~PebS$FmQSJq%+zV(9$~~=8voId|#92exz%!nJt!|`6Q1^4p)yDbHqquf8vh7MaYsx;T8(z_Yj4~~0ODAee-snKnkgGyq^-Q zM88n^kVwr8QBj|wS%pATG+XbGXsfh;faOp_!>rXPc*gh59yg9UlD zq$KmM1{_SnKFjJfEX}ZuY?@&k*;25L8t2nmIc&+;MmKD2#BquFEh-~6(iMn!1J1^qek))88XU<%<9^A$nfv&4MOmlv#JTSj=_%k9@l zt!iMs!~!$igJ@MiGt{sRa($U?@G)&Q-v$yg3vcj*%#~4E1!8YrxHv8^`=f=+%T+d* z%gf1>4K6QNqHHoYkmY6JM`C$7CMy7DsYNs&BS34j@keXJ)n!{U2Iz?bGy52zN+Ion zBZ~@%7S{(<7Z%rt=AgwHySjz(?7~_SoM}2+SS#lkPm5rn8%wo&+Y92uSgj%fF;Oly z11EGM8z)rDmV#=1R79I<7YUuH=LWe^vumwbAD4^f%62hIbE_*c%_Yvsib0#W(PAI8 zTIciWs2S|SGfu^s=qaHj&P2Zzzi=k{?S^0r=M9Q$V*^b+^T%n69Y0gNaO!!Bq?nAS z%+BRvOVz>7{Cs!3*2M8Qp)O~g0r+J-*&t_~D@th79fdvvF+9UrT)&I@Os?NKK9kc< zoKjZyD^}j8m^Cx3?^o8a%Ho76h*UUXdJ1a$O_*o}IbpgAwr1bV7Zv4%X^8ms)MtEi zDXm=m6M+exF3okDU%Vl%&-tkst%pSM}5;+KGYO7EQef#>9N1Rpf* z4&zU{4iDqTrpzebqms5wImSy=)>0fN2u~ipy;dS0Q(3Fc®(z};KwGhU#I_J+NN z5>lr$Ki;xnGP@b5hWZ)YKs#9}$zBPM9Uc+o=@j%R_yZgUp0hPGIyL|jSw}vTCzM+y zYm-?1jWz%?<1KRL6*NkMyD}OU&hDO~%~4sbPt6imP4i^}S`!9!Q`H#0u2^DGUVQDS zf^#O{aq#Twn(P1H#NHV)Cy77VnpuP&Ka}Qx8=P8Xgq_uldflGmkD7HW$on-;bL5$w zRbeBHN1WA)`jorSWB5=A=NFSsWQu=UiGSKawTnA4o5WbEnUfsnMuBl0 zFZt=HN=0nUO%I0}{Lhi?i}4{fwHC3Ptu__EFa|&~;LR#1Y2K_7b;Ql8>fHtNF7S`n zVMPjYSdo{7Y(cZ9vPy%T;30karP|t?>ZFb0-NO_o!B^_=@D--wdorU!;SJO0gJAAQGn3R2D&K>}$Ht`c(UDbJ$ z4%(pq|47fVRYArQ%2htFqgH`kCESJW6%5bzf$c{jj$6I7NuC}b{;c*DDW<)d$%IhX7;UQ2OXV-zMUCL@vnRO0SO)xvsMXP8-12JqUiqnu*oS*0^ zF-&cl?o!WhlDAM&x@i}bsk}gUtvs7fSfCk94g%V|Y_tFs^vdi4cM6OiTEpC6ro74P z_5>~7Bm$roD}A+iU1~8QTUtWl6xVxf7paw6($(ahl$&`9?(}uN?cSO~f8{(s-W%Wm zm%wwwrqm)3!(03UItQ(091DhHWJ> zL71w@kN+7~J9Cqj>LE8}SMIH#B=0yq{_^88zeh z_8D3ec9ztDz-2zq@GW2>o@co3n=77Y2>BL_%~ifdE%u0H@7bkkeDLd9JB+$BTEvx5 zflA`va0MfX5bz8_oVtFqoWS4v!KliQZPfC|Zx%$WMTj-nE$~bHIcauQ4Uw=J2#SXs zz7$2MZEPTd+#g|-5QBrdu_V<4xlkUTU)VicONuQm7~rhFjQEAK`Z93pqkmc%$NQoR z9*$fB<2i9Sa(dBj`FZkKZAPG$&pS?gk57F~3x_+=R-@MzWMzNmkzmT|+%@`~TDJ@E z=SFHzt97?SA`AhgKMBs+jbdZ-*B#e#@&*0+dFjO)I+UNHcdB<@TbSC~B_Wjwf4 z;BDX3YWm|6zSV0eVp3Ou`{Pp7w}?%kvc9=?fx4vjDavY)GL}Gt7DZ*)1VWz;VmIis zX~_7uO+XM1i9 z=Cd(VwZ(zl^$$pAV+kIX&%SJ>dL)>#K6gILFV46FCxXCf;nO*{rfVr|vc*LDX#lQS zZ*L`m`aM#^^3%CnrJt_w&Bf-QyVVTTn@M&6w*V^G=s|?QMjy7-x6wxnqS)wX#4quu zr_o0PK@q6m78$hBM~DP-fNwQAN%cT3l(!oFs;GvIeog$sM!y!c(PzA?eHx(Av)`Jd zbyL_=+lUC>?)fiEFpmgRw&b$ayUx5*oR^=cy~qj>p4cx3V3!rS4Hx9ItIgLE6;_5+ zS#rr}rzUQb54cq)8E6Oz3zbSrBA@w@R+qU*X7>-Yexeqh z_9pEYNQQ@YWl4D?$wJCd$3}VG6Qd5BPD*(QR8l8zlY0psA--6wb!DHBqA0|N+xYs$ zb<@L1x|amJ1BUwTBbg`#RI*8t@}bs`eNRdu=`*H&H%SK49^A2sso!rT3n@b#8|6=y zYMoj1cFTB>a>RDoDkVvVS85e<@pizJPnB}43MnEuC=tB-Dy_NdLFJPpdJEQ&6ha1W zlR-O@VKIPQaf*M=S9${LK}sNfx1D~}*FD>^F{BXEf61i(7Rj*aLoPlJ$Vo2Je#uVz z@a`UAeBA+k2wO)=B7;>XgPkM;865B4q%v&U;p?bJNG8%>Wv5@|kUo%IA%&3iWs~#+ zl3~dXxky{tVYM03zU-xaxiOpz{9-*=V=+<)X~*u64O^aMAnh5ChgMd02-ux0on#8q zD%A2Ajo9KU64=jSRiaCt=lP}2G_621*qyb}bscZ5GE$AhY$!>6>>GWfMLijPdkG<; zxAE&6wOVnJBAG_q->tyLA>t-y_uHgxR9F^~+`H1E4CiY%Yc<(Ok|`Ei)S)|q%n`@$ zkSi@9gIsB;m|Q%ED=mFF#>aKs8)$ zSstjGVD{N|%?QeDTcBDYf|)pBAb)Hx0Ov~wDHYk#K!pX17j|k39aJ#!SWY6Jd{=*+ zT_lyDdu~+ZG9>stlLJKXx$9Y?G;QL(q&luw&)Ti^P}r{|nXFg;MUnx#O!Zeky5@!w zp__eqpEgHfQ9FUP*?r@BH7-CGC88?BRxC84-GSCkWey?RH zFU>isrLj>YZ~axRw>n~H5I1-YsEG@Yy>{>_7qps%EWu;tybRb#(?SzIn3$x~rXlQ4Ar82GM7?^u|6U z!!n3hAXgZ~c#?|-F?M$lZ+shSfH!&#qA)QCbIA=@$vdGzm%pO`_*+8Xl^0 zN+cJJq1+xchJt>_3)1+BFg*=zA@Q+NiiGCMGBii?6CrwB1mWi~gl2>Z8Uo0MhCs?n zL!b$WVcWm8F+L=5-*L^@Q8id^Lf0|`KN>6k(MmB}stB@?du%9foTo!K{5GM8C{8j_ zoJ2A#6yG;dTugEi#rJ}txFRTuDH6p=5=Fw#gW_(&1W^Rp5Jgf}qDT`E#Ugq1o)IL~ z;|hb`7?sY>61s?@;mBm+BoRpbr|`Q^;Y0qg4?*Z~w8z)%Nb>xV#&q@%A%IB!X(IV2 z$v`Bd{>oEMje%Q6ZE7U3!h0<eC2yr07>6HS}$gEd5n(u6&Kh1vn-w3@|N*`oH6kTe}KCesRO@qY~hA?HPe4VGk zPJEpw#0``C=sICNSdq^yYi=!;BMONG&vJz8?~F9Qu3w(%YPHY#kg-M?R)dsZuj+l2 z&x4q!_PG`5my9h}N3HxhUozil#L5#2aQ-1vE%UjQtq`z)?|PtYi6!zp$NG_yDBBA@ zven2QUQs`&=IqE1F5W%O?^e-Y$rXY4WPL|&2xL!A(d#I=qVQ5Ry>_lB@E$evcXA^F z|2R!Qm@5JaHT4C#A&}j_mfkfFn@ns*9DGvW1UnRg=S`A3yfD^wvt8ZciVd)7IH|p!@Y!6|EVd7G;o=k;W_YxY!1*+A# zSZowO+&rQvI~k~|0}|oHbpde|p%A}ZM=!+hy+1nAhtj>Mt)+O%$uZ^l%|^O7^C92~ z5yGxtG&CFW_UXdNE}P-`_+p$3_v}!W5N}d`L50zNPGc;_Wr4Y_7fi&{VHLMw5-C zH4YQC<-tGy%t0d4?Gf&He)xO?eMz-l~IMA_(8ft$^<@d`&Ch`>QYCd;iAwZ;S7t)_Mif>K?vd z;B{hu#;w}u_0`z@d`=r(XGQm0aA43Wv_D8^nzY~B%7@zO?tl!%Mhj_SQxf)|=mpbX`q(wYh@FhKLO=zYY`)!e;^LjmkKi^Y#@VlLLjj!sdPlA|@jWf3wvN_dD zvRT+wPbOkFm5uY`emSg+5|%HI%Z6ZzoekWfBj!b>IjuIG{+d}>^B z3~$^=F9%Gp4e>5@(e8RVzP}IX+NwLuflD2*8!YeJ7bW?quau;F54|c;*dqxl%&gGZ zl#hEsZ{mqMnLYI`AuSG=Hn}ctU>NVvQ!l_@Yg+hewcPK-++c7z1r187TgdEImE+Ye?mns%|U9i}llsvu{Wtl>K-x z*)LeKSM0CXAT8fqLcNU-?ypz0vBjaqf&O}P_AB87m}e^6_<#X=qOG*BT9)@q%jzuC zjToqFA)pXn|6v8V3$qwz)=!Iq3XFm}&*tls)mT=X)I?Q^d>O=Q%6#dyn)e3jNyMEz zsvM9rL<*r#k8hUDK4A0XwS)DAAx*wC%^Thi4&y_I=q1%wU-EZ`=%rX2Ul}ul$=Jz~ zaph3GEQyaTB;3t_i)%|#JcA$hel~fS-W*O!j2)&oW+O=^f-*E1!|@iwEyMMuff=6I z+AILW?j!WJ%3Qv2gx-?P_hmRI7{iY&hQE*0Ta#AsYKZ3v{4*MTX#+j%Wql*eOn1Gk z4~Oqc)flC>V@G|ZI2cTd)0PzDM(gbfvrLKe{x31Kvi*c4+I8JAdPjDLqzb!Mp|}V* zw&G~m|JX~KF?q_f$yx}ImP01W16}s5je3R}dysb?r`KRb4_XZ^+EOXRTfbwD75z5@ zlKA>5dYTxg-Pxqq45*g~HU1fU?dXnuRc{sQ2G(-?>OP3$R~7!Bcf8(=HT4y$(Z31R z&MQ>I33?`pAuT1?^+jdB@vE6>h)nPJwQG^iVZ75sy+Y`4uW-YqaA5p9C+bz%SYO#j z{hMr)ys}+>O-~`RwUV-p3@DqKIn*ZG@z?bgAs-*4Bd;Bk&5;*d>mwEKIR*RG#Zv+f zzgkP~%MQxn*D_KYO+*a8)Ds8!MHscQlOz{S;I(EUm?LIMFt1P1YX+j3I#qZ3r+;K?#S2sQ{ycuRzQ!{YOMMq<4}4eB z-t?|skGM}8*-(uR@r)VJ4>lr_VE`CN60m2xn7>H8XV_7K|28MkaBL*^49DIi)kV|t zB6Cric5|)aSU_of1{7_0m3h{HV#Pc9F#gXxo$-T};tO*9r8;4J@H8O287|T4F1FQ| z>xKDxUH?}6+-gN1RN6{ZHXP!Emg-g520{-}IZF~esN~^W=ID9|l$BwTR`MB$-9JPI zVh;!{?CgF%6l4VO#FE!%AZE$y6CKTrwTEnd&(wK(`_TBqp6D2VSVl+qfBbyCH7f%- zp7UrZQPSZc5+y@Tb86pnf!>a^WIKsqNvJ8l%qA}N`R5itOvIX|wmi)5y{Gq7+aKo7 zEY$0kSE~XQUjh4@>)QO-N#Y=v<_`*~=sq`$H%`Z~z?srNyz~ z-?o=bt07;4q_}hfW3Dj%@B_Uf-}a&YG(6>T>O&ZP zo$!_UXfT=2S+Eyesy8K}sl9~#5FfY{y0k-tqJ{c>l8UGwGEt|+5%rKGmO)zXmiH4t z9m-m$vsh7(4zG)nnuvd)BWTKjMjkU)>uLYL@O$(;>^tZ)Gxpoze|fn+Q*m+EdYJXT z^{O7pch}OB`2J`0Vrt_f{M8kD8`jiU;)cN_ZpVehVyv`(rTz>V`gV}u*E?cHBKYC; zXN*KRaej3bgzo1S*8G~(S}O?}}vGxQ@Qz{K)p>-4#BHXh&~rtISz*XwQB7rsL5 z2`0obuMkf@wZYv{!oAZ2H~g@}4a+fMeA5QlbiBr|Zh$fI4N?N(z7mY-125A88})Po zH(`pO{MdO!jx=!W&5p{kcf?Uk666zhG)N#Xa?~5heFolMM!pc68Cxa9>Uh|V_!~X| zb*X0FVq}}$Tw@+rS&O?+OAkz>i+wZzDbC5P@k zw~55{9(+owlTa1!GIbWe@Gev5qron)t=g*33vic-PuZs5iWq63wlQQ*)kK56Vx`D? zgu4smtE>Q)a1S?gsFmrFYRZ~i-EkVhwR12ot+P{qlf7e6w{E}|3BWUJ)=_xzu6f(y z{N4Uq6d$$=MsrI@WpP2OaKL&zakqY+Ws|ZHV=HiR0ZQEfO2*Y`24|f2?1jC7kDur< z{Q17{y*T)l!j6$Tc)jB=Ek1@_^T`*V%=r>_mmZRIFE7ZPxnHl#LcX$$7H@z2coc7c zcx1o}H*us8axVInyjW6^WLTt&@|lO>Jnr}oQDs;yQUd8iRdKrn=+8W$&tR=dK9X)> zlI}_}EYd9m>AGwH$waD9%cP3P;Z>VSq!5yxXp){yGAz;)CFu`HCX$9)9)XYOJ=r#r zk5scwss~AiMHOE0IIPFw-KNu|08)mUc+qApw4=Ca6VP73&a8_zA3{_5U9=(9Ti9bEp96to+;+i8EwEafLAdz5Qb4=l|gQ&A`QQu6(-fj1u zwv|H)9RqK8ad0UXOR_Nr7CaUt1|}TC7#M*9i4mBPiVtqrHi1t+tLN}l9`xl%HT)Qc z&$wzr8hXnl9}y33gT!W6`bMu1!ZJuQj+pRDh>N5`gJ!B3$9S-OQa2gr}*V9TJ79pkZ~+K6XKd;lNPTH3=;zWD=L@2*PE#k zuULwBcB?P_F}N|CWTnf;yTrvM<(2F|FX|&BH#D6cvRBDe*6}y4=nef#|8_;M z#lH71{q|MZS@ffAMAb-Vcl}HEzNT05FO8Bsb=>kXVR#@(i|hJmTWKGZ%xfurD7Cqv zcTiZIogh41nB0n~$K~R1L{Tf(gCQQ!u4<)A3`H&FIKOa9pUOxjiQ(MadV6Nrt7L{i zF*!f?D?jrN>;<;*DX$hi&MV&4YdA>pjpUM9FH#;ane~ALze{F7L`=`(Eh94T#}Igc z>YD2H*eF5}psvrmbu1ZPgqDM*z)2tw<2#CvDxUq(J^f<1`sQ(dKVS9Mg##AlxBk>8 z@)aS5I8`AIDzUkOkDN?qpZH79qp(ecGaiWh^tjxU`IKbH=pvrpKXhE4^gcpzF~EL# zJV=237U;oh0VC0c@BT+GSVCV&u#m(ZhR^ znqQtBT0ERkz+-`t`HW6BWwBqm)UQQF)`652?rkfEmFwm=Vr{8ddGUc4OS2dMYvmGQ z#sdG!cp7KSf2}+<+*t2lx!cK_rP6U4oF-_|%$wkxp_TNnFr~k>c%;^>|mZn7{@R-&gge{uZ zZZs`MipsOWGy#nOkEq*H;dCur+NOZW>kj3h|>T4NFN|6jJl+^iJh7u>qMMN_A zl9EP%r|231xj>PGI9Wp(Nr0h5f^haA(V4KrGqxZlp0OomB@{FPp}>m|B-PVR;l+oS z2wf4v=e(A{!buuXc#DzB(y$VQuJTcFuXW*Z|My5$jLUOPFz1pCX5!q}Qwm1i{w-y?M-SUtlVmhj8~a&$EOh zHV;UO%|pt{=AjALJa{R9rpo4lO99FVzPPNB#$F=Caf&f4m^u?q`Zvspaz-68z&4MS zP=DqeEV+V17lV<-8Zd1+rhi0u!2+O=P&V!4_`GQwRxiAoZ@ zOHZeBwe<9nc>b_Z_SCAz`p}R^U`_Zq?4y(7`NJMOl9vwWm%23%<()?i&7Yl6!-!Wx z;=Y0V1xH84aO3m*Nvy;-mOtRbn8kQ%gFqp?{5Rrj4b^N8Iw;+EDQ5?)S1GZ4m&+*4 zVhMjSBPm#0B+$8Kj1VYwPQ#dJSjL*^hPOMusAW`8SSG0n_B~zg_zi!%HeC3Bj$~lW zX^$%TZz1&JGg`v^7&^QyG0LdN&!-zXZ1`1b<~Qc_SLrm##kK=)2XpjqyUYG<2T`du zk7{M)@a2_N>S43(sEDZ717E%1@QTMKr*d1{88e#a;m0?Y%)`geC>_ebYHW1jiyIqD z)!0+KQ4=GD6+LBlIJMBJARS54DSwX}($pA|LyuFVPVqg>jN&YcNFdaUsUZ@m%SC`l z;*rsCs4=m6Ri3cSXv_5!qbN_Q2c{EM|50Opewoojrd`S~B3WZXR5q*k9$=eO=3t;5 zDTAF(t6-{kIpyE!z-XXZPE~IV^u%33DkZ8u*jM!img@LOs@Eq!N)6|K91bbYFSJaL z;EUTCHTYMDLy~wxk@DgEVjJV7kas}OnRiB3Veb+>@p0Li!Sq}dpozz~GjjO$^eT0# z*~C+c1gPhFUp?P8^?cK8;?p~fUi_}Ni97E!oIIu6y}W#S2jejNg3!a(#r4W#r{sF& z36hKLdNi26=VZJ3&bM*BG8a)-`GOnI8>J(Nm@weLD5Y&22Sq;L7%E=C3`{jJ@xl?1-$#h@z>RloIj?!<1!=$u-3 z+_!vmcjzhNh!hyR43R*c`)MJTTaEoz`u6KRjBi;xQVSmtp3%BAM6lV(Iqe6P*2o2V z`RM-Gvt=jtHpVN;82&*YqZ%7W_+fuG>ff+>GXPd!^)-g(5UY?8--2;egB$Pg!@CuM zV9oOdYp4WkkOV8cdX@p-D_Bjcd0*weE5?!(=M@rxL5KjnatGZ+E&0|m4A1bb_BA^Xm4u-p#AzSlqWt z70)KO6s+-~&JL$}&k@GZIG|~7vbz>++3-r-vkL1<KuvvmeR8nAi7okZyd$ zY1x-`5H;jB6^CJF^PE}lG~RSVM5Njkh>8x4$|o#1{!L$ z-W3VBv>bApd++DM2OS5GHOjJ$q&Uue*9X&d*J(NPC7O!8$J6m?>gv<-rtWe=3~%aw zd>UtN%Dci2+#$1|nen3TZBh^~>fZ1Z^5(0?KBk-j+0ETVF@IlD_@N7TADTaua&R7Zd9;U#?|&eOvG;>;>s-XKly<;Mr=i%;2;j+i6h{N zJaux-7KO(O{&<38ocM(&IL2}1O`|M%H9Q~eql#C<=f7!W2MS-WepNajU-Tbi6q`fT z5oaGVXITjz-cxquDu#{bE#EfYW2-H~93$8AGcs~*BN-UE@J-p}{PJW29+fAVxc3gV zaPNKT85y+#$eZ=i85*^Inrc+^L@iPpqZWLqqV+VRdtobH-4hHkUj4=oOf$O10Wo{H znodN5aFxP$yN!-~>I^wfUnzc-Wlwzvwdi&`z6}xnot$quNG{H|^7G5@2b%uJekY^Y zZ-S>8#c;w^AW_NTgbSOaARm7|e_r(|ATQz>l~%;Fxbi|k+O0kzN{eS6;q0_=msKZv z$mxf80mEr(sgqpPvQ7{!n*`RfPK+f+s9dM6{vBt>;RP7V7z40hNg}Wrfcp_~PeU3>ZI@FGW&l>d0ZKOJ&5?TK;OT#v~bc!uwPe#C)^G%0C(e{W#i|J zR4cKugrJDR$|#YS%A=Z;iH7e7tzQh0xc7HvB;G{|qqN)oq}}1jNN37`p-m#E(BT#3fa$Xs z3td)%hwqdy>uk)s4!-7Ktg^ec3(y6^`3a^7yxWO=ql)-V> z#Ir&A?-|e*a8`y56*bHV25SoL+W&Vz8mo-_>S*92LK&4FBf|%RF%4xeS+bjvVS|+- zhi2$ zy0h{TmDPYbj?MC&1EEaw#E1|o5^PfbJTzZkzUlJNR{TQ!N0Geir^b91N2+0fC`uAA zK+pthsFre04%MoW;us*R@+G?i^;LDx1yUAAYE~QMkuid@Y_idq&1eF~h{A%4jE!pO zIk~^E8X+;yy^>~>QG%GW$6LXTWRw^tl)xx4T>Qc)G5lPxDDmQEV_Tpo(Qk_}noT8m zV3c^vO7QT_<;QhK&)H%`@QeHN6vOxsfI-%Rb2L8G+iq0$#0OGZ#)sFTUCdL3$s|5} zD#XV4u$7nJVf2gxl6FU#WGN=&1FTlfh7Tr^WZ9qK2NTbkA50{<*y$e%VlHO@esPFy ztEk{PM`#|RTk~x594>)K=(_%pCn5yo`jJqjH(>St=RL3)kclH@a6qfIMC}+AU&N;4rVeDrGNUE4~sQJF<`3@MB{fl=y zV07ZUzLH0fpkxRT#NA5&qFuj)6B^Y6P>wukxc!TdJ7`Q}4FVMJa|l+*edM0VI{1`C zLGaaaA<@k3^$YQ}hmDTxMW1p)H4Md+q7Q^-7$6X4-#=o&p~ne?m}Oj(zn8`}mE@vv zy~VqK15qOIX9YRP5x~NtoA<3<&}vQdb?*s0{5b4lQU2I{_!T5Fo88A2A{7SaO(FpU z^MZ3$_o06Cy?lA=TT&h)>ev6K#ij3MShe{HPVeEV70_OeEe{czIJP_>^4#hs;3=Ns z+5k<4y-37)%REuoaFJjW_WUVhD@!8fu-hm>60qB#30Aj}eqMGPwMcR7Bx{@xGD2{l z52PUW8y5JHvfrRQubnY^Gn#<&?BeHT_Zfa(_8A)x0JF~^Z72H-65>3u8$zq>Ge!vw zu+JDReqo<6`h2iHg&*h}$l*NwdDZ(tl^2uh{J7?L2Qq+Q2DOP`Ir z^{U#9`HaZ?)mSRg27R-tNI>6Q0&W%NdV%XVjWw(}DTfE?8uKB)z!}ZPB;E4JZWp9S z_8_?!cHli!4_5v=z5V%+yGB|BfeJ>h!YN}cZOmo2#uvCUv`)M~`&LsT%PFt(8F!3Q zY?3eciT}oZ26AVFJ70g-NC?OqPv=n8@eC|Yz%{-0KO4<#B4X!^-zr!`WWxnPzsh*X z(UvOau?>U@Zq;pr|@Pw&|uMHgwcc(;Xl!_}%6FxD!S zWZL5HaIT1$xD2(#wLKvZLW&Hv+C{K)47IxWg`rlz7%bFQ_|4ek6KZi&CiQn%59uff z&`EqdE5XBe%HCXtS|h|2!v`*@4xeQF(^$#|SuAAG?RQZI-M$w|(0$Xl)N4Ma@FP}> zNGb1XsJg(X=$gNcAuO8|#TC^J7v+lT7bL@?0lD}&rIREVH-k3t^~GIsGf3$xe|H;P zAhAdQPq%>0;II;1X^CSIsvjF^oL-Noq&3Y|D(EIhy$AT@YtG22)#h^ zoExL_WM_xCzEN2CC98SSgRIk!g)W(k6S1U>=oIo5goF`2x^p8msz#8pV!|caHK?L4 zS*GAAbCPo0HF(SfE;a#q(KS%53*nX1Xoz>?qmZV#}= zfJ|9qtf2{3K&GiyKz@%%h5?xt!^#+tZK>jvVuwrelwvzjL`39|3%GW&J%kvdv%^GZ z2g$I|Ic1`An&cunCxfAL`F}vioMixOM2E6QbZ7!9m@mfFo7qx@f?MqhX4fj@s;97m zm!VxeF;9G8DDtvw|45R78sepmvX|whjq)THH7tEONc&g2jO`yGAn~;SQylMWSO#DY z(SfHtTuYe4v>WehG$tJJa4iUmc#yL4a4k(hJT4Y>y~SuMS_|He=s~EWwa{W%xo$C6 z8(U?ZDzM95Yw`ALYU@jK{$N~^6DKD`6?|X$UCKqguRKd6n2tzhdFw9AS>C6lJfgcM z7`odfx_0lv{o54)k9cYMV?qlT2|v6nrJM!K#Pm)`iPO6qq$Ca@ulh;(SAy#l`D?bBAzEzU(ge#p3jQEtN1-1qlSA#Ien8vtA4rzq6Kc59B1m902a<7?=|s!f9c7tV z+SSh{12)-XQ}3%%Z`FydWX|qL=#)ba(vNt$e(1pDkmDJl01i3Yi(fe8X#YciAxCQ4 z>M%hVo+mt(T&(qyn{`xvDfHf&wxwcwdTI9Z((L6&)ALE^$nvgPfo|7dEALvy#t8z} z#K!!N_b4mXBf*sAxf;v#<%7FvVSIZRW!3EU(Pxmutch1cx1gxmv>xt-v%O<9C~y zRFmV6;XioCAM)$oQKFt4dR!B~rt!tet_pFJ#c$dLj}!?W?8OFe;S|?<><&oy~2;U=n?`z@FkA;jF2Kf!e_NRvf>PWc(q5rZ#AY|4b}CdjB52rE^^R= zacDs~z_anl;r^ZQr)?Zy5L5v-M`H+K3~^CEVu(}z5vJi*|M~&%7BB*mbaK*K9-k0K ziqBoVEr_C%PZqz>$tS}D3h<3}M!vBw>?JXzeAX^LEyL9<7IS3#dntYjE#gjdg?zd( zBs;ZK{`!je#b;KpcCG4cL3$?qGc4;{Hr|XWi1h;c0rvz`o z<8;?*ezv|#+;bIZ^Xd&;MfiNf)quBzm%-q8$}PiHMw!GX=&t2FtD#kJUqe?BbA0w}Yxfh1@M#h=Q;r$h^gSNNh+D)NXXt~WiJ{MZC& z7l0S_P{1%KV$uGmo{N2^6)lFGm^DSQo%d0mJnF9R;51&~Am24DDptbPc83+W$!EVJr^Lgt= zAkeeE4BATu^ADR0X2VlY7K62ogQ3|1-jxCdQ2ePZe6K48UgkkG<2BbfHr$ub5XmRz zh{-1cid%g2rY`nsKxFqzK2ZFrEPSDAfVdigZ(rON2mkOO;Z$*U0uSfZ75kyM$Njq4 zU%}n1x5aW9E;66l#pLIJU{`%!8VbN_|9goT5Pc>g6%$^E6rV*nG3B1@k_+u zDFbre^`?Fh9m_8?N{isTo4bAtNPT9Gsb}AB;VP!GotDVlHQbdMw?ib*o{lKRPfV*H z%OhH(z2!J!)%!`@;h)aFu~K;IfM(j9FeQ}lRwDDnehWE%_xRzFr4jYyOP_?Nx##1@ z^LVHH<&|4}R~uIac84$m*z5E0_hZ798^ZKz&6!^_CI_cC0gEm?uAM7?1mXM>Yz=nF z-yJx@qCOe+Sojwbm8htfMQL)xKhxS7KcA zo@)9P?5O#=wI!m}`cTiAp30A|XwCThPd6;ir#qn|hxZ}>8v!-=UIxQj0JNF*uS6{H0;KBY1 zSL6jOpG!RFJG-7hM|7@>D}&7@A|PHfC|>U)Ue(lRuJAnFTrcDhC?T6NMItqY@I$25 z`6Bg}sl+4`sX{$mFSE}{HQ{kF;l9=OSk*kbpXjZ*gsI@+^a5Ap;dBO=?5)`94 z(N(*zDE0V~;V@Yco4(RtS_1*NBpLDyK(XZDs3N?X;f&zxcEXS*v!APYPVB)HxRR=0 zmDjg)B89Msf;~k7^_{vxEVq)uyAN|E^SA*pKYEE&5}v~^4shkjbv)w0>&JqLnsJq* z`J`W!uG6YbVmKc&$n~}Q{#9PGOIjjZOjrw#QQq@KZG}Wlcun^quGYCh2_6XVKh)KT z%_U3`r0u>S!4+`<(kubeDR!KccY(jKB35}GKgLx{+&@)kS<0fXfV~J`QQ`!xc%HJo zWF@62A2P;OXU>+Q(XlpjHeII3Ro;E1>meg~Jo;+Ax_seFuKBF!HOs<=+;f?e?Lt_?24I&}_L`h*?;P1Iif4^>J;$7++LChh+Nl}W zii)Kl@Rj00DeDQ1; z+^^xUOmJ0X>qv?FC7SeBR{{8;)oaTrv=!*UVLvtN8ecfkRXOGrQ5w-QM?SzP@ly4; za6)CmNmml@KL?gZj+4~OyWCPNv8zhOI{pVFlHQ||{%uKGe4eXRKuK{~mhyJhYF5c6O!t`p-aFUiLgd72^0>vTV1@|3sdtgWD74&N=0ZfT`@*iTuND~}$-*G`6Y`W_Zx>C6E*Wp%&q>&!2c zYQmWzx_5uqvlBO1{>CM-z~nqm-RrvP)TEen>ZaF;Q$sP+sh5ghy{_}Or@J!Zx{E)k zQ#Yqlfm3G}nBmeDwvr^HR~Kl|D2HA>fh{A%EH~awQqhgq4O7D%J47n_F(7F9@hMUm z{rChZEByEb&9M2gdgD5ObplK?ZjmCwJ>bPz0KSg&;`0>)~(vP=@!U&ML#RZJO zkL`>sM`kymxM_Om$U-jR$W$)Nk>h=ehd?p;RP&|Jo`LZ5x+_kta)a-D-Ic(SNm&%T z5>H)b8wq9HK-rb0yx2Tf>6k#GqhnK9(6MQPaBMhRHetTY+~3~;cm80PLD?$O+_uK^ z`gSZa8;^4dlgD+q;X-h9?h)b_I`@bh!JIq!J=X+(=YIU2Yiz_c3xS{HqqB3Y6uu;; zemiyA4f){g+g650o+%4*?(C^i?jF3ra#wynuVu9up3tgEAGXqB!M#zYZ~(?xD|q5! zR|~d%OM?$v&7~+x86(WN= z`I{oaw9+NF>ZS6HAGkWOizM~3aGe(K*K7dO?^i!`m0`C?rs*_3*7s0aA44&4pKu#D zx;Dt*$-6>wa$CuRd8B&rhI|+_-%TGqz9&NA3I>k5BSkS&JB(GC_d{|LtGog*KR(m@ zRxYcSyeVI_NhJI*aLxF0Ipcfwfo~p9cSrNwvX3C_Jxdq1By)JWGFSHfvV7I1&kEQ2 zsE~#?&DmMQo7wQHO)W+3f0IvJ0}JN^iLyAe$P${G!Sm&t@`61zfwMbY&*flt0pO2U z``qN$cEW(B4`GTki?>ArwdkIRH$GU?jZZiNQ?Lc=(_UfklZs#p9dam$vcOAT?FMVT zEz@0U=bLi!74=iOaNcUK>#X|4O}_gxc;V;(VTus#BM_Yk08!QNAl44l>V@&CpSz0X zP{xp5&}OY7+Eifh!)yPD){nkuZTG69Y>{ZaU!i6udrT_k2CZMc%`q6BkGE`{Eg}2Fn29pDdk!?zi=o=Q+qV4qPO_n?P=v$ zQNmvU6;oFvP_rrw0*Mu|g16*~*t#PyhiFBrngS*~MFUbe*brt2MPPh_sXjAHtTm0|6Y4L0b5de{T*B7aQ zrZW9Zr0#v~n#7iqYA{A>%+`|x93Cyd#Vdc2*2GqF=H-TE_`+{oX>6ZQab-ELe9BeX zRvN@-S#(EaO~%E z3jJLGQoI~=mvBYs3*PoI(p#ni*G=eaoO3N;Wko4ZCn)Bb$9vbT#;TH3#J}uqe)(6h zFj_pGQD0Y)}2U%pmv7J-dT0O0H8vLQj71t zvRh%>=3KZ97P4 zcHf;!OW?a7xSr%ik-=}pp;<`jbU(au*~&#Rkn^UB{sKeLrcg3xWE(0v{NI_zks z)wveM7j|*yWIF}J=cj<5u*^>hf5h)wU;NgZ_^lH7ZDcn|h1@`Q&4g~17rJcdT*@nI z^c`O5HVjr{?pVezkWmWonTp#Sq{QFxchshLay&>0VRy`a7k+qMPT)~6StL+<$}hx_ z&+6sj_e0#teDUg)2g$2q&AMeo3E*vthTtr$E~SZg|#HPFxlv(G$R^4dxzgY z=B{oVc~AJJUU?q1zFLmMV!b=^&?=P+wd&`qmEqM&&2z_V%&o7ax8eDI1z$b?z%?dx z8r0$^PS-2RW)M}dai$Pe<_Bn;S6$HQ8>j1q@}*bOqWQYds^xGrKVJRM9cjA%Au^y+ zt9+Gu!>g1sQ8v}RlynFI*V5Xu-K2Id>{z@CY?^~Q(E={|XLlQZ<#*SfkZWLBGY&RN zWH$&ygzO4|?16+Vf_DEQd|KhAmHDMB^$PH$;qIJ{Db>q&_`T%xQtUDj0P)Im*T=Ns za*fBd&sliQxm~XwBbVa!sgvavK7`IzJXF+v;S6X8(hD+}{-Mdud?z?}xOEWiN zhhS-<9^El&eitKveZcf{N6&!ic)e?py!llYmMj0MeOH=VZ6Xdr*TomQno_SCPyrwQ z3w6(9LuoCs?i&?SzY-fwQnC9UdRKPew&J-Q5GjL%JTCTb;ir_R#D7^ecyt5+@0s!7 zPTi~d+}Y~NyZk?o(~{U~A{Row+!yj}33(tRZ58Qed}^4xL{9tjr6$r#i4=(RL6Jb? z?*|g;MJCeI{z&V^&XZcXab~z{4%VqGvSZcl42lTHBN)>#nyu}YK7dPeE(ZbqI2cd9e$Qx-GNAgXpQkj3qFWzs-(7tO2V_R z6>-mH(@D+lw_&EUwy3)T<0KV5d-~7PvuSZ)l&h%@oNu5qnPc`i0mbA`c?HpCJ8BFpFHA3K(md5IzS_$ocqk@6Y@~VtOLmOJqQduZjd}k-IE? zwwo9yJX1f7?=GHRk-z#3M9e=Z4G~9or@1RJ^`7N#0__ke#=Ez#UzB%EhsLl~$}Q%P zZ8F;CLwGW1OOpFXwfa5&ekpeqmPP~G8?#gT$;fHX&P2rmB4_Eg}?ru5kX5cuiQp26ZCJ~;9%nDy*UNfa1 zFOaFr6Z+SxBrLKc+exc>jd4FoMPr0w#29Ura%qg}Hm_*@z}`x6pAUTu!tm%ZwJNaR ziCBp3Ly9e&pmX_{B4AsWFKTx!nrn}oxf(ku_a)T#i3kXF;rl*Dc-PeDmVkN}t03~t zktS}kp|_`!R0J4`5rA!#atmgLZ%h1B*?L-b*HE2MKa zn^c2!J$R7$i&_=gdn6V6u-W%zA4ZD>P!>i_Pl!o5*u*YB%?}talTu3e-L^U zWPy#B`X$*hA{AnMm}2~$za7JLvwco+J#b&nmkto7slPO8Sy22~d1V8btAA);M>)O~NlcqlvpFOCWLxGb~tNBv8EKgV=YJAyQl_ee?^z zG{Bw89uYwhvtkc?4E%xA=AMaJX2*;=eDSBQ2)_1N_bOIZ6wmz zZ5qxScXD4;pLxLdG)b?_IuMQ+Hrql~PuHY&4**-j7arKAc5#==X#{Nv{DqaZB>V+p zF~fWjYc6$Bn!tSn7=W(Z(x4dc`f^4Ep4=|Iv-~ya1$RC6CZUuIdsAOGv1{_chMfqj zyhE$>GJJ5u+a>s=)nGF3_jGSk*FgF9Zn)=hpnhStjtGHpuA*>m4FD%vVM@c>FyieA zTL5uw(sMP>SC;XqecW}~G9n1#dc+skr6#T)cyZPEx_0Sxc*z&s@32dxes0h_Z=(5u z9Zf!c%L{qhJEE zQ!|7;KXhD$Fh#h^hy>a*{SBWVKb+>4U|ssIfhOH{`yh8EKKS|c87za4$PHrYzak^W z2e2w9z%VWkai0zC28{TS{!PoW9)u-A)rCUU-ybSiPs+&+6O3`s!FIpcPJ50pMW|j8 z2^6XhAcfdXZwEERSn}Qo_i#3gRLc!K(P9EVGekRnqT~ts^=i~e2(nUA$MPu9v zYy%Mmfjlh|D3I$+AXg)h$-L{t^a1P^sg@fcubV)wwgY)5stpVuUjd&~3qIt7`=wW5 zg&u-jX0L>pMLo1UQZ4b&ziWlDV~?D=q~jq^pXg3w4#E}TNf8MYo-hzY*je6(($1C@ zuHBy1C)IKTkIN!XyU^?jZ@7~bwckVV#q{cI0O5wvyhx#WNkS9Qo}zj*Y{(P-lk+{B z-Vb^7a9A(yO+-MP-txt%$3woPyVI?hFeQvg@6Q&JTDgH~zLz#diLahqBAh>(;_k(7 zElCgK_uc@XJUqp{O#S>Jf9d7)nruJekHGDvz#W&s6%OEtQyTFJ@4*NpVOPT_es5HI z?q()CAM&-M(<`u@L>vV12VW4knf9>RMDgyfhQrw-QY|+qKCp<}VEk*bJBII^?~df% zUP%w-t9zvv<;L#~tBa_{_@GzPD{x!jo1n%&;>BN0&tN4V*?m?i&Qsr~Q$DrABlO#V z7&j3ZH;_zcIO^nTEnO+X7c7Lu*djzC0dc`PB7ypIAt9n$jeaED*^G8ANv&KUtTgx1 zwgG&v2t>QE`R+7D8OikpZjHT67z)FLton;rX_)XuGYAezrCVRkonznt-^W4a`!#8_G8flKh2A- za2H~AiA)$WYdt32aKpy|yI~i9(&TnNK5%8up{?;)9;2*5_^&Trzhy!3H}&6CkVo{# zRUh-{)$Xdw9d4|4S7iN3JzT$8{YIV2>WIhu+#7W&vX@A%IPszmqgqXP?0@9t)*5$m zP6rqLAIsA&R3>32G5?RY?+%Qr*c$iV4Foa?=}XC`0RaLb5K5BW4MMUl0Ya0eNJo^2 z6v2ifU_n%>C4(YOe0BtEQ4s|!_|%7}&w}~{#3$Gg#76&}IWu?XY~g+HOTM3f$Y$pB znK^UjOu6@lD>FqZV-)h4JI^0yZr=i3VBxCb0*;$Ju2rxh1zsSRZ+te;l(T0mGGbl? z%KWP50)^})qAE7v^HkNHvH?Tg%HKD@X$6a59ACP+f%DzwKjE~0aXYq|hywaYw&h0E zmQVgEW2-@Hi!Wt|304D~i}`P5+b2V9D?(4+^5NnhQseC(1yXs|OBK(>B>n{^{9u#2 zlqJKjkWe(?FER!){=zX3YQhCWrDx9NKroH3`|`V3er{>~w=J9gB|S}3A_{h)&Z2;h zhsGeA7!S6;qz!lft#}tJCuo>cpZ)@jf+|vqdlvvE-vg)cxYyD9MRzAQDh%E%|BFw5 z4g4PkNAl}BCB^Wry(+u1tD@knt8?dv;Eew&Fp|xS0$H@ZA~OV13%?=?I6j0(g#i;a z$XS{fYHNmg%lWH2#_`xUDvp^uq4_sLPU}q~5010#w3FhzbK&H;bo=3i>f=gcU5d=zY(;C45?$9c!+iI+Jf`B;`ThrUfGiWWUFk( z=ZZg%Cc;NI!z#W{F3vDBPVmI%Vbzy;B6O%3EqT$tkO;EjeNoOQe}t_inD-=IZ8dIL84_a9gE<*$ESvBZ4x1RuYxxFdU-FvAe; z@o;Or7^SIQ8Swnelb=+yujj}yAA$Dj*T)e@xT7}jgln^2YP049#uYJRdc$;(Q)jZ1mg%hL*sgG9AH`?FHa6L1l4P;%Jr(4Bv{dp2kn z<*O5Tmo3G1GOVxe4eAooGKr1b#qn`pR{UYMJ}Ec0+6qjPb%95zl7Fxcixr-X9C~zV2h!(9uNi8QC%%Hny#$1wxVnf+eok)VlDV4s<0N&rq<%i z4_EwP{FC4KeMNirDPe^c`iNL)f0QnT7YSbL|5H==x*v3@2UkN@ry++Bcc0`L|19pp zb`wF+Qon{<>OHB=JIYc&{JnBJYkW%Ew;`5-w_Zwn1a&rBia!r_!NL`@?m5A*fSG zL*bE`M&H4a8N4TW=uE|3F}Bmt)n^_l%Vv$>7oBEI*i_dWz=@|L=NY`GvAO!E82;|L zdV5Xt%qe+<<_s|_s+B7QqJ8_MRO?UGRCqrl=jom?d~K_$fvhKyzX846>;`I!#Tu{) zu^tA{jbl7t#at?E_D`3e0&*P)W8E>y<^}8@bY`WK@4c@ zspsviS$tM}JG(jjG+%wBxC0wb1QJF}og)gU5idH;59GqR_0!Tpv~1#;!Ily%@i0^B zh2a;7@0M6Rw+)1P`)_X&CoTuz^GtrY@GG8Y@`yXY>UpN#cpsQ|ozyC$d6bLmH9%fG zY1WF*|E+7j?Tynm{^6ju9oSn$3>oUebAaX!Y!CICS&wkRLdeV4%tDIPRrvGE%7wt*Zl?QopD#z>-8{8-gZV)J}%eOk~JlAV4vtL3TU5b41!^P z;*97NookucgglOcu~f~gqNphj zl+`}zN#ZjefE3IZ={XSaHdNP9QrA&L7}RxMxUM6WuEU6~%apFeLUrxEd~6)AXzBSV z<~g9kjiV(U*b9UKYP*GM`+5{@VRbaNehVY)cI}LfQnihQGphDsxN1)-)gB|N9Z;%0 z7OL9v`>t)o$8}0<#4peC?2Ku2R_Is0u`P>*Um=~=c9wM7@4a8-l64)LHUxUC|-?y0t| zjPLm7Hl9lJo74Ev7f?Zo)I$dv0LMHFb{9z%2%4#l!21&dP_^FYe&!!yXTZdIVbQME9QTMN*Nw z3to|fikUz4Nat&MRkvktlG+tl`>w>=zq%vw+^0(hH;G)txQ3Bj6`%$pMkHH-0BMLkL2apME*{g{#@K8-x`Kre$QVLW1 z0A9~0=0eQcM16+fFG3vOlv$QiGL^-h)8jx)iH@eC06U>gK2ApQX7=^k>(+Ml*o?ZR zT|G+-<{;=8L9UzO$v4}b5-1;3-%vnG5LmGP-19(XU4m;p!8EL~tR zZO8`?u({6_!OkU7EUlJ8I!MzTmTNJ=sc9@nN89s0kHCStUK$qoe{~n}Uj6 zStae+LQ({2wJ&#a+ex8i9YubS{S$$JP4cPug-!Bl^d_0YPxtcNGa!oRTfDaZ z4+<@K(=(KJ?d^G%9VN13tNx@5EV=(LIJMwUw=J2+VlRl%6P9ppFq3_FS!H@{g{K`$ zCza?pp)z@jzn^*ToOGN=59a$=X99)(F&|0vW^Ph}=ulyy3)g6mqFT*a)#Be-Enf8Z z$}~RR=Sj4Ux*&!x@PXeuD@;Ng{CjO9E*kvaoU=(B-{_e{WI#uBI2?C8feh( zik8)dXkq}T-zYG!x7;LtVQ;yKFAsRy*~$17C*JTOzQgClbE*?~VWp=wawsRgz;wgyYLc=eb+)mkZ$Sk^6~U*b!Ff0!yUDyn$UVr+Y~XU)|SpGkaQ7my_h<7w{D= zpsgQ)(56oyoqyfW)0e#&4z*oF&HQq};Pfa$)@-}Y_o$aQN({bbTc8{JR`6CY#O=7qQ)uJ~Ao(fVTuNYpcYu*4>eQ#e6AYd_ z%~Ni~$+G>6+b72pxxeKDCzQJQx?!GQ*)&22r9YaG6ql;CRv$;K0g8)!*>y8qC6xwS z7!4^!BQ=o|ANY4|D6KG*m0;s6phjP}I`I60B3_kcWZ#jWc#O6s|<|kj9Y}~|O zyTtPps|zDc#8zJtyUF0|rv}PR5I>Bn;(WQLYNr;m#_*{NYHzHBds_o-4*57M>6zAG zl>K~weZLR~-NOO#3*Ey3gRcm9@)+?Ca(;J=@hpitncUOBk?ru7Fy8*bq(Xk%SkG{F zir5If$)CEwQeg4_0na%s#RR3*I6$x8%#@BK4*zxWJ##K?0a;=T$l_kp)a1FNJr462 zG!poUHo?GmapFZ&u9`9RvH_RPE*w8&#?%{>*XU;Qw27VyM^nL(x{cp7b&g^1Hh;+h z<|cx{rh6sxkOI7b=QerKWuB@KNd3CjuqfcJ$)2l2z%g3gJK0lUPBD4x<(_vr{e}ckXd=!c$V*|ftmk#0*)c}W-9M%V5gOy9`W4- zloetd14~M5PlJS84whvw_+d3LJZ9wevwxBTH1^Zb+`m@lhd@Fwh#xqzKdzyJ{R2c? zf1590{>|hw7kJB!`*_kcNUf|e`GHlQ@)ks8f)aB9FY4K)JKsOevz#%T7D_ugZD!?S zVj*cW(o@LeW_YGB2f+z0MQrVC5Q=OlZ^Jr}YJBGtb`b6a|Eu5I?*_@b2xE!$2x(u% z7!nQYz&bwn$k=<=}TbO ze70v2n@+&dOKbBe$f=q)APL^O`zeqZLIl2UQgQyqx#@_riY+7HINNHT2~s-JxZJqK zpI&$5T94VtSj~^!=;`m!;E9po_;nThBpq=J!5$)=PPP4cAp$z>7sM}g+Txp4;IyL# zb&zkzQ4uX&!?=}`#R!1{4M1YK{5 zX2qZjOLZdbBy3*4#{%1iv#IYpB zD8~XnLLEyfDL_HsoEAD33TZhO6Qms9$=`=>KbcgYr@k<51e+(R?8k9p1;}DtY+fA0 zH$PArV55jsqD%9nM?G;(Ro-Dl3@`u9(%AV{OQh|$Ps3@8~z|GE(3d|ou1ul~Jg8f?fAv}M!X>)rN`D;FhMiueWcF_ZH zh<|dgr?r{Yh@ZIE<9B>62-D&H2H}KJ5x&pZz7c?_a1DL$&Tzc81Oj6TH!0AuM5!pn zSYjs#HpU>49%fXoRyQ%Mws(tute#$7ve``1q+s z_z@HoC*rj?mUOqxf$BY-%G$7-NHvnbo|0cE$;T7&-}9UcOM9Aw8u6K5_ix20dCOa* z_t!+NZd0?9C$EAOcopD56k?V(!ZnuJvylu#h_y5dm{f)#S3Tr8%yww1dNikKyQ?{V zTiy26o}~uc8x1@)0{oLkGHN-z*7Fhjf#8T%CE)5^{zHw>C76IFmP7J>NytLQl6) z7g+okH|(YJ3H;m>Fb6ez+B1=@*3`Mk^%@WG51;lFv!_V8NcGwtXbkQvx0i##kKnM? zx!x#J)~tlqy>5tucd2gLj6by;Qee9XE+&xQXw1id-Pc~b-pFR3kV+Kg4Jpb&QZA4h zzX1i;OyIe9*jh31+wyk*qcrGU7l2gYU1Qa1l+P?Zl+{FLt&CXSdW)w+kr@jNYTAmg zZeAP@|3fFZQgEW~_g2DMC8f*Kb(z&z!VJk{hYYf(09DypQpGRqEUB?k=hRb?odY6J z#&;LptaJi)jPH&|&TfAYrEmlo!3ke1;0&n5QRx69QJXX$Z{R9x5*=`1OoY~-qZXxSK61K-h zwOC?4Nve_hqmuge_p?%<3yQ@hqr~AO5|!r7v2t3Yw5@54%^?(XMbhv(eryM9_l{fL zIL@3LE0cy3W!a3U1~R7MRnG9y*FBf9Uv#ma$5JPVQfx@|C8r-_rL*7va7kZwK@+X3 zaP}!0Tm{E)QUYWVOIx1&jtW-?J(3tlAQfTwUdj$ng`G5@)t_r7#PX`0o=Q9EM8P`Q z8>{X4LKO7I9mOvkU>)Jf;i!4Khu`@B614usyu=_lJp1SZOXLQIs<29Z9JYE!X~G;s z&=F1aR?ietiCH_S#4z-tCNlkxTRjU16q1;WBzm)Dqyo{Q!a^7O0`@3c)eLDO-GZx$ zuC+o^2EIdn><4VN$L=KQ66G503L&$$6g|(7#50mplv&w#PFM+DS_8gzbYnJAzFywrpr80>2m!V<>R07nGm3xq3f zD%`QTgeUxzQPaLcL~1Q#sb=G_}Us z*}a}D<6)lpg{QY;g^-7K^_#SSa`Jur3(v`fr*x^6+R6FAeV_SqQ<>Y@s_Qwf!Rl!9 zzSUGFLLU}TG`V9u$9Me8lgXYV=$JG9k`!QS=Q+?q83KNbCy)#O67zoK)b1qcCx9+?3D8X2Ru#egpSq9H77vGkhBhK z5eGEX_zfCCCeIO`4bfW{G4jGUx1i;~Ok@$tfc?)=reh~28G%f!sQIGLDPK`L-cgNm77Kw@SssldbxRN$0$ zBPbe7%tVp8W)2u%BxWXp@nPwZt2eTm>5Z(3*Gw9(_OZ5e?~k5x#~i_s4#LZb1dyDdzCVMi(~w|I61}-Qw;H0 z&u`<13;z{tblBUI2_QPeZTsU?{uX`&yE_i@CQKLLAm0z>6N8*Wia}m`t=Y-^JWdSq za>r+a3>r(#M^qCWv>linv>ge394s1D?GCqNV$fFE2??tQ)_ey15~{lJ4}SBkV_rfk zI8;+Ly=F3<+lTQTt381ij{0H@cIkhIGm^<5dHbK9N_G{&2@_eds9|z^0~%&;B4ilG zaD1CX7$0x~(p4Z+biiIrrf)=wnXM*_qbZmq6?_1QiM^s{2zZ#BDnI^|l2c%a%#D^) zk?KWAh|En$k1Xm`HPB8*L9kWi2&=Y#Ca}>DeJ*~XANrh~#}6Go<5?E&hsyXqA6%F@ zQgNs$@3+6i!;TSo&@KI}3oQ1F?`_ajJ(Q36zN8tCD=bN^{jtT6^hgFZ=fG^jgB%uy z#?)>*!<%a+#q%n|>vfzHDAZH@plQgRo4tk?_L5u11Du*#@XkAa6(N_D;(%)zFL!PT zc*xLq#>=7aCWtt_m&B8y?~9kydy;?(8T;Mi)!2t0L3wcOk0J#qO80m<_9>(q`*GYB zo0`M>Z12E~csbM0NVutvY^#Iev)ntEPyc}Rp5b!WD)I|R%7)(s`0z;&6BS@`?mzzA%<&&E{ zcG7=>!plBbZU0EffMe`q@e9Y;$MNSGV`~z;xAU4`N}5LwwD=xgR_i;Iz`yvVWFY&A zXolnLur9DfSp0bX#~B`8O-l04Wal(tnX){^4F==mhdCkO`-Ft zutT_o*4^3I-hfy{25_HP4gjC{5S*RSm$q!0_%~5FcwUwiS`8xf#oXjkm+?K#;bh2Cq91mJyL5rYxq*@3P=4+-IIAuvOD5T)P_KC? zLHgU+Sb;p&L56--(W33;f!?$83t)e(Lf7P9uF7V-}A2?MiDGh&#cX1r)e z|L*Y{wPn8Nof?&PC8kl{Iis1(15ut~vMR_3SyLOAKFX?zG}wOA-gP_85zTn-cHoyT zCbb}|IxjYi$~v)G=y|bj#Gops1s*){eRsD6!purKeb)p`asy$5GZ8+F(Twjo78o8P zVVGu$KGjSfFbk)L$6xOgrIOZbJW*8TzA;i} ziMqe(iClM9wMQ76C?|3U0mq44L#jZyWulzO1%{Z&HGm=&lPD*0Dv)(N6@dAUl+u8m zcqYqrD(6;h_X!!$Y5T=5blQIS(qGhkcVTxgk2;4>WMhdg=&wiV0*h&b52nxW>Af~R z3gMco_^|=rOk+6D^?1dF5Ijr%Wnu-3m78)m^CyeF)sCx#Ow?zO)Iy@q#_uuRK?)mk zk{qN>;m?$M8?)O8MReJVT9)=VSS=|Q?eDl>6i|Ol5ph60Nl>td;edKfl;VK83ObB9 zPk!|0HnVMSCBh+)gv=bai(uifdLxlIxepU%jDE9#vSRey?al)8^+bN`B2R#ACHOcl zUP_eX;xXucaF*PBBoW6&sG?t2c;&HZVr8o<$QB!5k4plc*!`IJh24)Oou~VG`*@c` zcE1+o-l43mz_vX7lW=)3M;BN;8+?*^cgNBMp53N&l06Fbnr=xlT*yeW!iAeW-W(II z!L3YJzd!uBq0*wXyT|WFLdvrM|#hyME9uXMstq28&=lAX%`(u4NH>f_De_c}Am|aRZ!6b2j%_jwT z#CG2@Zy8%eN`*kid_L%6@B9#GE&hXH(B}MP8KzR=7|hKRkZ7eCnY*C!;N0^Pp@rjM z-PPAKCJJ%t5v?Gmp6O+!i)|k#s}p#i5G0&>K1?Q4&%R{odxi@r%lF_3yniIispszm zAE%zTljTAG7kJTRFI+~y&4@Ff1*Jq-MnuN2ET8Y6<4WPNeMK1t?kl_@r)yIq;5(+s6z#w{rMIx&gokdi04WtMW&<$3)?4ZifftQH z$j8e@C`*w6Ah5vzFoJ*k6q(X(o5BaK_Ewr8e{{ga6q(Zf+FyDbTR=pLW(*a6&Q;2t z4wPQU?jbm&gOO4kANQnSE}p2Oh%Hm908t@frdCA(Bx+LM^4zt~bbfS-_f7ViE+z*` zGm4FE7>-Bq_*SU^XkkWHLVO@w!}fkkOzj<| z0TYB0fQ|@CL|6Fe1!TBM*X22ndk5Nyld@c_a&*=9)~V2!(XY1=ztFF@NsaXDGYkDw zc0Ur90L(pc<6*+;aioC#R8m~ zX*|J)y*zu}g`-MKP4)yS#-)cwQ~^^6qPWVsji5+LW|?vEuZU9g|Dpkf|L?MW%&oT1 z!PYbTx6EN*5G+ix%urMcm*cxeS98}wf2^nyV4;R01j1PzX{-_J{`A>Ko z@#717LZv)aW~_? zE_k)PeT#GrWHGLp3lG!snzEr_()Pj*GqX7zNkz{}2Tn9YYAX$e4a0AZd6<1;X&INjgB#fr6=p zMxqqQw`d?SzT3_!-DI{&=f*)_dzMF#aCw=_2R|CJyzG*WAs%~F2q2v(U)sp;H{ff8 zk9y^O^_GMRj&8fCQ%6r5rOTtIrYu`G-iV7Q!qY%6n|r@vlL;{$+i3mO0G*I71HETf zdV3f=VO?0D7Xd#fodkNz2oK$OoRng3TE=&*@>VhmEyBDMO6=UM zWZw`R(%(oacF%9pG1?;%D`NYkMnF?YnW?2z^Sauxu} zVQr!0%(mk!U~|}IJP2|NKr$K?ATfuG2T2c?@gQ++VLr3kK3_z>%2Xft+^gHLN*(K z@$p~AvAr}$mZdAo){V^-j#U`MA7Diz*`+JA59R>SPvT-=9p z@j*S{I7;P<-Ykd4RCmiLChD{DMemQS7m-Bk<0GZ04}eL1D7@BZL^SyID@$92(AV%& z!r;wb&H4K;dy7KAG5gy26>mPfF$(yWSG?{>aK}~vUlIj;-Bxc_2sm`CL2PXpq)q4v za;K^+Ac(d6Rc|@l5(X#aE!gJm5<(Hpw`iNUBYPtXc*1M2=%LmNYu^;Pj1F(5x&doS zQw{bdp@@c^8ZWmL* zw}cSW3%t8TDF%ST>52ew+I!y3w#R{yyof}wFv0g|3%QQQn@BBW@b{r`BP#gAn@A70 zkn6fN1RK+Pt6IpNrMp_lh20%33hX zhzbcaBLKeDR#y?+6Q6tEXA202psXnxyHLtHw{HJlZ;inohz6b-0e-(yZQj<>h3rX! zgJS{bz-LJ*s`g}rYKr$`N;M!VREreu9-j2Ix5BopWeh*M4bpgXB_Ns86eVH<8Mcvb z$}9Il8jpk;R`8^vmumZQAu)z+zlmQMw*A)fJYn18`_FS=YA{P^rMogN?3?NWi)n+; zN;P}8G@d_^TQtcYg?dd!D;bc*w6d~yUmWyin+2`-se|4=jtn6Xjlddf31#-~$Qz}N z4AzqrW6S2eRoapDBBj`}JzL4mPXZpY`8lkW-25Ct5YabX)QaTz#z?h39wXu~K-rj(ukz^A2E5GIYb^kc!a-7Uu?D&Kk;Z{?&Ug%hrVDA}Aw6-a+Y1 zD)0^pRNx&HH>tooC{Q8ppuo34%Wb|QK5j;0u04vpHTDcSNY4ca>7n1fS>~k~JoXRB zrr8BuI!Fz|X#5}EXW3<>01q>6Ix)VUS4~iR#=Cw7JD(E>S-fv@^s~}2#{Io~;nz)W z$&lmvHi{q)HO!Zq>-V*m!WUV^`&yR@$dIvpQ-&Jb@FR3=KSBy{Y~KX-5@VY}2FLd7 z44gO}vji4eO`VaX+Td7yGeeHmw+VeQNK!PaIzP8lr~zp&IG~VaGv!1{$XOk)W)|=k z_fM9d^KN4M30XZ zPOB01$E129i)9|kkXKMZEc6Evzgi+Dj}18+57W{U)EwTIX@`#$-s3#rr5^s03R{4!3IiEFld#rrF{bI;Po< zNXLY`b#+aA5xaF|d`(jyXG@4y=#%c$1s2nWY}Da&v)1lw&POxf6YLR9T{@<9AhXEM zJmiphk6NW#oI>jk_vQRP=Rk7eNHOSeL)3Yp|j`~Ci(`mV+0ECj{mIa zo+A}V7bu`_@wRysbJeT@WRXa^P4pZ*96ut(*U>D@BL@4x|CGSe){_Wc!-%oIgr)%*mO2WOH9zc15_5 zlc@t0P-PxS*2-32$oYD+mGCCVa>; z;TnR6CVY@e_xSltn3ozUUM3%x;Tsakuur117oXhPm&}(YIy2Z#%F#L=&STp6%J}9@ zS;^-6nc{4?d?z5Z>AIXQ?U^2hFTD3;+%PjYgtJ(iXGXyG(7eB`OFC1UX|SJkk-YE^ zE!ZLE4=Cm1kCe7%f024L&~Ma0W|r(@A;BB8_JWmnoAvR61e8NXWyP!o$NC z!^_UPB`R4)5PYT3< zvjGI}-NJc!2&mR*WHk7TTRJC%z$59JFi`WtYz%2hr&ZCCn~(STxdlD45jjw4`s{rU56~^jRt#_Afa7e0=t~c zc4jg75sd56F8l5bxY%w|iu2A(*?h~QKqxqToj#ABTNLQU_J@HRFYym6e62%>gWvIT z+@I9OP_jOcjhe-0w015qFUYC&`i8MaIa)4MbH4Zzmzl#idwqUpl3L-=NF%h83xTtu z5h~16&`3M0)A`1>&eNXnqN`cf-oF+sGs3|s(e)@G?;)TvzvmwM2~ZoIXqkC`+?0Q;zsKS+0qVI z=uH9jlDnF?8xpSr8rC7!ZWLVy+fe2$6J%5Jl;Bjh92)BFpu>Lt?fww ziyEfU7$Zx{cuS7FCr8CYh64+oMaE9PbfB**dy}#Yy1VU!r@1>vyStF7Tg;Bc+XdOi z@SnOk+l45KX6fD4>0;j!hRQ7a2m3NYpu_r!B0MigE|h14Q9a)pE+zj=PB@BhzBv15vz3H*Z|&O+Yk(nIMy zzNgd2x(Rvc;mAT=V5!l-hq&O@d9ibrJqqEPKDlyr(g9A@$koZxk-paE;9UOfNT1)) zN611W?@n4c%&KyD9j_JNetAVJzOQ%j5OxWv7g2|!V>pEo1OiV5O(O+3DDhO#m7)|k zg*xWe!KM(rdv|B9diU;bf`LbZ?%?CcL0U>DXYS9HyF!Bnq}mn2XI*av8u<7f{Lp3( zK7O}RREx*&Hj!#%@f2k-B|F84!U6Z4Zq1c1;86z9<>mYG^E6qjZEHH_;`{RORS8g{ z!nl&JxE$gGaq8T-LKH!^W&nH>Cpu>D@xDjcZ@P}0U)GjadD^47(yh&%;JcJHYOVFh z@Gt`0Y%RmXqe7sH)QI|@K~a%DdAh>6iM1i*v}e^gD*cq*T8fah!TApBL2z*6{AaH- zmz9xHoJM=J=JVe6^$Y<=AEK$N3~-T@*aR-on!TZ@4 zv0n)krh$$q;uo~hBLs;<1*VspkqV>>6(MwAzs5I>wI@(Ww@n)u!TLTbH$w2O@5U?k29<-q;2YL^LNYtWjFSYY)yIb@L`U zpD@@!BB=KIx~r%}Lcg|k@b#v0gN-BbqF1G9P?dcd4K`TuUgtFa)fLWb>)yY@3HMd6 z4#P^-SjzEFYm1qf+VA~wk(Hy{@(&mFPv?)-IR9V^&reGU3*h+8rhaX45+U>yKxJDw z?=3s(OXTgRIlJ>er#b`d5kfhdEz}IK4x|wud0Fy-GnVhW%6TVyfgs{ctkqLE&!T$e zCg9?{76DL6NQimO9=+-KyeA-$_6Y$F8`^4Tf?&%R$+PeA`3&xn{3UbWwPm z)iy62&C<1B3HBc8tg7uNg$OvQof5xrQajZaqw%O;JptE&50baN-?ujEthTD&cM9rY znt@{h>3Mp{;bfMq3oP*$*PjaqE?4m0FL)-~qY$oXlP8@x%d?{JE)V$f%^rFDk_UW4 z9c_dx)Mq!-!pSIn^UJ2V>w^G7WND7ArRVw zFU`}=(0GW?T<7Z%!Ug@e;DY{pa-R0z&qE>l?-vPSbg<77n&$RA>0pWI%6|hf^xqMp zSFb7Y8K3jq4Zb|~ML6+KDe-S5@eqk|-2k+cZ-b>Wr5#*1Owcr~-dF?8g5RYYnAgua6O?c*t0-@r(M~$62Oje+W?cym`l$%;&h6xi zA%mB{;48wL@ZtsS)Cj;9?eHXqJ-Uq2O$`cT=g?G?*C*K0O|4txtTxOs?WCL1@XB#h zcpZF`u@tnE9FNuZYlIBwr>+&h&`(|4?)-iVngpWnvr%1CLj&*Sn<4OiX&HQ2@0({} zt9Cgt4?3*Hy1>$-!O=JHe3m_?3CrkvLp#2HSXFTxDL*i*YM9YZ9v*pvl#4Ld*dV$? ze{*d+8FdeM&NqO4MSw6m{v2w>rtS}<0;6N7&>{U_q!wv^9!gt8-u%bcFrY-T3GF4> z?Do3DBUz}xpu01vz@Qr{M9^)l6_nlbGdNLfTeAi_y9m4&wzGWp;g@_J%mM9r%F7UE zuMv_`pM570U3>+Xb@^z^z zUFCe+U~>tQV3ele)w}j{+N;=W-fCw*wk!-jRl_U#cemG3S48EU_A-nDAwsMh2?e7qaduaseKqi1QQxBKIVMMG`n|@E>#PWDznfO zT)R}#)q|4A;ZkkyD?~t-+E4sKm)ftx`CaNF82;jecbEOcw;`%uU0v_cPXuL`@Xfn@ z2iRrAFz8Lk>jF!K#s3GKlK6~0Z5#1to^d|LZqh8IU%kGA^i_9}3iMS_pl%y0TlHNwbZQsX-Ugk--_WPc+SNERxP zteLO79EuASmbjSIh+^rQSskQr9o50|t%-Ymoy<1*ylk&;q+^y~Mt$oT!X16<{=Gg} zI2I7z*xg5mBjytbjD`D<0v!wY5~Uamj|Ry^5~KPRXKRC>`^E}`M-w~@gI6B3!r*@& zgaO}1)YC9{SiTB_;m7&H;CX!JJ_v&s5QtzHY|Q1xFErl<+DmX#;)3fz7Fi~;q>1Mr~k2} zA7UhNf!74`7!yGa=&pM<@7rBZD*XpvI!DSuNqzj(~gd6dY$%;^Kw4s9p_8BY2^|Ob%jtz*hy?>hhmP$S%%I%KmJsgIBv#Yiol0WJn=EH*2u_&9 z3VfB47|?L~)G8@}SVBUiOc?1BeARI{z4aP_2=g9lvZN^DrXq(tNlD$N-+avs^Zkx; z%G8Y2lu42Flu0~TutQ2OSZzNj1i>luTk#90%x^oMf69bGfK%q&KYcvvl*#KqW#S3W z&YwGz`1aktLZ0*%JpFL)FZcrGSz;}mK~L%eOQVK7;AJsh!_qtH;fZrlawj=&wjmWb z2SEkSK}Dnj=OC!S7(am+gsc z#OY-8r&e4hXO3P|F`JDdGGK4|Lx54dkpu#7uiiYXtT7+>FJ}##LaM@$)sb+Dj1$>h zf}$s~IieINvOi#eh@_5hpYwCu%1&x$^+AG#b3v`JkXs%{d<4uXKKeC80MWVZ9ze%U zRrnD)mx*b>d==V9yyWm2sYT+i5aRDdA&zsvJ)Pu!Dy1Eq1D0x%Rwt_g&2SF5TQ+V| zRbH|=2O4~ur#St7k6~OO{;T;%0{kycd^_(t3AcZ7`{WkHjD#M<(D*U$?XmtN%vPXv z)c#7hrrK&e*GZlwiaF#QVz7+=4yk#8bjwE%J3nUy1P7g*=AkBs`~sP8Y0it<`eDmh z&@D$mo(4;c4c)9}{&xJ(k8n2OQX)b$UDbOKBbC?% ziT zRe^NPny2#T6dqmkj3I88u7`85OGv*^ZGTpXfS&m|@e4ika|P%3%+NK_GqZI6rpUWN zhTVTRd!J~9e)Jt(VDVqPq5ckheTM&PzUh=dmG`;N1G4}E0E&ToA zHZ=UBQXo;psQCgKQlvoMD6rh)wwC@P)7F_EZRwxn_(G7S9_}s5M{G5&YvrHD;yddB zg;#!_nVVUkD?gyw^{go&hEDXM6V89L3{r}Rq@FqH9AL}q4Cnby!l|Y9q#6V4u9v43 zm~A@iJhNHUSs#;%w+VRZ0KezOr=9+^R-yz|RsI+_^5v(UmxQnuD}6@0r9_eDe; z?YakvQgq$I?80>y-sXSZHVqi%{^2TMGYFROuI5xK{~VBC_--P4Z5z00aYbi&OL`K) z7PqAN#U1?JIQq^(on>OVy0g3|P2|OU((s5zmHRWcg;3DGLTjts(Z=?0smHK>1&q_a6iLN z5*$3D`N0}EqG=XtN|?Pl$;Wl_SENSJ`m-}SViRbhYmETd2{sgWvR~&*3;b2)#`D2F zDdFNnZ2VQ6Yk-}M9m@@<@mFp42szOWdBrbuL*7DkLkzyAq~^J=>friMQzL3b*nr3P zVAze}GZI{-d`wsWayEwAOuX%Ki7v1NZ^#uQiyh;m6J0CVHJZ9iqRa%n#TBBf3S~Cr z$jGw3e4pDdju>FHc&7#^8c}8EuP3`kvA>0pfi-YZPk%9cj+A3axxP?_lsiZThLli& zX$|0uX^kjq*Gw&x{&Hxca zkE9eM!r|d~hY18eIdP}mb*ITrkYagmv!%<$j4ok4{RCfE=6@#y8Xf2U@8PSNds?~L z#-sxZf2xPS9cxaI@lb1O7wtK1xm_SQ6nBrl5u7crnc;BdrD&Oz*F3?qd;7COxZ*kT z62buo;t77Vw|{*IAc}{VqWS?xykAgF&`>bA(5O$_j)*FlxL=SODOjPr6hf_s-aG=5 znjI&gBNhIoY!;Cuthv+*n&ROsa0fxrv%qbl6la0q(3!+6&~=DsmicfOUS83!HG700 zl_LUml8ml$H2e%pT?;>Bty^U`P_$$l> zUF0?+k(;2z)XmRxwKCbiH9?X|*G6kDL+}G#^j(*_0UcZk20QaVV5*SqL>KAB54{n% zf;H=^d$F)G>0s)l0({?Ul)p&4iw)0XfF7lM-Fgp83632_^$*Y$BH_AgI=SwJG$J9Z zPk{FzrJ_&T0E}<#?8*;;*AtLdT0O|sp{o@A=0evSY#^m3j-yWN;%aAJ+?6l;d!RKN zMQTMyHbw|N?2 z4zC~#x^!bDTS8#5dy2aTHo;&`H&>4k26|+!hiV*|8wfTkw3aBeQ7IJaF~SC>G9pNb zuMrXn@tIQ6^a`?nu<1>(JWkUQ_OaUi)t)X$>Fp&#>WD@osm}Weh>-8=!Uv`XV)+#% zt|7LgmYTm33aI80qUP!UMoq=z2c_l@grM+0L`?;GNUI5g2{j{O{*YZ?+@!D_2QPSL zTuaQ@83&?`2}StpE*QcvGT?dFF|ZCRD+(QT4sD^9a(Gh|%#-yga~(JP7RhCp23MCi zD7em$k$EuaXyk-iZ67a0zyN51_=N$`grf7W!@#HEI&AxR|HjC5*z*(o+u4moD_naw^;w%jYtQ6IM!6fa z>4YN22g_&rSF#19RJzN7u6*NeKJRLO2eyP%!t!*IaVP(9j+K<--Sjik@lyn(6=JO& zq=wEPuBUh8W0108&9Qeq27-^}NBJBf_jW;Lqa)Pq=!rt)vuZj_11Z zUvhl#ZDmq{q1-=60futV@x9mipAP}V8R>&ZTwU3|FlZal$07vFWg}gKLs*8{Oo39Hp`)8|lm8Agqq}r;nzD-dC^+_oYv=lZ zXZhXr@X{78BBf~I{O;1i6dVnQm*727z)#Ne_YR?sk9JL&@9)HhMFIb1zJGNnxJX}U zCDcI$ss!k~(Yz``T@`#$NDOfo5Ux7Jy;+oEh%3f$FwyZ)ca`W^L$EMm@E|a>?$DW! zcbAC{G88b;QQKW6I_@FZBGF+k>#j~ecb9378@tOi2a#4k2bWxDU*w-1r1OFFGgb$7%xq89%lutztX&V?&GdjPB&FER+V$YcodRim#@GI|5F8wI zV_tW;%!(e|m>B5EyaX2;rcV#jFavr-Gz>r1A<&%&s=@`3jPLH_?iRuhMGV@2O(MK3 zImccWa7W^xAGtOPIH=Vj1YB!$m(pl4K|_reQH^TPqfx5v2SJVapl|&JA>6dhpC()^ zU5vs&*AQ^&;~w;1Xl&=p9)!n8b`mV%xjVimRQKm<=)26;Gpz5S&tjxhu(AOd-*l5JD-vFJ zgv@A2^XIxcg&@I*PB$z*zaAdYtaG#UuMjU&H51Hn6EQ3rliG;0%j*6zM?NfxrxX`K* zzi^>dQyh_L=6H=d?|J_Vk*llR7yK`?TdC$EOFT~(SWFi`TJO~rhj{xkK4?ir6aK0X zKF+e~lRzrZuJbQq4{APg!Bq>=iv`y`#bm+tEP=wM$TJ~OQ`ox%02eWD1G+fA{5h!* zn8w>YXPf^*_8lq5H4Gr&8ph&_E3R_{3dx>QWD`ns|3R{+B-sp7j${GBB8y9-D0Zz` z0i8)Kjph{N(ujNq11^BwSCPhZUiaJ0vJzhUy1&M;LdZl{N;gp<#Y*YO>;BoyM0L)W;LvZ16j82p=KO8ES%{q5N}Qj0U=r6pv<*T5gv%otxL zKRd;My7j zs^f!ogaFQq0ADxiZ?5K{w8Ml_m%gb`xFk9AsOuVdYh?4g{{9ZFf(qs-v@myF;d_2& zu(yc>K^53;Qi^f`7~l4U>qrQEm{{tH8D)fG6+h+LVtf}aR=V`*6dG3!Ckbnu3kJ;{ z$e1X^g@fqf!G%LQ#Lc)v+PoC%)k_OF6Qq`sevw-$X9ChCaN&?xDi;onVB^A}NvTYT z|H*fJ3<>eyO60nM$V%4@1Gl*Ln`|T@5}dm{;nCS6Kh)pU9KWy7Kvq z7hFTx6hb02DCR#N(0vNPc%O5w&LQxkEz)$Ot7l&(m&Vk=!eD@nEg`g_oiAbclLDOh zmw;r!~q`BpCK#S*)jSpPpa)7c6)ttRYcv*7da)9Cp zjd-iW+D3x%<_dTF5WTe`$CM(+32{{97plma^C*%MsR$qVt-o^!Gc=$J6#pF_D*=JcBiX1-}Dozf-Wx4NxE`(_#?WD`_~&TH|YSx!Vvvu*S_NF#K%13 zZx$jWMu1gOWW;4agqC-f>SaJg<>XRwVzt@Zt~7(y5Xxb#dNrv+!_+uAM7G^SaG+1C z&|Y&>!)UTo2DM-R2q#095Mrp({iHye-6^9lO-BW_cR6MB1@tib(g2FlM34)%_hVor zUBCzL^Oo`bO`XgrJrDR`@EpOg_B|p-G?$=1+9oIT&sfcUST;Y~g#FAaovOqMo9xi~k9MEeTw#7*oYU)%MXsWDIP_h+i1kj&YqQ zu>I&S2w}ha9u8Kh*(CWpPZ|H{g#QV49aUWfwzG7B#dPuG4GL_>@N-|gT8cAVx3i_1 zx(sLU0+}J4H5T#%r~NhT(eV0*;S{`xQ=cal7*IaU%g;ibx|5V+KnVyKP%d=ITzeFK zYHo*C6anQl7Y3BE>ceXM!s&-v@Nu3%0v~sCaSZ?YD_5*>@cv5z(;c@9HZ-W5LHOb+ z2Rs_~6Dh@@a?O(K>lsv{)w0?5gdzqwz4y6}8|)M*#{Kz|qJV~h6cGcKZ3kQrm`&X> zwX4C^-8c%4v0&fEfqc`v|DU`lZDKm#cUvHpHFpCK>*Xi0=L?4`3i$PjfgW&HMQj)H z1MSnIaEhtha@b`Wk-Sii8&iSTfFrJ!?81h_P329-xgjP{` z@u@$;HbaD3f|YHF8$z8U@Cfd*Fiz&(U=AxYY&^hcHVgEKFk*Cem;CIyD>^&=P)ns5 zf3Iag94kTtx?5RFEov1=OiDc=WQ@P_LwU-L@S(d@j<&k2^X9VL72_yfszn#jO8P`LPTF*GdOU$nUGi(?B3R= z6P9mu)!H)4R6L%o0r2$~Goy?&S3cj;A+&d3INrPr!*L^#mlp-(Gn$!NB6Y`tNc1g- z$8FR3TaLixeD?^*1!TlENecd%zyl{-vsphPi5UK*p;U|vjhh>M>vf?zu0+{bZ@r#` zsZPB0`us_k*JP6kVLiEPc~$%{p)45hpJdk&oUnjs9;p(IWCK_kC z#q|G?bFNq$TSZ7Amv!ynWY7juDi|26cv2^LDG9Ux6eSoX8+Ckrr$8}#nP6f#@&awl zHzFES2K!pd9O=M-hYa>9voI^{C9JTkt}5dg>__0BPCtf$OP%sVETGjnC)F`}1v{_o zn`ekRChH}mE9#KNUIytmL49QAKe}kSgo`wHZDF7&QnLMVZm+FpuNdB*xyxAz!NTCb zdoMk1%yRg{3jWiHfFfMM?+U|PDyF+NUmovHA-*ptZw!Ai-aQ~h2GOA+RpW9=5rJ{`#73NLvrNZD9y<`}CFTulpw~QKNb!0=y z^sW|05xyI&i(xSQ2+qnn432=mqnBJ;U>N)=!O>yxo3vDf!LRm`VQ>VomwU-D7>HsR z9071!FI-@l3xKN#gQrVCM+D$l(%D5AoF3Ij@p-O5m7T;~R%oh1xoUf(3&9E)4>uOS zFdlAvVMIJ!H`5)+HzH%<17(31Shm2l;u{eQXXpZp;o_$o9t$V%J=yL!{+ch)SY~<$ zWVo+p#hMw0#zr?dI1tF>IlN65v+zQZ?VZ8~gaMg-p+dyRmy!z107C^HMyVkc7$8Fh z2FO4XGpVe*Bo-RTC~K#DO;epnRHFqtA^nEZ7c_X2avg)&Um;Ekob zr{EYSf8EwS++eR0KIob;BKrG6Pk?|wcyQ~u6SD`x&Bj4Qu4f^uxH18db-A-3cEIDTF<`c6Jws2#A4Sgy|w$PX>PdG|7;_?_v-d6S1Q- zfSg=M5Z%nnddta`G#y5M7xl)-&+OM5y=bNuM-91Ne!s42(qzan?U}bbi zkwjCZXddc>!RES|V*@z|G$-jODJWaljlw!p68Hf~2<5C$H68OegS=aUEqArhj@L-Q_VF`izgcEKqhHo!W;%+XM^D=28|xeN1;B znU?NF@PtMNq|Isq>WXWiPek8Cg;Jv^Bm+CjOdEVOVPY8^Q@Ru!WsC8P@1!O+@}^BSIxqpX#HcxPSDKQQQXv4;$q@qW9j&Mv+0BmPOIs z1$M+B4t@kf4;{osz`xOl1aW^6938}6P_8Lqr~Hd=nH8uY)>gcK7ZS^>1+dzg1#43g z^+v*NM>zb*ld+BOn;ob!p3?A+2pLzA5hxv zUM}>(z^+34!oaSgJR-1@JNTv71$IRScmC@Go7gC77ZKcz&;=IL#hdCM+`&Ds(L8ZZ zpq5>&3CkSkG!R#8+1KE|>Koos*w;)cmtohC^6;<=?nK{Lk;<1>{glzTo45&n51(;U zV6J0|;6+2Pp_IAU>~_u#tY)i7DRh+yYy&Nj>*m!r2l7Gyp&wTBb;rBb=W|PzHFD)4 z;+2FQJPDS?mkskI^TJErU$8ewl^%gxMJejlNX|*Gm&=}i$AZ9A_D_O?6J!MVhhRzg zwj$hLTz^ZTA~mA^)pA^)v><|6ouEbli#MoR)?IOH;4XvxM!4Y#)L!G=o%j!TVJ;1a z*l+x?+XE9r0MWIUEDU&AvkFkfT2%;B|HeOA7|0KS9{&}5Wn)IRvpdU)gx-1wWC5uV zNLzfugWt7;3bA=nAUgyQy#ju`!y87{2K2;NwOfV22MM#`(cqU)c4tMxZ@(+hkzElD ze*EQbM+p4*1bFOm;QH(H*qktUFiP@bI1NeF)Y2~wgGTAQPC2hMYofs$HSP@aw{r3I z@N~ZHZa7Q1ISdShcyK91A5;i20XcN{QBUKLZo~1E$Jk|o2iZG>9DIqkhWw-WTW>0G@#SQ%jj!lV_o&Gpegr*&p6nywuk?_~ejULcWnsV%xqq5KD_C4PFulZ+Q1vzqxsms z1s1bbgcBZbvwP)Cp5m2<@4oKm>C3u>LltT$kzq-XB4151A72;9G*5zsLtnvfDQEgK zRX;U}#hHGHSKPK9?noAF=v04Nt1aK{aoz6rvr$AE^d%c_cNf?$^TzP6Zg=Oi%Skon zVkZK5Ys<-;34e%O?B*r?Q{x1r@+Ln%Q_+sEyWU%$bPa|AV9sWI-#|}ebCg$JfTVKb zNWL{(zmY^#JVbRLDZufIA6{7@O7Rp`vR9s>!W+h$yz++e7J`H~j5kt+x56LdhVc*q zrIf`R#!qHJE*r0WDHjz-oaA5!a?uXblq!hz}*`feNQyCkIhdumG zf`UDK#?YaRi9+n)LUrp3z3~YD@YO&Y_9#IS{o8n0*iohjjLm%Wwm^3_TELLrZLAS6 znY>R{X#p`Y7smt*F53a0Qd#K3PHx;P%fypY@kD4mFX*g$|MdU_F^7mCdUn-1t2<-| zedOwV;m!bDDn0iCZS{OG)Gg6ODCGZ{pkn39$FvX-tU=+!} z>IT0R*k-UoLhV1u-q9~5czjpjC*~nIm@?_@=fAuI@ltPE5xg2d!Y{AJUrcH-7d%YJ zsjkLP^s6)}Z832*K2@uy-U&cvX|rMtVu8Dd-gzNL)?hv zGL0TXZ*pdn3fxD93fxCMrMmhcqr63Wq`WmJRZl+{ z?CEE|gQInQDtU)PfuW9*0)@88zcmdR*1LCARPeaNfoZIY$bdVj1CH718M&Yx()i{# z;flYXkj3!jq3;7r*ho@}-hTKGfi5u6I2>Gi?q#oVsBetS?2WACKl~Ud4B>|hf(XcPIqSaO;Bg=06j88g6{a@gNgIC8je#X4wm(6y zEeFdo82kv1BlwDdpJi9+0(857R`T3mEAvAjK^gqKBs)&fG59v8d4=6Ivx0lyU<|M{yU_aDjE5Gbt*7}%_BJI zvGF$W9i$XBpI0SUx)fYABN+lpq?@W_at63y3=<*q>~m$#u1TIJxTO|l2c%aZ#-x@6{&%QgxLEDaV;y2 z%7J#`-7Jr;JY==~l)%Qh<+S*PbIa+f$S?{LL{s<)vvOVJgtFgOc^ymdOZuQ#?k4L3 zi)lj=MEJDxZdTcx&udh911r$fF$Ut@n^kt=o4;(-+HBjGgh5fHsA#tS>(jUm1w1SrdNMVRyc*7AQY(*j>n05(=o_eN?}P ziGImMKY8wu&$!x~#+P01O-ieoE9g+OgAlQamBarZZQmUjMe#lE?gbJu7f2wvPy$Kl z5K2Nb!U0KW*V5=6LMOCPLhmSwgbo?$U>6h+OH?eNek_Oz_JRnaVmDZ@!}rab-J5rN z2lxYj{IP7_d-K}7c{}rVZuYXOKS2ZssE*4TVlXai5`y^mB<)oV`~7IwZ1z4usWGiM z82gmo_Q-tob&P9j)K{uafQQQ!Tpo6Z51+62?gUp>HO10+h<*W~Dqg9*E%3(S&5Fp7 zd)$MGDxO$ijyT~)KDcws9u5+uDA5q-ETse> zM~j%VY!FbKvw$CQ&hoHV&RHHI^!PqzKeg@|uugo;G{7*NwCn{R;iLs_{9%EUmbVE2 zAKiPQ>%^pmQi@3n-}P%mvq(aXKdimmD@(!~ys{*`78DjGVQML~?kYDskZv_&&~8?YvCJkWPf zgmVCUgHR#wqmuVY0!Q9Q;atdP;5eOc2m;vx!eooJ^AKHC*cKX#eZ94PX4M7150RVZ ziqTm%ACczrCA1Zc>3~fll5jWgpJ}egS!}in4P134THD1C3fz<1p|z`6V|57_XU|x$ zY)YVF2-<**U#Q}28bB|m&k0J9QAVeNrh4EIfW6Vq@fzz+SmJzEH8gS*>~G2ZrAsDn zk?x9!CtS?XE`%05=AZP~vR|q?zt`AM!Vy)k9OrD$#tAXGu|~h5Z}!!2hH30sB2yXr5`hZez`2d5GF+Vls4aRJhp#=Q^r-3xEnjYJeIUU( zTW8-AL26#4tV@)|hI85E?Zdl?&XpSfG}|S96c?&db=l}rwwz4;ne6}iO zbGBs(1d8DcWPDFOXGQ?M3ilQkdObErE*2?!;h3t*1Y;XP3_p?YlKb{9@e>|b79lYd z{+pla=W>+2(ZJbUV||IJP(~U*80(oMjoj48c{>|R+JMrqX{WKX9-Bg-80cdSr75{Z zX=7{WD8JG=2*UEaGR)Ax(E3sn=Ts=DP+8(7O3|iTm3VxLvocRCxT%J1H~9B>3Mh3K zA;b#CP9e(J9{W&^oD47#9p)?tK0V$rP7G}$%^9Hq5_$9H&YA(D!5ZVo`a$#?42R|P za(&B=5iPKnu_W*gfnrnu8DG@W*)@P3f8772g;YOg_?B|E__nqT&sUXiK_`oE4deb6 zk&@2E3A*|p+5R0K+Bs_k8T6lv2)dUg<*Hy06+88$1_`-XQsJ++b}nG)|E^7&Tp4el zw{hOg+@y^qRU0C@=kolu-Lf?JPkhiz^@f2@%f*Fv$KAx|7*?<{SCzZzMT?tD{Ukt=^SqC_^5{-NX`(kQc&=c@mKBOlP& zj$J|poCxj~cQ_H;oqPE*dm_v@#8)Th4R_rd^5xQ+YhUG@AK@CzA1rX)#tsq3oDqeU zG6gVAD7ijKAG5a90V zXq+nT%yQ0UEs0>9Dm`Lt*NjkL1>Qa0z*?)x~q_n&9VK!ai5`w@fDIlhPl+%H&Aqbq3 z0s^O`6QJc(pMyW^a{Ac)gbKUiZiDaR1c7`3fqY*i2;>V0KVR_$(T=lSBiSc}3i*C$ z@cot`kS`!`3jGH`AYVY3d__cD);+n-x_sygSHp;gz+qhP!b3bDEL1lco0t0%LE`0Q z>60lP;t4Ro_qooTxRiWz_%{=GIQ*OOZS!3X?dtm|&GLBWx9;JW>G144=RlSvT9fr# zd?y8<>*2;7g>oWmd=5t)j|SBCr`|mPA(w`bTS~& z$-q@OIWDA1{L);P=c?{Crtuw!2-CfB1gI<(Z0qxkIK5fiv!W4Z*yqF@y7;;OHy1zC z&pC*_ON8T?I-vkcFg%rZ^mlGy-zubZ@j2<@v(&}5o~qYGBx{$@#W4hoF1}>AIFTUG z#ehH;16Oo$NR{}r%fJ`^DvXUSCvOnt{eC7uWv<|z=g1d&p^JNpJ9Kf+o_za!SA%~Y z#!!G~) z@CUt;%ABK}-F0??h{9sw{;|$9{?`Uq3_rEXmBc8hILs3A_ZSkC-W0`8><6bOQ6Cp z{RG%01Xc~Ui)U|e4G0!jl-MnT{{T&FJ%C%xWLS~7tukTXnqOwGkTTPzIFm!k%-`h7 z36}Zk6laUD2_OYNUF&SjCRyc;C-P>6l-F*mvr%ZLPMzx98z51vITC{0LFX4ZVYzP_ zJlZ!9O)L`~V~t1KL8)edb{F5j8Kye-SXvTi7^|G!!l<+jd7s0k*}fGbYu{{?CJ0A0 zaLSHsaY0ewIl@&fUz9P8<@EeeFI5yMo$dUBy-(WVu(`Cu)e=57(sHLOg`FixTyTD> z+^v7#Oa2;wL=^w-T~}k`Y~$bxkiqYp>+BpLOf5H+k_P?Tz2tgn@jPcwX78;Ak8m_` zm+>pdO8nu6WR*aNmbfSkVtKsm$epel8f!|pp}Bd3hgIUyce@(c+Vl?N-h~ik?FbE8 z4Id?V$XsS;^bWRq=shkPV#eXsAc{Y@$mtG{8OmydzF}`^^_s=bA~uZZV6oa*1rAnL zLraU*2Fv3dtag;eFLid+*aE^bRD{%*5i-Y6I3|~#!Sky3|BYTe$dridz@E($kmEHK`7Awj}resAHx5g_PJV;urNaXLB0s! z0rEn5-=MzVFniDn=cDWl(ZFK1vCKWC%!Zc2>}o3J43@`x;ciUrb)NaK%dNxEv$)5g zdjfljN0dN0Kc9oBX_SH(4M=li6h=UQI9LV*UIS=pF_ zF~S$$u+}3096_X|zG3auSH5A*AoL>H=+3_6{jsO7EUH!zRAx~X->|0l zHQunojel~7Z&-&D0G5u^`^q=0loB$L+!oe`P~#icw7&er`|d2QuYAE;yRSUDm>5cS zgO%NX!c`wC$b<tNDkSK1wuZi z<%Qx7)AGW8mwB1L_OxqNa4!Ba*3I~oGfrp*U5t;fH-UCr0(&%c@W0*$U ze(6fmzU6(tbahF%N3@_>bgg0`H^k)poHd;NLZI@@)pM?E%%Xkx@gvTv>^$L!FRt?v zy50pJf$6UX3MPi6I$fLEqWXuGzUZvast_zD2G*bC%o_dq?)YA9BL!z;8{L$|uJx+v zq7~X`RCI0q<*yWigzfsDvzaZee;9xBf6j)iwN+Y6Dy?I%w2b7g4Prw`3**gRcESg1 z2tUX}ISE0e)G7E-8Ah6@hst09#fJ)XESDj`U#RWCGNK{{>y-z{7t)km zL`GE=8HTltYfCbbwcXjFDq0ofK`jZXJBZyL=+-(%p zh7OPke>x!-37@EH91c*VR27Xx(pRb)+>Vis!K6 zcbN3I54cRyf9H~GWl+-Jbgz2=dz_ep>HeSsm@-S&U1z%gF&v&Q3A+0h_PXLO%hIoM z&F1!L{}cap;JXf1ig$$2pzy^3GJ!uNdH@r6i!gVh_C35ycV{NND7exDzMqN_+m$~K zbAQP$5Gdx=A1b(;hTSj_>RStRcYUVAomnZw8s0^rRhmj2Hv2&1*CyW!Rz`kxhP#`m zO(~u`yJ+(0b}iG>$E2sVN*!G=YE+w61?@(r7PM|%Fk;k=H>Hkh)h@N5U0U1Jk!@}) zXvbkP-G_r`Vzdifi*VPEBI?2J*@CBQCh?>s*-HR8b*?v1PMs;GndS5g1LU^LI-(Wz z{m;b9qVlFs7|0K7hMm-t2!EU=siww!ar{8sCROKKqvS?dnXy<{XQ0@Pb2qz{a8pB8 zu{5TC%LdBi75SBO2D^i_v1nkBZvvCWbP}3j+6dyecpym|j}v~ObTDRj2Z5QW7rac! zE#i#~_o5+Qv=BK%i8oj+CM-nGh!5=|ICAIv8+$m&F!1|Nj-+fyx!{EP9|hMk zlLQBiW}_6dGC1ldN{^bUAT*I^H}k`F+zr`sg_eg*E*(TN$J#+Ma|{(!0gLX1gN)1p zH-VYsUIM_(u@HPHwlz~qf99AuNM?>=(TYwREmpZ4M) zxxq4_o;$)p_?Tf>SPVj=+%5U)OI`P~&j>#?ZWUAG0exx^&aNIS?*`ir|NM7tE)0_S z=J0P_T#OA?juLuT4H6N-*QL2}kDU%JG35l&{0xyRrZnY)c+MZNgax%i6MhV_FTS3F zOV|!Xb|@Q-&rRJpSmq`lA-AY%6no(JQKqV*kw{NURfF5d#7Q`%Azi`KQrx)?GAjIi zBS&1eqgd#GDQTv-!<000@MTicx@PW8!6|7{b9WJ2Lu|pkv{C^~p(Ul)k(XZV(wqO# z!u=4tS231(>CVA2FFi^SSO>h5uS<11+4BUBX$czOyWbtcyFDEtG%egdSSF<9qN{N3 zGqshwzIK+EwsLzDwhN9l@7zX2U~}&T zmQCWMw6-uOJFve_jIIxnFJ8_HB4ggOqpiFBHOzbP_Z#577(Th3yQ20TFK*{<7NDP) z{U^i@vDo!B)vrr;IQ>OX7%z4)!c$wuFeZSwEEH}t&oI$5hR8#DvPc^|q^HvmlKXt{ zhd88%T8W4Bv>zf5>1jusi$i)^50Ssfs5?Zi?GlH`wH;9w*LLms_73i2Y#C{<2Bk99 zsH-g+BA0au9o_KiXzRag#D~bt^JgdbAod_>gWbKLddE!L<3r$Ju<9Ko*&78s35K=&2)E&Rk}vVmk1z<$21z(AV8$(!D>OI4-Ao$E6@}Zm?ALj-UwcV zOsB2mPiDE@I=CS;-F!)B5AgD?gpN5568z>!H^xu4gAIky!1Q7lcbH!6LobtF!n(OP z2B()#yMb>Th}LAUQ%?@?1 zcnZdaY*F@RzB@r`nr=?OM=A*C1CME`5sU0=bp)21dm(S zx=OBn2^_h09VUMw^+~&m!-R%r;zg4YCCUVH?Mv8}9DG5(t%Gt5+W`W1}fS2)2!JXg=XM93b#Pgd+gNv6F z8f3cEV7ieYkm*v?mwzz^CLnhbBq|K80u)~GrYDabB2>t`%;5bhK_Krksqp&*j%=ZU zp)ur-o|hZOF)eyc;pNkOQT)K_%y`>T$m~!1>Lf8ThQ&|1>*^aZbNA<|cViecjC|G8w=ZrW1Pi(P!@ku(9fU~%49l}}wpt7dvq0ZtyHP$`@|3VSk+%xJ@(z0l!W7QSYNjL{Oe5V3Ro zG1ky_1dJ(Yp(n8y2pWUuIcxB|9x`}Ncx<(+DMO4?k3p!m*jF<^XlA-MB>+&c&Yh#( zE5u~!cR}<#pB>A~_g1LM%jQG!_>(AvhFmZVxj+$qLn@Cj42d40#)vRPw~rtTi<%=s zjR1=g#u^#~q7hUe8bJYQ#Lpp&=(-rDj6H}lXhau~FM6X3Mfi;vWEwGqpwWl{)QGYF z#t7ql77&O=P=RO!1qdVb3=omz%?#{{v&-CGwvlLqR;)FwSW6MYii`~d8teB1qx4?& z*dBsKBknbfIDD*5Rrv0f_|d*46`lF5S)JHI6;2Mhv;lc&1eJ$IPyiaSDwGiuZ*>o0 zXNWdv#3zOkpHPI~h+hpOej`{k;%CDMT#aiZ|BV&K2T(vDT0sS(6%>G0d=$!x@RjhE zsKrPX-NFj3DNo((PGC(bTo@7kcZEi_tdX$HoLecGbtP!DB4Z>O6gkq0$^nms8~BNn zmFUnmzQo*gq_l!cL@Ou&t!M-?f&yymYACzTBkG_Pv!oTXDBM3P)_@h5qt+2LTCs{+ zu{C60ScbOoW5-#B5mX==K>=vQj8I0@UGHAVULo3`5id$3UZilp5hqO}P7yR3@ewuR ztAAsJv90yRk@C4k1?CThxzR-;0v{N8^THx+K*kF`4y(Z^J(MJR=v7C_noR5{6OtF}9u$CjbOqajLe;g^y^}4cOvQj(D)m@O;HXDR zxjT_RunpE9cMufnvDDCmwn05CfOx)jJB$trMeP1%2vq1ACCG|L6jp&ML&*+) zW~aL|UvQ^;QebmYR8mR0nM~5}K@`E!3Q1n$CvapkW3I(9v-9Nq^npC)Zud&6rTooe z_8fOCFMPXZbXc{~@G|&F)TxFn4(|MuUhxyg7zLn=c}nEeTDpC-D4?WPDimP~Kh!(Q zqwaMl>J*)AYbBsK1?y2DN}RQLPNqGc z`}Vt|^=_m2x|iHFZQVx0p;r&Y*T5UhV%dZjCIHW9GRpdm4)sK_WU)3<%^ssg84u!N zyo*&8vm%^J8ptlAWkIynXb~Mwp7(*fLV~i?plV5!f#X24STh1ZOYw6(#397x{Np|D zytvy%3#=cl6n9uZTFK8Jbkkohh8KumE{@|L?R75;?)Ggjb&QtXekZWtb^5sLvb%{Q zqH5yUr2tfiDG#|5^sTbj7x{Z#ET7U~xm6O`B`2rF=%Ohj$4xih6Np8vNks#3 ztFbmK0})q2HlRD3F+0a0=4t?U|n(M#}X`N@cipNyyw09Q!Y;35Yu&%heOErH985IVy+=z-#tx;j%PZB*aDn29t6&1u4q)$qphoHD|tQi#P z;tqo%eeC7Z#Kq^~5lyBWeBBG~p?dCEe*Oj6Wsxs9kksJFRsbTGZ+j6QB(AZT5<)yk z>>>sxO_?-$@{Hn1!I2Q*N15?33dCF?9$eDVo&aUchY3$O=U%|3Dja!`Ocv14p`k6| zYhQBLvMm`a^M$@-tc;8mgp-I2Z8@L%NvWuV#Q5hO25ynS zW$Ba0hMaa7L=%WU7$M^b03#&h9S^IcfTW|qdd%T)7V~^p5+8n|dLze6f)bO+%i<2> z<>kx9%aNn*bOu(5(8OzoScsS z6FM#osy~Un7#F`0fXW=iEwncloPgBPM;L^m&{y1HDD(yM;kfz`GmLp}xfchALV1k6 zGS7P(o+p!d!P{;)2a9+KC!-S-fND_b9f*f9c*wLOZ2IWYqx=t!rNHY7 zq0n1;cbt+aLtza8s8A>o(11`-Ym%Kt6znvkK-}PT;y%I)qu_2D1rN(8u+-`-Ym)v_ z&D|k`z(8&{f}mtv$mC#9tsu%^5G*GEe-I=RhmbA+>oGg@CfVV0(H=wM3vq`b@x^6B zBIzS{X+TIE`N%yw>~CnveIwyD%SECM#=@TpKosF0eGIYiYfvntopje1%h7%(-F3AX ze&$PeESXmglwSNzv6P)%XFMn#H12B&Xh3JLO7TYWr$2GGv9%ZvBRr*cO`csE1MB)Y=vJ{ySh=i`9_lfl=vgqwBF3i82^` zhZTS-lK&+H-=Xo=M07uZYm-D2KB{0w!SvBH{JH3TYd{W{o&AgwBLnht0#MoKjDQ9N zWR0)f?QOq6=Zhi;>|`r~zu6z8F;>Vfj1Tqb7$s%@Wc1sa(EVmmogzH3-##V)f7Wmi zL#V&@d;=ZVsL<@V#^Me;u5n@Lj{7zsMc@SD*_mFWiqRRG^GhFj>atA1h)zB`Dgc$= z>3i7xkZvBqJc1{oxMT86`m$zq)*!`HRKQLn*HG3 z!Uhqj*n3J6(>U3#KcRr%gt__Q|G{)=3W1`lcTMQam;eUELep}0s%=rBjD;|`xqT;fvcCv==Z2F-OoCEc{U@fTx$kv+IWo?p7o=Cd%IVpVCp}2>f6ZpYWU8$1W0# zC9WpRwto={=r4I*Vj|%f(rR1)l)qi8z9Vje**y+%hu!0tfJ2vjqzL=L3`smavApKY zIG$SHRg1S+>WSiq|8To5-&^@#xZ7}N|AH#mTYB>eyd>GvfVC77=@?H@0HQWe{>wcn zF*FVsV8j)1qmOcA_Yi8i%cS81OzCxk)*6L9g;2ADPXFz0PdcbbI=QjZOLfrbf1sjL zKrogLnkL&0B^3S+auANx(tQ`**^b$w1&)|G;tsoH&cEoAhc3C-UA_-+#4LWz$?Qp!TRsf=y>E;=7yj+dQKVF`F%Trr+2x%faWW{AWWD!)M8bI5h|~<*XA@vI>$3U{*ylu~e4?JO76~7%J`wGK0lTqPB)`Vv zEc}~zq5?7{&m0;tA}0VOpC}~u(11WzQN_{g~kemu@o?HV@io9Z{SH33bI3@A=waO2lR>?^98 zEdZELG#M)mg=%S~-K)iD^>|UdrzL-`zh?w1APsR3*6`}rbQ+0YC)mAg3exLM6whaP zIdw}!q@Fa9PfhZ;czFvj|BgciaDeAi7ovDlS5G`YUd?ky*lnN+Uso`@A-kO@g??R5 z{JJr;U;AB;BjJti7Kf)XTS^3@8}AhW>c&NW>$Lg8jhsD2+Wa>jEc46I=ZEs(>Gy4s z{Er$CiD#hyak6lhD1jdPlz8m>5FR^I%aeCq9{ZSomEdX5J|=?EW0$NR`@nCF_HNnn z+8#|~)h4NE{ZCw`M^EC(H9VR6yMg{HgNUo4>Fp=Ur?ivE#pPxCB(m`B4m_*_c5huz z@9S}s-ewXns|S(QhKPQ+e%IWp;%^#QX@&(YCh@89o)-M+`ku*bB5C#CIBL8S6FfAN z;u}ZughrmPZ5t+q@nlbN3$}@9fG%4{UA8lX%Tk+ohF*`$Y^y+auCKT*gPVY)R_$S{ z({4Acxz%vmurU?$*#Ahg-6@`l>~#VVYYQ7t@Tob)$pNGgz1e(NbG zF~Oe16nL?X=Tp7kWI6pCKomen_L;24Htf+0;mDKEWH#gFNglQ-$rH|7E;<{|ckGOa zQhUh_U^m{l~>^C!zepHFlW$+23o)t5Pjk>1H-)Hg3ZSiPIRT)~13-?cj{lHb(c z^H10w;Kd8xhneq#L=2jKKQ;YvG(BL;)-b1M@bwH)_zL;7j-C$eZXy`%d&O$sZo`%x zXkQB+T~Iucog~c)qP!mVIRW6}|0Mj{3Mwa*@V^CG_n=;@cAGTT9kE-%4h^Fn+-8sm8zh-d6Sc2kKnI<#UNX=<*!`KwUmdSvJFP z`I;}iMeHDHi7qcn^rf<=2ozm@&~P~=M?so(y0kw)5OtwUgLz#OBE{kaFsXdk-ugAQ zieiEV=Z-v`n4;-8+2X0AYSwauSTq%CFbNl5jCgkEtm>jTl`mH#bH;nB2NyG69h+X6 zM}AV!pV^DlSP*OLoCpOl7nvoyu5&>KkF?7C`(B>gSUtsE{*pTpj_?sDI;IhX_+gI@ z2t16eGeO`ldjNqy7^+o7PM8Rxbzw~)^#8sm>2LVmQs>E@3VcF8Pn=xtlSXp6Zz~e@ zmjSi?#o59!LOL$ba~R1}5+mfXc#e@~7;=t8&}<%>ssgt0pGz2$01DSl?MCsvmQhL;slw*var4vDL2Fl7uW_1gYjmFnzr6}zivBOsUl=bh@>J!MCU};zmy`&3LhkcZ@q>u`hxcx3#oi%U{OKcLG2cB4 zMvB81@$jw?Y8E~NghBbPrc8B&UZ%Qxr(&ves8si-5R9o#pT_M|JQ)ek2nbDY_fy@( zd0#DG4j;!NrvaG}#Q#NlLtnu|i?GF08~2T!JyK&e2pB_qb&9v6UT+$IJ;mFQH6U1w z?Br=AvRh8W$Y#2rlE0AT=bL%k##R>qwAA>m9!TNe6wb~H5QnpX0TX8TWZj4uoCVaF z#+MX(h6a#}SwKP%XKI#8*dqx;l?a9lC?*2vTTIwLPMSTH%_hW{uxEf>kg)m3^F4S- zl*rZP-;Zq!cFF<2nzTT-+)mwchjdF6aSQx#R1ElPN`2$xE)XR$p(#ovL2@6@C(ec1 ztDy&u{;AXC=pQ~!j{YI=w@7`j5taNFvsaYGJaxWjFFS1|TMSicc9K9<)}v4ijq;5{ zEAgnq_GY$Uz!Uj1X18P)NK5p@Pt+4POqZ!I&=ZS`XE&>(JYk#>Mx;UNJ6b$DEkG?a z{zJp~SCsK8_0dSc)Q6k#$rv*ekQmvR`)-^L@qoE6UEE>rOP_wZ+^1esc3A332w7>r zj&CJnVFV^4Vf^EpJ(W0H=6Rg;6j~XX0JCY10+_~J&-a-FWFBMV6?ZwA91Xq@M~xRu zmj@#hE{8h!5-ZgLz=|p78iK$nCm`@pv+V?dQ%*o&3O4y>Y^gAsJx-`FQ6Dt;zDN+r z7ZAwzErLM4fC%90Ug_z@z9m%1_ng7^4}w6xfWXh)++X5p#=>VP-y?Itn#}QYXd(Kd za5&HeJ~GtHV?r+<8LsKpM@9=F6CWAvX2{pZ!-bCYk>Mpui`T~dK+CY`viH__e$rVd zqB6b)^H^JVAQbX7n7x3-DVAnX2}5v%^brkkg!C16I70f)xcr-94|I)KH3hsWj^^)d z^wbDBV76c9N=VeC_|8q9?W~BHhGS)-0+?o%{8!>C@~6{A#PL6md1kR&l^i*0md%jk zVG}`!_|lf~%&i_LyNkd@WC{2-D3{c%FwG#^UBAswFyH=Qh5!+C-z=&-m?l58-6<-Z3o3I`X%z9C1`S{%Ok7{e1?Bl@!Gq#dTaDaB%%+?g#Q2#hj7V5XY@Zu8HO zLrW1pPtb2H#<0+i@;mPHG}LzU=kD|5CV&osfp8NQB&NIg5@HX9ikA=v2|!E+Z9pMk zLQqn8!e{eSlQOTRm=DgpjonAY;C%R_J@5vMy+*(n_j{1mr7euFT{0^b zzIasdR(!1X8h`RZPxFA5_%`JnX(r)4m@O^$H)E%rnc>e-zQUra0+}> z5YowYkR_+~dy+I3GZW~{b;R45bvcTuL7?beAmit!RQxfR9zQ&uVxiY#X3B%FDSM$; z9i^ACm?e6_jP69g#8_VAQK)HlAuMsKI=p{kWLyBXF-#(pHx9xE-Y~I@(>~*;ANMr0e*!KqDBLm(PNX@*Gm9(65@U@P0qXODl36_*B;L&w z00UE|soRBun5I^WJ4{n6;Y)g@V-Kn5Tj<{5txj22y~g; z`syGtYmO%)?6Vzr39WG`-!1NNDBnHnazhz5>~-NE9rYvxjA!jNPZ@iLn2)3QNd+*a zmfUsiqZpTa{LPF;OMBu-s>&*r%0@HJr^O;wK*YsJ)6e3;llfM%}TJXeJ7$fd57RJoJ zTr4d9FuVdE{;ntZXWL~rzUS$qu|>oy7!mUnz?5Bb@Y*Bd#5nK9vQIwnRMS|g;w-DE z>p^X?_+JfOCsrhD-uF&s`v{fjSZxnq@-f8A(*%yEeeRhpPy0Md5aIwz9T4X)K^fsB zLBJDwMGXGXBBE$c`;ik1ro-_AM|s+Jo>=_@gHbu5$CE5S5R&70(us>@#;c(av# z4)lT2Cqu&TUG6Dq1Z_6soRUM9^%@)-N!fc@;A(>#W8VM%Lwxp5C5|!ve5CKZ$6NK3U zlrW-T7{OjG3Up8co?8h#Dc;>oGrTf~FhKU;UJQj>2?9gG?2t_aVYX1Aa2LU1vWI4v z?9Etc`V$mDo+eb76Q1DO&yW+25;%I{iMcWgJ|GAb3J8pXZwTT_QSha~=pvyPjI=L> zWFsfo=UF1bY*mvWP&^=1Bs3=2t44y!(n%TxDdHhW^n=-|KS2;hjA$4`uvd!)F#O>^ zAt#s~UQF5|XFy;etR@Hy1hd69f-qaCK-fdDm=m7hOa6hUvl$1U{{ySE7YGsNgy-gw zoN$6*(F=gZobV|@pzogJ<(E7o*?9uLQZRgP@To9g^*34o2po;o2m&RWEs_bsY@q_7 zCBa@b5KNX`NF$RaDv?hR0ZI%b2(yJs36lu+YC)ib5||QBr)w#?>E2rj2jmY35ej^7 zlvljm!YD9_?+QVzqTpeI#dHA8L^{w`^L3THJ>x@6P6}7e4&$GG9bSv?JL?_6juQ@O z&ZK4DZkKt^>Br`a2}l-C{lZ(x5t=uyJ1ftGr+>kwDDy`N>z?S=7fMkr?B4oXIqzln zdJ{m4z=_>#GGV}tCAi)0527A!x6>A=n8Npxf6SK~!YC!I60&*fSKe!>M8O1X3C~?U zyCShJlpI`3Q%~SpI*8KhLVmzDdlXwr6c9z`I;x#fry}j3PIcr$ zc#E>X9NrxGgaK)aZsrU4ly%+=#t8xg#5 zj2^du@}BgHn(}qWh|DG zirR#?(^wkehi+{Sl8*15y@0{Zq^vNGfdv`7;0tGLS#!a>|ZEzP{oJCB_tDyov$hXRWBubM5-bza)idy4%=h;c{9&kN-iyq_sTZ0lIt zHM}A3-Od}sheg${%Ayvjuo8~oU$*l)<+o(w7s<^oG&APz^(GQ880V#eFx-7-5hi!j zwOnNErb{EDa5r7^MI;$_fIq};IwB4Bkl=1Q)zeDe!^?7O>L52W!`ngc1)A3M)nk3E z67s2pVNyasuTCA{O%7?#@u$3Xn8ltR+AN-t<*mo&SmhK`Im<%G!IMx!*|F|v@2~(l zSh~z83y-!!Q>*}(_7{cM4}hwZJMSSXim@6%hBBfDgx3y$Vm2+iYP+N{7TrX35#}BK zG^c;RP@dL3{OQICd`oHg@9ZSyDt3r|06ivlh<-p3{_yOaWrpWZ1dri)BFhZVzpoyi z#(}dS48zkROonIdVk0~qi`7WLjptSQI=9#O#b(mte-WKZoQO^+TV!N-oqGCW8Jz8{ z{M!-!T_yi3#irtpv1u`;hdy|*JSb(TRStYC&~L}M5OOTBspMd6QaLI%Ezp#Jjzlty zO-hE7xuad-R|mHf4KX$;nTkyc#n{|-)pi)00qw-mBtI8{zX74ahNVaET+raOJqbQE(wfyy%sR7=x#65e-kMoz#L1u zRQxd{E#~ylGndGa>|zzvnF`7dA;=PwN)W~*6{KR)0!<0%NEMTm3}f<4Em<(tq^5s*aFXgn*j7#}-gOpz03+!IXRmA3<&}AYv@1zKSY{m^V z^X1b7j{$n$Kr>&y1T0`beL#O&!n3gqPY{OTX%QyF^VAX}U!EqS@Ns^UcIr2>Q?L9u zSMo4EK`zFpzEs9%*iuV;-msL!XJz<99Qi~h4BQf*ia*Au#hxB|LpZHF%UhQd?d@&0z-aPN4w&q|E% zZ}$)=8iYSYpirE}A20AWu|2;O)?ed`;J_==NW{B-nD*Qo5J=XL&wJ5Zm#l!A%8;jG zR=?bD#ngFiwb^LX*{&3K1OYA*iSy_mHR>5}cJunb&-@69TT zJA7|eaoOeGo7EiSeIVfVsW?%pEOIP7h*+X%Z@lrrS7x;oz!ZBOuguDzV$(@u?G#g4 zL2CudinnDgmdUqe=U(%UW;uikE25rdq#`<)U`0t#^YF|?-gc~zz_DTnt*|^kpCGPK z5!Gf(K5Gd%@|lg&+p--5fr5<&4-&Z9K-EK^BG{|dLroRlAZ<*JSPnf&5LAV42;6L- zs-eFV>{Y9wV6DFzYPz=S%_=yMJ-8O@;zUJu?P%i@$=mBnAV zMV7^nl4hbTuDv9DZ7g-)xrJ24mkLT+72hiWv?>k~u__)UQB=j@tHJ9^yiM2-fdXYs zT>Hi^wW@ZDs)$z&mcdW2@^)fW1eO_t2(8YO1@YMBY79U@Jh!&rh6wreC(X=y_`x;a z5gPYx#zBIvZL(aJ!kZ9oDndFFs35linXHFXdMphpt&Mtk1AgXSZ#qBR+7{`ktN54? z@4~&%Bcd3+cZ0W~#zrd&j*<#M5|+l{#y=BKn$03mG^Aj;ERa)ji(*EB96pl#uN0G2 z^6eHuw#}dzR>|SUub4%WQ6=B>FD1z;`3r;}y5KpGgjI65xtt`UN`6R5iVy8ps zO(aT4mHZr$h*k0*2>|_lZn>;IMbiY+jv1y{fQn`|86u?t& zm8Ehj%n}R+Wi!D)&0i|7-QCz-N!+810Uty zu~2>s7$8>Gw@`$CWj$cOS@l`4A5#G?s=wWDR(;YBm{lL@09;lp2N+drkc7)>izK zUvw+^qUESZyhA4b~;VH8$2_cFV4)HxXIMGn#WRAt335dwl$K5K6KLtdX zO1?t{)JVQ^^F9`TW?G4{_%n?_(KampP^c>Y+`hsn{*;hLSp2zd1*s2~t_XfIVev=vzcY9Frho`;b{hgg79>ChqSp_hqUVrW9qGBp*KYxO*Q2Ws?@Ds0j=kXto ztMz`>+sS&r{_QG+#hOM@E3a<@OkYK+$H4 z83bXrP)q)$1bek5zh8+`(#T|qO59Bl0ZJSs2(yJ+^dBbJt1kM%E?o2<{%TA!&G5=c zgaNV#_hQxOD}um%aAt>GAPBRCTKb2rRQ-rce`tpL;4lCjxKp0*JgK6f#!3( z5|!9X5CKX&Nf2fW6$LL7>{X)xl<=2+bko0Q2nXa32(0}KK8Ia}5nvMk6M|Sp04uRX z05rqm&jrYgQ2dDtk$4J!=bCT$Q8z5CXqu@i@nFXJ_%DsIx9`z@V4D9{$C9>dip0HEF623}} z2tjTGGFkAU^tixP;*EmO_re`nj&BrW^I=^$9XdtSdT##3TT^4rtwNftGHN|=<1ch5 zr8*NR+R$W`to2ZGp;I-blTqtwu!^6!IVUUb3OdO$&uEJbTLI{VWgfWk>tqpPlzE0+ zU5KpktR$?^ySIW6tnk3i<%Ad&o@G*qBcvrpaYvbNbP0(FQry{3gkf=~i~!KV`&Y^0 z4yCljs!`k_60o@QK4IlA?&xo?5>r@6Q&8QBdsC690O5;u-#D@lQkh~DcR&y=?)>#Q;Bs&;2o8L>reK#^H%Mt+w-7l-~GtjlC z7&RT@6=I?m;hWFe5!L+53f5Xcaar+e*_jAmXN~0(IxOjAgVv&?lT8u+g>&s_pRxCG zEWzW#d4IG|?tSEcNBeL$Ph7)I)r@WSD@wwrjUF?rVA|x3D+;$nz%S#eSFq%xy22=v zfF`)6wrC>P)GJmSYwDFm58O#{EA4|#@Q2tKNu-&J>QM4a^UwB zVqYY6n_5*{peey*Sooo2s_=7(s3-<-aARCm)5a>j#;j3;C3It4Rnx|}eDr|jVlzdL z)uiZ?5a;`hwWAzG(WliK8N010!i-&;XAPwPsM<-)N6;9$HzydOtM>&CV$%cdPD^we zH4>18(P@z-qjNHd!b32Nh$yW1Oyoxz_+aajeoT!P>M#)qGh(cAUUbt#w3{~0~3qUP}E9AQ<5w89MkluB*EP=E}V5Xi5 zf8z-u)GPF6BJdz1iG)u%mys;W=VwMNyaH$jWghp$hcY2}k! z_iMvLVqm&l!`kn{*ev zB~PY4-m_h3m~3lYc!=NA*w<5j`AY5_^0VFdInU2(n`ztkxvea%UPM<--0^}fF(2@} z1`*+X#Nj{%(+l^7-*Cf%jfDsBzs7|R38{O;WuZ7F<1-*CE<8w(D-dy8abZmZh{W54 z*h69lzPM&n{Sb(5-0`ON>#qIh{pYhYhw_BpnGuVSwcj@QaB`J%AS+f}JYT^jS6puS z8ZNhsOVLHR6pPE`OK_PkE?HQ`c8TrP=ASS`5RoB)><;?g)7 zE-l1mTV1%^DK4x5Tw=s!c|*9Ah|8eHa48U%Uz)<@PjPvn8C+fwm)g5+g3DUbwUsm)btK)DxG7bKz1ZF0=c?4#ilBQ9ITWtX@#9Rrt^;_{@p;P>KPW8n_J7XH4t!*4*3 z83%Xp_1{G|6#go1@#C+D#={+ci8H+r?(iFrFNiz*yk5fzaED)VTOsc76JoX^xWm)M z@0|*Fc=)bMoLY!yDvl9{#^F(QH^M+G#DmJjflY;Ya+erEyN#}I+np5?yNZ_iX@`iQe61F9N5poSRS$w8N!*BOa54tQbBMm;O9M=jrinL z-#dIqJ0Jd>c1hP9{#!d=2VUN~V;oOt-jV5l-N4VJ`>NUI!x>aDsU7F=lypUVb2`u# zO&S(&+fg@+FKE@VmTgFVq-)L>xAtx1MK>wpS8tMxlk^>RB~OEP4*#dUBJ111;F)|I z#B52}#PO3yZ}dhOAG&;F5lq%&!LY))jif@%yACWiHcciA3${9aJ#9l88ww>fr3$^- zQAujt$(P4}XbDCRX)F~oXy>pcR-ThO1JA{+;FC3N!N~7h6P|3FmH1$W>B8Ir1DL+J zmE>-;n#0Ph4OV5De(ZH4Ox4ms#F%s{;w?)H{mpf9ZMmzBuQq?+Ca|FwJl{k|84c&K z@2zdVG23+ZC2D{2!<~J#Z8MyP7bDgOdQq>i-jD#)$#-^AT~RBjD-LuvbY14`_!+Bb z<&Fz7C3C?(Uc{dtpiXN-fN>d`ie=RM=A##cY}eMP>d ztM6n;IoEL(XTH~0Sk|Ju&#Bo9hy~IxaiCl6;Q~wxpVU%uY+M}wwTJH^`xM$de>?p8 z`AwH^pnVnvCqI&%txs8xm7~B0FeS+*qKvby14Qk9F|VU--Fi6Uzh`D6`v%H)U8US? zea(7#4Bg_4cGvQOJMhG`C@L^aeg-fAWOVFv*WR)D6MZvzMqeL%r$KxMFe%$tPuHJV zFTeZu1XzdP{o7UEAd=U}^Zlls;xYNYRQqXaZo!3|5&B7t>7+CKt91L0k8IDG$1dy5b6?R(!Ivw^h0 zfq|c9T-(QYEnk%ItE5-nAiv4<7TDgRjhmcAj3fBWQu6nlHB6*{in23dzf$8`nf@clL0Uto7ey@Yta|7d0uKc44{70jye z@_`GY`9lMI*K#6(GNIK5zHp$ggS{112A$ehK&Vq&8rC-3AiuG*|5@Kl_Cnfj$#cH@ zpimz@#OJZkqzJICHD5d5o~loyCNAE<(~kIBYkzUyP~WiYi4LuhKRC{p5~vQEvEFLN zSY<{~r}4_Xeq`C{;l3K0?J?-5{MYBSwU=2e8KFNyjW{Cv35-Y{>6>&tMpWDnl8Q(0 zp^X-|u#0>7v^JysZL1{@8kRg@bja^-`QEXgqwSzWlKGmPjurUDw|#5$^Bee@cYJyF zpDB&%n;)rJ|H!_<@LL=^FrM$&KEF$~!UNW!c1}7zKrA{wi1Kr#Zh+(Q5B!b~Bpdic ze#b|DY&}2U3(h{m5BWUIcNO}4aUn8Z;ej%3f=|~%K7RIJb2co4Au?FA_ufc)A?D}a zBXjZy1aSB?y>>Ai#LO@4Sg``nn?63zK9Vr!&@oMT#(~@paRh3JEF7_sAD-gdV4p*9 z{ERERmtMS)?>?C8E1l|_XkQnET_v&FMtS012x|oECDVMHZKF4a@uz=}O0rWTk#LiB z&qnbkGL4r%<7*oObjA^T&x*Uz8~KTx?9|#L#2++&WK(6df%z@@n%=(q?JrU=CTD!O z`>f56P&$0Lk4%~Wiv2AL4%OUvU|6!-Vy`;O4pxesQicnrM9MExt%yQfBKZo3NT1l|p#H2YTOF zn97sd%y-**Y=X~J+!mE=cM}4BVpXrveBG^PjT4_hy?_%`Rc&AxpIUc8D=kw{)GnQ= zr)ViWbG5IQoeJT}JF=SwK+1+J_T8!57g9mkMdeY^k;Fm9`>45__=)~qTJX)weE-uV8Ebtjwaq;D7N5_)m16z<^^{J#7Lb|ON`hBg^ZC4GDfHv86yFZ6Dx9VvwQ&CM z?-#VNzel-?9?$ALKttcTX8=4POujtYi17++4?Qp$5Jx zxKrHWtAaZrufv(?j*epTiA61(2$};!d#Kw8-uwaIX3HWurg?IE9<|5!ll>624X1Hs z1Y)RA^58Yk7R5Afv|N^@KIrRhKT5dEdEBm?D(&M#2rYb-8y|7l+hblO-r^zO!}im( zHO}cyf&;`4k3Zn@hsQeyEcCJ_aFSvL0Zt zoZ)~gNHyC_DmhPVDjhkWt;&BuMo_I(tK z?4g~Xy*LaxX>IFa_LnIcvVXx~|1QO#=72%X&r%Gs2223!!*kk(@tdCVW!nFyw8;N= zgMZ{^OV4S)3-#0O)hPnmLlcud9;6*Q(B!oK7z7+n>nV|()*s|*T3;3DjA?y$Ax|{B zbap|r+7PgT^ZG|=AmY3pD+4~NCFITf^uC*U%n+a3-k)MHWnyWd_hynZM{LH@fZlyG z&mQXQ!w(&~)>@4km*ITzClM8O-)8>MIA2qHfP$E1X9&gUlEqCmg_${gR`&NH!|b;N zfJLD-BcUl{0*X25RW3LGr}peJUEj4C-@x-)$K(SR3?8BHAhv1`@+JTCwYGtq`H2-% zTIpLhix6 zUk#q|@catAd}437d_8-pz48{|ZYDTzZWAtYts{i^!l*5L*D>FAdwtpj$6V4DnG+MX zaL6nZ?9L#HbV4DL1AKF*o4q$B!xWIW1;4jrA3-rF0x&p6K?IJ`%P5FT@8~VY7^OsV zj9%DG#wgGkV|0zU6U}men%%B;l=zDV^6#WGIF3;)7Hy(h;@rkxEYf!J)$jQ7?Yk+7 z8m!y5kioili>%|V;V0hpUCUR$EuEY3U`B+#X^R}D0Xn9=k)M-bHEumsQH|0!0>EOF z;+*<50mfkp;ea35$W0y=&8G~GtiTU{;QOEcHT3k(ZuRWn()QBwWmQu3bHsAnui)|g zA6Y9K_@AHnxo>;hS-4r!pVhL%jfzY3ZQi^_ZS<(EJikJ21ACRN1TE(7I@?NIT4O7& ztMoMxPxs_F^|M>VzNG|4nWjC_yE#vdTUf`Iw$)g%wGQIil5*`RxuUkXqCd-vPQfxh zKvzf|jl~+@{wWoPGeXQiCn12Bbj{RXgMb$K=anro{{(ac<{#Y1K|_yt9uv@9p)Mw% zdEyQe(7df75>U(;UtN9ZdfxVoZ-|@*8YAB1m=6{Ir}HxP{Pkt|&*gN}Z23?&U)Q?T zx#l+u&P(7j-PoN`C?G4Q`?qBXTp>;F?cX;UdrtAr!8=88Mr)k+;$6h? z8goZ>j`kkU`p(xlnEKP&!|Jp0VCuNkQua|KPhfn0nrizTqr3 zn7VDbuSYQTkX28OVGV<+$DjA52T(7$Imf*r^_vQ{-xX@pWK6v*UsEnlNT{c0Y~%Sq z!N%1r!aTWoPL9@zYt^!A^V26Y8}R6#uPGu$Pw-lg=2VWN!sUBJM*zskjeWN9s9$`~ zYGe4?zkFkDW46It=+jZPc~YMyX&j67W44LmFN^isNTH%j8zwbP;`JKvwGY&ZtP`5G z=?}gxa&s&{J~*PWZ7T>6Z%^5FtM!`=>!((1P^XVTUe1-qThS0AOIBTT43~lD(rnrh z>4qbqCB6ksE!XiaXaYankk#bJUxTm3?flz!hwU6tB&UsU!M-MTWcJG*seNJCu_(3< zU;Muw;MFDCBIlOF5WOf@Z>_Je67md%!s=Y}ww)ijDXdL9XkEn{C zhp+zlJ^zICydJil+oH0^U!$fxbzuEUrIoW2*}X)V-`7V4kox*AWz;Ui*T2tzH_7Q$ zvcF=d2n%$0#>|}V>`MX_4%bg@=VxZ-bmc3nWM}b#HTp#bH1x}U(wbR54v-z-Q2YaP z;1QYwpA`ek1*cqMw)W@1km>bF7zg4Lx>2#&lPxJ3t5(m)W=~}4JJf)L9%;&t|5d4d zP8$Uk4;Fm*FSzFX#vzS#o^PxaMGWVZ!2P{QyRr3(x6s;o4S1bL?L@XY>6!8|Y3gvi_z z*g)|_1D>#Ai2?O^;`&Yw_EI1TN^HsxCuFAtOMJ6il|=S`tUY;r6vfhSX2X?UAR#0i zNgxTA+zIzh!VP9;XO?h-B-{p64#g*jfTB+nB?!_g${`@22n3PkCLn?!r=Wsd;YLvi z`V=qZtFE5iso7l~zmMo2xT&tItE;N3dwP1lwG&tp#V2NCLJYUCIDU(<{sOK%sinKb z$jOhK{a5@Ff4(?3yHQCv{U?5#=g|5%;cr~{bP`xJ&{70IrvCY2c^Jx6^gX6+~QX5q&3zKl&9~bLEQ!L+qeEJpXEoB|)u@Hi%PR^7_$j{=;+Oc-=jGyekeAmI zSk%j-1t7@FqbV2=(93HH(Ga!5$*%}9bn>g>7drXXdpfzhj%!q~lQ;J&bzQ?1_OC^L z6{NdiO8<)}W@<2V;)6T5C|P-4Ppu3;w+FtuAWoLB(t(2UfkX(w*`*fA2NK@F$*%qi zt40XX(-)0NucIuI+hy^KaJ!7P4n)GQ6E!DTV#`cCk6=9r>iLGQ4Aro(Zq?A?@ZopE zUSN+AER>229|dvnRU-?z)d%ys8FGHQ`ZRg9>KDhFEE*} zC9TLD8j$&R(tymN!N)vhv^Ir(Ll7*!$4tJLNh|V&2E1%w>lm#I`cFSC(JB>5BMK!i6RvGD}UVm{VnKAp58b7&CunRlpd0(+e_q5x?0 z2|)8CY#kcUM~@t)u@4EVC1trOWfN&dDbRpj*h?Bv0yNkpRO{r@Sw6u+=KApVVu@1g)|^*XdtYk z`IN7VXR>Yt%d$x)lX-8_ip-$_nGYik$Q&Ac%yADpbp8;}nfmj)E>{&tBqWn*jru1r zg2|!iPEv2ntR4v%W>%joq(v^0r^g@**^~G0BuB~}Y+SUyO;m)QX)XSdygBefk&;es zv7V3HG~Rf_RYYMcEx6pu8r{D|EtX55V&UNcH2zomGe#i3#y$-|RaWwo-Cddu(YG*( zTOp8f7BdgB5w-Z#e`_&(YQ2~+?}iN5RfU}*oTt66!Iy6~gf)Vlhr2ypP1#k_C>D6? z#rNcfGww#*f`;f_aK|F(-V^(4b(ViP@i!6U8{ zY%mdy>(-IcS_3wcKylqVc!|8lf})3T3iD(Vl@gf+xpoHO2XWDXkIu-D!-MrrDVTd! zJUranXOQc(!j=Xg&zr1-tBaP%x3U+JMzm;ZPLaCm#wBkU+CywJX*_z>HB{X|Ex8+5 zzyU&a?t5=6)@zdiHxIEa;#tF7l~{m;+C1~6l9e2%m&j)t>};TnZ>fxHQicPvhd88I zrEIn}U_LQRxH2`pqD@X>q*mJoF#dFve^<5?pz0(-TB$BI;=e5pgarlPWz3-{}~Br6pH?lKhjl;)gr{gKWu17{KBXJ zQzG$^QLYTu>VFX{FNK&a1)k5ZyB&u zddmRPXnD(1OVL}NCXMJV2Fb!B(-a_KeeC-@W;H&#o1ddO_+^}SR=2=&`Vm>4h zL!$yZjygpbqwXXCcs6#TdxH1qldjhl_7TwzZI?6NRgZl_pu+IVN4)&guJ*y$?yikm zu)P7;4q(c6E*YC{!$+SO{i>G4P7-|K6NtaI$@%g;;o(M&??H4uB+;_5xizZl9L?2k-F4DzOcUjoHs>AED`h*OUuX$TiZNBq$R|;QStbeT9e3`f?sZUuekj<+_ zgf7OavF+^=f~N=*o%D0QIC|ZRi!*X+UvRo0*N%P8Ro}rz5Z(N)J!F}5?IE-gA7Nb> zzLiZNP)yu_j&4fP!A*5GlVJKYhy&1g)~T=xjN(VWA&xOHwUW9BY$5J%c#jZ^DN9*k z84M1PB+hU(#1sezNNg#vjvR7O3WI?P!C)W&GZ?~Ob~#kGhscvzC{nG(4iP8@!ydkU zrmI~rHkL&B!PvR4x;h7A=L_CH1!J##&GnfLJA_Z0*BX$1@RZfyRb_HqkEx~K=hJdr zgIU@4E#F1GBe}s{aV(O+v6ugu4gOo5KygST-^Y{tBqi09W-a-?bfs`W*yW1m73a7f zRokJ^SiWeEs{`vCz)R^MC3hfjDS58zW!8s4QF4bM$+e{9)Bwrl=edTdPnnV@?;P8o zO$guxAM(RKKTY5$`E3q+%`*uUB|jY`xwe!%&XSyR$n|i%6{V(8$WV~5Q?i7^w)0OY z1s@iv$jiR%`kn0{qWwX)<$W1+TSz11lG;4)U|1!`vG>FH`GaAJ>?_iYGs;oWPJGS_ zYuaY#cs!oP4MRo;*V5m|d{uzb+LU{Y*RRtQ1BuazD1O?!P{MZ857)GI( z3-dP^MR>$Q*Dy!qa+n&9j%dN6mRsHlvE7K{J0_)*gdU8HogCkH0sr4&a zhOg)Aj-L;l2f5)aQqeA6%s7 zgae3m#gp=|p)?yI^+M{Hq^QfF6FII}jyilmI0zl!jP>ZXt_Ey5fuqwLUh7I_TM5+P zO(1zR*EPsSf;GTzxvoy^5Fx=D066noX+`1!@iSO{04gwk;$zp_Hbh^JB<|i=c613i z5lnord6&5h7DWfwyWUd%#f@#QIR5=+$l^s-`2B~Ywbd1Hgb+5#RnmZ6eQtxR3oA#U z{;sM(Q_bu0*l0qi)I_TEw_T-{8(njirc$LJHbV8)ipW5fny=tbZF2Qw%}ImhFB*aR z&~snvTqzh`beK>13~NRo=6R!IMH^-ay_-tC8?UgLa_Cmqb!Dp1dl-8mKnDdrp0(X| zj6Fx-As9E4jGwhLUa`ZqR)Mlgj1hQaQ9dybJmv$!N+=I*5WCaG*>VC8A)>kI20js9 za07<|Us0FrKZX6R!-NBx<$&n|2S@|Dz^l7m$?QCV`dvUdz{`CG+pLsCroNoi0ghi* z!0XJjQya3|gx1P>KZA1q{0$o;X4XsD>q;XI-9q*Rl*2KzNixg9VC>I*{g&=O_;c5H zYPFUANDt$W?E|l_wbC90yyjOfC$F`^RhyUo8r{X}ek+3O@4h4`_JymTkHG4@zS8Wx zhfrFb*Py@t&iB7p=Ud9o*I0?2_X`Q`w~1H<7|F0tKIBR#^R<~4Nd6=9wc1vOrhmf5 z6`<>|>!!*$(O&c$SAcU?%9&ygX~dqV>`z`XMOMta}yq5oyHw~E)*ZL#iERHVSM~ourGd&P@>0!44h&p4Nfrx zV3x{bzIH8C*)N0xGH-nn9)#Z^P>j)E_|GR@Lv7eF2h`%PehdG^o=4Xb>0kMUN1lSo zg0jWQV$mts2T1(Da!(Vx>S;J=V#9t-tI9t*4Rch(VC?2+T#wta#RkRkGp<&wV*s}L zi)n7keD+z`BIy-?2|5or=Sm3X`@uQT?a^TDNAh8cpls1_XYyhDZz91q4foV}*8m%~ zFS!wCZsYS1zkSSY!2uVbu%1Jhf`7OwkusoD2uf?Um?NXd9tM$@Tw7GO-p*8p!P*aG z7_23YG7NHxl;G~q!m2tx{~(OtY*DfX+fQ&X81{TX62Nib1i^sIx`cFREfNkrrOF@+ zU6sm0S0w~=hOIV}4 zZEm=RD&BfGT<rh?CBie>a+>vR{c5zo~wbruvDr`GT#k8omm5 z9i6Kz55y=dzKTRy%&L3rIu4Si`pGmE6@e9i*mY!e2yef=RG`8BQyT0)1>hP{pQ0o( z3KdqJ_exkj)`@TyMzvubb!cDO05}*&!nEG3_y3|pnX^6%FBe1%GQ;@l!6j<3?E5mv zDXI+!V!+P~Dbb%zx-apWz2WgTVw~GjN0w;AUL(X}ZnL4G>iM6CSGPfNuyIM9tfdy^ z?@rX<6|Jeo+pF)b;&&%%E!k4S(<-zUQ4d%RfB4tdT}Xl(;PU{#|G={P?u(5Kn+m8u zZt(9WvcMV2@wZCrP59d9lyDmXctQm}b?NvrHYjeXeoZ(8SpYZcsjomb(v+Ja0;X9h zt((GkH&!d~9Hnh7_9tQM3mx?~IKH?s`Zj5_9J}O4{!Ysm4{%Q%Xwb1K4LUXj;7C0l zskv;d(L-^guLfa_o*hK|Y8fpfn7CAwR*yBmFR?dD(`>}hscO7&S$N*_Fd_Cws|^=* zKUG#6Y=ffi_?T`0;Si)d4iN2(7$Eh(;9h~*pZ_;Tdzn2)nE8k0*^lI~JWCp_VVO&y z{vN16gTq2;a9Ah+yH>wfco{~a*frd(T}@bH*C-kiN7NqC*hY*FIFZk;sI^nzt*C}t zGcG=yr1B;BhLG~2gr!z)#uNZe>{g$rZYt7kUV9i2;OR* zstd;B>uBu*G*4dkS_1F<_V8qOmJkTd1;LoQ+E^QZOYs7NE)++;;#yqszEmnt3;#8h z=X7aX%0})h@yI-2jzK4j9oRGLa;vi3wP3i$pZMk1INoT%@bZrA@HPDJ`dTgKTx0nX z1aDPddg1UoEQ&y_;B~IyXOp$=HX6%D)d&sR2+*-Cr6PPflPBy?O1~-2kG9a{XC+4` zRu1P!8fe9wv?CnL)Pyv~;1&*it*^mqj0@#?5xngfJy`&9%+I{j(>NqR@TI;XLS;NJ zIaK_@^O8f?-0M*Az{c8y;Pa9#ctR6xK6{q*9%gUz1pEXG>OT+sTp^E3=By7Z!c*I8 zv3y@sEsMQsiLj0ZmkS{{d*&MR{)R7_X|J*+gbs$dCKu-x;Z<4~g>-fP8hKiBOGqTI zh2%dhd5mC+lUd4PI}#r5x=xT#=G45Nbrg^#j!OPc8u4t`)iv^LSFyF0i{jZXXuz{w zpe26YC}d~(tv1?J$1LbGp6Vhv@>JJTAQn!fM*xO-s;jY(GmBSF)tbeFt?Y-op0>2Z zbLaIrzDv`R=!W5p@6xm<(8RSax3ZSMRvfl1D7J_Mo?}!k!jH7m9^`UIJUi=ihD6qk z$i#Csg9rd)IP*k0V*-ei#7wX*+{?uuTiK`>-`YX@m`x5Kz`e3(*2)><8PaIY7_-;n zj4_8a;;aWBIWWvwPkEP5)3nBFfo729FQ|B$#JwK7nR&2N?4P z%J`Vb*oiV6FoNdEnh;`S;X$Qf;XwgdI~?h%HMc2~yGVPHog?D0-VLH#oA6`>8y$?W zri>R_wo}KgwQjrOcVC}Ygx`Hw+t0#s!5Zc%G%-eK@_*$@lmCk}S|%@_izcr~8gY`2 z$t9C?RbU|ws7RwnS=KPWummEo45K2@8Wdo-A-zxl8loK$jE0~XXh1Xsg`y$ugfPSs zL;HaZCk)X~^WnsXV%lIZX#^W|bxh2KN0AdsB(lk*1r6{FHNbzQ0nj57qlZ)_CNNLC z4bGJt3sizty}nDhqf)r202(wKr9rb%0NUVY4{ac$P_&(wa7Eiu45aJZORH$36Sh+` zp=)Aad>oJL4F&9IVajG)KT?qi091)L8!*T*R@wSJ5rpbvg?Lp!eZh}qYms%bY%R9V z@WFz{a}9*DWYgqf6J8<^VM8gu=Yot`mr{Iy`@e|0rjaP zt~c6S4zpf)E=zm{l)>;G;Yc1v6yeBnR1hku#)^Q>0cRt`r z%^m-%fYNuL&XWPd1e-Y}!} zc;0%Pr#+|DAw4W9myi9|%c+@)z^R!6Fek%Cc2YQzg}#I*mlqHy=JO!h%g<}G8HHjt z?gNU7eY2kH$qD3kFK9(o_9b1c(pXbQkqIY52XNfvb9sj#4rlA3a|@A3G`5khQxQd z);a|7g(1cG=r^_Y?7#QrQ12~mk&S~GW@WhOEqrBfLfuGz*iU_1JI*R>u!6=vzR?@x z_(qdP4EUT5#i~2%Zh*7m;+$byZ-GV@A<&%qRfO{_a98icu(praV8wCK9d~+Y}9n zUtXle*@$s6ef59Q;qwg22xGAfn9t11@>UG7Y|@Z{P`IGh*z!K-D2qVY6rz)Eejbw$!RKmb>o#}Beo ziHlpK3WN|^n&0x`7nkO3)*{P=utPQw@WrpHQG9L1#PYoRX06}<|4O4dV`fD0;w|Ih zyoS3tkJ|#5tJy^Hoc5W0`RpxPoFio;%n7X3L=_~%}FaCK%{F5pE8MKj~-KKRbWA)iA);sd^yWsdk<#o^0zGt7ejZKQ>d)mZz zh&gSIi};1PuK=tDmnbR)UVVqwNpT1(iFj!+MhJc!{_)3)fRK0*ZQ0m+=<2_+>ueMb zI)W!RZUCpbcfqrdc^k#u;K_WdRx%RKDuJekqbXP=p<8B(19ai9HEEE}-7WKA+x%0g zF4hY+=*{qC^gD1H{FGU)1r@*0rJwjGTv|V^Me&FoKZfxd$vv`og|(B*@X@>U5`5rS z&@l8ft+N(N_8Si_JFS9y5bwW7+rYlGIwiY`-#t%I536Gq|QUI(-=MXkSy4>+hbVkw&}2Z{VmYs8OKa@1GrZjw{$=vNvQ-(gcJKRrO8syI@r|$qV96 z9MQ(JK^C1g%uz}p?Ldpxx^yf7fKRn=Dlc9H>p+Y7m87DZtgj@g>L$K8JN@C95W|zL zfG*<3v9=ALEW*zn)7}jjSG;!Y)8pE9_5o2e@f)}W2k)qP--7x>uMijJ`;1$jC!f=b z@xO)`QT)KyS~s@IlEXpzka8geXKw_@xD`_?mV3X^UT2313FHcMP0{idxXCPwkEs_PjBIl+;6p3%(2;WIFyoE#L-R#Qn8<>?B%0RX`YzS z%F6A$(TifE_|)g&;=|H=w8)ZkXBHVdbl9Uq=4Nk!-dr2hAi+tgL)Z=JyZJ`a)9-+~LS zt$EJ)?Zx@-3tE-~NW{Eembbd7&3BA~zh<{_R8TWE<4&EEa>Uprx|mN+gLQfPlJ-Z* z>6T2NE;}!4>)A{TE_H!V#KS$(N~t31Ynyr2hHg>nbojsc?vvH+VzRUk7G+%3F0sXS zmK`|G2Nt#Y6(Jk7_-YjU#7?L=*9id5>>DA0i0?)H{GC=(VMpwUa{uhWX1Sa`KpLlA z*ZQcJ;6}r3?kfE5b*(hJLRum14plE~CKlws8q8d<*DoPW&jK=oTWNEI7R>;OGslYDfWMHSHtF7hSueb6nj%H0Elx64(Q<3Z%>1={xt>qs;dr3vmnrh#JO3|Jaz1na?mnt1!A z5A;F2{nC%LV&{6%&JDFXmv|iBSGBBHPC5(-5!Q1OAscyQSvX&m<7KtkM8aJt#>L}R z2O#s@VR03MRg0)ms+u}$i+sU+HX*j=(^rXp%6uMqTWjcm;*hR#lBfKsrPyf}Pj>ZSKi>mA{x7YY9bMD| zl`OMF_{Poe(~vwA1wP?<>5g`u*Y03Mdf}I$u&Awm6fy19;!|4|E5e_+t2K-%Z8iC3 zUa&mhcvpMQN!vK;THV5yU0ZZ^5@Qw+qalXJDDHlCYEZoupH;kgVhqLhB@hr;pty&} zuO=!$8)oq+UoXie3vFOr&G@l)i9X#dw+hy6mRkjD;BWsf(FjXNp}6K8DgeIhB_6E9 zku<%CyE=P;U}6+a+e%WztgTjx5I5&f-YR#9o*`5i9r$j>_^nc?qAqZI|kga^V84}hQ|G&g9I0I>gBB@r(Pwk*q@8EKew#@h@48Mk&4ppg!x9y z4;3lIwBZ{y@V;L@jVW*tqp!LNzfRmt^ewi?=ScDyH<>dY5SZ%V6RekP09Z`#U z>;g2WTL66SgWq{LAK~7~vh8>>dk@Fn!uKp!7G=C{`%;zon~%npi5ewvPoMqQzh26I zyEt5)Dl%X0(q82qgSWv$*`dASo$$kFH?sp@mvQ&EgRKr^ZbN5N-27;)-i${)oXFt1 zVE=BJy^I2~_8h;UKnptBrvdG&6v>_f8t}A1N{txtOKzR562EZkY}Gb-?h?ZmFJsMx z83R7104E72MY|t~!3H_-{>a`1T@l|>*tOBzH`@hSE9>pZYpp*KjMs^O#)~>&9Q^Z? z`BjC7vPI(zYi+-7yfQVcXRfg&>lN{k)N;V*0d`YK>Wfzh3p4k%UauH5y|e- z{KHuH;gBL;d2kUs^L|X?1%uql-iq<=r&U&LyVa$Xe(of`y|TLvD@~xe^>j@wwq4d< z6g_g0y9QsH;O@>6L!jea4rDo7JHTA76)(YOCc53M;r&pDC%NHm(qJs_-%0M)aK{j7 zNt>&~>F7yn0_#PgW8J9l<*J|=ML*iit;H7=m~_2Ohfr>fjM;8(jf^8)VYp${Beq7K z;3>`B&EyK`;QRp(;)ni0;H_)8OO>Q5n42Uvkm*>P3qR^^{&=$6{6_ndhukwA>YLl; zcFCL2X+`NdlDBH?F5xXz*IiuUotwBLd5wDRx-5@aV$2(ExnaT!n!v0-wR!hQ-nyx~ zA+IuBufm7ccMpGn{Su!=P{B(4t!8c~e>2$~$2JnlVgQvhJfXS!d7gLLD8b)OagSxU z2u9YU?s@EY0uaut+~UO=LiAEZVCCYkrMVyE1L$^Ll^enzy71`7+c)I+oq{#n<#!57 z7p)%d1#>b*t+j)9Z2~IP*#rgIe_iL;_ zp-oG3Kgf3;0<`L5$+GsWd?uW=X+#lkaw~TU1?smJt=&!83q%35;OLJ3PF73<&O!q! zr+8Ky_mDz+A-qfbVq158HkpV-do2#M*95Z?~2ja=33zdtF0&g`I+cksqI4(9xYyc)NYgKknqN$-XAC z(QbbP+U=Oxp(CcYIk7QC%pl9Wu(j9v(VO6)AD#t4I&|pNJaAw z6#yE>ZOo3e%#&ffrjFj7=eS{he}>TFtp8YDU1QS-R2bR;XngG#3o8ZV7wGN|Y)$~a z`b?gz5-9s=-Qi$RUJPr-mJ#$cn52>Y=nE8g~5y$1W9=qIz#JC%|ZbHM*A2iyT+#YcbFFF_{q1-;zyg&ut6 z0-w|y=8+3TK8}6SodIKi&g{`?bL_vFt`Fch`@q;&6sTqqi(|j=1>M7v2o%R2(B#+$ z;QyO73P4pW!pk18wPfRL4SOeoE{0v8g9IIn1$}z z1`z+i&#geA1AmyGoO*-bYT|~sy|-4bt;`m`Q+V=_ig9Iw%lYgaZ)B!BTw$al}vXiI&Z6q>+!ePXc)WtjH!-%|HDd9ZN>rRT;A_U2AapWvl5g#}jcU2+e&H)+Tk?{>qhCAs5aG963c z;AlgY$NB7u;I{C{ARKFObrNt8+uLP#iB~A1S_lFR5%Usmkbq~!sD$$e-R0)BP|LDF zAph){0X>`qx(%L3z{lP3I^(yAF1Ridd&MDGjBzK~pw@bA72zOqf(=b5#dF6(rAp-U zw71;VxN{sNzwLxr46+RkiN!{c4SJNrGN6aBSUc6T%X;z4`_7Z@4hp+SIO1rWGe_eb zX~5CAEl1;b0>{z#C2%wxpWb6M%$J=&0*(fi;2(`ZAfNJYcMC?LB5~tYABmq@A%Mo9 zSZIt{&$#1lv{+O%yf59V3GP>HbZErWej~~}3kUdMO9~8Yz8T+Umq@c|YRg?@dv+KV zCZb}n0QjRq9GQ!~5?)r}G1FnixoBa>vb^CvT%yK zx&so2{BY{TPhn3DKAg(nhd(1I&$)Z5%RZF{1DBHqF=FZx7$8`5sk#1vlCM%t{8Ub6 zL7euPoW2O;wAbYHm7S9^k*|H;9jgLEe4c?{aQ*R9ezcfgJ)H1RitED^lg00L7J_!n zS-5?iDg)`Oruf7vdzvtT1x8o-@aah)5nosx{HcE+aHQ}^9nDw3$9xrurdTpAc&4t& zZh+vKx~Ae6ZVWcvEjI=)iYW&-2Cs-s-i#6a-!Hir2hWt5Gu$hfF38PX4Fh1#l<5}K zH-F7sUig`^g;+P2avsvbX9z`X`h_2Nl)!U!R`3#I}&1W>n;C!}d^y4hra(CaH0$H8oboRcGg45Y@ z@e8N3<$FR*XKB~F4(C@^x!(z%&h~xe&SiN-U28hqYC(OXXD%)Lbk>}gYVD5TZ3nw! z`L;EXrcbSx)e$TKqeIBdKE!9Ob-&IoTk7DlPdP6Pny#MN6F70*3B>%}j)|XNi{5KF z7u5YVxj5pcM(&kMNgq>XJ!}otC8)UIthrYnlWR#DEFRE`AJXa?*ox=mpcUVH1qnET zhV1bkIe{MCBPURTBPUQVxb2f2;M;b-1!&w+(Px}MpB7@ppXN6KXI6wzxLtuy8sUzL zKP1rTUc)BKR_26?`@NHi?l_mG?wC-Rxzrl;;&QP$fe63}^>qRe$%V}l08B22ypdbn zW#PLd1O=1%%Dpm~uOtnS%#(O#^fM*+s_SrK`9GQcW0jrrwz(U!PYD+0_8mYj9#tIV zx3;+(t55G0XSI@ex9#qzs8<9s8p=El2eNQqC`cB(WL1Li-0qHt&r6-#4y(kgfpRXI za&Dm<`24^xJKWVmO28?EO7Kr1fk3`6&)ttvC}#Bc_sWdEWUqZDgmq!k=g=eHR+(6( zSNdF9uM%m%N~Fo>Scxg=-|88byq0g#!3L#C+ClZ)vK)z155vCx&E<5+auCkyKC@PAQI zL);$~=cCg0$@5XI34yf~ZLv=tS*gj5@1TB39v&Vk)bdZ?B}qnuLor8g#U=36k0R=^ z=LtL9V9M-WIlP<=+teN+i7$M&Z!BL^R`1JZ6FN}CRXN*=H1nXDjR{|T_l2_FiYMG3 z7Eu@O6EB&x;CiEoI&l_Rv8x+Wy(co-FnPMp#|0$o5U}yF*fbHSB>}x9iz%sIC2ni*9DSkK4R$TF8NphFqh=1FVdi$p3GQP#tvAH9GZA^m_Euzj3e-#H3C*qu^W=6C@MaN^eBpo zweYvUsAxkZ;oe3|0g#CR>H={IZ=VCQpy)?X#gHhyxDut)r&mJ{$jV~Ieyl8%?gByH z#Oo%+SX?YR(5k3tZl|_9K=ta!UMHw>MP#YujbM5kg)fYKJc)l^Ty4RY6J)G1#PL41 zghIuWC_IEsq3CN{4q(7-BiPt6cpJ>#vAwcmGKa-kIn1m_DB~YX>Gf^${c&}Mh(ULv zWav(Rme$MJXsw5BHwiI%L=f@m2sm>=p*Yzj(Goez@A z&muFgMImHZ`Nh!Ln)o|zFJ%ffu=L9kzp(VnI(V9I9Cv-unD9u;8V5u z=sl0LbXh=u)i7ZHgeU+fEV+$<|d8A-I^i#Yu z$qxo@E_nk{KMp|k7l(%fF~11F#Om-W!Lkaxixz51udXqC(W>x1>@GpYBJoeqPQ0#J z@{r}+77u8J``2Rl7ZJ`HEH)4YD@8!TN|Ez|8u~k|5kW!$$%mwXcBH`)0IgVs>Vd6- zx01}ykAkd-50}7@5XRFR>Z$A^X%eP`(}7nS>RW6ips*JAtw6-0H%z86B9UV~t{eso zU*#$uuKz7aa2kFI+*uqs8Q4VM%i;(g)=}jT%VM%TX~4NH`7q9H4G0|TsCqykHnUps zqiyxZ%CmgT2q?=f4bA5|z!&Q%%GX~<1p!4JMS*B2e5%%$$Ojv_!^z(`=ix)OKw9ge z+9-k_l73N3eS}Rm7DCa7Whq+bFxd}0-b(MNu-Swon($TAgs+kYG~qI7!sP^xCR}2g zF!vrNG)qz7izcLe{U)Tq#i?+1j{^K9!(k#?c$f_f&4+t|lon_G^Y^90y+BHbW_vln zZ1~b^>kfJ;l@&c=c_^AqJt93%B@M!C{E>9M3@=z$q&$lwO~P{gw{$pjhc6p+bm>h@ z=PPSDpZS_Au;f|8TgI^f-taQ*j?5B#YG(f=US889`QKgia=fjko2N{M@->=Iz+al) z!~toN=VkSOi1@c(gv?q&5(?V(ujUv83XB}ozcL#V&;vCSdM(yskHi0AErt@N4(^{6 zQUbm{19q}rg}phre^vM@#=vyFCVMH6_jHr@>ykH^XOc^=6WTmVcFS1R$69aSzn0?z z(D}&F{#DtkK)x%E@G<9&bcLw={jmNuLaK}&OO1kFmjCgX=y1XoJ(gnmJ@z=kLXV|b zmd8>kcx(;6>wUdDyK-ORoaK6k%`0H0sm`NU=t=B1LW~tMm4TAitjgX0 zR4C4{p8L|Beom=iqrP71Nmg|36JPi7?ps7zW))u5j#q_ib019#8WbLctP%zQY@Hc z@j$%^yBLxrRt0n6yLE#z^;Ybc03^{mraas|aBh8%a9%!3k5h|$$(v;939Q(cmeZo~ z9A8S~MZ*83@wyGttCA4+b?m5|lxWXHaNq&bKp>ymiPaD8k$W(>bbX=$dVUab_z-=y zjToJ2^wHp%nNJ_8-(?wuBl?mKeGz9?bkcwm^N268w#g=NG{P{`2v7Qr5K!DCNDl(W znCB>CzY&6fqPU?zbObDJUMC8m4JaC>9IS3A)J&9N9FGhwy)T11*?M}g^zkG0c5K6a ziSLdr312KCXgC6{Fa0B6Z4#9}EFbgyEmkjZ3I22?T>TT)IsT2J?+6>*D7qp5z6upL zio%Y`jiRE*0-RGlCY>_^{twQnK6^+$dHVZH`Q+&j!W%b-l9P)URlbzlR#(21+e1>D zeyla&j*7Gp0G}fGp7-jp`cCE{c(@ypS2>%7Q=oriNFz{muwlp0!A1}`I@l1iBV%Pp z%mRkg_f@2WQHHo7L;;rnyhQk;|4=l`e<;-MKX2cc!SbiUe*zhB-0)s?Ut-+wro`w! z4B0uj^5FaHbU{kS3U^!12`zB9C13o)-In}gp?6zG@MkCL z)97xCe2b&gBz*(>opc8V%Y4xGiv{)Vfz0Ip#Fk6!%X&Dk{H)%Y6+aGon`<|GpCg3K z>|)2weV1ZW^o6VvA;ArYipS-?OU&`WeU~PIs0{*8{rfIjAZ9lU6L%p(>m_#~!jH>c z2!bPbAqpUSk0=~L5 zgFrvUen@^mD^}fJTryZANJVmlLA3h>XMU_=jp!vT4RfH?^hDX`d!76D- z0Fg3{N6ye=ZHQtUV$Q(ph1!MS;6V}2XDw-R@4=h?vi_RFPFQepsMi&r{f&UoO$0(J zHxYgyG?*E`69CMN#g2-b8}v<}jMi7@snOoZ_SE)t7h=#Hddw!fU=>q&Dk*Uj}>U=ug-fz+QU?Hk8m|T~0-y(r*A31tQtg_aoz_=IJll z=x`Y@AvhP6ri3_UmX`6f%W;J1pCmV2$atqDb$?N>aib)5;*7-3kMxHJ17)4JN~{e zT^CJp^3@CASsf*|@*Zo6LyN+-cYvrQj%)9O_mzihZ%T}_%DMZ}p^H&EEVk->EsJ%Ca;sSXUI8`7}a@z7Z%CK9SKOm~77d$YlPf%rO5iyDuH)e@cg5 zk?@UlfYRT{wGlV~dWYVlJ;UKiBFB_zbf4t&Y zI37FSC(d)>@vt%CaT-3ID-ad!FURE7Qlk67WiC(gle* zg*TEm6kx1K6}jxCTF7gdI-HQ#FgZI>7PCvZU23}%@=9ZI3+kl%*pysHORH%9J zk_}`UeE)+Re0C9I8qYfmFW2jDIm&w1?bQc`sUuIwJC{a65667eILn)VKyRjm&4zw* zqo~owIfwT6d?U|b0f z3hMwWa3k4h=Ilh3L8G=iiB4H2$SHNc_=?^Tz6rhPjQ)6Gyi#p*lINe*6P<0Sa5Uf` z0ijOW@}zXiW+$Zu&z{q-Imc5v{H{cc^8MR5pS6Ltj-At9jlFI|2~mpdl;S-;!7pR#eKru^9H9#QhqY%cs)5!U^FORNMOsfJUAXA3y70dUu03zW@Y}!W4|36+ zKjD^q3>5M0(#7$`ll~~ri{94DI0f9FO3}Kr1%z5R8@oK*w61fSF`Xy;4ik4lfnJio z^P9fhxr{RT2aWxnPqNL}iCw#Sxcg82u5y68|I!;d4^i=GxzbmSRDs%N7yJXSbb>kx{xCmgG2#UIn8lD2@?#bus=4gJC%jpz5w8SPf8rY!-p?FH zX~o&;6mgcwpECw)?Fa-~+o*ag=CSRnLZc#3TsO*eW<`aPAV#cq| zk(BU!7gu+6_$m1aVDKr9M;|laZPU;Bd=T1{Q+PDdIh(fZZ0zc;OyP;8A^h@V!m2wL z($-tv?%68P;rqA1UJ>8ctySIV<=jZoP>c1Fee536Vj4@sQGFwhmnzvH311tA50HY$ zHqPS&nWHpd0)fm zHxH+s=I7_PPqX&{(w2EqHZ>wq8+SRb3MshDaZUWfU5;yT6H@2))tnI`XW=C{QLu0q zw+1wdGu{ums$Ns5b>t{MPOh%;u^x|(3*I%`lu5o}5oe!jZV#MziOV60U+BV(;SZNV^x77XLc zXJjU-KV--RXMc)@oO?^o*|Y&U_cl5Io3FoE&fM z{D`(7XK3+p#sm@CR5C$C0d-J4oiqgxyU>(kbMs1pNixE5G1rbI!p2JgHrf>p0WlCjP{5#c-cnuZ-NBF=6CT6 z!{&FsxQ<<4w9@MgrBohFi3B`2bo!Q8! zq&TxF+*&M;wSi%=tY)9(qnj9sAqa4-JUtXa>!!w|b^=@~w@t43Ad?XkQ05?cj|?p3 z98M*|=Zw1Y)J;ViIhWYL{%L8E0HdQOoR!nk<>tos>UJ>W!j4s(d6Wt=TtmEsN8Nh% z9=jdz4rfcFkppZl@8a1AKg3-;PWWNjdD@P2xY2t+<#up|>)KYvL(WUI^?Wydh?*}Y z1g|!4oW(~YC?d7YBVE;vXYuHQT|&ynjE5aX&xP^x2g4Gb#m^Dp$Uf}cJto&O=PdT; zs}F1-*o%95?CfEtd`Mh7=Uh(}x2D`&AQG<%E;=ipE4&MT!-FMfd#VVcV{MQsz`jAi z$4d{jGn@`}=sDh`qfyT}oRXpbgYTvP7^%NH{f zAmxb;4oC6Acz93vQ-PmktDx)_Tc%V8*X z){ciKx|KSV;JmAm2s>h%x*FA;YpE>k+p2r@ZL`(4#Q#r z_|hNFAhij^6g=~jLe3zgFYEDqZ`i!?QBCtkZB}@Qp-_Rw|*jlXFula0r^4 zD1n@ts>2wGxk;eQxhYrtO3mjh`WUU^p|AG2=^+6y2geI@Q)9*HB_R0(33tKsYCiVB zGY1aNm2>?|IoI2m`xi6^Y+(P)u}^?8X|>KL3!1C>azXPQr4kDo*#F0|%AZoUQgB-T zIbSYnz#_P)f!nzNyNmM-W#dn<%D0kN&T>aAFL<#ogKxA#NTtDU49XaNu1__4cdW>w zRwX^a$f|Q5AQ)M7#V?Gky65i|S;Yn!t3pNAAA^kD&Q5}XEwb7Xh$(pHxB12 z_~z$OXAi=i1XT#3*%{}}pi+k!A3H}_4XTv6$_FFkDqpa|Gm&e>uU_YQ+iatGJZNkWjkW^dvo5akVF!2|Z#vR= z%DI8Iq03;5r2gmO2aXXi^Fz*$ZG8RV@r4cS50B3U7{dchf$RO8tfwcaSI*-H44u~~ zm6-OFOTwu4+GGC-!aGqz4!twJ!h!!=sM)h2c@>LWuCd`)^+wYb*{C9^TR845#AkC^+~= z5NDn=0x>1eEW}+tSQf)ZdOYv;4`NhjpD)n_K;qJbO;m!xlG}pdj zZQ}x9(XK6mC&7LfWt3OAD5E?gX<`K2r+TY<`_9geL2|LSYzNn^ij_vnMOjzM_3!KL&#p1^@GQiFl&tF`Wk(BwGQHtxY!Mfo(Ma6Ks zYT@Dp7*Y-lgxKcZ0n|a!KnY|tECZGh4G{ueMnm~a@M{PEHOFWizg0l#2Gnw@69&W6 zvyDcIvyveCXM;glxuX3=|5%$8e`qwcf&HP8EWj8VTfvvbO*q;me8I`7QvzK3rC+*7 zX!N}#L!oz7~Z$o;Iqx{jnfCFK#WKpx}d;-^9Kr?zol^+X%SZ zR$Ub2xVC96>JBXBT8Y$*8Gf1Y%MbXGca3Sq#kMA}gH!L~VBewzMk+fhx`9^tf{!_D zbl{8f&oY+<6u*S0%zW&@>tgFz-_!#?M)NHTjW4xBAwy=|=om-AOnjAY7X%R19WcGuK9m+)xc zytkW1J;1RFzm~kqQlk_jD)6kO#*mOkS^N(eg%9`y9-rb7zc-c{hN@P-j7R+7|6YBC zF;G#{FZ0}$Mm?sH4jWp=V5J+swbp1E1ur7lPxke`EKl|w`oNf0C`*89mDEm``EMT@ zO;{%){^%W#R%WCC&|z!Ob63MDlhn)dlnMLDc!y0PRN%wfyw%2o6dKm(2%VHkC`n1> z##Rv68U%_XeN)#MCmioz4uhv%-D|KFL^7Id={?M~?lPXpaXbo?v!9t*j?cP2q6yF2 zXgtUPz5qoR@p0>nI&2Zq1#P!G(01=i+r4etZf%e5zp@jA>YuaSSJHNG+if>XYaPzN z-(bM!YBw0G9e2SN^>Z^|tKfdj5Z_(XGSw&gLV?Q&Rv-PAC=n`v1C(N~YP%_#s{X%{8vN$F?q7eDWqpae?_8Rrs zDxv`T!4UzVey|b;RDJ)7%tTKVc;>N7gbJeRfxbU#&SV~O8$Ni95P*Br`0>^yAWfv9 zh)XrX`Ct2uLt*S{*uUo8nN)?9gde_{98FdN9&_H)WaX|}p_Ep&e*({6VU*!3D_twi zU;d_XIM2LLs2u81i(KWm4jPSE5uz3vvZeq~L#jg0cIsWzkSFVRAHrG_szMvGgHvWz8b>u*3K#)&JUb0J`dXlB6;1fGitIO zL^v94%l|UkKH_;sN_IK^#{naj-#uZJ^Ay_0p8N!j!+Tn*_hmM*Kka?L2Cl+3YoyA(FBUScYH(}M8xPkS@`k*>|O z;6COv-z$6x-iY`5xcfBrk;R?Q?%!SB~4onGX_18x1~TM+r%8cTa|T@EUHZC~*1tZ?Gb0b;EG6?*fr7Uz1lv-X;yVt^qYP z;O&q_zOx(z;sj2HKB2V-uNCKre5~;%%t{1Na8N3~vDhQ`M}2s0dp6Kn6M`r7R2p#O zcUTT|AaJB_z-Qk!S}_lSqXKyKWrOd08l3;bD8~zaHhQp;1QR(AmzVn1a5JDhjPwjUlAl^dQ>vKNZ`oys9+j1 z?@-$Wc8j!GjF0*mgE2<2@b9f56O7fO-^)QRPZ|Vg(SU4HS=w`B+w#GmGO zZ}9h1*;QdXBD;?h{=qG*RRW)8rx^lZZfPjrW+d}cLmISaeMo=K59pr6BTB><;rfx3 zV*KSH4XQc@e-C$W4QY_bh7!cwEH-j9o?OIJm{qV;#ThJZ>VK1K zI^F_n9o4Ho#O4#RxZ2>tS}FWUlXj8+j0%jXAeSfv;Lp+P3ZJ9RB}z&$&u@yF_q}`x zG7mb6Yn05nBf`CROL)Q*cB*%n06~D z=V_xTZ}R#TJT2JUL?{|<-v2V%QfahklA}a+6lLQ~cn`8U?3(69{}#&=N?t3@dtNXK zv#aS*UYFK35{Ql$i+GSSnEKPG-X+w#e7{AOQINw%MG5;bL+ zjl#d_xa{?F@|#U2PuyC`lhYM$t!xvHZA-RrPl_k7iA zO!>hI56p9SgkW=5Wp$udgy+3e)~>>(ta)jkzH(FLk3>(ds#g0!W~^#Ikc`ED`?zrw zKTzINhv!xEcpVQztG(vP{sTqZgmu*wfIKyAIUzv=!`%^ZXi~ z2ieVoTn*Y`x#teup|0fF+QmaP6dQ!NcuuP4 zK_9pX?@(W`bP65|y`{&=+qCl>bL@m(PW3jZ#y%z5;ZW?j*H9dkLlK;3Z^ppPJfTD3 z^6VB+C@V9iB7+}(??kho698)Vjb;}=G0ndAE6))2Ga>sY(t=uGNeMP&L7Bebb6q?~ z9Tjhc@deu&RAq5DEWOc?r>oxxP71l*JXwXvt&Xyw2AU6k*v;2W0I2yQLA;38 zQa7a6-l)@XG)pIBqKt`(4@}BkEi#)u@DJP?gXtaqFt^5%MDj6f8F;}HrbCWfW2Elz zt&FncAv=k!u_JEJTH9I*w#HiVy}IWmHkar(8@86T91Gy%Q<#IXVv`Z#rvrb%<9UI7 zXffxw<*@t)KRUEa^t^WMtFuj{5jQHJ5#LW+azma1D!5p)BRfj4ki|h{(UzSf4M+|R zK62cw2+_0b_ik|GX-^!V($h15-60&r#-RH94W4zjTg<%0N@d1wTH_CKP?M*wFIrn* z7;D-$W)(=QAT9bk@Oo+xPkeN2Qzm}<<^_nn)_iK&DzP#5P$zLf`#ANL8)8?aPchsO zNh!&5ie0P5^ZIy-s!eb5(qDOE_}M<53MtJ%YS5<0dqNuZ%U6kb+!Vn@Ut6Lv#&wT= zo=nz?KoduSoUi+N3{}6$XYc7+(V^djEyk7QDhNPUe~-p`6LgHt9yjk1n}eVM-jglW zR8Ytr6IhLKBYSL@ve_;HM3o)#g;mc@d5w~Ia2XZUs$nY>;CmxW@OK~a6pJQm`2l91%y$M@AD9_}ky(5d%F&%nTtLPZYf@e&LCtm!ZGn4cadRGQL6E^LzOQZRt$U z`rt?k&+@#+mI!il_QyzCXaRge3-kJ)8A*-#jzRFaakIr-M$(3xRwR8+8gVaigRn)q zx(+^hDGsJ$AmtMz45ZV@p)I>X8j$)lQp59EVA7IjHcc!aZK3$OmYoY}z)&h)V1-ge(rASeU|=XcL|QSFiUR;bY5Nmnn=|p-XJjjsLRea;gQ4{HO?xQi zmAF=;xZGsyR3Kxiel|?8orRRZ4aQv2PZ~?_SRLmWORyWzlYde2$-Yb@s$oE_AL$vy z9wtx-s7KX-1u~Wf7MQUFfZd}!IvY+fF_wlD+#{C8Km)`Q>m(@5-N#aoLm|~)0B9U# z6_7XzY8`;BGLGWgOGhXA`bV}u;6332YU3FH-%^nqqoE_45PQ8tD(ba z{AkbT!C~~m7|$xUPLR_uT5SP*QfF>2^!nM{{1`V5W~F_W1Q|=86H|X$6B4|fmpZ}ISJ}qr zPw=!>d)$(NQ!v3(Ev2X69~d}!qVqIxJ|xz_!0~PTY+(b4HW)Z_CV57&z66RhQNm=; z0QK=(GI}1rC8I}qoNt&6qcEOeWAKc-b&ueg3JoH7dI$`={3i9}{JwO`Jimtvf;hj&ofh*uf&clOty40v<~yUW zl3|B4TBTwq6Q0GiPQD`QQgbkY)PUJ}7rU1LaAM9C0GyatPRTn^?>%pu#hxVf=9M^# z^(Cj}%k4`@!R}SIJ1rYQmnGpT>1;D85ffQoe>#9~-2u4ZVr2L@(ZV~4%TA^@(_cP~ zS40Fke9xVd+cegmzz?sEh^NB~f!$xU~WbSF4>H2K=+xtnMvxHkz z#3=zFifGLTy=41Mk2)idy~mt^V#C9sbP-S>E`(Lv4oN;EH~oopeB#TtVS4Bpl+9XG zq4G?Ea!|goP`c%e zRK&6O3i6)IPpqxUc#EzPsr<=Xl46oKiF${As8M5n`7&{~f++kCeq?XoSj$Ui;3bnW z?i2<;RPTvll>eITZ67G|zuMq`iQ*sAYvR#|1TvRMw;9gi4?+Nf({3D{gWo2Vhqu@^ zYx+45%Ih5bR^%5d!8wrm?JuTJb!t868JD0Su1|wC|mmXhSp65uku&HV8Z$C->hiK~wnSslEEj{uoeZda z$IDHG0T?ff*%|^s6E?)$$IRK6*h#Ual8Ux@fRp1e>;(B?Qe$dvBol}VA0PsVp z{H$jH_%D8*{Ug2EyzgxtlL3Kmw|`E^qM5+G&6Izjnqele@2kx1 z5>*Y__XM3sJ;1c=`&Oa}_ItpPUoX;Ec+p{7e`^;n z&aPgZT_sMYaPH-0z3eyh!Xvg9{a(j?<+=tD-chd4Hy*Ji@fUuw{l$g~Rt)WVF9Z}1 zQc#Z+6*rFX={ay`@X#+d8=Ii$$bsaCaQXOuj0kGqueMv+J){Y`tGhvkB7&OvkK9(m zga6A&EzGtpCAFsZv+_>o%KNd+q!!{@4>;iA6}F2MU~?$IL+N`-0cO4N;6IdN#?HgS zP5-m?WWSTDi2P>*`B_qc$e}ONFh~`Gt!Qf9GtxPwJ?@v<-HQZN1wBGsyuPVc2Q#s z2#K-_wtBqIKeo<{6DWo#5%&xVZ7S+|UfmB$zvb3;OYUDXZ^`T>jb*N$q7wYXD1Jg^ zjYlfm|7)wM>6`u)tGXQi@Z3Qn**oXFEjML@Ac;$L)hx_t2BSip&;RMXZ903Gum%iI zV4o0xmsjmw-smEXURqo56swR&`654l(e^$2-7l`6dBe-L73^nHXp%3+z$FG~Z>x{m zy+Uz#v2+$==Rr)vP~rN%wg4D%i!X5A%)hy68^s!udbqr=cV4EJ>XCwzGaL)`j^|~H zxHBohWJcln0J)bwfJ!{Ms-nd_m%k_h1JlcQ9-mP4Apt|9iFiR(2N_YFR7S5lDRARA_Ij0#nSHjF z@`PsGWbn?azX*dSqf$qXI)cjBm1rAopTaH%ZfJaKuX@8)5%$+v$OWY@6U9_N6w8|R zDC8#wYQg$UQ{V4zZ*R{FqrlKNB`C4~8(xs3xgjYyQfR-EZ@1c``Q$7;hIJ!FqGz}* z!CnZ~VnKqv2ln#G<|A@>Y#n=V9k8LMDK@XB%|QNmti3g(P#n0K7rX-(vss7hcM8?( zLjQ_4sA`{=sk&hJ+nXF+Oc=zeyifoChJx22Utc?)*olLswpqTrRvoxg5fNS8ZfE^cTvYmS}%oyTV^cgjrDIqUv(w?@}QC zLN9vxdn?J_Fj?8tOgT3GB}A_#**h}|Kuw=D*!@MZtMZ5bZ71dr6M5%Xqq0~5;T7$@ zNFoNXxs}Mz3{aDorQ3U1iC_0>c|2(OhXDhuLj_%orH6@M7)uYkXkJ9) zrCQGzz}(@k4EtPqm6qdq!3XQvUtu$dC@N~bRY5&WR6KPf!sXue?ZxZ?g>CVvAUH$wd;YzD{akFt<_F!q1gVYh)kFJ|(pf*N1>Z#H!zs z0&ETi_$Mq!dMiQV)9~R*mw$FfUQ~VFB-b9#rW3Td zlU6|hXd@pI0GuE9gZ4$Z^LU=Ubx>n)R!^kbQ`j2P06oR3OVU%UA_W-tynRX9)?K7P z*e-1cKiSD1==R&kfKJ%gsnBx}`)FH5t4p!67#Z$eLSScw$ zzy5F+k6*u?6bX@dMpyLf!@AmgXjA#rj`o)Pr>@}D0T(h&ae0|G1BF+Q<*d+d<%fQ& z9qz*bdL1VyP6VdVHD3R&EfX>o@Db0}4AmdPf+GEaOT@>&N0`O&`;Gv3#xMH#!uKFQRR~=Jbh4J@yvX|J`1OrUU-ZHBC;U zP^Z?z-i|dT^}JZMM*N5!CJ7$$uwLM*P#4iIHW{xSF>i4WzdjeMNbjexix=HriGACI0lh zCLn%SJG1zZs80`Bj1>UG0HPmSJ~N^dt0|BfP+Xhs+HG%ciMkrZt8ST+$zn(`+V%*( zXoTI*8v@B!(fWlUb9h){*%e;0r*Asn*fZ~1uPRB$2IC>7wv26SUgfabDN4x_Y*FDX zicez+hL6JKD=^>WvR}`|=K5Ul5iR*39}ZfY4yD56p5DFA2`9=am@?YPQI zrFN^%#*m6=xywL>Sdd51 zE`fdcTsEwwWd;=D+8ln+{_ks9DVm9cGOI`lcKve!y8cz!_2E8rIG&T4ag}d6)GwJT z1qa#O2b;w4x9_vV#oOWbx|a8VX7t1M2J8bu6NP&>fN)iYa3-QF57^u2KomZ!l0=Dm zQv#r5bZJz{!lm(rrv}8+76|M<(*B-Lf57%(J>F)NeK|W%I0d8Ljf*`*pSp-);Ap5z ziDit2hyIerzyg@n2=;0oG2}G!hvCyP_BbC5$V2#8SlFeQG5F&l*SE2Vk%kGSLVPx} zMYKKyX4E_VrL^X+T!qFIh2 zfm!)^c;icuL~qv<3yQRE5+;r`GCH9|HiqNl9Cz0UmXCAHC8Y7v`dxhgczfS#yb7nx zil6C>@0SvGyuR&*>|1~hforZ4?LX+NYw(kQ+Q(W}gN(U{!$TJsWE;BxNqtz(s$P2Wyz&2mTs=oT|cj2yIsyASR+6O%6B7$DyA+U z(MNwC>eLk?6+=EAQQ^>PlmWVbvA^>@N8{tW%?cVrkZZkWary}f9(9j2P|Ry z!fW}_;)#PK;c7zpz>&v7_=uVIr!99tHGJ$~CJ__I!|fW5hw8`s?$dbLRC}J!fJnK^ ze$(|22#-Li+BDu_HVo2fgee#g#j#5TfDVYsnj8=lfT`rtEM8pNHiQqj+x{nenY0zD z&e%TYwrf;dF>v%-uw&bByh{pt#E~-qDv6QPS5qU$>Zf1J`#^&|L(BO4^XxDB7#++B zy>^d%Iy*&J!kce@D}Z-=T*t>FJP*}jKw*rJ();W`v0z<|VQ>iYPNt^uqD9~>Vo4$1 zq0w}n`+&VC|LqYNU)dd!Vp#)H1=n?VRN%U9ONBj+|L~5zk;z$3sYq+71DdJ_?TJhy zjlo6t<;x$nM=!OEiebG;38Kw^4AD+|%-+L<5q&;jT=Wnu%}p4=r29C1eZ0=29=11R z6A6CYVz@;QFs5hdyzGFzrHLr|`~YIWH*gDwF~0K=dn0WD|NRkrJ+{b9?$JQxoHvi zD#7eK1xM?xLP%0Zp)Dk;rpe~|(;!Vbz2 zc99f{R@y;+V3GZ9c96jTuk>?Ya3_P)tB0iYe*f$)XvQRNjXNfC_GVxFpvzrN(C$DuO**K&Ipdz}!#H0h@VfXlXz z1OS(9po)`LXFg9{0qlgP5{_@%ekJ>}`CiVjA%~IfO72|H#6N z#)DIRADC_69>qEa0c~TnqZ--^08zspeGoj#Buv~8QWZ^{8@`AMp=tF{WK00TbUQp$ z_=&wI8$eJ&clYKiJ}s=N!Fo3XSZg0dS%f2nbVltv-JMl$Qed{qn50iXPacd}eXM`aTe{7^5?35F$S zKYJ1%_FW$1_q`5ls!p^qWEQRd+wtAcIFc(%x7ahmAdn_#b4!AG^xl#AY!oRFW?C!Z zCEH+a@L;8V7@JB8g?nClOVh3p`J=J!4{QlzzjLeo8TK%#i0B_M&_78E5d8xJ{SNjb zfurNc<7UvxgZt$BqXx2_q!#8nw+D-Gx~~qzi%t)<@{hy14`2sKEhPShLHt)zfW*I$ zvTgjJZbNpO6eP+-y*i>k%Oj;|ZnA0ySiKkW=uhnV zVaOYr{vy!nyAUHyzHR0mQzngRon25cwjehzXH41X(XH~zT93*pYuU1F__$of}VvU{#-D;KC|(4doA`HsfqpbbfErOi~SQ$`zM%Be%W@D#`(ri?7eg# zj*giU_c~?@#N^iS1wDiLU7teG`4M3OkNS)f0PG&)<_l>oyN5sXnf)bpAaKK)GDq#x zP@NIF8wTerM;CYidDA1VEI#E+J*aZpKKoLQ{Yy}yM$Z@;JwpmmqwA{d-|11c_^t`1 zutiWy%>m5WM)2HUMS3v^Uc0GwOf0z;uHhmw1Wse9L#K$Ov>sZEFFN5)W}yTl&Z_ip zS_kvyU)l%it!nYRzl39Ntw|Npb@0&ke-Q0l3qvb2(K&zK+yg&%iIl~fwHjs9nzgi+ zT(b@)N8 z%6lbk*j|ECB*x&F<)qV~Que({6W~Ba5FuY=4Y})K)VGCtPrCX~Kd@0ZzDulcEP%GHOE> zaArsb%Ou4(_|tfi?nvSI`QvIcu0?Ge{3heI;?Ah%S`xOyvll=b2OA~r9c*SGU-%1z z?G%bD3&?~BHlnHqG|*>(ec^+O^gC+GFn%1!FIF0(;o+4ceB)cFfHsu%ufP9 zLyzrJij5Kd8)#cAkDRdg)z~@G3QSHhpM0p<^{xF;Xyk2wRKpNOQr}veV@i1o%#h~)!ddm>Pw$9^gE5hnk6yI5()8OycxbVskljI8K|N0or00A5>G{HC`;6-flYR7TnGzDr7vv0R zz~G0kVwac|JJFD_Tq^d7HjancOQaR7zc8~Yi{YvX=~_OuwKy&$+m zgPP7W8{lS`)sJ;5UkYu+mPUVzV`Z_Q3fKE`2^o!OIW`124zQC%PE3pbr2t;Ld7Y0p znF;@Rk1bfdr?idL4pn_4mY|R;I+^G&(xNp&$HXu8*N$)7!50%s~p&;ucDAaqD4d!zxEIAJNm*icKW-1tQBW zp_r_V<1KbL>ePCo7T!VNb6>u>DVs&=;&S^Ig%;P$el%Zx6^5iYeS3F=!~5b3sVtYu zzlV62%8lc3m7E(6>D!fpDyDDOa#y6ooqW|i`v0doT)rK6KGJcPZ=2R4yfP@-p=)dt zVH~5pqh=KANe#@xzDEGK_IpPFaP4;#Bob@C?{0T2Wrs;U44e*y%E0LmDZnf&yZ{8* z%7&o?zH+u>tQZ7-4lxBW43)yxit3(q_#&&LwRTFhz#Oc0h({+lk{Bh0+1B*qo#QDT z1TLHD=;u=v1Ep`}AQT5Mw6FQDG)FdnrjFwk)}Ex1<=i z7r&Aksvb7M*SRwtt$aJbDAQ4(S24LRtsJ0soNBoU~>1F4FAx-Kk0 z9`8**eJbpSz6QjFt&W6M3YEuAmV?xMQKP&b`id~QR$357Sv9siep4;wU80{&{O0q6 zIgVxe={FfpOqA1yTeMXJrNx?U>&_#n{YKmaggD=M1EUT=H@$g=z4cxdXuXp&2JsAqebhMviTB%tA8qI8Z6!|4%Om(wwfj;o7{%R}@!}WmzKjpYof7hX5k_I2 zp@hL%&qBv4pEWO@H_7ebc!b?YWXDiyt^#z>&J6K3pj;qwoH;=(7g zd(RuNyacT#urmZV#xr3Nz>~2(fHo#X0B~Rk`5~UEyx0>w8f!!Sxw#B9(X~*TUe`i_=vvzKb9~Ci z6D}~u3l;$E1tWb;+hHbeQGZ7#II~>U-;t!x0*a8vgFi!x9Ua)c1RG{K=KhyVk4DHO zo{vmL0~~E*6ca`&e73+-z<14@#-hCp8fACNGMU4>$;jbRuDv-tEnQUYqNhY~%;B9F z=y-s=O?VbPr)}f=OB`uz8-btP;TY-*5T|e}z1YxKB}zWurH?x0 z!=mA%dXomoXAc1&d>TG#M5OdlBT0Q^c32>0CrD-^XlHwTl;tzN>KG8DzXWW9mkLm` z@>rRpsm`_$AgS|rlNKKp!hk9=QIlUhmm151Cps3gPKuat&`vE%`sX%LB+cRWt>n<{rdp;H z$7FN;@li6xF`E=%iUSHT#qkI!fH4Wj?1C*_wDCN8zL9s)+Q{D{rbK2~{b;DXbrkXV zUrlp}rv#?f3yNc;vdl@OM)`I5n*|H#^0)DKZ*|<8+*$yr%g-Q83YU*5xpxQkO@hmmJNOysVea5pQU}#| zBoMvh{?v%c1E7b=14_@EJOH^-w^VMgZYgll0}!!L0P1#y)UBB31stE}_yxud9MXe@ zHo&^*`=eyMQV^p?InJMa0r1Qpj92V2azZ#sRg}3TCcuOk9usIn^pBB?>)r~N$1az{ zWS5KU9x*a-$&ZmPU-D`ME)}Y!TwFh7VmP0Vc+~Mh&?*4)eZ3s5*=o`P`Cb`_?+yO= z9m>?CUM-gOSmK5?}ow_A9@M0NkYY}(!w34${ zUc_+rMt%QSxVHz7iYU4&g-&h$5 z^o%8uz&LZQQK}Xk@=NFC`)Wt>sBL55CaJmVELBx3{VQKu;Rw>$QggM(eXDVZEi(AR z=N&h(_2#NCo2tSV$W->exz;l_Y7 z0m7bW^?3A~B5NS7f~LjEAYjugj>XJInu5<9pdre%Py!a7ga7!dqbDmSP(<6;586}f z9pAB8q$axJ8F4bUm_Z8A6~n2$w;+MkVv{4AJwXbEvDFp{{C+lYo&zr73_To~AGp~u zT6|*`rxE?ibs-Mp3k!@{d|OTbBTj}De-I3&up%bj2rJ^^)d)iEMe!qh{An*W z9<`^Rj^&3N4sR)lU@Sq2cw-3=5fw^B^eWU0^11PdmDYB}LvrtftzKD+vy;9rB40I1z+QWAf+Gc*>v=p!`Cb zA(ux?T;}tw?>ZjWFUHHv%4Jd?Sv?(g zHi`hS8&47Lk0|ajqeASNPevu*ss^PuDoOLHZS;a-2#ooOPO+7-A3E0QdRJgvYykXs zlSIC<&Y0NBuAex#rVq1Xx>5X}wFxpHqX-Xp@??ZHKJgpOD4PG1VYV?#JD4m78OwR0W+?$0 z174T_w*%oYBA-y@2=Q?xki_g|B`(bq*Fbn7;;I4GO2HJyYFouGjMcVU16%<)__?FP z@1w%c-H0gZ>Nh3fJn2i=ocNq*N`+^871Sd}#f>9u`PyM;M-&Menfakve%Q*R?;4iO zuWoG-#t*K51?-f<+uN~oq%Fp2r>rtgI}Y`SIZLboaCr`Fw2Ax~FwoEjvm~UI%#wU) zHN`ejqMeLwG85p}&wT5*juy#>1(ZfMpAZHivN^|^h}uSi3o|4io0~KwH83jaKmcfu z+6e$!&5y0}zT7>B9J`o})Wa|$f#-hbP7Wnt%p}~BAWiIeQh;`A96$N9KVNlQg7j6H z@V_vzqeMOF>WdSkXDX(+JeTAsu;j4gX+{BP&H4&V##0sT5~M9|1MG=J{Ca{C#a<@> zMC?8KM}{Pykg6!j2LUAc$|T9VUP%&mDjc4XUJiYO3tI8YnwQUYK71NJL$9N{6`8$i zVm80>%ikOpEvPP3zdYIu0=k z5Q^5L>c|!ORmHq;8S!MWDXDqqKOKFTognpk4gU=)|NT?!6PE#>;3oXn;mOBg)0fN# zFFlysRqqZR7%%9dRlHODLaTTuyn+oEJhEthO)4cJ+DYeQ|X6h`AX<&xE;r*oP`quTS*Hv zkgwN~267|xmDqAVyz=HgY`?kIr>Yj-R{Migz*O}wssf@J@Jv{^Snft~_ytd_)>YF1 z$zC$mfAzehBdcSs6<62G93Hm|AfB?`F92WFtT$;Tt@lH9%+_19lh(Vt;Nb=CyyWPe zyi!1^^{yadJm*7NXU&6L9;i-?9+x1d4AP^HzkymD2ar|OoLsbFCw}m=I4Xnq; z5Gc;Hjk_|KR+sP4o#V_+>ht@8oDJEG08PHIIPVG2mff`grHeVX7Nl#(e}#z}+f z@~Hy{b>_u0qeHAd0vbm7kve?d;nG>`RYC_%;mZPmb{nc-LcgSzb1nOj)D!CtZ4W;g z=}cpL2ppHaPtaee`x+xsv`S#JQK9AZ-!nv8BwJ%#IN-y1?3r(glVl z0&8>!w`O7h8yuG?Y;e7lCv@Y@>W3<7O&c?IM%lDUOCFLR8|z*d-J`C<_A;D5(vQ`Z zzL8S*uG%ONeIo^+fJaRNCPzAFvA%?16tE}HjRmFkBydz(UX(N22a30ivLEPM$jV4v z9ByLEGoE1Zn6L6jcu};ou@4$#ty`k6?(<`u&$9;zT4e1W$=W>xj;u|Kb>=Y&Mb^@v zyd#Kz6$|8^Aq^CNqygb?e4NwmgA4haqxi#%G23B`i2Lm?gG$9-{~8#}BE;B7D2buU zJ{15tRQU<3^F954#y~knYNE6LBhWxOhXbXR?imfg$kC8+SYc57*D>OY@A<9_XBYib z;9K!$gcg}eYK$V2=>njbY+ad?-Y_U{Lo-k_%EWf_%i& zwVTGOSsy27eL)hRp6Xn}3J6YNABfE}YPM1}q|J-ti_@HshTkmUTCEy2hAx3GNiRrq z-pN-?>=(|;Rek&p8KG^Jw8th%i!(gK8DjN8?-3s?PE&aOEH_E+jHL6aot*H_)qU`V zDd=K62^YXp;YqkB2n*f_C&7PFKXf(EaM^Hta(@f2l0l zS=?Q-{0RN9sAb;oE%pc^yWyW(%Qr(u%wAG1AP?PIo``=n#z7v)y{&`dUgI_uuB)%bpU#{9Ge&HvK?Bb&&_!X21lf>K5 z_{#KX@j55I0D4qBc!SUTv=?td;Dakn+&;%^?!Sw(jd+TGmN?6WN9$6>7BTLkXNc@E zrp`YUOE_FJJ|rRmh(CBqa>kt6;xGlsxr680B6{-3Y-dOIujmR?!YQtGcXs3Z4}^yn zpH)!tOU&(x3D>Up+~=dMeD7em8+M|K#DZ%lQTF9u_4$fH&OH8fu5%Bw zCi{rhKeaqwKxiyQW#qYEL+H8xrrM45hLA6uGqN#j?27>&=r|c0s@G2zxt=0Eyx^v5 zN%|`;Z*Jv`V1xxeua$GOU!`okex-EfC%QYWl^gS&8+E-u+=3Br5B5*?+(1ld9Ll%0 zb@t@5+d7}tZsm2`fvdia$e%IC*^2K^wPfp4lhJa=>@a@;WDZ}{3zXlwy>sq0T*&h1 z1sP4%Ci01e&Sqf~6$?pxUcsRLv5%WOu{>GcZyT2^@3-|F;atI9RPDr=zLtkyeHqeM zDKdC(Ycvc4xHQNY6n6-%tkv16Y1(Hzq{x}i_7U1jZJz{E+qXh(EwzO_tBdnm-fQ&b zQ~QAT?&{15`#>>aDDF?Q;`SI4?KTwm{p$s_`LJ%zC)rii_y%e3lA`6Ky-o{~!4&P)|?c zU-fp@4@+0v7>evBAk>Vcq{tDN2%L!L4ZrT=ToqPI+iCZ>Gx*{1{>|A41(wEEyxFRk zrtlX1oEg52O19mU!Dsbzc4pH^qoVcBVo~4P-`UEy{>lf3_va((^tm3ZBxj%QloDx) ze3uJiKx3>g-IgE93kNtq&{pxFfzBpuHQ`J3)XG3TwZTtMCGvqK&IZ@rUD~s}xy{)m z>{-Q;(ObI(g!a}lqqn%xTX}Zpw_#t=cB;3&S76m!aBl5whqKVPjq0r9q>bn-sJ`3j zEb*<5rmVYpMt*LnoqN@;u7-lm#-}d(z)TWPUG{*x4W36*t;CCXoOOA3Xdv!|E-!U1 z^y^htT%T8|1Xr7&u`a1%YoR8S8?71v2mxc1(>$=Z;3er^baEhUNs2g0MR zerT2tOqGeJfq&l=%747cc^?}`nw^~Qbm*f}WrAmTs!Y!ZK!XXM{e5P~^0`^|IDU9X zam_jv!LZ!EW%QDAJ0Mj#pB;FvF^nSOWy?!5^nz5G^ogi&W<`rOGT*aA{DQ0VpAL6s zCl3^V(DB+{0F3agYMnEOqk~&Upy1#jx@l)_$W;}X3nC4&UO{-#wIa|3&q)Dscm(%E36cBbM^efUmQ2&=mzcR3!@52ni0#rLX+gFP6df14V>X#bun z)5lBTe@Nf!U!}_Y1Q5YpWkQ6{d&=32nE(mA=U8W-Fak{yD(!@00&jMRW%Wy`a!p7(i?9Z3!X$p;WO8#hLt&Ms2*0}Izggv?3C>3~{eEB&mV^oZ zD}lEhQ_#~&hL@LHm^HX2d`8g3HQ}@37p@7PO_OWFQ=)bptP0A}_;_@QCg-=w&S%1? zP2wlBN4Do5O>wSgZxA_@z1Xav9xf_gygvIR>_tm{b*3|w?+Y3p%Xdt3_F?ZSI?`zP zAzZ!(`bcD}*WBv7iyb5_&|Vx!Lwf;d9`{doPGhId<;TmRr-|9hI@+_1JBs0R}7!?~TmSr=|y(;d9dQ z*p1#Hofl;eZx4%-sdqb5*hGTm$Yv*8!4Pl%a!B=vhcTZbrD#B&2!wuBIxn$0^5I?) z+Q5nF^5Nua=yPsv*hJqBrEd?;U~iexzZnSq2VV5rfkAmXpckik!U*~#uI(CZXSWcP zFkE}{U7H%#1g_AKI{Bi9ow+<`Txhgz0~GLhk8e*bsvO$iN=Acc{)%aYRwO6`It8sr zu=s^mBsc@DNVty`k#{@7?|0tk$9Q~mKcxIp1p;HxDdUl-pdR8C%Wj16nEN1Pa$6|u z(q#A{SKd5Bnv6TL?2e1ZU|8J}IbyTVzfg*~Rg zFrK^%ouvw_LTCN447t$pX{2K3mq;Uwogd?GFK{0BrGe|5{dFU+&!j-##(2IOtEd`* z(gzA64a*(@K*It(jr&FI-gVCBdkf%x%;8q8nzElr3vbBuLxw!u_yZ}F2BRXPk#>$R zT;j}R|B^zq7iTg8m?OQOOpQY~L4-LwGroM6Xp4Ph?79ObUN)|MGOI?i^J2)oJ@&pc zO;4=HH@pvolk2JeM8b9I1t8o|64vJP@!Z)c&M#H1ynT`m0^?)oop+9aC#F7h*3&!I z_f~>xY;O5vhb2BANgReD71vv0(&igop=$$ytsf?HgXT z%vr%^5zf3lH=~|$ER_^u&+XsB8tRYLleTyvDMbxd1QKeQ6iS~DbG-LW^@&u*Q+YrT z1K$}0B}!!iB=Fy#bv6hiP(!Ne_2mB7HyQHbwXeV;iT$NLAgu^AcW21`rEduV428cI z0MF3I^Nwfgp(o>))?fsKlAQ`9S&d8?1%qVh#s02`Q84=-p@U8(>bF@n;k+?2^))aH zOliCM+*QslVUMUOki^lS5L@Fh>B7dMKWUo@45L43Cw`$nX_pz$pJc7}>rc+FhD4WL zAgJa~1}Lb9_>J)=km_K3;~Hl_Hd2w0PQ?$+^0G`m?A=kCf*}$&`qr43)e%6#fQX=aTA^{t7Z6# zmlSEkSNx(N(pMZ20Gv?JfiR(3Ra!PVhidFRspvH{XEUXtIZFz`(Af0w`mkUe+Kffk z_bO7ZsagF1R=RF|oQZJS*zvkEJMMdd5xc~==?)~MZ!poS#}B{mY@p}X=e4#t(^*S1 z!R$Z;J9r5uz2U4MQ=K3$c>~S?_#+p>Uwi|;6ydDT_q+i#-DaBhKs3v|G{32I){m`D zGgI18N)+v=36Q|&ZFT-0MxfG;!io(i7@ieBk|}NH51G<-E+K59?OY@PMpsuxZ+C`k zmJRh`r>#qR2HQj`qX~UAkWAa9O#13fe&nse?ew+K_2M1ewFCn?pPV7?Jj)jz0$-70 zBv2KIz>n1llwBO0BnY9q#s$VdKvgU-&YRJm4TRRxK$?EwTdXiFz%PEXB#ba_EHPFS zr05Osd*#p9murkgTzd!7%u>z95rb9@)VN1o=L!IsR{0!4u=iPSQcuh(e)wcA3nf74 z{RBScv5;uioj|=|m_D=tU$n$oj}0fKsLmk`0!*}9q}&#;fEb6Rm8)SGB6A{y6eP(o zA|oJ<)V&dzHjl4=-&vpCYvy21APyc?nxDX(4O6d;z9&cni!t{@XCt=8On+4%`kNH} z^ryi5{}+9J5iJ`LXjEfCpO zOftVJaxpT`BO)nW@AVPpADp?|_7~#9w*RMmYL)Z0u!aqx424f`$TK=RyUH#9Oag`q zVy;z`U;8@RyXC()y>ST7eycc`Z~NT&NmxE1!xw$w>>kt!ApA<_KT`P4;R&_EifD!C zKSzv&$8Dw_a<=CKtENZmeH)6q7`c4o>oF1h!k5m(*jA!GdOG9Lnf!*l(O1qTzLdn4 zOG>q>RAzAm;EAwtlzMI}H*I8iQlCbzjV;q3_i)d=|^WG|NEdbE^HfV%8~6i z2-|xMwoe>#W)l_+Blw!&cxKpZ6orXdqvnSHM`kM@`oY;q(@qEmv%*eM#K_yynVP_q}pt0!sACEZVoDlXuipRvDQS&#&pw+)N#c8P4eE-rdNo0^2UFS1iie`+A z;~Nt*>hJ?UUCW05;;GLiFCO+Bjr`c#W%o5aTM!%8@FF z14o^JO*qUnj_2g(wc(eJI-UAGz~3fUGLPCB(LkTmh--rewdI{#=OyUbjd)t05qUaT zy1ysF2Kn*dQgYY|fd&mAe1JU8WgK~WRzbxtw11Osfc@hq&NyTFoCALa^BKpSpNIR< z;bkkPrSUn*$@R6JeA!lF^eN}-dRSwgcpBo5 zh{mc{w1F;p-bjO|T`jKm{Oynt(R!W6yeP3WkLR3m-gOOU20V z30jz|IHs8Z(3LEF2`$XkMX%8q4|i1dJLkMvV;xB|7(o4F%YP8PM%%Ubw!;%Im$Cok zJI~s0{A3&WK;DXV^%M1<8_5m*9~+7EukqDWKRqHSh_9X|%0p_mHkOCfZu8|t9#Ye$ z3gYs!1*u<}IrBlz1CD^}_{JqDdI&#};|k%EYPqbHIhUMcgY>5w;|S26+H%!3S_|3< zjPr#lgRFeE?uuu-i5#NymyV9lAwB;Is2{#(syAuOOE$xM1N%c=vAp;jcmwAHi!1Tk z#)4uoReO^^5d<$eze%|e!{K`Ypxye0?AF)haNw^7yFO+oNh=r)*K*p-M`Nkl-(D&> zcs4echt1~BNe$&qKPwIAhqDJ|@e>VQVSMtqW6AuZ+OEp*I!%CA@3H3SyIl48?;j5f zXNdxCSUc~$(ydK!c_SxQ{U%=Z&OJR6)!Xm7m8!=y;Z@AlfW=S-K&!E>1%PTbvWYxG z6$X4Hmo^A_BFMPXQ2B9~%c8M91j7x{u-;Qq^ilD^W?7+?J0e|i8cd?9C|67V_s7F( zvRerQN{5rF4rfaphBgtSLA=;h%vVme*A+uGjz_%iO62yK8!%M$@lANWSXT=+p0Xsg zy1=Z}n++MqpjNYZ^ElTwwu&^nF{)gl$aqwFa@9y1e<>A)=lBFyC!U_*TBUu=_awM- z*r$ZP(&UF!lV3|sT0oP0!2|sg_~kmTUe`Sw;WE$px~^=thcY1a_J>(-yA6TfHuTmk z-u(@`M4H_gy`5KNJbJ_LP`s1kTCeGuP5HDmR~c*2)ZgsQXi8>pc2n={-IMNm{JJ$| zNog9)7akv&!r+H89l{_kBi9Ee2xW@!w0nR>F*35Jz!uRh;vm2r-c-Fx~#z$4b z4PCjKb{B8c$kmzMO{l7oHIr&;zSI<*qq(uRx_qGhk3zoxsyl@5ZR`rYZUt($^NJ>} zChT^~kx<_N;?2^Uyg@V9Vz!=O0*ykzvB>P1 z)_GBRRHRN1g6|cl2eqZbrKT+1Jf=CH*TU7$>JthWq5LAKD-I5J%W~akiWc{OnU~6U z&4NH1oO>is%?5k&58({7ZX5tSt)Sjm`q}FWDbZWk*UvVU!D7v3WMm4mD~coACHNs* z9^5RLpDd0{;@P+7Gk)~%)I63z8iO{Q@P+TzY^KLHlb=a$U@qG@8f z_+9Ngg&>>nbUZ=y&Nr>ODVsyU+LyO(4IlIUA>Xx|xd?A!Af=Wc7ftAtwyP?Q{lAjQ<*!{QgF{vL)3;&S#fG3fAg8jf&me7va~*Uz;)pQniMM()H^AzZ=EHH^2AOqCwom{=SXwP#2M}570^Snd~-8-SS6~nYaRPYRS><} zgdZ+|vuf`(<11es){j?pb6NSu%bnY^Bj$Q|rtN!L@9H+!aCY8Y5AmICCf^sW)g1ao zExhH)IPEO2>gpmU=iQN^dVS1nmk9sAvx!xSI4wV^kJndaq7dF+54EY!? zk?FfZTsXuR@2A7dH}es_T~Fv+n(-XVhzv%ma9DuW)0Z_vQxLU9C=yM12IY>AR7f@VF#-!I!`ODdo?YTdpKkrrzhei)|%g7u*xM%tIwYl5}`;|0Xxd@I)jre0$z8={^p0|r`0ZbZ0s${-vj0TG% zwAWd~(Z=%Nt17eC0S-HqUpueqt`do6wYQYatI&+f;!^RVN-yD&U>Vqg<9rEew54QMFKC z+5{rn%oZkf-P}T|>t@ml)wQC<-A(n!p;T<|Eg_|-u7w2Wa;YwTd2`&+({AST#(=&k zMz6j=6g;s)M3MS30TOue5ZAqoLQ!7>TKMSe*_&La*tdi^)Yn&rzP?fg9(}cZtI<2W zV6-cm@0(B>$8Q>q(^U*B{_$v6A&x1YFb2YuNeAo=g-DBzmbTabG_>@m!pKoeC&s2V z)#J1HNqtlXOUN<}s#t#H7MFZpUyjy{EV=m!cynJEnkl~{Dv*osh*m>BuxHIU{?>i= z5Po>Ly{_IiOMXYRJs~4Fhewo6WV&bh^m06(Gqtp_5MtBa!xP2-xPiOtw&=!|p;@r~ z!1N3@+!w2nM;l^BeM=TTYGo1gt?Hr4dD@?{w<+`9-iD6A-XCj2DS+9Rz_V^~4f25sba34V^wdTF2u!>9%H;da76yPX zieDH2zL*_200bw73!6cAxHkF?05@OP0%Z=by#>Cg95mCli|rz6z*ubm#gKNzI~3HT zxQgqe`8V6AaLTAptb?q6D3$Mp?iAM=qGr49WWSPTD(pLwEsr37pUpQdf)Bo5-3g0O z$K9^U?6Tkb=d)$p#d1LZ=CDqOQoQg`*IbH$7nI_K2cU(=odd88C)k$gRWLQUbLa?;e+_Dd;g27T5 z0f^bkh6w=9)~%H#_q!%)>@HFTjoclO(Pqx1@H z_FC8h!Uan4g(1Zks=y-!hI_~1t!51OPO1tr-2032e=$dTHs~-J?j6m+_=QI-M^COI zz1UnC>BZ-QhH0b+&(A;aiS*KPz3RYosDMpeckp2IIx^sX-r%80p_Dg>^1@Bhz@}W~ zFH2nEI_pZPie+ya863u`Yu~ofm*G*x!qnG7E8lv`m8SDcPr_$SJb#x2F{cS(EJ0{| zO|3)-mb-Z1FSV9#D-KQRD=oGU8P8bDmhX-1m%XM>gHa$n;^Z7@yN3Z>c$y(O(jz`h zh~uz*Pypnx6D^#V0j%Z`N1C233Z;F=gUPtFC=P`dH8*IP3pQ z3)sv&m)Xfm4XtN;E_+KJ z$7k`rGS|X9O_i#JZ{uOA<}Y(q%wZhOlRo{Txl|z1j`EFfL#igErFRg^tP#3&Xo@Z! zcquv!;X}vM;R9Gbb5*30+EP-PX5M{_BXfl^G_Y~dSsx}ITfb0s8THwcU| zmm&cuom#uBJ-gLhiUgq4BS+Q8BdxsnX2^JpFZc3;dsR|MAhOJFNwY%B%;?fL^lPpu zY#8VS=x7Xd*238a5$KRQGSGP}PX;<`MXz9>^MRnXmVfr1t6j>A0!jm&MXK|RKnM5! zKJ(=d0-c5CmLHQU80Z`!05rxw2mpGFg}msPt0CWbw74tB%+MuL7h{EgTgr&%Usd1} zE5x-jVg+j}Kx+7Qu@cr}T9H^My_Jj=KxP>$M6{B*jtJ6B1q=nPWWdmllwttYnj-Di z3Y`MHm{Ro_nqQj8upcuVD1Bih!6%j+mR3?Ct8=_E*sm`{PG1V!)=_gNaXbxdc z=nB4qH?In^XtNaDqbije;vRiHrE1C8>Io{^Dzm;88Twj8nyK8-b|}TWrKA+~^(IC7 zfz+4&0rV*x_l8IKQDGFNS7EbSNre$%q{2)9BRNE&sIWU)`6vvNLwdd%BB-z{QejsV z*B*soZm8Ffp4`xcA60JXyB|Hdp+<*2xgn4Ub3<|Ya#Y1pN+RKixuK5vGB?zjl%kdj z^T|-{lP}{?z^U>=0a&}=X#elZtXib_4=)4LaRP0Pzfyx z6*x7xDS95VL-^T(Q{eqX41c_(jNyL(>j5#mb`VCVD~As_6xEasCuq?s-y{IaDqmtV zNDZ7W(*=oKJ|(@U00tX`RCuCl5^((FA(x*ln)vLIuxMW5i+QvKG#rg-4ix`P&b=N`vYF zKDoB9Z^jHC7ro+>V9rvQaeWVL<7}ju#cbs17l${uDp{1y^NjV@XHwHUsHSuHidlVH zgc2^~C=vjw?b#PxuW8zyJol2Tmt}4nW3hD)X@`2b+su81?uSX>1lj1_BkwRI52dVDF+&ZzG=7jjIf~>UvJox3-aK&~2nS^74k6mpzgfaP&Jh zcLRdnINZFMpVQnM*=B;s#D`IFy_b)wd)=-1&Xuj=Q>rmLMWMkXpM_l9b%M7eKn5fI zds7>^=snm{KK?>tF4B84p&C@6h9Iuk{8xrb82`n?*oJRpOsnmFU9TKd+x?lY#}vpc ztKWuv8FTlx(s0o;0ATF_%eBnl@(LJRylAA>$SQuxm0J_R6|UTx6a-$mErfOHo}nG} zCu;CrNmCPe&MwG|TnKY74Ws8y`oyT1J^ zny-s=4`L+>J6VnSp;MT_i*9HN|;@ZGoAlC+@j$9kGEx@%wv|W(EwZSXm7u4Sn=gvtPDE^>}gZ7FQV{w27 z+%_w)Sko2rRBik<9yK@gdoi*!ENp{9i>FEADsvLtZFIIQb)7@fEUYM$|&qZxCRnRZ^BtwHF_da%lpv5@iSOLZn>=-Q&LEWy*&@4TuEnhi! zcw<(xEnp+LMO|-8g1V@-(#pS5z~{w}XcnV5H7>9m3)_`C<@Z9tyd5XVSWaI#47}!gMcE0*~h0e zaF1py2$R^E&kBI2GjU%|q#(8JQl_^^b(HB%D$@sEnL0Lh_tUq)C(R+sW1C1L7|!xb zOZxh@lA&jTQ7=O|JZE)yb9RQbK(0g8c|8nf;MBksNVR5bLv zi;vHCZ_-QK@zfl5H#S(cfsn2~Pu~&~%lF4bq_8qo!bM!C4{pbkbKSjZ6Pb@xq8YhV zIME>j{{`=J`R)oH zmF|qJT%PaF)Y#MifwzvdGhE`e`sY{O>>{0LNJ=y;PpwhgN`^EhKHnCcVB&M9_=WCs zXFGJC;XVh}e3+PW|Jag-0XbDv<}5TTT#{8B+Z`mQ)|{f;t}PqzON&o>sjkFehr z3F0mN5H9}>Mz6?S=5=&0WtT}a>4SY> zOWy`}X2i=Ex@aI0bNhaFr|==;;Pb_Me|Gm^EljQWisS~SX6R)Du!~;yXgld;Nge5B z_qCH5xT8W8^s<8mxubkmSNEut-vpF8*(xQmbh4FAySeYy*a%-9i}~Co+1KM`Rp&G{ zqST>^g5hv$^>kNgY_fvGRCll$>TjIj7O23B-mI5ms#%Zk|2i^@J!Gn`P3Gx++{T`29P6-ozA@JjAYfCQf5c7MVs6n&1hkms%()kW~0 zRasf;p02Sw2p`D%bc6TlssMP$^L~2=yO&rN7DAR*Jc04JsvsqJj7so~k^rB*c(_om z%O57KR8IGGLo08PQj7&QQ=GdLPTU0soVaMFIK3$>kOPAqB8SwK36Q{N4R@bo6pFf< zs&tjjJCwOc@>%0CK1D74Belf-Aq;~!&3NCDZa0hRpaujOxNa;;0Pw^zTmYZ!?jTb% zoj187W8y>+Nzp);V~PeSApevC25S_6oSvbaZW!&po%JB}k=-sGWWK5kDZt^}Nw6a? zk{e^1mydO?;Q!Uu1Jgfl1oC1p1D8qYix2WOvh; zd7@@@SwjTs+eVfH!a=vVTQP1z7^c)W4g}faP8GCkm%DFfFPW+mO|SN){jz`BI$%US zQ}IyG6o9%KZPry*5VM3@|J0LZ7fWi%pZJFdA$&Ql(lg3~lnriH10Im-h zTvHN)>u>^qX}huc%(i^_6n76jt|R|#3dDETjy^-Pe_Xk;=tdwG(@}=`ksW15=G0X8 zK%KQx4KY24Zlh2EWf;tux&Z4O^{hdYPO zQ)JO~&R2h%X?8rw-�kC~B!&}~;oDV#r~Bv6cH7{Y z@`JP8E_Of_8)3NOG)Z#$h0*)_W$*Jdce~x%G2U;EdkFjcKbj}Y=KnJ_FQ4mvJjl`s zl1x?i^~_+w@XK(OY7~Vjpo~?ZmW)+=t2iEp^aeJjOl?tv7^nAQnLwYJ~f z1BTp0bE*gQtsT7{Gn@Z)pL-H>5*ASPC7tBLy@VDRvpwViFlXhYK+JY(&N}fU>)jo^ z26BR^THQeEKm&~wrGZ9@0?-*0cOndvqcUphw+PS!ieP z@Zy4DttLOR1bkOb3OD$@<1u$zI6|f%oY=<$I-KCOUN&?xX0AzQuVs|0?i4aCkf8bS5 zxzpGW1dgo^s#ZBX;VJhBR;$Q&0O^(@Iaw^E0Nd6mBE7j|nR^avPO9K+XIm1!;}UxOaaL7M1$d~mG1Z04ni4u-D>cd*gmSO+>uR93P@=Y|fT%4BKyB6RDyKrmR`;*$ZbBJ{^GrigGiiaLsMp_w z;k=j>m=v|p#Oo9Oc?}V`$uf3bV2r?xM^W!>caLQ|0#|+0MEq_4#C1T4ilPFdq9_0r zHA5;&YmWy}v@If|RRE_ghcf`-dGeKzXcM0+y-e7`RNe&v@TBr^Cnv|&^;S!rZpJ~R z#BOSQLgv~yh-B?XQd{-A$%9CcUzG=uV!FvKoe0tvIsiUY@Rqx#)(v+_vcfH0Ke3FI2x)o?{I!~tRLFkgAh*o)AX$lv%1cL1&6#=`t=a$|wi5$n);a57}! ze)q`a`GODJSI81H#h;!Jv1IZiAN*U7=Ty1>4{P5Y7uB&no_hg<%!<-2pnwI%2KLyo z#Rh_ny}OsDV!?*S-icjNu`y{D@{*TkENMie#uU>u8ckxVE!7lXG|fDX$?wdWyE|u> z<^4Wi$UnNAnK^CFoO7n$u$Yyi8r^6pRQy{T4e*FaGmUld;TJNu zuzCZaQ|M+w!~m)N2vy)>KY4)EetT7f>}zn-@4HOvS-lDoS1XE@>(>tkId%yjF6Spd! zA;ox#Y%jriSm_6MDpmmv@qRY^k4J6s`#&F8nm*@^=`6u?NnuL<)X_r+@^OzB)c4@d zy*~j8LE|9`k-GN+MDdItGM{A>in^cbse3$-F&f5!IFQjF3=7Ub=zYMvMI3K&x3Vc5 z`OO5tHS#fzPyA2jCw~3zhR<@}VDW4KX@Cmr!$bZQJ?%PosipH7e`j{|6CH7^#0EzT zehjLu_qz&ncex9JRvf$ZjkefAyU`o%I&ZXa zH4S*CXmR_9qIGpoR9A&9LFvjmbJ47bEI#c1Zg#1)VM^9&dM7rw@)m?bqokYn5(nadieA5VTc<#n$i}L+`_LDXAMW6xk zQ9hq_AW1H45MF=lweK7AWwQc;B581U(S|e&kCSW_Wbru3Ht`EH)olYSKaB|y-1=hs zOQkmZVEIOp3?pv2_QKP-;tBM<;CbN*^zJpc2fH3(%$Qg=P{RW8Xm6Vxg60G8kNeSH z0U?j}in0Pc=lK#K!xz!T4}1~5VbP*0o_Uau*p5QHZr))=byYlKg)eM9Al|vbS9M+x z_ZacY_(pNd3GYkhtK=Dfq+TzJo&-dv=>9G6r`Bi`3Db#+d)+tIxy%Vfo8^|BL3LkL# zS(QuPu03;rX<%RC^W@V{)vJPvx5ho(l=nJr@8L!KdW!~QeMw#QC*53>+VTyJ?2)BI zdPJ08jj+SJhf#y%L%~sl0{D!lJLd6YbDIS5Z|d69`IkQi!`CotC*z-!^d5tFMm>9b z)@zXJqoP8)_1;N0zPXLP8;|W(FGL%}%Np9_cuBLkP@Z(!9?f@;vERu{>)Uhw?@#@C zFy0VeY{_e4ug5wQ9zqK2gSIAp9}sE^AkEd`o>d!ra_NAu5IuQNIXsxiG~0C5a-et) zzcJ5^43GDl58_`=2ye<3s&cNRn@glyDWq%f?|_Q@z;mI^N*8ph!V`vGa!u!Z8rfGd z!W|cK@xo90)ClpGYl>SgEtwx^X78i5;brZic2d%^0KR3ZJ%X=_vmeq9@sxObTXxu| zNG}qR-jE%Z{=Q$R?ij@L8r#ik_tbN;r=BCkQKDn7cCIMV0k=f@UZ5{N>z&!uzK8ul zTBARR)wQ6|+TIGe;%=_Nr2(lB_^%63?-w1UMG266{#gs>8C~JnP91E(lg8C=5aluM zt(*WTkjI~62g}Ew;|D9tM{e+`@P>nh3+UabAi$d~56rx>LH%r%U750>rIUV)ET5ie ze^%2648{R1{_maPoWlQTW&Z_Uvih;Ly%U>81aKR-UNBgu3}Wo+^9IYuO~DM>_8A3- zohSWRhws{JhZ)Cn_7I*kIi*_0E*Ry&Xyn#wzXj^!2lM14dt)}9@Z}oLVe15t4(G9h z<*UWHz@o5_eq-&Y*iO<^_Q|$(@a^fTDb;YtZMi3#4=Td=)@K&<_)ob5;ho*)L3~aJ zaFzW!*dNr6!?y|T9oU<(Cpkt>P6?~d*z@H4 zWlO;?6Q0}({?c2)hb=h|S_)>|zMtJ7P2EEj@3Sqo`Tk?4^uUDF3UQ9S#BZ9-;{3ewAa&n4w2Dsn4-jibRyp$Gq+o$0=mc-qz$p&K|OUl+r~@M?Cn^tswOgs793wX zHK8KDbUMwu7@tWshv3RIPd`|v249+|hpDfU=D2ui#pHM*e=t>8|5 z3V-jxIzdrBw4>O2GsWJWJ>ZGbdZD#+hV2B}j(Jz}Ko=CIdXgyRAe={|Q)yJG}ma zL6Hk2gmw`vsMGp{2M@I0W`q(3c9F0|SEziB&|5ah-Y1fZ0EltEnl?n}$$FJFd?(%`c^Biz z8Uhcl!qG)CvL<`h^EtAhl^R+9lfAeMdr!936Qvwk+DiU%2E=3TU5Eo~rHk!Hy^Hbb zVivXWYALE2k9#9=o*YKu_F_s;{*kcL@F-ufrF_B3^eyh zj7SAAj>Jgu3rAvPYULv_VW=F5olW~gHWK0n$_twHv+O%rTY<@AI4Xd9I9B~`riybr z_uA|7%h~n`tf!)&hGAq&1$EIa=#eV-pXwYO9m;Rz*mK!PRZGS<@iYu9Oy*65^c%mS zI#m9~-J42q!tRa9lcr9Edr^Y`aqbp)ll|Csdyrr6)BxVduU;%84TUd_*PErHO-Dlw z%chIOFY%{qPp2L~{q-Mp`PXCYVKF^KAvL7t0zgc;txPRfE3lmKFB7R{)vjrJsrtqH z?7?gW!GGpH`y%!b0f616+3ptrX=b!`%oSWWX0j8mHm%x2>^iG>{j4HhQq0 znkHWt8Kz34N+54?qchUnDp8M%2%NC??THgyTpVAvxv0jFfeYb;Z(-^9ax!Z~@S%6ZlgZHnX&;@zc|xULYw>%pXNxr3 zQv%?j<3H}P@Ap3rV18^@LOgquv_MOFjqrR%sb%4l_Jru|!mMySSr7EROj_5NV=rP9 zfEICBa{H9x7Eck-5pjNxJ-+EN&<~K~)2sn87pn9v|E{qW<>Y;FCXQmC~F^lcn zyqk<>F_qMwy2PI1Q5*P^%SlQsCbOu&1=C&N`fsD4=uQ$u7HR*#$m#tGsCy0LaZ|D*c>9(1ceO1j7W@~p%07f~ zLI?5+Zy{4c9@X!C6?9bpe0tZZ?UXe zF0sz6wLh(WF2(wsKe*1`i(Mvklvo$2SUuPvi)EFbbBR?}Y%gRr z(v^X`#R^sZV4aBf<7c+PdS>_jA^JJrl3Cb6GMs#0gXfYtpbVMH3?cO~F}Ry+&$-gEQ5iCo0WmO@>6;-_nZBx#mC8)bkg3dcRU)-AnV_4W z;ns>uWdu%<%6Q=PmC9_+kg3d8LIOG7L`dwA9Q%Qxl2it0U@Ajss8psG!H0eiQyI9) z`5a_)sOFX#M9n5U<=G(3c0vHCip%eQ++I(EPfz4MVQ-o$l8lOS$Yoaev&O?c?4uvYn5@WJ zkAgHBF24fw#R2>Gwq(@?x2s@5zBo4k4qY#;!CO89#?tFqdp-YdP>Y{(Txk<(-GA$$ znu+-}JY_Q>yp;wocZg3pi&WX~?%@G&nkS^44hB|np+7WCv1Q$JPae*%KL-go;Yf7k zAl`d+`x>Ec-C4Ck2#i1?S!!gL5s_%b<>U(l8D3U5Kdk(h=k1Sa@FlOaEK#*jcm;SNh<|z9BxINR*t~r8OUU)INuOPssR^$jT_dak?ZrmXAV(%A; zCDzp3h4CU}*5cH}#euGG8^bU8;rPY^bu9ejJ|-a`=`4-cjHGAFjNrE@1HpiajaEszU)o=*;*bHf|UR*ozPRa;^t!mhewieLb2I9VNe?oN>bL zujxBR$YT*ZM!=}LR4bRqzH9##)RfLQF>m5w00c0M|yU^`Us%NxU&eqdj1 zqZQ2=2(Q>4_X{3A{8|dO=IzF@|xb~W2z(A_O|Nb0S zO@{&gAN2{bHrkNq?X<_~9Y=~eMk;^&ygeiY>RA(wQ{vaKk^G(W_Es@N#UIqlI#UkC z7Z1z(T(Bo;wht&guIH#!o_5`@D(;k;e=k1al0DdVhT<-|WM63ejzTU^7?o=KMnEtT z6xz6K|HI}#3Lq}`S@cw9s(!~PIkmWhltAG4wb@)fdKA9NY->o0gsF_v>cfQt$g{-A z)|&IUAM73VQzPY*%#or9zF*h5b1U&4T*J)zHj0{ubj(ZigdEraAK+d%p+jw$fB(^t z=Qc5dJu5)Rr0Tb!W8gtA{pLt{iazff``fl0${C8|w8U|e66*x_yWiUP=yONmJi|7h zl=I8Svd3z(l}!5bQ8>}iPVtiO?A`SlponXk(Y6`1kytX-9^@(C+v9CJXaQ>IeuYhY z%&j3c%@8QXG{Xa>uW821qi~vGdxerfhL0!``U%OfAJ{3GX8;i~&+sIo9dnG(K~2~- zR86vLJRsOL8UL}5wt0Y&&kz1%AK?ERaD}U*wi}c`@c;0#YFy2h+AoSpKW%gXKQJ&R zNiR6XldjqO#(W{{69rJb}xa}^El*18nEjS>q50qIOfq6~tu=bKE zB98cb{$}s$NfxcR@o2Xd<5~C{V9nwz{5N3TVu||8k+=h3n?*Umu{=XSTw@uR3-GgH zn*c1H^KH#&3t@u#hS4PcJ_wqC&yRpbU;M8-X?_c)M^lBgw$x`p~7~Qb@>0ge<7kX`9Q^rv{ zm#KDslG+hYOnj*eTWi+$3rRcyy`||zw!hToFOuo4m zgx{95Si4tTHQ5~yZ%d(Ik5;pTjh3FRz+C&v_iz-W)~m@0nbxeTYi(nl&7??$WMQg- zHSskv<%)VjrkpVCHYc-C_t>|vHp#SB@?m|}FBVAL&aHR19+N3g_|FJ2b_LirQ(A5T zv<)-yJ10r~ZbT^sV^y2dNo0iIS5I_O#27*)2no-xpNh=P$~Zj0WG zr`I>8dp42zr(39SIlbSPDaZSsOpz%i^IZ*$miiN!VlgAU{89s>P_td26p--Z7^A1{ z8wysUUMP=fXw>m)C1?|ywYEl{;3bWWKKfdpO1D(8%2IkA|NczR3@BaQr3XGi#LqS| z+VS^FpKm~V)9R>tvQ6oC1A>V8TZPn!Ihg+-TfE)N@<}6WX@E8=Pl`82Y5HAuzPYK< zfIqOWu#>GPMd8*(a5n(M^blV>itoxZa(2Y>oF+zXn5yMN~xF>)oGz?C#jiqSZWc6G-Z{N%qY0IU>q6?TZ{02OxjWI~Ku$K=` zFf`4!mNszXgVmZxn;Ro+D`}~hHCfLV6)C3Se#sEhHI`IKb{s=qU1JqeEz8xkd5K1n z?O96K%QH2UR!mz$Zg`?~czOGl#ym}b$LgiGS{c1ktW(8GAuhEu`q)|;L^WPr(%4s*V6b?)y}>oTk0A$6UPq%lztG(X(p?KB z7$N!@{Ev=6q8}yUG~vt zx9nmJwoRhNUSyg{GWiwBbh*pO(~B)KFWd#}Zl-wLWNK{$u*R6$*;Y=QA|-VAJGvVwwr6RXmo(NQ^F9x>Vw4inmSW+(Zy@bu z5muRpMS%Z|;<-JIcDBouvX@09`mzWdq%pmWn|`(c2T_L7od#f+?t1eXDMoL8q%Vw1 z0e9=pR}^h6>D`7QBGy*R^ZOZHHCrrg=9LCmEn*xp4Y+NnG$6$7n5{}Tg>w3^--W<9 zHE7L?)^_M6CK3aTWDH3}qpc(_Kl#$ARpy~l7>X(SIV;6Iu2Nil)S6DIVfe%M7x^!P zj5qkVgN%!|0&n?90@qe@;nn`@?&0O*h8nuY>jwpfh@a7#Z4pI-(O$)y6|_uslxX7W zs4aZPP-9Dd&xidg;couggEYIzPquR|2X7Y;}M!!fb zveqeFDDy|iCGPwYt|e~xC6~D06u4i9f80yl0z#I!MOgu^zRiR-xWp}fRA-5suF1%? z*?M$&5Bsd6ux?mn;$@2tuH%bG8xPrj7o50OV8o0|`=!({hBb~Tu5r)w*)zxHZz~XK zgf+!HwbV7md;*fzkfa{1`JJ5ux7k9RURd;CC)W(ai1gX`6<%l<%>sp1!IHib>*)je zHwNVV$!tGxcmUDpfGrujm=xax=xOf>rO_GKCM`B2li&o+#( z&4m++NfQvdR!13-A@@Bqu(_V&l*{;e6a$Vyyw8;7lMsg&{wd0Pszjc zk=cP`e5$1C%lCrTJh5sYUfwR(cuUh)IpwPTDyMasanr$xa3LbUO+fj3V~jgB_&UJH zV~y^%y;O2sz<(0H*A7RIL%;He-mf_`fBd-VQ}ZTG+g9)*e{Y=e^#6T|E_hp}{hPNP zZ?v)fo6-{wDC~rHU;PVAQmo$ZcFNWJoePbxY!_)e=%G}8EU!-$J7t;vxgvp!{X3we z#Wkj7rHMhD6&N@CYnZUY68DtR!4?R=fw-;o*bL)7pC(@Q?F?Z?WB5-qjZ3y7 zDi-dXEG7__=lTao)!;{-T@=A<&Nl3}5<)_5og8bC+%1AYEy4wxOnGcdpJO~=`!}f| z_fH-+<^IV|lb<=59m#X&!rINz3e^sgYT_FONmCN*@~rV0b;Pf(wsRF4oK+2Qf5eAQ z1Z#4CWP#DT_7*@xwq=vV>n2{1SiS z!E)X+|4I}7;Mt)eF`GmcYMKiK0D~WlAhA)xaY)w`2wY%v+w;9!*6^ru4zy5fvGIg0 zih>_lVzl5tEH+|ojVKtsc<{Y26N<{>q9}5 zL5#Bd`5#M-TzycMcx)khYwXvNym*;WQ~Qc9{qOMPgnfVbTO&oG3Xs_lMI}R&UlC+% zPRb+7x~m9e9ZSJVR%aHkf3Gprvz1^yM$rrOK@Yc*iYQL8&dZhv2xfNkdCL8U{NieP zlNAs^Y!A`exC?V%7H%rp?xQ6cj+``oe-?i1$o32^!3Ej9S(W(G!=OP}y4L-&@XJSG zihpa#6{z86h6gp=XYzpHy8Jt-~XUQd{Em?AhDrTMWxBuTy_(Aj-xG2WPEEjOCtqP*HyE}T6tY$<%)(hxB5>3g2Br3=Q0t$*KZ?)a{RE_ZBNkN~J5c3l4~8;^F{&eNJHcaF)| zDwFS9B_BRv_F*<|^F*B?7~Dimm^>x48=#-cmJA*Nz7>Pkj!$?FF+TJJAp)Y5H@kp$>&1Z0!bCdJyCl0uHYp+}DN4ZUayc4)VpN(_Ebj@#hHSJ8-X zvzAOfsBGSC^!1`E2LGkWsfo56N)!h_ZR+Np-(Lo6rnE?e##B8%M=CKS$E`$sxrh34 zHxd)St7uzGN#an-wKoci@Y$sN#eW&^=sE{^;praVb@=!HhUq$uu`Y@b>~S`}S5U;+ z_&)IqXXE>FqngM7g`=pOMd zM_U2u?6G;^RBD}&z)$wp4HTOmzWB5>v`3k zzYmtkJ65QcoQqFD+WOKGaR^3-5_tYGf*;>+G_hsSVr|*z0#S?~hR!AIaeVI7EoI?^v(MBeY z&k54vPnkI8PPo#Dzw^8i5_3*ep^4)w0^sTkOdN4mbBOW|BPf;c8=GInxuCMKU|TuG ziy6^r3c;Q4lLCUH1dIzm{y6NQal-aJt%zaln_PLq<{MICT|(6Jq=)y zj~ARLJ>GM<@|DUzp&P{)rGW}YE=on7=3JRs;a?m#ezd(#@u5DB zS^79eO7I9)5`XX8ws-5F=iy}r+XYfCmGWt2O1YwxqRt$hvor(rP&1UC)QkrNB|H7L z@r=y_jFKHul3@y$dct^6vo#t+%os&$Fh+KD15$#b&DA@Pk?HMSq)1BDaZDw)-xqH9 zi$g5Wm40Nj*OSM{js_Yi4y7T*@qmCh5#?7-8~K{e1CH|49pl+k_0Ae+Z3`%8D9#*9 zoH?Y#I$d^cb%QRvcR`)eep|-KM?!7eNG&{Lrk6;`Dz2#QvN+!%q}1J+!$bK2(aM!FApqu{tE;_ol!xg z&O9J!0`VUkJ8T|cRM|aBWq6e7JdApg=bi*FAkxUUb48wOrIBnbu?%#dfdb-kpLm|B z!Dq(5_4u*;wa<)1TNByeVsi?PEx2N6wCwK@+=EFKUX z>6ilcqZM(adsIYabh%)3^K6gGs5cgc*8=(Gx(;|^YXuy}0R@N@&@-59F3(Dhq|uCM z0aLWOf(cB~=80dJqRksCH%w@XCIV}$fAfN&PJZ-~(LWN)tO)7C*$egr#HD~;Eunv0}mtDlmP$GwFY+uM{MiF`}JcD)dar`x&u( z|IcucYu7Zmb$sz>qY4kX31dS8NYqyF7j7Eu*b2fEYV~mepjs`GqAnT7%MLl)@;7c7 zJJ?~;>L1kVK{qK6t-`sZAfEr1@nfwo1zioCQP#GC+PrA4BaH8#>!`)PCj6jg@g=SQ zVVFNj&FZP+woiAAtB!qY=lKJgqZK<(SU^Q;`Cf|rR7&@eWuE`i9fd4HRHEMZA2Clo zG+%B&0WA+r!pIKd5dn_({JQ4{@RtTe6LWL1MFkf!RrH#lhaYadZ?vGR+C`@}whyUzi2@{i(pe`uf#2@%Mur32YPL6V>~yw|a{$k=I)4 zz4*Rk3wx6^`v=wgx}rtZTUxJK5WgAffR~^`9lNyu@VqcbYj%zB;8Jm0{m07GdQ%zf z(r`z9wTAi?{!|2X@)g1XD$h3FYp8#13G{`fyqi(Z|FBq5i;i`?psfqPLH%vacsX{V ztxFkd^B7{a*gV$m6utyr96a2prRFDoC*y0gkv{T;0v+0j{o_{k9S`};wf0v(p|J4{ z4IH2Hjg1{a+CC25lE~k?RkLeazLMFUNB$$^9*l8huz3o*q$yS{BYe;-n9Brn?I(Hr^t9TO@EBEb{n%G*ohIevoU&+&4O{wJX*AJS?z zLB2lG+#7e3%5b++xN*HE-7&h3HeSr$8w4rzqMPu&EBJJLMhiy+Mug=>R~;?A0a5(* z7LMi~(96k=H2ur*a;|=Myqv3_9*=ucY&u~WJ>~AnqZt!Gj~=*owec){oh4*3X@d$} zQ<;#ZUP9v6I95#HA+<&gj8s@$L#_a9M($88o*>zsGJ&#dJ>>P8YAMa;SlE0YJU`Xe zu|)fnCniB0`J6OCmOrkHa*+Dp8DvLi8CS+Vu1*9QdC`eertMggemGZyd16z{k( zMD3sG7e47Qh=os7Hi_LJ_JtbxZUHrMPzLd`{c&OCU$l2j)%5s@@(T}@G~s3WUG9#g zqNOxv`=&pZWN*4c3B2`>!{9-hkbhMsz2y0(=3=i z)ZvrsINS5*yEu-pkwio2x0l_W-7QrCT{cwwkI;Rxt79}9tFTMA-FyGAZV?LTB3UqI zqTFjL>*iR^=Bo-^`tH+#t+a{KbQFf zC&HfgES)Tx;T8^1z!N~}ssiN`gF`-)RR|8Gfea3VCt`325w&G-_)PrDpU8t!9BpF8 zh(Bm_pq(M3!|_|jPIg(;^G+vXhI+TYpsHEX;Wq`5!#w?=#*7Id8sN~0au4QGU&m}# zXOahzG~G5y1_zre_+P=H`6MeiB&zx{I5eA7NpR>eNd||{K=DT$UG?}$GC0I53?PVj zWpU^v86477iNrm)GTe5BTP@}T0enM<5O9YFA+K28Wkg;XAG`ojeAysJtVcC;S~Vxh zgB_)8D`6PCQkuTW(&{Ev;L_@&LmcP)o&q%%t!dDdJ*_GTQ9JOG<+YRe z?BR~?6&GL1C-Jh)qdVwuMit(E?4dtuDe_T;W32c_MTMs&PfwEXF`ZEr6*2wY%9Q(= z2R-@Lr1mJ^JIvA0=0OuX?-#4{e)A-fuV1eW|KDDnSI6G0jt+|1+-+hwyp3OYrzaJZ z?3ke?`b8DMvg?AHajaf}vSy4{5d~<3p%tdNjd`-^=%{@LZ*4j{_yPCw%U(nbWg^gd zXdy=UZ+f51m zjR)hATw2g%mjzAswxG$CxUt5Q#SV(N=5EuL5Gs04kWa%;PKgrR__LxFAmg70R36mT>*=Yr~W=n7Z9G;r^ zdy->}k2V_%9KG3PUv2cqCX2f~-NozsVM<(!iGL|^)hEqVElYd(3Ndagbm!O7wE%q# z=t%g33_v2b1i>F*?n|RP>2l0{>rGL%>dt*5D`^q3Wn^@D^fbq9KRp4Sn>;XjxUYl^ za)VEHIR-}3l*C0Ak~Q3R>nX@$!rM#y!i2Zil*$ucz=;X(<$D}EeI~pIs<}LoC6a*&WDKgW2#JdzTT`0xVP<{&?9oRFTRVM3Dis>$p!F0D0ZZX|0 zfW{TlUD80NyThi)bXU}t>Fy=*t6&O0u^1LZCWt?1x;tC|JQhQ6rTiNO#!*^Y)R9Gd zxBXI8vXb4K3SuR@i-$2Lfao4GrpRP>#xloB7BSULS=3F_L#E1PH$)XcS_UurSjS0P zPn8L1TU9QjTFa@GM1{Mi%H;ME42Vav8q3dUCQOybFMu2-5`>&gB)kAo{Kj%eA4Z{= zNCZ!n4wX%nxn{sh$9`5wctfG4SVB!v1+HAvzRK|icNRm^kkcnNj4vrxA^tzb7~)%Q zfDjMNW2C%ys>~JcC75JF8QVQOjMw=#sFB~EsSt6-*NSI*RV9*4K3SQfUYsf)Cpo~8b?o~ZNnQhva+p4OBx0dx&0Jc5D? zTXUw#@iC9I!AL%9S|#J-UM~gW!dBrl93N3r6dISKF36Z-Wl58!Nq+6qD8E*gv`@9P zLcCZI-BW?<&{D_!{%-)7ADez9g1=tsh-7b(w#fYJl`(%-G7ldVKgAu%(ZHJJ*{s-p zj9_YTpTo{506XD`CBz;jgb4F>sb5o?1~yBsCfDO{-0#TH_36Cc1CCM5e>zkk%L2kr zhPXMg-kQIIC+~M8Z%zN|PJC~k4?7)mXH+Fbc*frLeOQziS}qpSB7HaEkW4fv4|vFt zr0Gqkw~zj%=1GcGp^=l|O2cvnyP-vlsSp&`YkJ_xy( zuGj@}Ojiu?3)2;2dgbW~L<~$f=6ZKaB33evo=5*OPEUX~X}KhN_^M;zVs zCWSJHH&F<1dCfW>nFhs29dRsO6-)d>E5q-Q`1SMC@fkxw0GHPY0Tup0I1GQm1U+uQ zcmbmLxdX7>K%wX`S)ojM0t;oz^Y$~2J#0HchAGeHLYc>HRs|k9d|K*opDLCzK2@2F z2R(K8n5DzV6auQlGnNkDSH%+l>B{h*_tGH{KpheSN{1jF>X1k$QwT3W6yN=#BhN;l zRtnMPprZ{7nBie}RtiBY6LW=6Ps8h0Edqn|jj97MZ3uvl5NX4&(`6XGK3${@2=w52GG5LmKrUg@AO3b`LK(3X4&* zRjKTc8I_@5D$%=b8t`L(5d7}`i0ZGNWu+&t5KK|8JGw9mz|nTpV*Y8x zJg!1ek4JdLRS0b+K$Ji0Cld$XEy{bn;Rx~5YtNK9gYQcG;M=eQL0zCFU5 z4Cx8t7l!nNnU#lh@V^++>z;5t;4`G}tL6&CrV|bupL^1Afu#^_sF2=6L0uM8{EyIF zdkRwhbcJ1*xwQ=8gJ!|7nKG`=JMEat#*=35xUP?xDVHI#p^tpT^d&wUEl`axo>xK} zEoitemEQK2ye{&sBjHkIEbU=19|c z;RTq3FIzk^DoE8p7sUfF;yk?nMVN;_1$_YDAklxGDZSm#s(KOz-Xo`rrq??Czx)y!ep& ze&;6aNrE2NT*bE`MXT-0n#TFi=A&OYy89gk=0a|R$j3-);mftd|BJbI+#=up($Qat z{E+61VWi94F$umu^~zUp%7qx5OcA^QQM|*~j%GFjwNixDU&9gCp9y%yw0Qm%ZT0A{{4$Ms4S2w?P+^w;wS;~koUkjTh$48hdp!u3#+gVnEkgO_5 z^J~q^ZaTVE+zagnU+NGqAAo)1(p8IDa>%q$2uOmUkAPy4^^Q`-5`RV|_;VC~?IWX| z4)`%aAo$&#p@Vpsuo3ZOZ+HQs_^GRo`8EQj3EOJI8}^2Hl`xW4CfyP8lOxdwqKQ8_ zy7E2$MX&Jx$8inzP$+)6hcfFL9Ep7D|H4eI>yEZQ5KX%7=*N!yUl2wA4CjOhN4Sy& z(@U@c>sf1IXxvEA--pO1($ZJK0L5z7%QNL_*0l=cL|%GTKwW+u_fvOYpZKuG-?}B; zawMxYTbZmFsXX^j^rSofBz`$ywluN;Rhjzb^|vj*%#u|FVP=+dj{gf$=KSUDoCRLt zoGao*=R9Jz<(x-(qRrRfV@ZGd8XY;aJ^V7@N52gJE5AG!u%cg{?~N5|`^383jTK$8 zC)UA!4+@0BCGYS?cz-1bACm}`HwFbrZ|tE7<&BRJ%+g^AZw!^u8+$au(*o#?&j3>N z#_yBX=#5WT!q<7Xpy-G}P;|ruzkBRQX$q+;)hmE}11AUCU(#~%(^OYyQA@QZ2*God z*~#%L%#{f!HCO(#pYs#F=^Xy9zcY~~kVZldz44q%W>Lv=Tz2q7fU`}s%7d(B!$t&C z#~RK~HUb#Sh2Bfk7u4W8YXH@|NnN+@>(T~_X;{d-T06a|Cpz4qU4N&u88f_5p{MhW zipK^z=P*(xSGS|*;P}@VKM>)Bv(giSLWB>%*$d6?6i@iD1Y7P+8qW{FkxWW9^yv_^5Yl>St^?5Iw^IG{A%$cEuZSN>wA-`ksHn~5&8T1ZsQAAaOmzOnI z24A+H6%Z6j^H>+JkhSBq=W)R+PJ5mZzi`^~#GJ~fJ&>c~w8yWubGOfF&ofn?_LRd) zX12y&BiaMYv-VqGR#4XvD6Tpwaj0=A-`CX-IumNT5zg6;==S(LL)%ozct6P&}Uy|rYCcMjSUUU3xSlI2U@ zt&>zWYl3sPf~W}&>nEV-XD*o^K&Sh+jXM;37d#+64vQ+^jaqi7iZ2^yq zcE+RjYv!mX6F4;PrHCJw(0x?Xf2r-#bc>$u}J#uFUMxmIP zI_Jv7)IL|PBPKL*ZevFXYoNR|{h%e%K~>-((uY!{k5sV~>HW$?y6i)w)0Rj;3`HWu zq)1+XD1JEJ8E+#{D@)wh%9+Fh=0T6qQBWPvSqfaz;4rZiCy3QArYA}@=1u7D$ zR6l@=R4QezOr^SbQ_B4%mIVo*GMFdz5%c7h;3!fXgHp!4N`g`je2-70?jHS~I!|s1 z4pL}bzN7%GTduVYm?t^yIFE8_h0A!T%Ca*R{htd0Z=JguK!D zC_#c!lvO6hJ|#tDD`#?y8iLm9+YW^a4*q0}Y-sa@c(<+liC?L@%SL?kGSUO#+bc#WgdJs4LIWmaeR!AksxOZ4d3s?ed zzy~)R5hKIq=?;!S{y?&`m=8;KeyOwh7%3xsHs%ksbKcMD%?J9_;)Tm=sPr8sW3C4V z+)pe&+TOWI(-S0#NRJ9GBc3DAKT&V%k`}^=JpUx<%kxj-mpuP8zw$8r5@?B!tPd|X zzsJvXa!!fFTLIQul?(Z6Fs8-(1FwyBy*~iI@cn^S0|k}-@Q?fb0RbWJ4~Vh?ykPJi zzkZjqmEU{NRJ=aW^&hxoA3VhK${9S0oFlH;;FYMs;!ruBe;+2cbMa`6!{9lvwfV6 zgY`4>@f8B?OnI*i=O|6P!M6{0c4Ge}QeG~1j@5sgk8y%u8XOa%`z;XPLTtwmjc`t@ z!p%;Qc9wRXpBm|G&8|~I)17Hykqf-~<3ID|#mpb(%L~UJk8&>R`kXSWFAPuQK^_)NQVy`Hgv|7~}+VIv4lp%V?h6<-Lmn%o;P z4fL!9@`85w0)Bl%Ze5;p(HRVTF3vhUdhwM&ZaSP*c{f04N*}U-M>?GeYzUo$Y*8dy*f^feGjyLJqa` zIMLDzN=wsDKpuN++K)C~E6-V#SEbR49^voiIoq>GC{dxBx4czTCb{1!Rm0DZaTc=A zNvrB;<`Xw=s+p22eS&zKeCHY6Zz0#lgK7d6Dx<|gr7a|bs`f&(ApdaSici10T_kVw z(1@D+*hMphr%iA+sH%zI=Cvm}yR+Lw*vmpiae^D__-;xuZdfY1^q85%v-&v;`Lf5& zp7K|lC(K~hk%&}|pqD)%^5?)y@?I(W8=_raK5_P5iYr_XlQ=08rWvQ_%MvJlda zcJssd({r7T8T{pT=fXI{z7_zg>!X$|FIl>NdY-d{{g*UDHTSO5p%c>Dy721-*OoXV`Tmv8rd4zb8s`gFIa@MLi3&x%yIzmvd)tn# z$w5T{{N=t`wRz!sc=n`cag`Gm?Ha#P4B_q?5TvV!l zW~Vn@ETan`C)(nqW?=>OyaUr>Pz@PmDw%Z;%r$( zTha$D=EJwb>}n7tE1cd`0idI9fF(m;U_lJKk=vY)up-i|8rGyQk;t{ayyzj7`{JWd zpOiYk&>rW9Ik=@K2{}~Gzo~MbQ_6whFtUm&(H`cX+z;!64^vt~BX4+XWS6Cphb)bJ z|A2ES`;;`Rjz&JRH1ZJ9h{0oaI6v35CH&S7Sl9DgqO23O@i)~*ttDP;>diQqFIdauUm&CTmYPu8wk&mf(2Oej~~m z#Cz|H4&Y<{<@{53EaAD20GlSEhZ?dkA%khW)DUKB8Oa4vynZIklVaCo)!@7TBbV^?|8}-zBPkogl;(MBE5i~fjfXr353KRWoKsjaX;mF%t(Ca-v?Z4F zDTj$=N6r6Pz|Ye@$ZEr$CzMc42dJ7}_A(??P~mr1Yw>#bS9!8j>uI3r`VLz|zHgwj zA@8-@8O#LS<#N%o&IkattS2p9JtlQ^<7wwC_BCl$9bJ84>FP0;uH+>AT91NYp1$At zu5Me(8y$eL7rd0PDb^%{mJ-XVyVP^+?fxb!jL(0j%G%OvEahFFb+%wNC|O}ii2^{i z6o}^WEw9`%E*6&#A5ymck1YzvM7o2DP^MMd={Zm#;Hi3{t zlNw9)GehbJN8V3oC&E*PFFLza(O>I1OZm}*;IMNjNuitN0zh?RTDmcWZs7jjA?FUp zNvrDUW}BrO!&5iuTO#0yLrA9po_56fjCPc3N1+>!5u&J_!&E!(DCbF1%CEH-x$PKajW1HtLQ9`}Yw3AQOV3CPx)qbXhFv4As-vZ=mX@CJ)Y7FFGJ^Qx z*PMs^qn3dM9cZ83g4KgxZbu+SSi~|i!Wu7gkFZh4ooQ9IoseaG@Efq46+(##t#lLs zYCFNpWD3WCut-h?v-gGjULsAYgcPV>V>HOwF$_zujw&b{qiSmGB4J>R8t*UMc0L@9*oh_imgl;wp0M*R|i~VuSgSjx!V$}MSa$Y1>=tQO9sT^FkW>9^`YIuaZ#d`tUXL&0^FM+~YLg<* z0j0(AAt|g!gAF^kepXBU z(23VwRn^XHsh!!Bp3u(y-r9jfJ#Otxx3tscG90uhCr!1JW?H}J1OPX`s<$08mH+gk zbDaNMfR2}K3aQIWriB=O?-yB5pL|H^7Mc0l8KR<#MRJoK=BAf(9PPDtMOjSg9KEIX zj`-Op^tfnFyZ;R-;Qni~89WjLM+v&~^p6JxRIGSFR@|KjuW~#se)r(L?V0de4%H9o zTsgH~_^tDl-uhlXt1&_nf{$~bQOD6Pq>%&y5x*z36z%T z+93i!C2t~#_tE2kuCRIR)k&lk_Ud>6_~&|c0iYwjy7FGDS65TIqF0v_&1}BcvsWR2 z->`ahk@(q#i@o*GxdI0jaGos8-BBY*AAc|D+X^+u%9_}>Ir6u-R;IxRG%Xd;j=faU z8xpEXDFOWP>&|~`7x}QCA)&fVM8L6oUNpA0!+ubmi}}>G=dLpd5 zaL2FCSoR4eFZ%now>r*AVcxg;JM%Z^t1M)>vdHTAxL|%+H~Z*-n=0zs4d);JU4R5% z_GWfF)|C)L4RsQ&EDiNrj^>Z~c-h1u+sD{^?xJ3P>wlOK*KTJBiICP~5U8ST2{xY4z$Zk8ALFrO+nuL$!(N z#wUL}@8W%zw(rT8eGm)_!hbu5YyaBb%51|PC9I)#%ZPUO5$(EWJHdR}r(lH*yMYzf znbp2}R=9(w=w?T@gEAp>{fYokT|XdY? zXhWWdUYhZ12OwjuuC?gHR`6SaKzbM@E%bDcx1NS7Sq1?sVt7V`z_wy`kXcLo8pBo- z9Mv(N6&{r6z^lD1Fo?eqW_ILneU{#gUwjSrU*OL)Z7+`qH(Rm&gacF{JRaay;31_z zm?bvje?{g5^R>sTybj~{_=*62`9gXugCA~l5zADeC%u*Ts1oU6OL-SAreCpLQZ3=Q z%dW9ac#pbfH+DsVxo~cNP>*kZF+7%$1{|H?#h9EX?50t$Jfo1djg;9Ld4-?@*`$pL{_+QUoX~@sd zZVG4PPgHqZIk72_cP%6OHy<~?#kQ5(incA@)?A+O6UDAkjjM@+1c184_?2>A-v~Gr z2EM0}`8vxY&8lJ6x69> z#jk&4Z^-Kom~IZ{tqCGRHmSS9Z!>}qGm@J;Q^ku1x*s-ddl{p(7Il}*T6 z<(IrFfbX3X6U#^?(M9ok)G9t>N%n}kP{X>Buul9Ef6A{;#x8(SZFDq4qT7f9I@0P1 zfE8gc@5^q;(=($&%AfCOX6UShl!bILt9UMKH2#*UGSWyj1k{V-fOfOqiOVNy_(Z4TqdQp`|(?U{hO{QDF$NSgzP zn$3Lf=wo)r(9Iv~V|LQltrFkZZWSgPqb967RDg}=P3RWwfi`6z9L?$da&Aq&EEj$) z=nF@!a(kLl>?Wa&R6_c>sATt(R9?#rvMyZLH#|#VsOb8FtSH{MzxlogG;RQx#KBean#c=qYrN6OHvEeL<^@(pSVF_uv056= z4pIO;JWzjrwY*kbP6|-(&r%^?kwWm@gUqHxgxWHy0dl++LXo2g6o4WO9&FBF6pA7| zu-YvGUgvlgL=o3H9tP3iI)}E4#|<^du{+if(-6bvw&2+{Y~W7p>w1GV_{mikL#qla zs<(z%QNkLR72#V25o_?`1`8pLGIFxunWHt5kK4eXxK^?Y#t%Gw<}skb4Z$&IaSx98 z6PIHa?h+5+=L*z#06$Os!UOnuYw!R*naXNnc+L;cZ8nnQX1XE<=J3as_KZOXAL2VSIWd?=i}p!gi5n z7#AK~gK>d>H_>dza|>(7MOK0c-TnGCmb)jFq`RL1y?8QvWNm@JU9CIrC^#v8t>^#E zG?Sv&h~Lz~-$U4NIrvZx2Y-`zGsEo1H=2+fz^@E;meholA&p;}6Ihj_>K^K=5h{E2 zv_cLmxaZ)?-WrElz%DB=9=4CZBml^NK!t`J34!qaB{sHAh zrnyvOL2IGVif`xxYOIw$pav?6+C*3Q^DiuaW1!ha~!z!lWRoqXc?~9v`IDr zos1q7uUGVVH{TUK`Vrz7J;sf9kvTBl?4+IKNAt|YFdtO#f;po^FmQ}tD+9+wFU0z| zwPeW8Tq~~;pX5u%noWG7Kd>aHz79IV$gxfcB_c<$H`+B6ZK)e=a=zKhw{9?S0A6?C zfT`lCd=nm<^G3agqCVtCePz7a!Y9Y*bg4qn=~4hX-O>r>O;5dvxZ$@}I=7$KNayww zxXz}TW7$>8mGH9P3ji^)*Y&`4=wwru2uxa8Kdf2pem3Y`z)6HoWJ?!P_ zkkd{Ot*udm9(Jq(xQG@nufB)%=M9&b!Tj@+fnogq88A_vqv)WojqpLZU^dT~X>Mo5 zq%JzxHS1*Jy#f?3E(Jevk2!!n;$3U^I{66mGo%3AT?>wnFheOm!hHT|tqD6usvP(# zd$JCt_z1I$!hdI*gV-me7V`0-Md4dgpeR5oQrOuewF&!;R6z<*>Oo=XJaYsKUaz_X zDFm$-GIR&h82J8 zg3vtPWs%u3dbWVl_>)T{RPkruBJ)0$O&G+0vwN{woq&VZ6waIkEk=xc2mm8Sp#b1u zp1n>!2eoRcIfrc|^)ObfTQ6h9I#M8Fg{n8Vf?T75{G|jr&^)Ud5yZM9`>7O!l0ZQy00nt& zl{th_C<^kCmmnuro9kHHV$c?i+%1b`Z?q%@Zb9_E#r*mTvoY&WN>P%OV$vnUirrn} zC5aWsTk^7v&?S@xNxBY#kVYHVq=t&#gYRBAwIysda5NGQO z(*@w-FgMsGxW(LHxA=v*!R`%}@7t?PQiT8EO>K+oPxc&(_G3fkQO3j!gukYZ-(mUHt_3j zj7?|1lX7?H1aIi7gbBn?Cj$fck!z-d1#eV#B_r@g8G#AhjYbdJXhmRBDkJbl8G(Td zB(U^cU@q%RY9a1kh`S@pAO(oL&Y3Z-G{F5%P7jtt3K2K7!srgTF}hcxB8=|uY_Os` zsU)NO{tYs^Lk%msZxDpu;S(P-TSdPqpftKaL)7Sw?&WYX(A3yg!XdDq*7YATis&az zo2^8lwq}!qo`g~Tuma23WSIca*(7NwXOl0GCg?Dp6##S?U{A0LIq|Vgdq9{oq#pY4 zcQ?vt^e!ntAD&(uoS=WTk#F8MDxQ5qO3{aZ0lnl-5Uy?HXZ*%?pruW9=M5j+;4VeL7RYKD^4Pb8k-1-@J&dH`r zAo_qA66S-bT*aa^F>Fu(`o?C@nB^X-7+;$pc<6o9V_T-ueYIkvT~flrNLYmoMexL(0uIM1>(T!2(Ib!~-vkL^9OdqYD z`jix4Pu2M|AORd^-YbxF{Ynb4kFHVW{UwzLo(qnkH3=_JMi(u+>C;WPtWk^5fX%D} z3;ferc!{!Za3cNSx~qSX4h?YHPa1GkI0c~M+GYlYG73e-6`EZWSsQ{HwN9%+ zy7%OoJ=r+Y+BfOn-i8SSC5>JF5$SUA_~PpuWlr}j3|f)X?cXSKI!^GTQ`{y1E~kh& z-7_UJr+bc86*=Ah65@T1mZ0~6p2w7KPl-(F9w&`3rF*nQGP142%?M^W)LpAAhXfs0 z!Xbh`W;r(mYRq!}5Wg_X`J<$gEGO-Z`9Q@ir|nsDFALeM><+V>S_mli8EEVywg!5e%{=9o zEO;cK%naub^~$WnTbIESOPY6^!Jcg}JsM9ciPWQX+`v|z)l~kngw)0SWx-~-!ct5M zFn_@n7AVC8<^fWQ2@Diq0t0+w0#k|fn83tuwh|apNhUCXn=ye2ff`l<^OpD(znM?^ z-0U6QNc=%Fm>|N2JA)Ay^`B&?ND;aXyrX}PK*iA2PVq$-%())5!B$iGrp4{6crm{h zN6RP<=wP#*P~@ysC*qQs!+ug==~j@p8w85H{lqgaL!Z;yz*}1Me?&!8gTHjagbde) zWiMtCTcCz3tq}9NPys+6049h&AZd&A0qtm2;RD)iAwHn{7CEnbYqN9$iCd%-XhvG0 z6KK3eI)TtF(h1bw!t=&vr!dNzass5^T;oxU4Rivt1!{BxbHp!n0&})h;sj2AYcBEm zhR*t`kM5LDv-`>y5UyS^e_|y>RCFfA3gBYC_#Ywn!}nktyA*cmM|_Yg*a_Me8&*I3 zU_Qd0CoOOYAJ`(7QlH);r%UgW3Ti07t!jZgn8Cg#wGhqaEz%SGLJCxKD8+?JZL2ah z^aN0Vo&czO&BN-Gsz@PntEAAJ6d;9?8#7yJTP1-`q!0-}D-QxV4;w~mA?_g-?krNE zxQ9~oW0OfKB8LJOa`a=BXdnGp*%r%>kxJ5!t%AWNmRX^O<;U(9gvxls8)p0HodQbT z*jl1t<;L(0j9r95bYu7i#$yC3T!p@CE59`#-dpmnj*nm*^idnn3(?xbv&5|N=IkNW z)N)|=+=N4lXB1dEF#VQkvQG#U9oQNE;w^Asv^F|0MaEA$FhT}i12+3a5{a)|q&RuI2U4slb<3gr!=66?mRwoL|Ks9_oHc=4<0HvXAkR{Q99@dvfq zT7(O?)s{Q_vkqx&3Mqq8m&W(q)2=GJ18&9fTQ#z3*(NEpmN~Y#Giz6^g#>J!qxGM8PAQvCZoSJ+L%WA5>xlOJ> zyiKa$)a>{+5}e=PCW3Q3PY){$0}~Ky;^7NK3*_7SKrT>`3lWr@Rx4|?{sUNzBPYK8 zcFlS?St{YGH_h)T%^MYIhWVf=XLyt(&hRJzXIXKzvzjmp#i`C7uzj&y{UB(nJgX1L zhWomS+d(#()g%Z2(fI3n|LroXxtmrMSxw*VL~$A0WmYpDgb|*X-5Aqn*3VbtRak2#NH~ll(f*T zB%J=y0i!ZM;xt^2Rk%9g*dzWF+@fQ@Eq_TBMSRLkS< zZU`m22?-&gC6LfNq4!>d0D(v^_ujn$6fe@7h;$Tz06`#!4xvhs4xvgB1?fdVKzhdp zPf<~k-^`r7+1Z<$_ueP@{{FeyoHJ);&YUTy%$^l`QF};4ajf7DJvSB@_GLQs14Zpo zHgy22BZt1_LQtk1I!Lgz+K*wRlio?JfDCFp7La*^49TIsEMecT&S!AsQ0FE~hdP&4 zkS*w8qjCvXDSJiRMv+tst^(S`AjqGtPiAgmce3G6FZ$(C`X)<<`T;f}Ddmtx2vlUU zP&#sHsiw-gWD(y0@?$P|(>ufIeMj`FAt_8Z4fR1vW(;vklri*cvdkFz%^Ux}IsShM z>E-}G<(j6)F9w&l7g9NTa?`wk-1PnO_Qn=4GW^+~+32RnC(AY87|=b;zo{xrJ)(h( z!2&jrN0m4s{d9W{icYbOU<1;U=cmO}dJW~>$Y>Bd5G5+gV#hNGUspoyKyUhGsC zxvJWCtBV;NsJL;gIG>f0Ea+H~my)VIo9oCWCRMYSSGEYaCmZhT*v1-?u5IF7+fQ8s zKVs+_I{XN8fQ;bH$%NFf7gl+JIcMlo!(PJnjhJ2oE(g2pP4)sOd)t)g`kMCg|C!>y zYl6Gy6lv7w8M2;i%9{K=w`bGeGoRvdz~~WaBA;(Qs0I1^{P;xvKL7j-R{AIF*oUR} z`XAM`f2dZ*)_nF}!7T6)P5dZJUcVvUofa-4>)YF^jZEy)>-!+*Za80heYJtTx7wMt zKwocrQ*7;FH+K5s=F6SFt_|&Z#ln+?LIgZjRR?&taa-Ha>NEq&6eF6k};z6 zd^ynv2qQ);!lx$l#dnSE6(SnqKRhm!Wvryd1p(K&wHC{pfIw1MJ;sJQ{|B;;P?s{S z6d!i60ZP2qEd7FhuKQM%=WK&aMihbo;9FAaeBUS?8hp|inc@y$R!@N zv6r^p7r|}q71W0e0*%*pS4y8Q1AaE2{Hkq{s2pdH$-5b0NnXZM;WS8Ip8YW_rnMf6 z18dDGevAWa4OjqeJyTlrf7ur>|Ce`xhmhLdULn*6A>+J{(IE#89HgNor`09a-cjYH zXv%Pj0H|RtvAo{_)du>Cx%VSm+mEWv8CN8@#tV!SKUQHCoYHN92x$u;wg&?tx7UUD zs83ptyhN8%2G_<54AH?uS`WNLH%5wX9D_hYVqQmk)#O~ZTrz)aY8oXk*`-l3j{O)K zk{zc^vOCb;-bv-9E>Wa|Jxt6zQ=yD{+-GIDTI0B% z=Q{|(HZ)g0t`j8vU54~`F$8zI+RG^+^+mRh_FC#wR)LXA3$72+qb2Plkp8AF^+biH zL4`%5tzB}5{D8pU-Tc?TK6WpJGi5hitl7y9?~pB!^58^B9=w2hzTK^S18ITOlxfaRb3=l?e{s5nfEfP2S+ABpw;Xgb$tBjGf;GEj^9eZD!I+4|3V9vrz zA*OtT0>_zXVH@Jkmvt(nKJ91sx2f~Z3X#&+5tla!3y51IX?8C3yK>uF6~xs3us^qs z!QZS!npMmz7 z>epUGBTS-3XkbWat4~CZw9^ZTc#?Jvo0Cn0-q56D>tOpj^$&)X9N4dmqyzhvRZt*1 zG}0cUXp2Rqp|D5@S`65D{0~^nTtNQCGX8%cLPpsug_?{S`$0g1JQ$}z9*h@I3{!^N zohmOyzXl&^KUUzF79AIjb;xV>f!^WVICgd+^@8 zlTmMsL>!<&z2P*dH@tv)^W`Xer$AN;S{PqTi4tW_4{o7OVN76PprjL(K?}gq+fqPI zzR6-4mp~BY|;a)En=gQAbW$VGBT zibVMUTnlbQo?R^6`$^V{-23sx(!HkwljzCyt1m(oDPzGA3oH_2W^skuZ9ngny?+N>dscJ(DpcbhKp=nP zgE)42ihXSQh2|$8+rLxivL4g+VvLAfqmddl;ysUz7Cv~b_-nLYtKAr@qi!um84NXnd z;o_^=_8w|o21NL48u(kW3Wofz<8ZNSo*iDWV<1ETY7GJ@$@byuYF1CUQw-eOS%rxkYDw-luh^s1!wiIQLoMP~ zwl0y0Ha>L%#vb1TTD`=WWiTK)%b31|W*NZ%VazgqMnbE_x`lAmw*pJ~Bx42}{j^Dj zpxe1$Fb1IyapLqMdnPxA8{$pTr29EU)ZTX4)qgYGkk`^mBn9QHq6RE8RSmtbnga{S z-K`MuOYAq)5)6XES2TR~3NIaqW)<`{K<#DnprkIVAYWE<8S`b$m&vL4&r9iDpin=A z<|}@{PoazBr_jX<$hn?g4hq9d$<-BJCSy;bWikjKO0g%YBN$KAiy=lYhOmnBE9@cpef z_C)mN?Kx2KRkf1#v&d;C>vdAnr#S z+|%d5re?&xF^>cEGz1(y@y`or2)b{DofTe6ok;NN#OQ7I`RZQA5_Mvi(TQEG0wyXg zl{3rbbr9!R1$E*S@5D9P2?b0Vx89jG81oarPrcyysTaI}da-0DC=xHFUTimeL9bxt z2h+yGk{qC5IGf3~OeV;2A7{>Hn8Wo`>tS}pS&L; zd^?kjT;}_r>yAqiwoCR%aeu%46SWU(K_S_dB2QoKDRPnj{s~wxjq!#Wl_DoK(^-WX zxS`ez+zS{81#YONzzq~=dmsZIDR9T97=fDs$-rGBMQ#rOgb}!p;ZuByD1QW|*>U&} zkKDBx8xXmRh(^n5gott}J$k68SrvUNv6gq^6DGtcF`-r0#^DT|XFyS~q?h**n)LDk zK9OENkb3DeFRK=G<*5BfpW69J7PZs-<%*}k@KSBtY2q@z(Qq>e_cU^-gQ8>-d{siU#1 z!qicyHFdNr10fxSTGCOVKsuTMkEEl)D-0cFKvG9v7&;0NhK_!OPr)lh|1-BArPda!NWmE=dbP2PfcVTl8*k4u)Oh96T;9@hR!phC|J_bl?Y8bx(c62M^`~z zA$tj*I{G{5s7sVP|NqI2dOrOTBwAjuf31FQ_C~7bUbDc{nJjxylja}C>;=Gs<`5-Q zUIvMF-@vN=v`J7dI(=~9K9zjQzD2#qKuJMw847xxE9hU|P`?`rnrkJDfMF4&pfQSC z9=;W1>SsO%LHY?zNk4%A>8DTLfC*guob~7@10wyj?GUzW_Kv{-V5nzvq;ppExn{2t zaSBVhf~7M4Q9I{E{Sz$c6Dh43d!(GZyxX=kAq?eY*gWIuK4mCp0z#8=_QEGp&R#1s zR?b~3WMXUa8*n2VyPQwJ-Fx-L;~Ow-`oLsB>eG8>froxp^a-vD>LzjxQbWbMTM&q+ zo7iO__Cd})ZKZT_iML^WkiuG!4lP+Jo!o+z(#c)FV;`*U@rK%ILXje5K!+4z#!ACc zF(B!vhOU&WV1O_*;UPZF5R31FCQQR;t_i~#7v?IMz6bLItD;r#*q~vVSp|bUo$3>Y zj9%xktpZLwyTrJ`_YXqQiWh`Q`;8H+Q)dFQ`WUws%m^c|)C&P;fxs=okAy^|5#TeG?0rLI&KD zDI~5kOo0JOQy2pJgKsPVgkcI{tKlh8ynX?vPE)azo5C>0g=q?B_x4z-7Q%L>TaOdZ zj^)UVDbQvpjmlrY+ch;mLrX>x!wb+TDqsN_1r846U#FINY2T`d5;jL3aqg|aP!Vf$ z;5km?07q}J$L26Dmdvg=sw-iuMdM=5x=QoaV)nBx5o&XWo%X+j|L7hgE-Q`@5nLSb z{i&F!+!^PG;7h;D1Vqc)+N+M!Se=%!}#pxctoL>J}nLD%0uJvzGM3%I1a zxT5Mgs)&x+0n6EUyXF<|XE(7t&F;ZcGlz*~_LHvEN7rB73n6oarP0_n($Z`+18k9Kv-4>7+4f_ zjr2kwB=SODc#?BF8rh18#tqi+z@PCm06)F9z-iR)7ME6WYz6QeYuQl)*c+QZL>ML(F zFFBeVYtytLZAhX&br-aZ#@0NJj%s73m>8vO4MeoRqq3koRw{rp!@i2GtSq~oSSrNg zGt6kke3vJBpgX5%)od-um7-O1e4=R8d~F8NYEGErUGHdBPyAikkyFHlJKk3vh{EuM z6t}vY1s=+Y6SEk%k}5lLh@M3ps(8|}P?-2WAAHuKzez_%Fdu~7@2-{8u>JWRebh;; z1x7I2I5DAsqm42e1}80mE%F8uR-o~*jvz58)=@*9z#np z>Mve^G3pO2pcn<>rx-OW%CW*GMwdb#^HyM9v8IhAR|B%9(7=D(7MIyK)vb>mi2}YTz%08uWw8M4$optB60#oBr8d!Gj~U z0(d_dSQ%rWA;lOE0*WzfK9w=%Q`RqXqpLnO-KetdQ|VZsYZPX@P+^!+P5}DGj^gSm zZ%oHIrpqQK@^lOnh8(}2J~ceuGjB9Ma5R6KXvounj0Jf*E^P928pA{L@m!zE`S>4e zrI&-xv=#u*M_!I=o$2M6_IrE{nml>An(IJc$jjBjC-QQ&)@9)3npSoU@#*Czs`1#G zJGi!Hfrn_~hgo!Rw}!feHc_Mpu@nwETw48yD zU~OrhK4hJorw>>s-JI#cW_p88GeOCPWk8l(Si(BPg)t!M!dkAA+qVE=xUhZrl(0@T ztK}#k;lzKq4~u1Nm_CfYlz5m`kq?_*+mUG>Mnc|m&Z()NGqmKxF7pEPVHdH0d>DwC zd|2bUju4yJ+}Lmq>MyJb&6Aop@%Wop>!iQgw@yx!zK6d!-~OIA!F$`uQ-rOT@6P30 z4kDF!BwQ!7953!EY zgl4~4;31lon`LRqN8$9`*FCa{H(NT|sb@_R(%ya0be~x-?Y&7Whh2TZT9B3BSud^p z28;wwW=t!8Eg&HN-YeoD1tjX zlGH=2&(d(r0#7%xvJFea>ml4jJ!@h&Y{o3`kaM2_vD2mZFFIxuTe>>lRv(y9LK@Bn z!*Di8!)bduHc(vuv{SHvr{d}>Z}^v9@He|VoNCxcQ-uj@$i_6RXk%gfO*AHRBEF|% zir@JS9uqTRq>1g?V3-(I&_()9kj{BA!|tdOaRy5*CdS(vUrNa%=&P|U8GpEoAFJPmfvux^K6RXV8HoI%wqPuIO zzj)raPDK&^7MS5l22U4|)Q*Ll-7d0Hx`5>5M!Gsd47%=@Jv2>#M%MRnz?kxD(~4sI z+m3tcPpmCwiRUpnFm5D%Ds1mKE~tMqKyZG|gdX2JAn+-c8nQN$$=`B2cB_G(LAl3O zVlsI;v;m^>7zd>CHxE&s61zq+c{;#HBI;eoU9}v;h>V7sfQG0_eJ0K)_6igB1_c8} zQh!GQwKi*G@>~i_tvuHo;JB~Ga%d~h28B0Fo`G0e0(^Q_9vMA)rWXkCBZ2=|vpyxx z?_zyT-){RxalT)NngZLYOn*|_4|Wu{sUI*7Y4~fj&Q?vG%u4B|mk%JF9X^Sf4tnNL z*p5g}51oIQmm9sR0un-q%4vLXJ#X2D`2}wOS z+>sMLMZ|D=8M<++FKa2Uq1j`)jWl}#ze&;N3ZkQE^DRD6wD}gkq?^%EGI$2MhGxxs z5D@rjUE@)XBkFU;97Tv9%>obU#JO2qN;SIDBSPGq0Q*y$r#B82HAXu+tN+?$nhoY9 zg!v%sel3DOa12w!7_4;Vo1`lb+9dBR@Y(h=c^<25GJH7$B42KMEC!8rbj%L`9#@V} z_^-UO;LM80#l-8ej*y7gC=~A3pPEv_)B*YeR-V+J;~aBsYD>l~&7B$)(K5Y2@`x@- zZO+ird#QF-KyL$d#{#nU*PqE~5ID)PS{=gRAcd_Rd_?23su(AWCaFrJW|F+#fq)@}#FE;y-posOjj?d+{qjc9e%)^K&0NDywI` z>73+ru9|dyo9d_1QCc1^pai^rn`DgazDdT&E}P`b8#ylFZAElqG}1&0L~!ZvTZhpz*b3Ap6jUY*8~K8C`l_0U-<1B3;>P)?AkJb zwWEn{_-4tGKh)!TPI6?t#L<&M6I4f zE#bwX*(WRH74zpihS{!&zy*$C>Q%E^-fd=I0OW47Qi^z2#g7Xdy)4j3j!DYMNWQe0 z0&Mb=76B0^FGeNf1;4%s?_$Asx)ryfDBVm&p*LT+>oJ!^%m;cRg&Q0X1*sxiK({GK zMd1?#si-X(EQykqIDEXp*={KuWz@#je5bFvS>Pd>l{YwNZ-6@&U*G7ViM7)k7ZT5w zIU1-fO%iey@ZZ@~yR^a3C z`?;dk?YtG*=H@M?&ruF+p^v|b32PkHlnqWbyta^(xppuOv!eTuTx z&>IFL^(MzwsW;I`fR?8&e2U&GW^Z;>iztl$aJ|XJ7$Lps&k9Iy+*m+*1I&Br&Bwq8 z>CH6W3iJlPG6@|qK1n}!tDG&kw&GRZRc#ZoE;4z9QcfMq+M)8;M$2||vg+PS3Iv~V zCtP&q(3>?dm5BAiGoC1FP@?u>*no8C3_g(#oq;NtEqhFZ$CvCA=1eZ&aU zJo%nk;Gvn7GgbQjUD7W-0+J8Hxhfo~<`uuELMZ#qBqP)np-s5Q@9F)GmQm%ZrS>Mb_^rQWbdN#ESV~{4%nLH`wat%~FGOV!BS6}f zMaNk;VVFW+WCZ`E#pS>Lm6%@~9`-}Hcc{D!_nmWmVu1$jYby?3 z2+s6{_QvGzQGHZHvbP*NfM2q=ocKicmUBl2_7?Q5 zBVB4~J#q3|#~w8rTl0BIq*>r0nw9)gxKMnx8e`&=2Ihl^yV4G6U{kI;HmWUH3$lnN zJLH=k9a#nVWcj+bt%;a@%TZ5FV3m|J53ML?zQGRM#2>7VW&nhCq=9xSt1!`ylxPL3 zB(%_qp$!vT-W#4nY`X2}p>AQIL|~&q;B!_%1kSlym6zyGu_{6jZ7k^9ebX_!D0C0D zL>@3uLVw3V{|l=y`M)Cx*mjy@Oa!2nhX9@QWiTA%UaIUc+zSJe?j`>YInM(K!@X2O zLREH%phu315tXo*yOV;9N7J2r{K#>^rdDSx0{@v#oCS63EPlGxGrL-aVI-4}zIXtdIdhKK;KX|8{P*&P0Y*)HfQJg!a$@gHb$mF~3 zlqUbiPHFPZc1n}y{Fx@tWaP0vGz>EN^@y5Gegi&{$#2-{+vJmu_E}C?t7w|#YeF4OUVfIUZ=NR<~ zYeDM%V5eNz-T~?3X|`z@wp}0+7LjeQgzE+DUF2rvX@;S^g39j+KfU z&p0H*$mGivbV}+Ol^`{ap(X2hix;4E^uhwN4j2;CIwtIr)-j30qjiki#jIn-E@>UD zcS-9Qy-QlhNY;w1W7sZf9ldr*>(F;e>)`yE*1-hj(Nt6zvW~A1HCe|od?M>Ow#&D5 zh+c}*hk2CrbIwt3GZx7_zB3CvM6+TZ^o0#Q5I!F4F^^8_&n5|J89r#be*#gZS%!Zq z^pUB%VoQ~l@d_kwwTwt_&;qG4l$K)^WE!_;R4os9$TDiPO0o=SMV0{s=;Ycbi{fxD z=M=x^y9~o%Fw!ut?2?875QbsAjdY%iR{_o{5kFxmH;k)HE@_4V_XUUfr;bydbCk$= z*^TSl$ILA)?+@tD_|A&GScWM`bu+YNFB5qI+RHdBAbWv7RAVsAlb`G^4ghimf-Q#@(sbs?hR#BAA9YZh|OwP_tq zen*Mt%X$?T_4D_vtM)XD1?3xbgiMG?XSB-T;ndh?4w<@^P1nMAl}1o1r}A; zvj(`rvaP`Zsw*!v-LYFPu;O;hHSohKRR7Y2{hk4@cTQ)ER{!md_$P+=ZxiwDlFq6MAf}v0 zj+k;DmohA9;&`WSHD?oL8gvqm$fiIyN_3G&WFjs`IuLXz+Rs0=ZyDzw zHrpHGP9TNT3m8%A(mdX! zm8?sbV&hBYHM?ZoXa5Nx3T_?mP~jm>Hq@s@t>bH`dsr#<$q(Txw27~0f%oFyKt0ps z|NNvbHN?S`YGIKk1BOf+m=s3gQCU6lti8=&sk=v{IN{?TfWy!PIs@aTX8L;OS4J_# zAYcCv;wNAK8lTA5zuuF9ukTaC`H{~XDQ0DHzwOn|$N5E4P3KOvz+O|%6f?ri0uS?v z|5xPvg`>99rIt2H$k~+-n(k72W%SVNK;US=TF|enJOkUbe8maGeih<1iva(xRKMxSEU{_a*kD3nDph# z_e;$J5BV&9RSFLFfBrFCY-#1pE=D(Tc2l>SB;-K*py}QMLx_i_Uol`B<0HlxA2h}| zgT^$*+dX5A1r;@UVPRfZ4wj|+`JL?lMz8)}jJ%shj1m5fjM^{P0=2hB}dV*$-gKs#t|5*z2V ztGyT;-Mi)7C$BzpvI@LP58kU@-rZS7eUFt>I2yK(Mc9eJBwlL$%U-%kFR#g{5i$U+ zygQ%cr#VRbp3aKO!hK?VPoT2co63AnWsRg_`$a6VJ1a0zr4f-yM4SdC5%B^_BI>!1 zRvfn0Vs;mpmbBa_bBHc+@;Dv2fCU!mQKtMe5Ef?2|C_4&Ijb}+LuyAyutMg~I0fPg>X(rA!PgMh0Azf)k zSHRX`rF2>1oBQQui5*!54RQPZY=|BEEkj(`9Ae|6CJZl_27M@j70Ity;b4PCjqB+w ztG?$=ZWt#wQIa#pI^sW36L7i4dn%^|)0`4wro&lVozIBiG{*u)GHK!jFy5FHq~?CP zBrUn0rYW|TI5zM}1(z*AtRhYZ;1Oar&G*vl?Tu=-;g-;ZNPVG-WRY`Fs@8^X-T5a|wQiySKqB zxU2L+XvOEGcrrFq6T7pA7{`wmJAC$fcY{q zcoRG5n0cAICKK>4iUAX28!*{K+{Regg65qfg+6KFF!gg(v#TVPG;m z(WkOX&xa@aAWE)9@I<$-kDHFSo6;4jHSl&Rx^wLXKGDrqJMdB;xMs`wfpVQI#@ZV=#w?5{+`;xx2QtGyLAf zM>@y9fd`IsjF}(L3h2aPA8wA)4(k=%4WccjUvMQ&>+#$agYaho{!lm$0XKR$B&MvW z@wPKn{R4;Fh?e9@UVzc`>k#ILU|U0DiYV$nF`=)sd;>HeBL9TVn=q<5Wd)FKD0ByABQ{sY)|Sk|yjl+t-q>PWX!x8;#--wh{`KM!o`{H-ExWc zlbxz)Fwl9-Cy7a!Ct(}rj1@};ITve_81Jy=?$S1LB9`!p8SkE`d>PIf&h^Y$TA6b| zgp5lltYNGN!pxNSDdzm^z3w@QG>Pf!3#f z%H9Lw`S%^(^4og=ULpOgx=TF!y@x8szvuiBUbr7H%2`Fb%X=I0y`EsZDHSbgQ4FOM;FW`wvTpJ)vj?`6KZv9o9DIn*jz#4O_XmA2vE%~w7rocn zT5ISF;@Do0l7)qoDbCKB6vmuqFLK&~Mf_}M<>VHjA=uBuonb%d`~h+PXT7CZzN&J7 zm^s1uYqmkai&*sAqe7za5oe&-G|?HT4dMLJSPei_b>Z6)jYE_VJ{PXR9jf@fg0Y_U zQJZ|?RsPPo#PUy^`GtNIP)z-@M~E1=GJj^?6_5kzUn7_8bFpu-vzX@Qtk6)-#1d|1 zZ=2oh4XojC?)%WWMq9y~;&9UFthbcHXu^$o;ZvOBtl(J{{W1$r7SSK96B8iDPIX?h zT^E~@Kxp-^IwQ0joGlXhRVMOBQsl}jP}gEzK`%dX<`I>qIfKN(>CQq~&=KX*=c3{5 z9ue9lPM_rb5=*$8FPMEgYsk6c4d*kQ%B@!lYwa9rwyT{vQRl$)V<+e%2BEx}8oxdspheV%c&YGHb zh}jj1EaxGn*5QXTaKoyow9HvRB(F)xlNC2ijAlC|PA>%al#TO3qAQIhTy(ZW(rEuN zM5h{{czr%mP@H6GEuSKN430)3)csL1q$ zNPyNk#Ews$PHhfDEE+%WQbs)MShQ{!D>cZuKRG0Kj(4ncZq?Q?01@3Pp@XveklZ>> zIV8^Sfz;4J^+wdu4yOYo3nR=~K+Idv`QFw;%s(H0=$cQ|Wk5xjyh2OP#vebm>=@*2VnH5SZ&Z*h*%nsPA0 z+)!eU=M{vx;bAd2r>m~!tVt%T# zYUC$a%I#|mADOLddsdQ@*5jN-Gkl!06yv1z_+dF|P1k^?MR$F{RNKnp#>)a}mOo!V-_SVC)EupQcN zjd`=_P``>tVBM}N(OL{|LC&-M5#~JW91)EVbgg1LB2qqgR#QqJp)EtLxTRI7qpcEs zMD9-oLjycU3p_$86ILE)r`p?w^YLN4(Z1AB#7p~9!|;jrrG_1$eW^evIz;-`BzP<_ zVOE*9#KyzUWFP)(>JjG=Z3btN{MS@gVh~PTk|qDu6({l|wZ#mv^k2*4a@Ps>LC?Ji z#Ds}O?|liLcN=d<4r~+1d47l1%K9VHhmfV8NC)=S5$T@3v{iK|mXNK&r{T^! z*ZIx12HRY;DX`=VGEzT~lsG?iU=`bRtfV)tv?-RBV5zpr!gd!{ z^h2Q$7^-a${wp_$yl%86B+B3FETXNQJ0-FeHd%p73XyA z8RwFW^#@jB5Kdf>C1ZV4E(Cx3*4ayY&9F0z^+DAA&lhxtspUNiYy=d2d_4>HUZ{|WB_DL$<+->`6r zYs{oERWqr+QeXw=TIe?81W1p2@)C+U-LQo87=&lWoRLSRHj9dnoB;~B6$&@QkFszx z>8R9X=sRh$G8jIA3n_Y9e@-L>1CINsJTdDgQho$OpjWCoAC*DJ!X)W27Z+oW^msqw zCOtlYPo&2Oj%KLG)$jY%s&vK}9J2%B&Z7-FWvKIpmcgQzg* zoPFdRr2WO)kskkU=mI`$1M^h@B@qVBoBltCw&*HF-b8k!SV;x!Z+poT(& z2X&|Kot?Fo9E><lJGw3%N-y`URH;M zAFKV9^kbz(N}%3EDe;wbVHWntg>kJ*W9z7hKi9K;7-A(4mWWT}!4kj9(1Trl<(%jv z5(m~CmP4%j$2nG8&AB8umcmL5;)!!IAC3?E>j`4Pd-cQS_0a2RI~a22%6!mtZ~qFT zafEoiyMiXJFL#8fvoCgv7Ib^h-kf?FrS>uL zAg5kItIJ_vuco(B^B7b7=Eo>0!}goV9-vna4M1oTj=x;G0V&M<^+BqAPiHQ%C_pcv z*pG=L0eTtDnT}KsPU@XBQnysSf=^QTVLdCUkm|0o){?C=x`m6`nm*K83@ehhN|9r7 zQ5$qjE^5_dn3hvdnO9sq3x+(|I7h8QD(8~qz5q*@+>a`$&~8k}651XPOTyd9d-R3u zk@DMDGEI8xG3hiu@A>FNg$gnf-=!2+x@^PQuaUsV*-Z2@55BC}7Km)wA zCIe(Ndzu2RrGMm5$M{%<1_b+1F^v487mjjf6-3! z5^{=}Ty0xqmczJa?*zwAPVz1Jzo!IUqU7Uye&B`3tWhCmH;= ze=hM}F}<)~z}Jw1*(54j)4pasC9}x+H8YFwuccWW6Pt?bB}1SwH$7Uq+#k@><^C~! zOO{bK0Da!Cvv!*Pmsga_)aeRktn~??(yPkHN8zZRT(bAgL3ErnPfQhfG5cip2X~` zRUTDzBJQ5>Gt@{ebYscXp=mjVSm&k_uJO<&zI>;03jD>CLeZ#}o|)+v99zW-%o&R1 z2WOPYH5yMI=nP{rZcEY*=Of&wp*^3|xN4*Y=wh6_(PXnfTK2Pqg`>q;#D1e zvfru`{vxV;gNo`Jlc0$2s23Ht>gpBM&v@x4t~hvo?CpAb$Mn$pn^mi*2fd*E0I9HD zELYS5@9Lw+g{B}VcZ4fIqv6unjifkKIE&~aD++4SZ z&oDb`3h#upE5K|oLBi$WC(W*~gxM9=xrtq1{$K8w&@etC`fU+Yy-H2d zpp_o0bT}!_Z|xi*f)56ju(d}ntB9!R!bOy9Cq|>zmqKcaR4g@fd3P%-*8tC6x*j1>@9w4t#=BvkPxorL!wgOYoi}fw3&>yAeY=| zk>0~^{z-5mGe?xw7V>)Z$hKtcYF!b0H6%n?1u{6&p{PhI8J$PmXs`FqgvzAc)$55( z@p_PLrZ^C6L+RMs&)7QQVQY5&P?6F>ZHl7tT(4KijY3WG4tXzwx#tv41nx z{&mWb7_eqLiAh}f#j-HC4L<4Hml5J)p@)RJeK6a-i??8i*-cYiowe{&OsfoLdv(=k z26ASNS7!=$(|c&8c>{>o^+eK$&vS}#sd__Y=1Ft{VWLQPeY{fZ6fA=Df_{KVgp}%A z!rFbz{)kM+>j2(;%5@#kLqD#y=QJrx)@*6GFz=RmQxEmj*V_Uetf|or;n0U@Z?ST; zCZikOoO%bFLmVEWhl>vnDY?bijUVO~ryP1t@x-YQRz}E9DUMU(JzalaG z{=MNK%;?J4-uiN7zvLat1`pK>SvkSsC~OMVaPM5GFo>^eg{I!_qvy`1eaq?MfP|WD zbIZMqZ%$FNa_S(re$=Kt^lre6%J9|Sh-L5U?1x5MXxCqlWcb6Z z_~-W5-?eFer1i?| zETkMfj!;krl_~g0$x>-(Ke}V%uo8@h5g6Q%1T{vF5bk06Ql-~v5ine@ruAWP(uwyQ zu9vnA5Oas?<+MS(mbP-=1y=CV2=d|Y12N2i*eN!T&?~Z0DlD1lb6Pwb0h^c>BIJGW z0|r_W$BuRqh=7pxk6%+vECILbyeuK!sh1jLMc~zOgO=;Rcf9Z@eTHp|*fmdz+Z@K1d=x{JGJ3jCRro{5zwe%NfAm@B!cb191Hoc&{E7k<#4s z-+FixE*pv&tG5h%&8QfPw|cC;L(6`K*@@{e){WEWDX#%Ldhbr-^{Yzw8L4X zPRvt(Ho8%gpTGVaKM^9&M17%B%{`AG3xNj3%If5N%}agE-Pl%aCVYDK&f^{ zGS&Vgn1eef>x-1u24_%{|3kf=#*vaqFxL_-`GosqXX$XOb5*~9aGz!YaZ7ZpADo@@qKUE%Xk)%~(q_Gjh)vRe)t>RT=KS?f=qAly|K{~H8~ek%L)p)oQ!+o8 zy@;skN>j1C>fp@0*6a~}VddEw5k1{i(#j$AF8^7t-u;-?J4$}td`7;T@zeG80iw}7 z{h?C#tT@#P9DRLk=~+O~@YEKS*I9<=jk7d7*>+-2Ts^|WMZpK~)d!eaX6E$(vpdz# ziYD{*iduEf0(GaGcXz4~Pn6GF3An)lYr8;C)%x?M=KOWIr5N3He{pA_Ud0M;j_uU5 z#@J5h4QXtrcuQlRkFjkQn&hos{m;s=vT#V9O9$$@QLdUgRPZqHJX!w(d?kBeRu{FVlx>96)9(PhPIS2>hP))jzpnbR+E-R)Q|Kv`G3Q zdpYI%vzRu}Se#oF91!=2!FW7N7QXLJ+7Pr-?<0O(rw1soh{dzhd_JhSbDV=gYSW>R z$h!(A)8Xfs-oi+g5tKmayP?eGc(F>qq?PCGaAV(ATG+OMzDKRn3Ms|UVLnH=n7Kyp ztu;#r+9(}pm}o!F)mbze=lV+PnGU|I6~6H=_Hgm@cvoJLw4!6M_-VYWnl>z5Bgih} z{7`;iM%^0hnjGxT4=56|59#w(?}5GM!e_Py7tNMe<1OUD>|M~vC|7K!zO~$y1L6Hq zY$i`2Qt%1?HLl&IXX91VZW@5n#u3Qh>Ot=_RS{d zWsqvgDWHUvX6McIhV4xee@HJz5)R~=<1c20#TGXALBiaoNV3UEV9xV!W72z{7fIv5 zOL7L7MK#VBO?Y1$##y4HjKNr9Sc-7n>H2o+<^B3Gn>LF>(z)35^YUD5I)F#>lEJW&DiVe;g$~n%e@4QCNXDIap#s+Ak^$`ul%F2aYid`#TNXB38uv}`mavbyEiiBD z#xG!UsXgFrNvHH`wh$3Bt#$y@YvV&~91GfaW94H|J6P^2AD+kCxhjeyU+L$y>=&3) z(?BQ}$qT-`R*8;<^D>1Cl_LNoF`FZh zlLTX`rNn9VIF;Gid$m;nI3&7PgvNp8hSI4MdPyygHy|s81~k5w26PH)DWOx)gD3Td zJ}{R%1(Wu^-k7a`)c*1*SmRjGn*QVc|Dk=+QcSWBx&$*L+eN14h*`4$Qu}8cUG=QRB>VXn(#&S7=+;=7 z2S&QqpcAa{q-StM_EmGY~75o~x;@e*2H&H`9(Q}Ik|ui7r+$y8(U z>{yP>oFZC7xfc(#>b0;XeR1N7EUmBy$_4MjYkC7k(J#scuMXX$iwFh{FB2d(-Ox`e zA6*oOce+YzAM=jW#@OVGrlYWZA`XAASGCRpmfq4c^Cmt>W2E1B;N)<(;ZYhqm~$=+ zVWF$Ags*qUT$JxnzJF1!pBCSN4e#B&9Sjs)y6OLBCI@GvveP7is~Gs2*}0$fR^nN1 zxDcRX@8MzM^$u475p`c*X1gU0-G_X&JDfhr>jszC_rB#-S)BRvr7EHx>IE}5e;Vm` z6(m>q?cqf=c<_?kD{skNHoA4ukleE$Ty8Do8`dtXlCuSg_`hK@0w{371_M$v+fGhNfXjehbq=5T5x znpsRVOQdMRd`+3Ei>)v8(&Bb=SCFVQ?p_YDbQuU=dzsl)$4F)RH)6>NSBy5D^F)H% z>@B#DWw$;w1h@XAYn%23Z65H-Uh-11JF+J?4Oun1;F_#OAdqLtnPpiO z5O-{@CJIpCvWj}8pUl=22#E=w7cHhW=Ojr|jjt7NnS6s!k z`kXdN$%Q4{6zj-7)C3mL6a#FoceUZX8P4SMboF+1L(-aI*OieMjn5k6JM$3!@SSWco34+wOAN7mh5q~{`IgT;UPJGHo)?31!bIyiub?+^pb5Q+ z1E*%FGjz+h502fZE{Vf~T^|a2fUC64*xBK5a%X49CEVF*9Y#Aka&PA{^qIbG7bRxp zg`nF+bv27Tg?w-=N#%^e4o;*vq`D?)rLncgoKR6Bc6qlfVS->PLS+$rK7U9!$7cu~ zy8zj3a6iGtLdC-yVlzr{YlKgf;@0RgrMQK|rh@UZGARtLq<4YF`?(TCaFDA(u6YfO z+w?`_Y_JnSbAb2XiOu)_LBZM~b}c!?l}$W*=&C6G?BWU)XY#sKF(0D=4Y;-@1ik`;Dcx^C4PHz|c^}h^@kJRX}N498>VQhkt`|NXQ*iQ$i7&>b*uwtjC8DhL0HMt zBx)zGBSm}DyZJT~gee+FYDgOUVk+7xY(|Q98lOnfPX7l*d-Jl~Fz=twHAdqOOKzA~ z&hL6hduX!4NBu4HHXZQAD?hW0P^UXgoGdwC7K zC{kABZtE(poWCOMCEzB%i@X}QFKlPU;ZiP{EoZwS&X;jj*FHiZ&vyCEUak^(7h?$t z$asqg$k2VRnuQ+im*~A+<&+m!MD%MoTl_s8yofoTRv_jtkgC4D=ZJB)Enk!|cgd`Nm3BeUm`A3!v_0cuCaboEi zZJbz2Xyc<&mw-H05zxj7z2(`IvqT#w>DwCZ45Tfh=8=Ky_ zV(Pcq65h6HeK}GZ_}<^jf$z<0%z+sFtsICkyqW|w$`DXYfjoKsmw_<$Sb>fl`Sb*7 zNS1kqBqbfiC45LW{4Yb2MpN#TagxSP*NqM62+?9o=6g&=8+rNq=2OR=djuQ^AgF&02-U$=&< zzqMz!iCv<_p%nk3TF6yq1h8&tDz;3t1z4d8$ve3dT3U-uCW>(+889&>IKgdgPy2nY zZ{>a;sx0jH+29+wsK)eZ;pJeqc-h4gS%#k$w)#GLpMm>b=!^7uJP;=!cNBuW8 z!DIJuMw8BwQwJ1DsAALVac;?IPDdrw(VFq%G^0`KT@wvkxm?y(^z!?S?6H{+`857X zv93U^HYZDQzZWl|BS0NX$Ob@W^k!T`murpo9tWftFzlL)0mFEW8T_YTlfi!muO^Q- z^%@J3;+l-c)ey`Q{(E8x$=LXi3lNe)z(UcCI-9S_sIxU4#m_j!eZDAC{P#(b;y?7& zjQmclg6 zT=q0U9?07^#V7K%O|NI@ZJ!k!5hlIukMFw5$X&ceU0nHn_+3~5_t$#zE|TBHq?@>| ztk_^HD<8>$qm6cwm-oB5KG23T?9%5Bye@rizw6BHP3K_b_NH7n+};9Sg>KI_MI3fR zpu?OWTR-_sdoVtF;&xw0_cxz7(&na1wBb#pC+u+DdpqVJGC-aXt_^Uwx>c0`6WjLX{R_|a%T5=2|2SnSVGPWBw#wTmmH9s*^BGa znZ4jOrZdyNlg=#YJHY3$4{~M!-!W&F|2yf-jv*F{GrNH$d@Tcnq%*TnG@V(@chZ?v zNk_3Fr&!MyMRI07DUvgTzM9Ug<9CKL>zt0zo1Bm?2?g@58P3cHCF#s8T_a~^DKVXy zrPy?4V>wGSE3^Qb-po==?a7-Z{SWQQomtwGJNq{n44fLOhmn(yG$b(hBA%cgxI!FG1OmP=>g>z|c^wH5nZO$fb^j-FD zUc&@o8+{z9Az1ehpaE$+%I&cksYpCNk&49M$aqKj@^_fk|3)}ZUi2W&an3-zsY9`F zM;c;h8e*qJ9B3|FAh%X7TyBkUjq{OdyLzPS&%pN(fiXxj({?;7VVSn?-N3OkGHr)3 z7=y#Ce35MH7p@MX_WQ8*n8y&ybXy;!+;eXj>9!3=yJEGKmNuRp?{MD@Wx8$I4_uG5 zJ-i)-UikL(7*`u*D{NiimA}7_ft~f-`}zdqQ;c>#9sFr4yqRwMBpv93G*Dlewziw* zD9}6tUW@UtLTjIlIzvgetASd&*w0%?%NckBEhn~wC&?C@NxP|tj7 zc_R>l+tFYw@R&4B1t_hyDrcW!9j4VP^>2#CpTR4H4S6+2SF!99S9bBBOXnK$C5u)! zWqc(*D82#%m|9yWG4pF=QmXg1xPp|bH_go29>@#tQVeH~-jkv1{RCc2p@-f+bz6!d zfk{cYDV!g>Dr=SoBm;W2cLqf09aGai(eS?5S6#yDBT%2HuslRjzHVNSNtrp{?b$B)Q;ETs5=C0|=MHa#GYcTHWOl|({o(_D`6sR+KJZf~ z{BJS+H}IdG<0==(I}PCvzuQOo$N6{z=mmfIcrBQR@$zv6F=%6KAu(v4tF%(;mV6Bv zP|DYkIc|Dij18CZ5kHF()10|ECrlgvO|XRK%yUy?gsZGg(>V-HmwVol)8(GLhLpK| zVo)h%*ex-8Zl|K!2wqLPJmePBIZBA3lZnxw{W#?Nm zpEs^_od6NC)Fre_94E>5ydmH7yoThP)GS9y<;gAaTK8-R@}K68VGAgKxcthYV@&&6T@N zI-oKg5T9uYMSXHe8epMG8el1*5j?jNPLwRg<_NapOpyjy0Mka$Qc5Fu#yWyVTJHdk zk4DdZTUv*k*U;!uO7_ItMoRW%UQgl~?=7C0Qal`tXTl5J*Dw;_PMSopMmi1!wdDBIb9Oo1}?lkK84pa6B%+OskI;}O6!FOFG-#B zmeeYv4=GYo{_apnJ`~O{R}<|PZ=GdfePv1i3y48yT&w(2L0~hYV~cBhI141Oom^mF_z>8F%dVPY%Q2bso9RzMkt^AH zR~&o^smEJ67bL$+-tyaI$ZrG6Z@cz{x5%>S9vY(CU=>~R-s*5O%r~x+*@EwZdzihU zQgIa?(iZ3>ub_L(7$febH%5?GX6`;C0R`NXS-%0CED5M0mT+s#aSu(Ui48aa-|z1p z32B?++E77n&p`&}Kp>5g)&=#+g^}()t{yll{-v4`7ewa>#c{Xf0tlV}Q z4`T-#w)tqgi86riBSqS<{ox)=nP<2Pic5Fl^nE^-bDf#QS)*-R$^rhB7t@aIMDLc* zO%S$Y%kdd<$Bvjgw(5N-rX5=ipJ>NcyYIbYOFBa<>4_jiRHgA(bNGu*4_rzAAM~lC zxc$(zODl;CdA8n6RVvDgjV@(Tm55%j=+`ecOx#L%?`^F^ z{@VAY{#1u+_ECR)@aV2~KTUrscyx!uq3#rgS1-I&XD|{Y)fojmkm_{*0aT|NmUGo9 z!nrbc{3*3}0RtO>&Oha)wFjU6%dXFfI~{aJudq(2M(gZ>o0FZHM7&yZ8g zU6D-f{q<+p0BxJe3Qz6b#EK1G5|gsDTiQ|7{}X0-W1qvp_SX!%bR=Ki7b%}P+Q5*= zbRJCay^{{=1`PR`gzDPQyoTHj)KGfwD_%qH25QLN9QL5bOrh`x&?%3)(~)_e2c&cj zwBo#q6fVz$Gz_#`?n5^2Lx#dl{oPg4qi`HfI;(Z*G%gmYk;c6V43NeR{KHj0@(}ie zYupCjG1?oa31@c;x45|3{4!IYiG|QYBNU=_;V5ahZy+zB6Y_VlgnSfq9NzfvE7lit zeXC95fV8Rc(F3`u@e!{vPso=%kSFBJcs1>5EE0`F64;iHZJnt6kE^;0VlocNSBt^_ zxJu^jiv=VpBi|QD$un{bP1;Dod|%sP5%t|-9vv5(<3Y2%>0@lfU}wBpq` z_Db`IY*N|bq1@_Yq7h!BVC1#}9Xasn2~xUmKd7hi=%0?_JDlQ3Nzun(gqnkqMpN#d zagxUF*$hsFHb9XPpjIe+)(tj<`gqG5OEyX5V zKXW7*utn*=miDwKTj8PHRYw)Z^xrY4(Y1uWBzu7JF4!=p|Gs0C#g$Z5Zorhl!QC-) zg=Va-_y~$AR#(C&iq(}Kc_(l{P?m@2O5TJ;K0@?;EN+PiJeF$C&6=@dgN4L}Sq#xh z;R(w%CqpcwbB{+d?X1fqnd&=|Ls0x3YC@Q)zOy(Oh0^JdWB^~nYX||<(0XA5ub}`A zH59;sxS8sEl!H+KKlI25;1_rmQWbAiNPz34@s=yVK_T3S?A)Cn$vNYjf4?j#erj&M z490KNUpy(CP&=|SR`Oupn6rq%+{pXQ`IwEgnfDva zi_@${$@y63{aRX4-tV~rxih&D-BExFgo%Si6S8amoGeWQD)ADU2$aVXnh1dS%v8B% z9FT%RqsKBBG~zYpM4-!KIT7f_tI79uddz}Bug5YNfRL@TfYMk%A~w=~fsPCY7J_E< z8U5IJ*(4poQ3gSJ*~AAu3O+vR(G&nWnl=TnEfdd6CzR7t(h*t0d$mDQ31q!8qJO9l zI`Tlp(k=4omJ)KFl=5pSHl63!oF#Ie7C>rGIlq=-YEM~m*Z+t1lqF|rPtLdgV|n;e z9wdc_FJ&IfG&zgDk(cFm!t~7avO!Ovn7nLmd?GKK`$>jgwsWO~S?Rp&XIg1&o8G|| zXT=8f#JO2?u(WeX$-NC3cIjp7K9OFw<`d@Vx^OUZbRC`;j;;@{LPuxoAVQkLq?wX? zYszOz?)A|Vca0~~-EEFd$WI%ZJ~DiHJL&m~Jn{B?(~%4Ed~<*?TERGKBs7n#f#uxk zMRRs(1w)Cxi+C~ZWi}|HW!ig@d@0d)KF3SmYYQ(S@AVm$koN*u(qZd}Z+; zFM54!jGU75sdSc{9yu?c^vHQZKhvC-U({1$zFhPv@Wz|nuR=&^Gd=ea$ZSKGjd+Z%@bz%-2cm}OFDPil~Y{n@2V=^ zZILigThAq9&NkPuVxu=%c7{ZG`astN?J&bGHvtcT@=>1eSzbkx$OE8!nCH9asoVhc z!J2#b(=_i^*0UeO;iNZP{?yx>y+CT@&0YZm}j3U>HYg2-&?`xY{Pfg-2imQkF=3B4vsEKI6UP6;EZhFVCs;pqvZI zyp%?a*}i4d5SL3sTuvg^c(yM}48OgUC_>vMG?8~!7=85M9e48ovG(2ZQ5Mg`KF=kA zWD`guKnf(ZP(nx`gccy7qYx4hkRp()Awi`GN)ZBzf}((wRg{hjDhhs;6BQx$4%izS z?9w|52=DCd-tFAwPChUG{t3s-?9A-UY?Bw7fSCXR6yxz;+pK6&yZz;yx{(lnJ%i=Y*oy293?ZlrK#XTf=0ZNhh;2$rj zI3RxEB?42#hlKcL;t=s=0e+eDxj1KzC){rn=W6l9Zl*Z;)m;3k5L+0yosyX>mKJe! ze2e&n%a+|mhJuMtL(z@lL|~l=;wRnRZ?rZtB5lH#o*2jX&&C}V)0b=u=*-u*tJ%od zz+WA1O=(E)lz=ig-0JHv;b6_)s0==HnDwE^+0}T?R6Id%%Cin#%=YknoF5%-ZH+gy z&Yitmz7#b6CTnN5#>@5*o^9HC@vM^NY@h~;UqY)zCD%T=%ia)^z{icSepL8a0LIg= zopHe<)_lJ2UPl<;Gt&AVdrfnfbxAdih~!rVl=einatAbw%Ey~^j>t;xL7YMo`)Kf=4)tQ9QjDs0t5I(4tc zc7vI9gg13q?`LhV!cpBBoB3}X-IJWwzYW&^Dy-D;*4~m;LcltMZ+sqcAa++KqjtwA z**4z#3A0hzGayQyDYKTcatbwVUF9=JwsPx0!^ZRPfDjv(7hj)Om0NE&XC9Gv9NUiI zD=j`8{UU&=`$e_W+{P`|J3`npA`fGA)DPA{=ISH-*&nPO*;<0tarzj@gQr-k$LSWZ z6Fkdeo;)lci8}hDwF`;YD5=CU_dQdrp{9@MY+-;MQ>|OrZXyzT5oLhqr&*U6%Y*@b zG55-9!+#6zv`+G2<5z1Xu$uk5PPhKaey4(FSQoM56yTK{HPc#X{7y_?F~iFE%9+-3 z^NO3Ax}#_G1odL#4J22 zPfHdah0JJc`x5twd#$mCdHYem^k!=}HjPvlqq4|eFH6+8OZAYfIErUwEGI$r{Km<3 z`Oz`Z(eK)7y_SbEz$SCxg`z(9Tbr?4i4wxuu@4IX9URKh3HYQ$DQF>X$%~wEYdG() z%$mn5CfP!G<9XH=Jav?{7GD$qvABh!7JHJ2!9i8L>cY2exTd)f>c7!Ptztg5hjCP% ztt{GKoXp3~v)1Kf9)jNSV}8?OYd^M^XyEMw;2F5U_WnlN+c?RWEU`|wh9hr6N6Wk5 z_$9}SQW*U34oYa{!~Rx&OIN2-TG_qjVQYlJu8^YtH3cK$C>T00fwdmgl^(R>t7+u1OV37}_)7uJmHB>*&L zQ;y+LNF$LKY__&>?|#%;WU!k^vHufGnnR@+Gw~RwW`t&5%YEf>@SZV;N35~-U~`FR zZN|HTnehQ_#yRmL>+vIR+1v4bXa1v!wv~*mAW1P+Lw@ww!{t zOQ&A+TDPQoU)&==CW^zKyAt|gPHOd zX-a6w!=JQ{yhhVSeF{Q7rmM^Me{{ZX{pItQ&t2}_xD*6FW;`bV)Qo$T89#DENTwMq z;3(A?o(WNSWe1Mq z$Ik9gcUtc=*cno;c%St~^TctvnQ`Q}+|0 z0dD@bd);~`%cE36SjQ8%t<0{c2vHmma4f72ckhN)audN8?6;K*EG{H^bo_9S^;R~C zP@#^uDCTo0LNEseGVlF{wJm#)V39dseVB*5XPdyDBviZ;~`|e>0eB$S}h3t7kg>0XZYi>WCe}&W$ z$GWWNhhF0}278}c>=NN9)*{@CzO+s=Sglh!08tRGcSQ*()=8}((bBMfkl=psYwHOM zOTJ2JwGKi{qwJaotj!G8l9bj<5ILvhL^_vX^_biCRFE+@|CC&U`1_<@f{4@gQ0pKq zPw_5Q*4unUi%}`L8YR_v(hs&-%u4jBtl=n(94i30`~_V#zRKkK$@-_s?jnR>(n53k zDcsy-(+L9VTWnc+N^StMWds9tb(o8TRde+z+;g-*1o9=TSw_58Ts`=boEGSA+$;0ybs%g+n#Pd~CPT}Y7?)hh}bq!`G8e+(fJ1s+Y96@0HFoy0t zEn{c~!D84>lXa@T8gtKS4BG%Plqi?DK%h8E$*4dPLq34*=jhz|MHRkiF^VCZz93mpX$8*>_ZvweIb_aK1Fe*4S)(hVKZmrL(4Ibp23l+L<6- za~mlZ;(33ljrJd2sd&bhQK2Q>V7A(uh^R~ji-9S`=kY$27y~V8*z(zMLXNEz$kW~& zkrY7;hy4-}ZXp~3jfTlyGkLQx+)p_XZd+znoZ%nWG@zv<*haI4et3ZMy0*6iuv=KqHh^XO zkqhyfT>>wu4?KJN5m}%@eA3A+4Fhm>B-%3AP`?78#NkBS97YVm{kr)^)#6cg^S}6Y zEz6T_%MDgRBw*Jv>#XeNXAy+AYcZFf#rsUyN`l3f{_xo#Eq&ctpALo$U71o-5GXFg zU{oMB^&LcpXzIo+9-U@O@gc+z9hqj!W$zJc2+={tSvh)8w%F1MK(%!4YGnI@{XiH5 zYUnLI>gu?GhW?Uy5=pR(AhK z&SKN$gPPgKn+fNnfU3!k5dKXwTNXgqY zg3^Q9NKO)_E6re%fCJOQ7Pegm8%*S3^c0@s+20ONjv(;$dA9x*=Q%jSF(W*Ul~RnD z*4obn37pC2yn%CY?8qkZWxAhhE9(NnFmehBPmG)e1Rx^E0u=Za2&1GJ)m8c9TUs6m z^e2x-HDPN=K@96v!L-{fwZp-F{W)7YiEFJLPG6`p+D!x~o6}wAz0-2>!mm5Gr>&d8QvTA71N~J0FWH{z69hUc`!D6Fb`&EV)#k4t zVcYeupzSG7Itrwrqo_1=)DR*B9R(E9QIu47e=a~{_cxvtL~l8QX*We`7pVKw+F|!c zMWVY1K)Z_omAj7gw{>Joi9+ZuLdStyeO|F?T5KeNs?t^0!yI?xzm!JNkKF(*mlWnW zojClmZ5VrrlodlPCBw464uGkMU)iQSdQwpRf`q?(f{cGsXnThp zA-pig{!lUY2SH$rUH7+&G4pR7mgvRH!Mqp=>DL=WazqO5Kg4#IF$U5w#;7!mu|`A) z#u!k@7^9@v8RUXu*k^YnWl*u4zk>vS52;w7K3gk>;YFokco6{l$$g{kMn-_r#~p{l zG-@2t2YpP)uAj>PI^PqfL)V3Ys7Y`RY|bnmZz?%jJKB8=agWUs?_CEC+rOL%G& zzck!7pK-z(UB2vZ*{v)i2yl5TzUSkR29{^QyazuHNn=|nTJ$Yjf|=J%%zN_jflbJe z*hBgqM55oR$h5`w!R%uqMEKnVN^}IJL`M(+8Z)y&ekLP8x!Uq4XpgHchY4f7+VZ=s zLiH7~vrtZ~h+&BMt+o_+>Y&>JuC`F&=#nLWds`e{Q8y7*z{C}GV_`*1d?hvd6ra>| zxQ%68(426cw}k+B)_L(GmO*(*do6u0z*;f&84;;5$sn=2q)mo zgHRVXG>IJ~2;F}E2B%^Bxk%BX{hSY0)zFLRG>kpbe#oj>Zy9?aiXY3ikMof!GO`9b zi&3Npv{=YT*PrRx+8r^?R^P%hF6yWg-IJyHMbPwzMs*qd@Gds3pAP5EG}D1neiOcL z5%haK2_c$!T(LbOs)>N2;h-EpS=u?1|2f09gWc#)ji-J!?|zbZ@kL%4ZfnCk&$78p z*F~9}zCH^E+zEsM=B48=@)38zX5n~(5LO@xUoV+Dc;#|iN4}?>CBn3V09d%ozQzgA)E$~F=dni6Q``V}qY zr`Zisv-<;R)^?uFZN8~A3%lFakGmDTyXBj(%Y8|)Y< zixoY@|Gd{$&JGc{UZcD2k`4+q{-KLFKsxYz-)3+ zz16#^b_AhP{L(J+vniURMY`ck-YOq`=9CwLdS#0YWfc~~6wmxh| z0D3Vt2Bwea6PDWAvPA(3{k_zd8m!RBhoR7#0EK>k*mgT3HIdU7+=1Fg$kE|Y5w_fR zgAciIII(DvwCK%neDRf=3QVx9JXquFMrC*9M)xf%pz~qh`-!uB?eQS|2h&P>N3Gozt85*N$dG@$jFks}c?{;}ks2&L81fHa@wn|6BlNf|N-927 zDgw9gW8c+ajqOph#Xqv|I$mREFP2G|3TxJC1pv=+wGo~9lG1i{_=hWP(frXmJEQn- zD{amA?BkPaF+t}!wWeERK7pchTKywiBPI89&IqYv`ag13(gbvcZqQsbfZyEg!T^5d zNn1_+!+KkcISv(fFo(Yo>py(^2HQYpB?vzuBc+frzCw6aV>pBS_D0)0bH1{QeUoi4 zyPq%;)quB*qMxvhXZI1fpMX(Pz}>zA+<8yh>KJSrDTn-?<}$$hEl&1=QDE&34#U7?HCzIW^b48Z6By=DEA?u?;j>?JGd8z6*ntLmiJ~ z8tOeBx$!@J0Rs0gp7cFWV2Svsn@$Kug!Xj_-fp z-k!Cf2*DB%+kd^KE9*cI$Py6QSDZJP9s}U9!y-b3d|E{mAt@z~ zABJ7=JAN1=%E{x0dxZ|EK=8G#UrLGq)ANTlwIAjAL-k$E7esUHjq!`3=k7|m#;?S5 zyNzO>65is3-&3Q$vl)@UXsGJYw-wkQW=AwwcIdzG+Yi_lFhY(qy5ye)Aw7mj#o(d5 z2t$V^t`pP{032MPGY}Uix?lOxR?}cj2_aOz&`9HRPr)Wl8iB)tNU^1p5r&u8u`UE7 zR$Pn@eC}~um)L6OwR-byhivUF;1oQO7pJvWAEc%k+&D5R#b1^>kax4evzeng8|yD` zR1kUNQJ%RMno@(?TLlzX8Rbg!5r>O(q^`I~*X37RuSf!Ybg%f`W;58cgcsU=v$XwY0>{NDJY2R%+2aj@Mf<-V#2z07vxj;^ zWwXK29#kCKg97kq83o|%e)^yG9CnB(B4!kfkf9xyAF(}2fpRtiM;bHPrK^>VJ_bE6 zVTcQ*X0*vC-7qM}(t2Ny{x z0G;@RuM?%lC2pDXmwN*M8()$zM^nnVkQxR`x2mx+?SwQ>AkPTfX2PArKBLPral-< zx5vD?tvzRJ5l}Y_E-Da%ivTc4#?`ZDL=qrvY&(fM*w_diHa7BqxkuRz^i8xEm`R2k zeAK{TKM)q^pKq0az9k6s&ne}fGZZ2Gb0U}xE_-d@=buqlA1Vs{6K~Psi~a!$ zUh;6q#0Vl=Y#SNPd1jcsDQigzV4H8ojoS7AeQpkqsbOy~B7NMk@#(}ZS|xM~RSDff z0NO1CNZm4+XoGGcbm$iHf9aO5yl&yxbbc}HN7)^O4Z3EEMK+x&1c9!3z#^N@gA^f# zo`pfoz|joV8;<(w90Z|bs33IARw4i$0~E61P*U_vrS#03qy&0qcMz36_VG-t9t=G? z@wqji+n{pLF$AC;Lx9vVhlw)i7($1RA^%6m7!!rIdT>JL*+Jp-VT_8e-lQOl_xEZNDy0tBq}o>VhsL0PR8oq%OQiYl?F~ zM(EIm;W!$umV45VL123y=~pyG>~2biRdLN5%;$5Br=4TOrS)=QA#u% z0ifZ+8`|?D36L7@VZs#+N9fRSgQr!L7nmXN z?;j2udz(nWjOPsj@MJuCd%6mYiQCgZkpkFr!!x1*jd?^GQ-qe$__ogGw{XTIX+kpl zmN3v8(-6~h+f7VkVPQH{kUb26*@1i&9j1MC@Vyb)fuA+-EnT@q42#`5$t$Xr+NjR$F?W9@9t=a`Eyzg zT{En6N)1(K_~BD$GTBt$uhg%>D>~bUu#SXMSGvA{Rh)^)n4uJ9vRU0X{3PE~bX zPAGLfj6#tA~Ns|_?h)o#sq4`~wW{;se6dn3}Q=@p?WkDEZ@ z8jO{<03Bbw6TSl>1;k21Gyco~doz|q=tUh&qo&(_gFV3rLf^VNJa&5%%DDTh8CTgvwVXE#?ad7~!cUN8C{zS{3-}StxH;0e#e&pp+=+x<8y9GNjGM_f z72CH&&eg=!tP3?*m~{|O9AeK7K#U8KkNFWBHAP!XiXdP=3$>Ga&#oz(T5(PP@KY6g zMRYtpVzGzC1;r1l>=fUCj?(BD>Ck(ynGQnSJ21!Rw*5n8KO=%0+;%hg7Zrbg+vQh_m^ay(o z(!DA80jz9Cp89S~c=AV*mMp}25{143xM+1-BI?3s%=s6BctpevbLgpwH>NV4fW{uUvAP(``kW?@4eZ6 z3oFo!$wpKFab@}8ymAbTq{B%G++!FLE;mLT6e0E)00DapUDyyU~MF_rtK)#y^0{H^Mhi@CZeFm!}RLFOi;=7k31YbZP-vb1J zd;#I%TlwUz#R);oWBf8j-Nw)pI8@sXA*IALxsll-oR@UCmE6XVEXv945EcQy#DDKy zUX~LDS7;{lk^^w-Oj)TtJ|$m}(e05|0w9A%ZI8&yu3`iidJQISk6hzj>7Jme$)n5d zVXT(s?M^GVw>4O*hLC$k8wx1h@E`@{r;q@)nR`0QG%`K3{5+J+hn+bt759XR`uc&f3jcCO8ttP zc@ccvH2YW|a?$%HYon-39B8%hI*IG=un#gKD>O$s%UGbnIM5mu{DtZE4vdh?-6k!k zR(12?Zqt*56=ne&1pqrYXz_Cwxtj9S-1uo&JuHn@$(~1)dKg zFqEM{lYwBd>l8>HW^+^?CfZ3%w<}DvK{HIWDJ3S_1b~Tlt$XYxi~zm+D(b3;_Jp&D zSW1fwde65Xi6jhYSo9@@F;gdWSh)N?`(nybO2^P2LCX3I=9LTVgQ}Oqm@ogAawyZh z->)og%Df_cqLv8U;8wA-mhymoyTO(ah8SXtz)d3CTtpCGdBPt z;Fi+1pl(l*Z3G0O+o?cw`#VGix*aId?UWMTP64QzPo zJLpvcG;;N!ImknAQ+ep^NkjyC8z|A+loGv70qAWC(B6K4Fhsi%GW7NnkK12n1c=@i z?*XlbzI{C@?RB=XI!Lvj3F>QgVF490doA4INCBubb_8 z_@Zp`xB|E_LaqR=gMY;e;29zYN1>Af;2DLsJEyegTf5Ep!>k>}4a3ox#YE{46f0EqafoA>*)EC~EOa$x?Fj;Vlk8ypyGQ9! zYyGVBE`m44Q#Ibh74H%LyoUzkZ41EL2!l_$C~vU0TmTFud@~{V7f+i z#n{H#;U&M~P_t1xATguVm@8LP=~<|Z=*qT4@qP)RJ9U z1A@?|%B>|$)sbM)R5^eMICAv>exxrWrcy5_f*@%sDiKX}6A>az1-iLkecfJYL=sXp zm&n}%Q|B^LK+GjXWe)7IXD~u97qYZYp?I%VdwVEK$i9YzQ-Oj$&+(}X%KxWxj zwPaF$jFb>bu5pO(d*7bRE>XD1aSzp!Ic`L49jhY8g#vRwwhu6Wt3^`s#)Jq{=Z3Xq zs-H~}f-N90b?#0Om^uRjQ)drfOv!H|RLJ*6#n(v@f-fMD@9hMEd;uZ&8ovp(yYO`{ zgx5_7Vj!KCe+$;AmX?!JGA-Xz%P%dD7Ug7GzCq~mE&qGJy=Tf-0!p*+H?*;37Vdvd z@@7&C?4c|2bFbwFLcbM?{%h{ANyPn1d*v!Z49+tyc{!^jLG zFi#3JH$V*_U5u?RkH`E7c?uPW(?bHlX&#x`anL4^8O7InrMK4pe8{KtiJ)C}L_{p~00PnfKb zFvKQ*eT;1K*As+xzZI${W{h@%#c9wuS?}r>FWw6L#571XMB;yS9t#BG6r2jgl7T71QaG{qE{IV?OvB5gMSvbvZ^0WhSD<>fq#^}0+VZqGM}Px0 z`LQws6yf5{05fA{2AD~>U7qCMdm#enYmOIF&` zy2&uBR)N3Z4@5fJSC@7oc4R2;AMY5lGNi1Y86BsNo5$&h^0boHMqH2#D>)9A$Sh(~ zvG=Bwx_n(NM~jRV*Qry6WlhAFX47iIAGDJ0b3MAn%99P$6e5MJUW@(0FFnjpAP)bw z#k=3H?Ko<%K15l}AbZ3~)Ak?;uW8MZPz}*_jwV>_I&TVAKPT`D+;!HM-2ez&6zRxe z)dc!lceb)_1(EErZiYE4nE3kxn70$@zqJy0K7=ZPiMY16qU;8eM85)N)TySXQeOE$ z$DT?xvvxzKtQ*D--7qlOq;p=_tZu|#tmo)re8f-Gb0k?liVNc>x74kVKeqm0?Z7@K zRsj2}P3!%^tnfpe+_c`nixVArr26W(<0o-EW`w<Jv0i6bV-q4Cf>Fi8#*zc5J-iw~M4Kb7oQK$B$g^h6$?mg3mK z8jA9I+O87iBn|Z_w`l3LC(7{hL~p+D+#m7$>-M)N^3e@p6)01SAlY&N!DVpb1-7u0 zdH+<$JFFKehADGCpWEIcAHp{C;z=4j+KlP+}_lpyIujA_Q+h0B`j<;8ub~0S{^cMxOkQuXqPBgU*SwfK#=cn3R$^aYDRb zP8=i3$(;B*@hdByw`lIjO=&IuLzCiq0zkK>`NYlEQ|zDy<6iN~RUNJ+6V~ytu%#o4 z{Xn>4u6m9DaFz440ASw@!Jv0H54Cc@)>BL!udYHVxDvgN?0%yN0=nP9W*wEQrV|AA zyp8Jw8CkM{74*Cou$D|$j|)xEQZ-~d24R@4`Uz9%YJXrX`uZFECH4&_aj2ANeitwE z)#?IyWe-OZqw;X>O8}Sv;GQJ`dZ(~z&vFV;3Fm}_78%^o&hc<00n$Co`J^x=yo3%4 zr~9afbIAy(u;}w^)WK8p?$hlZoecIg;e)<=Qu*#lg3v?f>&l#a2o@dqS}=2d;A_q} zZBCVMfk2%1QGu9sR1p~>>oA^_hNpyRcnZLzg93Dxd4cdldlNFW_lbTvjd@`ttIY^T zdTmhuoX#vVLC1MO23ztRLnBF9>aYf+FglFTp~J}kYgCm zT6coL&m4v)$d6P;P=wgw9hwlNt=WK;nB_p^FP-CRN?fH*L4YiD6_tgqnoeY3f(VqD zAW};76#<~l@tQsYl;*~3`j!!jv4FQq12HWIFgof=p0ANlZ{O>gqs6C0hu9M@ihIdhZ5Dw1xGigd!&? zs4JtXfFN}1A5m9!rlSZJD>WPt0k>Wpz)yvgSp19EtzYHOAc$X?m!HL`L};@E*i0fs zxL@e@N3mm=4<()os>ZY{DT)tzyg%5{2p*dyVC)tuYPRnXL4ZPxvCO@BsAIU{LoLLl zXff(Z4I)O}wcfd|bV!T3=n&(C2%e67U5OFlGsr^3sht=)&U+@AFvQ{{^K+pZPBOm` zzi^WIMcts2%)=ub4_BXLzBSUZo*g5V1c#|f<{=IBPBK^ir%7f3yqk8k0pIdKL4Cez zH2CTtErLuk0|+j=R98+i+uUS>h`8C&fUnw-7R~j4A1H03|2u%UayrB-7dZK=U5}qE zgBv3l{@Yn@YXlLZr*Kz5w`x;3Qc6zYey!^_g^L#D1TIDvYteg z*a6{F?T*`-i$Jl5!PlRh0*bW?k+UsYc#OkwuVqF(Nb4$+6Zt=r94*-#!UbB>AU@v- zI~}tK6cbX-Ry_-KXFcqF>rT~_o{%g9VxHEwW+LD2a`d#Uh5xNzk(|QgOC8y4lcvY- zQ;hX|ZK)%dttW6liE7%o`YIBaX1tW-esR15UYq=YFvBk59p0wgF^RoH;C@2Xbq{Y` zO~?m1B?-i&q|W@i366Q}3=x4#O(z8ad-6-}%3BIGB8&Gog9a>-Z;h_WpeR#1Y zrM{YeHzXMBzmw_*>Azb5FERawNSD)Z?KyR&0!YJ=o=U@!o&qLKa*SmZ0NroXm6ILm ztS?bT*p^b^Apfn4#ZaIemWvr93GC( zuDsjP!}9FmP8H6S^0e5y^dPflNVcoGaOTTN8EXaZ#0I9>y7Zbq!!{NKYl5&N1P_W!wCsur2v;? zeicLUp}PF!&EqR-3Nr$izj*fGS_Am=kMvJx+k~CavQP7vEN3si@2jYY!mS!Aeu>7t z==N)$9%XNcNpM#!aD*BGIj_BT&S|$hoqWmL&M^1d`yDTu>=UgxpF7jpe_7U{(BzK= zkj_s?_4uCKVTEkp=$g$fKS1lQ99)pjst6ObNyW*y2=n_y9us#9%qHfJx|XY=Jet;u zB+{XCr~&h93h|ixz5iqs*UG0HnY`#xOT4>kiQ`?<5}E{+`@5FI3{7&!EO*>xn5~ld zk`*vtXq}`ZVE+n-&1k_7u6A_cSI!m2m>rV%`VF^d^ASC|F}{1HpWStp`}u%X#L8Rrx3RCwpco@rm;*je@0A>3 zgo@wUeBCom65)C;=mO+h=jLVTC##${)D6&2mVpqy|Hj(m`0*DU+oF6ZcuecG&iuFk zIWF*SFY9lx?KNwG-{oHv@ECS!(ge8Q`CIugW}kM;QC4L8QfU$u8Sny_R3We(9Y zgIQRL4rt_QrugtoUDB?;T z-}kyBBN}Mcs)SXj@&=FG?dX`iTR>^_K25ANZnxtSDMY54#HZ@ zFx;yv9XA^64g&TxlLpfS5EWI=Oq0S8+}W>&&tMObf-og1j9ef9m~=t(;I7oRKMQ-h zpMMK>o!OJV)V+Ao0mh6JnHz5)$l_1n)#0^G$G0_J;d|b3WU|)?a&ETMVZNL~I-Pfb zg;>(GrtsNOuBN=*E6m?gcv|Pl zEqT!^rOntMqzp8o9KPp#%`Ed5s?@0z`Hd1NRq&x>bc$9=EwB(Vi9C8&IXsg~xekMQ z1fC;b3tYuA_~R*Zm+1S~N|Ozi)Bp@kCde!AG9t{n4WupW5+u}MklChzTqe#Y2w_K~ zHP8OqGpXtVrIi`+D?+WYT37(~xUfLk3p1|lY{oNxATOF@r1?Pi|0Lg%&SWEq8kMg) z3w_AYG0!g^VE2J)N8HkYIN~#>i}_0 zocrtn2R#4Qg0S^EplL(d7@86!HioVZWn<`05ZI}70R-%s$eB!kC?2>qsI!^CAMH>0 zd+a}!a7OzBE!v;ZYWw>GWy_&Zu>UYNoiIhyQwp@*godS)8HMUb^I${LXciMr-bQ0S zKx_YK!(gpO?X(aviM;X-S2G{MUZASISUe))IS_{wvVWU z1Ifn%;2B786HhGPSq?XZ5U&~2j2$Hf(0PAS_0LP^Ve7#~yI&D2ckT|-qBEg&{LoP9 z^f4Go+~zeOh6{18RFhO4t*BI*0C<$bO}oKI9eYDqS6@O{ZxWe#r&Jk$od^~^(*1GP z#!{TB7VU-*G}dHLDhb1zfr(hC6aB!F)hvVb1L{l|h&k|_vjL-G!2X5Fy8l*`?TMs` z&pX?=6V5v3hp-9)u6zL|*t(#4IC@s9xDcuVpV+8VOFrm=V}!91o*Rd0GdAkSNO=+M zQI7z?^YL0cUUk&bj(7XBtQHe+&zL1NB!bj|vE@*85iLto@h~B`U2+r{uS!|HKWvxF z_7E0Ama&T$|Kn)Kb`iKA>twl2veS=s-^-3WjVj6d`^%0z_A6n5)%Xbjo@xx_B~vaA zNsKo?4NHx@V*FX5mTJgAZi5Z&4D=#~ecz?s$i$$bq7T7`5NaKGPkg(Js2)}x$ zJM%1QUK8OLd(AD*Qp0SixNi+{c4Tb`6Xc$e=FSgwmKZF9VEovtuW6fW_IRArUc>n( zJlRFcA;;o0zB$~P8daltFlaS;3j!23X zGb5afsz7-NA`-6Cf`_OpBAq=*ASou(Q+e8&2?g;O@~WVmErFVYR@P7Cy`r4^*lMDt zXW~oRjry>fwwsd2AS)E-k)zvUc$9dL)Gj-Cs4XA2IxNCW1L3M4!R2T&apsltoP`Nw z%I`__M7D)1(H{wwa3%U<@e5a?KTeZd%ufqyd?Nx9N_-l4D#u`D* z)N~e8!5WQL6uWXG2>4)qXA7Qsedi3LkvyB2?u#rpYc!Id=viQ$&U+hAKA}R+d5z?m z$3lXTyjL5oOu*v7$I-sna)A)v>6yU%Hr1B^R1?J~0aomLdsKkLbu4?3kfI6; zl?sm$gjNBtsKORsY`F;tj|ypj!1C~gUx5Apy_g&#!a*!1@yPbrwFcZSu8d;ogQ) zi}fPBF%2J@?lj?P9|HFFMneUVrs4jD`A;pJmze$E%c`8STG{cfoa5LuQdUf#ar$DJ z+!&VT>qggS@Wb0SMVFndRZ{u2Kij9?&u|*-AyO{wCFmrUY;qCv@ z*$P@l$ZDWvsdSCVfAGp~>N!ER2q zxA0wKIpczu;bQJ+yf2U`cW2gXl z)WYfG=Q++bHCdW3VK2Vq;udB!k+a7Xg4DCe_D$66u>(P4Roe0F;h<4Ph!G(ZnF3%W zW{{#jID^zCRfh;unz*0n?)(9s(I(9NJgrFU6AGL{ruT5(6T<8Sj8jN0Lk-yDn)pp2 z%^3g@6C#{L&LIrMd?9KU06dc~I)@Z+&p;tmjMb7HxZ6Pv}HZm_Nx!u^f=&1Aa%=##DDz5qx-V)@mvp(e+E1V8=DpbrxLB=%(&(20L59_5;BPzH!>}>Km5G zrgCcPG5xzYI-fP$Deg;#I{UDWga>kO4@HJKSFrX3;m2HE>67it+`VwPbD_b;kaEay zWK(|22mvA~tdQdqXB?F*mR#*ldCr(Gd5K7>5^h@yzr=wps#p!4yosRNt8(pRR zpK;Dz0j8teusVNb$4Px~HhNeCJaQN9{!g>fhxmm#S#kV}O^!5v=?l0q2YzL;%UX_{ zjaGda-KCBOdW4t#1FCxVv+btP7;2P(4%h}JGqZ?*) z%wT_Oh&;i9YeHw6@rxUrrR*%h>bVh1*CD6pMo6OaO2a0v^G+(UOuoW|+Ow`N8SV#;gya$JMAF>0~vkC>`e#ux>J`!U@-7h}X-z zA%R?4>r6|FrL_*}xU?qjg`WrgV&iltJhf2)iy%N; z_{3vz4-qI%l=7F2Xl_2K>b03*v0j^KyA2?RbRwV-Y-@-s~81~s&M2U`Q+jqY*25TMs}C(U=p8qCrh zSg6z*yWK0=6duWocK)Ys*TwUmb=2okaZPLTtwUPH@%i^Ti&!iXtaq9NNH2?NF8keS z3!I;^=A;;QN==%}em9pOuv1#Mvqc7vUgFGSy?jySFnP{i23=libJFMDOo)*22*tRZ zAiTYuF+#GQ?u#r3xQ8`%xexo|)jGgK&E-0PM*&<1c$$!+0#7OhUM2{wz>`vecYKlM z#*$K)6RrsL2h-Q>hLltqrHJW49! z9g8~uU$w_tY$f3@)*ASP$DMbw%>?S1TQ+z~08wqV<4?-Mcv5+;MkZgl8d8Q=`4_99 zf$s{yBu+C?_Z;s8$H1C?-5r|R)9sW2F@8wkwybqp4feSv@g9>T4AmmWzN;{d*?4Cc zzI%O6o#bk|kP4|``VY4p#CS&CH0P<;3bmmcXgii-s*_mXO?14$;#HF%HpFs8+aok@K|kA(Jik zB~+VV4}cotDvbvS7Dwf*#`)=%jZl??ABUu|CkPs=vYu4sd07<;v@MRWsc37e6A2IS z@1Juv^bsP=P8_cY@6&SJux`=E!amgyE|x4}HS=hhfq%l&{^vYu{K0F#2npp;N)M@{ zxM%KVX9sqOz#&S$W>*M6PvQ=>~KC~Nou7& z<9XK&Yjmltbl73$n$n8LyynbhDFlI0`s>Ti*H~Ku)k;7ap#*7Cs;cz?A@7TTe z8MdZTRryfaGiF*$JbE2FwAwnu-v64dk8zKr!Yf>-=*Y+Xm^4v2RU^H(x95VEiBq+g zMLltZ+qAIePJLG|KX0yxwkr-@QUx9 z`R;D-J6|?ge1=cG3RB_)fDZpu0bY4KyjG1T`t>-#TsPZ5cA{+;?bljCogvJnrA-bLZk~I8y9UYNDk)BW&e~ zA?+Cat3z>?3%|#RTjKAw(hNKrZ93pzajtmfm(I7?CR+3(=Rm%A=zxg-qLjH_i`k!7 zR$y8)w3T$>~A0q4*3v-@@|`5dF*2%9u4(AHPlyVsJ6yKe8+drssBYQ<86NO zduKX(o5(XfmikiwX@I|>s<2yG>g)mMDfSO7`Vnj-_SD7rN54BeiVrDFDB`I#Ui2eQ zT#G<~|778jYqKBLFqvn)*07b?D?^^S4iL9xz+axZo^sH+F3N{OoVo7g9`TcNg~58a z*3JhLs!y*AG}PMAP`A2`d|Jb!}OngFx7L4P{$Wvl$DR<@Q2+-8kfu@u+?980Jnc7Jx;JQqycC1FA0Dz-_*CrMAW2qXc1sK=ytShh>0J>0>b(t^g zRs{p^VjBr1vR zNKx%>ig%GlAa8(g|MixxY>b8z-hlP+#)w%MYq^=-K}eDJ6vcbKMj&s1BkyGzPIv>> z!yDJi1NQ-PtvqYj0Q?N0r8x}RNax$r7@_9S9XB%bTB|jQT>~O`=g*yKeAVpn5%q?N zmev-YTPmv*T8RJR`%65#=hOB0iNb*~DMJJa?Zmt3*4c`eh}H7U5ZA3n)VsPKkP+Y+ zujp^gW^Av9i~7NF{+S^W#=E?Km}?9pg@mH&o4AQ*v;NCeW-#AY!&NKlEiD)n!VeLS zX%J6a;3|wfEC8584}mVr`}j|6xNC~Z!m|LWW}?McT!m(6mdsW|38G-BOMZl4reyKT zcO0!*LxSBt!sRfNvdAQ*1@M4gbvcL%jIdjs%&5e>q~e}TIYgq_6Y#^t?~iHltRsB9kGV< zzBzCS>D|$;u51J;P&~6bhq}B=jB8+ZHoHem$YJGIEo_f ze@dXjj>ZT4^(5ESNJ5Q{Ys|ML)?s|&@}fHI7g9!e56XO>?CSfkWzJPE^HGZHfR9$5 z`C0>AVYM7W>jckV|C$%)zAx3)%itGx6h`yg&c=kg7p1yhG+1o5ZYfwvygN6MKt(0Z z*ld2ek?VdRa%?|q28H%BGqd@X#;#13MT)^Bs0}YF3e7b$vPmQAoXxjCe#;2rB6X?* zBosY6xtEUwPyMP>*8-l2aBJkmw1yEpWnWB5+mhI84ot*B zDX<|fHxlEiH<>{UI+ut6=i(U-n&=}KEf4ol%idYGkK#_Q_YJm~$VSsYpiKV&L5TL@-n)4qe44YKfU$u9J=&1a zdm7092rb(1M06oD!FeU$h16%H0LKPc@yx&h>}^uU!yipf$-M#Y59IfCcWw6JtONWY zR7?c;&qM+S_>a`uN42$m1H7>uu&G20a0);(FQ8`5bcbJdbv0N*JHH5zZ6_lblw9Be0WQYDk{`;N#+T{l*g|RxQqVa>ipMzv2y1lC zx_aQ8cFH-Vfb6_Lt#CfyENy6xYsa57OB*vQVSu`gp}I}by1i~GZ5CTyHNJnOD~VA- zUbj-<-2Se;K2+MHi$I3(=tD#k^yvLmlSkTl+mEkD)kEDr!bF!v0qD`%zz(N1*k!p# z40OS@o|Qx>Hk@6`qq_(KbZx~4y&clT@&#D-c;~2e_7y=N>{{wHsICX4)u63c6uB~p z(bQwnyQI;m2(Qunfjqm|wTw}yww#e8EoaHmVTqQzLbZv?31YccGP)>lYzq{CmV3q5 zav$I58fUOvA`~sx7PJvVa$ACsy1vAkS+384n9MX&*#LqT0cZ5%**Cko$hI&Hcz8Pd zwDU$|V!LdqZCf5~cO^#=A)cl%fiU*=^%fwM9Th1d+rpAwHNv@bgewJJH@#ZSKa8)QSqS%ZRMdnE3fqURoK@JFttUJ&&{y+nBODzTdz-5Vt0YnadwcI~u6_aPjhXysq;z1Lr}l`5 z4^X;jJVe^BS1;|X5$&Tmw$X3>+h``=G1>JKi^$at1Dj}AE_S_9VH)9SM9CVYmxD|w zfQ^V0(2a-!VFtW_QGgzOI)YF!Zg(aUaP-N|C9|7exn2kQj@w;i^QXMAr=kEHeJsFE zkK6ooLg54K79tZZFkV?;yheB|Fh_%k1)u<0fE3Uc@CWiX!y{rDg<@b$9NoDkdz7%p zz@lW>jYPL9ZSPYUtL5~qR^=?$QT96JC6-oRk=0_a5CnQ4`ci1R`Dw1ax%zX0#W~zQ z>VY4C2aKsOaxIzTYDPw`UeW^~180{+2AB>O6bsoI!r0pbTYyjwsicG)Qcv7#X=bU} z0S?6UtI>!>bkJdnn_^)dNMOWwkgrr!^5l80^nhv^%_b(%Soe;nRPgqB&=XUDc1>HN z0J?^fp=-9??ds)I7>zsbVatPNpALN6J+2X~A7O&w-HX;@a0d);%ucHw8C91bdo8~a zUo*U0bOSPv@8Pku*C4QzyMHpgRV;(RyaL0qc(>>hEMALuiw?Ju$A12Rf5p2+^QjVI zA$6VrcotIeFp{`U+gQi*7s5yX8wfcD#2TvevmNv#3op=Kg;;r3cqJ(cE>}lrmvxYO z&4Y7G;(mZX_?`z`quDov7}s~dBx<=~eYblEzhxyZ{$cotQ(SQL38#t2NLjG@ATz9^ zoKDp2=(Q3q85$vc|I?oFAhu($=|o>?<752D!>-1Wgu5C$$7B~4vF3y~uIU})zb$ih zkD}yZ{6zFCjd|8*Gt*gTLhr4C2?4%+?TlPTO3B<8JA?tGjEFkp7~j3ZHMBZ4Ucf%4 zI`z9NUBy1s&|lzQc#57psoEaWMugKX+e+)WH*#085jjnBrPZIU!5phUjeq#4Yfuy= z593)+z<1nzSGls-5<-vF7pLWoX?*`G*F;7Nk=kz{MX>hM_^HQSef>n>c7^kC2-Oz} zJ&M5XifR0}$D!>}5gsFuIlv9l<&jqX zYq%a2EI`eF%qr~3zg_F99ZAc|Wqk~yL!_v%qPef5JZDJgad$=BCrL7xVyW&&7|zRz zeu3vLU?DWVBv37IDfD;M>b{h%&V=3ok3x~179j@?rraJHkw7dR zzf0r1{Hv+1cj&(){ZDDQ*1|;=cf`<za4;q3a#5u9JF0ONPM{xAZS-klfP0 zC;&JUErwpsyQTlyC$239tDgr*x}{$yPtN}85CqP-#l3=N>pZ!o--cjuMX41(c-S)q z>;x>tdim}yc&}jWd7%K^(ue1OzK1nwD#DvN_yhT#mrFN95-9cDaH0lg{e(`gw4D9i z)z?Q5CLaS{*;A8G`oh(gjVBy11F6QL!I!Rf)j8yUTh)ZkylUZ;uUv`M3l}*{o3ID3 zS~yj#IZ%CIDp6>}3QPAeYv;MQf9--xC|{s_L`wRc^5Am>f%Erw^5p#eJ%T{zy+xe& zsdgSN2Wsc3s|=o#&ZFGD&hrP#)jbMD^W%>H38DpBo|0kiCoVILBv9&kv#X9<^gN-H zp6~vns|lk}wB9pb>%m2YmkgFp_~1H4kw#5k3B~PfPnY(6xw{VMru^_PB3OKw?}hG!JM8;3c7L&$ucLR!#(? z-CbZZv5Vy*2oY&&YZ8&>^djqlEy%PbsajxS+U7H6& z&^bhi$2rXjXYCvyl-(yOA-hk#bDq~-?wofc98kB;M7MrYH?ZR_OKEysAkEOLRF1df zq(Iy_rvR@*%~Fsddag2}i14W4B#PYLU9P`Z>$%iLC6qNflmgJ9hy5Jds%Gi+23t*p zqC+1AZA8O)lpsJ?wQ;_^yV^MaA3>wlo+rxg(jJ{#5qkKIp^_AhZ8WoJ4 zPkdzQ6aMNn;@IgQP^SBlXoIHvj%f2|Fw?1XM^qq~u0hI*4F7|nltdU4Zs>&g71Jvm z1>A4eE`=*)V)J#B3tJksctPXRWLAs7rQ5|$dNbHX!=3cz1dXO_!VlIhRXgcz^L5uR zcG5`*suL5n@@3;7Qap{LAK|PU2N24}K}yKR;oV9%N9XhTBV1{04B>#fjU>92O5H?% z{@6%YlYpvW>!5OqFVXaXwjQ3F z)qRUP(6LiFmaqrM;+TG#F!nmugaT-8Qa}$e{y;hDrcj)S;g)(-0SRQWrB2DPO^VBq zBMFpFx*L+xIO!&Ia*i=^ZB()kPc;0F>W1g;$*zN}7h#BfRDJ>WQBnCC;jzpx4H63v z^4Poy1<*32fVK<;;yx(_=x%y42o>RXJCT3`@5BN!$C+IaB>vQyA<7%$j{>lt?h5S4 zz{}4h6yDFCB0|vw8tFD%*e46?p#u;%q$~p9S)CC3WbQ4kOHUa5 zubk2tzIOsVsGi)uR2)tRk96b}U7KX^MeR%T@H7(trhRE`-X^EC84TmwvP$#Jq#nE^ zX+knfB4W_dMKjZL`2TWCvpvV$ukYYt!aJ1aik@ys%iFseJ+RBIUOqK%OdOB?J)$9B z&=C}iHXQN%*^YjSC3o`h9N)=DvATS0<1tNzb_ajHElK>lJ*TuU@7}pIX651uacnVB zS9B+Qe`gP;23>&D>xXRVP{run(k^~X>cH0{P_r{#K&hgIt_1c!e^v|fJgmOR^R4Jl zw*@d%)~Mla`SV?sVqXz%aEk8#vG&~YQ59QzZ;Ft61B8;$0tAp=5_$8xifo(*|&6ebqFU;rC-J*YrnFdU0n5z>jXQ{eEPLsq*q1tW`+B#wrKyOp3Ypm zxKHz|$y*EnYM3?WEL$QpymN z{9d8=ie^h6ZCcCb7U23#@p8)qq9qJWG9g>Fmq^G)^a^wUyc~TAVT>JMAusTE0K6Y! zOqy$Yw801o>}oLdm<(5E z8#EYPBw5vbD#hNUu$znT#Oq|bwwmSp1iXdLVsWY%!@YX>J|a6v;4xB*ugxiD@;Dq} zRyrx$H6qeXRsI%^S6iLDevR*Kz)OSR}jE-;NA<2s?2KncIV^s_OpUdH`I zfWWM-?PE*Fx(*uqXr=!nYSkdAg2O$1#I(A*kGKWo@;G>Q<|WBw?|7KlU!!#VO9%Mk zE@gsiwed2o3}(_zFnLii!RzA}O>|w)!5Mc z20RlE2til+j-8tVmtzN^jGgKlVpI)=zIB?bZ!k0lr5go9Uz_G?5e$tTuTwDeThm=F zgQ1(uaE&nrIiU6LWY?jB`}=9IFMO?x2-zZW7bt;}?YRS*4(_Pe!E^X!paej=RMS4< zl6vfkm{&-ZDGXRBVP1ZHZ!!2T>>U_vJ zU*Dj-Jg1fv*~E%#!J2qoz2h-uFVZUhjJp*HANli(N+Mgxi%OtCTvYN1C;bro6S$~^ zmynA}c%6kG<^uz~s3eYmv!7j|6Fc~MnQmY7e`nuQ-EvXi_T@hxdQ$n9t@!C|7oJh; z0f~72?kHCdYOjeqN*bCMYq9QyuJ-09TuM~>Y+sgBZbonM`shcb7y$TGw|-{XPaoh- zCCM{gznR|?!t7++tc=75cb(A8n0`b{ z&b5x>Dwi!372f#XpjUyf7L%&8FXy_vWxQNs%iT{I?2l(M6Ik}WaAn}-@AL|>b~eSm zbH}hX$-^tN%;l~cQCqFVeh>}l)~32i;n>HMXV22EvAPRfdtc^Hf zp4pl8?9e7bZ_tljNH1tpj>`gm`Ww?Cnhs#=O6T8ZY~^IoMK`jzt1kII?q*fWf1!sK z-lT`(T{^k?_c82TEo&m{Q7ai6W=3WxW;@HyY|?o5bml8wRE6axcaJJvw!(FnZal6O z5^C1dwV1>syp-n2sVL-rofp6v@a5cpI?3P?^h7^#zfSSuwq;3SgTQ&FjWb@TLreT^ zQ1&M_O0TYQtV{D z6VY0WWqbGYSP@(YU-`F47_rLFoHl)GzHgE{Z>v>{UEStt!`5ze-BpI}45Dq?a^GudfLBgB=Nh~?*X^8tBRhs!TU`b0)w9!Eu-vV# zEs<^zf_1y}bv<@s`FC;b`%11@!$Sm9cAoK9cD|k4xvk!!KP%-g%hsEbp2#Z2x(!ye z-Bt5uEI$P-zbQHEHUoaxERP2QSMx$@`dp>`cwzd|89N~8VC*L7Xl&lkDqnE+vmG{k zzx4vw_GlN`$z86&`j>L3#S42r?I$km3DGYsV8FC@k|(j6dt3)X4k(Y8c|a+RyW91t zW_(UGgVvIl{hU{&Tt^%z%g%}ctEKFUcUTm=a&g`S;|E2ZAy2&QCj?LHzx~Cj zt{LSAs5XQ~Xv%t8ty{oHYxtlH{KZRulAJ*2JHfLvi3$oYrR^L9#l}-ocy6lhFEhs* zIYE$|Ud8}%Fl(Z-79Y8RT0C**djR&qJ|_sCM+6W&M+IUdue%f6GmSf(peXxt$!n{# z7I{G}9@pCEtVK3ZYh!ck!>;>`XPuzPrc|W)s0JrOmkhj**Z#;! ztegTXEk5j8ryDg?iJFA#C`5T#EJ1{Boph$ge50iuGt+3s3vjjd(YDR*MvOcTJHQSr z9?|SGP(+FPkV@?Zm%Nu{+(2=NYXYf-{x(e?GZ3R`Re~lw*FcstF~7YwP#ow|I>>vz z`>?{-A?rukooVH6?kq^a!(6sfkg8N)GmyNpxQ>1Zo{f=-_Z5=319YhVpr(#K) zloy+JD$j*yAv#72V4}^`(||S)$#)+p(tYBQ*yo4{d|1baNuQQBeVSBqn{IzNvlSSI z-=ku@L+a3?r^3npaloQ@%1T*OUfKDyuqb7Q7IhTBc7Q(@OG}Tu2JMU|tgaJja&p|6 z)d-k>__jV`%TBs(w^6`0sW^zVN!%dS2e3_I2ZiyJT7$y1NvvoSA_K!Vp#|6`M^&5P zIgo;vT)TCn4-p~ICOroUKkrE@QU9z)vkn_0NGaD}2XH)XK)|8P;fGW%0*f;_|H>f( z0L4)dg28~nbYlU5_tO@MC{n>&%p|DɾdUw1vOo5czc7N`75BK#C_hbk7M27l*C zD`w+PxsDkG2d*M;VK}s|@*R08EaeF6u)Wo%Rbly)yG5~wPP;ZnJPtaYY@S$?`9Jxb zu073;pK+xc&l1+y%BA62`6boL{Jc+PC4#(m=1JE79futM)>(XESWGt`6_jbHFRhUyrqL6Fck27 zPj|D3K7*s#TRUSL8vO_|O4uu$gxLWJOMafxB&3Asr<5U%ERKQ%W_{?|WzbR~7r#~o zJ`|p=7Yr6h!)6lM&~5U<$+l>4U~u4Wlc>xmFO(wO`Z0VRmy~di&(wcVjgKGXbsZ=| zea&DF;fcn^IC^wsC6lz61l!!|pFv?gP;^_Dwxt8kyT<6ob3}S<79Pf~sw9&Km7a!{ zxUj8dRo37$*HPnjCsJR8pAoBXN16u!RFw?#(ObiBpJUuyw3_K*`a+X*miDcyT?DMM*yi~Q6WFG2T^-3#AkQy-#NPkbHO|I4 z#84oC&kh!`-=_zQ*l$of9370Y-)bRSwsgZKS6$5)G$2(I%*3HL~g>(%Cnc zT}=&w6c}2`VojbXvauDf=q<97%{1oog1};}ed)bdUH571?qB>F+MNV}TbQ-~)s?FK z#%BKN>W9X}Pd+!Ni%j-r0xd=^NU*Zp-#E1{uFA%9q#k;oOp#yv&6OIwjC(mLhtvIFfCVq|WV7J-=H7=+BOPmTETy_SD>WIyN*061u!IarkXTw=5E6?f6GjDd7d9zdOkwbz;KmSsc|; ze-TvV3*na(Cf~|W(@%!e{ZybS_(GVh;TwweBIUC*(%sI+7~AN)C!?A11!2hBs2agj zva@+n?$2x#a87wBLzs=LS9E={D8hY!Cp!^i(^}AJbFq`7caQ zwa>)#RKiBCH-0vXF(lF4;3;Q@Rm^3xP51L5BS*)|964eTEu7CvD!I+ls0!{nTH-d% zdD=3Im*Pp(;A=2CKb(m)tF5%pi!GL41^S9 ziinaoQ$&>3JE7_wN^hYlAPgw&4+7$^9hWF56;V3o1Vyg@$P^K!*POK&<$+oiQF`AA zfRSG9wI-ag<3xwjP-=EZ@5@bF0c%W z^$;2&*3%ansAFCVyW)@a#Bn?k>*>nH%FSeN)^evMj_1WR)H6V-grS~RrK4-RH|b`Y zQbsNnCU$Y}GX|<+Tq>2P| zzWJ(%%aLi$;RV=}`)7)8`7jjpX#;mn&Dd&(7GaCxEU`r{CY893!0-7U$`YZVhe<6T zui>$*!ba|{!ApoIfgJy~uWJ^Df~xcnXd$ob1%9}{p!{%u;V6)?AX~Hq8!L z7EcW;@#TkiQQ5+>lp$KyQ6OVNv=rw_j0yE8^6+^wfq?l3Ukg~Xl1=Hef^`eDjy^V< z)k|@=HpUZzxceI&PQe-3;o3*uu1iD_p&?p;6SWSsVdt-5+q5cuvaS0a%_t@k;2eDA z)e&&io43t+QiV3axX?aQ%59*p&lYhZ0`A|nKS^MbIL3tlP{f4@hKLLOi@^J7V}GEK z*lLb~1eV*`{kBO;>40>ekVP?gR4ASTlX0P-D=d>po!B_9_1mr#{MxG-Q8~drt!p`A zw9rVU*mdyhjB4bFcu6f%i=#yXJ2Hs(8_1RhJN9irQw|vzG*ON%UxNmw7?vYU{pRmV zI4Sc3pop3f3=%cTf@+MKGvlx19INES&`Bscu_-B6Y)VIg44u$Yv|%9NrZ3D9 zp_9c#KpflV|CNBNa{?U*!zW5W`IQ~vD8nbDM0mlU!VC0uS$Ln3wpxsM_@L9AEV2BZ z1%LTj?dOSfVEjz;Szh3ueFAqH>1T7qnc5EtJevExztZLlVeSZ+xEbH^YVUApd@nxX zl%ixCl=vn`dxOLE(x1%oicMgr(T) zkUHUJOETSU^{zwMjsdP#MmL2i_Bx%1gc;)d4+->yX9v1c$P6Vv-lL2fWV=fYT7U!C zm2CG2V?5!=2bp*RMumSW$L$Fwf#?46|DPnz4{>)4CV>YHmpMpO4=n{mps$Y5>ez_j zU|w&C*mYGL5@<-=b=lTIffj`CV*|UcM+j#e75J{JZWuhd5KLs7uk@%=I-{JsudY8m zL~X+2L*ua{quc}H>AKPHO|VVCz1L|j1@67h@L#z1Ix{5v-iyzwn_p{J1D-QG#NHU~ z?pY0YXku9rXtsSUX$*MxzJBtM;67Nd!fR$Ntq(Yp_u!wvVJTih4omSm3%7cQ*okrO z77>SF6iwTlQkKWe_#vJ8_M-=IlIjD#HN^~UU%u=c4BHqu4;TSzu*6Z5)A6}7v%*lQ zLZ!+LC8q!lQVamRU#_>xzSrD5(fwu_PJmpP=^nz?PIFg?waLTq@Z90MQ!2B9ioQ5j zGTj{wC+O-Ag?R=}&}G_yrSNx_U3e}y<&SiqIa$AJC?9m@_Q z<7Z!5?!{&E6qKqCJPMZJb$2#5QcgJ==A~D)o^UqRokPXTXKUaufBCGX&;6MBGDYME zMypJB;{8+M;pw1NpaXx00Uz}O3qYnrKI-K`?c}3gGlq&YLLnN&0v;mLGo!%0(c$gz zs8<)3TIl}TtT>Ex)(flQTCCI8%Xi5%NU^_#Z{p=YaHiwTobQg&VMqWjQ{qD~uo8!f zLp^D;-N(&#L;`l<;`E_<@-Pv9X)%mx*Yfks^dN`<3W5h;%&8RONOkv6Jy$_sFy!O8 z?w#f$3Wlua4a1;|xsKK#0jS|Y5OW8uIWx^?Y4cdp0(ZI&(jnzHCRi)XBNPfLAC#1j z(;B1u7EI3Y+>WyRhFqEkVVY zGo~h)6pwB0G$Tom9wy={CtgU2Va*dQF#xiiOWa2FdR!E|bLl$&#sBMk5h;;Z&=IQ~ zFYr$R@FG&H(&VM?pR`zQxGE?2Cz<6*IZGMq%0Nh%a4Pay;wx70^s@=9M~&a>uqw;l zCrnC)K~KzJWqj%p{L;&cJ}wt+{z)aqYZ`xD;XbRG^{HezO=cyrl9$~L+1+;vUoPA> zBSWu0oGrP-T|WfuCy5gqnyHk8A0d6UyIlx`gR9*W*q9A=;yGUwB-&w9zPY_2tM_e6 zQ!_Ud@s4Xl66cbeGeaRHtaFdDb3j!qwaRR6go01H)7`)huO!+Y3gMSK-F58<$bhSB zJ`@T8bdG1meS1W6>n07IRUKabG#i`Ggo1r)gL|8UIE>D9tt1YNZYfXn(?%8nHuHT- z5a!Md^FO=B@{|_7Zqps($I{yWOAZ=7UtOKz}t4 z(PG{QBRL>zUa_Ec2o(M{mw7TYN~=l*UF;}ubf-64{E$$1@B0NA`hz3bnb+J^*{OZ* zCU#hqsNsF?XUs30j4-nYEcAkAE5p51MVIn;7|9@Pc>VHfdAw{cefDmV9XeHdAYBd*~5v1Dxd2W zRWk%yy#wwJW{wjB#5#PyUEqL+-d>0Fc6rdu-XrE6SzUkGNyC*yDsM%*MUD)no0SaNlFTOv+i# ztl53o@r}Oa5dh9VWva@KJ?VZ?dyf@8<*ub4ABmsNnv@owl5KLxGhsG4@F3TB!^J_a zi^Cb7^t*7>y*P@+zAooKKED1rQjD*EQlVgceM+x63cm?AYmXw%&WA6(`Y5pjXf!G? z{^6)vb(9!Yt5OUcyztZT?xQe_#rC`s7`&$Hsgl+pK`R0lK^U#lftVIOt)^)s27}g6 zE;0`jnl_Pf)UuV}lX%671rk#aSIMs;&^0zqc?im8U-~nH@ndyYbrUj8|unA|}(VQKutl&*`KBDJ3 zfq{73+wL(Th+o&`3Bo?+=B9W3vrOjm<|X0*=kV1;^$f1UWXp5(*=2Nd7j5G7dw?_vEM{N|PS< zmD6I+6M}MBUiz_nmiaX)4-Ct(EbE+mPz2zJvH9>h_YVD+(QMgM?wb1f(X883zCx2y z3>uv4i6bIZ5OK=(`pCfGytnzR)(`3z+?v^740UrpK-V232I#u91{c6}j}Gg^O7h~O z*`hyZ=jdI>z!w~zMrJn(2;;R}Aa-UsS0IJdvv_hXy+45ROF>|Pm_0JTyWW0`7`WS0 zR2;ZZjMkdz6USg$%A7>2aUnaN5cPndJPidzAq@rlr|)7aa>_W0+bH8G4tn7zZqo}# zaa+meA7&@8?q9iQnD*jMu!gG5x%bljvs>ZU?s=N|02LCq5c{MB_t6@$rshevXQXz= zXfm;GV{r{&j-m)$F@4xrv8b3l7TriK z1hTOL-{vsWDOytV*%|u4u|lFwV*?WLY?Zl*LZU?LsYIBrn)I`~bL6%|7KY6*u#2xd z>}PQ|+|^jU#oDdreo6+~CsRKL;=l8ayL4ctvQyI|6=tqLvKuvE=>iU%$I^ z?X+|pVj))JvanBMjWn$fCmL?>HEPXft|fRjfn3k|M9dI#y_gFTmc|k8tIU3KV*&|zf&lP6G)94)O1U#ozZ7Ej; zb6Q3G7v{8zSV}poky(xht?@XaF_ec5>#;}fpPv?w#WL3Cr&b%n+5D!9+Cya$3ko2K zb#duhPV^4`&jr4oKga*k`51BoCb!$I$06LupX}yfYY}7(RLBBDko_Did0`fRO_F&-okE-cMoNi9^PnwgoD=YGetimJn2eBFL+caQC1({}IB^9hB{XJxtrvDp#rtz)YbUZrAl6ogL*PB4loZn}_ zO$|X&ChpxhThZ!n{uEH-GB{7*%8mb$V#$BKyX+YnNVYX*C6V95Bjc5t2aXsce-cF$p2tTI@z^eqg zyM*x~cV`edcA<(jTVpIQH8Fwts#^K6ow(p#_&=!tk2hc_UF5N(=Hq!kmN#G!Y5{)$ z3^wWU`L)>d)vRIhmxFC@MT{36B4WJk5KzFgx^1n&oc93uCy>?UB_ylM>n!978r@=5 z9#5{om|epfrWcGCS77*nN8k#K#PPyqxG>-{ACoIEHgYoP`D<8QEh{tgPF28vVP@8K zlg^SG{e3z1Q7!A0kknU~oqF0}E3>p`BE$xbN0r=6>uqJ!u^!(^^H9<~Fu;jkQdM3{TPEnT^@RWGhBn!_q2y+Og~< zLz3BB$yQhGV-}NQ^=6s<+Ze3EDJz~GXlhL?LkblPu}Y7az)m!?QjCZR%I!8!@?>gF z*yT3X3ieiW>wY7ZR9=Yk+{O-1w~~xLq%@_RCsR+I!0NWNl5OBXD}zm}J}9P)0&1PN zx3vbaOYN<0`fuaKl@>jV)1%nwr|L$r<@YU0~yNtD`3r{ zrFCLTmvpcyYua0Eb4M%HI87L$*{&oFO4hnGTz^P&yCz0 z+s!(tH=f9>?p8;mDdDPI?Y4a@LtwdHlUaFm@%5*-i*ygC=Pf~!rx++?yJIn2Fm3d@YAndk)$bojdhZj)0&6Qfs7IrIb zHqcrL54#Y&o3Ys;Mcrnzv47qcQ(BU4-KuG4*+UstC*woH5iM3Su0^sI&R}2ITx@b# zz3UzJO%{yl?-1T-rE5+rotApMDXnxZ+iIm5My{mF4bglx*Jbt~hP;$SCWiF^{0ZI!J!;G&@(ExGBiR z6E{Y2NT~G+3O{*zh(K)~3k%f!3ILDB3>;_8HBJyH#qn6K_}b|$Qj0X80#3(tH9jI0 zh=$)dK`nlK1cC+*-xxnRLGc@>tCB;+B;_{90V)FLZ;UuntJnaDjZLMurwlckIYH0w z9o9mdB=qP+Dv?X0NrX#3QmeQCh@T67NfoB?@R(0_%Nlshr*6fmpso6V>SJ+P4nbwm zr|Rp2a`B+g_DXGI_{y$cWsW9J_sr(Pz<msL(TcB^vSAtYM6cnRty zZ{H!PENLc0cD8t|PR#OH)wRdi3Xe71IP4%&l@PgAZ1*39CWFsX5)LR(e+TElEUACF zn(V08nxehLYWggf@v;I$!6;4nvC@nGADX#&);GqvzaS=U51eKe00oyho_8gDSw0an^lc5RZ{u8D(7_b#%nYu4OS=cjL zfd6 zYSqQN;B`0NrPLP9HUp*1XG_hfNI$he!-z>F|W-wE~zxjT6f>|LdPfLaUtWRlj?KfsJx5kXz zs_&U1?)Sfk)S|QQ3a7$DKuS#1~30kXoewd^q}V2>R%@ zcpnEa;F&^$GC)@Y&Cu1TX6S0P09}n1C|CQD$b_y&!O+zvzU--F(9#PVtx-nwRELXF z2*k^H#Z%LXSD*278AkQLM}F1Q&4!GQ+Kk|#qXscWN2R6csNJUuN9{@Q1CFY}lao8G zuEFt=K~ux|sr=xL@Xr%_bVDdC^6aj`xJc>|fniyy55Okby2TYR_ z?jTZwV@$tkVTR#hAS#`3fi_OK@Ha5w!a-qvKG(=|QnkWSohPWO2^Yw5A2S>x*JtN{ z_BMx`<<2}{H8k#W(%%@4{vIVYJnGj@2l6-vQ}Q@4LQA0Q(3aq?W0HdL;zqn02dv4F z#t9+=Um4PMrMzE_pq5@aXf4o;w;V`y$Z}HN-9?aK@4|18ivs23fPnt=^Ahh|&A3cR z1^nq-P?tZr@-3|lj0h3a#fT6!UAZDQIy~_gdX-gidZ5uALxOxk4;bQ*Kp6Umgxd%g zH6#F_7!n8u84@~A7ehiN+u+GKG~qC5QM-yp9fQlrX6KaMdBUg%$QtHT@jP8YNMUV@_y^-d4l z7LN!;)g-?YO@e1RjBS)kZ)+ec(8optsWS_wr|HY42gJmWkKZT2C?@U={^OLhboujE zv=(_8%Gutev}EHd!NW$m6s}RO2O8z@39AFyurv~T(2I%^xJ%c;3tAYYh~Z#dsY`Yw z+c9`S6C-Yh@>d*@DJ(W!$FQ3#C4`j^rO|4~N3*EPtViN&q)WX98=0ckP(dbSUj z08bk9<-hQxLEjnTVU0C>w}*-JJK4#9T0e%0v;F>(b;OuJ)By9zINKOi>fbi5-*r=Q zwk$~hRA!%~Ego<96mb$^3&GOz&JYo{%iqk4W~W}U4jC&5E_g{(RxoEs3vGsovMq$a z@YR~Jn*d?Vh$(<&pB2Wlp08UYjVA~clEUcLp&26XbduB}4XA+VRyFovlc5cbQ=}Gg zF^C2r7?P2mh7Nx}UPzBzpO88g&}U z3q-6yM4e>DD#8^gXBSSFHDeWM)pD$oXKJ*0i=ryx9qiXL*7rtbRg5u)x>g)7p;07? z87-m(jR+Qw2qp6d8U`=KfeV~N1q<%~x79>5(i|ALZ|dd}(@!^2iOZQ23tQ%EE-~PZ zC6zdejC6&WeWn39SaL*w)x|OPp$Lg1o({ZlT&KKnT&D$maM-?hK^=n@I!2eZL>?Sn zC@hXHU!1i{Y!uY!(gh^qb8|-*ZYo*Mht@B~V}v5NCfephCEDg*)_N@a{!>`$ zU70_hP*A#ZB^X?L2+*L5MU*!D@f33Us@k(%URl2kSknCa8S;o zaB^-GazZ;y`r2w;TXijY`eqTK^yt^%HMBrkeZCalrG&>hiS$e{C($8=m>N&Ny~KIp zob)gL3+JSN!6m0wBf~Kzx!4EaTKhuHOD}$B{bqbZga-BHy!4?e4a`gTmwjGZcCTk7 z%k5}YW4oGpYccII1O>iVEXeE>g0XeUEoP_RE?dtSkrt>cW3o73++yLRr2Wn&!7~a* zZBh>|AoD}jEiv0PBefh`tIn2PgEW69QjSxu7S&UkCZFYfJH@becj44t~eo){&$l8pQIM)e<$dh9@U_VK45YB`tQ*859H;< zhw%%?6n_PLDrkx)sA7tL*X@|%IhvT_yKrHyuzokJZi$z8DV^fqR~{=9OQ&vFKN~%X z0x&{lvO1clEayE`C%Jg9r-Io{ksZ(Q!;|(Ap7t8+c_O1+X>x?8zsA0g@$fTId;?m? z%H;4Ut~}UiBf!rNvu^i!{%wp`bQy&9`We$m0iOc(@gDZveosdmq_zqm=Z1hRx!+S@ zgH++dwIRTlmGiW)fy20%nW$u!`J7-@)F{8Lyu6XLv`3~lQez9Nc|Z zAY3cQw3eP^BgUsZNX5ZnP2SQIA`V{FC*t5>MaCY89hK7ZVE628liYXj-8k))FM9Jq5Rv;vcSB8mzM zU`NXGiH?*-2=I=i&-aN$&_Ytddx17L4CPfIr|bmSw}3MCE%?i0sQ5azb~n=+c^Vn_ zI*INML-c?kihTf+KR^v*oK#-)S}+rOEj1H*EiFK=r3K1s&k&K&YbhAI5hj0VDJFkD z`&&Fr{y6Yt^5>_&N9M^Nii|#gYo2mi^mz)Qe4dtK@~2jwNd6=e{D9NzHS)rYZ;kW9 zd3_}j9HNZS>um+x>rec*4fZLSJ^;VRaPNsXJz1KOO~eWKeL8#-%)`Cuq!Rr8aov@N zpD!8~so*}ZPY);mY{1}OG5Vc;a-MMd$%Fz9q&yC?jJe6=;#@& z8SfBT0~S0bEqIDlq6NQ|7Q93%(1I7kX?V?H!7ro*zaSKp1uNzY3&!OuH$@A^=7;gH zTKRShejzMK$)g29CA1(_2`xwq(1Q8hJ0yYg}PWi2xU%NV^l9MyZ2 z^>F9~syOs=>c!qc5l8doyA1yzY_LI|3`g<>MG_xo00G6r3{+AKHf7xf=ONxFgmIA# ztgqbVt!+?nY(cOnwji}AZ$Xn3$XwK(bWcw><3vcS;rf;WS)SXRfbb$414SAJLtoAIbhbhBRdj7N^UE*kiTrqet@KomXP{;bA_U_K z;8OsFD6bmrSHPdBX|;W~cabrcK%?|iNC8SemYp2qX=ww*X6X5=rM zZQxw|%1R2E&x1QWCV6`4APj%%o777wd-M8E>`HEp7`;aU>-v*tfSy{wS1(mdcmCv= zqZx+@bBCt2%mYeQ?S6J+oM&J_(+T4}<1{0_P&pshlvqo?o>Q3>7I<2-`G0uU8;uDxD%zS9 za7FdTg{;y(Zwnjb$y`sikwzdN0Xl&Rc#LcDZdQxzQp7n*}UXgm93(`}{ z`JvSFy+Y*kcV< z^{U?QjDrN6$B(Lz_>qKv*e{Zy1xX}9wxL83n`gr7&|Mew=c52b?NZqJj?pzqP)ClC zWCD7-E02ilzv~fk{deFmPeA-eq~%Kwmc2O3FnFOq*n;_o&)cLu zt5=&P_GJmPlpEnxUS(F8wN=urz}gB|2Nh?DHAh840oQJLK(F&Gk>BV_YLR}&aP<2M z`nX3+JF_rVn)ZUdkhlC;tlXWCL#v_Rm$Y@1sny2fjn_cn`Ee0Ke+&jXONmZKcp3hhde9bVl&rzc7;mJ3|;5> z$*9NiW#kSTOD1M&tI|MXX75cUW(wHxCl*y5*g zsX#2AnbAhWGvuCh9q8j%G?+!Rd zZoKS-Lq1;SMGr1p#sTQ zClyNmU+fGpKa=8wL?gC5o2J)l@I>?9z>5RW7qMn|KM$(%4W{mgXLU3BzeW;{j5@ zM^fz`c5J_=lR*J7CGwA8z2inFIoT#fn&{B+351cFF)Po5=xSaf& zrvKb9O+6fP6W6D<1vB1z%rmUE>O?X*L-}Bs+Ex%)D7At{=gaoy;K%%98j+k?LS*6H z4g1c5xuWkZAeGp6cydPHK3BvCcaU0)4{i;o!9Ku%_@KWh70(qtshAMJ@Zd9Z#V+6& zslaaVk8qU#1(M2cfV~SyWAB2$f%J@iZmwATpLde|C>+^u1X=6{kf2G0^bqD}sKn^G zU@7!mYAN(wT7aHQ3zX+pp6Bpf3WlzP`59UY0ftdV!@tGD{EP!n=4U$mJu=VFP-OJ` z0R#{Io*_YndrvGC?RkytoI zYSHaq4@dqiNGjbPzmWj?`0*H}kNycNp?^}9&_8JbHXY_>XsOy_tphRW$dT}_r?+NQ zov&OsV8Tl9z!=XgR3eq!gz&J$)z2WK+lrK<1)I$e)B2s}+bq~slN8u8Go1-(HBhIKQe@b9fym5Ia2zFv5=e|Ec3!YO+tbi+0LskF zv|wn~bBDK+4V*8Y$-FO9GeiNJnz@ru#F(O5FvyVJ>IEt_vxh*V`1?r#ioa)p2;);o zm9RKUz|k%Mj&WZK&gHMH#E`j}o$SJIGI|OUVf0kNNKsdEm|j{D>+%!iD;6)HnVGAE zwL?*v^0*`v6`2`*p>i42G=>zQrussmDTP#;)+XSnDS)G<6x^YyOwHU-nu16UO{J{g zpr-nl3$~AkFtJ}#k(n7uSaVH@EoItcC_7QkD>E}L0*#6mkOEZHB^9NRn3-8lAW=tv zL>(!lLr0mJnZ`~;d3)(Y7mCD;YDprhbUI-V8^Vq)ek z0*wm3OA1iIx1@p;5?fLwX1*pks4C!~suahes!YthE>wLwNL4B8QK72#INKHNRbDI7 zG7T0fH*|QdOn1~>#JlJ7MmqwDYNnC`RI}Y8;jk1^rDQS*IBE#ss38S+Xed)MDQs^| zZ_4)6zHvH8<8W9hW^IIFMR9ZD^y-U5X2##DA~Um=2;fjvCP!AGs;zitW>uoRlT=*M zieG2#A_UL^`$z$|fVPYMUeVjopnwjIWU7WKjew~`BPq>tqS2B?B46XzNaSliCj1>5 z$>hpesS)ODz9--!U!%H(g#T8_1*i_WB+R=?u86l6$*c_srm{AQtQy_ng}*#&({(ZN&p`a86EF40UsT#=#A2~(7)6lyszHMnfs(u-P8v>L z9GK>D(U84ZEbFof0hP5`uvl!|7Li&c56j(<Ur^NxYVCJTj!1J}5xSZulUTQPT>bl;K;2OfI^&s(mn&6<=Z-f#110go- zk5?vnTa%ey=51afgfMSI3)C9r3IXFC-k@N(MEz%d?*LmVAonx$C927T@E~t9!iIt! zu_{5~9nl5>tYpfD3IP35q-@}lB4y_%m7OtfLn4AAZ$l%&#Mqd(>CdIWyv+dq3-dMu zmW0XMtZD4s9wKj3I<1MfvSv&o3PD@R#LakBI$kngfA38tZbq`6{jExDcQfyFqd-v) zByPG^Q-yw(R{j!^x7pX+`@V690$>>OU%o`-ZI&z{d7FC(6!Fl)1m?M?Bf>p)#)ZQgN0@}z`zO3=SRDv|yvN&hmbQ1nj)=&Phn zxusxjnMM=R1ARSmsYrUnlUif|6`1sBNGcSANS4%@C@{XAcfHZg35i*i&XU1kQi}|r z0vU`Z6^cP;I|KeSqcPJ7i45{2gCbIk44?uSh}Rj7jigp_$+L68aUD)2-QJH2dd88bn$OMY{&C)WH?k(D{2 zvIC{Zpc;Ic;mgvbg}P*iiK15_VXB(g#jl1o!Z zNh7mDR2rETDkjvxW5x7qY~ZCh{lWp%SG*#WRfU$nes(WMK8ZBObjhy8LqYj)dW_& z-)iU}EfPhomx)ACij#87aFn|W$`R0aMWP5K#Y7QRUL}eKjDweA`Byx~aLR()_UmzI zg4@P><)=JgPW+SyD2a3tC5a&&XhjU^&{o8d94&xFNU}i-R7Y7&WWepMn9wBJBR-zEd4%0=n6vO7nmx-|XNrDgVDAPsHg=?DEmx-|XRhH!Q z4y&ztmrNH?J{UH)75Eov`hIwpgNH2lf>*0_(T_wH-Vd=?T>)p{LEkH+5_=VY2=s$X(9dK)Ao-(PS14!3 ze$Xe+&{l|U5JBpA?nAG;LiB(nQh`zX#1&x%?&g3&y}!l^;r%rTg+TU0>&;RYLJ*`c zsl<69EgbnQkd!AsV5r6P5s=4SG9`~L8nHsSC{+nvlonv~Vfu)c;&v~44_rqCQqX}! zeA=^)2pbqk?pOhLT+gZ z?D9F`Cd}MCD(Sciu=4R zZGbA3^#p-Ni|kw_G6R$@mz?w{na0_^N_>E`a+L^H2T2Hv)_c6YjK!PGnTO*QayepMcQr{;fvVS#meW|y z6VRv>5Yu)`2_Pys?GDkN6w;xf%;HQ238K7dI!MBk52V4Rh#7Z?yxqV%Sj~sw;~T$< zB60T&;p|XRrjm|I6)|)7Isr!&-ysF4;_E_13WyD<5_ew^6jb(gsVv2DC@T{@uSjJ< zCWo?8*e8Ut5r^)GW`{bYc4PILePh7wyZAkz$lujltz6Hcu}n49UM=!>DFhOg?Mw=| zvUM77nh zji24$uCGYq-9e;q=quAx%TZrU;%zh-0Y|0pB?YK7TP;4XqL2^>m;9rDZU%DYm2Oxb-)z(vYV8BW4~t;7OUhgcHk9VM1=ij%~l zuxVf@RH-{fUJmhOZV;(E_z=jp0KxR#Jw+mYx1k90RN6Xr-lt4JEPMY;-WlQ zmit3JBZe2MSXl>#-(3w|BX-Zj2?{QKbJm2}noL|{+c{^f5zCPbLO><(=EB==d<#9F z)FS!Y!;xPh$n!Pl>G=F^{Gud&D>^05*9OKwLJ{+Ke5t1QTO+K}ehsn8IO9nIjEhnJ z*_CmGmkNuNLi8{~(_Uw{zY5F#`(D5pTVC_FB=fv{MfD{@2@`j;K&?J81b*6pt0V*i%L$nuZpW$mAX&;Uz(msFiU-|5T z54@cdz5F*#`;6oT zUwMBwmZ)NRORmC<6zc_wDf32m5v;(-Z*JnHIP!bfs;`OIw->$d83!F07~wtu(<_f~ zA0U;ur^nYtURoz6(U(ar&Koa=v(_1)2LU*+R@@~>_Z(j*Ceh=BfSN=vt`n2!x1<)y ze-)1WPl7x;HpZZV0ZyZo0dBEDvAu84s1-v;GICElsJBTifnyaaab zig%g~87H9D1P>=52cDdOXsMcj9$3dt{xG8#EO~fhf*C(}|1^dXg1nuv)w1stt(HwH zF`nqXQv_l1NCgIAEVlPrs6f~}mh`i?9q(v(z1Z|SMSD#r_P#3aDLe2|D&@8;-y@OPP|6CI!tL}! z2p0CF%=KZWh;c$r=%_VyU#r?`$dR`P4b_)y7N~wQlYn7Ap2G+mM$< z_$C`G{}yjTq_3q75Bt}4f`|Rf!B6%tT8ds$G;waUwjLcq>%ej@=XYWyEnEh4HF4Q7 z87A-oemYGPlj9QaRW1WA@m}MF-H$A;S~{tcZ=Pl*6T`8SakDZKTk{gSZlZFN$K88^ znEY{fvlk_SO;U8VN{rT>U1;p<#EQ1IiDCI~)hNrMB)`NJOq&e&xH~QJxA;>xWt`zh ztNHpwvlC-$mSYp|tGP8|2G@{3@IGUMc;LO{%55?1cx~TxeZvNJ=8nAf<|eB9k?u1m zYcT0G_K9qMy`&ww;0JK~FUGm9c%KK+ho;4RXY7e7)fCT+ac%fearc zztF&!plM&RUmNugvuWH&F;0rVl}e{2bE*b|Hf?b>`X6T%JzO$;Yqt9`TEL_EA9dRxJm1a?nLU;51$Pw%pkCDrpaF}qL^g!Lvk zt=BQ2k=|}2x?Jg_t$htOb0$Il-xx37#)`ic%h%q_Al!x326F5WeRt$0?7RBIF!~(HOJN&2Tr}9G-oC~+<9AwLRy@|% z+U!fk5C(KR4cJSm)nk+Bzf1c1>S*R-g8aYny9G8@!h)qRakSR7{j6Xh3^)%Ep2BYX z!r1Mwup1xqSX#qz2`r|eug3QHXJgnu2i;t!g{x|I4fb_6@1e2?wgK!sSydK7k<%`k%pwreL z;+u6-K6j1f4E5DDuTkE@Y_*CVo%Tni%T;N%jA6d-HM2E`{9pE3y+tuwR_sdCfe*D= z$=+TurENy}Dr)+OV%B>!OdF#JZ#0@dtXOQ0gC^X`0jqh(_*^$*H9fmn%n;d>J2zWZ zYqryD8B&))@V8`IE4F8x?`v}nMda)GDifV6!c_`S+5i@9omh6C+A;7(8vIUSC66?$ zsZHezp+uH^tZs8HS1i+#r`D{M5Mt$R0TXs+SjAjcDc83r)&>Db*^;`jA98(fny0C7 z7gkSi%1&P|-zD=6QVb1_o41>IuLpJw!`b0a@~ZPB#dPx%LY)EADe)orS?7wyr$tw% z`1YAU*-$P{AF5x4=@@Q$Gb1)Dk7P%xyRnAn6wEkUb7q>);yC=0G5u1p`eMjzM!_y{ z(v3C?(w%4xl7<>2-H+BFX{hm&=GhW+B85QQv71Fc#m}67CS%T}V90!yWWI{lAOWaB z=38hDGKU&Jb9~(o4PL(1lftX`tRg+?|&7Ec>=`R=a9La?099*PE zPIBJ-zj#*~tI+ad9ro4--nhhb9E9#sU*!e6HjWG z|0EQ}W;kzbE*umq@V#KZYpa94SLZ*x1m%nnp?QifLi6S~6brV`8OB$<1jBZ)7dh!` z#OigZ(Yv(XEMJF6GwLp)XyNG@8M<~CJ2KZ-$JA&|Zpq9fR`8N5^5{I@N4l9n>vEdR zN@681yBnHyX>sAU85xlrkTtJZ&^iRl@zLIPW=d$3R+S36*iqvC^z=4+Q|P_#7i8!O zcd;|CxvR2M``k_J2q;#=``pi%!zmUQD+0t~g;x*M4S~^pzo(%&!->K9MBVRBwK$-*Fi$!$xL`*PxbqzdFn!dqlq*IHSG4&HKGD>=b^dP6JWHu^ zD{RkR5Xr75=eIB~&?>aV*}K^BM}1wwAYDoUq#r^d9XaS*WJiLwNn(j@^B*vywh$M` z1_Cbpd~Gm7>5_H6>YAD0#L&*ND|h;8+Y$IQO6?#+*ET!w@6}4LA92TOv8@SFcq+Vi zw|cDo6YhJ=j-;IB%$nVY9pC6%9s%HN?*_dpJNBgeMZNzPw(Kc)O}+INO!t|T7~_H@ zk_M>|)F6Bo?gUYpaxwa!Fxv8Cu`+QO6OezEp19@A-Fpx)U_%Kjf%zV#9 zm@8>{%1;eGK;O89-DohQm04`7eq`oUef<_(?gR(1cCo{Id}Asrhms!>tYo$C zhHaXSQDCfL#(lmR9b&fFp8*EXKZgK5pBmZ0e1S^CF(Nrt7UzcRsA(0F&vkpdvqSq8 zd41&;cHvcbKRb2o{9jUR^eupe0V&lEi*&Q6yBeCmPy{ZCwvuhy8$!*7?9yIe8r%4w zk|Tnvne6UbCj@a+v-Vcv=>fweSB|Z3$4L3+_J-`~`yk@iDkMf>hn#wL3{;@_Ulkjg zJ)IcbI*a<|XNEvPjfaFnXnES*BLqUh1HNo?suKbA2AOKG31{5VoL|z=S=AVhjdPs9 zV9&1~^ou97~pJzaRfQQoePDLHY9(WorQCRlbn(?m^nmtnf+SV|s;cIJCikQ=jt9G%2N^ zkxd@+CIXO=%>x6B9NF;8y7!Oz254sIZM0AD1y1{In7)o}Pio*`{esABb1*4lDPvs- z%u~ZA1!j}3%xGpWx$2$~&rUq;%di(?8+Ccc*VCLvDf2e610w$US7I93i*a1tl-Vtc zWjyQKq|Ij^KkFM{E~K>L-m}`W6W7Wm>vOk-*-x(8CeGu)@|P|9VR8aXe$JPksK#4) zK+>k-&gXo6?6ROP=dFwu=5ESASQoHPbyl>0PGvj(ndf~Y&4Yi9ie{)c{nko$R9Mbu z=xsnf*}Rxw{{^-h{7Lt(HjC8t=kOO2?B;pO0@uGE^AfTCErs=ORZYLXjcMAn2Ie0W z7A;x4qGGcCYdA~Zx?OxUa&j{}lI)6S6B|spP5)^do?0+}qQtP}lE;p0qu1Szr&!FS z?Zgp**Hk@mdzcxqIm>A`0SwqdM zRHvlovorMXw+XXMawVV9%y-fdcnSh-FvPuBcAS_ z13pkJPN=ry0^sq5_WTzfUue(p_(H74LrZu=6-0d4vQ15=vljpHJsc|jllZRhzh)*? zM#X;ykz&by{i8RR%4H@0@zrHL-}lWn#}n!z{u6?qHI9k+&+xOp6Xq-%3J=ocL(YiD zf0of2jFUhO#z{8O8XhOn^4Z=CzI5HgNciU=3WX7v{gU!gT7#6K1}XoO)*$8m0m>Nt z`IrJA>RBeDKYrdA{rQQ4A@8e_cf<}byFYq@1fT|a$I%+(eKo)vkKxuUZadLzMxjJd zYljSK(Hf-OXosNOkJeyZ32HE|1VZBtI0c{k2ALBn7?K_IwlG#_U&Kh%slpiO5Z}%>QO>gM6HrbJ4CZ;{r{-SzIixrGJED**pEMN zgW~b4=XeQ?Ur|Cbe)TrR;uDE^ikIL-0=Q&#^ zM5UVyh}eXv^qi-aoj)H_wJ+J#|H5gC&vuA2msif`eQ$Q5VxU?bb_%sR&>B?hyB~eC zOk1&1Ylu{97{x-haJiTrPOk~!^eQjLW*a-y%T|JOMOz>ai#6@D(t=-noi%ecl>v2H z0Xo6a-`EwTMy|qlk|JD%!>8`cw7gm-g=N~^?&b!CM1u^x?z`O%rwsCxG)O7MQU-Y< zoIy^8Gl-1%*u+AE*h_}^{VJiI|)mYEkg&)wHIkXzra~ZqBbiT1bk)Q27utR)9uX2_8nt01Rq|T#02#L;96@}xm#|rfG9q7 z0rc>D^+PPKTHY*)+LrMh5xZCo@f*eG_2nk#7YXSAk1OS1{(RrVj0D2}-UP(|C?T&O z$A@iASGZ#|?$i9*W-vMzKceq$aV?YCe>d??t_y9169tW`hV zy_=8Dn=G?rRaCtZwES}+RZ^Le}+uP)zKNSx0{RQcr zN@{5vez%R?Hn<^sgf=#A$R64ymgQ_$z$bA-_8OG{eez{q;-5#wA@iDfm)X$gqu`s> zT6rDJPaG({89#Yxen^Y4$H3Ms&R&ducepk*%hdYd;s33jm&n%D&%+Qcdf;#M(E~a* z$m<8&w}?7<$z;Zqfh8Lw^etNn@(Aq0^n^XE;4NPRv&J5WgXq=vgc&s&>_O)M0nXOV zYg|SFj^~zVdG+$@>s|M-|5$mA%x*yfbPgv#e<1+x16MqGP0J=hNkQ-OtWW*CdiumY zY3^#&w zZAyF(&#~|0GUG<@KK=_gg7@tSyAiytao#Ex+HI(wo?h{j(MFDU*n~8kMZ_mIp8<}4ailv*o(*AR*#J$yjL0J#=W6d@=g0#c-`1&|0RNRc9(NDDNCb0x%c3Uin32A?BirV8?7` z$859(JBAA}1#ER}n%S|}DV5c+*9z+xFRWwcLQD~d9aA9Kv60@6xgB>#HP%=jRRTM; z6*?tWVp~azx#T!TKyp6>kTI>M$a2l0K+q<*7E{2MO|F?X$)^%5n_MZ(CVv!W6LT%5 zh(ntw5VXl=uTA7&4@%4WAFK2(@prUKg?FW0Dv%b_E)57s+69o&E)-eXMS-AQO4hKC zWeV6@i*=`*aV@4GB0X-9C}51r<$1)=EZF6*9~3J57&l4EfSJW6NwGyTRENM{v0!6QC=HJ)(EkKkW;@wkRkrWa|dNL(}5iCkA%N?e`NUJtbyvnphv}}u*iMuxQ>);bM6n94N#@YO6>Ac0mT<+^`h<7A zUWZGP^;9~>l#c|&<91NmYv6u;Sk{Lc+v|gAu0(cIFg^>o5>deDUAPiiKGL%iIXsfA zL|Tr*As;tN4ta1~Rw4-+k+OWCutaZCASeX$@Uz3S;m;U5Ql6l`D}dehMVy7UGeKUIng?$g25Z3dF~?EzVyZnUxUKAr~$> z%BdE~cZ|#mXPx}iXjhmTy}WAd9tG>6zqNzAcve;t*z0e&AfaiE zT#(R2jCdX{NTv#{aX~Uo{K5svwA?}$BrWS_hw#cVqhk2Cj;zUnmL~5zvsSUC)E3s# zWHAAoicDYrkV})g4MvsY6SA{LvJHg0+@lI0FLQma+@tE=EUyTUo^30^7mv;w#`Y`3 zVz=tET-^SF-P3hrvTW=uMZmR;w|(bpus+DJmrRH*M4+`DvJtrWCEAoqZil>+i`yaL z0$pa>CEkNy8~Nn1SxsZt3ngim zgR8g@b%sK*%6B;AgVO z2D|^7nl)8pC6`!!D_>8?ikv~gRvc8oo;X;X-=CFLofnw{!LadcD9hEFLxSNubI=;! z%zS=d9`Qg5K**O})kiGhHD+hkW~2Nxc&0E7p0zaizc9f}X@c2)3cOyJ0`FJ~{0kG{ z2@z!stP>vVs8C!%D2V7SctS)0TlBmC1wEb+QRp!a7h59Z@NLWKF%HwoPR3z6O%wOW zIQ+X%0ORm&@eAYd?InfA;XQ9o6kRHhUC9gCLK8} zj4+d_#<35xZn6prSfmv%VWrair=Q5dVgf5f0hSfPU*HFY^j8-5xEp-6y zqPW*~nU!a-cc>!RF>ZE@(-te)P{3BlHkcjTNU21}=AV9{@P6$mv|ncKp-97iDG=<} zT&rJrrl9U8Spzio3snR=b{;w=3Vi2Di&@C}gMefq3y`spMUiD8OM#$Wu#lyItwL7h z`{*Ik2>lzovnr|d zINbH#SKZkDvh5wVfbzr9eiO_h&Op6MTTri2SF#$ZU>vSi;VHp9y!i|D*m_EWse?b0 zZOvb(p)vvG#9i~AM-1zZsqj>Yx?|EZnf}(nF>S;b579!^sSNiC=>$sVAxsAfgi@Fe z+z`Jo9k}s+q3J;J16cuI7`}2K>oaD2K%CM_2Z|D~DSrCHy)c}?-~A>lQtT6!=C=-J zb!BCV2$>TE5Sm%$1DO;2^kvpumZXqCP5>W!kGO8`zvTsM`iApD_;NWf zgwqzB7qCR2fUWRWd%29;bt#p1F|F5JUP$0>yj%wEBcPQi5?H-61Ggd%1DpcE87~aD zi@+VaoCNM6R1@skK(l89X$$rYs{{(z>e*PcXD?7Ht7p#^*0Wa%?U@<66?xb*1%f^6 z=hHLXf?7j0!Jd5xJrj}pL(*b~xI6-qAr6o+a#Lg(;uHuP1|zouwj%c_${C}8f{66E z1*L$oTOasz3q#a>g`bGrf0_gKCv8E#7@`!gPl$?ILH%01|Da$a6AV!b7?rzYDTgtt zC^&$KQNMqHF-rSQ%$u#%2Nt6fohQiChS90F&O;Rk=qN@6b(3GygQ0GXNN+&MS1ifU|* zf-M%SGvN$$CY-XE27kr<5i2PM#*+^$3_OgVQL1bRPrIGff$gTa7$0`5kWuLG&5+JaFDS}-bs1{jsnuMG&{@88Yp!|qUA~{?LN_BWVlrhZco@ z;;>;Myu|;qMzcB;SMb+ra7PhaL)MHoAp060O7@*-3$lk6h5gLGvU;)qQZ(c|NOHE* z2IM>lIm_?dvhlPT*+a9!9uL@XiiYgxNcPKU1G1lED!zfXAZKV%IQI>*^j6GK+a~1!ghf0$pY?4k3R6 zA8y!c#EuhCn#4R!-5Zmb?+qJNj-Mq;iye01 zGhP!AOi9M^9wlut#pmgsOG$GtrS;^Wmb9H?A5b!kbxT%atYb@P%j{@-0&f*zyTG$! zY!UqM$R{HCJ25uTu~PGNvhj#boNn&;h|N5M-~e7p!<*@wSIXlDn<-C`0?ZF7UPC{( z5^umDM1G$YBw#_@PXbSWp<0SwbQNCU%!;o9n|P)g z6cMtj5D}$USt9U~aS$Pn8DnQ=jqDs$YnA+v7^~yQv_@e}8%d^`gU@`#)*=YB#V?65 zRc&!CK)Euu8mt@TEK&e%Ghb8&jzlQYDL2dx@sLLz7&+n5atUk~ZO4(@UYL;&dW<~3lC7B# zfM-|WuQ-Q+9(R5fdK{lx)2rby{inkC$)!8%DOX`~>qd%CX%jx%>-ofFTQe4z25+P|=u4xo zU(NB(9fb(XWO(P!50n6H4g~1Cegx)~6#0QD3Z{)J=c50#rjRG9CD6f< zEYDn1XN{a|>QFXvB`ShMpEWW_^rg)>)jU?1fT5tbCk|nd01@~Kzaj!3TIeD^v`QE8 zp;aLG(B^av33j(=W%~x+*rUqeL))gctu<#IP3ws#0&wsv^#PC*CwB?u4cgf1@wiSF z1za?}vkg3W{>-D=+FJ40&I;;BZEXnwQ1Kd?&!~Fn#jo-g+S$4Xz{gu?z7Bvty1lJM z0Q@uUZ5`PqUwr-5HF9$D*Bzh!KYaz zoU6P+8*rY;Nggpv|KuY%Pkc(7z4L^&iE9I3xe)k;wLL&f=8E+n$+==ZWrcGE9_0M) zBYBYX2ih#=3hmV23HjwCdBOq`V?5#tQgFIZq~LS`9mVNl0TqDLg#y8RF14Sn4O754 zuap;(#J_Q)LqSCPLH%u=RC-aUffug9T&-m~nCNza=`_}WvcnNcUMr{WWZHs; z!goqLt(EVTcA?E^s197qDs(g+1Fqt|QZSVGHghSrU+h_<9#wQ zJL7K!Q4Yh_~k ziw|e>rOWew$Nt7z&*Oo~De%SF!M_uj0*9`XlGr-peO{~R#nu%Pu%p-cO2HIZks=-s z?Ik(A55-k$~YrAlvpDaC_2vs#d%y=w)PqusxT8v zrNQguvoV;q$feS&i|+LP3r-Pbo+2MIV!DH3p&f)3&=rF0O-L4lwl^RsP>nF7XHYTIa- zrH)hWaF$XKkv?;b?P--B%gF$ZX^zBA+JYkyJl1xQm!9Bx zj!Uf%{mpRM(`SK{7@2A}zx3?H*fpQMHAlUK@ji{dsAPsWO1IRUXM zf^Y$G&o(ayHQ4~4!!h&(Zkr|3e(?bpz0rn39I@R7ezv2l9;~Sjzh+C(>my$I`D652 zERjmYm*Q)0kb67jHpsml_%OB56OSLzBBnfzNNcEGO`&uPUsR16FL>hy&jj%cH+UxS z)akaWfv&4MHQn}Ufc+hQ`gPma>`khswY@W!fKBPsKYqCF9nR9>n&Osdk2>0 zA+v0m>;oc49zh5oIrIGu@(4osY#V3W6cVx1vw4Hu>DjnJ9zQtYhjCP5XdAhGj%_5n z>WiRV;<@u-d*n~rfED{o8^rcV)civ&<5}^K!4#f?DOT;F6|43j**eltk)nyxydL+l z+&oI6Eyx~PaC4^xZ9&%1;$e-Y{6g$v9Y|OKy8D&#DHWFTHTd|zTeiXB0$Wz{M+(s^ zc>Y_q_Ob5^D6QnrrUt=EzWi!|ljtid`MhOPjR!5|dmW<$vk|r&mxQYq+Wx1ri4=}s z@X8SodNM&F6;~Ydlw8|4Z06rkn)ND$5{2^jYAHMpF;3{$`|=N7lqzd<{U(N94{`gcDWQ7r&HURA&JpXuknoLNsL zhg7o-+e9fb%k-BVKVoEil@wheW0UP={lG?kWsj``J4pFp?uIvc?JI2DPHvQkaKOfk zw~pu)Ydshx^{{5AB{i3N5t;TpR@&@ zjg5NDCV3@JnN7Za9JQ$sKd!XN>&N)0L~N3eN(5zr_Q74YW}9RI^-Se7P`d&6d^@B1F{E`tvjAY~^*3WR;LsxMg8yr4L(kZ}Wq~cyDy$O4%D` zfGMso{nf|%(U+!}!-2(oQJ9!-{l#E3Q^eqG0%L-suZ#(fz5>C~#|n}Hma~btv`_nl zcq7gx3L?6GYfu;5L_Y#kxcDaZmyjEa6K`8TmZ!2e!(VY5L=xqN$xs~uk;xE;WT+|+ zAKfs*UF(!>pvFHt18$S}Xt~m?8>JIt%%3=m9y9N(t-WVB^>&{~k7-A-(PN-GQIAjm z3D}8)9n3)yEH8{dhdc+K^PKJgKf%)-z!C9_2e}OoU%1+U2!u1?XxfTCm{h4% zwV>BGLt^`7Z~~i2+i}*KR#E& zHCx+%VH*`NoDwf@QJS~*6H2+E75{7n(OrDd2X6LS5?{om3n5whpo>ngO<`>hrH|e>x_>H* z5<_SU7A2s?Tl28dRxC_FD;6d|wpH_(Lea41G09{&z z{7I?A9L4Sk2+mR9VB*aTzV=dD8+T%`y_UwJw^%*nn5&iAB4?;lw8g3|lw@|SEwCio zjxjfv*~RI{ADG=NFdTzH7X^muTV&v^PD!j(t>+dqRqIXLF?6K!v!(0-0@5H*QUoNB zfb|8CfB^~qdg}{gw#b0=oFCWhLb$#pxdwrw$U~LD4&$=F;#gm(Udk@(3v7XpjQTvk zQKe)Q0~U!bZ8wVypf45~fH6iSg)ydOV17)?6!T+Rra-Jko&vTOd55S*n3gGsNH2;E z@f2)2N*X>G^Y-CsS?(xl@668pGdrv~P;MNTY&R$+F4+_uR0Nl73K+cuYYs)W%9=y5 zt;AEoIpl48S}-q&59A@Gw#p?NSR6|Z*0W>2_oIlzC7S{fd8<}ZjG%cr2m>d+JG8D@ zcW6en!RMyYR{7jCqAgf==(SbW9Uh}C=-xdFQGPJ+GTj>=pl(~`1JsRjKoeov;n}US z>@b!#qkz$c2zc2Na3tFHsJ2zs92EZOj?gP~N2OPIdo`71d82}7dE-iojozprN_tUp zP{3BnVcWl;$C86TJ(e5}{~LNya!}~ef6r1<^j`(X@?QmP`R^^$e{WMhmjC`%$OviM z3iDs{?Jh+e`mX{(|4k9hRsZF)_QH|Zn%l_3gzj5)n{?l*w8bhuwBBYGAKKD(;bVHM zZH1)aX~0tKsfy_ompRQ5vpmn3)UG!44;@R9hx42QLGxnqK>_2cvJ$Wpt4j09v!Dcc~8PpA)31(&rKDUGl-FO`BJwtI@by*Kv#xJ^zDKT>S; zKU~(fZvgD@eTB>hcAxhZPBlPwF%2PNsw+e_Qz&k zFz}fnJp987@{jfK}SYsR)$_?9-09Ecs}&ymEa|UkAIa|Ikq#u*2O+RKZ)#9 z_2WDE#A?nayj8<`F?z!5{A^cyy&xDG{=HVd8~?d)-&)2^ue#Ux>}-2mp11N%qnicv zs5QOcgO?a)4}KFIeqqBMN?w&j!cALNh&T5;cF_7VmW&(A()9~N-DUVo_Z zYReb)w@35zw}MJ<>SHgj1&xKi?Yvv!NquY{cP!2x!jqD6Lim*@?0MR|e05)Yl95aL zJMlF~3Qs!NBT37{`IzVP@)7#VJf8brb~68>pMBs1d|w_6fNI6TG3u@T?UjwUh(s|^ zrMC+Jb))$(w6kC?n*)CrKUtS=8(=?a93y1H{US3RzI2Broi>N34zjn_XF)H@4r>IH za`{mBR4Krc`Qnw8%j#pWd*yl3)(W+BXC7a7=BX|*WOzJ}rI5gn_AZ&hD`eP5C<8e0 zjH5X}nqi+AR(7ZNvDi^$e%*vtMnwxET(}0GwYx|ytt`(SA#(7@O6Ag`EewyW=`TLy z$Y)e_!2H*}UTI!rsJ)fZ$P&SO47Cr72_Q4G;ZEpZ*IwoLMM2U|C8^05rq4e8+Mt@qi9^+w|v(txIkU#Qg*t)eJs zJWE?II!0)Hq|NaA4!!t9C)f|~axFwBQ5&4MBc(L|A=ZS@WL{xgN+_R@>j-^pc;n3EFo*#_V^#^5iC^M>C(q4H@idv?qAvqfOpL&Ss_&K- z0E|%AcF6MKqUTGrG(NPzJYk)qBG22|tG4zrKm3fnim{0_!ZY}!1~0%l?ak!lmj{>J zLJAay`YaINM-u(A_wE(n^#8zRN@yPn8@G-<=G&1EETwkHxf~zEZ!NHh0%?5UpuP_{ zFSh02vn80HAa}tid$ex+qDq2zbJ44#IivfL@;B`EUya`hB^rB$!`@W?&n}+>LyJ z@A8fi#~JTPTu`F+7cn{8g(o{1H8~G+*&CO#G%%}2zwbq7Y;WX{?q2nC>MiwGG_yqwV8@A8_(@M?7zzq&+Bc=s0_DsL@7M zvF-d9;e2h&U6}71ElDGq8`J$hyJWg=^d-&0yYQSwH6n&_0M zM<_CS>~zG;Z>mQ!($gIrUQmp8x1DMqs~Ne3OOJ1W_pj6Jt&J4~s$H`>z`!ncR$MUmasb0xZ~|Fw(1T41lMU>=>|sKWE_ z1lKSgA?Rp%K*!Nl7>iE7xWHc9s7cU0+#CO9Z=`UCZnWk3Vd0^~cdAR@`2)ta*vL2@ z->^&#_qB!g3}*BqEYV?nD9cI8?z;tLESxrpiE#h&p}kpzC=1 zc&lahN&HiL;}X8)o%w-J?4jBe z5dNt(!LbVd>{~GA!%o^87~lBd3w0(!Ulep?|G$m)ea5c=&?~s@@&4!|-S)P|{{o;J zpV+(lqfhz-9+wh({>Gq5{OJ3zS(Com9;c9t2PM*aP)bM_83JaCa5s%~U*By1UyzYZ zI0tep^Ub|Fd!$R+D>kXg-`#GXq<7fEtL(7PFgg(iBG)ZVLZ3<8jvxKbZhl;)^&YV$ z5y{8o*||Pw4==gX-qFY)JkX?*cG~}IJWZj(M>F>D)Lr(@3cBbd33X*;CkLn!VY4=w z=S_|+OE68{S|aBB+!CQW^l>74D%BsSrod?(RCNznF7Js)=U-}Xl=6o67>`-yIq;wM zz!qiL5=(W@+Og^9_Nm573og>_7W0e4W>B71B1Buw*Y2}NYD;+Sz4rJ(^keth&l}qd zrOzYuW%v*K>_vdrg?;v4jH89p97h^`$sV4(+nGw{A@dBzklo_wQzM?UuA`xW_k(c= zk~!sc-OUpgjZ6*d2!7T5ZktE(8#-D$J|xc`<=*v$Jt^2I{+Z>yULPZ#nIKIV@)?A` zd37SW>j-4{F@z{L!jZ zQ;^WZa=!w4!rjMrru)cZHUQ@Y4)ZA|1n2h{|x;{|7*{@f{`6Pj^p~?K0nC# zlgJI^IA*-O?Qxu`XYEam;-6dIhK>Wxs^jqPO@0V*_y5V>RX55KY%oY=zP4R? zql}8A3C&&hbKc{EJyxMX?|A2eJ;g{N=xB35ulcimu!4>v;yR9tH`)_)!97f9;)#)i zx#OHYgWJxR2vf*?Y+PB|IOcO{R#quvf4Y%wLCX;h>v88Y*} zgVvBlh#`YC#AiPA*xQ}>t9?NcV>;;qbj(co<`Ssrm^PhHF0dym*j5;SpJ1carhhI| zD?jF#T75#$P3Db$vo}_lgOU6)tESRYQ@~Q*%&Ou|`{O~zS;EolW5g(RB<1%=S%l`x*rsjdkV^n1R?{%URLKZhS729zW(H z5#=+AI6Uc55MaoBhoYi89u)ab65))712^z9>&$ zS~Aq%D5pNhXV*9>`ixbv+OSMbX{jCGbl=`H$QVI%@Y&lpRH z@cD&ipXaybOE3rvf*kiXV=BRxX3gwY+jxUO(M_iEv?7jHVFcR~m%pnQS{hc1wRXu3=ITHu>hSoo zGpU2g63YCKhExk`upf5uUanllXtduNZ`^*Vzn|w;addvb@)cGX4I)$Sybyr5{{9db z*uoaaFtO

0VOJQ9}Z^sw6}27d4`z;$+BnYZI9eOyh-7?D77GB~f*A`33}6dJ z8^eb*b0qQs>5lWp$An6hejo4#Pq5ZVeVyd5kJ-8%ck zUA%fxw5AOjFN6(+>D75cr%Orv%O;M}59nBW-2;3=Q%8zXmuP~<>nQ-#vuc^0s}6s~ z=H9Gkj!itaHRfPgN6aEDFdRMwpDc%Js29nb73T!NJaxs9?!iO_di##vP)h;fdcwLm ztBGww9iCYDpCq|Y*cZLc+$Vf&zuYGbFn45v46#o*gn!)1F$%b zyLUit)0HF*);1lq;x=6@ZG~+*9UAcHKJfM2bv?jnNU#KRtsZxDbu={E61c^?-WQU0 zPuePYLxYDmyvq>H@9z)kZj2yU$opx@dn|!lyq`9Cze-yLZ)ouFM!mz24eeztCRoUO zf#ki0z%AYjkhi?&+Sp1_gaByu2*7t54q2n(8Scz8;N4{3vN3laDIaAJOu1#b|A4w> zX+(Dr%eOeny+e0;Pl$Vle$a9_eAYt=0H1aJpezmQSeb4@kX{WiQs#*InW>0e@ZunIpd#mWEt}b zxtc+{8TN9x}+WTQd%;C~_0=i-U3# z@e9%jn~2@@a|d~{@nm)50%^eQ!?Vx;-?Wyylf`KCkp;f}_dF`O_HM#3%NVPDG88%7#&^u~QDM{hi7z|ngi8oZ-7 z1<3z#^vr{vAPPs1io(%bL`2}|iG5!k&~YD^qI>pn4PPL{Vl6>|dWNsA@d;s%Bj-oF zbChF{LTo+n2M93^pC2&}p91whp5OfqF%BOkvxaX7SeOo94TmE_GqgjhkK^#&Gl%aU zkp#n6i+BGlxN=a`p(6Zx)39nr457tAEPcotL@j|Qk8?Eec>))Ht~`NJa@GKOIEGXn zj$tDr!5TwA$1$Yn-ZAtA^0lKKT@4DA^WunZHH{vGJ&qwo!>8}i7)P8!jAM94)V+oh zVjM$1VjM#S>K((;e?yF8NXe`*{6if>9)8lnjkgIeG}5e;@i4CP37k(FVF)X7ap|bG z25$X#R5I3*MjXIZbO7PSOBlcs$`lFlZk~!4e+M9n!jvy6h9l#uv!fPH;pU6bg0c zG^4~}>v=(!p%~~gX*HftR_LtZn**Agk07ijQuSR2WkqD&L3vPo4Nrc_G0aFMGQeDE zMhgLuF_S~gtjd#$roXEXIE=4#8G{Hq8mQl4>oL@aAI7YyAyoGa;twSd3HHxbKbAQGhw{$3`Z3s`X4zQ zn&D`yh>w`*m~T}78#GxkSqR0Zn>&dXb zX$Oa3^N*LS9Nk|ifiF7@5WnzchXF_A8~oSAk_gY>!xEcMoLS>3zV{7>%YQjNagO5+ zV>IawE~mv|)ij3%^(?TaPkgBLbVvTkJXlXpw;0RyG#*@?azrkuCmoRs>ZJq=*N%(% zkVUZOT~FZF+Hvs_x#rEItzy{-4Y+Isw$^(3TY`nWPe|Su3Ebj+!sLC6whG?R;Nfkp zr%N0K)5}AvT=3RIkIF(odD37phgK{E)TFI~IW%~fTMOzo1PhtBG@17x4ahwF=znW# z$lF{{52hGG0FZhF;DS29cxS$R#9B}vS`6y_EIU^bHpk*>9>ra|#L>@KW`Q|Q zYpV%BOfK-@+MP=wuTc=iJcd)z4u9;ompSSv*zjbh#V!?ybS>?tkGtplju6fGns7vg zek1@?=xbhLIV_GTB4%m0mM$RJBIN2{9~EoqvOI2uqm)8pCD=j7EYCG1TwdXL)E^ty z(@{RyL7<3CP5d;%^>j6YFErA==7(3pa*JZ4E{UrgPZ>=JwyDeYRgM}8wlHXU%b+20 z!XpOtJsjMJFcmSF^%elk5x~*$8V5Mi*k)c%T(JAwHIBWS;Z!N)LM`i4%I2wsWgf$v~j-x@*h1taEXTujLSIrda8I8nH z!X3wfV&ORCcTB0La75bfol=?_{r{1;+YUz?g%}<}ddg@N;UJzw6<73UUV25|YHYWP zYKzKc!as1?p%9}ZVEyEVk0*S$%khD3EG68$p0F5(5-!9u7L!Ks1akrY$#HW5{wZlj zf7nF*VNXDRz!kXlbegv_fk5;JDiHnQ6cJ(h1E8ZnP;{?9_yYOeeU1)FS8zz!+b|d2-iC;M42+;2>M<9=J{v+{wN1@|H{MrDnOsdR!~W#9;qd@^PgC(ZTSIm!K2Y zbK!NcAi$M54JAS?vD^}KLY7;~5MtCa>IBiU(usgtV!b7hmN-jLf!rCr}KUYype5JSRIOG@2&# zU{z0oWi4HEgo3zqohW|c(skmALYJ=he{?+SyL8=byiIy(tyQ17bs<%e3ew&VG) zT`9`%@Q^Zmz)zsbI!gpuzpg%k>sM_B&p8KA{eFUkE49x~$YtQyq`_JSLaSH?^0+Iw zc|Th$&;W)Dv=t}F()BMwj(q~f(xUHHwh`eH8p!~q7Q z2T>N6K79#5OlEqIlX7QM!SpW1Mg%|?M;R2x;H}+we$BC=54Nl{ouc?P2Q$(vdG7dY zj**%%$%1e^d5dppO(#(CSZb4a%X|pQ6dTk^i+x!j(nTVX0JmAJ9UjHQ%dud$ULX!a zE+uTyT&oB`m`hvAuibEDs)$}|ZTH76ebcc}!M6HvgkWPImhz#upejz4n0*Tt)Ia$k z1_1{D;pZO`6jagO@>X}vB^>Fl+z|cG*TlEQ!tI{mj`Pa$6XgEAs&^dCG^3n~E!PP# zU(4(;hBU%N-d#`pTCNk4NdwN|b)dn!PG|{fgD$D6pCTn+8iB0WZ>LSadGZHeh&h_0u`I1FA_RT7!(Xqb56Vu zDUJdaK7^a2GyjGd>!Fkk#@yT-jRXseP!sXB+#G#WbH-}M$Ap=%5-#)Bn!~r2G~)2> zGl%a0X~5z8oDSbt|7Q5YWu5?{aQLVw9KK(P2y6HN9fyyidxy^#D3^H@>KVSeM({V5 zljF!yG#t6TMVvzo1?qi@qX{t%pMvHcJ_YI>zUqHNjKfFCtl?X24IgF-CBBxK!o8C+ zQ}_e^!Zlq+f5IN@md2hC0MFAaZt3D{M}*AO$9yCAW}YMXVkot2o*d~kU*Ui08+;HM zeGqYLMzag7SnBk>e9KOvF4(qFL)qiFST(1b=He8U_qT02p6`zvUU_oK;m!;V!so6Bht| z+au0p3c8O*(el~y*XU{)r`u>qIN}-xi>fUM6xC{IszuR#c68ExXu<@p=dGood}g>4 zUQ)SyFP48?-dRhL>!Wbl016K|>P&?@_AFOgWw{b=99d|a`=!6&a`NHDTaqz!=2{7(3)PAqPdsbn_g~j`f)1|X3QZ&SO5?=VLg#6ST7R)v=%qVv=skr7l-7xz(3Ya zSOV=eM45ukZ@Jy{Bq0`ay5{;Wa?3GL6vY?jgZ8YEv5#qF8 zwD?D8o4HZ^vtMkt;Yq=fVmku2IA)9dbUxo%+4+reMD*3%*1;*|OP*8B*_7Ky4US2; z2)w2Tk9;QU$+=x({I0>mH=2_kt;2Kbcb#io_GR>oVAL;0@CZQ43#vJ*6cb|uio@HV zK{Yz^sqV2=m~qOZP{=8c7srJUS!8r0P-qvE?DRelzWg~lI6H=Ss^MInRxAMHCm)>g z?190GC?8iYN^d+r+7b0!AY2QXjV!kx$(Pz3QYISsA?ZVFLhagQMp zT1!5prL!J)*LAioU0q<(Wk!utoFzJ|29Pm0(fO$U#3{Zg(V4{h`AK-3NEjw0)YsEb z@f}I1LsgxVR_k~pVVTM8o%sys{zDCwu!<~Sa+x& zvF#KrguzFWqnbE7s`xm{GdB;f!owRm`|vYEx|V^ue|%GC5B3#h0Jj>N_Y%Vvu4lyc zA5O`;Twy>`zj(494<_9|LELk&`FFWx6wj*?86FgTx(L_aFIJ5eIZd8RbX1)eyx@fUJ|;xQp||Scr}0jl zp!8Ekc*Z-$YL>DLZZ0AI;Ky4!Usna9y%u#3>8Mvf&F@!wx-P3pMJ2Cv4%4doib^@n z*DV;;H;{zH*3NdS1Yet&$|yF$s~(RGC{{hFC-it{&(vzHH&w%Xg{78m>hfJ`6@Imi z^FdBQ!z|I1DdN`^9X&MQTr}gs=c3fdo&Du2N3XYY)(#FDD>{Z3y`7e?9L@Trbts?N z*?9&odb4+NHe$K7$2i6deGR|zG`=GuCX8#xhPUTGbag&RsR48w8uS(@wDzkWi41<2 zK}gK`@HP0-ncD=2&UW*qCTmM{tD?_2E#C{7mgdZ1M+xyf@u|VQW8n`nC_*JTDThAo zk%BLO%sMS!t;tzfGnAiBcis-Z10s2e-<*%KKZtOS7W>`TV!_{eEf(C%+4lkJGH9$D zV62%*-K#M8;cKku?|h7Popj@hX{_ISJ3nDH1ty03kW&w9EWO%y@*O0QpcpE@Zs$-w zzK?UK-s3yGPmA>;V$n=`_wQsCLWDVepk<=LeVrX1&_sHd?|Acm&ibqil_uONGSlX3 zp^m2R?clF?#i(n4=LPmMCB%7Y&;Vxz?R7qWfU_c-Nn6EO>(gi_-uez_Kk;PD9_Xy| zpq+U6J3eHbt8xHcX1wGo%e(jO9S(QD9U0`T!#?&?Xf0J}yQR>z!Op}|D}8P7GEdBK zj#DK`bNQj>SmsiOIw@Zd<=2NekLfqQlj+7yKc(`iQh!-P4GBl9hnYX%i;la8Ih(L6 zRHD>B{Cl4V;*zQV&*pI7Tj6rD$^z^E>S0LuUOo&UL9tM)SzSZ;k&P8Xc+RZK!Mwt7 z=WV^q_x#XBXDil?C?Fq;PT!NqqR;m@b6`9@{6uUF?{*}r@xxdwsNMJGBmzIYUB?+W zGV>WM8_=& ziiy&X_9)>VINBMf>G!_p1(%&&*?l5c+UQSeqvAhU-ZblYj~E^|p=aBN@}}Ehs#(|5 zV;TJLHC4GE07T>WO|v5frm4azRVvOWywI}`A0>W`Zp5j3o+6^Qq+GTfU_n zBH~eAwR!H#&gA*+OGoIy&SMuS*2#-p^|7a|H#Fh(WC-aUHKz=T@w`$MK5Io>XbjE2 zfIrslK$5)7_1-w=m@ox{N7PAZ%0GS4>1NMT4Xy7&xd_-~IDPy>rEl%{;>_Mfc>c)V zAw2)mbA#AqA_6~$9Th-m<|{lS$9aG)P>|uXP}-ZqZe6vx+%ef1&0C#m^*H<34{5D} zwDw-BX6ztE65nXj_9;je?l=ds^At&Z;z>KhcTRFPWH)F7e&OlN4`TZ+ijR7Kcq{gw zAIW%&&pZKL!4y~lhZpNzN@zNTm7ys3^{A*Hao3Smqb{lz^TXDsSWUpQJA|vLzKj+;>T$Zw4i_t(e#y8t6CLfPZ74_Ue;*$jOorNHTIkW zhes>+Sph*s&37PuNu&7q8P0Sz`EMxAYfk+s`_6QpXLEfi<1Crx;*?UFpQc()sqjMs z%LD`;(pSLv;?q>(Or!hH+0M5#wwt2kmppcW8;H+{?w~D@(!q(*A8})heM?*L69Xrp zMeK}WPI?X){5rG&e2igTTz0L}meS^Dh(UnZA5jJ1M@bZs`0#twWejDq1_^Tv8S z7e|1Yb_P1;neUSO5AUY3Lglg|?s>yPlC|OrtGm#?H{noVBF-ef^F3I~`QwX|hHOy) z{2fc2X(~Q^{-=_4g&A8*iNuG1f`B_;+wkloJibdxgTJNS1&obH>gA+&yCBp zywZFFlG;J;sGrFm8|==1-#JcWKTytALE{wve7V!fPSIBAPXZnRXZaK?x}u*t!@p|j zoURgBRh;0nvWipWEcI)s;^_KW;uzs)Wd+CTg8BN`Dc*e*RB#k^e0yu6D!moE7+jJC)}s;X-(>p{U-RRjWbQ%ZmjaT*&+k%gNE z0TQ0B@?-xb8%>ctoYAK#XX(=lMBF6IGd4NV7+!}}g`E>iI=-Tt8XLbou%*t2n5ogZ1}tj^p26kMV(2J9U1 zChXi9KJy4XL5hODol6X0cbuOa%clvx^(*FQ9v- z7-z(L%X*h{c$AiPqs<}#(K_*?KbSjcdLLjS^N-mRo~}Y3Z}Yk|5P}ms6=LQeqbOs{ zKL8o$YKko9Y6XHR*Ugj8txN&qsMrTIt;t@coP|+UM5KS|8)xelX@vUux=%f-A1l<;`|+0V`og65rva9S(2 zEPw5yvyHZZe|gcF$`(;wvBdp0)phxKS>hi0BftNPvkiHgTFM8WpU0<(amoiD*@c&! z?ex6!e4`C!*j=<4#cZcy4q9SjE<4)=6oVgs2XXkx!Nr%I-L>;P|FW|i``M58Pn37Q z#k=lRXZL`-@m6jt5Sx9Qb6#90+L*`hjVN9|L-toOuIWI}3gfqqrYnBSx8z64V=e#$ z55_zqe&NBGM=r>7;vr%)7Pq{i{3Ks-o`2mr#lINU#62wEIYeX0f`w=OXjP-?5HKJJ z-=6+3*M=Fc$N7#8<4W_(H(=kr72%GBsOSLlGFx82ZveTk{O0VevBwn}@tN|T7v#Iq zX&1aF!3|#LcV`KnnOrM^XDorc?CSmwXBe{lNHZUKV&|+1oKBdk0F>+|eqvjsv7sfo}WXCBQ@;_|yKTBJXKeS+_>N;&f z*3hD`u6WP+1}pY69cN*_;Gd=H(X<6wLkp^&_m{ICt4y1bKQt@+58ihUXOB`eRK1DG zzYA?a{?H=M-?P571zAIj!n&32+Q^&~4OwTItaE4!vW6B^y-hHjpPZq)itV68Ah;K*8Gfsobu0&iN})hf270Mk-oP3jIYOEq9#Vj`>+|`@a zq+qN$RJ$KD~%ZYx%LANi0A!xfp;%ddvb5_2%OV)K z>p_^AUl7Us2WAmVo=YdaFjY`{k-Vk&^K1r{h3U^U0YR-`%EsdA+DmC|xKTda%~nus ztez~pC=>H#v;}jXZJ;9D)WUYq7R-6JK#Mo$*$)ihtpmN_XIWge>{d#e9wcC*tw_K^ zp8~=3>qw`xCQJdNBb_Ph%3>F(9>S4SM5JFEpIt@;V@~y+v^E@#Np0h*%M(*ahPbzs zca6{(`-MCyXpmyRNP`rkEtvLfui3viKNjbzsmK4q|B7?fWfdt7nkMcSVw&2(3QPmJ zZG60|9&rNmdnX_YEu)A+%P0`++1K%|QA`0_mg!8@K+7nINZ+rbt7ZWDcb^#Ef(`f= z^qG}h-Bo(DYzXvM)acN%iSAb_i)?!$<%dRn(KPCdv<25t-9?RV4h4%flnw;Al%oV@ zjcyr5#u^HS7FG2pnVTYeIHS=OTr|1@L8HA~!D7bddxHNtTknZ=2A$| zT;g6erhqMT_x>03`1C9EXzuIO+;!bXeb-r?jivn1-lM@(qK-V8wxEyBZ0MTGrcp3@ z5)h#2D1qst3n?=CC?H86rPy-kXL@5-L-rA+@UTZ?D+K7M3IvPEZ#8kvVV_YJK4CCk z&c&3{41-6Tx;kjz@G{LH3ZC-iP|ETbvq%VUHMV!j%7K3Tk}RXvZtfbYUFWl!yGF2r zzhPlkL9Yg2vHelkUA@S!?#(S+y2gtAN_^TU8k;4};9q4a)uY4sR<4tJ2ajm1P662H* zm-2InPVm{mGaX&^MW8?OnyqqVre!TlC-hiF3VN&p!DoF(CzqQkV0>2F%3(1hwL7(o z>qCtlqk5rz51IBoL|Z&_V{!gmrHnZJ=U;ijjFA=DFBAtYeV+76zacFh1c^LfTREdL z3Db3@tAH>xH5F!>y4YpnsAy_HlBTBE($uZy^exV-rMoKV0t0UN{*_Py=*yw zR-H%maW#PSVQ>#uwSanw$_bovjql|u&yVzglZGuQN1R4Ldx|x=Ct#)jJyt9B-@iwQ z=8Jo~LU=(h=tK6uK&{Ru{|l@T-uE$J_-0|Kx)}8o@nZ4+LW=W<$6aySDxUN>kgTC3 zXvYt!9Y68du|pqM)qr+Hw^c?A-By91+urEoy3G_Yy6qR#Z4>#%zOH%f5>*Pl_QGX3 zD_o#09$MlXKFJ2m)(^knI;AO`)FiZT7Q!WCbC1tjUO6kGc1 zT6dQ!LG`b|%BDqV0&74?adJq$V)?4x@(Pv{gT;E7&ng#PiP+iF3+=2(LOUxEw6nOR zlPTcjUq@Hw@t2cpuz^$);o~YI(u>O@R4|UyPhd!~0rxH}2*gF53oi26Jgc<^pO(lO zk*ZIDzwkCFn?)tyqUv=4@hqyWTKCE;vevzt5){N`JqhPot;yUiM+~PJQS8>2VJqIy z$#N;FsCMg%uE+}T>sP#5VWs;##YC;n60OWi_gx<(v(kNwg3&@)=~loPpTe%n_*C*L z@f37I16sWCsmxWc6N)1>u~sZdkxr;^#!|Ne!O^&3cJ!>(QSpkRQqkb2M!5Rvov!kN zN1iMj)afeh)vkysBLI#ra2~A(RTI53jjGxIDtcuYR%yg5@oDe{3|{a>S4d68dpMTb zjilOLuJVY!!&3blI$X6X#<2?|va%faRs!VLCGe6FTK*ya18-G!kA6vLj&?y9NgG z6yC992+deB1TC;+SV)(!WVjlb%aS3*k|o1ASFvOmE^uVYu$hpxnkS5PCB}XzptNE* zkLn2(!@BNw#=0KSSt?afE{k4pRb`zhSS+jb)NAsc1AhW|=b$<3ABdpSi>{LaBp|^k zUxF~f*|Y0Bk$?2OYa+KzaFqzmpg7+!!BwA4@Z}=(OwDn1RjHr~*sbaRm5Vagf=b1+ zGt(wQPv4|qv?ca*F$D`-!WrAjFS}-{_@Yo*A(IPS95=HnN<|gnSen~T`Qd!MML;l$ zz{6mb<{YoMerDfNY>_U&y*TS8yUMc@v|)C%J%Ps;DUqcYfc;*3x(fS^Hj9ZGR$@D+ zxX8PF+C5(Ix~oAD_?_Hqy(|zq>L;$r)x07A4o?p5@|;J4x~t`DcVMzZz_PjP^t^>vv$wWcj- zjm1A!>cgA7;fmn4x_T*=K@o&K_>nhU&G8&4kDcRch-N6LosrCE&vA7Ud@(6e_@WUM zh&I#JjwulA0DSrQ4bN&AIv{ci@f`_a{#hRcmE#!;i-hW1uE{w53H%k=#Ya>_^ovyj z;_(YByEt%N4)H-sfJ3}b$TdqmC&4nXRJ4Y7k7$hL;rD9SHYg=-rEilO<5v2r>t4k$ z!3fGHBZ-RrM?h4?=DD`$W%K!{`L0A(o)Tb^@Ce-7?oAS^=F23Z*)_o`| z#4n7vgYpZFxaZz>Wd@44bKi08V9!#`t%&O)U{n0`=N>ZRCa#26#W2`rE_AhKlZgoP zwE+V0^!XK@w8(XrEg(%Cx6t0qm%(*zzTBoglRLaK``8a{t%a8G%TpuRK|hRr76wM? z^ArOE>=_F~-VVLQmBIc;(NLp1Fu?nVHDI9ypuA@uK?cx*5gK1Dc!V~K2(8@_9wFX< z$XVtZ$C7C~GOhz>N(AGUv;`SM3o^cXDx@OoMw>D8L$e6|z!?OaEAhPLX$D`s!Bv6V*SPw!9h4U?o3|9msecP?!NtmP7${Lp zJ3(7;9y$swo_Pq4<4j!ZYM{RWe8lm8t4GCU9uERA1}FkB1}G3*HVt3rYQ_{WMnXIa zc8{uokx)TI`a!{?!uZUaV~Pq3lum1{hAG+5Z(-d=P3sz+^qQ(~I zt1hS2)mHK|TOf;FO;K=}Pfg-RlLWm`P=vp0bWb6EW`;YEBnmT3kpy=%)Z`1U!Y9lQ z^Bvn<71>cL1P%Wsl>+Z)gW70#jIfNkFXMUk+wFJ#!In{;=`1Pn{qAChZ5lI(Cel(E$c&W zS`P)58oOhwEH!qav{-8FcvGs?=%!aKTnWsen5fn?KecjBy8dEId=SlYyLq z0>)_L2K7V)-%JUxTN`P&cFS&gLU^p@ZRQQb9Pb3ZnIh zDPWw}7TlD@V#`*z2%-6qT!hdhjtnL)Lf9>U;36bU{K7>@*sVerAt%3gO%1dN`QQiF zG*(q`@T3XWBBUY#o8qTWd8kDQyl8vI^$u%57|S|e08yDKw|GIr>^ZE9f-T-5?!Xi7 z!W<=D+SS|Kf(HN=7DN582CG6v zPq8rqUAZMg{}tMT^Fi?May}^XI~fR!Jv#3ZlnntcSPPZ+sfF_bExUm}3wVjF-qPDV zVh2JnrYJ%%6H*}f#A61kfUTHPm#Ts@hJuLnmi z<5x+33y>h$Iu=Yww_KZMb ztzVJs*V!W4Yb&h1O~9u3=~Evvtfi0a8P8jsag~D$DzcwqtBD91-~tHETy^?eAj2s%nuehBttQKX0g_!iGhF50wDOl7` z^jdd#rO52`00fI8vxl>Gfe401Wls%2P&PW-$@&B!a9@nheoFJ9z?WF9o|)lT>6zG= za)0wk_DGG{C|f+jXOWsk1WIa#e=6f1Ydr?$LRDdmAz6W7NdC&~=Wf|g?L{#Xt(8d>BXSg-$-TqCQ|o1? zN7wrU02q+#i(eR!>;F+`KyFz-`@KK`xq3=A|9`AKcYIXE^SpOyLofj~&; zorF$8LMV!K0!TTeU!|j81q3MytR1jmK@da<3Q|-+Q4~}}te{^(6a=ha0pT}0`|jTC z-JyQM?+@cKvr~3*AWzd!5=&wu|6!IPRFv zDm@%a+n$*b#a<ERv_dEbduqxR8KKiC2778P!1y9`HZTxJthZm5A=*^h z*unq_7@`#k7@`#j1`Qms6tEehyHhW3?+mUe=#?+5Eg&ysN~4QLDxRVrb>ProgX|F-8?q zFq#O*C7lYzIC|WWBp9j9BuV6zf|Dp%8wk6iYz^D zLd7rPkV{8beiVn-7*1KwnmmQ1l62em0)m4{h)hi=V)^>}^f6S9MciV>F22r`+~bp8k?2CyB7|+Dz1tU#;j@i_aTl@0IwmX#r9~`sMdm4Zr;U zs_@G*O>MbCbPoKPVS5SeKW7y}7SFKN!hdBW&W2K<8dYqtrWv`pEllJ2)EdS zYWX}pGc7~c|Kg{5Pi<-e1^BfFdomwb`)wn>XadZjrU@a~{1g9@k8xo8PbOd}@c+>M znYcC7&Ayva?i@c=n?KQhm@Okhab7cQ_@K(nYoOV?^2LwYtEqzU?xp^d>|r{4 zj7XB7HFR1rB9t$gVxM4n1{%A(UZZyGIa&zg< z)-*of`=7&JX!!$pievHGAN*D)tQ4+NsUrWO{VD1L_nqikB&kEB?2Eq%Wap%x36vno{(zlWz?P;RbI2WVsUgx#im*ITQxS6s(=Zm zb-#_sVq+*6t3C7@e{qg|bP$40bM0Bo8H`}}T*xHdK*Az_0t*!6v5)H+K`2nf!~PUH z==9ut`^X>!W$W~w?1f+iCl=VV{Rl9HWtz>{UI{Q;#nL( zd0Tp9IxS7Ql@Ug2@s$@l#Z`=4Vt+u_>s=QCJ%w+n=+`14C|$*nWp-VUYEDEMMt=Bp zy_B^laB1Y$yY)^MC@zh>Y_~o`>&-7cU{BVYU+2;H+gk3eVT|HMg@)UhG}i&;&Iz5`(s+vJw#)pCUe%X}vew62b(A#Z^%@V>|668ZTj>}@J% z0MshY5?v*nA9@lV+<_maXfayG+nNawO{}mg@a&SO&{7qM7U)`Io?6Rtn)RTR_-*+a z(O{IYt0dH`!ZY0y9ECclU!F9(vvyr#%NzgLB?{B&kJc8+53%r;=a zM#XTMeg0N(U%cu*R3lCz=rxUR-3v2iyfz+7PGPCE5S|;asd4QkdkdCBF(@7|>o2(B zH7&O_gSDY()B(^`hYj28C9EGUh3rcW_9H0<*#pL8KbfMDJ)kN3KVPx0W(#R4WPg{z zel^7)d%%G4j61TPq-bOhXv)6H-f;uiE?NrN?=aXOq8MZk7@_@|!7lw_iQv@fECahK-MOcPffBET8i{=o<6BpL)M$(F&ouWCqeaAofn?7 zH@Bi1_{j4v-f^G3QzgSHbp2|2fesn#nT4t2g=iWGJ5XJ=UT`Mzv|5($*c1ZB)!X4m zhE;O))=wzF6gjwfoAZ`^gU;p>L2$9VvxMD4Avn{UTk*+3`%+CUE7wnRL}9vEqjF$f zbF`+1Jw+K}UT(dBU|wz`K9ah-~v-i5UUfBX|Up~95y zPMz<2(Vfh8Qu+8j+nK}mXY}K6+$nWdJ$8bk!5fBp!`e5>=7haAlmm$-D@ z-bOzPi1m(CE9GH&+!e3K{YCNUaeq?w;g+Bt*MiSq?}*Xh;Xut%iyfsr`p&oY*P()^ z_B(5-6~v6OQf15ueEp&QYE+KJ>@VgLI*F%$Y+uZp5u}(79?)|veCz6Y34G--`!>Cc z1uiL=R||P~*9~>}r8<^6e8nf=V3fBpF*KdSSf5h0jKy`eVl zLD?C}__->(E}z*)z}reserC^O8~pf`!2Pko6f@otf859E(luvsYJlR@CUU~t`3w6; zQTvG$qp3Q7X+Ojc6S$nT5BQwiY8y5Jv_m$7&-)i4%ZiW+$L z^bY7BN1cV*D;4>t?8o88pb*n}TKP|+Jwpt@z zaL(RB=~?s7*&FM%LU`;jR}US8ppz>?LxDhb5-KK~x2I@Kfn$9p)B5CAlwGiwYU~Kr3*+Z|Mt$C+7_85V$+3g!Uzc{$iiY6o~mvSdCEXn4)Esg4nXB zeub7*z-Wng6ie`!-|ahC2Zfzz*fyck&)ZOp&k))ztJgW|uz?hbcIY2U+`ODG&>X6p zqaFH$N;d}?Xa_|G+ChO}Wjd2`F%R1I`l%afhs4DC$d@h0&jfyPYOi?!qre0HAk|_8%JlTBetkgM{H3Ag2wzxcT8dm z7~OkIMb{9XH;Lu3Mq&Owu9QY5QO8(al?k@UE3!rOS9Gz|ZY6J_e+i}z)12_JjLx;+ zVEz3#{<{?ycc80tMKOC=^I~~@%b2imzVfcDx@;`f1(R@?eHjH7+T|(a|F1Ju%)oRY zGav7IeC!yal8`YYF4qk{l~6DdFM#zRaR5 zmKIJFN2}KgCsxl6N2@2a6HXylXJQrj7~DLxv&Or5jD?qd<;=-}AS`1&G?`Xm&Bs*rZQbLETx0|tMu@s=kKnjRhGjAl^_WpjVw)f;8FAOviTi45fqNs1Bdnjb*SGDOij|+B3XX9Y=1E@*^MDt^Dx%&;+(G2+^fF z5Tq3$H|^$684WW*ZJ2fIJ4aTWuj|k>{bvXyd7dWhSE>-Y^hMe(*JQgWfn*(X-EuQN z47a1DHgL3J=cs7e9x)Mq?Qzykv&%33Br+QA_oFFmaqdQaQDNd7@%$LIR62)^RHGnb8^Ite>#Lj-j@nJk|W z5g4ya?|1g+TizW~nMc`0(6$VW2mhIM3|g3TR0Lm zNcwha>1fRkQH{{T2Z)6~4r1YHtsG-38&lrkb6Pu^us5hsY1-2QL`}QLR|m^3FfERQ z1uqW?<;&VQUSyXEhno$^a00;FirOy4Tq9SFug15xcMRsU+dDStnN@i~OGiBK)B%?Akc>}|$@&iXLwRvuz&XN9zDP0`N+DyKri=zRXO_am|P;(P2-xFx%^s$a+f`26c zv1_HrK8qbJ1wkO$O2tb9Kj?4ZX}+pkCIcBd>ab&$E$jtCeA5Pg&L>5mtQt5YDLay< z)Gtcmk4D2RY-%sZX6+-MUgXGQ$A|{fdPj-%z7Dh=3{p*b-iWa3e6t;VbXJ3+$eS9o z4)c=Ujx2VV>LJZ|$={5Jd==CV^7InNJQf;BdKfOB^6qpMu_y`_vtB(kl20v#%!NvD zvy)yuQcijgdd*z{lirS+-VsdF*U^*}P(5%C&_2?fn`uS-)a`x|U}--`c_q8NrFEn+ zEWrG@M9Ep}YHFD$11$r+wkf}O-?!EIk%XIcxs`m+An=8iR0rX5@wQj|&9uy@#S&?z zJ+~E&V($>Tn>Nz{p8#nlxokRl+!D##v@NP7mrZ#S9U;8zvdhYQ4RbsaauF2Z<;RP1 z*v~{2X~v(Z8LtMKF=~WkXeAv?gKOYNLRbBP3YB)NX7zKgGe))kE9~|Nt1a-}N#&_x zcQ4kELU3UUWq5gyq71b#@V}{rsg}6 z^0(sNAXdbYrC{FKn*8EOD4gBaWhp!+Vn$zn{M>g*7B^^rsvOvPiChn zF(zC0{$**vexhJ>Tqr0VSD}#N?()y#z>A!QJL=C$zWcN5>v3^H%`MW z!jzA38s5i^ZN>O<_rojxyyR3lG z?znL5=+gEC;!U?LuXMVtVyoRzps|63sk|n!KjWwN%_`RWFurn|J%N`!-?$x{5>RZS zUokv(vXB;&ColYqxgDd}T3QUxRy@Mw!IMoCgA4$J=U#SF3?6>~3?6^*Dq8Sx= ziT^l9v5vGDYTedg-J4>NHDCm5{?{Uz6-TZBRJbm`(_v>bC@pfGVsKqRF~}7#sPJ-% zLDqorvWEW~r%ZzQqOBB+cDG}LW*jS_MdY!PR$%W%&OV8Fq9i{G4v=gY((r1?-BEl& zp)-y*tP|2KwNx|+4XSNu3&DYs+={}5j$Il%K(!UgRQ}~7(ki0YYX|t2#g4^lDID2O zQaTI}z==QFAf%0281u6~`xgejpDb~_5u|8HHR2*ZzK0u!v``DMZHNBGd?Y>LlwX?9T@_GXF8yL;7rH(io?qtO*Gb#mc-4Uw$hotTj_nO@dX=Q$wAo13`_59c?_zsH6pei zTN}Xt5z7BL$v=wlhl76FQ+2us33%#5sQ~UPf%$M>NiiSpD=84%5}Na%11>6GRW(oW4?@6HwHTe9eoYhrQ zRQTfRo#DJ=w~)pxJlfCm)zVV+r=3|U7&pRNL8HTg2E92nLD-yJK751oBx|Jb6T7|H z(b7G$DMq+wMWeM2rdhf~8~)ji7V!BeZ?(bEUM3v-L9(@DMd$m{Xf=4Pd*8vfUYk?WDoZE{4_$TX>2_ z^r(-(=-8u<1+YF!S${2A``HD16sUUdX#MdZ0IhGMc#M~0V~D@lW6)oMS-)e9bjUyn z=#Wceq(d$X5O6OQ@Sqf6B>|ITK$h$c&w+n{L&6ziM{KsfC5BHM;I3n(j4}PPnKIr5 zrMg0@u`FDxu5e#a*9}{hqDui+^dF@L(tqH?MR5)Lm{w}o>{S@!m&(eCn+4g zD6Ml?TlPH#UwJJpY8l_%vFarm!>$rUmT945%Kc1RT(JbWv46i|ytAo z2OaSmdsC4j0@9vX8Ibl+49?@0-x>X|{&}oCy7MJP`+^dDys!F%c80Gw(cf(J;zo~=m0o()yRo~=|7d$t0> z@c!Xp=zK$<$W49^nL|Y7~F56-N z#b8^&fvV;D)atS=rc<=9E%eFNNf4i1J#dV`hOhxb%vx-e2{r^AqhdT`Qg)iQYR$)x zzgj~}fS57*{X~McF0dUkkHMKh5PR~%5)x&mBAZSOtyjTIN;Zi%qYaMsA zVDI@U2}jCAw0xUrYWbx44WcFONXE58ib(uuPl4cA-xu0}bS?hm3D}&xP8Gow(iNjM zuTYHHnn`i8HEYJHE^i!)ONb+_2@go&$#v@V*qX6`5Um+YnfSG4JHGNXG-n4|1e>!B z711LuaF!_AQ-jWP22Ncl60kX;e%PE!{jfO|2sY>HuN{R<0pns~3e^dFlu`ys_u5&K zN{Wr}KeG{V!gb#%$90XZQW%OpwIWXTsTCAsw!#ZWD{Q7{vrj!wO|;`it+2spg$Q9;srQ=rl^I!dmlKR5kMd{Y#ipyhm629 zSlDJ%lZQD|VS(GhHJYuYaxh7=OhCLznw8wuf?vJlc+v7gyzyn!W=erR_Ix}ECOhH- zdpdj>)k02?H^k#nX7&VSf*1CzjYkEwWn8Q2?5u-+m%7ay!oH&gQNM4fep|cGY*EqX zcSnBpkc)Nz7O<8A( z6aHa=()^usvxJmb#4LrxKjG6-&dMx9jX7$_<;zZyE7q zf?P&CO$*A9Du(9uq`@pNg6aVa8NVfj@o4fxyrI?EEr@t?33V_*E}`BDE_pwd{82E; zVhI&T+QKLLg(zqK--`ax5Pd$l=(AMxA2$+BS8ra?P&T$jsGo4*rSXA!u1OF*wAGsR z)gtvV31Zs`_Mo1Mj*K&%-)PZtS(0BISu@fy3}npvy?Y0F;pbpb6+XVI_&L_OLF0Eu zmsaOj=BL2wGtLQ~3t`9C|In#h!ZBNPKKNmx%%xUu3P$H^naEotI18CV;B&q>pYt`5 z&es$K`iKy5$+(nrK>~X<|?-7_6JflF|w}ASWksS`QrzfFF68 zj2i@YNqpp7|HTN2-}pk})|Xv{jHcS#nFr@+=?qwvc_ zxlwrG*;WPYFIr6OELr}9R#^F5tG3JvISikt;da!YiE?X6a)6r`UTEBv)uF|ZLwZs; z?^}`Ck>yhqa!60|aWFThf>^`$1&F%av6wF$9-8Uhp`zvF4%L3Bin>EJP>94Gsu4+Y zhicS_&~~X`h-w0=O0gyz^B}D^e)3!+%ej?}qZ(ru!VfF2XE|H3DHMnOXk3y^kEm4Q zbj6krt5s&N$lH(!QDcZOW3Ol#0f}3&N~}u+1S(R+_61*A-}xDPk`}=w(Ap$9w6CQY z7&A&O+o6?Cy%buX?VumLZoieD%|@L!c; z&K6 zRv%|EMg zqiFs~Yv+Ps(fsi?&Z+DdT7Qh(7YM`~xmVs~iUJMD#le<=WNB|Fs;?X}%3yZp!2sFlpPYDRe1$In8Fi=6Oh%*Gd ze^2K_>=#-PM~4eF<>+vMVlXu$ju61}HK+Q+7BGXm9et5dE+gP(2Q7jZ-fD~zdLmp7 zCN6fkTQDN$2lNm?i1b(p<$-G!+^@>5C8K8^MdKLMh;VOPO9oHMT?9`JzK|Xa8&n0K zYvDm8;GSDQ@zt9+LogsfL>Un=T#ASyBD_ZkpbD5yRjL4)p8>+SV!ukU9*#c>1S9SI zVa_oA>+_-c{DWjiyh?(x?_5opk$|ImxU2r3zRpeTA*wUB*y>uc#a2^{Xfe5~&U+1V z#_|vDxGkPf8RYbSg)0-9{OdtZxueb-4R%KJ#}7H`1vc38MuR<11z>|s6?^J+hX8-E zr_M`<`1p_EyN7sLTZcMZ`dQJpovuAk+AB~1dc^+>kGM?bqesB&IX-_2Nxp$cpoC-{ zYJq#{Daqcw^fdTIop_91E18VX*+CeJy>zLvm!YwXUXX0~RObMu9Vye^lBu6La2FjE z+;?_%vX#~nvx(5a=u}Drqf;pmuTvE>1&nzyJJm`ACAAEa;%DaysqjMWeqm$dZAPyr z&Klu7!5&h0inQ+PWWy6F24e?qTWw92$@Og%?F%0Ii_}i9CkI9kOs;PPgoqv+DHAh# z90M6*&+0fu3t!PcqU=uvX32KJ;)2kxaF&Gg-P>V;p8PMEjI0PPQkh^>xgRWa6fPe*D@Jd4-U}ku zH2CK+@z2(L>YFwz1Tjo@L@X8%?v%kP9W&BwN5w#hvl!#rS4C2- zY0f*C0@-?ILaD6%TC?`rhq9gUHUT>F%SkYu7_onA*VIlh|#Ul3|e%$|>=bXqc(PHA(I?4Mw1tahClDB<*pa9v^Y9oHih5K;T(ruTAi9^$<#r zoCg}5Cr}J>1`MuUToi+>0pn$DW}1Tdr>!N_PGp+ed>xwOUAWM4a^aE=&ZTCW9v32U z;j$r3W}4DYhW1HqDU3^(FPYTZm}xRU4Bt%E_WLk=JH_Eg%bR(`66YYM5J4Wggcp>y ztmM+d=w2hg31w^}6^K{cEnMn+U1J|mIL646D+)rnbD8rt{RCK9+^_mMErW6Lcp4cC zzDpBhL2X|4k)?XI4Wg_!l~jd)`Gmbwg6(|)M6+3Bf)1qeqrZmc1QD<9cEI_Rw3W{0 z?7E){#yNy5L=Q{VbYruF=)lEhM|@EE`012VeYrUmP*^ct=1-!H;rd$7fflmAf0((5^8^|7)k;kD9xQsjz!2cNK|E=U7MfiKykstwQn~DUSZG!!9&ac=H zW}7)yDhy{WcoJPHhm%b_iT>JF>1~Bark4g%;z4wU5)Y!MW)KeypoFu!N&Ma?VOUTo zahcKNZz(~2;~2U^iQ1aS&

<>Ii2#AN1 z4x=y?v)EmY`t5=q{xTyk+ai%EHJsuHS7LN|_)L^&a+ODRk$zQ)%)sPiQdw^d71160 zgwyIyc!8O_5rS=S)e@+=sxRL7jXD-F2h%g3VGVbvWDio=IF@^eD6nw)SvVXXc<*z# zwU0?ovC1)G1Kq`Z3+!P(j6DMk--c(v|HhIS|NConD{arx9h>=X!tu|XZA|>g`q_!7=_?DImC^Gm=s;H7eo|i)6r!f@06g!Hr5>$f@74&UH1<&=> z?=2E%Ei!v_nX!Me{ytu0%G>9;o8CC&(KmX<97g}-i7JCnWh3nlOw4KC=^I5=Bj@WE za*I0G%r#W=njT8?fp_lQ&T*R?`!J3_$ZD?nznV{%V|EUlgh$EfM2=R>LNh^K*g!y?>T`M#@Y&UeOY-F@O` z`NBV_EcX32evcLMBNog-Glu&jS9SI4x;HFn(Ql}gqBY(OTJnl^*!HLAZ#ip=*RJbz_{(&( zYt9OLg)yeAuotiUlXTKQ2u#u`{HU5GNoV3m)hMQ#XG+E-d}ztisoGXeX6e+>vvl6~ zmC0E;+I7+u7#>#mA9Iq<)G==DfB^2$Kkw z--cGWfBYuD`XBR~IB)g$rR@m=YSY+Uyh+a+dSzrcl^qJ%izv{XF_m}2=u>Db1@yMd z(_Bowp*P;Ubdf>87M8x=nlSYPn$ym<148JO7ZdLZwr^0x#pp*qj=>>H`jHmg5}RL~ z7D~rFm@SsdBA!=@fL3Z#nb*_7QDO^TY76E*a^(#A$R5coSD33tLF_|kJ?$Nz+A??8 zGC3`#P9-{hm1Le*m^hCloGw4;}gov%Q|T(BWwBaKd~8 z=|FE8#1@yZjMiO;DUCVr7Rs69%@Y7}KSz_$`nh(zqiipF7HIFsjUzSM(zWse+**Gb z2~$tsLXIcSO%qSz&oW#ZIm}=a2Uzm8qBI;UQR2aC^*V%Bh2k_2co^;30I{62ci~xRo>8Q%awDE7O zJ0G#&4q9;9i9GwSAo^Gx2Lk=U*gmwUqcQGoGXP-~IJ}=@Ih!Yn zxhZy`!Uv27+lKn)Riub34vKmB+%SD?`cwO{dW7Zg4q7w%Ymq4zL2*X zeI4q}6mw(|GtEWdM5&QDb3&6K*12? zE~JySy|JZ_4h*6Zk=`h=Pa^l4ksRobj`H4)GbT)294}$dji%JBze8z3v^P>*k>EdX z25v@0G2R5n?`Ar}gn@Lvi}{&YXtL3*dP_*7ISGbA;Fe%?uRgfxmOnBz{v_?GT1C9X z@qSHjQ!!972bh_BR?;hB-e#1#e;^WnYN2cOwWaqq(+xdmh=r2=h?#Dvw?*j>1A}@0 zjN>6coQIjHB(FR|*Wa{wq{Zdx)#=4w2iB%~@!klrL6-53xePW7<=Y1~qS?I%R;RZ2 zAW!~He<4bndtH0V`r%HD?!uio($}Qf#J!V&j+3_d<2v4iJ6O+K z#}P}58l&W>YT9UdJ8^CL2VwN8h4*OpSg3{(nkc?+Xw zq6Ww6@9~cg|4W4%?HS3G6A(fbu8q>rZBQ9IuRn;i3Mc=kg8EEguw1WFb$hg>WA%$o6&;Pg<~#Rrj@E z$>AlUmvg*Hw7-o$*i*Z<81p!yz2ysv zEvjt1)XfTro`}_^ls^Wi(}3R!gZbn=amvE~)z4==V6fKofc#W#6xSWp>)rk1{eirS zWYH*y=Jb){y}-rYnuDrX9&8-Q^Cr`wo`Vz7gSjPCZ|6-FJ%jX?&>eqjEg_<}HsEWg zoPOI5%EX2a%^g?js0$7og9jbeF(~Yo`|n&KZgJeA{YSfdhbI_h%nsAVeUdy!CG#Am zAb&^}MPEe#ZKef3UB_c@)0}>6Y*^GzoxBNDKToeJ@tU7llgi)4j19yXDt>B6I0wST zD>|0##q4hSBqBTjnAgRdAPz_g_u2Cb3WwlCsjl8IvDYHz7rL0DV~}nhQiAlRn#79l zLNVj~yT}IQS0Gt5m||RKZl|LA&dAAj7#;56HBV84gK0~`nd#~K149M9Gpbuc1qHaK zh(iU1_|Ot6Xq{eNh6-Z!P(cG}d_Jj3P#iw+KnGtL7XBIQrq zX-u&P`hKXijsd}jmFIeEa(PIMbO0X=)_scmw4e1Pa4^xb4|Jv59) z-45Sxj`k%>ya0|JMAc{8(}M%7+Cx3PDPo;0VvSOSVT?OttDqedE}lKJfEM@mHW!B_ z^MJxMrbT@n`)rx;@$8ucX!{+ozSkx5KZS{y!yv~MTO2$)8{G1K-q`{t-?Ph(U0K64 zeeLk3mp+0R>*Bs%91_@RSU4T-kHNo@_Oa^wrqQKA@CHmu{BwYJ5Ir(P8bmMtq8mi6 zD_4Q{5ywC?Xn+~S;e=TOz1iXkDchrd*$BJCYf-@s%uJ+T`Aq^axzRnY1 z`l`~~hdX?N@@({4a|m#y_3%iF8iT3H-BRRfW|0jI;4aHC-VALO(!eVN%S4~FTyIb_ z*W1Uef8C@MR`(mj?cFMBiVdN9btMJi477JNfLc>;hSHWN&$Pv0!ozf<@tB()kTT*< zL!VmlYn-&G9bU+4{cpTC-LcnJ#xGb#?C8@<(#;F~e%H!;E&t5s&;yn8-|-Ci~F$_>10$0Klza4bl8d?j3T_M5kW8HH%@Ct8aA?!?5!&~95`%GUX9OXv6iTb# z9#NmhOo0s@Y6cGq1aox-hZ&=Q@oIXNJ@J!%f6+870lm|`B160)6*2f{S3}Hzjc+Ta ze}zvGZ2H$sN40$_W!<66iXX?&YonlqvfoE!(W^6XG}<<^nC~lMZt=Z8GvB`(R{pGH zdK6~1(3y#}YNoe7D$=CW)3!`*UI%7D&N?uZnoeud_y>)C#lqrrlL(qO)7y~7JUB9v zR%}L%#pqu$_1Z}7X}&N?{M#IF9noFV^UQQUl9mH2C2K}Dpl|Qtum_7^qIa~VpSu@M z_1U>v8(Z5umWDl~%3k`IW^4D4%%BtZfjiwVH5-Qk+l}C=Ut~68*Y1ZIdrgY`idke{ z!efOL$Bv4k(iuQw)j`vmN#qqik-4Rzd2ok&j;q3N(Ce=E8}y&&dSk_};d+-_fK&WOn@#Z#Hs#7Cjx%j~mdUMHW!U1>Qt4LW0mk zeV`{+dE=>kCbmb^7_SMq5CRS|BMa=1ZHm!=pOnbQ6eKSV{^va(NxNPdU4sTp1~+LD zxW#7fd=r-k@z#%G5Z@}fWeOLmj^VWFK6q{ACr4+{-Sc^amg()+n~*%{j(XgiCQeD@ zuL=_RQeBYLV`BVdVjvB(fbM$I+W-US?h@!Wj7~2#nmkvB5z&aGu1{e!K#IQhxv60y z9e=5%V($5$wDMoiYd7lL`6w#yHYO4a1n5iSZQ01l4`8!3e0GU96)8N-UT$U^4Ku3Ldp???JHu`v zIp0QXq~r&nxuQOJc}#6;dK8KMyLJ9fGaoe;k1X~vh}A5E*vQbgVIwa;fQ{tTq11E7 zm>P7^-x+@*+mbwUM-Z))@;GXJdrx&G};G zm}t885p2TFmtYfCn)xr?l>fuam^&YoI@qs$O_duf|F- zG1HE1g%(P3#zxZSSD}T!%-qX%T-L(QR%1ixhu6Gu0#_sR;GRx-uN!t7=C%#a#K!~6 zEEC!GZ>r{jGpfH{jhY%NL4y>KUQKIoQ!Y~OZD>fZ51?^C{K#4a#2=HiVufY|UU07d zf>G5e_oq=wI6?~nairYaz>#eq0OuFKunuEYnS^gt;D$-S+T*KZV`#xi)V;Q~-GStL z8#of}1K>P$_~T71Wc@1PM-{lS{CXR1GqIx~$3B3@qKbFWlER|(>cNfj9|jn6v?T1z zy*w(G7LUMTE4W}@``l#A9okd#aQ)wUI0S7a7Z=P2axW9uH9~~P_$sN&Zan-zy&3^~g+dV4k;*L!emqX>R;pQlgN-ScSDMx4lCKO6!VpqwyU>f_eHxX+{EbZ&M zw6hy}`247FInjG=Tr&0g1kGTzt=zBrJ1OFfG{y-v>91e*u+Ulf?}6)bojt;OaBu;G8ZV z7ovB2LG6aI`U-(x zQEZf?r}THOYyANz<_jffGG1OBwNvFC6Y z)~dbUNbH0|op7Fq-YmtQSo3m0ITaqjazRz{x&Ge6(`up@)bmKI9Xo*Fy z`NkBBJ|0Ws|GW1n=G(* zEimkGT_8?N&Iy%+G=8bg*?q>Ravr}pW+DD;A#xuW@rxD*?J*t)=Kh3^3lI1=w1aTu zllW>Y`KT9H$ZB6{|1+WjA-E4Ea3QLCO|yOtbYtygJPp{+1neemvtU~KG2E3h;l&Q)8TVeIJ-aGwz3}_Ux!@BVGU+l%9@V&l5Xj@ob*mE{cU_0 zB`vLp!qNnb`-)2B;42f$Pk3927cHk?^tr1qVWdech5IU0fWpHz$M-~axQw}7U*v1l_;q6esGeI>}_?JW9QSiNmo zi@jhil&nWAtp7*Xbq7{aJb&J$kOm|HLI^GNnvhTuN(f0PfdoiG?^W8-La!3gFG>(3 zC}x!of(Q!Ikq(NeD8)_(4eh-Wl70icCS)#Z&(z%lxoLW#`I$2t?dM(H6e{Yw*E$wdgj*DX| z8z{ajpMK|deM!|Bwd;%mou42H6m_-^t}n_D80@DVHN5G;ashsy+6I$F+dWn!>}JoG z%7%%xozZiLX|==D`1lV~n{yxQSS7>U>m(RR7DB8+pFY5Rye-I(L2hLw$JTSk->{xZ z9+X-XLdpB**J_HD_iz+vqE0T`N{+8UtbBO8wKT?qoa{=Dmksaziyf6`&-C7X*mLym zy#LQdh55mo&W~`EWtm2d7fl0v?AnP`>r*V)_t6cRr!;OM^}JH|DiC^lSm4lT_;_((x`VVgFUEB#jUhuCUqiQJ}L z)j1#S7im@S1g+M=aeeoFdAotsN6(_CdluSR2+AV!)$IgZw?e6RE|faGw(!9+d$jn~ z$FAK1N%FPpb;j)Hm9$qEb0!U|CFbN{P4W#VZLYkrfqLahPLAhF_G!{?o!K4k%<|bp zmPg*Mp?)Ia^Py!$iMBUFZC^M^TSg6^JK45X5%&Y^DH6ob12ZoziqEjOPIqpH@qLho zdNrQuV%Mwj0VlT%ChnTmXx_UJ=|Q>}_TocRT~G+6zqjJN&4-&?+k!=M7%G_RjwP_H zxFLanaHG!HfYkE0*Oyv_Yig0CVR2hvf-KiH=ZE1(3juf$v4xYWrSQ!tRG$mHoQbIZ z*mWG*qOGsTnTXbHMRGa&$eL{s=P?Yu)5h2JNW_O4%h#&446tGQIUHxDrfWf5PZ8Ih z!_mwV_E70$xYpe6T*qeMx9)5n54W_msp8kthLVOEwFA5mF(Aa=&32QJEfrI*tWh!7 z%!=X0bS%`~z*bh+BJ8pGr%Qyu8jmkyPZdmQaY_3C8%D_CcI&bw=HlgydcfbRs2;e0 z$F%|;vlQ?x#d(>66w%g`GD;P59vWvnx-l_JU34yM?9G~bh&LZh_NHp=fk3EW>t443 zR61tV$Vidd?=yaF-<4Y&^f0*{OW!FHvS5wLAa8<*oqfHzu_gPYgdDC9!uDybzFKH( z676A17KPj?wnf-SR~N2Y6W`BMYZCiuTGJA79$MptK<#DRAZ_?}Mq_iQ&gM3a&5qM< zRuaPM&=BD7I(89WTG8DU;W%KXG$S<2MObu`I^Ou1QJT=cygmLDUd zhGJzuy3!UPrFqaz^`M(|3ikzas@UsEuj_PYm~>+s*`vgoYoqIEdy$QCi zr#C@J^#082EP{$6DOE0`(f-MU_Gu5=%aGNZ>^q}+H zNrwl2sBl(pob(~(F4;{nm3zSZ_R_XiL|gBYOAOM-f3_sb%KfNVi*knUaIr(9>^1N@ zH?uaFSrZ@-DsYWAP+W@w!viSPW4XI8)7Fj~^eSg45s#%~>f56*yk?S%EhM$S+cvOc zf8w_>l|+jeY%VPFLkC*2ynE{mF0Zvtr(n6RPR847NNquhhs0KjMr|?0K(V;h7+mRU0`y~p5(?kypMZ#@`1?qrag7up0juV!4C&ULWKE1ZW6_*_pAeqjT{od2=jeMtTl zc#37Q&At_=tBZ54EFJ2VT~^FVvHMEV6|}0W3m3`&DxsokD|?(&3plQ`)an(CR>}o# z(HaHrsiSwZpz{Jka2tDLsj~--j0&0-bpVf=jpsF}X@=%y)u1hx29eTq=*Q8L7uBsY^>gRt!lXVU{!aDX) z*D>+E@jrq%k)E>8OSaCq%(*|7BPuZGLgwb);DSh381I@(XRGSOsw& zBgNbQxs4RxFmuy};KPJ%4u<2AJ5h}WAKHxQ)4|R)pg9BV6{TG|*Smq%_)5R)0{(^YQUwU%Nb4YbbK6-8&}3_&bgGhJr+8rh#bCVQP$W{T zqZbwu+;1!|bvHzu{c>`!*m6C{-`Kn{$yx^CkC|&8UDzIqwbSi%e~7KukDUv!5MOml zpjdblD>_kHUQ!*n)VP^nZjYSVoJ1Uxh}`U@Jw_wdjC617)grmATQd3bW|qj9Q&3sz zt&{FyCC!__Oggyvlv3hOrO9|h-xq&a>*_%|%bheo`^JS zYaZO0e=!nsnzr+dK?ne~j9W#;;7wOxn6<;;ihX z9D7yF!V06G4QVW7+v6&ARkV@wJ6aeofb9-+U8ux=(TPRzeh`lB|IG<44Bj&sG*^bCGPra^oqQ=VcQM*K zpTYw&7CGrR)|(&Bh|-pYLMYz4h*ex{f6u7OK>AJ)*%KsR>7LG|YT+`gG;_&+Q3_mu zFZ)sRf39;;kJZGhxG_vOtfXt5#rCi5B}3OEk;_^T z-s3iT17V(fbfmDBV!)JA7z_qKYG2nGB2Hnx?!r@L3|7Qyl?|x)2CSuCp^%0rh zO}DHJ*>1U4&2{EnTlq&mJO~5xwr~ZH(Nn>nc6E;OX-z|_S52#rMSX5-%iB`zYVMP* z8r6*A(>qU6r)t_zKOHWO27rp8KE3eq?Bf}AS!twp)!fGbZK`SG{S=Vb=1F{*b!Dq7 z<*Abvo0scD*RU1PMqb}$!h9xlj<7eACVSAF;6alu`?nw3D@mW~TyC&($pZ_BGfrCP zL2R{?7|RW%=D}-KmPex49qAkf^3K35P_AoS>b&kDwLg)Ac2maL=KQN`qVt7IqRXg5 z7dltk(MZrcGb12%=i))Ip{=_ z)TX+7Ri+>ty25zPwSnd5cs8(=IeG(ImBS6Ja}UDegR=WF z>s4Lim#nmkZG^&2>e)>$lG53DH0@3E)m{{%~hwYhCBi^t(L zj51N1!6MhaBL+xoea8bi3YU zO6|~_3=_qlbn!G=mAe(hxGmUo>p_ujbYF9$%gtu(R^+ivV^p{?3W-(D?~51V#@(GA ztlhLhmq=xCqr8MEOO0x1#s^{`8RBI|B-VGB`uDg|!MN+ptMOOvckmahvM`K1&k_|; zJ#mlecSf=FVZShGOpzdrioEi}*zdl%K2+a#cy6MHh#@;snkP)d(!u;|R?GNT5KE>0 zijTORnp4tW+de2)Ge9gk*t(>Te06itB4T`x;>Nj>DkAnv9t8!7%*O@zHB?P1V2oy{ zz;B3%+ikCo$0;8ivNy3XU77+?q|lm%YBJAF_CS@=iDW7jHbi{C$DUwo=Z@T_P~^Y% zV(E3P1v&RiduLoBa?5!{p~z#_u-~4DD+q2B-tnMtz&^pY%Yygc z0eg~dyF1=icRcR?BM#Zi;&i4n(}joZm2pJVEz_S&Wc?`zzU(}%p(70cXLBMyKWwjP zd(6m|>U~&~Ue2i`UO!^*SmTtdjr(+mr;Yo32iv$PG3PkuDOv|b0c`P5Q2)R|1}s>Ma)PHSZQp0m-xM&5dWSXlAN1nYf3Sy3et1}mj*WoXP$7PR5%Uq_e|5=L;s7@aY*$|XudS~L7(XYl z_`Icam%hGKlUiLX$$(RsL)CI8S^fVd8F1PjFLkm~SbiG)Rk}Ncb}kgSRv=Wam1SIX zZ87a$6J7$`{v+Wx?^I6iqC(uH^LKrZnbzz%b6yj()HSgA~1zRzhj#W7sGB~ba54G z@G`*>gKKpmH+2O%bjg@ZxFL2rXCG*5=tT58Zy#ohVML4CMo~bDd#33ZupZLgiTlR| z^if^haWg$|57?WD`xlXRx)b+}OBl6GamStLj{9e-V-zkondOYR0xSHHJ6gVp###kw zbIpBYsktXRuDeXy^Sc%_MAt%u(Gq#i{u7h6sMhH^9<_$6WI9T6jH9I3`Wqy2pYgce z&b$S&4_wwM5DVjayXETI|MjxE`SY&$N@4in1Dz*4_QAF|cOnfvh#auTi-XxpbE&V1Z~F}RUB)X( zxQ_0|1Rk$eyb_s1C3K3;g}OX#EL@-<^0N;wKdYrC;26I;-(?s;*1D zIPPGv{;3sv&|Qqt9x=AI4f2oCklav*+`~o(b~IlY%Uxg^_cZR?JK(_2+@~%T8b$#r zl9R%pgOzwu_W=fFE!`>n{=nYbmf%jIsXGN$t8K}S23XZ}p(g8mmtnZG!1rYG-LZqjs3JfcSS} z#MN+&BKNuChl**BQ9*m$`P<3-Vc9F|6;EWCN}bm4M2f|IG5O#2!kF`e2V5R{ithKk zJB{B9qY?4U-rn}gory!w>>2cGt*elpx)Y!W6dcddIad*D101RN`xr7G^`AW&FX$cf zaagP>hzOAJ`P*H?;&)<#L&0`=#Sr83d( zYaOMcU3B&fKSxuksS__$v@GjrDaC1cYz~eUcj#~0#voK%O5lw92RKrszE<340giT3 zFONLCM{A2VZupgg937+_EB-e@j?U675B%wc<3B8h8eeC{pAS~0)gJgOocQ|mDVF-@ z7fTj5;2!E5D~*I;l3_3Gt|*kvpMS zjSvu-5R`!lg)qa3VzR@fi)ty2t1puOvFpcNM>92x{To@|QFGi<-BJO%@>oYqt>|crjaWBs9~6oxS8{ZdB4S7|_zy#*qmNW3#-o+Ru*PdFM;a~l z#EAE5h%Z`WtGk7cey*~kfz-?cJwC<|EKh-sRB?n${dAPrs*XxhZx56nT8>gzplWYk z^7=ykYL2qf938cO7e}P@x(Div7-LPAYh!YCn1nStieC*_gOwgA%kaVl{3W$7+kd;jvnSateYgFtOUwP+e8W=meicqZ(xoriK^7)bqAW4Mkt1V|R{m zG?Es0u=BRg&i{0FhCA7@8t#JwmsZr-Ij9pH-oQ~u+UG%Vk4_Nf(FvFfPtsK#^=d;$ z1?iFp>Uj;-)|DzqKhYhpRn|NhswgGJR$uGWhH<;o#$)TYI1j_Lh=Yi#Hqfl&(Jvgl zeqT!b+1z10kX)gGb{6J{>ty&z8$XZTv5>Z6WxQip&Cs@fo@ZecAh=A7n{rOtUL!K$ z?l(dU){7NunS_d^owUvO%Apg5N5ptC59N0VV`ixrQj!<(IWV^Rvkqq(qj){4io z;ZuxfX&fghAjLM<$dsoa{z=fff2_zN$L1NZ|e8+-pS(B!ryA;+?t4}U#LJCG! zB^$b1&)|lJjGQ(s&Wgu|tf2>9Ohc_TMj^&BPN_#`sFxL=Y?0L61HX$0zF|zf#iGS4 z!Zq7H%SwrD%XAM)Q=F8zqeY2Wf2{HxC4FY4L>;#DsRyMEI;FV{v@RR^!;}WI(6vT0 zsH{^HSEM;wNCi6KL$&m|i*(I{@MTlTrXu1w{Re$8;s=_hhtewzjTAAzGxRCu{`5dB zrC6nF%=59&@82ImQUs~)p8Bj7D!=yGIG*X;2 zoP)V|5t9W?#B#rho^;FZBTi;P8Y4Vt3~l70U>K`7aaq6SYiQgE&-6gy?=PGYh+QXZ z;YqbHSaD*qW_{+7;io#&ZEi|6QV>8Ew7}~(Y$w*Oom`g*izyXF<$yxS#EE~WuEYu%sW+bGG`Scu*wF!3G2A42!Ig}m;a3Xc#G)aN zhBhxTcf3)Kh}Te3{8V9rOMm#Hu`!xs<5_g5qbzFDi8W)WBhnVhSQe9wGpQ3`?;|)| z>+?W}YEldt=4h&gOwvN6@r{i!CQJE$!_f%vVvNbyv*C^^sAo6Edd3-zj&~DI&vewY z&9-3m7>V-DbZ2au#@J*LB5S>$?C6h9(3zQCc0|*4bV$Kcp5^XnB*BNHQ1QntxNnSh zG{bvgZn%dF!~JLs>WIZoloNfyG_0x|@jyT5MAy3E_(H3r`V2>!?SX~d_cI)s z(p?X7SisbeWSAN(g*4H|Gi+J#heU7DbCv_|fHZNh#=s_G?P#1h%39tlKe zLMcqeC%%EMXOoree{VP%OP_d9{J4pyP`|h0F+17+gGf$zAb;J2bqvq4Sj9SU9>%Gv zmB!t9SSrF%3%90qvru&3ch}SvF>j-FmJrDcjnwjQp2 zzEj+dWZhhtJN&cBq_;g6ondpPXX*QzG&Q7wUDF=0s!oK^cN{fgRoxiq$qY!{nz}S{ z5wX@-ADwF%x1fjnCVUeW0PLC^%lHp?_yO7r{G=7zN!#BEb%Xf@yAtTv!ELn z1Npc+@-cU0?n<`gfkFJY%S4V};)sLUb<6pBp~$n2t<~$Tn0T<-sJGwVL%reI&5vB_ zt*D4yjY@*p*f2osg(-3NQgj#z7Gf`#qQk(%5X3B%7T3(EG%ketfun-0uLWyJzN0Ek zt{V&8H5R(ykdwtcLw5tkSOJmcSSUb$gTxDgo^F;qndu&6XfI>d*maG0x`JhDrz}=| z1YO17xm;zj!lb~mKxqn-#ml+tFpD3E-I1Rx6fZ5uYTapff&5?!gthpA1%X?0mz9o^ zcuSM`&_-bEj2`Ep>QTT*Tl)ySWt?$ zqNlBK)RP){pvM-9-eoPif!}0chIW}tLnCptY zc?Whq&RVg%?Suh7<&KTl>qrW2*wHbYlXTwyvC^os+tHEs>0Kpxr%)OjI&W^L(+F!} z$}L1Z--D&@k~p8~HX?1Ish1lkQD0&Z*3^oB=u0f@$9dp4EF8a|_h!9OpX_ki1)p+@q|j?xW}0{>Nbfj4yfe26Z#K>WrUO@dAb$8;5_w9#^cDK+m5s z`-^4_3yHd}B)CQ(4DQ5MLnzvY5_dn}Z24lK&e=dK;jeymjJEY-I+l@9Z=Chej{7t6 zpTA*$c#akA&EK&r{<=FqSm&W4&G8&VfyJONANUCsGgs6_P;)>l-0tXSd-^Xc|V#y-WfnEbH zpJwT}*%2x(I?!tbB)eBn(PT}+%#XG&LUeJ&JXpneKS`t5B3Ud@9qAHWC&l`Aprp+_ zD8?tdG_PSjFhUx47ZX=m{P`FYAm--GT}P@k+ynPDotr^o;6scmK#FR{=Ej_K@oz44 zaKmOUhj~^ov$l`&A2_;7A6Z%5`oPg!%J<0beOFe4mh9>!G6EG}dfL@wb<#gLsrt1C z?opl9LmI0fRVb?s9%-yLa%J@ivl{eoGX4EcE>W~dk%eO5!Mh0};E^Lp`q#>P_9I6x z>2Htx@4526Wz_Ee`Z8D*am-KAAHQK?H+$k3fpbzeAH`}ra9b1sY`f@bEc)j2wjk^* z3GMB%o_+dM)3bWdpl4kvhfY#fidgu}(bJZN<3x&Hv5C(e{cN4w^Ges~pB;;|1n)`@V)xaF$|8A?2#9akys=kE-jXPChp2vEcwNkXt-P5OF!n7 zBhmJmJ4c^t9FgU=ZP32C^dRXhy^~MdZc*N*)T706lpIUsAKEb1zii>Kk))*K-y3cm z{*hwz{3J!M5-vbVjJ=~B^F?#@#E>Y=AuCwWX>#vNJhInK#(3Pv(0m>NZeVwZ>0+oqUo(IYzovQ^pS0G_wAnJnSEs~>AVss!x0a*59(~Y3eR>&Tn<(mNCB<6Vx^+3@zY>sj91at2Dh)g z{fmfWm&415S0PGOsa$Id&y;G0P4Q562qk9U?4ZObYpq)#*{d3}s>A1TC_V8qyBiBD zH5LqWLK*Oc{TH2ap0MMjv1_qUIkC{MF`wwWneWxy+a`)nrt!ugpC=hpZm;pz#=th( zI4243VQTj^{o1&5*hi!S)JlpfMK5B%R;%iT9T@gdpgKyt^uz=CUp@1`5n~a+ z!CL#eYBvEYw$&5_k`EQN>nQ_q%`~~GOQQ?t0Iku14yzxS;u>|8iBO}IM5&{dFp`oN~m&-Qp+~Rosj(h5sDKvVwFbH`&JUWVwGmLJa-a{ zoFqi&C`I3#g|=}4(^#a5qOIgq*?#>B+Dbp@l*@SGHve}_!_vQh)7C{tCm~@gS-(1n5 zq6NM0!9iZ(9K^N6U}2vX|ErctGii?p{?5Yj6PE6e)HU^zl}gWKB}zK)LFIRiiY--S zb;Sq_S6aHFD|4-C?h69jS!y|QkdlDsat3v9X_7u1U?6jggvOD=Vjq`uN?Y>j{#Swa zd>!|YW7@#HwbF^l6yOP4%>O{wqP8vCxu|WWx0EDluoELh?4PEj;%0~&JAE~Fcrl?@ zJC|x^y`5(zL3)d)ncYa_xRUTt-A}C~NOi^JOvQTmbzM7`ab@uv2aL-3&Wf7$h7x7_ z#y$71oVnu$Cb6c?C_t30019R0Xn*O04fuky^w>(fTPLL@jy=1{^nt5P+hw5Ph|4cjtK^hH@pJt^J;y^#~0)dO4@ zCDF<88Q}_Dlp1&x%}H)W7hEhH=0R?VP7Z=#a!?f3HtbB1u=oV$eZ1I$@eJ!)xwJ!V z^hq85p+RLm_&(lcSmi-@d3zU)yWd@DfbCxcBSg&X0V{RL18u*~&t9NgtX$vs4%MMM z2(|(XiE_QrHD2=|ak;&V!ZbT}sEN)oP6f#t$01@xZ>5b?B+b2cUg-HhL;mz|28gkE z!H?C*weG8A+3*OJN$zf6rKeQigIv8dt+Jiy#@wN%SGP262<|Osb@dmvPy8aqoc@^U z<2shC(4)}WYXMrinTMnKwv*H?O&fzl>>*<403}oWKE$QHWO!sr#>bXxVU}!<^p*#+ zZ#pqq7f^*<_77RaiDG#!>j74wa&a1n%RYJmD*vztr2}a$mA~LMr4i<-21bY|GZgmt zvIp7)oq<0PW9d<%hbhrG(KUV&>JAx(h~2|LuZV~p>tf?xcwlqEYgiDwj=-j3RYtT- zJ|Za~MMADzY%tHo{*w7i6zRV>)jw!pK^#sSFe}-YzzYBTsgFCwo?`n{h5jU?lDj7vh?wHVm7DWeH2k`7ST+n^Vb=oqm~jrF(YEv;w#xSByBSjRkFA zTPVyPhoRt6XWlO-6_U4c9~3X@8hMuzd>ORBJ@0FU=AAtO-3k8oJkwx2WTMj1<}23D zaOv*6IKaK=Ty6C%$UJ$f?T%c-6`AXRb@b2`X}1$iR~Gz%!c}r#IJuQR@93c|(m5*$ zR+r!0N&M_e!d+ja=T;J|Fi#l6!u-Fk%-bLSY3$IH>!ejaN**fScn9`69BZhqLz&W@ zwB9WgF&3-!dEdVh_3?9}l}h{~B~5DXL8VFIRQkWG)R6{R@&9^PiIMty;P-LjvkgF* z*nYc7^>T%RMmkq{R;vC>Fcx0qL3M#n6;zlis(Ecs98RHXB)j4(mcFNy$vJ?vm2{i@ zJvqMedU8t0FUSd!Pm&|a8_5ZgKO(1yTtH4y`4Krbc>_7#@_urn74_&h`fxvKJtI$#LKJ5 zDJp+Tj!nKzPBHmUax&z9$?=w#kmD=wCdVf4B}bCqC#R^qlpH_#H*(6z2g&h~eMbInt-6w z1kM5smG_A9`AQ7>!H)S#%N$ZoP`T7X0u@q1c(PWIhg6C1({_6mkvkCRL?DwuXMmxs zNtB{9*pj;v=uV&~f!+lA66jB0Ac4UELs_esZcY5gFsB2-P5?t?(i-Gm3I9AC#QH(0 z67lO9If+0Dz))5Z3U5OH5otys0bnTW1%+3@Q_^xJfT1#J0|lM$j8|nY61WU7R3=TJ zaDmtHa^#QbjlAUmLuJwiiuh^=g1#Z}9f2PRoF?!SfnN#yLEr*`%LJ|wC?If?fSrJZ zN0MZ30=@+N2m}xaB2b(_@J`A+ls-!l2qO?qAc8=70u>2F5~xC;8i5u7Ls?yk-C^`< z&PafvtdA7*tPSo9z93Kp*9m1W0=@+N2?P-+0WeffCQT%aX0+OzKp>Go5`h!~tqHUx z(2hVFfer*Z5yq*+1pSTiYz>~9{c zsMGh~ep?apk^Rk+U%L2;9I(XY$dc77d%O62U3`8nz5o}WEkNQ7$%^O6c;?6A^KtPN zb@Ao+yLba#e8pURC0u+VF1}_MwNR1;HP}3EqU56%3nAyAJ(8E&Y#ujOr;l2# z(?`wM>7#aR@u7W^k9vqaZqQC2wQQ%4nz+-~`^y}wms-6ulA6EMM|QyJBZJ`drNIi2 zkGdTc!o^1x!Wl;L2>%XppcIYOdea79H*CTjMGOphJ0jm^4QimePnc;J~BGwqo$F^*2nO1Z;{8g z$Oy_~qh$Ex-ywe>k&SYOaS&N7w;-}#Zb4+t+=9rqxdoA>a|x?4{?DUZ- zcKXOBJAGuFoj$VCT>o13WUrl(WVoF^vfxf1nR2I(tT_2-5R%8{-0358PCl}$d2H96 zJ~Hr&6U<05_0CAL`A#1hf2WT+0QT)&xk|~f;ZDV!)k<{Gz>I(*wd9Mh!$7YWHPDI8;_)rT7Zu~yD3N;n))Z&FZ!*4%CUbnHnnUHb7_4H{pb=^Vk2bO` zDaT@bFCW0bsnc6a#e@GkT@=&SDGAlvqkOXDgW{#(>;0wru1qNmqdLi*5Y$P|$Pnk( zDGe)Uv2WP`iYdeKoe`2NcL79}-7-Yf$4XRjeIVAD2V&og5g%g_c)eKsvC;+q=`Q$K zXwCl+o*;3e_5lP z($h~LJMIu?K1IRvMb%A8V$P$pQW5#g&j53N0jT>M!1xOQ7YVevD1jN8CvcrWx(aZW!1jAmP7%5GeSGE- zcnmO<=Tekg;@=2r^bf!fPXNk3qez-zQRJ-u5Y*`fz)o+BcANPC93#-q7ht3xK&n4L z0f9FI0G<*U7YNWXh=#^HnNki<(ukr|98ooc0T!1AkRt&aRil*u8O5)Ipdac2^sfid zwm!h$tpN77258U*;2eP#sQ@AE0fN#1PNf5k>j3apM}QNZ0KUioXq4rJ(QW4jy8#UD4v^CmU`H>2%Y6Vc2LPlG1UNegVA3#v+rt5R$N)c&0@yePASoN5!~}pf z69EoS0XQ)eV1Ew4;5PwQy#>%V7a%KV0l|d;^%nv3TnsQP4`AdHfEP;vjxPhauma%e zDu9k_0DfKzFydp94oz!Ges6C;P^V7;KK~5h(B}Y)w*U;<3UF&DrPU@ZastLQgLnqq zF9(=M;gxrM2@tmrVA6hoCj`cx0=V-#z`N%FT3i5_cM;&7%K({I0Ve-Nbjj!u4+pO! zDEJmY`fY%>>;U6m0*reFaErjABCt7s+W<~@0puL>27JR8pjuIY=6(P({Q+JJ0I&xF zTn_?xs~A9!5&-3c0m_5`G%5)&ycEEDVE{f607c3H%qtI2yE4GaDgZ&%0p6|w(6<)A zzjXkP*8}JljbVX2F&1EE9Kg6{0A&&Zx+DWUZw27nhCnL7bpplG0AkYtDs}+akpVEh z8^Gco09$(jNPPg_?h8<%KfnhBiVX!=L7?t1fc*s85641*d=5|^J_6tofrBFfn#usj z3Dg_~uz-MfHo(U50PQCN44(whWHP{tDFC~t0!*C-Q07g5tGP6f{8z7*0hm+E=}Q52 zVpu0XhDjaDYaRWT=G2mZU5>CAsF7T1HNX=BQ?Q1CDI2Aup)RalYYapOamPUweHK1> z9eR$TygWidK8Gpj7(hFW2<0zN0G#|DU;=u5`N1!g7A&xyG&qN##ESqqPcH!mTmh(w z5ulv-CqN6#^W{$p2;(;$5WS$h{2svO`vChM0KE7cpdyMZ?ZGRuwzgflbSt%HxN=bn4!vGe9({%fwo_VSA2x?jp zU~46Su*v}GRVl@fns5>@_8!EmK->!8lke66SY8)kZ+(Ep4FH-o0XW+XU~Fr`{+bqw z2;)vWgvF-=)aU?Evm-!iCM7{VaEggt5ER#yf*=VF>evTC)A|A&9YEo<&P2q18iJsK z!vNAp0A!8^kjDWunEJMqUv382`x$_J3qb5P0Ke@3R|#C% zLGmxV3!evf1Dx9f@Nh3c@P2@007H4fjEXh)5Q1hM1(^30!0oRAP9FzYc>-YUca&D) zV#y(x{0!o?H9}kjpImSTVE1nTS-%5ZAu#E@587YXi}?KQ56J8xm)CTb)A>nO?4?Pz^_u&A4j06au1kh_XriF6%T*6$V6N_Gii0|?M@Jp;B z@~#yCE7k(|tq1Vh2rz6DK;BM(NBanMt&SRe6hWcK08X9+7;_fjz27LsH+qVi7Z5b= z3P9}}088&s{^RcBv*N!1`HulwKO+p75GqIs%rOV?xR+}ZKKX5&4w9P$0h|Z}P{IKs zD*y!709aoWV0#^aqEP^23H%%lpwtJL8w*e@5nx?QS`6A|$X{uVur_Te40emFq){4z z>ZDW9RgIY+Iu`{q-|F${T@Zh`E5P%aEqd8kN2Ymy@{h>Y0mGOvqE!V_bCaj z&BFOWb70WPXV)Bb6y!sv0cY~$g_1mx4|?^;5b3*ctPAegT}n8wk>&EHMK14I%;znO zT;8$Be26B1fESKj3xjYrf<(0Br8J!HKBIqOl?=alM@Fv4s4A(Jy z%J570wNi3QDUzW=HCNT+1HoWT3Gu1te2%ltG!BH+W|3d zFYHe7Oj-x{Uc9?k>1=v#Sv^T#D*eou^3{qn^* z@M_U7gwJ86v5ttpTpm^uP0w40m4>G0=wT(n^mrXn8kwHNBT9GEv;2sXVR{}MQL;== z`=d%b)AQj`3$=?!l@?}9rDJ9-oD_-2ltjH8C#l#qup}YNSB-Lfbj>WsMzQXg5~owy zD6Sq;T9njExRDS`-2q6wTSRQDrj{1(Rwz*_KfOetpDu)rV$@ekiiy0->Ur^%$=pVf z{I$h1?`!l|dLH8J*GhA1hCOg~hIkESIsgUPH;J2pUo)dk( zRl4W|&WYXMDs4=U?K`ED>FNHRl4g1~ey4QR6_O0RJa;jx#(jFEmcWqnSx`%y_ZW0w7Bw$O9pjx|}sQax3oV^p_ZD{X(vHXmZr7It&-?0+ucdxRE@nzL2BD+Vqs(Lx^ zi}bTfPt&vctkTQ$1pH(g#`|LWPs$K8rr;-~hv`ZFS;^3wB09e@E2u(PV$a8@r%;m^wj+oV?<4ad&Hn$O>Mp@=KN~5nw#Rxuco|i ziaNh3gBxf#G^&slEFQ`WzcqNe{hi4Z4K(Bth*)z+i4iez6>A%!Tqi31u1wIg zUnf5NT^VnBg8xvan4U#{C{s;O;5lWQ=~-~jLcr_1GSQ5A-RgOKUKwM?jJlwVGCh|s zSYom+Dr0qNGwYdG!1@UQP2YaLYL@J&xN%V#q*Hk+I$koVJjGRMWwaU7=(5S+Q?cc; zGTDr&eZ_*a@`^Inj0wGJ3gW3)aMcp?>Z++VPsP}4$}kh>;x$W5+Mmiuy&N>klb=5X zFj z{cf49>sN8`mN~fiRn)v~HmG04lG~~2LbNK z20Ij^9seqtIh27q55J1F4ogl!iZaxUnFf!Q;MfQd45PnKfZ$Q@DpmDL;oNGJN94%L zlCE6GtH7(Zs+D4-s&vz-t`y&>rlzeFQFlyER*I!}Obu8mY9OX_ULNiV%z!}L8cX5DHh&W`kL7H?kl}bPv!$l z%+3c&KfSC>_gVtzHp5o6){s^vnq|Ew;{G;yxJNwvO_2%RL{>31R%G6<-q6hco{0EI z$<}kcCzkwUnuvR%_(QYJ+!Jp-R3_{7z$ESMLGmpWiD}6%iOo+;mAoWMJvA%gl6d{8 zSv{A8`qYxF`!iG1E{S8$ETro{x5O-aZd&w9;?;Ar9xjQ&|5;+b{m<+LE{UiYCfDah zhZp9Mr7M{0Ea%qfwpz;G$}Dl;=e=n`-FQd9mE4_R*{Sym(<#jVZ`!QC?Dw z{`9n%C8N_5Bp(a4u|BF{ zXHScZKB{4~PK$J3OU#$P7HXA>szxV!TKuo5B}OT#4r-vabDB!a-IhacUjS%LBXlLa zS~ShB<@Gpp#l7bMFFY)tSx`615bO?7;HMgWIH=+Yg3y?3G2CF$b z%lYC+usYB5q=%^Qn4Zfa>U*YVN~k)=^t=dF-!?t(lvLj?r%9W0e)~t{Jngj3<-(aF zI`eCPSbwpxL?Hf zQYcmCqWVFlj6paP%b}gnh~Gq~GKl_SL;a#9bv5AFI6H z>Ue8j7bv*VMR6A4`T&~Aw8qw|yb3^5wndlW)i|f+8#(y0BuWg$0J>vJOx;jx%pKZ* zog$8ftF0p}2r6yK4#sXQ(_1JWjE-q6#=IUAp!3L7C(v%~4Kc2)nyT~2!T(b5hypRE zf*L3CqGL)J1?JedXm_{DZ80}OZ6jKI9pmr9PEXqLJu2ozsF~pwcFt08P3!>^J7U`} zF{v(C@w7Yqu1GGYcCa$Cih@hs7OTst?X2MqXdn5sD*Bd(NlPlPx)jQrc9lnqKIPTU z*0Ro`;9tby@@kfqQ~?DyQ$^(pYDa7GG}@6qDsn2gislLh&v-zEj}rq2#Fh}*V`2lW z1h?Hoitzhpig1^L)}oE=9Pv>_HN%?QVhX+~o>o*l)U!zK5e1KaU?|0Y+5*?2X*Ex- z`?nZhNo}eV;-H4KL4H~ssH7(7Lq`riNn7TA&m{51_evEp@KtQEcvYrBPy-9G@MlPJ z^tqAOlmE=TXw6U_Nq(9u^f?I%dD9yBM;MKS<2$}Ue63<$S_LPMu26vzg_m|ow1YP1 zYx{VKC0{FLMfR`;p-k^+#nQ+t3PzO%(gp%|Z z+p1zfRX?vmfN6L*c5EPG6N1F{s%nC6D>%GE5W*vLSud6A(oqGiCTU4mwiWjhtA`=a zm}+XxvX+P%bev%}jx(@L5XpNQ)-zf*Bfg6$xmP4H9B0KFNrxY*;_!opXPeuwN|ZIj zhKQ0k)YjwWZ|lITWlM|8a&R5dvAP8St7Z%+SnT25a&?jik-#k2H

j3txg8fA(*i}HPKzmY7*>1dN!SoS=&p~hNSQ~H&xnB=VpHFqeX+Z zw>Z4>W`GNYOLVHHi4{D1zSACdB$9Dc0PJA^KXHw#dx+>ExI?&Tr7Fkhh3*E|djdqt2eoU-(3;t;o zg7d|lC^gB-!Y5-8TtAxx+tjMgE$L{`%kf@faXOkveKlNkeB89SHJ{>iZfLQ%7Ol3l z2Ct@*L|a5meYK61-XS_$w0owPINV;XC^GA-l`xn}@iT3uri^sYdW%Z!LQls*y z-88qN&7|{FJ(p;D9sP~FUXP%YRq9glPMjJkA|qQA4;$xFl>g|^)y`#_QNZJqalzuy z@&t1X%F_Fq&SZVRf*O{%-%u@T&Hg+c)w;b(Yp|21XS)jO37z3eSVM~4z$*6+bgT=n zYBzFKnV;yOSC5aK%#;uVE4J{fXEpc3aSlvA2Ee_AocsyAT5mv`jPhF|v9X%0=fxo% z>6F-Vk=Iyltq&PF__NOt{Q2h^9dUF~tFmHS-xifjp>v{xh?i$?p^AhfX4iFEkwmYCi|&9o+eOu_w5iCAiA!G~K`w?>XRg~-?b60uFyepXs4 z9iMw$tVXak`64<{SMP!--c0SG*8yjpKxgbG;fx*Cr8x3sQYT~h!qNYu(|0q(G?kL0Z&LIuEUTxe zc)>pAma`}0=!Hda_UliZ$V7C+pzQ3?(+$Pq=m$1L@Akr*VX-iypdKz>|0CHs%-}@d zcp=d?Z&A4gvN(Dz+3Z$0_NX^v$NP#y?bZ1F&8>nhzEPlU!CTZhp&^ zK-Hp1Q^!vu-yuo$x5}oOA0lOcZ?QHC41$1jT+O-9@JD=?0B>Pypv9LBpZwY&mog3s zK$3HT-r^pS;4+?Vb;~qrOy+hV() z3~Aby&?+K0?Up$l;n?ma5E~dw^^j=QsB*yw_YEPeR@U&a5QJAP$x;<-VpF_DOe?jR zHATacNYTBN$Y|xNqr*xed~O(pHy5kBLLsabvLp<#56fCgQg+0k(ZgH><{g1F_aY3L zw@fMLs&cO=eo}djw;2C6=IDq^`oHps4X>*Q_4aLG;f2RMXrsv9IePv~@ICcEmc>iW%PCK=$RolllL%44unoDzyaJ;MJ!x9mn zk}NXYt9^7!%k(-YBitblwpZKhBM=UL)(XM@w)WQNQW$}R6StK`i_Lceb<@iUecDjM zwpv0my=Ap@M}JN&Fx=A@XhDs({X+6-^8h8pHAr9_CM z9aKLn{b}8hWOffWf%$*7^L4?0w+A9u_R`x!=DW8lxI}O1h3E&p^`^kKV_QenM_(*t z25o(iWJ+IM$P4kK$WkfMqNR5$=L!L*dkabAp#BD@ZQ55hx;Kt4-=D~cF`d+g)|y>P z!Ry8LPHLhxIA|z>-^tHVn_1OoIfX_H(=1*7YWyvJc7|HaidSbCQfv|{GSoOL;ywy) zGF%t(z+!2k<;IK~Gj!~v$zxnBL%ZQf_pOM@G)JAx`yUkCeS~;DQ;oNZX4nXX-vHpz z8AM~-c&mwvKK)B6J{u`wGqEU9@kV>sp5eeq#Ns}lEd#N|)%HbQB-TVm>`t*Q%bcDv zGwmiKxcelHG!E@0&(CyvzIbtrVBM!VoE+&Lz9ad3lR% z?bAxuccF467iseIbSm<59Cy^a4V)^6t$NQ}yqbe$o=V-!i9JW8Ek(k0f*NlnaW=C< zDY0f#hZ1G2xH|-r-26xvN67ab+BUOBKSGQ=bGebTH+Bm3=p~f%FNkpteHV(#hwhXV z+kUqyg@AMp;l<1jSqJdYq4J<*f}ciun%4>dM`zv(WAwoo@#kfJ|TM__7>Ty5+=?JQvFfu8BwOC<@mM7kUsvnIM`E7)mt)$ zr{eUmyzvA~z$i6B#Pm{Y>jmN1y(bX6PsqL0PFAGvzen((Q{Lj>I3OXj@KWY5k@3dk zxUGCmg!ERM=u5^NeE$~&pZ~)s!&aQm(FFjlfPBu0$-UKHIs+Wk;v$mV7FT<#X*vTO z{NxgXpI-JBNyEWF(!=) zuU6N;QBhUI@QU@lVJN`0PqV6+v^oCm+lX)Vn0PnV;yL`Cy9i$(F7-3_4>))k_N(QO z@MjveuP!DI-h{(H@~02H#gV~kJxsnkmlCfAt3|CzzI=cr>fd^jZIwHRi0r{nj7=kvUim z)U|{&Y3_v-cf7^jVMuW_v8!862GZ@Bkdor?V6~k!_gnr5A63jp{Mno4X^*@F5O)uP?0X-c$M@aV-bNpt1NTljhU)U*K@uU&0jOu<~aDfFa%E* zxv#0c^mfU?xwyh3A1J41Cg;%|9!*&flCqX8FNzOUTj|_$P!qc0v$B$pW;QZYy45nw zD@SjkyFWga#o9@b31UOUoVU9L=~CkqrRic&v#OR9nOWTejsBXGq*X-{yXY`Xtx;Fw z=11bDHeDHVTG86I;MJlxQSNOM}lA#v$QQM!YeGYZ1Z9;pV4 z&wJetF|>n|RHv&^VIB4A;WVqa_AFznHYchZYl@qJS z-Zp2NoF;7q(zF~cR*p6&6dayG*S>m<(^_!e+TK+SUFO)4bRVqd1W{=m>GF@gYw7HB zWIWvy+ax|3qo(Q-;oyB!C@0(((?nQm2E3X?FpwxBi|Jz3Fi7NDRNo3lUK~+|ZkG+3 zFZzyE8|bZt!^h7@c&7!zHW64y$C_hwj_gkt(bkA7W7YaPYaG0duBJV~OVVm zeso!F3NEWLYYXd$V~)P{taxwHMYiW+|2T7)%y@xxwe7_Rn%3Q)-6u>Ot=2C{AI5Tu zV);lBj(cxJS-fi2ueM9sYSE3jr^~2pmGf`k39&NePZ#B8;-Z|vR7j6LWklrse&%eF zb9jfY($!cil1L2OZr>?ol~EksuDh{TB)o=tnloOlY>oVvBG<3eFhSQBr}*v^x2D)d z_wt5(tfg3Uv!4s?i60|!@Osg5f*Pw&n3k-}tSNNE3F}`)rQX;cbe`Aw{({!U7 zeoZ!sqZ3@~ryX7T+n7I5jkZdEFWmzCM6{f!HnwK8=Q9MK!@WQ)qwVMV#JLFfHlpOn zZ6sW%)yn=MF0nCmm+%_Oy{ zRcM!YAlPpg$ptT;UT`gVI9*o!Y_}%S`o4WbP4mOq9-wQC-|o?(?{B|d(uL(e_8_)k zFG(#@ybK#q!phA*bno$%cs5yWX62>?EB}qp-I5wb}!6!%mk1kmL@wL`0*1R_$ zRMcNEz`4r7X>NUuG>48`(j2-uAXqODr#N*SDHaOHRJDmU?-g`iv)^~lydy>Z)dR}* zG6p$}I|lJ`_mg_T7M2(?dg!3BqX!L+#@5r&(G!id3YGFDl3DuB-9Nyq3E?M-UMPN? zW^%wGf6-mg0l4hRrBCu66lYA;IC>Y|5>5Ku8C_SLe)cp-Z`zzB6S49sJ;~DlqwBl_ zsyMp8AEI(Ey(%^o>|L;Tv3JA@ih!sfT%`!u3#hR-jOZ~j7VITP?6GT%nrLE4Ol(mx zCKlWoFqS0N_nb5L4#em8{xf^`bIzP8J6rGWcNW%$-7kjL@QIC2vsH|}Zj;yW8}MeL z{(F#lDt>or>2M2zC+SViydQmu`t5JTaZZ}VXp_FjW%E_~MzxQ%+F1+hpbp}rI(qoA zOA=ZwwVy!!$wqtYAYz_zAGz}%#G63wgXsS>ru-jh{0tM`RTkpxjekC>>-S+}wvktT z{2EqywIHvSwo$`{v_+%E?J@i?1q;bJ7hU)~lg$k#Hb;!IXeVLmBt*04X ztXq)rN%~gT9>3L9&8ZLmUk$@c<(H4VZI^58R*Jsn{RQq#)0JlYCw|{+NyX24Ik%;2 zIb2mk?jNf31?ZV>^tV=;$yWOM_ea>BZVa+kn(=M=9{AU)Fm(pr%4DR)*0ffUjSuKM z;XM3KSXHqjczhYtv7T*&vCAv8S`O8=)nhSzMXc)al7vVdMdn>lc7}e*i^)y$XdFz% z46t59Fz&pBR-PWOb4=taX&7t=+&LtLPK&zrk;g(ZhO~&)7sCegC!D9!|_MYQdr= zkDXxc^+eaAwfcAqx(wK6t5t2PRizcq(y3_p7_{SCcxC76-Gaj}p^wP_g!H*aH|r>2 z`~p8Kx1^u2b5bUNE z(-(+rPo$6COaBR@<{K@n9m2c@eg8fa4$L=dS`P?}mkGp?1@LsfQM)Klq;KT$aYela zM$4jMeCf0KSukmV{zHw!ET<3Y8@__`3-nQsc?bNq-m?0Qt+`&1JuI!Hb+`JKn)3#2 zh0U>iOCQ{;*5Wf7I+u=KXf(5SJd@eUuLi zL!a*7gl>!Ur5EEo`k3F%7oKF|88CNyaS#25eP#N%ZXJGXsEINN7XQ9b`cuQt8t*P;_!<=viVT-? zB#EHnog;JiekSz}_2f^DI@VFchGQg~kcYAfYSf&%H95fc_<-%N&}8vOAqBQu9+RYk ziknAqM??8#Mr&&YnG}%TLg!I1YMIf>S`hPrB*9P>B^Y!;r6DtEk{NQB86MWIWXHzn zWBCl#8B~dDP@=(F;tneDDU{FByAqRU?dgl z)r!qzHfNaB-wC-{`tJlb>>&Av$obG_g;5>+Hcau+FKnqh}hMv-iU%PM%Z+~{cSH0HjfB;mD*$_Z+#D#pAric45tZnG9J)=~_=bH^{> zEl#+!IAgNVsTaQi)+sS9Wn$JcG#!CsD-56XpF;VIc&bJ*GtJ=>*GyG1yb2;^-ALBT zxL#=Gufmn}Em>FNSK@`%Dw2=%C!mE^{)|#t|K-|`!0##x&HQzuGT(yemAdvMY6vBq^OlY&{2{1q?4Jx&?(H!AGRp- z3bKyF4_yka{K18?enVFL;G&3?-@I4WlVq)pZ{io`<#*+k6`zLlyYlHp%=~_~GJj5H zd_TL0mEV?D);C-*zCB$Sn%|yN)-`0Ey{V|RS${newvv_JNmF^#N#20pNmH5ezYctE zs?B8OSF4ou9$An4VarTb{0rn4vs{|8hUnjgBW z%>4A*3m?K4TK^oNJ5xUdFSPPAaFv%IDIcj`G%r6ZLnfXBmK7uKd zIeVaPv3_(>7@D74sJvIG;Dz`kqtMEC#>&d~poj2IxzO4*o$f)EnQsj*;N5AVnePmh z^(lq+z&pi4>#M?Q>D#?RE8p#@ynGM03vUJst$YiI)^wCYvEIWKH9O)N!CEbS-&UBJ zZ`)L8z9-s-cXfqUz9mvtzAY$+w@8InzAI2xx|C1H+k&EIzED?YzVxLF^}@`<3#+BC zdkd|6*{kyMb=E?>3@)_tWtOt4%PhPA!|iW7)$v7@GM}Zc#*3;Vnb#H;tgoO7L-Pfc z%4@rTDw3BkgOru8Sw`b!k1=14ODTJTRqe3=rpb`Ae3dhcCmpBfXLGCVG8PS!%F z&0vFz!jp4YMu-OR5#nsKmNL;kqV#MNN!xm#GE{bnuIC`sL!L@5!88+Ky#NgVR zZM^n=8@r6$Zul1|e*Jc%K1%EUwB4xbMwe7ri<7Ex4WZ8tdP@b=!J{QUmBfo5&tEIehXK=#Dd;JgPq1OTrA&-ZFmd$JK3}KS4J?dE&R$T zjf+iR8GTIFYczp>1~w=K|NH}>Ba$X1K@yV(}DhZno|7*S~R z*lP^LMciJ_aAq&|^cJYO&lv1Xg;)mI<0abwdl+*czrny#>Ot6#_e*n81^ckCw?O!Q zW1uVhUUx)aO5o&KRi}FXNzo&)S`?|I3tB0`!Dbo}ofeG`sk1BwR5@V8Jv7gH+?nL+`JRGEo1Z;f8K)53={RgGPdx94)gw?I8Nr{gTk|YurBf!TpF) z4Yqx4bj9DnNATl0??br3?!%x%IQZ_v)I&x?TZw3>O%? z2An)>cz;m9)5AsuG-Cm+ae=WL;{wC_LiQ2d#4jQFs8I#Hjv9>}@a+ZKj_n6QpQD(G zO`$j?_;*K*AcsxL*nJRq95b3D?QskT$|l%x+^7oYk6~3dfx~g5h4L>CLysGt$_u|+ zJZ_X#t{vI4pe!z+HqufThsH2Ptl zK0o8mdhw*u1%EI78Q(orpK-h)Z(&Xyo|J-LWgG_It7z`| z4ZAM>1`i^KL41Rw{V)WdHllHnqZTf|;D1bYzcsoen((bL1{ZnX8cDbqe8w21DjVF^ z4k|*X5Bzb)7=V@*XN?40Y(2|?9MAD$^f}zUvD|C83%)#ud&6NEdJQ-2sPBv(D$L9- zcChZQXBoKmozV)--rpM|aB-J%eDS@}2Y>rtH)?{B(y zL;nkSRKfbIMaT^t=T&~-`e)q0;nQ!o;RQk8aSc5ZuW9e{2KQ(Zu|CV#?9XTgDrmg8kdTjnuacJWf~s1 zfoXx;wh1m?;^xK$Zq{|v1M1!48sHYC9TB%94L96`J#m3suM;kC!_|d#zZqrlH*USbb_SHZ zZ8S6+YVS;hklRKhUb9R}v4f?FrM+P7ZQOzee0Lk`W`M&TqwaqlT=3v&KXPpRh#355 z&w$7~co<{9a$|0JEU>T^!ukVa{D65f?A-;t~5gMCTf5xcD^} z_ps~G`X26{*J0;9V-zmR{BDfJ#ggCI_VRbO#olMzPxsl@^$$EbPze_QDR@Ztp91%C zjb8Bj55pC6I{u00-0P71Cl~y~pLk-t4viidakyCh0FM~g;oSpcG%iLx#NGZn+<3^a z#UqAW9vKN`I5^98QG!h_PUnj(%XO&x7`+PM^T$SKw*uA3V}tqnB^>%ZF~af0Q~T?K&!%?$ zg-2lbpUc~qz{fxq0U1w?6wL7KsWB55d;NsO^cyQ+^C85?cBf#zegg-M{SEMH? z7%^W(G{+~V#iS(C*R6a5n+OM=;g){@#h)8p-RQXr`u?qaBf%ruw+6g;ZZyH3c>qVB z8&lD<#S3i8133G_sECUPFK`?2MaEzUdhmkTON7Jjmqr%S&VL&_T=;R!o{QKum_Sl* zQ4ccyHby|^KZY~|s+V~O|4sUpI;Ek~v*CO5; z8=X1mKfhtne^938jj;^Yy)(>c-S*Ddf{Q-yu~YtqtM82v$A49|s)Rd2t{;{jlwZ*i zGK-1c*s6b*e=V}naj>0Ohl|&CVlyt*e=N4)qGvI-$zozXt}QJtHsPXa30}KdLVSU1 zwVJ!!xW5Cg5JCNEspE+*+8?ahFM~#zil)D31$^S{7Sl}%%+{Iw~4OGuixa%cKL9z0p7F_ZW4o+D-Qygx$Sp1CGL-gl)7c9Px zA47CPC0{7xDZ+4yt`twv+U_dkc#5VUI5>NWs_4+b3+u@a<=};vXzg@WwQEv1UWwuU zPBFf^wp(d9^AQP(DLUMtHQmSc;2aUy+H6yS`!t zF2+?5YjIJkBHOlB#1d9RJ3sL$F0T4v>8ruw&uee}#X?-0UrEfzMajy%w!X4hglhp+ zL}|M{(5;Gyw0j2StBTV2UXuta|4dck2(}y#KaL4wN2kT(^=b_6bnLd$WPN-Hx4Vj_ z5L8WgJ7%%&EpCO=;9d>um=9a3i7#={zq;6Am%pNh*zL@@rgz3ih0{C3sbEnb*3}j< zu&cRnLC2_?A_o`lwZu+b9Iu6&BOhXG5_M~HZjm-(43cnIBqsZGUVbaHNnp>DwE z&BQWX)N9W0SaY$&vAA_&d&>skvRTzuVHWZ;A%&D)5cj`ThDg_xqq6_xRMR042WAGwuX^UI! zBD4v@VTzhfLAdu_gh}nNyo=z{9?QE3tJ||@;||y%7vW+D9Qqf*(vjDSbz;vIop6|5 zgzBAn?Qmyo(?tmGBFdWhe^mTSHmQpkjMFcl?;^q~ol+I+Iz$b$l$enzF{!C|+n>dH z!Is)@p<`E!v)76T8tVqdShEJrLMK9Kgk+ z9t=P4DfZx6uU=w5E{X;7+JRskn|ok*Z?PR0t|7d3Bm{@m9*FOQ$EH2t-WQKedthH* zG0L7FOYecTLq!GX&`)$S6Tq5`fy{mwVFk48FHYj(O@DC$7e@z(Gq{*BP+Y)8aH#kR z7ye=F@_U##hilshiF2MDmi3b;!Cmb*Tp1$P7m6np$Lk!_ZweQulrPI9QG&j^*%x*V z5caU7lyGw5XsnoY5zY@02NhtAq;yyqA$F@6EQ>@5#@MW4xK(Uw9XLlq>5Zb;QH`P~lsogQl3QPwAojC=m#m(ZU0d4aBg&RzYI4 zi1%O*mPeul>jAsV2GoVjSWy$&3=^I%?7%`vn82kx9J3gxlW#qgwTQ>7A-sNO7nVt) z1Y^X(y%7RMDuxLs2pTRNJlW#~DJD^3^N4e?=4G{{*>HKdnB>f^ERYoT0Im!dNj@JG z#41Uc!273Imy8$@Tyl8Q=+QC5)2z{0C#mT}h>8(ooj4pzB&~tFF(OsPXKkbgk03Hu zOjd*ik%~VdG6rr{2y}2(&0$UcyAGl*4qi4bQtu|!g@w^WZvCnl_ivjy>?UF@Tm>v3pKCfUi3mj2`=Kf^vUS@bwVp?>3Vro>B)rSR+Fo9iv;E?l6 z5DpM9MpT0Z$+)j`6jnF-9kP>crLwLOB^VZ`m&UN(qhk_vMAkII1cDyeB4#Fu>Tr0B za8?mn*C-LLj1iF)xd;|Cq68xrPm4|+Wvv``W^jsVWwQQl21`>!bu+DC&;E_?t%_cr zY+_*}N-%$0$W9R@;n+KYS`ewCk`sHdw9#T1l`6VBGhj`lct1FmDq8z9VHG1vFbF?8 zOO3$|tp2@#ifJO!Wc_~*K1mbJ9BBosVTy2sii?CVteb$RiXUSen?2c$6^HpVu&hx;9hg2=gel)n^-(W?67;P>zE#0}oG9VMfmrA0Dfo>OQO*ol+2~M5 zkP}32xH(QZD$J5bft{dWoCsHhRgA860_Q2Bx0h9CfFrPuQL8Q-q0}%|;t6bGtsUzZ zxp$-5^@fBA!a>Di;UcH*P-lkdU4D4<=+RNBW0PZ2qT& zVowf*$FYRucv5L$U)C#{)e9;t!c!ggT!T`islz5#E20EDqZf5XH_zcLAHY@?E&8fA zOtWST^d6Bkc9@RK+C>ffK!rJ2`&yIn^>fa}qD7Px##GWpY-Q1+%YCWmdi%soNK1*1 z!reQ?S|1iI$_A$?B2+btb&6sKusgo@DT;d!8yg!NWAkU7qUeF#Q*4GBQ-zD#maI}V z4T7fHwk7Kl?Z#bqs=#**rwS)kU)Ca`q_Dn95rFH zbm5^2W)-4K&@NpJQjK8Yq10IL$2LP$2A{+mQXOmwq;p!h!PAqOb2v?9?1{govj0k6o<}0`b?3a zD#2Pqlwh7XoyP|*S8VC1JXm#z67(3QJsjYNPeeJ@B`iR+dN$QE%-beF#BFBjp-%H4 zYL*!8!h}VKFoAm;M0wQ!r?1<4*^URSITW%G+^O$Y%ogsd1XdfWw}`i-FCL1b)W}Rt z-i$uUcD0m z6&Hw>ZuA=u$de=ZDt{nc>DRgvELb3#II|b44E5ToMp4EB5dguPT9V(?ug2B^?1B{cLaIw*x!;ry&0LzW8v*F)GqJxQF*@)Z^9TtnGRcHlkzeLsEIc5SLUE}Fyrg}19ks(U3A@PNAQM#xEy#G`<;H3upvEC3R=r`kk{aj&jVo*sh<;xmG zl%Vf~|Me}aN@htSO3-V{|9ZJX#HJv3<;p5Wl%Q*o#@j0C3KhNya#gOZSVRfB&idb| zjxcx9OJCI&tYS1DZe@wts=HXesP|pSn2EHtwl;x}xP2j|!cAhRgfuV(kjocnWD-cP} zoRKAsx<8`hurIl{#VyMQ7BQLyek;XD<;n6z$?sHE(X+P``>}3OA~=2~;#?T8QV}L_ zYONRow>}fjDnCmUE&K>V)`|!S`COQkJ4+K`0?wbI`^nFRqvEVago$cM#^<7)H=h#m zu8xagJ))DvAz~Yb+q4SLN{m^FXgZu)WvdR$4q>7@B&hJZfpf6*Pzy7-t``v=taHei z6^AA{z}jpPVZB;l&N4&89l?1wo?dgd2}gakz-Cq$dgKHbcZi6xBgQ5qMQo;171IH;Vc#O z1>D^r5>-qV3Bu&VEJrumvanJR-X(7o$*OiN5fqMp5mOg$+k_Vs9Gazpp2Nvac#p_{ zRe?@JyUij=mBl(hm_T}_t@qY$#w(0PNu8Z-y9-MIr9jIqVxo$|+CP)v#1=8xlf$y; z4<&e*7zg*Zi$UPGS(w0ORr^wS-ew;b{wdW4E^ignRi#<-r*Avz(nJ-9)qW_!IPpc| zkl2q0M`4*CO3(xPY!1Q~09J}1;5x6K`q0~YFkq3N5?vs70}Z(yc#*)lS={G-7v6~f zdy&8{Eb-&qod)?Rm5IfD0(x-YRw#Or!2T@mLkU)B5Jc}1VQwf$$R-x{+1(q$cZtZ7 zNl`Hg$!YjU3!7NbXTktJV0hsbG^qrzfyI0lhpK%@$qzDT6`!4hcu!W>3yfL0hY~D( zD0qA(LQ567USJm%?U@aOcZoRF9+v4T9|;$+u4;R-LQfV1=GcZmYx6kAKz5FZQZB5^ zvkIJci&!;qScV4^cskB@FuuH7nALVw!mkP_bBi=S3XF3N1;0$ni}m7sJXsN8+gsp%Af8 zm{ksz+`)7In0;c1BBw1Vx^Nm*Loo&f>=zEIQq@Kw#zgPgO#mB+B4+!A$vX<)g&Kzc z{&7k3$aCH(+GhQfkLv;3L5{U{iX|%>Hp(8-57=79B0H2|%kX=^&qPh1_z?ltpsWEz zNl{~<)yNV+l%NqW;qbS#a1Yju7=U9kygDt)K-4e6UU*DDNKK%Zh!=Xn^fSTU zFzkc~a3qS^G9n$p?h5|p6!Kdzz5sRt|3mrVglOZ*nON|L60C>H>-@jbLQaZ)ChM!n zu>GWHW2O}hJs%2A;(?w`to=g?Mj8gEPU0h+sM7)kVZsbAXZBzfpf2A+?kT)TW5UWm z2hYOdbJ!O5fZlE}E~O-X|ueMMaMu88a*e_iXkkejE;-7AYp{yVDTxt?2GXE7+Vhs)NVE(h_}YK+rkt z<$@A@syMSRiv+d41GksRe7xTLkX7W4T0W$N}5$6C~1VvC=cDf z69dh^&{#m_ALvv3QAs%Zov7zV2%EQ0H7^3DUlF~a)epiQYsu~`1T^On)d{sIFN(%w z^?>ib7apGMz=}YWa8qshJ)qlp;iWuS9EcM1n5awefFI5aUuTZNIzihCAnAe_0eP44 zPMa}n1APsN7w{UN0V@H$`HMQburd{0*v4u=n1HyB8$aU*5vKC69MGW`9J^FhR6OoZ z^fZ?9un^Fomk{}*NKjE&_6HN%E&4*vy}sqVlq)O#P=bx<&y6UTYE%5-SgiF!2|9$T zR=Qlm69XGr>Sx3|+G5smiBoF?=OpF6`jR=Cc~sFVwP$qtM_06Q9oh~_Yp=}RVvH& zP=cinrbdLW__cot6@;~WzJsSfiF5^6wPzko{#lg$U})|6S%jL7(r82J9`~!Fy_r^U zoIQfUSH%cVHnD^cC0JH8PU0qd!23x9N;|QU1$=fwn_onvGXvJ^Dd`Vwf5FoqN%gq! zoT?TU>FHh>Jbo3Wb&&zTif$(UPGN9$$oN$>^P?3k{~tBZ&51GbBjbi8;eplWb^TWn zXRkh9fX>%M8wdK0IX;SlMc43Q8=F|k2j6)pe_K?79611|FSv>Smjz$Pn>Kb}O`p%f zavd+h8L*nq0eEs9&s_{yyJv9&$i9TfwSwmZyeLFtcv~veq#Rhpr+G8DeFNVL;Vi7* zg9*5v#gT2x)3Y)gS-po6>_vxBiHY>^C>hVKY&-%LZix~0r)f(VF!vTdnWx{_tWr^q z;CovHL+Rgyk25>4tWT33(DFACtq805RPD)iUFKKA4KDvCf|QB1d#d%Ko{071?5x^D z30A~DAto&)es~s7a*HLezm1Qh)a&8+N||WpM!&HZ)uPnnsAXf;mWPYC@n6I7cSN8w zd$Ooczrmj4AVcor9@y40s5I_Q?88bwn9#0(Cqmc3s8Dhbul)EVn)BD7vgRzFnHM#G z-rpDaHg+yvmC(l~SXh%NxSfmtEz+um6@a2*VaPo(P7&7o=^h7n?uj%P_F<(TOlaRN zEDZmm-8k4md9d0KCg5`BKORdi40iTX6=BUEO0cIBAUhZT;&r=^|F2|thP%6QF)aT> z$sBm!B)o#DNCTqm)u%8p;tx^VjecW0x~uKb9hP1U#}nrRQEtWLN2OhOE@BI70{P4a z28X2`C4i{)taw8L$SBc`5il z!kiiJ!;3@6*l<#eXDbT;QG)I3QdlKuJLgeJYn@mO$SDhUKgGe3`AE>T91*@MILiRJ ztbj2OMK?uQ`KQK8)q;#q!#%7~SoOzY6;&fxd9uLIg4GcCShQVnIKov?R`zL<4VNE@ z0jfnT=ko#r9@{dqde6S~l(9LGdXLJvK~KHHIZ1ird0d{jRL zT?;Rd7f@_x(Vj=}vM=fXh1~eN;)T)nnRCHSeUlf|YshK)xaR zD!`gNx1pyHJyagn;VHdO)sA#{Yy*fDc#iB>2BpBm)nM%%N+)a%i?7j+`bm@%tjova#_9sm%!xf%n&%V9Ex=*VfOU8to`!n`q9>39 zkMd*jogX3RsR&h}S#}4L|0A?73-DCS;t9enEWJYsw!qQ)x&*(u!^LG#-7CQUzeE`m zf5KM#0{rrqs9k|pur(XiUT=?&uvn+Z=2PLB=xTq34r!<%@J!S;({J?u64pKwJv`aM zx;&I%$-N-^_n|)E{x|+J-u$`nR30qNL&*mopKA|R=Ai^VIv0uY`Z@l)&ZV#_&u#E{ zf&Z>EU^yO2FiZC$Sq{ArZpwp&c_{h7!{?=NQ$bmq=PCrg6d?+*5>FB=e2M=Jb15vr zlW`vwy~Gpbp~;4`3eDm>lwjx{y6`}yCBzw7c!v`77*OZ|N&g7biVDL_Ez4hG!c!O7u^c&mu2i$ujrg*Z2ReC7FI8(ttEw&ESc}H(E?uaD; zO!i^P9!k(>lJ*Hv0a&t!5;Uf1V|{4#WenY6asbxsc?E9oMV#p=^);&WOnWcdy3q<& z=&9O+EHFJWwh9!y7hOHsjg@;S!Pt1mV>PybkejjP@ZiTjEZ@_j`SL5Ww;69MP+qUI zJ@}7_^My`!vLPcZ;T2@q$x0tMoU@bB_OB?Pv^$fgkAp9 z1pAAJ{|nngC&0`L671o(TVt~iR}|Z2>4i*f+s2QrM>aX!OFJh z5?@j+W)DF*yW@Bi6vd>k8zHQWtEvpnNt6;_30fAH&79epMS|@6Lwa%9+69ApZ3)@i{x;>@23aL!LkIeeS$v1WevMQs1Z-^>!`}J zV6#~^cckA~<$6Q$ahj71hMc>JrJa=rO9!2Ua0i*}$yrz^h!PAP4cRUU)ga$dR)(k+ ziDjMGgEfQpLJvndT4iC0AWASxtj^NjnY~#k$h46~@laRR9(Nq67mZ z=>V0%IV7PPjwg=8ia?a0&xj&EYX&EjucTa99f%TiG3k!jO&#$Ns=LS_{Yq-0i>&UD zt$L;FP*{UDPg=FGTo5G~qCK<=PA&;XTfBF6bCp${*nkP=K|7 z@>Y1uXqAP(6_X7QkWHdoZF}pyS*;vX{{?u_+-Oc?8_qkI>!j7kYP@2VF925*zGGLJQ=X^4<*&BkXrj_@{8Mf^6wXzcKttJdQ4^EcqPl4UrXPeNXmc4b{`^naJm%znej&WfbAWE>D2=K_9QiV>xK`yNSLkaRw=(BHXb;v3(yy2w%l#&pX zGu3ReSPzEbmGE>(zp?o1u&$Df^JEJP0#SkyMyLpFX)FX+mJOWQgQbCdSHZ%{csOUm zqCk~5t*C+`qx_2~P53t6$i`!KnRtYFW+vtex&8K{1r zg)s9RM|GqI1|F4$E=c7<0}Wm9E+19fZ4CXi4~HdjT~+--t(d(#_0ZZ+wv zd@`U|by-LKo(7Gp%clRW9eiG0x-0W+$f+*ts^4efes$SR{pLzEgqRw#L(!T{P*$$Q z$PdcDSW|i`a|S%9DgEuAQ;#eGms&E?e2sql9yP(2XCF6#ZM9@Y2SV5-<)YzAE!obV zJrbZrUA$fhsx1Q)xC7Jb%JT4OZCOJB2`6jIAQdn0hzXYd@YoB=)sfvy9H8V;7*$8c zeo&rUU0JnA0d0!Ju2m$gH+)l9dVUZ)zpkubG9Gwd+fZ`6gwW^SufB^t&Gfx9iKgZiFyXw`jhi>klu09jc% zA3kA%yDjpnz>)yj-Ng9=zJc5TnXT+0r%hm2dip@P8z}oav3Zo{n{C7c1+*jE1u92i0?EB&(SpQ;my7IjBm6H^NI~ zMvI0yz&)%bY;7b5*yFqbH2cfC;W8W|8_VkdpNi~nEE^T6$Z!=ZZj6Jf!`vpam;Ij< zY6Yz^4LFFK7X1)WA9EQEb{&qiFd#UOe=>}7lX1FVln@zC^ z>~ZCq3Eb~Lt`7B^$;l>0J#NG9X7Vd#-+9*ry~oXL0G~CNeN`pqz|-b3jLTpCvF+m| zYt3ptm{HBa@)On79BEdOZ?%vEi$)HE%$71xwK3Y_pu)dyDF@oGqGP7aD-zErf_^bvDZHtGH!jeZ62^s)RgQQoH$o+~2Z3~ZsWY;2*gJD)X zS>4PVeZ@et3jbR>8EM)_4fDax*5=qlTNP_4sVrC*V1 z^(#`N_#%~Q4)?mr#zks0N>^race&H_6?K-sFMJsy`$AR^S=WIG_Smy%a7)6id)Z}y z8SZwM9`FXO_U!)&)bA-l{k{r6^pxAp%(uCj!SC(j_HeQn9&H)@>|usJZc74SV6Ysj zO6y%7-1^}G;90Qjrko1O;P&&#s{q4#%Pz{P3*J)omZ@r`j4uSm%K9)UMD{FN<8=Ek zsQN!aU>`ZENOfAn-9Ff1|E-gyuWax^ov!wkjf&Q(-v`y1+fSA=J*OfT}b>^i`j!FZtMu>V5fP^@~TaM?^*y*oj4IG(xLx&(5;RB7%QL_98t)CMmYZPrOUWZ0WSKZ(jQL>2&$_;K`w5=6jIz!l`IEo)2E=w;Y0o;dzx!q4*$vn2b{=v*kE{ zj$Bpb#I{)-?_ztJSG-Ov0l9IqBijp4Uj5?bID2-w0hi+CcJ(_A(k(cE znO}v+795-W+qO}=kCILPTbYfcWGm%A8iEq>KEZLc?5bSaB&b8l+|jauBC5U%iK?xP}AqO8FP+nNWiNph%iNK7+>Tieym z;HxCOHsm}tlHgquo|t&0axxwrLs#Pq49PNDq0bPViq2~V{|v`daPD;J1--|}Dk^hq z8cZ4^qtr@d8sv__c5$R;6QO>J47cYM)L>7+F~q;8!MhZhq@3zafP1s>I%|EZ?59Y; zM0k@bXR4ytO*O-nq`W$?Hw{mWoVz#*vi2F1R~f2}mC-88q)9M+f((L-V{!YjQvo{d zPQ!yyt8p^S8fuCeJW8&^iM+?jo~j}%!GFA5tYWy#1gCkjBfJ_fYbw$+1HWjK)uGZv zS}OgFnLSZF(VBQqGDCdxAc-9P>lwAfMX;ftqirdaW)Mcvdp$h&1 z92d&kaC)lj=FHi8E-`25s_*|?F@}!@@%{&W3%2PZqAlf71Db|tvRxd3dqB> z9qgJT{gsd2AzsbFdvcDX$Eszntf{i`4p9fr%$03b`D(9-P#N@ipFa;Tb2)|{+;`^T zjWr`4$^+DI9>u*>C^c+bDFbihmMVrGsv{Q2ati68x=tfKRDWB5x4c{u57j>Z$0%L2 z(AFRxrS;*-LcD$DJbI{>US!*6^-vwR2yesKi-)R3{oVn7i}ALQxgLru7Rw5%S!yWy z!L7x%T~Ck4#3izic_$r}hv(oyH*I5mc)3JYbt8mF<-5cA*0v*Lq-?AR-7;l$6Fc|M zhTR8o-ye~PyZw@sjqY$d6Yq7{_5|84!zYN9m&zywmcrbna*4_qo}*4Ay*`!oJ}7t3 zrx@W=s>)QzIf%EAZp;1?GSwFC>t%RNyowy7&O^m4S;>u7u(oehZSffv;7MR)7H$M~ z8wV#>%Ro4rh39<+P4?j-`@3yTA!NCXQfSHnJWx7p?+WjiV^6Zz9|z4)Ct!OkSg`_6 z5sbcti)-;OjUd45WCo8%sw$$*NLiPeI+4@}aU<|Hcf`f5$lZ^fMWv(3mr3 zSl4++bEy0|9;G=-@v~;QaUw4kTvy>KhEe11;M4{@Uu<0^Q&rg#{J)S})$b&@^o2}y zX3x;`c<`&%0ixV?R&&Q^SH)tZ$7EU9g#Gi$YP=HT74C(RszBWVv1{-gz-C(qtXPYO z6(+jt#!oPq%;bdKssXZvT`GvQ5$U zuPM^>5%B#+S-(j88$-iQvZjiFodD_Q@FbkMNv4@E(BSaN!((#gon4{-W?A2X5Dt;B z5wLJG4te%Cf5QxkAv-IBd5i2~&u9bm&XImFb_-q$hjY9@ZAy7SnccAZ$&2?yfU#44YGQMZ$8c-Ev_Sq>cK(s0kC7Ate<-D{3jDC*g6x9wk}^!K ze+zDhm7nEEX#TC7rpmo@@YuJqqMb5VHNjWE$aOID ztV~emxv=(E{Aa1lIXPUp_?lq%Il0T487^JJe~$^UbI#9ES$I~bDWrOeuIa~8=+Uy=bIbba&7cvZ&Us_S>C z71iqx)QalxX|U!e{DY2tKj`%?5cjhjrkqvRUr;r>1K8`sp!hGgZKrzviL!F1f2y*n z{_YIZuHmIDmvM(WJ<;?l9k7NtK*#H{hCi*~$ZiqC=U#`jvH03Yd^AlGW^-F~U4CNb zhdA@f;p5%92m3?94O!KJ5aw(j1FLS}6PLorJdL2nO&P4Rl<~mlnN^PPP4qgFQSs#VUl)k9b9buK>l zVlQ2_W%uwth>@yVZIJhHxG>@R4S7IjZ=PAxSMy#*=$kH6(Ro*xlHA(RSC-H%f@j0 zPuW+IxayFdk5^6|9?14)&aknn14Kt3E)AO=$Q0!iSPd#Xl!xruz6EYSlxvi)eRT&I zGw*Os`0^2M6*dp84sRae>6TX-)UfWdTOP}n%C0IO1U2*U5eGZ9;2JiAReAUj?00J5 zM7WYCBTQe@@7XI=1*4zf9S8gC3a)&DPa_zq3bupl20r#@!nN!HXAHchXP~QELEv>L zBUM#D7%uQ>I~P2(6Py$>!kt#IXTMfG+rK_!%*ywJUJ~yE*zcp-4p4EzlO`w&hELK8 z>)ZtTyyAE+%l{u$*#8_K%`d0uqr$-TU)c$wUdZxpM6kc|RDZRB zkj}@-z=juidCtBiy1|tf_(+~ts`bKm!NZU*Xd=CaT~b;PP6w|36Cy`#aR~)v)s&zI!m}jjZNI02}TV%g4rU5Z%z*559VX zrz3Xt9Spf|WSUxO7Y^ZXanE4O@^G$wU1v*nxWh*lW~t!uPOd0Y$oQgB>cOD*vU1T- zcpLs+c2WNdCF4I|i{_oEv%FfqzXScPhPA2_yF4Vnqq5uncUyikzl|dLZ?~Fu`J)sv z$2s834ktsvu*(loNdMb3?&JJ$h1MiHKw`?1)=;Wgem8~m|8C2R<=0loRv~y^EWfWp zI{cdA`E5UlRjEXNs2a9q=0Zk^{BSoK!`O(Ps%t~wvMIj;9o-t4d2~NawGQ}6_W4~D za-Qe_NB87bhXVWjt}2+vTy^vqWy)`9&-p%sFHQMlR0h8p4lsS%6Z{+2oZnudMxQu< z-Kjg3;2U#(tN-ptRUPu16s=-QSnZHsP3?Z0KeZP9mqWf^k%B5iOUL|x4@%qUm|x|C z(*APHk5Q3+Ug-dRI_9>9FPyL|Y2U_97z>x2@}oc4(-WQZdw)>6;hZ1x-@|5-OMY*A zK0=q;4QHJhDf8B1&9Y-^KgZ5KA(l7jP! zpm`brO4xZitsNnABhyD@{=^2@JlnQrGtVRNJ^9n5N$9^YjHYuT!WkB8dtYa^XKIk= z#^6&8-gq*|(x7^I1}ikE?8jiG2G&AX5!gtzs9Xi7)4*!1u@SDtI@_A%a!rn~UW0ed z8En*`WiW%y8Vn9$uvLTAeHm=m;Q0UsUs?gSzhDTHue3`_B!e6co+z+KgV3Suu}_2K zXa)x~upiFgYYm!DWN=u6i<1bXTaIc%{ej(ag1}qqAex^F!8bO*{qwDD&C+l#o6l+x zzl6be8uVMv;JgM$K4GP$Tp$TkL-HTWfm!A}|#Kg{5&1_h@X{Hnps^9-(Q z@a`uDH#M*}?RGkm^VC?HZVMZmYXjWa-)(D_YB$*Y2Z8nEfAfwV`9CDEg#b;+g&@xc zIDlbWv&dXFOAWjQf^?L;)+AK2%U>G2QQ)}-ck|ifr3Q^&G5AM={qGpO(qQm=25&S7 z#TOs2p6?i>Q_UaPG5HARY*0;UU!1|m8qh=%n5Vb~nPvv|8tidkVAg=9lE5sE8qn+! z2%HHRRBWjfJKq1?h}$q-21mUZ_-W8r zWvOfhxc~jE$X#5hT0D2-Jo7P@0y|W>Coz@+GgUElbX04_>uX@GY6A_dRc)++s%pBW znI_h{w$#8{*ESkhtJ;phOX{#TrMRjcZGbzhvu(|0?nYn}`FAeO{yl9VE}f40!M0UP zX&<)t(O{qg{WWN#B7|yS4LMi?Ym5jDtTBcXI83#$3*%CTBS=>SXTYHC7Hf0icEs7% zEO~v{JW7LgjTj_qP^JlkF&cc|oI#ofdz&#Bufcr+xc^Pk#7pIws=+A*GBh~Qii6D5 z;3EZQYw(o<^E5~f;w%d_$Zf-52?O5$Dzs(tsdm9RHmEz6YY?Y`tkhslC-zvS!R(F< z)@ZOod1PzQtSftL)SzD%wf}9=1SjR7a<^*`sPgR8;E4h`8qDs+S@vphxhI1I8cb6j zhcuYen>~&aNaq1@C78(x?UJrszR}=!H3H6PP)C99G`Ok21q~e3n7XI|PVYgjyQ0DQ zes<|Zu4*!(Kf7Gh;5!9wYEWkYd)(IGPX%%{=r)i&?rX49fd?A+hO)KYe>n>191M4nO zRRilTP(uUjE>K&8e(7q&*VDwh3j}Il9r2Acu#Whq8dyhs3k|FzzO@F{5g(+1b-;HR zoNnuQ>xl2HU92O%n+Dbq-%|tYi0`d|b;S48z&hdwXn-T027H(X>DCb+u8DQTM`~al z@zEMsNBjs4tRsG;2G$X8(ZD+56A0*YKUO3;-A4F`pJH31IaR2lV>Q^Wzyu9`Q(&?N z)-2OBux6RAfi=q~1g_JGs9CBS|8s1FYcbEZW=R^ywOF7*qwx$DX|PyYgB=kK{NYeG52hMyW_rX&GP>KKD7ZZ^ck(~Cvze`y+HFz0uKnRJE!))e{F;_ytb`b zEXO$BTMcHOV(?yrCubSh;Zz^CkPM0wD0-h}vH>o_!M2ueY5hHCaIz7aC5LM1qQQhq z4BRwGxXi#qgJD+~cxjOH6N8c()cBc!j|SgdWsqJ*6VtCu%4x9Y8UtSqXuch+Sw#)b z-)7*iL5R93txVuw>S3B^8M9Qg0d9Q_+nS|%dM?{*X;R})26Z%$3e?l!{sZ<1&>-*; zg9aKDd(5Db1{3laG|}ML69&z~>HNnP-D5Cmp(Z|%1Fa+tUUVe5=25XlKA2S%Dfrptvqz01}7^=aa3JlZ0+SnKZ8>sc6jvOP- z25>Oo{g1`AN^=fTy%IF&tw1t?s}y040;$@=nq`~@)+`f0%reCWcmz(ft)*L{ow(2p z8?jXMWH3X6KNa{ygY{nQFR`j zo6H{R?=-Qt-VP^RvD~2USosON6t@BH4tv|0<>eSQn>9E;o`ItVnG+Z|YcOjf16K`x zPM^fYU6Za;7X z;1ULnG&re16Adg&*`t{TcRyv&LW9g@3|eW>5XZ z_UK4}l?!MZbPUpkz$xmm2z9XOZUfw5J!#GQ(Lek5CQx{A!u_wWjc|tkwlz!Y8ZL35 z2K_fP2-DzK1qN#{XA64_(V*&929X;4xsAb48%Vc!?qD*^Ml7cl7@_S|BUY6ILIV{L1e9>>@`UW4z>Fqo)8 z_p=NpYw%iusTzECjy=*f=$`%^lj)kgR$!(E$Ii3IEDdO`G2HNTG?;sl!8{FUhB5S5 zpaIP)hG3BfG^-ebCA|M}>uE+YBuljmO(lk4nFch27=q;*&QeXH z?6KMgxJ%dC)+{)C81H}Cn$VnK7;=LKG&vZ8O&ZW#U zf}I-BWM2q&AxKvhrOCdK?A9(c*%yMn8qi!{2=;40lYAjKr~ys#h2W3|G`|;uBO1`O zUI>n9kdvRz6Pknz$$brI{w)N5YCtn?A$X_(&9Q~xu?94y7J?@l&}>==ga$N;7J_^$ zz~`?tX%>>F+J)xJLhwujYhzy$_?%jA=gJ=c+5orywQbEp6J}w6w;IqSSqR>1K$B!4 zu#2GcABUv*v5*wQnMN%CP#G7>^6}c9z#9VYwb;YK2Dnfs+nR-@#KHhB8qjoD2;4NF ziLelOXn-?d@&4zf2~B~8E+sVx?8LxF1Dg8^J<4c6b6z1RrvXiLg}_$>n&JvUMGa^| zD+K-s(pB4NMk^$hwF}K-g`lbiG;tMz>Kf35RS0ToKvPs9sI39bONF4W1~eZPg8CX{ z_s7YKkOXQ%b5J2@r~%D7g`lwpG}RP>rW(*xQwW-CK=Vr>XsH3sD}|u71~i!zg0>O# z{GT^2%_D`Ropzylq!4t_fF_SZ&`ATDJPJV<4QR3`1l=^CS)vg1(10e0LeNVC*Yp%7 zy)~gZq0ps|1~dm0f_@sD!D*im4A6jPd_oYa0Zs6PV2}nhsS|>54QMVW1Q9&`xdUh} zCnQnYg=TL;5Ul~t+k{}a1~f|(f*1{Gk|qQrHK2K!5X5Uh(=s6#r9nE)$b=+86Pk<( zL6QbE3loAd8qlmu2vRkmiIxzI)qrMKLNHzf>%KdQz#7__XK!MUsp&Std$V4%(4GO_9nII78BV@^@`ljE=z5I ztF_FwW;3rKz|#}qEIbtQGaF$4Rkk$?&5VTR)f&*uNdK>{^A3!v_~JbqFc1hm^aM5m zk^q4O5J9EefORQ?pdf^l1#(GG76j3SA0jGIQNW8GP;4lQqN`E_RFtBCG)1L|<%b|4 z$)*uP-uIlDIfUPPFMsTu`OfIR{z znh?M~0Tf0E;ClfSHwfSWAAh_n6fy|pkf>0|Ab`UHC`1szQ2`Vj2;jH?iV6hqvjB<% z1n`Rh3j71`n*bk$`~f*7go6D5oDo2=egMu2pin;me+r<$J^+6UpkO`#=LAsL9)R-# zC~ObFzkI}T2T<4^kU~+RfIR?30w_QaK#2f~#{*C*fa380lnbEnI{=jeDEtmUl>t7B zBJY4y8)8x99e^4E6nO{00srG_+EJJtfVu)G%nrZ}0y1x5P+tJW)Ol>>sS54B0L8R{Mo$40(*_`30EMst=q-R^*8ubtK%r{@`U#*&HT3+ezYvO11C^TvP-Gf_ zTLn-|8h}9pC?pNQ5CIg724I)~ia7&tn*a(l18@fezW%4kG9Y(}3PqCv7%6}v$N;zm z^!GAw3!qRj&=@0t!ovWJ6F_lc0LBZT05J6Z>AgZI)(gNS0eXR*OrVs{Px$vBXiPPL zSKLIiWl?k&WG4xr=q&�w`(=fJXz&|7ohqSwxX9eIn0TgBhV5NXP z_>>voc>##0LSVH3ilGAVq5z*V!+M1X2Ct6Q`zKaeV*s1A&TLr}F9kKcA%G&K0K6%H zVxs`OEr3F!0K6+;5EguZ_W*pVQHqKJvQbnh9tyyR0<>8l6F5qCA{Gj1d};vO`I*_W zDE0}mzYwtOB7?00D5?n^|J#L7C=-;~A%KFI0PGS#K}-O?7C@0p0Co$YkR<@$37|M7 z0DA>cm=b{f4EXq`&?F!~hzf-w0XQgtVvqp*D1c&)02~oO;YI+C37}9T06z(!$RYqI z1W;rVI{tqZLZL+fP70uKA^@iaP#_V2-vv-05r97g=yCa*z*ZWlmf@`Nj{!VT7xWg6 ze+nal8ZMfAi{gg>ToOR>LjZ~eP~Z@NfB@Y_If4Du=;RpIxNHD7dc|y+>>57)-=P9q zRDqyG)Ifj>)H7QaMGrxX!2&2+2tWe?6fFdxp#X{&0uU;IqJsc55rDWLeE;7}2n7Ry zN(%wntX2fRB0DdPV2!p0u$}GAmPLU;P(io=iUR`BQ2<5%0B|Zm=U)o^0TLxDx{a;` zuyV@3U&I=~jdnL%7KQsj1#tv$RMxTXp28sB0M_qqwk!(m0sX!JzH5OzK>Cr&Hmc!Z z3abn-fNQwLY;n8}=noV?;W_{Y3!rEn07C^(a1Mas0w@Xx9sjorp{N^Bxl@3)Vk7~a zQ|eguJl43|05)s1+2U{;s9>xB3bO%lj{pj=0WiS;pG5&SKqeYuQGgAA`vg!p4S>l4 zD1rvS0|F>)2Ea4{6g2~2x&R870gxc$ICk0SQ3V;Fudd56M z;2=$*h1*!;IR$Y1@f=zy`4pQ1H9RkXLQw#$7C@mW0A3V8K_~!T7C=EL0A3Y9aV7xP z2+&r%?jv%Z?CPwjprEQ&9I7C#a|;UoYy3!vx` zbo_lPghEC@jOwg1w5V3C7;4FpoV`0Pz(lu z3j!$a0>DK96lnqA5&>K=QKSV1B?j=Wmzph$f-6A3oPduDP&@^YN+P%x;&=)Kt{A{I zTs2!1Zh^8LaP_RhBYdDhJp))j*lbx8I05<%1W=p=fQHk3sNqd&vB5&V{%=ew?-4*? z1X5{c09V<$aF4^05D2s}fc4v%Eee!C+2I6!BmH+6_^eKbaDhm(Wl<0W z6zD8~Vjuu?6+jUW0Ad7C!~=kC0w~}CKo0>FZ^@TT5)5H0`j{kP}Bf`xdJF^ z0Khx}6gB|hApsOM0N`N(6fOY3CxF5Q(EZ0EArvnFV6gy-6acV907VJ_SSo;m1OPlC zfC2*mEE7N>0RWy7K(PP-o+03?-9gV0`H*_-pW9hwl>yviw%M{MA^>W5L4ekOnE>v} zDJlSKyk-Dbu-0r@ zHGXZjEb`?K{oMrcNPzwK^Zm~rL%6^`vqk>>slX2eYA@1<3}F4kX3HWc{?I=vfV}qu z94AnF(Kum%`u^`%vuTmDeiS$fTt_$pP#^=2Cz+kn=R|Hk6Hg8 z0lPOa_*VhC|C;+AlS`uF_<%u)fGY}=34n)wYP3?oLIth}cto{ZBLHy(s7MeTf-A$> zGOT|$2+^iB5TGqRUHww_r^cSF;xkZ3( zW{?2g%uoXF($2!2KN)hH0laH>m@UieQ~4u^oS*`50XfE+g_ISpg6HROV?ZqicPZ0Cxx+qL9W)0;{RWtL5B` zZ2%kog4wdFe&_6$1$_M%0iX4nkY@j|$~plh=NYUQ0MGl>=-UExqZK3{0Wv31BS=zL-hFIFP zzXWK@&I!<#T@auxD-@tDD<-g!dN4AAZ7(%|d$2r-zCYpoM;meeWs`3mX~Ljd0Nn9Y z7uJDqdQ}9@_zBb%FeaQqumE`CCyfvRcPWif0quOsuBJk?p)Cl!OqTx`$`ienXlTpY z3ec8y5TGsVC_q~lDL`A+C7JHO_^dE#DBBuCDhyszr-|+caF4~AEo)0B){htPel&wV z0#?T`=qI3GEQ0|8-biS`*B`eEfhT_IvB3hi^kXng!134m{Y zs?;q&@9S6qynm)n9;5btyr?*C<1!NkR1Rlwzko1h>H`Awc{Ndh?!jaMx{EvlR>%0b z)>%SyAI%nkJ|g2Y1?Voy5um#$p8zkOM^d@ST+z^7G+#8_Gg;%|WSaln0lJSCN*UcF ziv{Q&c}#%rktYP`9w{L3CG~2DJGq%>4B#pBtl8phy8l>7gcrV9lemCw02g?{Y*~{= zaQ4drR*hotngD$gTqgj|{i*xb3(#xp+Ztg18;xU?4Wg2N4}*;Yo>uGeCIQoxotp({ z!~FtuyI&CCL5Z5pm2MMoX9fYEwZjnJ*`fTWDbK60lgk%5Go*H9)qR=;OCqSX(0e!&Iz;PCVg&3|pt}ILL8n%F3JCV8N)m*?Ejp?674VzVxJf|964tm` zz)4kPpnwVRyN^1C2!NM=0>cHsaXNuJQt14{9RR=SL`H}TyrvUy3D~c|XaVHj9~$EX zJoqew2?F3Uoirv1fWveGlLh#)Rhg+mHmI37UBJ2(TqZ>TT&YtfGX(U1kwKaO_)#Z~ zbOCz0X9>{rJJ%;fPjIgQJ;5IopeOi40`vrbM1Y>)iv$c%bMsLFdNh|B;Is4uf6@?3 zPw=M%=n1}DfS%wh1n3F=yZ}A(UJ#(?_sas{!k@ax_nHtr!Pg1U6MVe@J$>I6peO4F z0eWt36rktkCINbGZq@+DpB`VosOZW0g#bM_w+Ya5bB6#uH@^~~=jLt!dT#C!pysB} z+Al;;&I1DU-2731o|{Jn=&AUV06i6d5um5yNdoWF$_t17)bVE&Fz>(4O8$hkod1`A z^9r03@azYyaY4WoRb`<7-9|Bi=cv(#FL04k(a@Dv@cd`HbgfmSf)9|$i$9mSY5<=h z>ZF?NIh#1Ut^hc%ryUCx0N3>dLIl8bJ%LaGUvE|Ge^VjwUQa451hn7Dpp^i)t|yJQ z0^qowKnDSETTh^)fPUXGh!k*9fi9`E{`1ae?O~M|Q6cyJsHD39-5osz=nhB_pgW+i z0NnvM3D6yIvw*LCTe+EmLUacV5uiI@xB%S&cL>lOFhYRt0G9yW0iy-z4j7k8>woPI zm>?>;111sJNAm%G?5Rg48^H770kdVnr#)pS3V8i{2FU`l4l(cu_|H%3{$rMqU8<7V z0^s4EYRwb?2loVW1XQ18kS_r4?MY*igI zj|tHG`-A|!zXbyH{yrlB`%CRUCt%mlYW}YhqW5>T0KLC23DEodssO#eYX#{2eM5lW z-?s$l-F=tmKM$_n-}gy{SBwuE@NMsh2JmQqWVXzL@`->Z7kS@46X3hVV2gnL#SFF! z_!@xjKXwY~T*fM23+SN0w*p?MWR1N7o>ky`0lP1=#z6t(i5{&S768}(1db8#@y_sGhxBFD!ZUJz*PhgAyxZEdjkAMkn8Qd%2kkYtM0Q~J!ktrHr|0yN_$TU$|q(G7Y zZF#ByZP`o#+A>Rkwk$({wk%tKvJC%!BSf1vM}W3$o&asx0s{Dam_h)s?LGszPZyaj z>y}QO{iuNMQ4E#}@Xd;0@}v;B)u--wN0~Ob&~*X>ShCcmbTST zgxj4CU;D823j?@Mx0)>rKL08EO99%>T>@s@#2ViSn5MvY0^s?d>e$D}A2+(>Rwh4) zN|91IB!EHypv(~g+RozyxPRdLpEOPoz~|@W`JcgWQbf0VTEG&YYWJ)V-R@rkbi3yW ztfE?H-^aCHFo65#qS>-;7|Gd10^oC>%nAtTs6aUZA6Gee0;^mW74r9wGSvd$<)1(u zc!9spin;=HyTJlnlLN zt-DD8eDG5RH~WO>7g_@az`sAK3=shD{se{#&{o_bK-W4#fUd(ufTv_TH6=$I;A6|j znoSGt{Hcxc0^rP_z(fJfRSowGc)`aS4+wxee=3qF0M7ggBn!|7hGzzy|7zPci&Xev zf+v3}Gh52&W- z$|VBk+YBBT02lt$=rRFt;7{Ob0otr*3Ea%h=vr5bimufbplf|mz&`ua?81J&EjUP~ z;(s4i@`g&PRkBwlZ>i)3mEiw6r~v*4f|B(r`9dY%spNu6eo_hkCxbNqRmrC+`Aa2# z)8_-oT&I#smHeWT*Hv;vCFEoZnk6bJR0;ldh2YOB`9UT4zZ-%dspNT;>{7`Nl~k$Z z<9axJq57iQyrPmm z7Jbr)guYZnLZ1pEq0j7)(3fyX=*u%7Qu=}l34J$(guZ@4a!MuisS>v6gCivLkq{F4 z_6G@l(SwA(%Rxfl(jYmm68d%mTl8@P5_(6EWVK2*tAt*gPQ~Xd^!f;y^uh;8u}Xea z2|d{bq~|+G=sq6_-R~ix%U&dODT{=zP?69@6%slnBcXE>5;_qep@kO-Ef+}WxS6`r z{xc8ZLCB)z1wHH?j}^AJ=RCfwMJSH9b-{J&JhL(uk>IB17xoXqCy%@tu-D`lb`Qb# zj@LFLTlDRfojG$QO1)j1cUm!ZYXhnaA5dP??r6WfV?_wz_1EK9o2+EK;X1q`^K+(e zUPtXq-ont3_pW2D`XwZaA@5(8wc^wku4LnN)P7z*rf3R`_P=iULhaW z-i)%l&qc|Pu4B}Eg6Ri*{>gjHrK47y-p0*;avik~P$iqMW32}Cxwa4ZWRxp;&hGGF zVO)q`Hpf0#*fZpd+MAIpF7DtaKKmcKGo%H2dYh&+KQPiOe%TdA1F+R#J7HeoO(9?F z&EM^;d1wy~qPY3r?Pl`}qgE{cmdEm&|Dn5??ypUIhU}@miK2U1>8si_a>X;>vBmrT zhkng;*Y&jNH%!01j@m;WLI-|#9b3^<)ryZ}uNfb?qUl~Pzgy^zhtP#PYj1YBHjD91 zu`Ud?F80_3g&`sMwwBo{d-(z!CJPo6HVQdVn{^F2QhT%Aic9;s&BNEzX8V{Px{f}l zRDZY*w(8UW+JyS?x-9#dhYQ2%(-FPAAY#SnA3D-#p4BR!KkqAyXx01XYlVNSowMTZ zAK3zY>&rVt>K*Ngj}*3aDDm-Y;)Px(dE|borR%gWK7#%@T?=&!`K8vDvqc|s7@WBd z%fX4SkfrH}R(<DSE0lU9saZtNvaa+7B%(Z06gWjthnV z(oYfn1nB2?`Z+~EBQo%FjHJ;dwWXgs=w~4POs1b!^fQ%yX3)=c`YERpbx2C5pQiM4 z6a9Qm89V8xE^Ve{&?DNOBo3#aYRd7F6iGjS(&n%9^DX^!Bo<0Px%AV8enRLchJL!! z&(EZnKvFRMxaj9RvBUJ!f;O}0=OAqkfi%>*OkxLued%Wc{iM;)B>K6Te!eG_i}W)N zo6D06>Zhj9NK5x1I^tIUo<)Tt9Km!lD~Ps>wk~RKU$PfAar|iyU0m2bm`-a25%#b_ z7bEK816_Oh;=*{xMtjHN!rr#ExUjA5{C9by2I|yS(8*r3cTr2bS?a}5DF0{=ezdSN z2U{+Pw1>^P7#Xb2cJ`$=e33!cOZKKm3)?&P+4~APs?68 z+RL9dLD%}g-tt)CjmO za$feVw9E$+=cc93^yKHQq$>{EJ@qjq^}qVQhALFw@{v*20e{RBg(vT5bQFE%%5-f* zd}h1(bNlxD$3=ZRu?hVh?n&sEf+n84{Iraud{3g4m6n;0?zDHRlIKyRDeL~= za6cFX-7bmtu!RlU*pr(T(ZPJwzH@U?$52)|8sv_yivdVl(cnfJfHyZ6(Jr6fTy!gv z@K1{RAQ|%s8!_jTBI>FaJ}IKk+4)IPUmw@8;|BMyH|U{qBUF}(skIm}vXqp8;8;pJ zil|sh>hy+@EQG;QtPt_9l++P{uawmAYa_jaP*;kzJ**|KKkw6`-W~do6|Ro1;n>w? zsY&@siFvbUnmD>lwDt8iw#z)?WXyLkNF4kPGIy3aH@iD43p<+$%9L z*OQ%_n5YXr<64f~rq^=w@>S;ZV~S~j!p9WTq#8J;*okDSN*)UfkrXZ z*pQbr$D^!sPYiO;x-Kt0D=C#m`0Ci=I8@(bTyg9ax-YgWFX4x!#Z^Wc8H6}b%+}X4 z(r3X&+TOrOr$dZ1zLAmMYfO@V1JKaLCyIw6iGQ+q7?PYPi~9}W&RywRW4fdYsf zNqtF1Fn6~_(wiN>%W0&1vu9{)v{ z3?)rkV5Dym!a}hNh)kiRJj9!@e)5lcy14W<)Hw7<-uv_)i$`MX(;th+BWZZJcnp%s zhl__JdF3$o+V;c6bgZ92!b_j)l-uc8YA;;W!AY|-{s>R62afP0UV^PA+>I#?_YCTZ zIKd*wWTs%^I6Oyh+xzooUEgmqFwO2db8=%c=eBMe}N{?WyQ!g7S_BA6t zir^9|cM76PC}|C%Nhm4oO(X3QX%zxTSeN{TM~kEBKxiFQ(u2prwbEt7z%V;9s3goz z3My%Z+_^y|w9393RMNFOPrPDxJ7ZYy&8UbT3Rw#gCqhZzAV7rmum9hmk_GpmoON#r zEt9XPU+SVE_n4HHZHAvrU#gxfFVm9%I@&!?j(ODqGyCwY&=?FX>K1QE$&N_ z|K0k5)nRIf2D*l!tpRpqc%ZF)Ff7o(&I}Ki+X?c2W||fr^VJI%V8Qz6>vk&lGjRIYHz9^=w&DT(xbV5_Gf|VU4ou$ zX@CDK8&mUZKp${!*W<8vZBblDo((ik)^7n?^S}5lKhZ3T z+QXx^Vv%sAZGB{SJQ;8YMfLYDdb;?>Apejvf&VrQOG)?U<$H1y(^3=jvl8=CvT{9f zc63poo9!51*3#bbLRme#chk}~L3y$E1GmTbwbukL1>47`)HJaV_Pf%+KJa=;LwjFQ z;Koi_nV!7Zw7kT$ygaWbF(oVAn~~XzF6cZ{5~g-*XkWb?XdNBrG!1f7&a_McwJflQ z?Y-Q(K5OJndA=sluK85wAW>v)H-G1;R6A=?$wYfddP%&$bxGj$25hPAXdP&0pR5Y3 zYjJy8O8yjFWXCyY;1VW(YMj$vcqMS-O9vY}Zm@S{_iAtda3wI<{_v*wP`h(XaPvl< zq?B3Cyrc|VgxUux0t2G%%}mSjdQ8*Kk+|Gak-7X`@Z;Qt;gniQej_OR;DvMH!C?Q zIW0Xcf1d5Qr?k_Q30_z*<^MLn*1p{0jJ-{b9b1)@nd;1+I#TpYYv=+oZ4672i024+m??7TB8*O`)(p5jeM9`-K7la!g5?a7^ym79^2 znc|^6K?_d04$SkQPg7=PW#xIC>2%?h=OhENu}eK^XYxon&pwp#OxWPetjwO=Q>GX5 z8ankK?)EYFJgJFhQeX~bB<0P9VVT*z((=+WdD3;VBZ>kIZx?Od;vn7h6v_CXYNr0* z4cXbA@;2@N|0P!KD;;7VtO+#kDwV3%FoleY zod4|Az;s7F>dsYTOFP=w%bt}z3P?H=Bv7w#@xWeWbaHZYP~A6 zv`MrXwQEKGU-j6-JY_9ctm#m1)yC3j`|+!Rmi8(~=^A@c(y?YHWcgDADtj<^OxxNA) zWakWv@5+Z{Q+8f`f5xmU8|3XE$yz(K4~rscJ7Sp-PT?iTS}+sZ7TUIwlvPy`4pO_cZk+D z_|I3;P&m$4(pHgb;3{9S8Ssd&q*-uLnN(<;*+;LQCOf-+oXxIJN&8GKwva@n=l=i~iH3WS+oZ?DZYBve*(}s5S(NU#z zj(%rUDV>xKjw+3Gron~1@^#;=(nyK$Sy?-Lcj1AaC9l=KhR^)NrY~&i-#Vpq z=`=N3PS*m|-qtQUd}CX_=Ci&ija83idO6&4Xi_zqFBJSg0dpPQ6MPgU%L z|CY8I$2q^c%JiPigg0yD_j)(nSS#r`{8uaK9XPI5(tLQVR#KhKTJl<5-+_7drc?df z*$WR2Y2{D7SlV$JOjtaxjONAL^UCPz`qaEKx~>bIUq;uKgXWjf4ORO5GP>t_bAB0J zhyOI6HJd(EMpvQ3A1b3;19{)+*i#o zHQxf$=(W1_Ivi6gY0PmWU4koW#Vq)sR?F2mcjlAiv(sTOg#Y@?yD zd*5+ewExZpWkdVJ!lfUV4N_w<(sehwy06`Qb6I!$^2cS3kQ=2{DLT}f=}AnU zhbtUB>e5~Bs_V}9-|Q@}dKP>*r@TjRuH==v?%mMh9cqs6E0pWoXFf1eB`)`wd99WH z_}uc9ZPa1%6qjVvs_DD+mY2UB`YJ_i-*|R+yjwcm$w_wR);y< zBQa~(>Mc9b9(}Z8CE-&LB^|=&A4)pA$4JZYX@_DBag)!I*9ybQFyAi9ztGBdem^$M z|LND|^A6ymKU+4I7k?M+~${kA6w!OV5d0Yot5I3k22kTYP zd?~}$G&VKK;m$UuPQoJ$J1g451_#fNfmTx?^VgUqzdZl&dC+D3QkC_pi|~U$rZ! z>$;u_I!auCT|Iib?2f|7 z*b6&NyptyH@uL;Ds4;ua;XX%W7HRMNW)h9SZO1BN#`0kG4{{GTBk)NN81xPubcf(? zR!Q%`(X5ij!^5nS&fQ|9$8Xn?*LpS1-uYKWq`fBjzWV;(k5$A|*R}YoqN}qg=CfM-FwP9r`lOnht-m zEP1U({vCf+q&8{Kx}h%D(v^95p*jZsV%f25p7n!&aB0Q)mawCHNM+Y8=&fsh^RQosIio%5(Irq)WB-JuB(Nb5qaCP7_GeUEksEj3Hr5=FdR; z+i34R@HDF=3od4r^eBAGD(N0Ll~vM_Ia=~sTTmENXYC`?+WB|&to$qo%{=s4WyFna z&~UyhYm}0nmYp~!Dc#F&OK6fNx_q!Slonds8era7L9WP(3@#x&%*)pk> zo!t=ec`-LPUFO;N%VoCZ>g7s)jasEAhU*pATWoVqRuUb<^QtOGsGa%7brc!+HfBpw zo9BO5brn_d0pz?=Nf&}6u2j+~a{iUdIQ47-$4D!C(Ur<@`{1#p2I`@QyNyG=GZ=Ou zshwSUrLu{y?LpX1-_=@ej~QvbNRJ#hEbfGnzJ&8yRiYc5)GBGcNPoajtztQU7-`g> zMyh~ET9vyDu4o~Jq2W?Ep=Ic`*1{SrG0*xu?U!z@uJmuNzWiA#b}J*fitb_7Cs)zI zd?2|>y=iiv3vxe=%TIezCl3#Dx0EV6MDI0FLie50kk;>%`rdIV<=dsPf?r($9<*n_cVO6d9mOR!|r7ui|)ORP==kd67^>S-F zd~#Kzae8G+uJ2xfEM9C+!#A#SqU(fDTqWHW60D^YO^lQfW~3VUy=6TwUU41rRJ9nQ z&dyP;9PDIH*bKFRxbj_l(L6q1no||dwhdliMKfvk`l=ZI?7$uDz^#$CV^=t8t>EJf zPH>e}C)!A1v0Cz4$r1h^)>j?7%^X1Vvdd|od241=Pd-N8a}P0fPV9+N^yRfR0ZwmO z@>)CNgE4w^@A#glv+bODcRhdfKUK4}(J`*xs1JAFO|P_TsJhE_qidL*vzzZKPc^#| z--DZ3=Gvt#FTD$OU#3>3kJgeG|Cz(B*pU%d2Ybzov|#__=2yPI8@nGn?Fy~TBc@%U zBO+TRtEXL|6U^t+uFwK~N~zRLyF$Z0An^)Km(;{7PJYVcUgdDFSG#CAC!j_8j6Bb( z@~=s}Qg?^ymf>_^RM5iC@yriv!1g}vde1H_xJomwuv0Zz(9~H?Z6-LY>2hwgvzqRg z7dWf=?X0t!G!GydM8(|+4)@Jyv!GdGMiw42XJzH$xjjC;F*jlZ9qyr&ADT!v*I9Es zx#>ySbfSxotd8Q_9o)>g$C63|R!Ph9QnnRY-9cq9cDSEa*&c67Vrm+ne_xGcQ@2M} zQy2UbSxqlKW236+cJhHJ&RY0E(Y~s4HLX71 zcCMy7g^LQd=~A7bE95v%LQ7sNKZ(ZP zezt#R7yp-Cs=F;kYv(pp>zD6y`1LHl_e-r-H-xvoR~@59?Kf8y`X|C()9;*msrvML z)m`~|&W&%Lrcm#M%t_1hCZ(s%=PRx6->bf{Gmp<{huaZ^{1%CMc(jP_OUb8u>vX(V zq;Br=el@*qpZtC`-QX;FznU&S-hRKDt^>Y(pU3+A`_&!PUC8Dj_hG6lG%+Ou= zYOjt3_pu=N-;~!#6*-ZAhUe44JZo8k*{mT&<3-`!XpKNpst=z3M(WiRDVVOrVGHpp$=kS|tT z+wr`|PB@ptH?FSet2BY;Mqj0FcwZ%Fqp#8=X%=&p?juLVT)j&@r!2;@gni`Y@vfa{ zcP;J6S$zAgq{r|*w33D$(~{R(@82JDwSxy0{kPz1cQu|*xZXooMcR?$bEBNfst?>g z8b(|;XVPoJZ1s+h=lb-gu13l|zfWBqG?@p# zPmp_(G5B$ODy{q{4~IWwCB6TzksgNwWX1Z!^RbdXfXibgO@*&xmb_NVDZlUOtKYwX zcHFTwG)>ZDYiLPW9$OQozSg=IpVr}f80X`2I)^F~=i_XS@3$O-gZTw{vu-tXO1n!X zk94b{1N6;qHFUdvyju;OBpuyZWkC0uZd13yGqUob{Apt&O=@GLhuazH)s99Q1h>bk z#7(hAYSP0<{ov1-bG_EBLH_OCYX;G7Tp3YAr_{KSHF1%=FfOB~Fc@nq5srrWKWp-= z8}6!4=ZJ8895X-MziMR7cryK5c1@hRyE^OoN0qtFg)(>!gY|cwKR%~sEFE48U#g+? zbIv3e z4tG9g1W(C^sVGVRfHqscl2WIBAp7XzQtR^T-?OZ39SKS6SnFoapY-rQ@ymL|Z znWJ|{`G5bX<{~=er9UzWU9ot0#+*PGny{{SN7SZ4qL delta 1675022 zcmb@vcU)A*7dQO7+n2IzVcFgn1qA`SF-Ea>EKy@aP(j6py(`47sOVKjW5Zrz!GaSz zmT2sV-B_^q7B$AG@tv7FyC!*_Ki&*aK9M_T?#y@2oHBFf&fL2j_hu@dt^-xnhOc zm%A%`mA2L8&e#+~ho%o6IV`r%HjAU5sBL*?T-C2CRro5dsz*>4PfiL28K!4ezCmInR|y>G>#4$pf)=ujP`+PcIPZyy z@OTFwNLN4Gbj=AB?b*BZD**RwXZ9P@XwIc2?E zB-oPLG?IT4848MD&yexi5mvriQY`Pj8o~e8y*$6XtOa${$`6mw^0g*85sVeQI{ehi z+e^9m#AqET{%xE|n-%OA*1+U`z2|1>!GO}q2Cg)4fu5yNr7%9elum*=GZ)0CyUT;j z*W=85wa#UL^9QdKEPFZ54Q{2o%YfW;cK{z*CXip86v{<`(avufW9JX_EYCR+wwaF&SMYfq-TaXVFJ}b@Ms~5{LO?S+!$ifnxs!$G z5=(>eL+9)GZ<6Ia7v&Dq`x)=szk5obK{0~JU-j&u6slphy-JSvgwD-U`O9|eKcwGa zEQ+&H1}h)iu`E)8mj66b&z~tBi$q@$6y6S(s^?~f_^YJ$>NA-C)Tsu4Fg2QUVV1$B zKcC9^yqL0F`EA!?BxU(6olHERXhF)ycEWcG4+ej}7^ml@JzN|Spcq?2VUIGTqu#P* z_}nhxyr`@ji2&IWwokrNcLO$vFzw(WgZmHcm5h4Sf5_lIy;24anw#~dS!#EpEWzga zue((DiThS`X~69qVFe+xGn^vSM=DDbh+C6k;^RBnsFj03FUEyqYsFTJ)rX9MnhtR zCz9x%s_<54rz-eM&r*{I@UHHm{Oj&y41Il)&Df}nh?)-Rr?$=)A|Zc*21m}L3Cj1|dA ze=|(Z3tVlUdy&xnMlQ+{h8b`>-CcoqN9nNjAkZ(4oSx_bwbR{kb2>K#1&5wmb#t@6 z3`ta{{Olwr9%S7Ar)~bz@=^wZ%%Stqc-2!5l4obQ{bK;)>E>_a%%Uv+F!A@Hhj^wu zOOU>RfE-8jZ*TXHaDu<{D@y4>!sdxm1Wp`%X_<1I1;meeZsGTP%JAhoMuNG&kF)bH zlWkx@K*wPk=&FWm`ZN$B$V!#973HT)Xl#D zq4p7Kl50Mp4if6SstXBKNGNAi9-+NKI!P6*V`ggXAHklfoqsG2Lz z6Y6(DZ7jY(sLh0$H7@lMA&(F;ZJI#6Ce)mPm&v`GgsR%;3Zdo`Dn3P^J`&0^>l(SY zf>75l+$7W;LQP(Di%_o!)#&gYLVX}qt$X7H@+2WUb$&>0?jTe{?h&Du6Y9-Qfx1B` z#YKTyL#R(jACr>v2sLHqQ$l?rl*{mpP|paJR7s##6KYe{=i|uDV}#6>za-QPLM<38 zP)i7P_=rGlAymDK0`-VcqbAN3F6GNHFz=P?Hvnl40rxLWRt@PpB(|S~I1! zd>p>{kdRfTUesdhC7}+l5~%fr%5@La;d{pkHEvL&P)xleRR2kb^q87MsHi;y!!Wg< zP<{GUGhpg4p$11wjF{R=sHLKP#>{buEFk0^Cn6E`BcXn25oN;EMnb){{7$GngyL%K zFyniA303ojK%FC0_lhU%_}&FV9g_X845sE1Ds#nGWiuUosX-07yL|sa z<>h$npEWmvPu}8@#gr?D{s&vW7nPCB%}#s5FJ9V=|1?C-e>bcW*P6dIsxIGRm_mY= z9{jj1{kaPK>;+a(Q2!ePA2=kO|6!qt4_@u!^A<(%%Z8@$Lx+?WXQ$owql_JH=EHx` z@Gqy@`Bj5^^5=8ReCpzVln=~K!&3}mDC;}YUhV`vzifDGg!3z6*TAI&9 z(D-KS)d*EXuu#l&b5t__`{sK5_bB)sG9;33JGqt;Pc#^#9Bvro=`AY$%9sgqJmX-| z9muH0=Ztg#^?~wozCvbWenQ4KTs;3OGa9_SQ#Obtl&0Z;$`R$aZ7z1b1|qwDG;;G zrbPAA`M1M6$?+V9S=q9x4!?Z3hp#^|9_4r7-;S@t)yDYzvk74c@+$9|R2kHI;Rxcp zudd5~J%bbzW%wfV^tV+iX3$QuEYgYq@T}@;LH6S}mEvp9vT>cL zp~?9cSu(!g%wV7N{)UY(@a#)5{;piCvWc72eE+S1pw^Fr7084Vw|bEsXhe1>wjH zV&phxpzZM3Jg8~#eHNMc!JAEd&}ui|I^W_OX81$f%*b?<#8Lj>H*BhkN?PPNoWLk( zY~!~qiss()1M&@g_9{1FHhXbtIz;iv(JJxx7H{OD_*+vweEPZo9^bu^Z$upaMDC_8 z_9$_fA$0B5R3l%UtmG4yext z4sE^^t%zF3(GAW?m{yT@tgR}?@r|#<-~65M+hkn~8g4PqIPUS4YPP-%GWF)`ouF`J zFC|*N#qqC}oA@Q`%-G5KkPUcZm`{eu&g(V2?MD^&ksq_JI^W~RzH%HEVW5x=-=ZnQ zSFgv9wfR*W%5it7m6-Smo5K0S!{himv#k8Rjh+08`(hujNZI8>dyy$lnASe<*_&gz zlmD39-fm8zma61WZq@%^rp$i~6mc^|y(4@DMG3eOoZE-X6r=AijzzxJ|{a;cqT7pnElyI6}kKO7W++ zS;6MO(E&)5t%)h6ZEuO%`-GfuD)$VzN1hT#Ww>xT{>64LC_X+WfQ(yvS5#Bta0=g= z2+lrS(g(B{{lbix!eJH8oh;-QKADM!TpV4YTzjw7fL>5&tTAZ3`&goX&7j3 zo-5-Y?jFVu*g1xOxa&{;%}--M|FJJ*xESAaR|fxl=SaTO9woxZ@fOA(i}8noP2&(o zpZ&uFt5oa~TQ0p{kGZ}(s`ty4{ImV&dEUNEzIbmY*t|AZiF&t{A5buc?|V?m&p(n1 zYF*i(+4j6Z!69fIXORx^nFq%zs!=?C+`*~nCJwvs&C!5syJrZWePkRTay*02{yBr6 zbzI3CkB;PZhsW~jqbUCulz$lIqpSKz0B<__JFosZlg~be?j6HC=?e@xv?O23Km=8P(Gn(1gNgRspR{f83YzjLSm|Sekfn% zf`|K+-+v*FJ4^olN&a5qUtK88<&gAme3OfbTmirS;y2vgZI3Pv;{N;dT@bfi69#sF zFACn4cR7heIGU?74_Jk4dRn#dQtkJ>iy*$o+&&$oPYmmQ_zwm;q;5h0ZQe+**EtKmp?Cx+rS8fI#m%akwv?N}arw|L=bqqefRa0kuSEgE^@kwt z4Pq6{Qge{84Z^EZ%N>&igTwE(G zuNV)flpwrnrMZ12!P^zV?LmCOVP!c;aHF~1Qg*;FII9BJQGpm6;Fg5K&(*ovSbDQ- za;zqdv>65vr~>BI;#y)>MRmB2_?lRc+l5pNO-;BnNEGl<0(T!Z1`AtrkCF4i-5t0$ zI6toox0AI?pm}_yFsMr9dSPLcK4qnG2V{&AB5(k~DL{6uma-iKxme6;+;FZGzJ52B z>xN_p_e|pMW6oDh=XwW~peYr|s8vY^_s!>iwovxLv2C0Vq)SC+`15w|VoBs8paX=i zfUS3Pi?Hlp?&E4&uhEwZ&QCnsq5u*1OJqlA~*# zd)#6ry54%u{f_C&zjL*5Im-v`7^d%uM3=Cc?v;o*EV2CoqEncj5hRi_OX^0!lX5V@ zBr*s1bUfB0$`!K;9>W0yCxf?2i<)At%f*Q7xEIYTh&tfw+A5+D%>7R_MBDJSPhHV- zoZqpL=n}I=njLsj20lp;b@lZE=o3U#)w4Q?Rx$U706$9v&5@#b#ebI|L=$%fj(Y-<%h($N^e}w$f5#9anch$w0(v!V z+8wM(?y3a~CyPQLM32*1LZf6Tt_5B^6*)lc_YyTI7_m0Fms_ui}U9$7H!3JgQX(57+n*V3;A7Fie8jPbgPr1)wtgKt0EJc3!(0|=pruv z_>Slrz8<|Nvg3O9AByI)sLsdp4-5iCb(@1RKMoE9NlnU!!t&2WTM#SY?kmx}5}?^( z*lST9OGruh>9TFG1txtEjWQ!v$VmKBFa80E8cauvd{({?ssb)Ii4QT_MRPz9o?67n zJ)Xd?9pWV{+R9uZ>kEf_#Isr0z?A{290x9ki&YGg@Bzfa?WM#ga6dB2i2uaaIjWji zq(RrQjm5oj{^MrinG$pz(Mnt&Uklob%VKMP`klBBrrUQG@4?m_mLkrQqU(w@aZg+? zsGm3lm$Rme&tdC+IY9grU#|}mzr)uHL&P0%{kW0hVYvLdG2%aQ{>pLU8~8dtQ(TDi zznv(ajdAWz7B9f~88ZZ0n=QVD@4w;2>sjRQvoHlfnlu2_Gf^V=VZPYLAWQ_+6Si0& zUW4QS{>T+CX2VE_m6wa3Ve|H`5)Wg=_M>sc|zpB87a z3|&OAd4=M>m;w7a@k&+(x}6sXF-t&wNtj4}yuu=VL5lCLiq|qTQ0sGG@&Ry{k%z)wny9$~;6dz`0VC!S?8q7e4XX16N5?J|Myp34}f4mY8!wjUq zVV6MuTk%O|3Aq0dByjvsb|Vb?C~nFaV6_4@bA~A3GqGg69Suk*!1{;>q<*C&jFS%m zRDphFB|-4}(h`7&Idi1sJifjtBSA~}C$LGh#D&9!z7-``aDIczlHGV(7k@436^!#6 zNnR?!Gh@g}56YT)a^J`%Jnd;+ukNv5%^ z)k!$^(+~-XaXycb+`+NXohg!B%-n>Tl4CelY0gXLVJ7bWAmQ-!{xYEx1uG<#F_Z6p zltg1@!Z%4i;;Va$Bo<#=Z<92|*W7%G3}4qk$*=f2ewSnj5;=UoSK`97r9e_nhOUi| zNE+kz<{g)q@OATPi3yiGc2;r=^Yh~+NhGE(T$LQe_2yrf+{N^mTao}wPq`y$rbO3^ zPbD&pcl|dBnR6Drkxa(rTz^RR2B7Ork@OW3+M2TxDXvx|lkUg2=LATLuq;!8q#3yR z`)X+goNo@5k_FFQz4RWwf7~Elh3}_ZrE?fVuy5gHr*s0AWl)5)SrEE*s3`4eMb|?u zq`|n+v#q7aSysrmx=Itl9_80Mka4XND-^TDq?S<^fd#&5J4WpEd7`&CAK@U zr*sDHzpk$|46CKgKxqp`R@;KSgHIHoOZ{XM<~I#y4VTLO46hw6)t4Ap23vhEB_aL3 zi30!gCky`Li; zEOocH99 z(Rw)YrnEKV6hq;XZcF=P#tQFC7hpF_dnDbD=`zoy*YPN$_#|x?h^|QrSvK~7SD~`M zF#Xag8);#f8C~^cJ%BT4Sa*m1Ws=A!g$kI!q1wd@FM?&Y}qbAq)lW+o9g==`2%$k6Qv-g2Jm^b)bKu z)CipIWL}>wqC(;T27#ivp)ttlDT@MDeFYr|$Q)J+w(Tn0%;J(53nHxQ$Pz$uks%Zo zrpeOrU>rY0HiltT0zU3^V8&>f6~xXT)*YT4A*;Y*w0#TqtYH5cfdT!?dw%HZTMfylf(a zz%3`EsJN8;J$8dnrR8!oT0m(nc?RZeQa$-ToL{ejd@a5{Zzw;2uX&B-zu?JuL`&g* z)z-rOTi*)zSG1Mi#rLOl7VbCbBHVwOB;4QHRel-YpWaKj-?+DM|8*bXettiB9=@MC zM7SS5Ot^n~xNtvvqHo0xX&|UFQPc%` z;uSMl2LD%yigHk0M-d_d#f@zm7+X)FmI%p~jTDhIIlY2B3BR;=#{RR!pg(A0g5yh zFCaV&8>SdadH8FDVhk$}%25h0i+d9uc8^sopgg2xDkib=FyebfXJ%b=pXisvlgSE} z*@$%I-4w-TsbE&cGZp<=yK;S&qQBrFpz~Y>%NZEL&GdN+kyzkn$$UlE|IQ6WFb_Dv zfg=|xZcs4eQpJM*4kma^&0Iwc?b^7Nid0sZL8}y9C}Ve4D;`qDuB}%rWJQ#2P>i9B z@p&x568blOi{dTiW@^4-4l6h7b|^+M8}rtkiXW&$b>747Py_ZV=2IARfuavH!Oi+GPVr)57w^9BWATWNii}ImbNdBCz^vQ9? zK&4NP{f8(WGNHiIQOX^{#0^s?E1M{U+=H`}uZ;|rwPlC09xS^~SuQ}ZiGJIZS_Yed z2&XG$#k(K(Ap50F3!fDz3#lcXKBUxBOL%is`3ucGbzJ$F=KgX8||pUO8o1AGFz z;0^EzY*XogjkH>y=zupWK^_CX4j4rx`stg1WNKCY8wLDHEoEezfU8uZDTx7xsmFbl z6i`5ufn5VOav(!y*TUo70&;2YsFZ-kB@vAQ&gv7;hBo|maKO6qY$jS26i-sfK+>K7 z1wh8CgAr>3+6Wd4&aDlgez|{ZKzU_J8i1&Q2~@go4+OlTL(sc30bf(^tXmwgo7$lI zp6ycD6AHY*{t*#90!0=@2 z3sxyr;92Tu3T@!|Ai;#5*#p&dgi(bD`poS?>A)Q<>!2-_gNB0K@(LsTJVer71oNW; zR}-;lVc&9r#nfyQYXpXe2+hxJ8tAiNXF}kw3XnbxjUU0^1s>Mh?)r5PRI)6p&>&V77WWU_9wv+o>m~)ZVj1W$4nR1Oa7I?3hUq{cMR380 z1%dUcYmZwP=$k9sEe=el!{X)Dfd{CJ)~^lxlZqgJQ=ppq-NhY&rx*+d{9A{+_fZ{c z;J|{wHdKd~PX}(LZ7w|T*J0^PfrF`^Y`76vl_uZb3!FziV&UV!ImveN73eGgX++(EH58)gK3_u z9F$MhIjmaHDXOA2wSx}*zfe(Z;~>G!H1I)_pj%W$S2_eKshhp-6=bG8un!3G>7~c; zAfH}>#{`w4Vz2vskWVkB2|+&RdoeM{=X{$c`;&dA`jb)9gBnwW$=N|Y859SI|IFNS z#{%ZQ4=}?S^MlZPwIpP$LSQCY@qO`3#fy z2koG47;(U_SlRI)6_t1RS-J|uV)%T!KufpEfL>#*R>lqsDx_yV0Q-n)YbF*t%Cv_++ZeM0LN8SL|h`0~O3 zPrSkURWR}f5{RC!9_*WRer_DRoAN%pWw38S@u_XF&l~C|2K&6>Y1d%iD7Calu+JL? z_X_rTL*w4TVN@mq(t}k@#$Gw70oZ@PRv;KNKS&L-yQE1$nPIgW!KC5At!0AQ|1vf> zfMqd^ER$d>V5`jFinP~Ya@qdj7jDL91^dFy9@)XZ`M(w)?0Zsanjbuoj$E66 z2wp))u5K%WwNwC;)&@^u5daFxg-4k%D=&CZDef&kb)5+^F9ox_-h&?Gnn5&ts^%Zw z?IIkyZgM?11fWCLT97x|EdevH1PAhK?ioP9m0*^Wl`(gMYr*+ff?KedJ+2JeUk_$E z4~^>f5RO7Gy%D@c4EDEgssYKjgBhN8LxeSuVMYX~UQ6hC6g-qADkPOHPl7iDgO4Md z>fyCNf+wm-H{d|IYLQe(I)YUw%)y<5?^LRa0YdU?lj;i1EoD&+R|vVAJt`C+lCtB& zRT&~785*IgNvm})uewKZJ5*JniHVfWuc7L!V^}Gm4iN1*!19)=ncS}+u9fN$0}e7$ zJ1E|Zb{i^96eYt8tyODT01!ZuV2;^cR9RwB ztFl`IqPwYb7zBc_dcscKRd-mXC{(#|&KQ*f7#GLt;Dz3*?ZM#dsxCcTGD4Lm68JKW zRR0rs2#jFcqUt6SlCz=eAk%)HAVb1z7MlW- z06K0S3WHCm<_kRoJI<)4vtjjwR|{1)8GWKBY;{hRNELtJf@;=(=K&(+jbWK_QN5lJ zTv2tS%?DmnvAh&QU@Bf$?PnH2)=gDo%EN}m+SqdLdT!?1g*zLbZz4^%8$0YnbY zM=B4qF0MUM)uKE^KUYot@1}sqxt=iLg{m#fAh0YVq=(=aE#Ins7n~G)_mRmc5LSOU zL8=a6nXd>B)ioj0n0ZJE4e3dFxDggIgHfX}&=_)>#Xm_0Mwml3Q68$=LYA=d zFw`D$o|%Wo&X9GKhn1cXhEP_phg;qdl@NmDM1-XO_ntr`keYPbdKDGIGENYYn#+Y; zW44K$xR7tDEIw3V=fPVkWIfA664Zf~u*Fv)XBd^)5}?X5FnoTH9%N^?DFg3+9nzj< zn+7q`B&SJ8AaFDfk-`&ALQXMqL{K0?*~AhdV>UqU@h8E+5p6CHr?d^pW#vPF$%-*I zgMWP&vYF-KG~q_wEhGr^+u<_9gp`mMfneB96y~-b5W=)o{sr;*L0d5FHaKKK2q^f< zt%a%yA;)R(`DkK@$RNa)9~XtxND-2aMe18LeEnLkK57zjLtW~Ka3R^OzWNZusV*3w zppFS4-2y*#R_j1gr4TdRny6-ar3Znv-;u0F$F4}2{8frNhK9)_d#m@*4mRkkPLv7- zb_`VK&;p%DsBh9_vkdiGnv_jeZ=qnnOjq}0cmM#CXQ`bm0|ctq4t#i;ss|YdN|k{P z=crq-*ffG^0rsDG5&%6vsF_A>KLW6Zl`(wJ;mQD2Rswl?pdQ@p<|qXh=c|7RV_<}MMy)pptNA(fCu2t>+G3m< zBZoIns=pTtUN^K*&2$Fej|~y_0b$O9&P(b%YLB-rtM>&6_Lz4^y-Y47yFO8OW$-6F zIW~c)Cwm00LA7^2r~2j(bry>u`uI1&E+5oJ>KIcvjnALjh&APC?p&p26LqcDA)4JR zYkSgKo>ij;HwQWeB><#^v9P>BgN}BQ@vo6t^Mu7>h-?scf68O5+uw;#9*u$KhDU04 zQq{aDqd||W$yl-@N>i1N1fOFygBh0wP2tPRngmW5@7h+@(D5#_s^&Mw4k5&^H0bOT zVRB&&O(acTsOj&;(s<1O|v~fNQUgwps(eV0FD=maSB;A%r(D;xrU*}O zX-)rF0VDOX@PEkX#PM4aBypV{?tTKgmoV^lQlwayh^)@R(q$>-lAn6 z>9h@`w17!_!vY5F-DTsK-YE-uRMHkOOnpe4UO2k4_N<7z4VzcfE|#L}({HrsCCl4z zM=fo|K+ttc&xW9UQ*9n2JWvlaO5xYdv_A!Kf5Nxzw1Xw+n$}7ChZ7V@G8%&QW3;GAktEqV+1lJHj8&f8jaNQdOtyQh6aOE-R`ok?>a zJ<;B$$>Qf)bWVVjUHVeHohG~g=5Jc{M!SUO?tQCWOq0FeY3p*n_74A{ZAjs4AG9-R zdwc%UMhLn2Z*_isiFGGvQI|}I&Nq>k#Q{2>T!#ngn$QC0RXTM1loSXL)$OA#ztQUw zaLeeGw@^?pS{DF<%{n>kWzhM|W0gsFffk-_(S`n_Fx+R=S)*ZI_4xstB7UkWoS>l)E!A5_t8rpYzcbZB#%w3k?2_l>VK zK&6A>zOQxlXlFxf>XuPy9I37I*{PQs`DA=`vkub`?b>f zyrTG9f3;<8bw01?)n4Z_Lvv?;Ybjm)traHwtIh7F+eCS2k*f1)_eC!q)h>+aOS*yFFJ*yoq_(E`7;QxE&4z4VB`n=gLR z-KNsMeMXlm5d`1ssY%L<{kXMm`^zr5s~avCz)C;W z`3AIQ&voyEgxnuL=vq_UkiT?S&}ZYYKfTw4`Yd#pE_6R_Vwye_J)<(6f3W z8P_oMN`R2Gv<~$R16-R>cZiT%v3qED>SybEghncb+&k%^K8IZ~Ff^Yw(Q9yM8!F#3 zBmI5L9v#|`B7|gwUZV&fr-piHGL{duQ~T|*Ff^5xy|^TFg<5EB+GamklP#gYQ?<0( z5qgj|9R8EPn-6w|qEjHGo11rswxGD`!=dA-E^-S)N724T75l3_zZH6qR=ayAbPjD| z^25-+lpX2Q(3zB-l^^}pQvV9=N()@!^v?o?hA#!{Z%|PmQR}x-+^JgqXqp?Q*WaeO zN`rm|ZEcN3&(Q)qZTdU3z($AOY7lU*R@Psm$~qdaM_V3(HtXtN(y}e;>#xydjfVQ; zw5+kUz8zIdMti+azVABe(NRW%FuJ=wmV)g~)&EElM)cJGO8b`5M?Z#2^7UZ-UE0lu z8T$9M+Hd3a5mdfqv-Li8ujlpqsE$W0)?cT%J(lW+qMwt%9`HQRFP$x0^&ctNzI?rJ zUL6nh+o^OK?$Q555j6YsHK;RmIiW|ZSOOM#O8*N*5EbebG-)Z)`=;aL=k)Jr*`f=2 z->g~gvi>|RtNT@t;!gr5y{<<`$Vu|z4Ly3-gCwim(a)iszxrICMXL>arEft+effia zFqK*7&w6w;om6Y62s_1rn>|sFO9h0jqf#%{g!QJ<>0}A}iIxrbhIOL|3rdHrqy?JC zg`wvV1k6$)tSW7|d!?`pDu=hV!(u59m79h2pvg_`!hH4{)iG=h1-sil%x7o6r-t40 z%|Cs^9;t*T?vD;bZ>f>iQZvH_QEz#i9oB&2)?OHlm#a6kPq@3}=-xNLU`J;0Pc6bej}D zi!$t#fEFjT8VKVIC}bhYKPwtg$U>4!s~S+qk^yyEc=Ibm8BtC>l(N(?d?OO>r`0r| za3H%a%Do^h2=SP_^65{neJYFrXlr z6lmJYaGI7a+s1(65R$8CZ$QBuNsj4gKtVD|KJIKlQ4>jyPcoo6g(N?9HJ~YjB=>d4 z>|{SjtxfJ>SW3aF^!Bs!eP7HDDa)n%s~sHRXQ$5~0}7H!fu=(ZC`cyB=#d5#B$MRY z(FTVI46m$1N1DbOP>4)g>y>GEP0RM3XqZXM22C-b5SdgHPdA_tnIsQp8IUWJYoV5nz>jdHXdPA&KNXFzDP=ri!|Jq_e&#IPMb$YPxCqn@E z1PyXHXqy4W$K?Lzd;^*oNpc=EgbGC=Dk@e8xkUwjE7KqLTiLFo*vd$?_s9HTl}=L5 zHE`l-zl!Z=4YfHUX|Uk3AsGBnS!V(#FBxngyQ;1tcv@sA5|GZE^BdNz3kDP^=S75S zVS`JC8XQ>kHBuC+-io&R@v7fSH{I}?#rt9d3Xut0-S7C#BK)4;G$jxHrg`g$Uy5y? zW1k?^etGGyHuX2ZPqch%$Q9@8(`%vly`dT{+U$eBv7bKqYmNA9*hC9d6&Zc%y(BgI z)T>q)1@&rRQh@P0nb7VrwXyx*^aSIz#-0>rSEvz%#)P}F24m;Hl>)Iwqa1EB8b8Q| z`@5V*-;nUhWAqIP%S#)5%DNS4^l9D}<>#YsIis)tH)D-HC(JEx^o?M^w^NiCd5BmT+50B>?TQk@zcx5oP1}*j& zQRukd7)Fjwf!G%vB=FBA#y`b^Y@{oU;~8x3AJBGKX{GT`7AgG;=GtmwI+a)Fb;b!L z;R~WJ%UO))Uo3ey8qqOmV#WEJjV$L_{ss6X&v=!}{^Iuk7l1)Kj0LRL0g-jcBw)kh z@AR;Dff20}Nl*VcXk^(*^7T{)KOZtO{aTG50U!h!3^`&nmC&q?8ACwqBV#%6<|xzP z>f@FL=LZ=F&bEQyS~7rUo>h!;9FyP@bfw2=aM)HAW%1cH>SbU z7mTG@4nQEb+5+`MqY`A_F)HAU>o|bG_5?0pGwMM0Rg)RU78?_&Wo6%HwJf0(h*}xK zXcAxeRDq!nkPK_eO=@`fp79jpIMEhl7d}DJMyI=SP;k^(5hOk`K4;U%zo2Ab+%aP+ zZ2834gVD7Kpc*E;GFlj|jUWVogttaD#MZ_vbtEJTgDfqV(a5?$)n}uX4plY9Cf`tX zQfguxs=5G#sDS5Xrp}CAqX@?oruM>!4l4wiQW?da4F1xZlpyMn@hi|zZMx59M*<3b zp)s9hFdT@yIg^q9BoJdUg@Ay!#_FJ%)$|7&{}ko=@5bJ+h22z#(OOzVLn+e;xiAn7 z4L8w&s3_W0hYm!gVoeOY<0PblVR5G3j3(0>+y^FyF!EHaU~)1jN#NmfRa2r6UBd=7 zOjkHEal^QprpGiH6>mZh=J9k6|EO(RPLn^@H7%vdj`dCGDL*L?-O#jwCLcHQmtEY% zU$$8@6M6_r%7!JF4tRv*!+|FB4kyXoJJ__CaTIM0ZwxclrhSPUZ891J$PT_4I_jhptxQuB|Np*w1i@fUS?u>TLWY9FW)NQp5>AA#+(3etur-eIq!xLz6CG0m;&McttO^}%zgxb5TwFs=4#DD%EPpL(@`aZ zgpq#Hmx%8ptWT#+3b=2-saPpEdddNxqZc1D)uoPJ>7=P|Nn26DN~cV97+qdq79wVE zO9jh*dES&n?LGO5X{M0eal_P?(cHg?gRb5C-!ZYQ-F=ePfaWhu^jCs5w=wHD*x{b3 z2bE{h1Jm3R$dh2(q5hHSPD$iRVb(k``4)^3&rK{pW908MM13A#5(Q|0E!tcW=Daa2 zDOt~m!-l>y4QDwVM*5Te+@ymJk-3PO5sUy3f)sQZYHkA0OU##9e05oh`CE{;$tVSV zEM^7#Cd3>s6IPpZ_2!MlqO_p3(af^0{s*=S4mO$lv2^zzFbs1BAOLEwxwP=uOK_Mg zHuC`LFddy{mX90yU}NA~mzl{|Faku3t)q+_FJ&%C|6-sq!rY(5Lr7OL&Obpm8EwA6 ztR#Yf-ubw~;unO6V!K&}4)mJuGV_2D07B3TezB*9`3j?7w18)V0r8^MD;%~_1r z-vI;1g1&d~xBUs{Y3^s3%)d8&c z(N4;OT(hov)~cAnebe#3-Xn&OOdDBYP)uCK%H1o(CdVars}viT+BGGmQfj4?xGGgr zVk=bXni^NNYHXGA-IFU;0ED+qz>I!N41kn{W|r^wVhn&V1gFYdWM0Lx^h79QglW#O z!i;{_27no>&Fk32JvL{XSPq}AF}Gn9aS!n6o>}-x1=x7kk_Hnun>S!`ss_)Nu=UFL2`YVhe^b5$w2h95GcpS%UI z%+F?30J>H?V=k*i*Obe`b@naud6wrfzP4HBd!l3V>529a%nuNkApV(oBbx{X9j|UIfh&b7WrIYpAjDAfVz;EB0kKn82omqtWvVSyhE(u@bKbe_cdPjVbj^+2Z*q6G7Yx$P-(F;ma|WU6|?F z(I!1C$h4ebWtzYN1SbdR9atHxGtr{L;a97vmXnxu$8<|2%yOIA7B8MPN9I`SG1_8J zkg?#d4s=;!k;3#v7N%!<#2_#XL@sN~r`~{@CoF~SX;MgTgkx$flmo4>~yN+P@ zVcweGw6I2=ox#l~77J{8|I0WACf)NXCijtL3&WIwXVK0O0r$mp~J8u{jB2=bt0sMn6JB+VjEfll|+?A~?3&wu|@>Q&tS$ynYFcrSCo}he% z)Ud8)RijSPJUE%~w`&j$Yq2KFCDj{FE>AKJ3tR77g`@M ztDJzD&RNknc}b6JUb6m$zGaMup5|Aqaa3j5*R1HH1SHpe%c`fj4ewgNmI}G^9{H=S zd}6IY%RYQz)zbp1x7I@}Un3$tj{fnk1*fikCOr085sjjhe;8=jownJ$%QgK8E*wBe|B7>emHuQ=eNtRRD22pWr z)!2rx%;}_yee^c;Q!oz1%fj~oI{49G)6vfEH2ON*(qan}+5*GvHkMNw{-z*mDx7NR zg2&&Rh2gd_a-n09(YAIBUJ6kY)j2S6+dARv06}}3mjhiZ*%+T)MgU!fZ#?kZ%C?>i zYaTxCdka)lx2160LfG$Xn@P?s6&|Ucsbkx~FsPwPJ{rVqv&ms`UE5ytd6Do=8n~&U ztvvcN2u{9gY%{Y={hDN3BAD6Irh;pm+0b|UF&OCA!Zw?MM~np#)-3eN56n}!wzhVZ zy`1lClW1;qXB*R_6+fo{ajF5UbI^0#9qnzZT4`bO|NSp(8}q|lh>)`d=D^kz8_Tf} zgpdIW)uoj1uT2#&WlKZf0mI3bkI=*_Bx^pgwM5^j!nw;{+K!>m2jS$XceW$6 zK&$t**4m87*h!LgC;%fY2;dnuNA zAIlsf7^7H_^bEZnEtv>s%}w?w1>g^4+8}V*^I6c*^iT=ZkVQtqUp@BUIqn`T3b)Uc zaJTR;4ZLG8d;*xhz#allm9?`xCcX8IeJuVN02QnmZD%?x;YR>BW9%$j;PE}|n}n^g z#5g+|xzZQMYrw2Z_PY%7Kv+9qhbnfaU%y5@xgQMD0ve;YXPep;VxYD))`H&?>}wb} zadonbD$1rw71jBUroM?n>WYtf!OVNAdSR{$1~ri8`}DD!7@7w{<^J|d==FWf!?y$Nhgo^} zJjkwR=HbIoJDQjX4-ZG!e`e)j?kIaDW*+j!+HX-FmS@^oHmQg>6UN(@u#E4?Ird#b zxbSp}{bym6;A(^PdG-b%V5WUIgG>IdI`&3+g? zn%Le%3#Z+%qgafHsb#UhN$YJp{vHn&-rYNPF>~uLpW1cs@N;_yhM5bibpdd`MdEk9 zFNXrv9gz!R&O7^c35XtwrspXi?JpSzkuR_+*iqzYCrmH!kknC67*wDsz%i92Tqit- zoVpv7bKGTtyxK8BOo9n8F~os(rK;G?uz9E>g*JHD;E*sn-2!wjhO~kNb0JCwH<%nJ zspU_#I?hn#^|Cwqv4|c;LFpjrn#Pjz)YTcjEamu)Mbds0khIWahW03b$LGd4_EJfA zt?0N$#gS0eF_gvsNjn7+cPczt)3Hv?F#PxsB6E__4r;xYj&#c1kv5KG^u-(O2vrju z570+|a56U4fxlmblYjPb`26QUFNcQ~c$@CP-{Qdqh756Rq{#{+9d;p*f?dZsF4JB& z8SiMxY-)wKpU6O$+;9_!{@|PnRnr_QY6a0*4xbCZo#E$k&n(AM=El%aC0L_Dud~|(5o|U^{J6}qE0DV?Jc#>iqhmFLR>{K1sdyFw zO`9D-EHmt_>yE+T_!bAtNibA*C0Wvd{%)5Pw%X=+AVwYf3OXJ$^aY`9fZR^UYbFP| z?wASs6*(01@}hL`bb&)1j5xvj?!a^kjZ4mJPBV0#c3c#p?01EZpV%0j2~it8SOzrI zJHns}Ougt3p09)4F0ql|>3K&XBQvM= z@;1P7w;bECO77fo9RKfa17b7N?m3P#s$>I_3`m}^s$m1%^3=h!;2_)|df_;Q z8JPW>yj=assWH!ugq*lVV+*5>^g$7Gh51s*-WCC&bCL(jYR)_@q+8WUcdO z%t>jz^GHc#axu)=l4UqWoctiHH!|%`bmaXi%yBx8bLg7vc2;6pX&}T|AnCRv049}n zuE2G-t(<3Z3$4Btkj-tKj~QGMTktG!~B9FXDPCc^0 zD1FYP$icAlRKZ{dP8STM#ti3J7Q;A@=bS_q5ohK*TeB=8Fo3Xrc)i$}f`!+9ne!Af z0a$vq^C_l7*E>fuxG_Y?Ls)*D64jea)(PApXF6tN;8EuQ1-jln<9sJa*K3!Y=rHb8 zxcZ6{9mc&1`~K>zfb*B#c8K-DYfL)?*fZ=CH|4KC-sQwkDu z!_5#a1OPUQpFatXH{-Lw#kZU*mlYk4O@9ylYb#tH+(v4Ei`_*s-rrTg0<{Z$RqiV6 zt#d7BF$uQ%BT1SXy3$yNrhhflrI~AN3G_qHAENa}oCqYf zbjji87Op%h%7WIeJte@l!wzj+Out%&`v{RaqOUCzBRtf>#q@j^!+g`p^^jSehzC2A zbn!FtDA{$OL=u_O&Be4XAzCNgEKGHwPw^75jOyiL*%kTsxuQOff)51h6rzf!U zFl3U8WtjqzLNe)q{d&3!vWj5t4A-}eWA#EXZnL*9bj@?^XIP6s%@WscmP44RGx~j>98DZxk*GNWh%m#T!T|($@IqpJ_|Hq_7=;69kF7!iVWVUH^*2VVF zAIleG3$cI1ITw21PY|USUFd;7N#48UaP;kRdR~j`l+^fZ? zllRBF?=eX8ACPvqVxs#Di-mlFX?8K(0vpV5U&4|ndliORZuFa!xo9gfiFbDtq3k{L z++#|_>#46@Dzr`J&SVKUzVK>0h8BF$JKSoJbT>o_(-*j3mn#up2#{sZ=?h0huXqCk zpasPN*y)5@CqV*BKjS`FBE}G|9R{3rGc6|m!JZwiKIdMJwbfVi+s&(Ccq$HApNK*GpWK}Tfmiq=~rRH7t(UP%p&&~9HoKG~ZLH2KMm$1y} z_td=-TaxZoi7cr#M3ALeg1CP$6$yWM>pqNy)a4KNp%Ms*bTJaj{&c@8iP9*{uOHp$ zA$Sp(^SNY9K{e;O`~QHS%VH1ONGt*~WFD49*}p_yPT{FulChl#DG;I)TWG7J2%gh; z(B?@IT%z+lXNg_EaChdsI{=^^lv%LY>OmVbMewa%z%Fol5=x9MgD67YfMLg!6<`}i zdped3wy?a1ZqYQXEU?_Ust0Y+6v6UedC(S35&W~d(ALj21bRkI&rFuDrhO5U>VtDF z9NXBV!d;osRDf;M+=Cug7eQ+a56h=Az!!L=g}*;5E^O;T&x(uSo9{f|vc#ikBiR#GGSl1q${hp>J2?Y#o~5dD@*^w4cRfAPz8C{m>*uLkvQf#`fLz#IIzI#{ zn1lv+a|sj<^h5*ouTfF3-9S$!iU)V?7=` zLX#aQ*Lcq`EVu=eJWM-IU(||PF@tv59u>@<;@O8anlRmiww;P#%nVPP5_tjHAX+rf zb047!Y=im8I!iK~Lv-Y99PW7W5)axfDuSCJJ-cb>>z4kD@%;wW?J&4v5(-qta5PvAVKWHrRGOTYPT2e82 zPh8n&F(7-Uw+2`b!yTYcD{mr5P5w(WOm2rFVrGb?s4*_bP)?{R7et zvsKCw%HlHK`bd)SZnXD_1YHZudyh)db$(UvMGjs2f92hZukNqCXf`Cx%&|`1MVP77F5Z15x9C?%UZ$nfznGfR&5OP`cLLN& z^&T!cQ|Ehlnf7P?#ni<#FZ#^f36Ry-%d$TB7n-%d_m`4+6|yWl+%mvB7Bdw)xP-1w z(DH|P58>f$#0c-M63czZDDN*A?ATZ@%SPY7*$M9aJJy4%OM!;`!yhpL^$QF26wj93zE&aj! zp(M6E0uEa2&BLsCb4$p|-eq2v%{K6*Gc8woHz8JX)|AKvMnHb8H?Aa;dq;>i->$Gc z+4l9N1xSw#mw`O9M+S0t*-gTZ%($K24lFxqUr-Cv?va%y-I_D}?44FJz~FOU3kWW* zrUa*6lu--23YQDLZA&7)7NFLUQe=H*hLX$PQ*vZoTPl@BKQ4RIt78eazx3Y+EUe4m zq1)ad9Jv%e@cxP;l?{))yYRKg6E8Zqcmh^?=0%?jI{`mF_oC;4C*V)7yy!D}C*bpU zLiywGh4K?W2<6*-63UxD3*|3z;hivk1$p=+mgU_S#y@Do&EQNzSM<}&{ac2D>BEwd zun%=@3)QM{^l3X9J<8SLB?`S;K-A7u+|!Br@XV5NtUeJX?0{akgdad*ABk_lBXc-< z1xkdDs1-ZIo8qW2+8fTaDE%TE+>)>#8dxeEorOFBFGqxE3d@$Luge0Ia3FGPop5v@@&q(C2uDlY6YzeMaJ0ld0na6b zcPdHOs{-;eRdl=XDJ&bKUsy#j!W&hidxoQvl4u#wCmgMIPrxoi!qIB?1Z+1Z9IbXw zK-d4r+It5^QM8Za?52?9E+L(gUhXbea<_LB=^=o0LPC)a37w;bDpeCu5C{SS84#rS zs_-h(jI1I8v4Dy|BE2U9(jf^&s{Wpt*}I)P!sqvWH}D79o1J<3%skICvomjNNVsq< zM+4FBK{4_@4Me*K#Wi^vh;|Q(eU@q<+C3=F&(}b-dr+M4q2{$JnP~ohG~Ob7H&w;K zYDr&{Hwt(oezbUUqo%xS6h&x##GEafMOB$Qnu!oUTR83zvbJf~4#j_~*{Hxv*f{>X=79n>0FWr|IIJmF($AprDkS9qnj&F)WDvSK zJoz>9B;GioncxM4krmJ3Ct=83vPN4+TzgJ)o`>R@7d1+f0}hk{qPkQwP>I*)gn%Mr zwQz&x+uB-a+lsD6dNlj5moyDo<>o;P8tt;sM(DPNO-I{tklR(KhY?P%?SYupKHzl0V{@S zk153;&ubNh;RJt*m-aXoK$wsAs8Rxoe6@-~ZXn=ubUL6_xHw;}U5lwms-gYmf2TqO zKp)}}Z+EEnxBtC4HKVcNT9~*BP|rGA1z!Zv)%5$e#%;8)j9MUeX{UuH+5)jo z2W=}Q{t1zD&V!r&IHFx77IvdxPxPQ*H}urTDe&x6 zw7Ck6djbt@TJO_-tR%D{1UjRdZ;G`L)qs7S&_YyGAg;ckg{Y=LT=th1qM8D+|1~W{ zH3eeg4J|}91!AvqEkrd1;;9E(h-wPN{3lw7Y6`@k|0R=yxWz-)PpNKEQ4Os(`2dWb z1To7`R}<7l1M|bzV*KMCHeP5}=3Eb#x^br4O#}wK27$&XX%dExYJ$ zD_|5u6anHACFTN+$DuB--HsPyd+N$OfQq2Ly6wuSpnwnnqNmV*+)wv~l3~d~QzE)M zTIY=#=ca~;h9SBFEF)sa_eSU%DhaBbfJFd23BZX%#_JAo@Ygnx{M|WO_dWi(XNqo> z7yRutlfKrzMgQJ^o4((X3j-6puQ5+|6J#bnU7%~DWcUPvauM0r8?Z*F3YPfWXx^g3 zny_rwDG6-}P_mDA;|`so(AEh7J>3D{S*pkA*wD7q*E-liQz-uQjgIq%zx(&#(WFpZ zvQJlp|7QK5gC*}mG4vI3uZ@O++SZ9vt^h(AAH)^0SPH6mFl{z4jRxQd9UH-PuOubgPzj9c)sqxO!O%Dt#m>E=&L09t@8+qK$oQHX zl%%jLP+;P|;G}qkb|FDnAC`0y>t<@Lq#u+S2L*&OKZuSN!|Nm|x^l!R9t!4sWD;x` zE<_*1yb7X(xFkj4xf@Xj5|VacqNZz=njkBw;H0Dm3a4uV#vkQuO&l#wv?NVcJj@FX zlGNmINpVZVq$5fKFCrqLWl~MF?x)15;-1z?lNEzGe=;#i^iNMZTpff=Jdd)TN$nL| zH-Lj}srYztuf9ot;i>UfR?=XFURy5mKN?4!d?Zx2grMi%mcin>5lI(d?xnWz{2(fHj61ew;;`bAhz`ZXNKbn-}tz?5MRZfGX>g3Z(5k9S~t>ml9 z^6g1;$QIep-%DzuB(BB)Xh{9lq9h2Z3&q+?lOUun6tAvGf{?mUJhmz+OG#${$V=&G zl=U_wn@%J_5M3w^JDUVSbfLJSBndLCh2mS6lbR~Fv69C+FO->Vh@iU}F5XD0Pz($D zHi?$Uh!4w?9xDdZV$Bs_1nYvM#IVOnI)x+6SP|knxV@|baUS|h3T7D+T^6;z?SoqF zg7|lgr~a-7S0VQI(JRV$a!Go-Xj19Rl!W29F@nZ1=+Gej0MxjaJ_MC{8I%lrK?C$l z>3X29h8_|J73f&7{-gr=0H9UkXpPs0C~RHMXOixd7}u8yLp0=dzke1l!Twq{zI&y35|bJ9=>1=;qc`tP=Y$W zrdQ%O66G9is8|g5($i+ zZS;y(@<`)1+UvJt0(?5@l{m}<#29S(asgfJuq`$2{uf%U~Fe5GEO`5BRMZ5}e{(CS0!Qbu+^yig$vjpst=6We&f#dMu zyNC)gZv_S06X_2s*|kByc3Gzn7U7us+Zf{EPxP>US0VoAGd-+bREVQCQ49?}r@#OC zLjQweOh@wW2cU5~<7(6MBqK!qZ@43o+4jkI`c{g21Oa^ahbT3g`y-rLqrR?}&Xw7= zR}be&R){x#)+<`xp#u6%?~l)vM=gHWhl|4R`Zn0a#-|Jj6Y~!1Cu3)f|3j}R?qT6e zr^%l`s)qomLj3%M9s-~WaltA5AjOur?L1sbzy3lMdN_uVzfap*oLj0-aQa4j{?eyZ z2jc#@t>-|6J1g|Rz#s9~hk6KUD#V>n^z-rG7XRpXRmI#%@U~KXy}E()qCUO`(u*`I z!)r=hPLTF6d8KqzxS_6+h|UQ`Oph?Yca9ZeQM3Ufx(ab^f`PEVP-jR~tg^Kk$+2`D z(bH^z&x9+)5WztD;#sQ!!m$eRlqmE5xBq4V@Lk z%xq!sMR1zrJn>FT3NH9{!)Lyz?t+=^^1B#5{@>?nM1r2!_OJ=k@J4nPTI>-ipcca; zeZVW6tw_i+q@X=r4NCSeIskM-fg26d$BnObH^5HD5>%s?p+o_bE+C`D zA9@?qN_qn4*aW4%4-2ia|-};-IT9+E<|S7DJ~R23JMo5}3x*4Rxvx z1_78LbiS)$0L&zYP}HTHLCJjNU{TU0Ic|RTEQ8Gpr1te}!;e+hX2*97ih>>&%A&f$&023z6veqos@8uDb1_ltJ~b!_sh!Y77zwZA zapuYA1|>m=6A&I!qs4`r4MiAQzikF3U;8?tiACEDyOqrBP6#OTi~%oJ8N@e51MJu= zK`FbdI3{3-bbY7vdxNJEPuGwh%-R3-D0$!qoVD`^6w) z@-F`ND##1;Nr(~W{BGD)wSFnH8hOM3nVk}Jw781qD}&5FYEX1Ok5joKz}>sd#H<3&@Htfk1X((?@=;^n7?IqE7I?UL$7Us2<0 z9HAuh>!e0(8ED*5B?z#y7CN`%rnC^TsHU;FI@lHV#n8!cV+bnQZmc6-iZLqs>c&Z_ z6Hfr@t}_Oqj?>}WPja+PdZJM}+U8_}5stPg5x>zJ6@5u4BfDE@AYrcu6&Poxi5C@c}rY&E7Ti8dXibrXxeHjb%^jEId$ zYlK6;H*!^jrlhvUAdpAud;Y}}||oFpMMK0_7l z>2ljw{P&2lhbMqswMSDQwfM#qB(6SY%<@E+=kV>&dp~ND(CE`f1qTn2P(8o*?NG7b z8Dpdp$0n|&X*M#RH!6wBN!t#WjZ#4V@de`(50tZ-4?z8xMzI8QyLyUH11F)jNKx7WNfKqI0gpR zl20wa-e$V)kIsg9go#@MOn#Dneho5hQby8R5kBBllmx;gi8*1WGn58#RBh8>FCroF zVzg;LM;~{_nm(2uN5-4r$Y^X&qL65+DK+b*GhL+072BCiiAu%}A{?M32CW`pnt*<< zYf_TM04N302GhvbOa~-o-*0465)1&a-QuTBOp3A=r12ZgP5UJpl2c6zawsBznXA~| zm%nbhETNy@&h)D?e-C?!c%(@@2uH2EZxTuB?Nu{$dIcL-&{_1t_&`=l5kOvrro-EnU*hf& z(@KfZl}AmUiU}oOmCZeFf-619L_heH39j@g3-t~bTc0t#rquOue(@>7#eS2O=qUG| zX#>5?qwJ0;Q$f@z0tB_>sI2|l1owCl21h?L!95=M@$25nIZFBkz+Hq|j5c-@|E!+8 zOG%JPAQa6qhKgfrC&LXMgs{6&$#8=QdCbx#!wnwfv9~!HZtx(F2|}{N9lK#oh8sLc zX>_AxxWR)wu5FeKH+Yc8el3&X1`qPMux&Ej;6WZIbxiK7(6e9b{LXWX7}PbnnG(U_ zZs+)vbBws8cXDf`P!N2*nSfGyCufK?vyyixvC^!K$;**&+o%#(jZ7A*(_VEUJNc0k z4@?I3*`(wXlC&31O`asFBY0Nw73tAucJfY1bw}nWtCj3;B-qw3N*<_SSaG!V7mMFd z{#NSrtCuFP2>aiGi2!UZl^i;`DOnmqQ@196piqXNh?{mKAC|;7Z)fr>NoHZ+B{z^{ z*6#WWsJI zD_J}u>5ZIzw`-%Wcajxs2SnxN$zO<9?D?k6XDa$CgK zkCJ^ALOLk6f0Eo)N!JH5zNBA+F6YhZeq1&2irO6N!)-xv?fQg?HNwmR9`GZ&mRZUE z0Ro+T7WzYNv!YAsoe%FW1F2pd|E4)qiEkl8STx-ngw1%}Ec3N0 zk+S%0bFflUM37)pOvU%_R*{M?=b2k78B?4BL4Pka7uEc%arU&v;|AFqXAU1aX`oYs zD9{|4jJEYLH$*KuSv=iTYhPrpSM&YvL>1b64ZV&08~D+VJPZ1#q3`t{WV)^_T#vEXnVFf5`lr%LWjDT16&H4 zceVtelOLFeRtZt-<>u;G*PW1}am%SGvB4^3!?z5f*&6d5Jc60lRgskN4dy*c26CB{ zbN?~l!leBAnfY9m#QWtY^IJ;7NCzn@dTH(KZDvJBKN2u0bzf@aD7k103J za5>N_a~<*S19MxY<0W!HhaeDt)@^=lhR?dUd>v*{baWFCTqqWKTb5!2BwL23_*ybS7Wx-iDd|1x zTE6oSoZ&WjqvCB5vH3$HTcga87C(0I_H_>4DCd{RNR;hqY0C{qS*^g0!1GFg^F5vd zlF;+kmb$2U(@83Hd$Kmr_TntD+|H4!QtdV1Pu`2~QTtYwB~9`kDgXMD+BDF{PCT*W z8%B%IT3hycaWD&-0!zbl8w_gO}T-E>NeVOMJp^w7Q|$4)ZE4jVl#YZ9`y8c>Jp zj=0=$9Z^~TvA$?m|8aHDk|lj?C@8~H1h)8RhNTz@BeZ&SrK=?fjWhGX$hVtiGrZc_ z&C&;T>TPL^TAbyoqu+a4l2O@ZyAiGG4mFP);6l;v?xg0(9+p1hlRg$-p3nOp71p;H z0tOBlI&tuXk=c_*jvG7B50y5t#G;b=7L~ut3$(qzrKVfatU;Ctx1zXOmR9_gBPgzg zxic#B5A;L-9bgIKOOK%950lN@PPDj@CGpjwG`?nejemFq1vRz2!T)mvrFKjTMcEb) zPc-(Ol;-$NVN*+Nh^@cAajXkVgjch(X-E-mdeNt5)H0#m2VID?KsU*gzTXchK-vrX5`r6v8`xy5Zk`B z3Dp>8sf8xgYuJ`+jxq*V1|josz}C2kC_`wY1Y9$h@j(d)4c7$|lZIk>&JPPAi0@P+ z^AFTH`1d39sxBPitJ%Y_!>1O(tJ5{$)inHchCZRxS{jY` z)(A^3&wYS#*-&6WLR0R2G;Wk7QmIQM-^jOgwB;M_zZh^`RML<$@}Gj~4AXVwHx!`^ zUr?7Y))ISSWu+W)bW-PoG&UJZyCUQ6+3Ckx^K=1e;*5mN^dtjg=0CcFG6wO>HDEk z9V{8>b&9CuUBzXgMwgEuC(OM1kG`f#~84%|?&T#XO2@77+*92Rd!2?3Q0M zz9SH8jBgyW1@7q1^ChGEn5>awm)m<6qopbF^?1NreA3dKZwr6T$&p-J4AzwI<*WA? z4*)a#qhh&<48UY;?{kvppUFGI!u@&AY_vxQMhQAOsTH8tgG!6ocq8=3XIwLDP5 zO-YKDUZZ^{Y6QcVda)+X;99B7q-hG3sMr&@W-s#e6L1d0E6R?G@k58-wNwvpirIGS z6h9WD@#jsc;R`G8FsZ-jJBMfd0qw|m(-l9F@uuq^WV}Hz-b@sm&9ijjxzU)ydT4!G zjmF#v^lZNJLC4a=9EkSKjfE3z{xl8e-lnW?+Z|})X8_))g!3{I3Jgr6q(k!y{f`N<3nAHFD4^;Y>p*|-vaG{LA{aLQ(^C@sU zd62yZid$q!Kakcr&@Mc+j zNC*()I&KX81CJX?%VPftMC*@6??w|Bg6y(GYimM=xYxb*2ikVk+>skf7{gdgKi8y( z^G6+O@xV_+EgnayTK+i;d95LTAnsaRmiWyw%TtbvM5&9RkJd29S-C{S<-@2Mc@&l2 zi0cRj_+`E#ZNa+Do6b*wxkeZ&opr)%VUpZzt>IA=m!B{j#=`QIfW0Hoisz5EM^SmI zwlP}2!?)(k+7U5_Kt(L(bst(9@Z*kBG2hk4kg+))U05BhMkYf{Xh=hhoE@dZj*?Lt zWfu4bqjl?|`*2e+t##41{s9_v{!WaN?Sf9`$$?b-!jz{)+t*v_V{M*3Vo3v+9qP8@0&!zX5a&;umz4QNpv;fF z{rG1tl=bDh(aPH<@_y>{W9|YU^DJ%%Z$E~(E*cFCQG_TgN*E^o53;5Zvee@+k86Cu z70CS_-QJiGA3WD-TGG@p1eN|5Cc+^YazuWMfM#5lJHhG4oT4nwO?(Zl&*J>J$ynyS z!ox7U7yAhrcfZ8Uka2elej*)w%Q5G;J4yUvGsGR-0fL%#Y=}74f>|&5(c8!$fLRiH zH~-@?bbYHOLV*WJEF9mU#9gL>!wzNmkC+%Yk}n;@T{{x3+nVq*_k-6~?{? z4J~{H(B4}!hzmwb3ZVZ79H;#siZl9XdczDyinUC!Z~P>#B`F49K4_<<0Sev@?CqOX z-^4dRj^ZX5>+=JSBd&&d5>zPPV`+kfhFlQFM7+(--&_6AMOA!9?oA41B7wrcdmQDe z%{CPK5%{qa0g!)ueSVn)Xre11>e~jyPvtgK7@H`JT`Y`E1V&hXpTH#k7YWWLS2!C2 zkbw3^-}0$W zT-fLnc$n0ok7gKapuYPoO+zkW^|6EFzGKYbSoWIs15SrBeu1eX`+j^gbhyx>cyM%l z@dESB)*mc$xuz6u;1**ub)yqN1{oT`cD8@58zB~r)WBC7J!zfTE0$(_w-a=1?1syz zTb*CsdjUW01RZ0>OLe<=cjw2Pc*)2(11f`4%|)YAN5D-P3H9*62(Zb(D8XL;o=0sM zNdV6TZZ!p)ena0Zq&_B-NXwJDiqI}2#vFsn$|FrU9KwQHe@fddyc@3R)-CFvK;zFr zx5(ZfpcXHV)AZrM>A+2vmE3@nng8fspW-9~2cHh?rpBjooyGCLTcSAb6opPiaZC~g z^c5FTlu4qfkm_Pl+r|v55B(;Yg zxCq3K=SmW0jXx=cSvftFPMTPVZf)^`*t3Ae**>TrtsHB_z*_=ZpscV7U9Z5IEWa$JIWIm2h+qhO|DHC7&y@(AB@qaJWdc_@2wW`@h+anEr)~r;lL!QG zgh2S~Bv5)r>!-w6dH5j{INg=Nz(?9|`EwG1rz8U5FCj2zY|u!L`#@mfbl*7sp+sQC z%LuG?nn=(;8h1*`m*LU+X%I}^k!S_TgjV?Lq*Z!G182l^v2je-x&tC*2$@S zhZEFeYy_r{J;nwn7?1IFH2xNJRWjtaJPi~$hJ4};m)%a7guc50>Dqz*QNifq4U(?S zyJ>0T(vgtrmZd%S1_f0T&;@3O(-ddR(=5)u+$siLK8vn=rRH;f+i6t#Sf9l0ptWN0 zV7cY=ODu0Ul^gAQq3GZHmPn@a7-{GE{4_E@fW?Q;2}IHvHcF)B%cRL(Um_i*%LXSk z3*T3{A4Ochdzg0O`rXG*#Pz!ml;RZM`+r*kc;5dE+OWku1`=TECyHV>vLX@iG!~|^ zuZ`WfSR{A|5E7mtaWHQ_gSboP{xJ5BduB<(#T&Mpv%-DP05xutT*Mg?1#_OL)Khp1 zeev9q%y&9NqO<&efYi=sNDLetf!nfj!=TK-3 zVNiIAvuX=x)fQ4!NSyeI-_;PBc_3f45D9)7EGQ(ycOB0|1Rs-kW1!IwAUfOlI(5J zv~c0gcJpyAkYvyY;Z)QJ{9g!;Q%O>14<5EiB;twHK}LkJ_=(v4Df~oqpZ+^4ju9ZO zQ%f-MUx9c#CPkuspT}tUZScbg3kHvB3di_E?3>@tqM+Ksb^a<_cv-66y^b)N3qXZ+ zgyB4Q&IwP;(f9Cbd!!KOZT|Ih( zZ5!pZxzx(fk~bmhSKmMPs9dzI+!6cwm;d z1}*s_#t-7snlZvBVcW3qf5ZP>#{d0;|EqSwhs0UlYbtrJu?I5&sUY#ry zxL`yuI&uaM$k>-81fbRlLc2;au2PPX8zf|kjT41;c-2Ok7tCSjDEnu)gdGeRc2Q6d zAsof3^;%v$hsuA}XjR|30%(nL%0v9Pud!4cq9xCJ`=Rx3)m0MFVj|HY5P_N@;2bLU z*AK2#9$!~U9xKFTgD{cjFPuYGzr3!*>4>z8|HYzdgGi8K|y@rd59hiHZ&lA1S|+V5Mt0f7NM_#v=B&Q z_Oh}EJ|6#o>8Iz_idMse139RnBEEBQ0w#ym+EYmb-+1`(kItdeC-G*q(kd)ay~Yp@ z8t-=VYhrc_K2gO+$g_ zR7>Q>xR)rFS$vHdGUDjCVH8au#j4MTAh5_ZQJA)iAgyKTp3MTE1XDv(0r#1rSp3KlxiURb1J zDxmQbtxeJA9faBb3uKDU@%iSs7OD^A5>&WE=*}+y4j>VpHdlUui6-;pr&SuIN24V@ z!7Z%yk&vs}C_~4ZHK3xWzKz2x!D;{O0@^Uh5Q%)#gnFv4nPx$atwUbcf~41Tu0{l) z*0ey=H<^NETB_~&5NT77Dy1{1f+k6H6n{= zop34XcVM9;KhwXD@Vjb=Tjl&&oFAWgk)-w1nexkXh-k3I5-(rW85+%m>7c?Oe z7O49W;Vns$nKUDTyN!nwJR{Yr zMA-JTpmo@r3ZwUuZ-fNiUV@g)Nz|%F%aq|hPmO^eQ9`%i;5~m)#n@h0Qd#gcj9^O~ z+TB&f32NU&A%cD)dnCZhar_eC76%mYmjo2qll6Y6{aE2Bzq14_4zg-h-!Qxo7o~tz z@DG(KI3-)iRHoq32nbBzw}GU_3lZvVGHyx3$J{mirKHi%OK1>b8fhJ&x+b@yWA6IC zT@;VGgrX}l8sf%mgx@%hAOYC-lY}FlHA=x0;?4^RsvvlB=@R~>OqYl#t)xqAnIb6p z+8#PAl^EoGGsg>&YF`<(B(P*$!rGZP;KyCUqZH+iHwh>&!a6{eDz}pyx%b=!-CStbx@wIK9rLY6Eec?(#7fW?>?%`z&b%eABfPM-)rO(;8M=D>u2K}2 zY|*H8Gqs2_65GF{4VL!t&K&B;?=K~5E^eb>j?e&O!oFyDC0yE3Dcw$%Q;Hp}{?&<( zW%WmkXA0qTHUDxc($5xR_$#H<#X^`8R@bv-(!d=0B=invOQbOcBO*D|2e>v#AwR@V zBxm{%__$%xs<7do6yMdh@3SNP38@K3-e`G(YuuO*jI zH$L!B>c*?(7fu6t1vJz^zt0m|sgh;ri1_1`ptGC)B->r`Z`R5Pf7yGy)foKiCTPoi zAr>!8VXvC4OuTB&8wD*8;O-ObMq07^oPh}-dpCNccNRbf%!CVACHu-Gf>UQnFpH53 zg+ZJuOD-pUI?C?j-gE#{1wyZu;VdjbL%cuWjx0h=#g&P9Ov6vaJf^`rFpn_CJRHq@ z{-nWLhxdh#Dm9cZt7s^ZA3*+b>tbP-|1y~kDd<}*mr!e2CRxj3`GwP3UI8IpRNG|0 z)KDtHWZ%jd%FEt64aILcED1=4!d9k+GM^YqxNIoLFag9+&i#o>mJ1!Cw&D`jQu1UP zB}+-0Z{5bJF3aVTr7U!BTFO)*mcqhvs2tcMmhu!=CYJIHKM_lLMlB_@5=&W#7OxcA zg|qRX10qBokFasunU}COuFII(y0`oF0fmP1eG2l*Tk8!_iAx zxTOb%FwMv`M>gYSqSAFjC$1m<(}eD~eHl2(C?PwL4xnDh4zSH=cA(BBCOd%JP}5wB zpYTsdb|C!{ow`!+3)WU6aRHMZu%Lk-3uDyzY%vKig^t!fp6j8Q$$oz<*P{7>zz!ZZ z%qE)v-+YPA%7iA89spvNK7t56FzyXS-lC*kAG9{z>doh0qB(*+m>8C|WejzA#X@}c zsW5<3{mc}DlG0Glf0ZQ)T*y$lW20f~iAywWJ>`m23R_{TD3;ZdR`#G*Lxq~5LRutY zOF%#*{q}torUcBjWgD#jWOlT{H%0#n1^n|%G`NAkB)Hl4W}@GU>sA|DvO|E+=e?utrk{@ME{V=4BemX2`#ZJ01$ZaX_+daV-+4TTu4*LI^tD$2uVYDm--PYmI47mgjEL%o<{3ziNl`vSIM3yQxm%u*#H#NMv8Lu95^A8# zRaD{clJdxg=v`AVe*-Ufs9MM8_es-x(=%GMh$2r?_t zeB>1z+()WpY9v!=flF8+*9MZX&4*uMV*BoLJFKlVB=kvAI9jt*Wl&sPI4b@@Xvv4b zPu!h^vyonCNs++|tr=x)Km_~c&v2aIwNchV@~_O%)(FoTKp0H`%wk9+Bgr&Y(DSIE z1DKHn+hyv?$T$?3aLa(c?*+2nS{wGN_aAP31*}ab0*_EnmdTPNz6zJH5}zPReB2c# zIq;?2j<|=R_WSOg_H#*kbK<#o z$4|u1?haf)jOXX{+?R>li-nq8S|!@ctE#MFun9n2-WAN~z)@kiYOE|E5>=(y<$_nH zU%)vjyb{3nnSaqwgh||0dZr2q$5>c^hA0)tC*jyGT$w2KJN!hH`W;oO9Jmu@l4isH zq8-pa$J&T?z?o--VU=oI`C0=4-(WV5-p#1woG?UnoMDJ`b>FpWgVJQ|3*;-V5EHR=*BW%YcRVTJ0MhTVQwp&|`& zBt0K;Z(5zHLiEhSg4RS~zyi^89Ij0C9FL!fp5w2&C1_+lACmO^Tb{KZ)$_^A!Z7!N zwkdk&iqKotgdv3J=QX*&sh=HH9B6A?72Z;%$$+s`q?Bw2-~*>*`!R3HPzo>PlN$AG6a-+ zMTqt$W{^+KpwmqufJay9h}<5-Va=f)1DKA;Y>7jufQpRB8*y!-)J^z_D0LH6Dl;OZ zrMHB%Fg9j(z)3;n2zDQ=dzg?A{aTV6qe!&GVW>H$ooJh;`B#Y7sikU1*np}%!QAjW90Q@?8 zQLk&X7ZHj`4h2Yo9E!p%XhgROe9LPzb7IE?u#+Gfs`;|OF%Ao=+E0*#jX_luW*n5 z?=>1w!e0_lmdqchT5-c#${)FgxGjQKRm|{9;+aFN4V(pS!KO&Hiw$fGwzfqniLeK= zxreomk|YV%1(0XN`y}~a0U=J5{3=r-g)p~q32P(!fgBt({&p zo~3Zm6YOX(qfBq>C!TTF!S>0Hh6H$WOv{AZnCpziCtt6G+uZGNT)Yr&O+xBhRGbU__!=QhuqCtZ$ z!?E4@pnl=-gmZyX+GNvpYUS{kSb5+@*Z~YX9pI!D+-9p5+B^)jBL47onl33~m?U=a zJ8K7LDzgKydb?8XyHFm@{{q6qTOfXssgP{omb(r7EZM*h*KwL8$#;b(`KF{=HB`P& z7^|vwL$+r!I=;1isN&JljmqaTYSOv(!f)KUASdOAhW`jTWYS=LZ7WHc#G`GoyVrx0664{wR1U&Op6jy}BbOt5Oz+vFEg&ZH7f>|1Zp zoXN@?Bxk~dTN0aSHS>3Fp!7s*GJp35_0G3qXskj%WWkdy6Kn}oCLtGqC*JwLxHj?5 ztKEbr;+9#JJa*eJ_Mry5JrB$NCyjLQ27{GkdM>^{oRUJ%<6ju^ehsy=8R@DUO z$m7DO@JdkFlWsEUllKi)gCn$NE7Rq|z?(!(VZ_HJ`I8h(GYP8NqArQBLwupp+Bzx; zm$K>#VOV2xC|%@o(gmaJ!R}2vF;z%x&B6jSMA5(liLHm>%0$t_@e@(>aH?oIheC8q zngs(taMluPXR&UtRORBU=xH#l`k>Dj3w6UrK1(ie>iyLrUTw3E3aWK^;3q(q%JOmbSI>qM}FeMEYWR!&$ayq5fEt*cL!_+HQ)h#-1Kfr9U22mpO33D~x>c*BpWujKVNb}s7Bcj&s_=%{sJ22$3)eXk&@oO|` zl_i28oj~@bWI5psa>5zp4#$yEfqf|-y_iwqTUi(Q&%mu+GAeWA5;|?pxJ5H6Z^|#6 z=2Dd%Oc#V<^pm1(onbWT^13xwwNggGq*W?GY)7}~=9Hlse}$sCZLAj6XG~jc-r+B4 z=9XL8%`_usN^&dTfGF`7ECrx-=b3OX11RTKHUY2~aw}{zI`~Yu#q3eRZK$PP$4~gD zBfGLmvN?obur@ad7rdBVxx*IAdsH4lF_T?+BG;nXmB7~=f=F@&D5>HG z6WGG;hr;?KgcqFx-#aw6bKEl7;9jFUg&T?WjQHV z<_}2BACT#hn7`@H{7(||g%a~mCFTnW^KcL$$N<*M;WHF42Y9xk^-qm;_^yO8DGE%x zO`^bBmDr`dGZv2g9g6u5&C>{XTzah3dG0W2npWU@W$Rw^-afbQIhvdv|dg4D_e zRcD48;>Wj_3!IKw)wV+rUDrgNCR+!oGG*x0AMAIRrcuT+FNo)q-L{vByG#B1naoS< z-@|6##&1FrrJr0bB~dD&-rn~v_0L=1CDFNx_((W9&x=I4v#gi@Jg7 z+4+{$xi5vSOnuzlRCP6-s2( zF;z&2&B6jSM9aVh39*CApoC~S1V0fihm^T(TOf)h&GrCCIJE-XQ@*TJ-&NZsBI&zi z9{5OKo)a3OhHmx#9E|+w!ac?@1sX}zl!U8lzc|bqW z`7~Ua=zKbUB08V`a-D0+sLo-l$|m=bxGDN}k+rvK8H1i^Xt7-2)KJwns7R(kJjnKo zt%sj@Etr$xC^+BcNZtttzME$|RIHeY5<^0?#Bf6g*%4gPK!&8BR?M6h;{CsPGeG|r~5 zB@S%@4w?nWwTU*Xl{>Uqt^CDt8nP*!!`YzO0SM9vB%R`qn-f3*PCxho@aUX4{-31RIS*W7{ZGbKb4?666#jD_dxlGx zW6$tAJ2_qC6KGSIQ^(+eABxih8lujtlx@g$92WI9b7~2Y4Trhq;xGNk=^8osqf7E3 zs5ky? zT8;> zh+1cD-z_VUcb=!)xK3PYPWSi@BByP|7|@P#CBR-_Xj zzp@-(3a(6&yP_JOS_AxDP@&?S5q*$hu59XVs+s8gZR^*k&QC=0=%gXFNd%jNX2 zxWC+?ki+8sBx0r?Lv7upsQ){t4N$vKK+f=BOB`L}lPU?OFS2iS?0s1Hxiy;ORTVVQ zhQAPKOGkR_Ti((Sy|vkTg11(naTnmIhq@JV-^E=86-9ekcuNJHjBsb+n^n+L<7W11 z=7+XE3i4U8%~k{DZLxM$W=MqAXwHb{Z?&eVj0^$T=0nnP0Xs1z!O7-0yw+6E@cPqj z*00n<kwN@umbd8@WTN#6;-hRLr7uavD_n6=b*KD`?JzWO!7#Ov>>15CWuN)U$#Hqm`J1 z-J^oKKzqNoPII-Q4WYUw=JN`v7kLC2M`BQQU9*yS4@a%t|kGB3;I zG4MV(w0*lJsIuhu%sAE`*unt=8KXztC*znup@pm)VNSXXof?A{7g?1Ywg~fAU$pg* zHGuDNpR5^0&BA1`>~xjs0{;e2tz>9^hb<;+Ve-)YKEOI<)%(d+7>@E-jy|Lu1-Nij z4eeQ2C%(!od14aL_j>|jR1C3XSdZF_NqZ@m@&Rh!Gc3TslcwH<3rNHZ;~KfnB;=^I zKBqe6TCp`bJnh(ha(J5R82d8J7N0+%RWORZ7716NZm8vnZWq?^MTy6)Gx;(ixFl5t z(}2v^WP|n{R&vj%+RP;w3=&rrtW{B(o0|RmAz_%#?LHHmw7lKMJ zTWjKL6<#Pr7f)J4)C}$JQ!p2gHXOI=Rf!KkCQ@WT9P!J&ZQKLKZp{yf-BzOIgh*Kv zl9$UMMBkpa4zGlQSReRyv+Eg%dfPmJ;4eHfQPs|k2I>X0W~t~(sZg^LL+j64AN3c`Cdk z0_AS@to?sebNsxuStZoKaf)Wt<&-rDy>-D_Q?* zFIxY9baC_|Op2^>V8CoouiYpHJBMpG_`_hnR};+Wc!_nF>PLnK?75R3vG)P(5qsH} z&?AuVecOlp*$3$GpWua^XWq)@f0_{{f3-4Y-o0e)#2<%h*wz6Rv2_*|wsn+!d~%o{ zg8>Q`s+n4nnOpu2Qlqm?9vD&46>Dv{p6t+{)&y0Jhpx6x52#e3tV>eV$=7~}jXfTv zAN2@!l`)XlEXFPyybnEiiA4=Lyg2XLDy9gJSCW`_gYXzJi=D4oYrs*h3`I^kH-AXw z+?;(GW}D{G=OMk3Mb(damPlup5;>g*WnmsCZU#gdYRV zIiRq}iR80xS@)^fQYUX*6AaRd%66)Q9A+fmzHN=;R39;*o&2qm_*=!k#CEh~Y*25H zuYpN?X^Ki@Udv2=#V}b&nRJ^{@vSM`R+&pcM{J2j=Va5p5Y?=(eyL_k;ci=deB6rk z_9oR8h9Jxg5{#Umim8io@4-OA7RWNnca;&jl;z-kdO^yr`}Beo@jfaw>r?&NS(`_D zKTyYt{`pZKa_X4Bod#Tv3eTG2&@mL%Mx~RBX?ADZY|hUEDx)bYqq?e?R%8MVmaRCH zT5$x*Kiw8(`9Y1Z5fLk0FBa_)4~@@@a7tJ&?{k(2QJbqbN5<(@J~$!!cmid ztaV5TV1YNFu%0m9k_sXmlk3ITk`Myje~Uyni*t!SGAvMMQodBE^~`bq2{LI z6?*PRCnmDy`!3vEwaL&G4fC`e^SBM>xiq)|+;{9{3sv1^@XMmS=`PC0RFtm6+CXnx zFJ*ZSO664|x2p^VL~g1_ZgRU!xhW-bGo!ISw)a&rxDuOK#VM|kVeTT2d_)r@(AFUd zviglp4pzV6RuWK&bY9AE$}~A|yAnIM5Br7cJ=L}>)o_L^5T}7$ z_?tFZE_EgpRx9o`INLV}mH68}QoSVurU?zQPjLDpx=(P*Bb-2?cgKcRLW6xWT3W-l z85ulkhpCwNB&y>EpqxNk&u|jVkv-_2U}R+3Z1W>@JJ8lLYBDZiEj&}EM~dQR1li`Q z3glusP7)(uceR&7BPZPZuilKSN^vN{o&jG5)v)sgXvl=gq9HCoi|Rwd{1^_0t5knLHFE+yDv>A=9$A_D`z8L9-@-e5+Cdl)Af8J<2yUnSZ)ME!(I*pXqYOqMh< zkYU{83DlFVu{9zq6^{IST^I1w*zLO;qfC-?DCnfp(f32efcFsu+o)ki{OVb-il)5 zqGLRM1`@ioin4kD#i-fAv`)x8Ef!&;9R^{|IXGbJ{3WH+u%hF~d2Sojp>x3tB%;==b)y;$}8r*wgiT}ZD)6!zUu@k07?1wnxI zJzE+wb+85ayTGNZ=Dx4n^!)RubgA6sy`+M9%2j|7i`QSbwc*vl&lsJTuhDmo3c@Aq zw8bKqm&hT9TiVX1QzxZva2|u%N$~Hx6azRY}?1P~c3P4;s_cHcnmr zIb-~wOFg-gDXbEtc5jr~%hpOA#F;Re{fw{GMz+b)w-dVYy640Z zg-w}3Lm{mb_%Nfhy44G{Ql6v2$i({U4E9aw0c|%P-oQF<6ZJrsH>VTr_zhVMl^~Zz zjBKKw>QW20pX7>v_~VRp^%Axgp)yaxzm|PN@WUH|f3wRQj33@e__KyXVktY*) zTZ=$0lpr5v-w?>~hCnWLd4nOt8Rnr@zhaqkEdC1o_y3@GM%&`md)e1n#rh%qcfd1FAK-bN|Mef@>Z%ACB+{sf zJ{e;(D;sLbND#n(^$%UYK1+B5=cc2yHEf#;F*x^3M%O>tV$M_B8ForFR5-~|64WnZ z>XU67p)O}J;kh}w%t@mM4dmIDkZyQb-He8hw{`RM{1-1R=6csgC&$~Gt9{|8?AhT- z+8d3VU`thdvoFXjBct%5C;;r6ww5*jWrzV_B(8$GD6Xwf9rXT0TMtjY184pu=q_d! zGVu$HXvrj)*o^E8j8Y||^hSYWU@ZVI=KS9Xzn*M+sP4`}A}G?4*PFHsbvpaPjVmb@ z>hynemHT*FdX!9;B#Lc}3}6W)Ayqw<#Y9}@%w92mHQ9=+uyELex=piv$ItzjL_IMt zsVQ|Pf0R{PyD6XlFZuFSz0w66R^xKahIDQ1t2IO7YgIyBUKM>Ul)lO%RO~g&_8*S_ z{$IN20e{J&$NN3&_@Tx*w$>;t$2QyJ(!V_VFvn(8Ut#$sK36H`TUzHJL&M#F$vTJ2 z(6BexrsUK)a6ZTL=RrUCGuHDgYGO)UH4oRJ?u?`Ze5vfof2kj~b&jo#IuzG*#8YIX z5Edv})4&wL#=O)SSk)35lFB~@T;uQizE}w9wt91IO;L@xw&}1Yx?rwNuWrWTCt_=a zVK8Fj+M?WCTU{5aEnZ|ZqZayGD)iSpo04uC$@Ly}BT?W4IOqJITCMz$ z|7^uQ#p8-Yn(*KzO<&GUns5h=qgQbksXXVcfVnpkSA11{m#@vC4I}EO0tOdB?&Al0 zp|T^>s-q*wwvTHCIVqb-4WFjSsIe&dR1W2))TK@k*9B!Pa_h3cuY*p#)(BlT?DJlM zNIl!8WGR=7GR@G^<+j@DW-JZ3*M?-dORh2HiGK}F>vHOA;5#5i-e@)m<|#NlaNd7yyFEGs`MLGGYSdj= z^2tcl5v8uPHK8FyZ^%>+t8WW%9feTPy3ksv>|GliFEQ?~Kyc^}&h&ZD#d8{oyWO%$MiF3fQuKm_HYrLCAfhf+V_)f zD}USrjsMxEQJ-Yd5_34pO01Mh%q8?#vfq}jR6a)}`5a-<68YS7m(TAK3%>$A*mJpX zrE9jjx+l|Fak3>O#(lW)^rSWe?a1WY98x1euchM2sB~KM4qPJcKhoq2iy(MhCmX3M znG@|X(1x#@h2|Z!<+R;RPn;5>6$C#J+Pu~uRK6xh@t6o1$@Og)$ZOq1^e zJ;6b09-iNLY^=)VWuv5SJiIJ^yLo-}+b(Y)XYV}_N+u6N)3O6JYW(bUpUE{gmC$b= z;E96H+9LTj@b|Rs|D)}@aLs9gpiHAyHDx6}cFJ+`eLn@`##TS~ zn)gza=G@NZW=cy}vMyw;d8fd}9p)FsFWg~%(Vs7+kBl9(DBZd;Qqa{JVlDP*JeM#}LTB)#1P@oZoRge_ZeaLY?Qm)@_&)VD$HL zT9_jGdv1X2@7rjJsK!^EfMt@o6f8PB+Kcp#IXwL1`~*1pAATf%_;TDz!1sc}hD}~H zJA2UZfy1f?mRIy1sJ|KXC=hM%7iH@jOr-S2bq=fe`0-;d5GM^)Q_dYsEExR2_EsRMQ?%2$@g^Y&lnNAkO#Nr~WrU*<>fyKm?hE@0Wg z9Vr>yRqMbfpNDaG^IySnO1S)eVqHOMv}cn9^*xW5xonlCDEi(Ql}5gx^D!E5bc+Ey zdJ5in;I9wA=j;4l35ozvD?Cn^$~`cg+0{^?(ddo|L|StIMQJ(F8$5-AakpXnBGnW; zQGjvGITpaTOfRtUA>Zb&48GJ2dyu-Q9be{!9UD{y#Ie(5{ulBm+<+K{^ zm6o91JLt+Q#=C2kwN00yKKQ}q< zf_sh**LLVbz*13ydDo4g7G?9ugkbn#XcO$s%me>~EkPGBHsm_JA&X=~)N$>&a;mJ{ zOnr}Z=bFFrtAqDa;@DNV-RHfEAMaT(Hty+ZmKa5Szdb)WU5n@24-T`%_(ETi;D}v& z{;SUNlsAnYPC0}Ne4O7oz;Pc4!cTtKG2JYF$sy;g_=Q8x+4h*AcpY+%$swo0&$7nr zkaJI~hn%Jqe@liE(k{^G06Efx5{MjW+6BsyMkOVB8yi|L00#kP^IzIoh6i^hggK5c zURXI&1LgeVcQ64t|L7BF>7rnBZ?s}%>I#4MeI=g>;%|1)7L#kt&~ zEam0F78}z9mVQ)XWw0eV!H`KmLNJxmc`4X3B-jOlzA`ybI(;oD3_`FvD3B}fmsCWP zs!kIHQPEYlk}??(gsYgT21u2lFv~0IlYxel_(I&XPwQu<9pEG)`!bU!-w~c+ep4{V zJnSv;3!UPvK;KzA2#vGxbrF`^yn4m8t@a8I+bX&6yRiO(x%Y2h9oM%H5BevRX;53Qgy+x?&W4GhSTtbGPHt0=4pZ; z+T3*U3vF(CkZ+qi3f8V#rZgs4Zt-ez*Rf;2OOHxj}!Dtlq&*q~e2)iFh(JT4|HoWrlG;Q!IeXlL7WJ9|{O zGatmz&XxwDou#$p?+xKN0i8H;#1?S=*dX{(OS+5-fJ+Xz zIDV9Z@m@46j&}|IjDojxPamWn4U((VE)~QIWx_IdR!3-MT%(}Oot7sQB`hz%Ufgaf{${vg@zVeh__l2)MgVewpvOOo)k=|G2BkMqA}oR z#77j2#<0r0=3$D0#z1K~jX}sOjNyX7Mq~I+{6b^+?r)4?m2M1w+ATMGHHN!dZw!#7 zj})g>f_XuK<%N)71_HSRh7JTG?I4)Rzz|4EoObZ9NV2iWQWu;_s7n*@!q3r_$w`9> ze`V%!y4ccLDdnaTOKN^kpy9DT*;Npx-5%h=Nxbxhr)PRoFm}7Yd(8@pV$2{$Q?N0E z7$LwogYai^2C-tGC4s+t$&c|ok->?YdU$|_SyF=+()zdzGLNt5WzkoBu7t|4;=@V> z7M)BO;^~tK2c^@$%u*BV0>R0|44@`f5JrFk#bg3buSMK#D>u`oIqet3#@WOply1w! z+gBBsO~msbD=by~iwetl^;vjc(K-3{RR!l2v|F4K$nKW&is*NR80ba^#4mKC1AMaG zlHqj=2&BhpMM&@ePhPaSpCz0R=woRL`HCn=M$_*IM0(Lzx)+@$CI6Nefh6OD+XsVE z=ik*9PX!xySy*7(A?QVb0^Xa zHfTQjn^@|HucHpNluB04VM*_LxK1iB^X~jjzsxHj;xg~@*96&@;h&bvyaGZl^NKPD zUYYwtY!?44{y8Zw$>24dK4O;=x5)R2U$|>JOzaBamfFYS7j8-XE>@IqDeEIK(Z!kd zQkX1sbKvC1ECzSXQ5(cB%urNe_&AWA5Wh}C{|_l2&d(3b>d%jiw2W52!rsf}E7m1M zC}*VECZ!}M`}zGYuL%bV6~V*g$N1#PTj7PkmGdHa_*)V0vw#pFh&qBB?~hwjd9V78 z`7DG&$5?7$lX3SLOQ8$)g_|vdiW}-%pG4%{8UKFGv7Bl^j>B+Nb$N*YfXYtPhTJ>^>k+E$As=t ztGqJ{(r?fZvOB76(fmYpOd_AuYiyt&Flfr_99X4@Uua4E-OR*W{D2P+@7y$yU%eR~ z|GK<|z+%2&3=C@r4u_a(E;XRymk3S`W7?$ASib!7Z`$)CtEWxow~nZf)9X#FEdK&$YB`dTXj>w#x1>TEW-M0vj4>wH5P?Gc4iiy&-(t3`;TFN>LVBE>Sm! z;6i8A2ma9HpoP<>Pn|z^@~nC598ZLZQ+0U8EP`*E0@=+UuUZ57*E21HqPUfR83a;L@4-gM{tnlHZZ>3q*$oDn6u?!p6OV|emQ7C2Apg=_gxEzX52 zctcIR2PWxXX`=_m1$I?0z~jZWrCr(gM7ZWKYmIsiWEj=6jOUE6Z^h|vXSaj~6SiRD zVf`=hY5;e(#Q>%^ZJ%d3sHz=9G-%xg^2FM=i8mP`vCS*SC>Eaq#V z=amxPJVzf@J$t`@D4wbG+XX$aBlZfoe|jrClDd4y@_b%1-qt#$%u@>Z{3Vu5RzO4% z{S`S*0H{6Lglzf+9oTFXN6VU)EQR>T>PcOQD}(sv$HPDC zV&eB)W;v$vP-((<63(c=^?#?p`-lRaCY;w6-K~+jTSKHk-97EDyH%uBw}wLSwde4A zuChGL-XvAqs=C+Rn20L{PSxd}S55r>6_#o~dxd3#dOnl~t+W)d?+AO;AACW~w*mex z_2&-;_#eLQNK`D}{kS!WuecFzwUngAnfT!GwpN@e2j85hd?i)+6%hzk85-thhG$4C zKa*zI*kd~5MfH{ueARW9t5~Y2g2VP=G0e5e9Fut6Es%WzBNt1Y^vB$QwdcPJ;HPh} zyy9OC4Egr2t=&w7Gpe(%s4lZ)Pk$aBhW;$o8F!Vrv@NDs$#>ig`(c$t0@U9O0ibSN zCR&SCCpFF^CLzH{fMh3swPYZvb_GRpH4{2yA#VG@9>du=Il~d}us) zD3pd-kN~F^;eaj52ONcL`>?Bk>Wg}Pg|<^=*rvQWWEcE|BjGvB|#GLRi2 zSV;DOPWBWjK(YrU+4BUBWTAqSY{VwZ3KkS$bdI11seQ`bkSWCwI5s~Z0=~oqy_rr5 zkRlW~DWY1Je-Jo{^(0tGwn&m4NZ>$rI5<$skfKsHhQN_(kwNuBj#lT(F7de63V&N# z*dZ`K<3WTE@IeGdteHb>NL8N?6H9z~eA4}v_y|!&p7***us;;WZ@V9sbejd3#*dwb zWry&HmwM(jML%Haud-D{XpFl1N47F2LFWu*w-SP44%4*YVM{PPdrZJ0R>f}+0F+R_ z#_nE`-yCgyo;~Wjp8no6t(W(PxfY<2DVyxNh6+!@JDK&n(p}73H)C2}U zS_T}LCyrw8Qvjfi7GemFB5WSn8o0Ttw%1e-fq zOZj+G37M4e zdm>@9L7Yg)%i^s|)!ay)*KF;<^4(cwN8)um()M6UIV3TeLeY=23zx?=efNxIlb^agk}NTK$LGI3Z+VZc zAskTX+ah_{$JQ!#8!3Q^=1lc|AStGK57GiLy}U2d$MkXsbc~o@p4dD*N)?vXGR-p- z5Gxe`T*Xx+7p_882_BfVF+A@;&uTo`$lfDT?RW(i(hmp#rU@{@;%T6F^OGL;`!*6L zJAn}y>^!NEvfnaIJ?pC(zk+PAobLy5jF%NnuU5Z6%y{uGJNt}~f$*U}33w7MuUtJ4 zDc9`xMe>y2;GVuXz{t8p8NPy|rU?KM)!NkSRm+h;Rz?u9Z%U%@Kq@OC1-J-MA3WB? zH|0)A_Zt=k{ycATmWiNX^M*uWFGYGR0!-qY_gHM$y44$5_eewI39@fWn)<(MNl;w4 z;_}tH1Ca7BC5(jU!<;jt+46}CwwuxGbPJ4{;79lvOZFyf2=B4@$L@Ul!wcaP>zk|* z>RM>@DGRK3zX!&5hf#-5-U`$B^-=th_bgRxJt=UDGwHG!YocT{*lmG_CssxAl)7Hg z{K-R>J?gVMht=;xdtM}j1P8z8L8CjS$Hy}G(GvNv{S!ZeL}$eZkYBw^i$wT)K8o89 zTdsGh<0e*y6zdspVlDsB@}YW87i;kmcq;M-!U4s);1mmfc!*Wc+I1jMA<=~>p7pV1 z9i!-O5_ORhed8w4885_{!ln?~D9J=A$wUH2N!EV~ zk}RfBA<0BO@iWVvjAFY9k|_ll>qU^Jou6BdE9@>p6h&y1A~X^>ictE6WhQ%!LPh5^ zc4++4vW$6P-~XkhjJ@QEErTURcau0vO8j3piJJ>-cD|zLRna8N(cOc1qgXzBi=85D z-4dhjk~*z|3$^DvPU)fA(0t0(w5XQYCk_g`@ zZf``2U%0&y8I7lPf)|T{8qYId8p2b?^`5~q&RMSXm{23ImY^dgG` z*5~m~$8X9>B36`s<|tQ*I! zCpbuSr6jtRz>(-mo#+-)fJC8y5EZZJvF8a6R(>WL4>{_LFZsnXo*g7O$aueGe1gES z?*3>wkNK7qAY&*XjB(1@-fZ+T67}QBzk-UQ30x3`@7b>T3nsdq2^?wqnRS|ca)334 zPrA!8nUxSEBw8Se_9t*8S|EvzB5)*H;3Nuazl1Fy#Yk?hB)6Qvk=$HK?luBPa&rke zbEBViHhX}eAjx|r$)^Y$N!}|-zD(dq@?IxN(d?z{V^WUv4oiAp5;)R3Ea;gV$Aouf zKanz|d05g^`$cn{X8N#iW13k49qcj9B(>x;6JC~UnP!HIDsq~c9s|Eh`1BxaK|-N` z(phGjVLJLO^Q$0hqsqF8N@Q)X_+N4U=g*7_WnBsB6(QEwSrGw<~0z;Qe<80b^d0Wro<8q?1}cZNO( z)WGRrQ%!``uCQeW3QlSK7DKs6hC<+nQ*j{bmRG})d6y{b1MC(9F8AJcZ%SowQyDjL zNF|&IMHvF>dw=!+7Xe}WI!0Zu@RU>A)A{Prm&e5$bo7Q2P0Gz6oU=bcgu@}tsHaax zX+4~??|}vzbN1H>0i3hH0>wCIhaXOTh`rrW>_Z9=WBe-+OvId>V!HKGh%|#;R0%r` zIv%~mank;?Q$#UoXMY&@q62FDeszinKUzdIX6|7f4XD6Zf7Rur=x%cAv(}45&Stb=t%6;D`jX@%hWxI^cvNX?pz^!ht@ty&fSL@ zBDl=m#~E-rcOTYK&fQ4`G+AP55gty9rq=X)vUR2sve=*qoX+?3OXh=9t=F(C4Y=r^ zQXbYLB#=L0Fm%$P3KbUhYR4um&pKQ2 zz;E1ni9i2qg0&|*?pa5+o3e1T!p^eYyF2oT3%#P7+FPyr)R2n?A!l5wofTwde;RNZ zm&A9s)QcVYYRy{5NG*+}*zN*05-t1L_F=9#L3YOZ*a4MYQCkX&f z@gbp$Xzn?)>H9+K*D5O|h~*BL&lYx)Q~W|wfK&Xk)d4-!x=wsgP|vPxC@B@Qdl&&C z%B;nndqU$o@w~02HhyB6wR;D{Wb9IPz=Wr;fOzJ?t+pYwi{BC`UU^eU3cJ*u-69|C zR!Vj%c;}w^gVIQRZ{f(-%q)xxAq=6LPVSjk%Q#^orcgo^;!3QGa3^oKcH-w>RU%!W zd+My_ricn_l;Q%eyBU@zSAQ_E8{0u>iy-HM2DM}Oua(v~7bwowrXF5U&tCb*$~}5p zM|xJ?(c3zLz5kDuujyl*~PXi~hGyhom`@UAYXXO$7toN{A{;qQKYHJsldUdBE zkFbkwl^+LGEPT=mYfjUE{?>4nCB_=|jAj}eE6p^P6c}cjA1lq&N=k7NDmT{0Qen?n z!%m6S^pbWexCyHv+?-Z3jIcnf0bH~ig3Ar7p-}Ai+T}_LqfjuK3_j@+|136-kVd1S zXjnPq^#%DZm6bZ{IJV*+>Wy)0NBIv|!WZjatW9SBb*)*&MUZk~fNZnhSWxAY#@7EE zjqitAA9kaGNgM{tXa14K_;Gzi; zTw+2LD!QXFe`X}3K#UyEjYAr+Qzt8`gatzOoW7+l0?pn zCt0s%ga57`IzO$4op*?Io@(jDcWf-pZmOPQ%~RN7LJfPbK2ExSJt>e2(d*-ac-be@ zx+pjCnyHYE-a;_22XBB6Si-Ga&!K8voD2c;rde}H{|%7+2OP0aC`ZGsDHL5Kb-MLM zMxm&hJLM5h=uV&#>^g!=+=)W5>juxa7BdRP zuG?I>)}IevWVNyZgg*8k#YGB^dh2*k3P03a=dkhrSoz}xkd9K4$iB})YkxNXA1kv( z)+o=)hU_cz>DpDwAk8FWe*Ty!uFJV`D%wXp505}#+dwkyd0Bvl2SCi zXMGvM>+xR4EGmaKO0cZi6;%W40g0$>WmDLeq7|$il}Mrwth1)V#_%)LRQy zf7i1+OG-2l4a27`fRVhLx9XUU=KW)J^czYK{ic6{;Wr|oS@3Xaxsr=h9DF1RUl>a2 zBzLLeJINh-@k|n%N;u;5eX;;Jr|-sLg5`<&VS<&U0=m^zi9Xy4E`*2)xfsv!EWu@n zD9;isAykaB1Pc>IGs@M;iLR33S%POt6_oU8H%YBcw{z<;Kh{hT@hriVvkkph{* zwVWmR9GbUa1IuJ*2o5&yQ(w)yU^Gu0CLoE!6lpZTcGE`dSB$b1>pEmHT*rLVU<#qd zc|2f<0*5a)!NfWy$uKGmGaY!|W@{zuK;Ui*M$@GT;Yq|ULXzY`fPyWsK&1)NS$zK% zNL)(@9i(5#husUayFvnYqd!B^w|S$#_&)0rc!~??$Ma_&gpe|s&_VhW`1Y;Vv1|f? zyV0L1>5uV3zvp$M ztHRnP8^&quHLC{HxlG+~L)-S6SNE{R@jquzkL5MnVP`1X;6V13z3_E(fERbgTY=>} ztS4AEQVnj}@0+9m`9gt{ zFCOGQMG%nUaY^w!fg{D^I>kRp0aAnlCq?7LaZHL~CP)@e{Oke+r4u-kjY^Svw~zuP z3k6QH#`)lZ1PjUblVrybIFf}g#o__snWO;8LV=U)g&$$_x@->^*GhtgWUrEBZzpgh zdsPa*@Iyf{+eiwKEEKem73Yq97^bly90O|f*bpYQgkz_wesd zd4fPO?tOxCi!ZC`wFjzObCdy*zZRu#!X51(X!(Q`RFKSN+kfXHS;69 zWhpi#DJG6Oh7kJB?1dC#)QtJoAnc4}4yZv+5@)6ABI2fGjvHU4J1>97n#8&jxYBZ% zxST*mgVgS+Qc8+0q>MDA)Q>xN<&zIsE6m>I!*j&SG@jcG$FFC&F;OlNRpDTVs+b5} zeP4JY()HQymaWJb(pN5;xlsGRIJpIRgTdH2yTs$es|+}9K`J-!`G>59jNs$Yn`ksz z-!FFINp}7oAQUn0#wX=mu=T9=la!_d?^}=fsZYUYYMpOC_-xDS^HFg;`y*=;d!2B= ztn%elJUtxpvQYqy#L3LL^8vwp*DSaTQwn1QzdOm6%|0~H$gUg^!97nx1Y4e9w7iqd z2xwc#Vc?5|tjLPl_X2?Vdk22un032fL}y4T_bRC@sm!QUhh|D*%R!_NLHN*3Jr>Nbqpc zVJrdQq_=)mPz0k;Oyf7-Roc~Wk+YdgNF{9M0$L9Q&#gnw|?lt zTg<$aQL^2A;k&Bh#S&;YW@MzdNJd5@af=3$#iKF$3BYHB?3j@?iC>tJHFfrtksbQN zI+JE(cp0qe+AppC3OhiwV5DX57*MCnHeBAew5+}+EsTe^x3%Y+c}^7H{I#`+ePXa7 zxtSN{j^mwWZgy^A`}Vx=N0)cxcb&C<&VD2W#Q3XT=qxXB`K5tc^g~QI07C&@CyF2i zH~>Qd4#3}l`dTiBWf3f-n~^5z7LWp@3k68G4=E6I#kt@M)`2RJ#WZaqDaVRq(`1?^ z5u!Ps|GSi6A>Tzh-|I;MRu=_Bih7y|9N8|SZ1p>5j}auK`jAfbc~XE>p#WR+1}Q+Y z54n=Xobn_=LbAtnvgb$vl7#{!`v)mNvd3D;8X2HD-RL?b8<{S3pGFDIg&@{)sZCUo$>m>y{mIUJSb(iZ!f^qn+2xyttA_BrH%f9i-ir;$FnU`g zm&N~9oC#qnA&t3Z+1BaHSO)?Xxn*LM0HCDKmpu#&=PJwi`=<}^>yqKeAH9Ei4a+nT z@R5%wgM@xREp@(us;?9fP*~IlY%-M}9db&)jV9tIWXu&v0cr%e! zq_~jmMTFau*bNjeGWNSEK;*(V!07~$u~SUU*bNc%ob?*Lz2d@4%yNT{XUE_%!WWzZ zV#dDPz{g{R%8OFK7YW?R*bfpYX6!HOQc`p`DfLTw&k-rj-ldfH|1M^TQ-ob&*Zb-3 z@XBoDXLr^=WXMB>hCcK(`8?s|Qy)eqPkPW*WAi)enS4x_7I${Z}lhHME} zEqdswn!0ZlYV89!s}9pt2tbBC7s; z7r8`#o)lnipPV+ei(g<@y{V?IEoR8EsqOfVOq-X(fF0n57HMS~3FV1W`@nH-mhC1+ zISRKWk}q{1-w*9+6fup%NFhB=KN%dzzc(G0lLn96$Cma%~b zoLG+ra(5~$k2H)WS&D1nd1;_?ywR82RW9W3%C=qVH`6J_&>UMXo9jxo2A+f$QZNUB zqh7UK+h}DaUz2OIuxn|dbH_|sj;i&%M0p!unP;=Af2H%LJX=qq*c2(L!=nj$!E`T8 zcq-p^rQhSuCJeIJMzAM|G^ogJQjyyXxKokvAk@|DRRc~Gxy?h0R4Lx0UZgl`vn^Cl zbmg^n+YI)(E4>={QU`YADFg20?`@v{lYvIWIpraaex&!fAr5TV9VoC3BxADP_rw5s z%Vq$4XTb9CKa^|15Dl2`h+Kt?TL#g*Rit zO-mfHIuMbO{dyp>XGLt5pZL*S8(P3i2DS3l9ek)Pw2ZV0gooXv=fx8b_*z7&xQ2rl zdW4LQ+r&SAh?Q7e)7>kw=67Ib1jcp zZPOojyTO2pUt(ZrnAPezJg@6pn#OkzwtZ0Jjd1Iqih);eY_(0+I$NN^9yCPe7k;wW z#6KVabQVE)^BqHM>)F$!O5IS~Q|v_o0A-Yl_cP)7KqWN5ybFr-mq90|IY0aIG~Y6^ zK(28TcKTGnjh&f0MwQ>p4iXl?GnFTgE}zFfB2YKRN4+sV=#{ZPf$(4~UvA6PUv49; zQi_UdxHVrZlO2C-BjuY@xw~bEbT}jY6D;)cVKUB&#FiZDu}cKz;{) z&uH6|3fv?ZW1FFN%o4A-CGeaR-Kx0rL#j{u_soL3UT@E{b!KJo%W3I5vWmoOZhIy= zQ<&%6-}399C64Xo@iXIW3tI6}P+^!H1Wkko+<7D!DK|UO=gh+JsEb zSKPA18&EwOpX}IMndb@@uU#oQ0#+d!uD|jG|JA?$86lg7Pd$0*0!MfjkNDLd$CHCI zGt@0vJY{~*40az8QCNnuNir2n_zCUYC8cD2_w|-G1dUs4b$t6+SoHgNhTh>#wU^k! z6=kpN@x8Ri#gkt=cbaXF|2H6M%A>n~!S2rY8=D3B);xGV zasSdjA$-M6wotzOc6dLn*9==!>&(DtL!x>ni~lymR>aN_$qZv)-Q0}fGpYa8&%z4} zC(#(PdHBt?Cs>le)PuH&b&V|AtI? z@&Av-wz-}iy<>^(sgPd{Au|0Mvs22L+T9QfMz2i1`jvLw)L*+n@(AB^yh!nN8@R1a zHZYC{F0(CQF@!Bz+=1VMiekL5bC|pP@e`w}d$DxaDpSqgv8CC3a+&P~R!nLLvr)C~ zaz(kC6zmyOI1ElZt-iu$XCo>6`NG+v0xqOlx^rBl-Et*NK*)K)v}KW783tJC;kN~K;oi6yq9*776`gf&_Y)%E&J#M!Ua~mLW+xAHB z-m0YsFTc4kjoC=)$>G{GHLr)<_w*QPdiB6n1BSxkL+oAnj;9I=d9Ua}tvDGWQlcqp zCJ==weSDn|gGP)DA{XSm@J59gKSmK~vudy5^Y?dZ#mk_`n^6|cL$zwYIy5k!%_S@% z?$h8)3<7{FOy=(5%H|9n&|sU*ZlZXrZ8hq3J>)9Qb)?`zgRP&sp@+QeaStg#Ro~@H z)em`5_4zfnq^RkF1gc3-nSrS|Q6Eg0Lb`moXBHz6jzjhC%s^O?0?OhUI9w{Zx(8nF z;Sb#o!_50cI*5feYO~&+W>SFd`BHDs*Q7wShu?gc4T8GYH08&CZjpXtAJ}4x2wS~H z1VUQ0-&>1%uC>i#so93%ixw$~Tv=y}XNd$34NB#>MQ+d5PXZK>V(cbswhxb}$VQI{ zAszwo`s7dD6QdkPPwA`hi9F@Mwzy!zTyGYEkY>dJZI6!nyb&Vsd?Ftq#lLYNfAM-7Z@d>e8zJ@aCgI36Vyt^sE1~Wvd8py;TH4S~b(HRpKbN zdIk1ix$5YF#{`raJp683MKEzseQX~a1rxsc%d~X9t;rV1yKS(=bfj2LKNV8)$v3yN z@Z=6!IN!Lz7O9@d<~ugPSaFKzVe%^_(>fUcZ%IF<^D!H3^P-P?EjqT*_MoC?MFayQ zxq2j9Y!c=sI)w6O4#ODk5Z~=~1mu8p_}Sw$Fz}9AQM{qcaGAn84qkhwUx%jbt+vO))zLZfF?INhkEuU;YrctZf7-Sk)_5mBW6NMG zNi)UtTfHjBM?AO{+CSZv?=nKJY_iq1V*UkEF3h|PI6Dtv`*mHGx$gRPE7ysoJj{4S zsnaG}=3-GB1(Xh?OLO>^nYMCe5xkFRdz|ecwO|At*-F{eCnQ;QQI4FW)$=vg_G-TS z(lir)=LOsA>W4XvZY*c-ca*$ zc};V9S7sp$QExf9KCG@Z*VF1Y&ah|m(3fo{{^hFTNS=GJRqJEI2$gPp&#ShstQ(QX zP~KnxrPkI}Z(n*Yuj^Ei!#5Xd3)m&3Zd;T$NfL+4s4Mr{D&RZkXmTs|4GQ4%|I7>E zF>lx&R&L>Y-ms;y2Er5dcatyuHG0wCCvVznT4`;t0oeSOEsH(y-J`b=V~?T&fLa*wrUsbHK`@({OY-tHuixh zHdl_7cXL5Uxo`#b{FC<9$oGY0DywfM;$^86G&CIJ0*sk(#p9iD! z@lVUsSP=YjMlkH7fIPJENRPP(JSF%h?8T9kgkxy#`x`0yi{u9i4X+;HWMxESWk;_e=mfy(=N!2}}#Topexmq?WCs6FI!aP3yv+~X^ z=>LxX?RhAai}uShN11q!!?x$ug?YU6OnEw6Oaww@*ZWfT)t<_RQ7oI=kJwUMsb^&l z|NRJLUvr2MhMHFkC{^>UJQ*dYgNVW_CT^&l$F`EXZHXdV4B|8dJMFa{A9&36r22MV z<8g4heS|4$?M+`=JM5`7FwweJDolM%H_X?F0EWiCbl2F+dZTuME%deb>^{;ebc0R4TJ^Y> zPAokK*~t0av;O?DZ(1L!@6MN@`fehN(Tls>+jfWEw)J{1=AN@%!`>rx+u{rd4B}LA z2VS+C_;X4{ymW@-?`#45d!-_a@1D5OtsqhTHJ_J#XG>+j6PZxAKl{=xOlUpk7vsLS z4Qg$S`2jxg^aE@#{y-!!G}_VP<`)O6W&6FN}V85?73SuQED)PBobl~bz>mk z^Ho_a&wU2A&E`LPI+PDQ&4SwGh=VNBS_cu)T67z^KtO5C>2I`J>C2UKwj4hFH`|@; zdQu%z!LqZET--*Wm|R?Mk;w%`M{aFR?v!g>1WWnT$h%h^hUrDqpSJtdmn?kTUtr0w zsMulx*bO^TwqYywJE7;2S6CbNoZ-)2@#saF^!?Lxv4qv$+en!D1A=3u@DBb3P=z+Vcsw|bqyp)1WnWHFSs%3WzQWaE^nyf)On zm)%Qhp{uV*uISDlAy9Pnd#%#dDf++S>gpz4*;AntiL#S_nE^+M&Xx!8eG&FO>c>{T zI?~>i9V3FF!jJe;_!%z>M^il!WlwMI*!8}ZCudZou=j}=ExL~XML>yxuFrIy6+fsq z@?DTtBzK$NOAO+FjH~L-!@Aq!`S#BCP<~aHif$~#X1F4D$3(L|n?(~Sc1MVfPv}}v z;e!6}bce|%eF`L{-7)DyNX~*f+22+A@FSf-q<%ys?1(CxkC-t8KDFq+KB>gnN42&O z%4{-7lo1KA?Yph(Sfl`wE^xr>qhcXaEdud`<}b$E?_$eH)wTqRB?fV-tokLHCO$vO zzE9l*vgSj#ZXpa&TN{08>rqc_tq;?(IasYff8x2*5qxz>pSBHDciN;8-${gOG2*Bf z-8I;#H*&46!SHoe1ubSi@iGwwi_;peHCc;VcBN8hh-am1q{JsiYp@8G9tnq z-W{3tROU})GP7PPF zDB3@m$W@oYtOfJm@@)HM{!2h8zB=EY%q}J3VJ9r|)d?#-JAuRWB%8O(wI{VU#>}_N z7&D)UVd#CWfKt8Bkxf))@s(NdE!5~d=O5s}4E`=0_z)qYrS;UTGZm}}?oTL)AOWs#cU!flD~VH*0A0t|=>SC54G z_A|xyK74ku{SmcLf;Z>ZsAM9k)MO6^&#HCcEaJfyBd zV-_NYp}Ua+N_Cg3H?0Rx?qz?6%_g;01{S38&Eb99@ucX&GDUX+Cy_mV{#&)>t3$3 zZ}Wc!YVaNtdUs~e(uRqh)~9?m>}4kWGZ z8rIkT6#IfyYm2FWPUvD9-UQoRR>eQ80Q6M1zOVy7*54k@BH+Ky^%h~|3Vd~ZfZfZQ zM_hr2jpNvOev-W%PafEMeFeddtI75}7DOaz(N|;-0i|}{PROS(?D!SP9B|Xh-o-q( z#{L{DCq&wyJ-Alv!iA1==ii3R`Hfop+x|0w8Q*yPwo-y$%;i4bE`YU~)`X z6A!)59>lX(z;vy?Ls3UwHqRc+i|5!k`o9C5`4hht=Cl1o2GrqOf2YF_y_siN=gOoO z23=aK&ese1g2yV7*y}_fL!Dm7*ho^h4H{I38N}(R{fFN$Q`5F( zc7MhHYTyJnPbR=zf}Y`I4RqyneYIwyiJi1FOC(io$tY_Fb11 z@ja_6^4T&Xm{jDj5iC*wsUDZ;O-NZV;z>3~QHRYU;JzZc^04 zMSQ>tyT*m_|*?r1o7oJ*oX7d zIpBQXHrO+{5iy})9-IsM_6B zZ?lK+6Q_#;crX7p8fjKBufHD-LS_;1P|N4v9?BvFkQ!+hqK>p;>F^jbr;zGx(f34G z2Gm$Xd77zdd4oMgQEuj2ZnO7fw-TnP(i?rKbiGum%ZPnsm3?MwhnQ=1rCmz|K&938 ze!^2}D@dEJ(v|kjYWq_50;%2>r9JD)fGW*tq(#ChV|dM^;!eEg;ff5tqA|} zubwLAVUJXlvCoJ!sLc~TwE3+UZEjp|pWRw*9xavw_E91LYIAey^DLso%><8-#(tn{ zbME66ce4%x(|I0VoRBV5+-Ud zEj975yX{BSK_z0O@5ImUsOZ236S*+X4k+<4+>b8#yWzg{#^Uz;Om5#c4OMWwAp9QK zzw1kcLY;`)(owSoltzInXsFn=DF>0okRN(maUZsv)WtQbxldPQsW+GKZMPL?v0G`W zI0AK}uja0Y0yqNYI;`w|M(h-{etk+^4kC*)P*lnmkBxM1;FU%LsWUkP`x*bYpaw60 zp>H;OhcpcP@eN-M`@l;-rrd8I+gi7IwS=cU0E^bI5($h>`@+3Vd-OKFq<7l&yZeq~ zzmvLch(PKu263t|k?J-t?Zis>|ItZnU`e|!eRED^!lG?|K!?60c^eOu>^@CEr|7|$h@F9^4?cuZ=0_fl?m0ACjX3L@L8*eh^S?#A*6OAJXpdioezihFuG8O|ig_))C#lOGObf4^YEALeOzRm{IY!nTSdfzJD63xe%?^VBVMt`x!@XV zxY=C|6AU%bKHk1*qKVhPYJbK5C8)t~`lYxl+fA5ZAMf;~gSWi&@#xp>!&@6jpY18v zqn{-b7;QT0-lnJZHa!XQiCp2alz!C=zIbe;YT~x-7rz&msK55)CqAhtV!xBp2tU}% z`q@|8+V$dVQc7KqOON}r*xsg8;XFtT*UzIm_Hwh*Z;YnU?kRr9epc0b;Wk{MsH5kg z*e$kRK3uP|m#6FD0jRL{C5#{c8lGvXHx;(+C`n!~KH+pl3Ckl=8C^Bpy?xoeWQgeo zGK;R-U)b*%HjC74OZ=K{5U0vpH8R%3$Gm6n&J*6VU!$ysvsVx{{!5sm8dv#J;|4Ek zeBqFNKx?i0mR@)(;1(i)p|L02HFje!e)2S&e$^G$vA*Bs>}685EehM!LYwMqeB=-l zXGiSss9*NtwHGQf*w=&~>gtRyUH#}qS9oLU_WMeLc<#roj`r%Oz4*D0?K$jIB8#E6 z_GNC4bV9dbfl$tV6PsOvLxnWuWKX&1CAfNCHT-9vD^aPIgj5!4diAsoIE&7X`- zmhOwP3nd;1&y3xE-CuvMqC zMT8|PY`!mrT_qLfzQyqE!tw;Z{d-u6`{bw7fsLu9Z5rT}*}VQD+z^;e#4@yayMR(H z&eR(^P1oYmpX~MQK2le_z7|#Ie)oN|QBCMat%s-jBD8YxNP>8JO&tN()+gEeszczh zge7GIqP@J$;Hcx_zuJ5IeONA@5l!pLJ|bN4nTQWSU!!`KC-imaPN~V4`6vWhh|jRy z-}<*7wghMk03u(DTWCd+_d z&hZLkU@EWsSsz3^FDt`+^1tjZi7K488PN*&0dX&fM{6P!trJTmBDC~-WQBmzevcD^ z!PANr!g=Hij6+&L*rm}>bbWq5jyHtU{j|4~rTn}fTq;^dIA9~;NqgUognL15jgY(*f9 z-htXn>KhgOe4v)a-Xe^!*{}ayvk!ST8zxxUe0Sd25I)$XwPq5H&3;)n`(+{xHhXnO z1&eTR^)A`!out(lTR<+oyy8%(iD!mrjeO*NlR7G~{A7sMg~eC8+OyiR(#K$sQRz7t zU>*qxQRh~gv|ooxcqQq0Y7B!PEq;Zq6^BV81(4cwM5P=NLP1E~sMUT33}%^;@}&Q$K-cL!2^ui6f4SfGeJcgja=zySxR4PecABpsR>{;<3h>TMR(UTQuw2 z6pzLQu3P^fyqv-($Exr_foN?M+iI}ECm+?#mGZke8!LIr(Ska&7dadoD!KFFxqLq7 z9$QD}D@6oZzEX63C0{UG8*au2=kRr+w**6co#&|VqJ4ik#_@Y_s#(yP*%uN%u z%GE0Sja1z8Kv5cB-fdueo}8#9!vo3XiCQ{qUj>x($q2rTf$NyO!*Awv?^YATTgT27A1*Y>W)$N6g<=k7|qLj z+Sv8(rQ#V+_`cs=8Cq91jTAx`l=4Ydcvb7b-Qgy)msUBZR*5f;#jArrZQvtH7rw2F zmOAu4pwi%1SyQvFA!OLZsnZrMo;7ds;#u?Ot-DcwqH!x=cs$WKRWPSsG?+-^_7Ey5 za_U%@rq=wFsD>T;wD^S``?Rl){conWyv9q!YfFzQmuaMlf{w}tRL9Br9M8C>!n?eW4d*`)?yv+N_`U%c3eZ@KNQ zl7nA^MZ4BB2#m05v)E#TKfY94Q*QvA{2SJ`J_w*mO&n6Wn%!y;mc!kRz2$IsZEyKC z-veEG`t#BW`N2F#(~8)A?)aM|zH%);pQ8;idlA%eO>gPfvq34~*QqUIUqdK(b@t?` zQzy=yKXu8RY3t-T_)2dcRj8H4Un6+YKAlUL<2bmfP+Q2}Ay6C#w;v2`%{b^(N~Hd& z*f$AX91VLEYxl5^2^2@ej|6~@hO{2MZF&_uN2-WtP1#uiKwG$mr<7_BtEN7@ZgX)e z3+@92bX_~JkB{-t+(#sb$-K6`63Jc>^z=b-bGM>w)gP`^l_2 z!lwDg*Pj}l+=nY`O0s!Im3BE>O3-m~>_L7JD5$QWT!m^2a$wWIK+x$;0D6yU<$h!P zz+3F%JFnZORIXx;z6tA}{}|hcZ;380S3!O^!g|B{NWx~K7^eq1KI+XA#+Sh77~V*9g5V1?hfgxhI_=O>2H*l=7qjYLwf!}C zl$j_8N0Sc>fU^Y+{{qj;*#(2J3^Lz&AOv#}EN9GA$(ld~kV@0AOS~2#ztm zz{azq3ic{%`1avi23t$eFQNb_b9?F>cg(dIO~6Coi9V=qF$L zZr{%^J2}tk=OeC1^z&34&T~9u_zfC0UK{AbzNPOyMgF<3jG!Po209OVpZ4X=4;4ql zVa1Y(tdt1srULy<<-&ea1(QD0?5u{MV*od(>*xdeN%l}puqU>uBYaA<2p`C)=;))f z{=;i87FM%)ZX5|g{ZoUaK9BgQFuLj3WK9iFuH+}CYXb?o{?$KWrCnN4wXoQ@9?VYV91ib??;QXuc=E@FSnWLq|zaYe- zk@f*YPJI5pY2F+yNMY|2u<<_QF#^SK`+h&3H&5#xLeMkeq2nJik{cIRu2X;P$9D{e z)qTQ!cR;!pzEUph95wa;fLaj@S}praC)JP zpTAJmng`>Y9TBGIng@wIu!1t$ub|qGZy8e6hZPZ-(6wv=fV$TgJRqeLD;P-w-jpjC zgqG8098igue_44e8%D^XV;ki3*j8Ij9D5o;cjK<-M^mcNv6Wh$w^XZ$@*p<|$U$Oe z_AV9Qvrp@1Cf3s;F&HCy*(xCcdfDyb7kb(4)jm=u`!ek+uc_1OHl@VrfT$i_;geKY;8o6k!UfIXiZr%efqS8i}Y0Mk7|D1 z)$oFPlVC+7z`cYw&du=Q(02U+&6#h(RGS}NqM0HUX{dgr5Yv%Z0>E@6MgTA!*#aId z(vi*gX>d($rS^iKtv~qYrpk1tky<#oTKfAKT+92*u<(bFRnJP!U85EH;2`(4mHHc&KE5O7CWFic)j{Wf4;mygYR(A!aG5y zBGdRSTD;-&NaYmv3t=Fll91CBq-O>{>Y_9}S~-lF1{fV=h@xY*A0S168kl5k5&eut zsw3P<_=qGUnCg)iJziPIvb-^f)N=}gE^-QUllh6tYZbL%fcVVhfOvzSo>WkLBdH*+ z($ab0gBb1x3-%c9YQ--MceMk2Cl%lqm{j<$(^h#V6-U--4mOLl2xHeY1K{M}mRJ2@ z|6n+Wy~l7qtx>y#U1?C4E6TWDyljA6FTTaCwDIx*-T6ygOJvJPiR)r0Qn|8O8vz>vqc+2mZx&y=8J2uI332EUObA2p}ZJtlrRhdA%wW_#;*pU9=`v7BAmhIgRb7B*a|1TmZ0F_0KH5 zHBgR3m%UNhpM65mF&{P1^=$a)Ksg3LHJs-f2s*vJKo5qd7$T3;njL`56W^-rYbK`D zQV3m%Av$mnNQnLwBz~cP1r73%k?wf>-_J=d=%!dqMpSW-?2K0^AGAA4K+oCJ`*$3mP{_-wT>YN^mb|oKYY5 zg1ofGkvB-rR6Bv%Wpq98loqe7;@>=_702fZk~A>H6CRkGI-eE4oN-cQyePh9kbF`6 zK2nNTAT|y1;ir#7fw%&(O4QK(6kZh1jEWNgDhwYa&l*zBE$cS%9_Z_c2)GL|_F0Xy zHwhGOMWphi=d@hbOrUr*V*53UNqut=f8;rBs7oEAsh{gjJwxhZQ$O|9)C>RIRQ+54 zaK_6{R9bIM)zLkgI&G&mhlSJ_=G`JTJlb3P3>=*5L<&*r=o%j#)ENrAbx@?CaXo^B z@U<^#{ayHa6I#cnLK`U_u{fs-3ZupN(ND;X@uOP&!uU~L<2%KR8zfV_hj(jBJX5@B zd$fLR3Q+^5coPhOlYc`)>*v520$zAon`iby*im02y>T=&0=zNSm_W7{6Ua;Im*|tn zmHeGoG)sKF5RSUUSVLMla9??<^4E}C3@BX=}NAV8C=K@=ZXgKhy1Vl}8NbbM=8gPiI$>8n9E63)09^f7S8 z)u3af1joM*1psxa+vAZMu^Lp)zj;dwj3I=aX5fGtaw+I1LJOCI3|jh9(DyZDDJXC- za3WLrC<9$z3JMr3hhC_LL$86L(>o9J#9EMdvE*71v4s|q!N7#)MCS<+&~x&|FZ3LE z5Pv^xO^}UtdBi66UF}j&Z~5?DZ3G)YT7urv*8n(qHninyvmd~Ls=Llr-o&ODgyrBk zVX$1nsV4n339@Zu(Jo|uV z@`HXe7J6SBEM0pqse`Wl%3vQ+y?L;7?MSRf47MI``?8=P z8%VI-B-QD{;_c^fwi6B@36J*VYZWc2@XLd?Utqoas!0+t%4o7qD85#%`6Qnzp1`go zeBGqfzsI;tNI8w&MiAWu)I;ShQov=BFX<+oP&}a^R(xFS@!aRyU^8)s7R7@@;ZXgI zsEq-qN&Lcq(*&%%?%NMOqg~+{aU#CZ>evAy1xB2A41kkq!|kmfpJ6+pmY)c#g7?$E zgsHR_>W<^JGDhqL@ny<9`ztL@Jy*+b`bsN^KQ08KG2%@_Lb;>!cu*DWL;p;`=ur4k zjQ`XbCXYKhKf`u_*wG>A)X_WENk@;R^~8>jxz2~9r`1VEKPUK8M~|$NV|XMXWq5iK zfug4anjFI^K6*NcjAQr{>zA}<40m=x2lgXT5k`iwz!OLB@kAONy+;WE9lb}_$iO9i1k;TIUdjvLg;dge#)nHzEb^{jg-t{Fn|f*`_^j zmOQ7htp|Jw@Xs|o)`k*G@~kwZ6`RGvOPA$MYY7qJ|#HFTPXK zIqE(EpefeYA@YS6${&tZ)u;!-xC0BiutV-l5BOqw+zZpa`%BWjGW~0RNs>#Wjp@IK zj6_=;muEgS6|7{x62VYoH?V>M@EL=HtRR=Q8){e{zPq3f^`WZpq2k?z6khwDUnHaY z`ZKs7kBF`Z{9mDw;_)TQ-J9q-x`*iJLkb>X-HCK4`iDKL3gM>mAE5;rDlS0@UX`@usdBDl?R|1Rw4Cc3+*faj2(V@4zE(Lq&!X z7roxk`5~NJ2~i_g`5%E|t^#N>SE2YKS7A32RAb@&I*{PBReWx`Jf@&Rtsg2D-YZPR z7Mo)V?qpxl%3{gg=o5Y0^7K%WIs8V@F>^4`^&I=>p_n-+rv={vUb{8Spb3^M=b};E zT@oP3#S*k=2wEUO(4kNuK&jCp-ELFaw#e4Ig}PJdR;fXCODVk1JTv#sb8Ywcg?;}y zxtV$9v6*@1Gjiti86uH*Cs0}j|D*(af-#nNPq25l^$}Xo;Gd?|lEJ^IZjU)^GD*eY ze~X9SLCXnhDm9U?6rrqqOp+a@l=DflsDIl$kwD`#Er^|LJt>0wVQWPKb}}#?I$394 zeR;y%h>CP38&iR@ld0DIY?Az?z|2`CTyVO7V95_0rt4NM+NZf#%@dFFi&;ivlt zhqBN=%(YMf;>`Oh_$zj%sQwsB@aP}$ySF)rszWIIwcw9!@Ur-YZSZoqHuy>l`=Ved zyD{0`k3|fH(zFfU)QWqB-u4mf=7Z9!@^QV=C&h>0?x{Icw#I9|)_AFvy`IsCUvFhk zv(*#|($;ugD~PS}u|DaM25Uv^z<`F|PwPNZaaP!BsGJoNayl#QJygcrzO*iH;M#wx?0mM87gOm)jQfN*Cvd-O~eBwW9<5RgN@0Moo7yp^i0DIEs;urR$ z&p}qmNugyA70n|Z_KEBUu>>cD*K~qc=IumtoZgppwb$aU3hm2S+%Qm9bzI!FtT{}+ z(NJ}mT&4{n-V;4ccC}x?J{kBoTM+m=@naSQ{%FCHcD3KM1v2n^zn53cx=``r4p#g? zUM5M!{?=uf_&{D=UdHXoeq}Jq;f;g0IBa;`QHQyRPz1o67ua86<4G#^yPJp7EjERu zqJrax@dkI;i-O6~o<$+Z5#Unp8vKnDymN zCFUc;WDNhl2u0g_f3E~ALfR|-cC z$0%Y(06}9%wh0DcxCtWs9_mJ%9h^NYeKpG^N(C6Epy?Q4*uAWf5TZ@8eUa3yi=F+A z;kedMv{zhaN$tl-?QL2qmH$1dkgEgjAFzFdbAV#8(jj*V#S(b#Cuzy$%Ll`N%l`IX z%bb+8^us);rRNE?h}=YJCE=`8`ecyHRsJ#Q@`$6uBe-!qJxlS*SzfcdXVA<9B)A zW$A?m>q(Nmmu^P#@@45Y`0%*wx)FUxz#`!95iz`dQF?vWpHSlghu$N?#GsLoAue=w ziV_ML^Ij{`Tk=0PyKd#co1a5s)M?+Iyj7lkrJoUa{^VS7x}6meW%c=!o+IS41U1|j zDs0n58S1ufgo)TNEU&aG-EOiwNit4DbU}rZXh973catI_+_Sqx0*3o!UN+hOL_|6G zy0A~(MD_$Fjd0lc3U`y%=HJ5k`s@h4b*-aARqE>qerip#_U1_}BP0I9geyk;g6~I1 z8sH8Q@b4NS1O6`fD+0cs`r>@tSP%4tYm|kE_1bI|I)5D@0o|gF>AM&k2^M;B34{eg zt~TN-kCcE8ieZEe;`bBq6BBi!kGFeyfSA|Vnw^AiyvC6R?xVmi(l5TF&;vVtC-DnA zeW#IOI{iOq+1Cel`ukZwVhSL-{J#2sue6d~|BLS4W^4Lpmanx(u*P287hP_C{6K0I6INFWR17m(QPTZ)O`KiqmGErTOuiyXU`P5Y zwwa{rfoc~?MclM`Bms7`j1Sm3|5vW5sa6Lz5*;+oJ5EwHSSTl{sPFNS66Xbx<2d|M z2y(=Elw3!QV}hLGJgORY{4WVZ#Ce~I1nl@wWw^-q@5T1xra6kAc+t_ERTu@?-k}91 zoCaJvztkS$n<3RkNt`EY*o*UCTWZfVua6W_S@!yW6X_b~{Q`nTxBm>yhKEJCj9ZUIRZbr%6- zJY@#FiAL#twNXp!q@dn(;k#6RsJ--%W%V|Qcd(}%M6DP=jGjdAEnt(^x~2iiX9HM#Ex)c*TsCgMl$Ru%48#8@iq%{(y#nKoK+!aDk$x zE@waY`1S?rJAuEGfGCwG2_nBa?A)J*|To695V{QGC5{!+-YxQo*2!K@3d#y)(M_; zoR~v|z&LS=JwXz5V?Iq%vCf|uO@;_s=6^RtfD_`>=(7 zCNul9^c40f$-*!Lv^?*_3Uz}EU3?Pu7k>^#pZipLTR(bVShBq@=;i#|b zDZ_~71^evzgk0fVLSBA#pWQH+Z47YqLMyT6qK#=nvd|cy6~@$yA{poaw52mi^^x!Y zv%G$2^6XIL2Ty|&gH*b4I=wX;6+my;c)}sO6_UCVU-6Ihrff!Vk!pwGbJ#%wy4CJj zfsZ?EZ^@Pi6lox6=TGoduLR%EGTSEZShJ&e$Fd!Awrk@z4#U~2(tt7%!cWF?P>EC! zd?&mqAOBo>b9N|z9xPdM#BTGW4prr~q*PLexHntA?)mf>gFQ*OVx?%K&X6pu8KC6@ zUxeMsph72JOdrGE3PnHlC5XY4UK{j9D0<*uhkIU5ujf|?HS6=BeG>b3Kq2!btAA_8;>jE;k2<5 z6i$Y}0u<7g3wyR|@vp|a>F=?ZDI+l<)RC^awEX$85)|%zFFnOzpZ-_+3u6%!?t0Sx zIQxlENrN|s8;o^UrKLeusi;1nR(K#$N!bSmaQk$XqO&iwvsF~ zZheq(N{O}7xOvjJTG}|3UnuhJ{7P=!C^k!Q#bL7T_M~q*?K)U3${Z8q6;+UWMZmjg z(oBU?oE&t65rK+(H?w!9}aF+Y<<@eS?a%VRc@id7#wUhbn3a=MS&alG6| z?M%ywebn~j!>k>48!zXzOqB43FmZOJ?RdG5+Lo}whKbiT4I`;Su?QfO`>2#2_fbJ* z+(+&9`iNWJM}_)`=HI^#XVhvE!MK^a5Cr39>LQYZ0c@T~K-a5f!ujLnW@^7TVKbF5 z@-`a}l#rXL+X*k6yJ=o(Gj+>&vYC1hArBC(Hd7Cdm$4IyVMq+(R|5PXcE*KNizmHf z&xt23$EPv0N9c4b? zSMu$=Q-)pawVUaTkG+fUctK{6D1xq2FUU}nu#X-F9@s~Z5boGf zbXj$5?_jR%qusu+SB@u)yzS02C|AB2v*`=_arP|Xhy7IZt0u?gr*b7E`r%7^1%ti& zU+Le>mHisulKF~|2dJyqf1WG*H59{s9VGue@PmFG@lS98z9$0;g{FKwm%JxaCr>y1 z0K?RxQ*0gyK*@wWKv6YKZ9USwzvAm{%NnxyZmT>fUVNpW#}ma zuZrs_m*mMia3A~$j-&1kq~dupKs`V*FhD^DUdL2UGem%b3=yD=CH%@S_9^T<$;U$^ zuPTlgNCt8g8H1c|_ASj293cZk9%za$%ZG53XK|hkc@v=~WXNmvJ8WB4TF=d^Cf@U)BSXn2i7AUm3dS`Mq)(9gb3ayA)_(N z3RJge7^qn_+an6v}H`TKHA5S{DSFSjAMfuHxT_L`3SZOyEl^J9_!4 z3Y-3e`3I(>CcoIPM?+S1qV8BiOFlosVFfQT)aEs!932^TFMMLNRgCtQPeZvnL^bp| zmox)K{(|sHDt@gcw{=ETgIH4znbhf^Ag+^iDKBJ>FHL^)LMH526TNY8(weA+Cu<_l zYi?!pVbvX9uo2JAIFy!m z?U1qDVCx9O0Cm+UzDmjO73(Nty9v2}moyJe6yKnXyGK*Nn6%T79}?NRv1%GW5$9-a zmQ4(^TyzX;GMdz6Yc9Gdi6=@UP=cRG%SiXrMt9QZAsajCi&_9I6#JY2twG z!6KqVKr2@3o=YZ4sC&JsV~N4`5_%kS_$2rYc6LTX20wh$DloAruQtP##vUfAKKkxY zG-?n?--w?t&FaRU4WKvqBz{-2Bgu~(q7SV`rRa7J)tJCfM3ni#B%U;|YaHL) zH{&{s%Gag~&JmIM5&YwKm)7C4vod1%@u{xrJh6X9H3sQEABB>nEHU%7B;x~7->JNG zY`T3ZVh8DfxZV6*isLf3 zwQ`6XngW_eg7iqAd>LSK+B+_@JYpMmh#G~F&Dk`PirpuVf7Zd#)sH$L94^bpPx2O# zl42M$m*j_;lCIAWf&WARB>rkBHO|YIZvawd^JZHud8^KjWb+_M5Fe^OOhjY&I}lFv z!@y5`$e6@lE=ExjWW193Gii<%es)7I8N<#JS;9dksEC^}RK-wjMe!Y%FGnq?3!H)J zdR3J~>lJ5UWFY3ahfV;xcQPa}KF+{?73$#(>^JcXXJEg9sE{+TB`(MRAGhTW;7^Us zaPikI#}HO?vhG1RldGx|yvpCs-DJ3e0^+Lju3a3H<3n)wButjmpGuRx)1P)-9X2C{ z_vz|z*%E|46vIbp1?8!GxJ0lXPwD2c@qT$31DJ#43t(ca63C%5p}?J|z9a#6o_dJ{ zL{wEK%bh2<*7n_qsgq%mMcioXAq8-GXY%AQeQ6$)7YEN%Ll9$sqDe zlV!hzVmJ;55xfeHc_rf?%$%bAiD6b#s>Q1tO7bVKX1vH^2)RHK{Fy$mw^*N~VwjEL zR$oVFKWZIBv;?(|Tw{t<79?R1(F96`SBbqMh=g@(!-Zq(^Ye8w+p!FyQb4;_fSXi} zyios2LB=-I96Uu{eyf#GxQ^0;5^$zg+^A3bm#>1Mi(>Th2puqbO&7l~dQG2#(JSPQ z`p}s0^4mWLJJyH1_WO1ZL5_PoBa%lCcfk8|i_+Ti{GpB=Yz=V~hO}ax;I-(s&lhP~`u&8br9SdxK!Ap`j~ zq8WlOWO(`F%2o(3d$v!Jp?wLo5xKH;X}=?uuNd#BX7uD+#yhfX+l9U~zAq;R;EMi% z;*6hJA0i%G|FXbxIfMeEdM-)8s6JLCU{qf=1*3X-!s?9bM#Pe-Dy%OfB{0}7ni?jo zubV2vdQVY;gmq&+ubJ;?z~&Q97}QHkN3}N(fRmqdG-d}$F5n?`n0;S3VMoE!aG0G@ zVcnjG3(HYhJg+fkMq~s?tPL;1^{@u0!lPScGYM+Dt=)JjClY2xEp?aKKq zM=gVOCG?`L#cF!BCSy&5OVM6w6U*Cd%UDoeR^WhFYzGFEs-;V*Q338modYw?pmb{* zFZ>32=8`#%Us-+t8$zy>1#T^D_8H#`fGIM`I&~uP$=r*h~*-Lc{uZT1f@lM|ZBr z`w#7$%*U*7yu@sxfcNyKfbHLk0+d5tLV*E3g(P5rZzB>gz<&#UL|hdD0Y0vL$vqj- zMnrFqit>F)F^r2jo-k2m`G^eQh2R~2Xst^+HR2fOXM1FvFC@7-&d-$M zf>)52@Y1!gf=s1}Fpts-d)BRoKQP8`2l*J|cM=I`%hqtV9FVqDCEUF+K7*gU6JmUj zEjSS=_uxc?Ut5I>7eWa4ti~9B-)e~QgdfN0hVTu>c*+lBe0Qy^x1D;RqAF`iU9DT6V-J@0)i1I{IAu5zZK8;*+B*E}+|%{-n_!m3XvH3sc0CWt(G zx&-e~4C8AM!EeA1HjCp!>&D9#I(oBq0b)pVR-*waEk9L}{76P$!*oxV!Awh4QJvCb zFgr0nlEvy?<#P}A%YN}gga#PPhKgSp%Z5%5AIqR7yjZ;wzjM1|WypZ`KLG48{HYy| zXW4AxAq->Fb%NKH{{>8coUPT2B|=|0U4q>mBm==NWZ=n_Lo`ExUC2PNyBr7vh`w+~ zMnCoxp+XQ{uK2!0GLSE1XypGc%@xcc*N-_O^eco4nSZO8-yj*t95N80N6*kL`?TN- z8D74K&_g)bvuwIV==snxdy$f)4lk&r9CKne`BlWba?+RGt@<;urf#~hEFX04ermTLMKxol18F_z-W z2Wi~i03`YcBEw{%14h%9;ul8KmNUag(iZW9?UehB1Azh zhN!_a$)ZOop~BEtqL}X|8OR(mF!Vh{GX!7A@bcA*9?uaf9ZX!d3)bcIQis>Yq70~Fd zz=D+t1>)fZl7M*FCK9kGSu^E=N9Jc4jf@EAECq!vQUc+leO4GKoH>hMt=qj*lqf)v za7SQ;NEm(uBVl74PkauRQ*%kC2Et>cuwWnz`09B8!X^=hKv)PvAS`|$5MBvC5D2d( z63~(r;VjuKEs5656%IB#&XSv1!KPf!=*fGYg##hazUZjKr=QhO_`|aZh3otSpfJ@} zymTBP)I=yuIU*EJ(dv4;s0Zo@p>Ug75(?X9Nhn+w{t75e>YJ27D2yM+ty$js`;7et z`%d$gfLOO2wNU)^ta4cHa2V_cA;qColPc`|2bdsMI?AtH&FByBB+VwZEXGn@K*8GR z*?KIE4aybl;4_zP%G>;$(GIR9BkXWpLKje~HlHm=%U^%Vn8z$aj-zD|xns5*Euk2W z)j-~r&qr?L)NAp5)ib|m zpK8`Jrt1n+JBk+y%Hf-#cNy&3e*%PgX!aH1jj^=AaDL9NkyH#!iA^*6!Ik5$ zn@)>G&e44jPe_?_!oz5{3HD9dZ9(Kz zYYgJ;sZMY^S9Cj(fI%Fp1B3XVQ=QM6edqA2c2^tLpU`7$?H$gBk#l4Wr#2+qboMs0 zu!MXeyC-3%U&!tTMMWHKH%G?N*6AFM0*r_|6;|wt*>z?I6Vt zf;17f_k)7nOZ&Ka%GMFg2uHnMQb&^plg#^d%Ip_UdYU(mh@OjatkGPs8RJ-E@eAWv zFYlb0$P2zqtIeygbG7B`Vx0{`;>O#(QV@D?k7_$BsJq`w+QS>d z+-=WX!`wnqwIzjd(xDT)_TBbdP9QywCl}h|_@9opU z{9GNUI8l2w(K&`)BqZ1;-kZzsPjbHCCDJEj?`h<0QsHMH=S5a#GxjSfcv2jW{c&!X z`1_Z6csQ1w79|w^{JycXS&Y_K#b1z}FtKYqcQp@Qp;$frF@4Wq?+P70*)-5=E{+!dQ0bAvv?jKSmtWPRuTG>Eu9n1qHuO^ zg3B5vcS_^~DjBu>s;I1$v#q%Vi{bDRzfkk^_GJ$UN3cF`o*ZN*f)~Zv$6WX;z&bI6 zl!+*Zvyb&m_7BZbVs!1m+H%?X)I5COru>INnN=S9o zy!A0xVyz(YZTXXSXKO#f+Nx1RAX?RybBD8KRiY+b&@iyex@zHA6kBLNLT z5qKLysT*P^dz`3@Q!njX)o>qGRoib^R%LE=bq+GmNo!vxMbX-ShO_p={|9T8w3n2% zFA?UUtX1UCD{Dc?0BaQiSS#M-G2fWS`}S~Vo6rqI6Fv?74RBCwh<*-VOm&W~Cr{$m zU!XfqK*XynJ33*2(?TAb?)=G2ULa?M+P&&k5lXISg=C!cMH?7v5lwXyDj=HbE`A}J z>b@ZStPmm_&I(`1blw#_E4(ku`6L@ftU|OiOec8dm+ZgISz+R$%m#c*LS_u#pX1!i z3bhE1J2EpDNVGEzT(zsi0JfeGAW~W5M-aygE;)y=gM{}p#&T*1~#YKjAPy1<_ zA%G5KAkdM5;2);kk48a#N{P?~+z?sX~LehZlat$#n zEtLA!B^iRRQHduGa&}?OX}Vww1-xt#mxZV+&(sAHmkoq=A#vG_!OoUOHcuYn9B!K` zG^Ma?Fi{<0+4-$KX0U-ovY013{|7CgG3!UTB9a(C%(B;vqcF7&QkApHjW)H66oX@WbtE5GE@A7`htuth@NVU;B(s2%tsBj zji|P@k=1n9NoOavha`%@CIYDNon%U_kYH=}PzY*%yeRV#Kjy^`IR~+4LXp-h&b-@? z6kYd*blqE|1iJ2gIM-bWI(Q`c=|KA;|f;b(vlKxa0iVd1q!@)-iw{ zUKD*g-?`t9I+We&1Ozn%?fzzcCO7-s5oouA`axM{%7Td%$>xkIkL zEF<)|`m*SbFr8%G9dh-Bb`o5DnU5vp>PsPEr&nKQK~b^#GWHG$j7Py=vHIety}Ays zX8GkUnR6r9GnA89gVA-aZmfF}xWMUa{_pLXpRsdnau;~`|xk3 z;e60XHEkEn?poi|_?3=Xt^7oz zzc*58Qqj}PovD6=sAEErvx|9P5g%U!_8ugqFzD?Ir{ht`5T9fqU7Yi|! zq+%NfGJfZMnGFN!`>^YwNJrkE*~*U;x&!T#jUd-QY|Jr0&DU z1{2=c;Oyu}7+|xCLtPgOo7?e!Zgd`HcMvu{n^%xTwE2!8o104i%~v)9&j6d1FtAxn zN+Lwa$vv5wWkM7TO<8`2+$O^n?Z=1)I9JooY$+u_vY4)DzqMGdXum_s;qdUr;xIAj zBA6uJSS5Xe<9c?Gq}LX!^=$azTPO{1ty1b`bZuLX>)AI6IgYouo?U5)W`e%G8RT2V z?7H$TFb(jSB6tC$!933V$6{W#3nqNv5kg1 zc*L2+FFupGmo3uV<m|j9@U5p{iJUKugc_9drQ?U4ZH@Z;!eQrlTY+Fr=S!oBESxVL*xh3uYqC_gV%%3e z@Xx`wysrqg)tn^}j);g`+zYF&9Z0GG{HA*;?>`*KyOInX{9H@Jbo3m^5R;|)q6C>N z)oL#i=wzt_pM1ZwnV(D_h_VGy6NSrRs`R_T@`+A9_&$>)VnEO5PaJhV?MI9tpeTs2 zyv@VTy8diK>7!mWC;G_6m}+li&Nul|iNv+~3b<2p;qUV2jysvbju0(;HatucF=icE z%1ci=fAFIYrJ8!FjmpAFLeyWKC(Y-AREv|Losx@50v~@A!5+>J-VwUs`~VuVo*(?Y zRL&26rK$?x_G7qq@t0+C0HEyx=Lg?o2{}KwOxWr9!Iw+r{NSCXa(?h8{1x*9KgE6X zgWQiYFPbcE8R;=%exPea4V4|1;rw9Nq^x?pT4`nnUe?VuQvT`|=}KbRgoD7qYye5X zYRO*4Z+3UJ^`rDvORN^CZl=jtrltWUr<|*e@};MoaCm zt>sGbGYb8l^0Kps8M&NSe-OU3x#?wyk(HP0CWkSy!g6$e@JZxayzmvkjSAywihVkBDZ8hi4P6X2u#Uhp@$J9!L^| z93zL{cMi0tgwX0k^stQO67A1F@4SP}AZ&a#%p-}?hUI}aDC9eBxkUTG6VaJAQg!DZ zAPmr%k-=Yk!={UcdNUrKn2o5{Eq)>Dbr%Jp-g4t( zC+u=IYonc%H`{LUp%R)T^I6Z~1O(a8YC4<)zF>_9Eeku;e$- z=uz=Fa=>2`G9I!m$@g! zRV|DovZW(>1uBvmPLUzuoDdU26W;YF*x;r<@Kpit^PRIJoUsvZ=bwM)6c>Cn`rerl zO)Qk&4avC8FV2l&7&rdGS(AVAld~@G_XDC16!G*ADB{`=|IZ={esea65EXfK@PK$e zU|3cwe(|bc-QHD?NByW-FZvN#KlYgd9 zKX$r9b3daHwf~B(15vyA{R$kk8|dm+Z+{R?lFQ)+-=zj?S*-gTo;T5j6ijYbEYXU% zmX=$lt8#7121?^>1d8#Kyr5nA2GiBUWEq4l4&<7x!Ux@py>R~;8%C%R zf*ED0jk%zVxkyV1V?GLJ%;hk~5XbwBQE;A$MjijMQa3c=a?o*nEmvx=j!)NerANfB zjNpqpXLV=sq!@zuS}VhNJP|U)LI?GD_gGh#TEQOYTVq`V{3QF@5(#a}qy?(|i^cr< zf|t5u_%CXJRAhsBSsb){Xx0eZv{2RFyA%_gJBU~n&^;8&>$j5P+=7)7=guMJ5a-Sc z=Z&Q+gWDehU9FgsD->n-yoUl_VKaaj{QTb@-PSL{vP! ze^#+sx=NyAO&%#jJtap}JbpmdFoW%VsQh)C~WB@yX^Bv;@j^WIfqBH*Loba9GO zc-gzuD-da{Rz$&bkjM)MXFVE5^s7qrYk{I)4k!A(|C8uTL*dPa&{khjqJIn&{e3vm z*Z)tV5$93S8t2tot$PrH0^y~TBeFXCsp=akY(ZWPs$L27T57%&=o#?sH#@xX@Mnrk zoNO22oX<#g3Do^Ssw;sn-_*TD6sbvsdF@w=x<{C2wB#q9t{x4v8fs~qs3E`8!0&Ro zCh_`Fm1~G!Z?MT)A&!_&vrtRW6IN@?mvADuv3rA<2TJmj%O%$rRzR-o$yl@lTq(CYV z;h%PhIu-gDxLUwJDj1#dGnFOaA5bFvqmg*aNMLx3ltWK(AVdr*vzT-y0TFA{APIbM4hyCD^2RIN{8ar+7N=2& zFWLdBL7bSl7K$KFOcK8kCnl{8gA>P(cKtONCypHBdVo1aX}UhzStodfmK?oJoCw>? zRrub4-`3|hinErmfm#GdoY;4*JQ0wyR=$`ULI+RwS_$V;!AJ?`(sEsCu-862*HviC z7Az@(>p*1SYG&0nS^L;xl8O!E-8BFMR+3bV`HOk!1Xoi(YV3ohe~ygexyRbyGU)Sj zL?o_=YXOBog8!O6zY(Kb7wE5BNvu3cr5^@|-gUC;; zm8}|zVXF=z*bDq%wiEBCk!qNG*7BPVJL;EP8?!bT>`f|6++|*E8fg>&b|vpe{?g97eV}QZUzi=GZg*SEm`dY>D4DpYOW(~8=`!K&<7V_gZSeo zOd5xxhp(~M3&X!tDEgdjSq=T@5#2R-tFSq@rb(FPRpsFCPuToOu}LOAa7PR7@%Tv1 zH=$YzT+U!hRC;I(G-ftqzHrwm^FIL7j?s2DDzmzifY2p&z~0r*;6n z`L}ia+a<0%KXPAvH4HMB_}v?a@E~Ak!dKvdTDqh<%-o)zEOsT7C;mILw_y&sQ^J8^ zq?mvM#vq=w2IlUecTsZhlxsz_RuB^e3F~*K!UXWcH*$elA@u4c^!k_;5kidy){#_1 z14W<$tP%yAw^S$&A9wo6!HhdGbOzI837Q@e>7d-^l-`~BsmAV_X8Ul|?U0%gkMmh; zT>axa=m6&(d&Rhi1OAIbUmWmX62EZ3e+dMHTo{7a+BXFc_=ncH?qHu1yYtRk`F-{O zUYWQ3syPmGDeGM&?03x_hkD}|*$VIs-qkzhrs(Cm;lcah5(y9B-SFDnz0OsM7nHan;U1%fC9dAKE21m~3Lk1_ za;c}aiZT z_kl~Vd#kCX6z6*R(k4~f*U@bggluYY8c`qL0GUe?@Pt=^NI*OaZp9N`_?GnM_3|z0 zQbLb!NtcAPf6sdImNan!$G4>K#A5Q8*J{F3AM+{(%fxFS1?%N8ubJ?7FC6otCZMG$ z7cCa2YciSWkG-?KQYumRY4uPGO=?)_zh>;>1?%U*NfE|`+q0;%d~D(ovE^z-}yUi`4V&HM}; zAp6Sfy{_hl#ra;>K-(X}BHCWQ&?d?rvgTCQ7?wdK%k!sSj<{u93>Mc@ua5U1eDM@& zl`~m)vmqoEVZ&gNfLf}hAzBVw^;A*>TXnujz*Y?o@U?1K_Zm>;-{(o~JCtnMG~4dXMeQ2KlQ0!$({R2D=cRUImK}pn-@<1HS7210lyrgJ!R8;`(+2 zP8#5RGpK8q>j#=h@qBkfIlS)wcY{^k2<}jg7S|3msZzJfMk#*jxvXzlBSMZ7uZDc) zL#{roAxVc#L-kI7=Z*56emlv<)##2J!_-udjdC^G5@xDe!gu<$TIz1&hJ4&HS8G4P zdR2A=5vbI39e1^1pV&ok;?M>9!^EhFeOB*t^Cv;&gNXIb3?N`x#fFA74SeD|WakcQH zMjTSwtOv6Ny0VonoxIcN)jgj0*4tJ@^K*<#TMSFX#lX{M-JH%dA&j@%*9ZUH7n0HFvqZccDaX^Ijntc)SrZ z@HVI$G(#M3gbZ=K5k?(o)-GQ5NR`_0A(ZyKUn1M|8E}wn(~VwsH8v7>=F6@e+xvno zZPWiCa&S?w`neuG_=O*`X0aBVfYv*5!Sw^%bHBM|Gy|@%v8IF};+TS~S({iINyXzZ zEq}~v7twuF1RwKbR!i2CWQ)jebmgh9xm>|}JAF6Fku57Eq%vON+JcU*wv1QvB`wQkr zoA}A0X-(M$LXV3fAB3sbuQthb5L&M%KS;Bi?`-1d->_`#9l{CYQ_B0UChP`D74bI$ z$e_>lY~e>Q?v7<|5K;uC7sn?@3T@Pv-}gmEna@D$g6pV^r!bwD_N-siuRX)Phb?)H z6lX17_Mz)M>$I8l9RX5x4JlBcx>@cRePv{~HCW&ON}sb?qQnys*#&GIAxBVleoS<8 zHkqX2kTY(x1UQu3SEr=WD3wO@tsls}F%zVT1@T~-Or+rg-xxjlj7zQ@6D+~S^B@!3 zZkBs!iJ!X0u`;3@;$Tg#&OzR-EX@5Ztus4G$VKNOny7n}j%jV7ByKPTv207Y;5(+I z*(URuRkHiVlK|)q{33?p!1IA9jswq!;uj7)AA+oq2&>W;p%$1v{K8epekN+*Xmdp; zc!l2f3X@eeyOgmly4~SIQKc<%iX5>;!k`e6J?0iUWPAgr!H~h4w+1GuRbgW`hQI#B z7cqRxWmhGm73Y^>wa63_=m_$iwgu2sJ0gKbY z5e`-?zk^8DN)%909oD8>@@t!2QK{1x-LcrSxWn9bsU15{>X4F`nm4giO6ueZ`T3nD zcgjyqOUqB`kTzj*s@mOXluSd zKD%Y?7{P>k99+vkiq9VErvU29i9Daa#uga`XpQ)yK*J#JshWp((feqf>^s5}Ro)g#c>#60@xy4i*71wxLxog)dpQOA4%loJOLH8VAK{$q>Wngga7T{MA`b{wR^ zoT-kVzG}n~#Jsq7PG&r5o!*`%+B?ijh(v%)A`wcDNMtP`MI@3qtYf4BQpJkz z9H?k_EzZJi*!G8^)Cpd_Z|5@+UP(2$^&{Nxd#;MLnKjTNI8L_eZsoac(p;<+$-q$) zGH|jL$7@!D8-4%ItnsX8AW_$?at=3;WZ+TVuDoVd%VOhcx|qU20nK$1yMyGT)Om{G zT9Sbb;R@8MpvKa_XEb6vXr|x_r8L)g{&A=5QS4ztgsdM>te+wo$oc_fy=zpB7VIUO zCpbeP!P$)4DmR%zRFNkZzD6sSP_E19(@0~7YH*ix+qv`d=H-u{G;QL%9iH}pC_I<9 z^0#BGZnjtGHedtR)6Bw&~`kS23%QRM9hG&FID2R%<_M-$-fG^40n}ky++x9&-Ad)uDiYtGyp7ou<+?1y{v-i2pN@E!$74>)X z1r02S3?vF4}XuR2d`%sH{}*s@!dOcA>!*5NU{f3U=17!WVb2nwu-O%kQkOBqRtBmTwOO ze@eDXfN)tvCIx@srQr)C>YR;8cQAi*p90wyjouNGFE$sZseiKV|K_^ z_qb)PW-SPLKzvr*o9>WJ2#N(*s0eBRKbU*K3pd4GtQ-@x5p-mPP;_TWZ^f7WNo3;- zx>|$Sr~qXM4|U>~7Qwe!PUUBxGpFv5Z?ouj)m(apl7mP)M^s2gSKkN&LpP$rBB27J z!WH5dqQVtmIiSLj%j+;Q75A{-3b~uK@z!TKNk^5*9v7G7v>U1_Gi7cJSAacY$}EA8M1%-X&B5QboME19m>k zle)0aNe-5OQi?ugq=$=go{ncz;8v*q8S3RLI&1Q zubuql1$R78Taev{ts_)e533a4og@SKLI(0ZOfv*u$nf!91ANctSrgdb2^I2vT=9LG zWFTLWAug?Wk7fwIkm2PkT0~q(|L})~TD>Y)gtAkIc$#zC9(4Vv1JIp_1l*%6J)YE_ zpRl)Qu{uY)Ua)S$yTzHUb*-gjIksG9W641qo>mh z;b_P}M+0AUbZDJyWBirWh`qpDd3v8HiUD`O_=TR{|9|xKs5RN6 z*`q`U(Y@kM=ma9UAlJH^y{xmOr=M4zK0`hIX&}`F<>@OV13fJ=gr{%N4B=_WKu-f- z^mJ&Qwodx*o>m7@9wrh3JWaBQy}(;}I)!^Zohp8zr&Ia=txZQxfv%nSL4@qvgZdn8{1*$Iz~A`yL3yu15RIMJ86+*78ajrmqmNYT~iTFXO=hVM^bnrk&- z6?W@Zgo6LFJB-cMc83;B24tVjxb#sSf^$h%erbDlS6(#VsurwB+ek-cetd6sB7bzY zRg+h}(ld^=2vCR*DX^^It@ZX&n>gYIu|CHPJy0xeUzQd&JY@$ zx;_)G#l5;4r>@boj```2vzrss)TJ7a?dFSDTHX8{x6oVXL~dB!@cc`dDix-Yv5U%t-j?I&B<9!ywqm$=V*z%kga??QAD zmJ?z%QFICAdH~8VUT^gv9#=xWc7L1ep>Kw=M{vLmp2#Y!wCX!~S~M zn#FR7Rk&m@MkjdXmu$VQ6^e^&q2`IJ1;$*ScdymQoV^F%LD=$iRbvXK99jiI9OX5fnhY9l~hOEMEMe z)xaDM{)IJ#M7>E9EjDT9%^sgWvtZsLwMFyU9v*kpvTU=2B)Zlxl86TMn8KfVJ^K{< zj-=vS4>jhb-O4#ZSpUi810J>_*=5QRu3Bd1UeXxF*|M900(W$0?IAn54fe_%-2_69 zqh9^JVQ^ORUK#g46ATr$#KUE^_sYX%wFxV|rQ4OH;({xXLA}A@GD?qIx-o?gtm&2CJ{Hp3@#s(CsLPLpIzRvH$h(m=oOKq;D@T<>)4h`>?E7Uq)F`7+G#j%36 zzE4hB{o_cl_XbfFPxzIl6)N%bOBc3^6MA4UA1i)gFdqvdLmn*Xdd6B59Kmm%v4*n+ z#2$>`b991Nc**A5ir@qJeV4OK*e1=GSxs8 z2mficV72x^0q?4exFx6BzA$m#wl7%b3$IyCL(07Qnw8)u6XI1mPc)4vTab#xVH{5% zbs;+8=_8j&z_AJ%fH}iMQ03Yuk006LuQ-0>XSsKn;_KhGo?(wrM&k6dcAE-I$M(t7 z&)43usvGQOLa%o<-yo?%bMxhW{Hgb#+9|mhN`l!xzfaCPm%VT0u74=`;&-Z_Bb+jE8VrbOgOypwJKOUX)1$&#MVnn`f^lVw-6G-I)qjH+COC(>c zt(hP14-*x?0TtnD!su5;2^oo7^P1Ij8pDEb-&-C?z;89pxA()nJyzqYL|ND`-1>8~ z#9ecG?l3DKkkK#d07#}0Jn}#oU1JZ(2u^h6h}6vk5~-Vnl@5O`Nh*dvAd}&b(u?pX zR2D~(ZGQ@H&}w*tI24xwdjStz2JAz)BmUB56%5Vh-M+Va#S<3Z_UZX^zxd+ZJ!~>z zf}L11QQ&aG0ojQ!{9w&v3kf-P;vn*Q2V^IPVi-e$2*w{EF=Qv<7a(3?#H~s^#*ljn zd4PBo+Yc-8Pz+;;7O(h?CoDt^3Fn>D|4hq{Cw;)@Ip|s#PRl#gVd1W zWaux}{NQi`u(KkM|JCZpz9w2>O!-_VcqNyV+(u0K4HlvPQl{HG!p`dlB$Xoi5Dkb(34e?v*w7K#s{rsuZR|g# zm`a=cr`mRTO1xX6oRut-=#q57ek)%-Ncznh%`aSsS$N;*fJS2#u8RKW~?Ep7&CxO#tcf2F=Hr5 z5HVwjC_gocV=7=(s`sE|QuOI3Gq za1bhbpjSmcrkXpMUtAa&&G%Gur?6SXEDT2;o#54>WZSKWBRnAAy0*I}f9Y(c7+xbS zr!K$QIj4ZF(Q+i%DLyDe)OM1AAqp~ZW_*xlh!6!CI5UPDHY>a3%s4KD`X2b!S}k`2 zGatMKQ3^iCGAzd3&^&XHFNkq>u`LyBX;7L%O0)&A* z<9A6ecrm$(@0xi2`g0X5<4vhy=!xp3gED-a5lmG0D2#VIZ}nvs@OJG8(3kh_lGD;p zao^0r_LGoBjee0>fD_CLhk!ysCY)dzA^|6uOF`ku_D&qHCQ3LYuO><&^mvO)gF|7$ zWvfHvY9eYhUgJ_1i^*$T;s{SYQ>=9eXNqu&{$PD~5BNq5)V`gUw?cI$9 z{Awe250bBZFc)kR!LtDPZt0biWsD0$I9d`$6GtcWMZI(S#gSg)jT@@t$@RP3L6I%v zFAHB_5c@{_!XWm|p)f)0&8F@Z!9i?KGxtzd;jnI;7`6VQ6TH$(cHMf^I#@AnC{L-L zR)t5ka8G2lHFpm06eja-k4CmKV-EAzi@J1TO#^dF&&u3qd0GP&Lvo>p+&s6VQFGT9 zuyd?4yefNY9hQLV5AcZ$RkK>U8^9aTB`w{yi1fp7;xjHOroJdiJMW*Qi9y6_$ni8D zp2#Ix0a6CU4-tIikRpD`A>}aE204n?tPSrzwNp=d!1t$CKF9mm#lvLo!}iJiz^{!P z$4~I_oao~@QSxN^^v+uN5L;SOg%+NBlKHjP?i_glSVkKkU!Ke_rS$0@!ILA(QyW)K zH^eWVdU)WMZD$DH)8H}J^9YI?Qr6G))WiQ;V4i2KV090aIlZD@%Lwt~^#RrF zd|ZnARwkVTH*^}nM~>)JtqA%0l!X_9#tE-X6pyRo@vC^e-xeMh#A8iQcx(`lzUlB7 zBp%O+$1CD7Jp&#E;&DC`9`A_9J=yShKs*lQz~hK`<5o=;?bi&JhH^&g#qw*RXolN6#t6Hq(ShQCLW!Jz{4pX*Tmzdc>FR{{3{-{M!=)C zcw~%(M=$Xx7!8m4ql@7AuW|7BN<1!%7ypXK#5{OR6^}}j;ZapQmP~<1v3Ojb29GP^ zkv|}kFZ>Wi>RR}PcNo7fuB5~33O`#9zwk1)&o;s@yrAby3H-uqO}^O-zwmAK>f+T2 zeDn3X_=RtwmF|FFczk-e*Z{*l&zWt-`Z2D+mxviVF3May0KagGlrIKSL?M5OUip{9 zeCwd@5KNBNWPC*j_X}(Z$onWng}qD9a7*p zdw{@lyI0`RF5npPZS)|4vak|3H&CG1gXPy9?m-FS`-~+OW=xxvzoWM;h)V{q+0A{H zr?>(%SnqNV;LEy0V-V#-7i%Xg<$;j0U$fkU62&KTys{I6m<%o^b@Y#rTt;{C)=@E! zN(Yy1SuM*9Pj`RHJ_%W-tSgi`F``2?{$Yl@R$XzKY>?;^kjRZ?wQBQ%E&0)v#qa>Z z^c+vkbT5j&>0|r*Jv_Bu$DaKByH%t5T_?%Vo&+8(@!a}AKQPPvXGos6@ybW>T=$^z z@3Y-4&FBV4ylozgxH+QxmguH515Zq96qk)U&+s8#piAuAlq9=z#$O`odQ&Q~JBd zME9i`fDrl;mTFZpnC1B~m0K9odA9-X3;-Xzs{`%8I7a(PJqhg?g+Ce?1rGo{@a( zD0e$P?gjUr=yY1@cAeE7`J0jVaz96%ng~9c&Yzv+?hrkb%0nMb3*)1O#7BvBifZ%O zUv;m_YjpWGk++!au6L{6%I7~%cBe+?Q$5gI>jS+tL3(Sv@K)Q3o=nK+`(JR6irz=d z-mcH~NS}=l@L5WRCyMv=xUZXM@8!LxgXf;3Qqgm#!+7o-@m%r7@wIvDU9M`pV5B>W zADH1zxkb;JPv6T|&ICoCri!5JE{PP{(4Lg8E0+!J>$lwZM*l)f-LBJqluj!TaN2-{ zVB(%nIydB}3SsSTNTGX|VdLKvx|>8dyf3hC)`QEIVEqkOw}L`hi~F#Hnr|Q3HP=1h z7Clxq9)tomz}F8N@x=Gs4SDN%?po0zU4m&CV9|q4kwQHfBed&b*0@gww)*oSu=S(G zZr6pqeFFUYD!B0Nj`M{e13=2y9a8zq`3v%9%!k`5cC6WfS4c=)zmO_~O>*vka%!=3 zDn`Al_l~a3_eXbD?Q+&4cjH_1vN46&oT00zWMi@NlJ+o51=&xX^fIKCiC-uRB`tEf+Q<;w{t5vjHDBI{tEZ-=-&xre%k0h zF+PMS&%f{E-HYA#L|4BbgyRwcw9Bj4(&6)H_shNfO83i4#QSe`SKYZ`XiYv~tGjV@ z^C0@he)RFYe-V5Er%Tbul<2NOv@SndxQ1r6JB~lQ+MOOfJcxF%q%|t>6KmW{qGtyY zOurx3;iH$)oJ-s>7zUoCb#5zqBhC2#SbOilD5|b;_?by)xf@6b1c3yS(0eEeb!T># z-a;rMqCk*pR0KP{*cAj6a+HpuB0W+f9V|4diUQJm@5K(^xo2i~&g?GF^S#OMAK2V` z?&;^;ekXcb(@a_M4i5K|8z|9;7k_tpm~u8R_B;uLzj4 z#avvaGMp3DlV3vgp*r~C$y*&z{O3~0%klb2HBCfI6y|d;t0hZ+e+h@)b=QplLl$#q zJe=~_Jrmae!Y8|*hnnNv5vnzxBhi|CWs25>OF*J^F-7ajD@e3X z4-+lpp`ux<;7E)_a}txH1(uL#rApUvCTRy0N!k!eo~u_M9Fj&(b-(DE%=wmfCvhiO z;!fbT#(=tsFsVg)O*Go(LRw|lm%Nr_{_J5gXWKHLe63zJW=`u61X3iKofM_afhDm} z_G5R7vzUZ@FO-l8pSX{@PH{&4LLRe(JjQED$T`#8mBa3Rg$uGTIsiH%LSl);I8Uw&1*=y<_jJYlbucJd@)(nj!Em)pjvQqjyulfBqqIv9+CMx zMysSgvjBF-Xw_WL1(ALFVPs#m$zCg_)hrfFb^)Fxz%OM55T5O>3JIUNE2{o+*$&4CRIBT0LVS`QJVTplJy$F?>0ag1KX2%E9{C zW-5`Yg&K3*O_V*5Img{XYH`dXTIJB?1&$jSq^BTgBHFWd8 z{R*78ZRFL2AFF-%qi5HRg?205gIotW7~$V<;XlV~2tU?jufiF_9bQAIvBrm5UKfjf zh}!J&V0T0jG#=!w%<-VU@S)?uIElg>4<;?bU-HklrexNWFASH2$vxa9;Jy9sV)2hj zFg`x?$^yT8J!oCiT+pd3k@$+``0%6TOZnoAz}6LPFqm7GFwKNE9VE|a0@7*!5_W6`3X#Ksrj%#aBgYWDHvqHM`+&sE8 zF4M(Aqs8vJ(Ben;I#+ecm0vM_zpl)RExE@3KcQTCm-{JKV}{-I>k#xZ8!a~dy4r5{ zL{~@Ng#5bwV$-i%FE;(!p5s3q1lunFcEes=4_LAn*8|1|!H%?H>9Mhc`*0LAKBiO@ z9N6cs>G~w7!Bo2edH6$Qu|3?4D1tnkw=y$((&C3^_9%(Mbo(vxmm8km?@oztB!6?a zuOJKj)|GBg3#L1HvES{>2e#gBg9W%f$BPum?a^Ge+n<(A$?ea`U*z^@{)^j}MG|%e4e?`qW5E zT_NaYiY2DM<~!^@?@HoL$Y0AWG5xjF5|)P>1%agofZ-P@+qgOffu)&XN-0=&47HUR z1kgViPkuOi99@1~5bP+9ECEWLbVp>JbbDRXf*`X3ux9LOS{R-ffENStS4G#?K@FDJ z4QNCac^cOOb_9WKvB6Ge;ZEz-ErSZcjVLY3MDF{uw(C?-(_?m1ir06}V!S@FphgtD zeHP>Oub>9^>;@FC53!{kuZ0l>kJo+4BZ>>=aAvsP`7hxrF___6X(|3H3?(nPE5r*~ z%ER>@M@s8*v^ZZww(+?it;D`~}}%@wzXUrK-X3U0){$ZO@a71!IduUQ)>MT1uA zM#9*u?i4(&oO9Lfj%h3#lk%)}y2qEAlS(H|IjMA%$l0UPRnqaQopGO6F2$9*j$0rL zI5)m^4dn|{kS};;V*N(tVAF&4<<$*KL3yTLqH7bcrV03&1kL*3M35XiNRBY{1W5c{ zDaRzSmgT;%BykWmq$G|KlH@a|BwyWf&vO0Fx$#SK+mz%suOySyn%t-m^#2DJ3!EauLy<@= zf0*Q=cB}HSFuGd10+14^C4`?qT2OYmJIQq_i0ZM2QN7})`g~z632L5G^E1QxMK%rV zlvsLZU`Z@gD59l1i^;GforblR?Bl-<<+vrkHXXMlucamX+FzSX_H}s;*|XNyci;2>7&0bR;$Sj>ZdP-E@m#?BM$+K z_i#H}i-sj*VsNLasAld1e%-boOe(51#>M-cMYR?v+UQ5LD$Gs&sPV#!T)TIQ=3l$t z8H1>4?fyG14z1lkT}+dk178%=%EGb!DKU^I zFJr$Bk#Lka?U?I6XV0Hh|FV4ZFJ4OtM<1#dg7@RKBs?0oBwnlJDz=iIm%fX%#PC*oWPDrOUcq?;K zIBfYt*KndG3UgAJZw3CEvK+=&(<;SJmc@KlID&IK`NfpSV|j^Xoy^Hd$?qD)BtmkH z;_?@{M)4IPTm!u=A*^y{Dfpwh*3MjGwix2!ENEj><^frSTvC zr6XCwE*;6bOghh03fs`7Bl&|a9ra4q@_wATjq|V+9*8?BkG9aM8C~v6(0)m}T)w3h zc^}PgjGYb#TVeNeV)WX}5x%z3;$^ z5kQ9M_F=cyx#MF&Pq+&#Zf|Fq3yi_2z}3NTc|Iu^|M{%s~H= zhvduG*WPl?;N*NOjPW*R>zXCU1JO72;yEb|v@F%NAXM`>ySeo~2Wt+V#@hJ*`!TJ zWrsbZx|V|Gy4F6nokV8&BmSbk0rgLTijd~*KqUie8`{M>cO~#G{Kp@rvV?`Htji># zQp(J4R+zDHqg~ZDaM`P+tEE=TkDesMm?`nmYKfJS)!LAdSf*^)cgR+Urt!7IkR$wt zRB}5wwl}i?9F9C+1d``!kx*+N{;4%TT^xGO)e49PE0F*(UI)f@)0&xgSW@g#`HSM{ zr98&biL9%S!0_hUiL_AIXXhS!_F%1lPLY<{Kt*)5`G&-&wAaHjR^nBZPWe*AQ>;cA zgoQ{P=_-h8nUTh~;A5fAU6l~Tm#41+`rvwJV- zCKj_&!u$D3c)6qYTp)Oc*cbwGekZND12RBXE7XHnf-!M%<-!i3!Ux}dG)Ww0sL`>~ z)B`JFUpLJ&bxxz)e6Cg+8PLf2Vd=M8L6?KNyfqWcODvboytWc1KB{d{AFQM+FY;v!^;Jo~HugAS09(o+2cAzt>hEfE@97(8*mT~oE*DlpRBl|||*N9?32 zbzpBd%^QDBiq0K~V*|S5!%Hk~$1lxe2(;*~eW$41kvY8HBmYNPpZX~Iegvfdot_Uy z_t2gMPY-QH_!#6{CW90)j!7{2C9RJ-Y84ID&8Qf^iVnsrBO$(*_Wb`nmjf9M*^2$> z#@&MIuvIYl<+_!{Fh*4RR?I9}!1eX&DwsPk#ZX^DZsb*;R=u^|;%nB7Vtd^xE4DYV z8j9^TT#9Y0WNg<(DR%eK+T~e_uTd#|wPp@>l-qh&ah!26wjVk?Leis+oNf&Yy@Hzdpst&}Yp5G)SSI<&YJqmse^D)gl&2i$*f)VNv6kA?ay4JUL1QZ^q?N<`v z^gyk$D3^m6tRyeZtdxbh&uiv=2-DOxa?DFgBQbo9O&v?X!nLjO0!|ODIE-#+M1Ut# z%grquhXW|3A?g_vur%XF3RqN^1zf;KBzp~D(l>ZIw|I`}0~hNXGel?BlzOWKRT0sF z`boE&E5)JrbD9@7IHal|{h6B4N_Y9Yt@;@Hg$()57$_L>ArnZaRS^AGYH3JtRjH`F z0}0P-mBf2a9@3PzB)MEi{hnM$eGY2(grY9VF#{g|r{q@aM73skPP{?{^nX#i6}}(Y z1$X}iRmHE2aq@zn0=?h_^MXlN29L~;rIQ} zRPm6!u52~sOH=w~zl?}}yvYQu zi;@X@M{B8K1S^joqjga;zk$S8^kOjSwNgc3!^MKJ;yng}x_85kE%~d$#^mO3(QQm66DmoI4{9Evza8_F7_Ji#L(Rzh)Z$KdVuCt3x2;U$c!L1*1UbkozPhBb3bHm<*w&^D+m3$W?iF;x)SaASKSn`l~tVl5m?d9D573}ttnY+Rzc0Nf~Y^nD*V)y`Y?Ba)=ov- zbhK>gs}&=l$U-ec3})a&;8}~nC{{rPu!0DTXB9SqXZ-}|P}=atS`YC#gCyK@E!@jl z1>u$z@-D;pua!z-Gpn@;;JbmA1bB4qDe)TvBHX`PxG%5@!i^P^ho{7XCtE8k?y*`M z_pg53^w}HF=6an(k#)8ei2!~MkbEkhRS*HJpf@I~u?jzK6>FK@@k5H+o+<>#hrO5& z(gy!k04D9x`-x_(CDHO&v^ud0qJm#LcYL4zK&H8a#sm8Rh&oRj- z&rMDc3^RPe+Mu0L#C^sht!ETm zZ>?uUthb$l)-&?2XR9*B*3){1`o}uh(?|2d_0753xACV#T2NE(uY=X!;<5(kik3C1 zF=l9410iWyBLLD`)^LXaf9HG66O6b+2uT0tyyR!j51Ju*hk$CbMVlGP$jdce`P@*i zd-@yVMczP8TKumUm3SGef?h8|LiBKPMcIy9>~GsXIqBQ9*A(#%L(P_PC$VB$ZhdEc zAWCa@g`tF~n|f@{k3VW-6fut>K)e}Z5i1~!^YDvoyS1sokQ+ikKD$Tj;DD4f?l@aM z>v3hy%-n_szN7JaWKVH~A?$e5ljb@k3#iNgbWIMPGCik?-x&-BS2Maee0x0|UJAHZHn?IH!0-+m&S{?6=7W_=2DnD z4R0QmW0bcU%Iss>GBJ@A+-#$FfVIc9G$)wcH%L99^%ZjiU=@oUjx>NB>j|-m$gV$bY>`hdRIGaG()!o zt0cuwYF40P*no}rrfXz;f_R!$lji$vWU>3=MvC1q>;_@;!fr{$GHs`|KHe$m$mr#C zNcZnD%%ppSB;9jJ(tSWd3Aq0^F3IvzdxiZohE?`l4lpv@xtrQZN2%R-<^OD4|2BpU zr%Xv>+ih*2*vcA{)g55c>I?5+R&bO`t4H0%6nW^sG@hERcXKqe?cEOb&+Kgm+s=F1 zFF4X*82v{7%QE_3tkO1m(M^`oi*2&Qf{Y%ui5b1jriUB7vKerajx;)_Lq@O1Fq6>{ zl8nwF$>;$EmeF}Bja1SYLb5l9AbTtSYQr3iP`ix(+3vCXxFzbqCatyozBX9Az#5aO z9bkS_J4*ege&fG1CR6ifWa{MPg87vIOVf>sUljeW_=@3^hK7vNeTA~gjPB1_B^i3} zN>Nc=zlknPh>fh4?7WuSc{{T+U6HV3ySi!S&yk8WGp9mkKF$!6nGurA%pu9l0R<(X zQht5710kBLJj_fSR!98Fu#&BV8jmWVmvc0>L*-MHhKGt&V9s*|b?iUOY_{FqA1b9b zn;I;|Ds2tc*=%aC9;=laRFXj{qVr8QZL=LMQj0}xEhd{8-A* zw~40SI33d4c7~eth8&UJI3(#Upr8coDd}k}c&RP_c&GeN7t^3fH%`2a+}lLhoq3vAInf`>pLky({!B&oq&0YT}lu z2}Th}6V(}7(ggBGn&6P6iGTte-aMk$6ugvtKjF^-m9sj(&@`+Sa{j@e0~(1ojD(!F zDlKfzl`fE8O0P$wgSlr1wqPUL6pL}DBXbnYN!rT4?ofWt-qLz$MT}&mDe*1KH%uts znqfPXRigK`4x8-L^+&9RbUo4LSe+T5Yc?BcY_dEQ3CNts36QdvGrXj1gd}BiNK$q{ zK?!J^pqFlv=;3qI*PthLyAz)cD1!dbQxjX-$hq!;z|bN%7kM#4xy;{=5T&KR(nV zs1Dw_$pi1|C7OvD>LFZ5sI437uj?W4?>hJ}_v(E0#6m`nru_3|fi>la$>ojj!?t{f zpRCJYxV+fLV96BUb5s0eo1(X7G*LHErTL|lb*v?Y=%y-oWMwsRYpC^p!Z9iO45&; zUzI3{&)!e#s8YvpVZ@aVyQ!MIWGOFu#l5Qg{LxXcEXk8=HYMkLss5-`(drj3jBcj}Q`0_cSqN%$$078WUG!)e+FehE>s`!H!NCOd zdQ@*hqib07sGceM;4 zfs!5$l=Px4>ERD_H{+wVX~=^=fUVnu3?EtZ`Cd3PQ?|hBiMm^aZ3*z(2Z7WgxA^_` z@+938k{S)3f(VW2t=Cg4Y=KRnm4dy!_2QyZAhmMPv8Qk5QrjkU;zPYoNJ1!9To@99 zAlTGh~W8$^}*de{A&u%k&ns!^!S5FOzIKXa}BKHT|?XPS-5~}vs z1#Ir8>&nZZ^w--fBcMZny@nVSz=1N1$@h*e-;e=%EyhM0(`>J9fi>gwD&kd!<++#j zW?~jAnEWv&#t~aZ>5r0c7KCGQwaTd2jts!tZ62t1g7^BMYQ}tm9=5TM?aj6N`m{0v zwIRKE@-)3>NOl6WV)6N+6v`aI`w~*pGkVXg{`y<8bCD5qrN56x!vQ9Z0Fm38BA?y@ zb)VC#!;t~RpOhA=4W!>BX#8Vy;y&`+DFFAM)62jo1NBNs!JO~()?;ArbQEw|*B((2 z^ECe21DXqR2H^=s&(pTN%bxb}^6%3oFPom%>j*nPw1q*LdTSQ77IVjg<;)(ee-2}w zkuESce-ykpM1N0o+G>Z8?4{HWTWRb8y`Cc`h}}6a=&9lT5fbLMJRJj9U%)k-fvh2A z(Y}!Vv@aT7*y<0v`!DMCn0eZnszWN$TYOZg+nfFp4hr7kXytxX2QXgN6McZ>QPUU< zDSA|sS_T3pyrMT!7jK0pU(w5or3~oi1ie4wZne$b;8*pekle|6l8>nDYnjH|LC3** zYoGJH{+d2hISON+K}W^cbqhg@p?X>M%vKmM6c^~uF)m0;rx+hMY(7R0(<`#1-`>>H z@vV4TeRWd2z#qOdOK@_SK1eAD>BIF_B4V3eF43#`x3M8$v2A`UOcdIz%5gR}6A%|gd$PoLG3s7dSVf4OO~3?C0J!kuz7>d zH->!@AOLpGOuJS^SF8ve@uk15r-%Kz%^K{!En6q-hW~J1- zIv-5%6Ik)W~5yW82=<^4cHZ!d=|_46v6RultUK2ncz*VQ*>$a(;_z)7dq7uhRWt~;*w<6_XVpWN#poTW z5;OEB>WS^}=nPz&I>pG7K94amuh?R~H&buQVyTm9x5L{Z@?*>shZz-S`_*LJnJO76No(RU8P`#i;4}i%=#@U*a3L z)Bzun(O?pha1hd)cy|4i?~%-qEkfB6ndV2pGZQ0CgC+sxBnQ%~LtdMowP4yf|E-c(!( zpsHTLr`7bj)+O6}HsRi1=q;GuA2kV|1=q*8GJ2L_p>AmAV%;lTKiWP<-O$+`u;fcU z!2wQYD#IYjOlk9R28Q5x_`0E5`$u#9Q6AZoHF(bNc#puup#VIxTZ1 z{+qc22OHKgvRCBav{GshIQ_!xo938CTIDBE3xOTdrUm+F1uthV)CVek;H!l=a_JYy zUhhEmo;TT(L;Q1#^ft_nT}^fN{1Hyf#Cc0khRW9Go2--;QF_ASFZDzRG^rC9AgS}W zC8$nBPU>7>sdEv7B6ZFWzDlG*jCFj&C6DX?9+LdEh@Vdh)0;_uWjDb^>Ju&X_teBqZtBwYc0p9M-JG@!?2TDg8?w$|=0C^-uUE4fEDx#&`PV$cSBj=Uy3>RWs2eirOVWH(erj(XExV{C0(p zsqss4e}!Z7GoF{>SUpccD6&O=TU4^K(~XfwLXgX>h(IuQMpP-NzZDnYQdk>#gEBUB z8}s4dqTBRMqAhDdXUtpfGOtiH-DSRZG-mqqc)LEI$9i|y_h&WHhqa_*>%Huj*>B>j z--~wWeZ}xVs8@HHR{-8+6+{>-=n4R^3S5)0u6|%G9d1Xq?E3}F7$~u@$U?q>RS!3yV3raCiLLR%@ z)KXyCTMKOuRzYa7!oJ|~46C)3BtdT0YpY5N z$S+Df#I@*pLH%9U^#TTDUN2B~vD;h-W?e7%M3R($`fhW{-$A#zq_;axv4_b5-)$~> z!FbvGy>&5*2|&3vZhY_RVe@z63%E~oE+-bSYRa}>?6$iUb;WKP7)26Ga$qF+f)4#& zD+@b+({uB>hcB=TtFsU{PUPdZNDlaM{OOD(Iy?X1uwErh>|(_@xXBQ|umTzDAW`Jk!!Dw<^ft_8)`ad`oafTs-A(r`1d|q&?H)Jm`c2QxgITt$yLRU!o!0Ro z7%qfdOp7b9=YL7R@{HbA6-6bSwH!d3b~Vo9*s&BVm78`-(VRW!^)kvsz^ey=!@7%l zMF(^MSJw7lkWHSugv(;08AC{1(SsN5SSfMU3|_o~3*sD_hNmZ*gr|z044Q_g&EWB? zdW&G_omX*lad0qn&ue;_VCaO{4yj^XFm%J~IPnP0$&_H|#2a{QhC>Ia$2z3X)RTiQ z`SJocHvYAIDdxtFEN z%)OK<9m(Tlyr*o8t(^MiAQ-99*&|Mk&K~iC#DaJ{ix;5dS?B$mA|>BQQ}ygM&wqC; z5N6cbYMvbtkOPuwG~3J+kwWoIK|&-UcdL^F$evK{S+`()Ofh z_nDqFh}DuOW$t5f^4dO%lmFpK)_h44l%B*1k|%w@Xpko%BzY2tBu@$`u#WrkQqs<( zM?2W`Bm{q<)QNPh@P`s0wKzkmYkz%(x<^ZO4>k3%8o!1No81dTh#Fd@_rehM+}tnBf| z+g*os0ELml2L$B>LRKOt6;>Bf1s{A0@?`S>bq-_2=gIhNGg)Cdt0OD?=(EBuRzp_U z&IC{n{Qt0mwM)0$vH~YXR=CP2kQES;tiU133IPSyNorn7R-lvAg?=_qQj4E$mnH)g z_}TU%wfN7$2AJI5(*Xtmew+(=nxXg4^e7|Ltmnzoyv@a_ znok_^5^K;k{y?7Ae&#{?Ct<~MdZ&7_!`1hGHlIDi|K&S}Ima4%>MG&OP(aXM#Z&TM zGg0Yj!zJ9d>rn3gDRqiFM=rF!KfV);9qj1@n^vAK2z#1(VsdeK73X-1)CE7oC%OkG z(~J|eXqcQ_AO#P<$!KJj>}DB=`rN4|UGNBqc8`e@HU^~%rC)9Yy> zt}zgD;7eS{KSDTgnd_dWu(*>amowKz>M7(^rWnp0Nfog_K&s=mR2|={Yp8RPH~BoF ze48$(YzvQ~C^aClrKg6dC7W8)Sh7{M{VWa}?k8J0I>T12JkRCQF8G4~$GWGysKkhp z0Br*WD8Jt{OCoY3pP_64o^CM5@PxySHlDMh7enCBEy~l7(aw`1o?(?}nSKhF=;i$( zGfT5vN~HEeMx{+SMOv`OrGQxrV4B+wvf)@Cyr~y1!5mxwxs|$YyU@m{jU~Ww`OJCldB756_de z@VU{sJ#g5T$T%Ufng@zi<`*-vN+XLhvKIc}>6>%ErzcqvkF&;TvDd@;pn$YY*N@eZ zp?Wg`<(JBOW7=o(nX7bp$aVP9v|@cQQ*f4OJRCKBK)QH~u_JqQgf7z8Q_}%W(vJ<4 zzN;-gH)_tS{XDIe@Kp#7jm~=Ni*FbO3ceLgVD($mq9KFthW83)D$SFdH(ROiTJ{U1 zJ&l=p8DoKj*&is(VoR6>mMObsdVUobSTi}Cgh~HC9sx(MmCbdxbJix~(3$%=PXk3M z0&ey#x2e7bI-yu^1{p^>BNx-gZ_U%V?gQ9(&Qls5yyhtm*Ix5HCFa;9fOchO{AzCYEMXP2 zDsYKz2MWY4_u|yj}h`ngO0Hw*w2Jt<%dM3L7Netx^Sd!?c#z# z(XNa#1~!fG^p2IAE}6CQd)=9*B}IB?@A9uuf28Myc#tLBw&QH3Rs!w4;J~gGxJP+T ziraRbdF0t1-2MBjIkq{`-e7$C9ulfg{>JZO(vTk zV8PoNXOnmsCz6Sadrr!M_!QM3IP;dFn<1gV8PltukTcP9^$fMj0duBQ@ql^zkuDjI zVJ(Qok(@=mWS9aQ-u8SarZPChoF*o-g4%06l^q2%)}Y&HUmY-Sqb+3MB;J=?yp^VS zf{6#orHqP9+t#N5IN5#gVbbFTxCmJRu8mBuB7WrL)`3+}B9j#|k@a8|{zRr?E$u8fL@1fWLU5hg;Gmhr zR!{X*F_RdBGPjl!5oClXqqv>L-jL)di;airS)N|;4P*gNV&!ax%p{hB(;x$%>$Jm^Y<=eijfbuObpnOaFaw9AeM=@{`aTpizozNndWm>oTK~81l zm!4+?FF-@JhQV{&=T|I|(+~MYrliMhhQLVtaT=&`;tjYNcq87>KPD!UKa3h{fUWTj;e5~-x*pi^V|}Je?wr)ubtEVM}D)W z`=uC&3|u7^vU5D~FnCK$8S{~q^1qqcDZhlYvJ*}D+b+-TLdGyuRGeD)H!~%1E-BPg zB_%GSU`z&tdP`PC@zYEeQ2d~-X-M@H%1W;_^kuLz2Jiz^0kRH4mgKOC$!ZO&@H{fY zwi4YK4hr$X4O4`P=ERLcrRgJzN;8o}W{0Kviz*rTY|Ck{e~mMLD?N$8kX0lMt-ye|#~G*^+YMnB<#Gbco1z)zkGaXADy@@0O= zSGIldS%c#6`p=$j;@=RUG?C?)rDo%8&02xaG;0k65AVlLrT7uFfZeIQ9#-~<d*Op>4@1Uu%PfwwVxt5bL`iXA+g7PPhev?_G@#*90;{MV)h0Z zA6KXm!CDZ9vz#2JLiSP58nKFjQD5*iE1uCrpZIs=Y25b;%t<<5TCUoCC^Q>8 zO>vb*kbU0MPE9=u*~jpV`=Z7g7d6 zoL$HWNr<|TH=y8U&(Qc3S-{h0g3XFGpWSuYGg1-b?ef3{xvZn+g51Xpgoch&q!j#x z$4`%%A^(Piv=`-a^VK=*Uu`w}7UjktHAj$~SxOWuBtb6byNp*HLAHiTg$vdZKd@37 zj(sZ&C`X{W={)4_@WKM(Z+Yg46AV}eI30>Sa@0KRb%a&gA$SK3QV2gdcaPQ5aO_r~ zrv7uxoMUoL$px=swj|bq7gB;mkuOegl61Z-rYR6F@WLsTd2=5(?We%rEQ_%$4m>2 zWVNKNp@G_Z`ym!$y0VUeBSkus!zt34oPdH7@WDTx9)g$J;$}$t=0iv-ic8;V|Cv+k_wQq82MrK1IRbjq~J16qkChqs!e9<$-BB+UEHC7)!gQ10hR5Vm_mtia_*rn7XW9u0krccztmgm){s7+A<*8 zjA?n?T*G{vRnQtHR?roq0jvVu(z>67wX}wb#3|>8P*>(($Dm^&W1E@o8GxDYPowXS z@MN$}m=7c+O7~gE;pYfrVBBBQ2s{y^+w{cZg5wjSN6dnHKdGn83D+LP} z2&MZkq;`0^UxAOv;HO1JmW1?8ALQYHT3JcCJWlnB+=nESyVP07&1}zkrEI@N(&Iu- zXRP|x3wnwJtdz3-epx`-9u-a5zCuysOL2?A`P0ZXG*@Q5(&8Gcw9`ob6J{DIcmgr9 zq^pLXU?bq7C(Iqxp zH5AF5Cz*8_G}uS&c&VL+E}J%{tb5_OnRSPiFgA!s8CJiNI-W3<)R9%%N_yH-(le}< zhT8+Ul3xDbO0ow3NR5=lsgaTb3QEA?Qbs?)OZ@_>X-Lk02-K1=#}#KZRm2yJPbng# z9~DBeMEsOh+NZnMoG?#!uVb|&;x}BxEvATtnIHJ?3D~Y+jk`ZZg7QQ&CrD>Ok1!f^ z78D^#9~_eO5l~P9mM0kRIuO!n{d)`{oz@R(7nNjmaErwJDz?z0#(r?K9ElT#Zw?Tg`aJ!H4bp?^`ktvt_1LdY(QJ z+M2Dgp2OFl%MOZWYZoQsG>W(+f6*x7(#a5`2xDMMQ}cp0zlrHHctyN~bhu6xn0>EY zx!B+RIREhD{38e_ey(&#yVe8YbS-0Y@CEI)$;NyUeG2hgNtr%Z8fh2!BpLrz?nfs0 zS=s^ev(VAdeW^PJ7S=J6MS@Mj{GMJ2nwe!!nfIzk)HO0iDr-UGiaMvvd(|~hnfI!9 z)-z&YT|L7i(gH!-*r0MOQ9L9uh)Ol4hb5h|F4{5}b2w4(lpIc&U#5*hFl!_+T>eUe zm+Bi;;>*h4yrYeTNe5C4vnnv>Zo%qIqo(R8 zJIzBBGCO^A%FIra@P9nq?$C%GsSJnDzooC)Zy%I7jp9(amX*IKT+5!Oa24!Jz|t=g z!zyQXhNlc8BbI8+IP#-yu@X)uw==?8tPIPkU9Mm=MZR+1)VNr)vP4_~|9LU`JBNO#6D%jPkqs)orQ`_c`lKa&!>tMXNHy|{ zi?PkWL7wQ_%-iKJ`eJN>HTa9ZCi=eoMPIjDvIUD z8`&ar))v^@+*mC7ha}R+Bm&1;7|mU68Cs~-(x?!&0N?ww`5YS(#V8YnvH*^^FcOt{ zptLlST&SWPif6O>WW@S2<~1V!l@)OJM?=2X%cuw^4unNO!~Vw0N<~=O-)JZ*pJj21%2dmr zHOD`s$U0}~M7VnK3>+F@49u%8l?1pr&`1&qjHpy)Ofy-)RT+QQJoQ})xsmrDETTZJlB{w+0#Q6?OSpGnnvy3Z}i^r$)fgAx0zUFvJ+C z9y$xVhZvQ_VJ?bvf&<(M&e~3J?gitq+&Ka9R!jZ)ta)AOXGW1c;CETTJz%fp0lO>@ zxbYHBiNrbPtum0RH|mzlK(ZJrc#a$m-xTt@jJg9!%6oX}of0FU!>h(m;dPL1*5j?q zih7&@sj1|1cDUfj2(n)=>V{uL+e60#F|m+-Jv9=dW}hz!-Ai|h0KH7pJaLQHzCFW? zmZCc2g0z<|3%K^GSYlO#%`X|XAoJDMUx>b}mF&%876$6Px7kXqcn;(p5=^Y96tBGI z{0uJZ%CJ$FodtPiLS2L&^|GgJ$Z%PB7EY>ldqdVJV~UIU{TaBK(6})?DF13ccxALP zRV-p0DTTaMVej9C8l}y*OMMYI{^z9b|?Z@Jzd96(cHn(irH#P*} z%r)oC8F|fd=zjZHi^+SMc7c~h7t-8q`1Ov-<8kEh4ud4V-{5?IX!Cu2j!`Zq1mET=E@z|m zmbN9b8mYw`vefS1HchRB=;Xpc?0IuxAO`=J3j^Ft=xx>#9`h7mtVx%*7Y24o-f3ZA zxBNv51G~?g>v%O~6Pm!*K4V@n7@dxxy=js$H$>RapKN?4&NEfm5r5h)^>HzNQQjjy z9HIu|EN{d|#oW zs47OYa*B)L7g#*Md%=w7h8N6uZZDxpHP)6GqBY~0gL>Z^9#FnF#;gCi1lcoEDhTzG?K2n;eboEh{;o?jmlw?bu;d4$ zdoJd4$ln?U-`=)8)ebx%&B{!3AQq?erVbZJ$wDtl$KtZkBP~YzU#7!9N*2a;uv~mmqppY9+CVQ6=T<4OGro zmaV_I1RYCyYr&j`^@oTvtXW>PbCMyK5Aoc*m^1lTqllsin0vq|FCs4o1XiKTw!`4p zzQ-Ok>N?_T<3XcaE_H&RRNQ{ZC?oPQnxv8{vVez`df9aU2bRO^{4wP%;bzTfEHrv& zN=4C}mCCV@>b{({E2VWX^q?cScK=uawBpV>YE*XsBS-CF((~@zq)>9mMmF;fkHk}E zID@!iDBTP@Z33Lw|e_BxX&9E#9hV@^%*z0Y99ov7Q2iFkfxt60=3$uMr2*j)xIpb zz}3s}@1d0P;woc-^c#I8K);tPan2)eGBx&^(R7fgAfc=gQXYa|NrHXnadqoN%_7k% z5^(6t=Z!nnc2}~FVIZY(qL?0)HnMeNpw;qjSAu(3^2Fq|O$)*GYesHfn;})TxMD7w zwqWF?s)}X?s;ViI#&ZQawoGjW9Ue_B1s87MNv%<=eO`1n+@_*gQMB!EJQ0FF8@Ev(K2$vP0;s%-!6NN@ic7-gY*lNs9U|P*F2%5!6qvn0|Gm ze#Lw+bY=bKFynkmU2%XR$^N2M`Khd}>FM5Fr_2La%+s!%Eu})64ng69kB<2~TKU9poy~hvI>FGtjpgX^HU7a}nDSRy z0LiXC;i}!MsWq>XGdrdWQ={sag}pyEEeYfPHR5xdR^#wAHm21$MxMgnBMW$1EqT@K z;9`+48TQH7Q^tudtXUphSnX&dcZ57XGZO);74K$s_*L-SN=XtUIYp_bp$JQwOGiC-Dbu{XVa6|SrkA(VBakoWQ2>IuI*AYExU zqe*(YB@4JK{b)(B&C*le_y=F4 z+FaD@RgoW`MrrCo8+1<=@#d)dHF)v?dY{4AksY++mM!^iciU^h-41$SuICC3ubG`q zLq=I@wP+7nz_prc3Q_l(xz{}*tU(_!gtf|p&nbiaxE%`0IEdl-d3Y**()~N*5s2z^ zJ_5EC_ZBWNHQ#@f|KMBPn`ei`!m`=Df}k42dP|3YjNHMsxCRx)G|s2gYgV9M=Y`NK zPIekdqD7&51#fO1KBeybLrcRSG9F07t7HM!@I=yrG9J=PdgqEA3_dTq-D>J~{57ZZ zd1lp#fMcb-Yr}3{L;u{WB#GOcqSVs$KrQ_nLQ6RP!BwSrZ$d8PTD@#3=rSWu3Mz6v zKtUHwQO=?$g;TePaXrS*~4ed$0lJC^$k6JM}@*6vSeyGsqHw}Th%*9-Fh8< zE16nDY-h}owtwK-{yBuU*Z+(?`Od1|B5b@O#Iqi$yON%3c80ayG6OYv(h z#ovodohJTd&GHcT>OD(sYn^I~Iv!RS7T5N+f}yp&Q}K*WkvbSNNjL0BB3+fa!9272 zjbP8rexzvwc&@Iua&Du()D1|e=*5ewj5Mi9lLcH&C2p9ZRt$NP{uwo;Sp&aoHW8f| z0`ki4tbh_gryJ0-ve)Z?%(Gi|u(@(108;SA2HvB}`%<^Xv)VN%Ato@ENWbrL{ldfa zyED64VJOtto9n6Mo0gK_Wb{eNU&#Wl1{c+OOB(6lkDmA5o}&^q@y^og60b|
1m0n zrw)4ROmT&^GD^0r3T2BoEU(_XIdyZx%Hj`Jsq}2oSG~ifQEx$XM8kkJk3KCbKL9r$ zrH;v}8Ugp8^xh4hgw&wpRD3+>Xq(jH;zLecD(eHLtQjGcCC33-&wBI2rk9%+gp6Lf z@2lRs1)F-O))wzE7D#JLWC4%)x0z&b+%g9Rv&S}X49RJ!tHrmheO~m3&nozBgH#;( zGWl>^KA5z(YCeeT>pdQR5lO!L87rj60=EP7c!EiI^j6N;E~$+aQCdRz!X*!zkdNFpyPBg;)ycdG z(;iE$KvR13oFZ`KvDD^3Q~eKmpd-zBEVZn!vU0c=*^&N<2Ld@`GQE0k+g*{82GP$2 ztif8Y83|85bG{(lcsx&PRhmHWLEa{!3FCrtQ-&TNT8r!u0Xpw+T~E9gUu^NGlf9M4bO*ig%Q)w@mXVomd+njJO)N7VKxipR274)y+~ z-nk8vhk5a39!^ne=oZtE`ky<&odc~2T_1`^GG;uFUUluI+%F7WyKQcXU1Lm;#){qv z(AZ^5pbNKQ$j8`UjLP3)h^Q!`{vQNtxjSZ{B65ee=tjwdZ@h(|<{0l^;q8$eEcv@( z9npakmP%`T#|}jG@eoSuHqQHWZvCp|9T>96TUNAWR7p$E$O7(H%}hb?wMpX*?@Te8 zHOPxMjj;4%+;Qq>%tmhv^n4)|-$@;EJ_(Aw?fpjm;tuS78;64PIc=$;d0a(bhfom> z1t*O|zgp7aN`7#^oBNJ*&K-z&&zmCVFeXT2-v?@JrlqlIQe(AXM0}&J;vj347q$Ij zsco85Z8?ul@FpqY50DBZw`x>dD0i6~OI7{LRVD6H2s&mM@Y@I2Lu~pKm)FW-zm<}fM zN;{Z489izC$KIF3d#qJnJn3yqG41X;190zr48YNErB;=`Pzz3+YZMNRpG_5TZG37K zu+vun$ogkfORL#;;rd&t4aIWKqg3ZouFmx#)Y*NecTg_XsV=+=gFi=oE@V_mpL+uJ zIp5Of=cYafzu_GuPP0~d(dP+EpPvWlv+T;U5jjWadQ+6}h z%7cpVG`B>p-gjy!2R+WMD1D&t0kzgBN)dL=Q%o zG&43(Gu=)0AG>D`u%27&oi3)bR&+w?z?&^SVkRr4Wv8k4VDA##jppD;Bu|?q%7=b_ z93za45$z*jV750MN`0GB1C}Lpqd%Wkci)rUXi2z|?JXwuG8W|$l(I8W&%cGxGxetl z**Lv8m)tTsPu;_|d*->tZHy7p`xRNhJ@N-r&TmQYHS%SSZGvG`V?yIf;y=IJVT4O9 z<>9%N-l}S$-(l&5##M!2wRF6s0L)#%gG?z7V^(?VIr93(Ro+^;^d$8^zniB^I9nuA zCCLdF>0iG{4%7Lv>)+vRumu=vThd-IGnEvv!sy15_p zH2WPAzrc0WW{e4vXkeg3hUChtYQLMo@#dzMPl^$&RbKMOP(N<2tsERGR#4Q>eusez zQX7fSIWeiHxq*6GYU;^h?!%kC&*#G2(T{t_D!-dU=$VW#>1K1FZl;<1gQc54zw>St zzpz%gUR?oheDAF!j72!!Q!T5B>jB_l2nHuEKU>CuUgo8&=B?@p zYvyy~`hLMEBGm6fzH6GfIZ|&R2>+<6XIq9Nbqeup9f^ zbjF5sj+mEZ0Z#?(|DXXXo`O8F+k0HR!y4ovX4E%Lv}&6_oQk4@{fqW_FN7~eN|1QI zaW#?6X=3Q8i@C1Wn!0j?4fX?1rEx8Bm4o1sLiHjS<#+re@J!+4>9|CnmotSY|A6Rk zQ=3OJ?#|#-SKk*&fSx5V>I(m9M_qJsvosYOP+YJE@)}fHOd$!$6>!W}fWzCVPyg-v z)beoS{qyBv$@h3Lf)3rSKa7b_!yA_9dLBlXBB05iECSm689cr$Tn=}i_jbM#3GW}x zwdbo1{xsL=8!-AL-jjjirTl5SejP|W?yVJmOGAfDXb_et2D7GQ=nMZeZlVl@K0ynioZ+yfbHJcg~i)dmp*) zuWV+{oHldLoH0=IBYE1n06aibK&?Ea^}skLdDAHkhF zMBglc=L@F%SiRYN^-tUedX35;Ebe8>{@Wq?1~X)ne}qiNlAkYr2XNz`e9V5xw{9f# zv2Q*N6l%Tdo99H|bmij`DjL}@q*Zf#)6Ys_&uN8a{Rk&(Qw~+XZMHeX*ZdRQL+lxC zHW;8r@v4I~dNWhcgot~tco*WHB`2#>c=sb0ttTU#UpN9L6i#>$YKrS33aEv`2ZRp7 zbYwXr!=B`+HFvTq(&{4BH1~t*xriAKIj;E~2zbxuOue#C1fP7odY^F}A9MmD1`j1B z!k%ja)pUzglb`>ddb0YWFJnzO!;gJkT*xL6%BYKW~?9(00_?k!FeL!ceM@sH|-=JqrE$h6)$?0*R56EF3@I#5p^htLzA!W;R} zfha!a&x=Y)k1v5h@eCjJLva?{Oc+3g?G04eYf@paD20uCzhWHwjkIcx!j4OYz2dL1 zjf;~b_>^2gbj31Hc>z=FZM5)*oy}K#D2#J!+txfBh7H)IBVDo!iGaB9}-cU%Pyz&V*7m< zm2Sdc!Q1aKZEACyGi%fVo8l9vlrt3QmOz1OwLpH8y*@?q<*)F75}w)J+`|4q7#Cul zv%-@)k5IA1bh4a^^`z`Hzu6G4At0(pTiMeuHk4cXmpo9il+Z`vUI`R#krHl!>aEJ` z+P|?6NV8@PZS!4?+)s16nSFoQaUjC$d)4N#la!p$(ow3Vvmu7|mr?f77pt2?fAML* z!|~KZgevML`fR{RKA_nDN$KXcKZ>WaYyqYAp~Oo=ai54yZE64+++g-<6IywN#t$>Y z1!w#)^XCWUD?|T;3(w+}p%C}0J)gk6`!mH3%ZRh$jnLcuZUuYQ3EI`I0} zZ{-Yc)KeY^Qu!hmDe&FmZr+Pr6B=^u>G&WQpL(`w$Kz3T*y4}voI1gr zc~;))-gnRJ7JNgJ{p+wN0Sp|My(3#oWfC*w8X*up{lDRCuvdd^?r|5<^>CqIFr06B z98~)KciC+j{P1<8=>NFwqJS##QQ49FtZ-yq8vdT_H1_z4ux}rNDsd|t?;h?=wSQ-x zI?GR3;0o0r1Up7azXb|soC_8X(|GCW_KP_o<&*H3S3>yVFJb(-011ysaSmz;&75=S zzIjO}dv|=y9N*pZ3c7VETs}z3vVUT_&++4}OA1)6!0FwW6~^m4N9LtVLkJ10nX%33 z!K!nr2jPd0G+OY)K>7Ndrt3lP?9yD+D6?uDb>Eqpp^74H9+vX$Z_=S9XK3hQ$ z;|h&anbwAo3F5X=UO1>0&IEO^U(EScU+*pRN(VpurE3h7Zi(zFb0HD$JzeIN54{f< zqVPV(oubFp(}1_hA&E}|hVT!bTcM5FV*+2=*}f!_0?4<{uIpl-z@pA;F2!>r1H*NJ z&(SpRg)?Edt@*^nk`&Gg?PFQ4roizDqs;U22_x%y`F41hB6}sP2!yhomtQXFM=D~s zIER@~@%{21i9GYoYatLJwbQcs1kPG_o7ONM0`mFKPW$2ki~DA%;TMU+TGSvQ9zwhOTrkwdp70uUbEO@ zQVR3JKz{M>o=G*A7Tcp)J;93an_O3HpTt(uQt@K!MYYleUaHM` zz+ZS8emuz@&7aFHxtgVG?7T`mZIl9E6k6CPsbP(g!8()56aVTr3>G8Zs_n(BjFfvD zt;jEF&r(PQ=)E@|*VBmQyH~_SB!&>f(~cX1>}jTXK^uiJi0`x8I~bSqaEHA;JZsX; zVNbBO6L_gPgi%5c`xS|#z^f&RzJQP0liWV(deH#;$0L4W|9CDm(LcMK_GJU9$AcF5 zp!2GWfB0t87I;)~LqUm)_j7|a-9rSxZl0qHyaLq!7sw^^Ih{*pvlSXUN3X{(@Nr#A z%Go+nf!-7<@Ka68F7Q1Y`oKG%FLZIR?F33Rx4d})J~Ggl)rajOHQ4@5-5x*B5JD~w z?2w9nztg|p3kTS9EXM%xWdpziJ}3~=E}uy#jd$2HmSvugkuS-dCN=n$^^Cx_rw9bR zja!{aka@K&xf+<%=8`ZqQewm}94RrE@bQ~nc}c{QMc9w;#Lc)Mp9D1q+j$71-aFVn zg>@8|s8Q$X0x$h~-ps)@cBp*`tJH|)>{xLLUvo!Yf71pcyjqvUGfPTp+2w&y!!%UY zKk9}ghTzXr!ecIjUdseTpV&u&q27O)J z?B^2L_{|vdtoat?EC#r;*>(boQR18M4qGQjnS3zgBY^&Sa3&wz%7}}+U4VMuC0o;} ztc&?NZ1Hq*x!EfONtUB-p!s*u?#{X@bIm2(Sm>-WSHiX5^-lQs1p%!5vZjE?lsIDf zdzB?8nP~uaHMqvR;PG26rus${|gI`MJ8z$Hn zvHndXRv*5KL4+j@Yoa4ekRt%OqW%}C9+0;sTJoBe2Uz9lS5{>4%pJM;Nn}|1AfRWr zhdBl$-6EL5IpS9F3oZXv11+Bs%a?Qb@rm|@A?Jt(n`y?!`}icydW|Ox=`~j3-!gcUsx~=M19_=?9yj>hEJvCFT9Q6taDPVv|H@;J zG~YG&FCKff^>NXRdWQKL4@b{%+YR>b*)CG5Uw8VPl!~o!3xILs<6bqv@c6#d!2o!3 zm%*ba+i&s%$0I2lCff_la|Zu&zdfi z8^;`ZtcHM!XxVV^HMja@PKKI%+C)cB_O76!BId%L4x6PCq}cOGMJj_IK60q;qA$yH z*>$88Pa;&Byjw3vM?Y{7sAI!zW~a6l8rnA?Ku|ty*)SIzDg&OX%?`jb_%S0-{0r|3 z+&rFz8b=^v=3rM2k0~mP~(&0MNh{CL9R#1(SHHQ=)Zzs9tKg? zIuiLe%PPjQlZ4Fx$(dZN90jGGa$L00p%y>zXm>G%wW*7vtK$MbvcwJ!@1pN+ZCekGegBtlO+ zMi+SL*Dr6TW8X2)eoIma#Ga`Z9($SHYK{acq!-;e-=1U4VB7n>`9s9$-?qWlW{2;oVm<)+Xyd5jtKPb(Zwg>=2+EF8 z!QnhY9MTda&0k>{wsgALF;ao%b4V1Rs#QMWFuWDgx27_^|3`A15>(z{;W-3fR66eJ z$}@i`AH%}KwD@Sd8m01DEnxlYF1JdAwof*G_ahxmmy<$(DP);z(H&!x-lOG8FJ4>i+3{=BmUHgxYO>B_e^ z*soz@h=$N8uh0cv3F`j~G*_@&HDVe5Oas+#cJ^X-lL}lmLq*oDHSlHo5ixmeDXA67 zLKAAc&2;uRZwwRB6GTma4{w_kf@{yDFlq6_K*!SJ*R8N;n|}}EAFr^xtdj&{YVsop zB@CJHnZV7YR16{O@W6Jj5eSSjc98;%GIodpj53A;^G`W@@zqb3MDXajC7aDdVLWpc z3UF019TZzr`Q&<>$mJGfq2tRyI0Vn6j9JU^2 zbPFCcvL=_sw9vJPKC%TtpVA@(`fi@mUWgvQElAOOok-h#nx=QKctAhAD(f;g#3;DP z+5xsG7Fi#J;UX)EsEf2Ak;#$!N`7IN5q^b@^NtVNW6dEg_}u3l?#6G{+Fb^_F(l0O zEo8*9X+^?cfs5Ia@&xf2!!587kkEXk5}_G-&j;2GxB zm$;1~fdB*fwCC(|*^7h(dLvCjP5;j+j_RMc4`Xi;@Boe!_!h;{bDChP&@+xz1v8Lf z@kJDjsFs(mw-04|30T13RY3%80zpJlW73QEyAAW#7BYy?vZx?}!ebCYtj5=!V0q~A z!de2`=YMR^ zHs){B((SQ)VnfMQteeITA7Jk{%g&O9$7cu`Z+ntcB)iL$K=U z%=f$k5z;8q3ek;d$z#V3?ZvJq703WoAOq7$g=k?J(K3wpeY7Nv!4IE`{v!^Cyasuv zMCcvxm95mS37=MZAe|q5&EC>n-je_Rn!SVB(2{4pSQ~HcEbvqJ*_IL%*OWt{_y~esza6uLJx@Jo*(YI~2-^YF- zrMTO4@d4V^DmMF>pu`F494WvF>WnDB32J9c-vsr!ncPawO)0IQTA3S89!agp5rB&?ML;a(|&ipXP?OKCOFW!|1N~YUQ}NNn%zoHH+Q^m@5de@ z;ON{nxC(ZcwvyA$Y(DJ+dv(07SLkMdM(!a&}G=!!VRj{lKoi!38g6EKP7G^5Z{tbh5%CcOdP$)_nU*ZaBC{kb+$ev<5-e5(wNB81-5SkD8@Rz1IOUUN0$P z_vvyjt^-&AkU#%=3A`*#YJ9>y>J{!WQj5YpOoe;;KNL>wpwCjmQIY||DaatNwz5^fiQI}qSs3>4eMp}DDCQ@=xA(Q?3GS%5#b|cr zY&_!!`x(}klwt;FK)B4{45Ag{TXOxwiMfpom#N`m0Yy_d?r@dDfge6~>D2HPQi>@Y zceqU9P;l=AXZ8ijMGB|#g5zTL_dug#RfJGM=wkL}Nx013JV+{VLR%;bP;YABEeaRe zo2v9^LuPLXDsQ)Y7KW4T%?ku2PN^ED%HBK+Iu_ZRHwk0_ah1J!BV1;0pao`cf>5o6 zUJ-j%p}7jo-jFfi;~j<<+RT2z4BE^A@e6I{01Ua1^XZ^p?F&K}O4d>PXm&}2?s=U4 z&T28eRO_4Z{b|U|UB(w5voB+92_>AV;v;0nC683#+y)hpaVcj#NChTapaSQ%Hhk%6 z@7xxGUr%&|G{Qfm5kl;H`lLO>7{-%-gM@grKueA7Pc5=EHu1=wes}yz!Uo2`7x@8d zR7IOp_E>fW!Fb|tj--d2k2K!+dC3@q&pe7T0vh+75z@G45NHvP!u~smuikgNFGAY( zFabnu`<4i0+wdcVZ9hgz(Y9{^-HL4=3huM*Nl>}bRb{KiaLvA1zJ) z(+HWJId;GnX0YS`7XC3WFyyDxiZBXz(|V zSaW{_KhB&rCh&#cA&B8Uz<}5h!mM&P!a#t0F;c!Ra2j0rrD_6+en}%%{OLcov1MFA-eIUZz5?w@Z&$13``_;;_I1czAel#FzE)t1p1>%;urd(NvsKfw55e( zaR`6(W4{9l{OOhsJG+;NgidL$F7Q&WUv}}cH*Oc~YXfi3&OBIhbz%tYo@IP)Ye$+n z17wiV@tM|+Eb}SG)50AN>oUO)bs@7fgK~preYgWQjn|W6yep1x^1nh#(e~Ce-fw}u zvmZFRfRCY%#rE$m(gK&HA2Bk&f61f|cuGJ~AMhSiJ^+4%@Bzn2Df00ilRkigdwqbh zUW^_aUvh3_1mE~c^u^5aUcD!<=Ll)^8!?g6Z^T7vPH{9xi2^#sM@Qlm&j-djS|<@a z-httXiX`)UXMzvyNaIuUdxuDAN4*JT0A)45mqqeTV_nq-;1}mzf-vPp;`E*vk|~~* z;HXU`>Gu0+SZ;mgC+9gJn;zib=AwDy%dSi=Cg zJNM!r@F9&kL{c=b8M?sBRsFLUZ(f+M+?HjJ;;DbadDCSYyUbTEj+E)bHKYO)j8K93 z%EhDt#vjdBhG5mRh=1SCaV2|`v_f>RN6LKVN2CJtl~95C$}dR;<||*1RQXEy;WL>3 zh=cJ~@D|gdlccx!%Iauu{t?M7X^uSeG>mPLq+BGBQm=6br6Q7)q`=z|Af3QXl9a8Z zyu%}0{KDZ89@WI~crV=%D)t+A(82gq84efA7C7iiDP0$Md1z(;IE??5>6n@n0|xh)SB3M9A5~<*!$}$Wj(j$eK%loCA4RbVeUD>y#*@&~}`6JqHxw(f*W73Y2*#cwZk^oSzVWELu$e^uz{%%Y;T0m?@y zz!r)e!~NI`5KEz^V#yO_1eZKfCJHc>4wfcQlts&sqK1Its=~pSbaJRw#n5OOQIJmH z@-SJniYO{cbDc4`j+Bas!l>j$y&MIMLW3xHmW)*pV9bb@M$3$N2Vha`(dI?Vj5rn3 zn-QPFR*~j7v+EJ6b_Z7g9uXmLB#=0>Ye*FVuaA~1cW8lAy9Q9G9*&kPcfyL-IeGw? z&q?#7EIWQEhvTgg;--91pnqJse<_&3$^9$w3%&POAb7}?yIJlCb-)~^^Q+izL@J!c zkLdz0)n*?spIYgNAHc<|<&5eJr&Su#P0zI$|*t()Kn9fYh^0*ytsZYg_=yZQ=HUC@$zq9G-QF=F zdJIS6N5WcF((N{A~cv<@kg1$eHHnZTL<7VX^zJV2BRDO`1a-fUnj$S{iI0DMfdNUt0Qw zl;Q$uUmLklqu{tuyCg<>RWk<2k-bTHyfL8jBV(j%{aoOti?uT_fbg6y{P5w>t~Hxr zMqbXq=o1MW3hwo-CNL_Jv1QFYDh|4jXWtTraIt2Ok&87a;RzjUr6@pct9)!#3@+Bv zu2ab!g33ESJeBZDI}EO|1R45sjZDqrqd>{RpHC%_0c6!m?Zz1C&!GkS^B`20$4Gx3 zlAoBsOe`5QKCWThp%pzMm_aLgRQy6KdNig9E80FHq(5JEx#N2F5|IjRX@f5CQf;qTvS;Tg$DD zLos~xXh)rOyC6g@@C8B{Pqul#$2FJzMyl|8Jb#e_G3qSIOlPMPeu zhb6}8VIwpUr}3(|GnQ|=#Zkz253)^X`2<>weLl$J5a$I@mi#zOzz1W<;onbkRGYDJ z$WU4kg(tOEe&TzcEl=dFhT8tYh7w`{os%GSGB8ed&a6vqDF*Wdz!OFk{53+9P3$fL zD137;;O&y*Yb3|P^;d~{_~0U3N-)R8HEeLyn81rrH?a^!lt{;Q=9-MhpZKv6wt-2+ z<#=7GaAWAeUlkmq18)?+(1AC`HQ~V79ga02@@v1{;kb$ICZeMQ-=Pb!*5hNvt4KyxV5)&pibrWx!s zDaJ)SzV6sK(-Ff*B-XUEnDKDZ=}${M?>^g+%EIFHFvrJzFX7+M^R6VLbuz6o1@dy(Vu5VmgnyQ2-CeFf~cZ{y(5zU`o&@y}J*FXB-u=*}b z9gA2BAt!dxjU*ns5LTC~FGQxoq8oqXnXeFRcw!S^HgTsJAhGlg@a{qaAHB?xV3ffX zKF6ijSb?67|Fc>exn75lQ!Zh4%7ut>`jY|-hya4bX%t?>X}mJCO>+XZFb>LyRok1D zgtm^^t|p}zA50*-C4G8*cpNa?OhA3Z1eX787Eve$JWze zaf!f^vIY!!g5aZh))NpX#88pjcp(NvZui;lXSWe(T(!(11t`mHi5R}c zYk~^R&5HH$l67kkz;C1jiq<)PW={~@0j#N@Xr*8cUYy@s(y?*H1GYSaz433`yeh@H zq8`Ngh(J%9>dxbp>m4QRpQIFJ`Y1>yMgM&z)2l(LUHyeae~^Q zIEMqkEda(>o@-1Arh)M10^m(Rzk0i)TQK_owoeGJz&ukbAX_! z!GdBSmql=4AeSx*Fp#TAl7ZZ}f46P4R3v-v5s?NM$dz&9Grx_Xnq(QsO%&tO8_0>f zL`Jaym4RG$f(8S*LQz+3rYFlFE>-*sah(X_$e`pH#KnB>_=3$Q7%+&_o~XSP_O4_Z z#I5+kQ3Ow&{9E{C$+*aCc*FJ@dzL`s8c$=-m)O@Lhxi-@G{hyIhEW_Wky41Pk7Xff z@WN(DvjJP7p>J>a)&XZg3FQE}3MA!EC7-;x&m(Qz$0rFy+p6V zlTo4#ncx&oq7t2+^Bbhr1CBw7BnI(DQYw@ohvMc5x){jK7r!u&o8PX9KyJn_O`Uog z!qyPAV4Ci6UEn3(>;q3555a+_5Qse++Q|&v!@#|K7XJ)d>d*HDa8T(K|8r$Nx^Zy@*up!C=Qk$CM|G_0KSf) z@A;o@E{n$?JRl*P7jEch#-xPwEE_|iP$B*sgUL^$ww~OaMj1T0n z#Dk?5f3$uW2c1XqqkG`w*1Lo&+_3DNA~!6%62^qDiti{2P~R$dSCAqvkepB(mIRe| zaCkbVkOQVQ1SPJ=G)k47bTpiDOk^Vo9J)yjr#3Bz^WCSwuS0Bri&I^%@KmM9Jcs3RAv2FTjDtE6+IQvzIh>xjfpCBJYuGClz>)1S;?z$u3fX_eh`uAMJQPg*@63 zf@{xnDbiY(fpVm^Za(KoH;(;rvgiAnF^NPXh3)%3_Y2aiyLAIsl?E;Q>CFF7bvNr$D}Gl zhaWz?+R$yJ6b(HlRT?@4_Zqs{8Y;ytl2)P>s!bibp^^xDg{NRMTRLml6$Cw+t8S@I zzzt88=4vtJTuLx`hn}ZZD!DweaKCK>yM^GzIa%XXY3Zq{a!!_)N9zAA{Cwa;JWPg{ zM;<5O0cMY-kZ0kR#W+K4z1HbRl34t=pX3{JEb@a z%(tz4M2d5`wNT)st}ulV0asYqcsj)iFOhyki`&8X-ZBzPb1naCh3AF(mbGV}lWN%b zy4w7wmAI+zt$c2pvj=-yKq)sh_bOP&NB*t*MQPk?ol^ zO^;~wtN=bZ%h}lv9L|C(1s0_#1$HOxP=Q_3v;vKaVCF!7`3WJI3*#AP=@371sE^0Z z(%x{B@%|D0PuMjYf)%u=gEKo$Q&+jW zIebp0Gu@Ax?z|TW4bgeV9KN)pv%eoSDl@#m*^M91amMnq$8G7{n(GuNK19Fq1-Z@& z-0tCDvokJ<=+f&hJ-=Cf z(`IbrYF7H1$uE58s$!>za5&3o-KZSVi8L{J7R%e3!`qbZXHn^TGzYX%Pe_HQ%L(+e zm{JEzC*T+>YZ7Y92j;PIXSE5fV0NmG^Vycd))KJ6wAk3UhjW&}DhRp&>S{g)-Q)D# zFQIfb8$iH)7G}UH-ePA*Hj-3|elji-oY2#~SEYw^Qu$;IDXIhbizQB%A3beick!_{ zFtM5b^rVTw_ZI_*&P)HlnOP{(J4>Bi{YdNK`#7PAzGpzX%!}x5P!jZ$-2m$I?*>&Z zyCI=*bqX9SW7`SZfNoF&=S}Q}E{&7ZN{<`t69O+n&gFw^JF~AyA@cS~I?t$bUgrm` zML7}xZULmcOIGOwKX@PZ^8w%{U>6}PQJ{*Cc1g*BV}Hq&Bp^AIm*6QTizQudJAz$= z1U?EzD@JQ>ZYgZm^~~_M6+&C3CW{)kyPW@Hu)zcp-Ao<-uEv?k>PR_m;6+a=FJTi% zserZs7_WLgJIxOsWBc7p;LGW^go1yxW2rxWa4zs^s;HQVU^Z(wu$jR(j=!#ePcA4O z5%v&Z=8OeN#+ZoR{Tvy(PXAW{kGbnG0kWzS~ zKOu;fy77G_EmMM7sz*pnb=G8HZ^!z4lS1YcAk~&?;3nqW4ZRy?k6?xbwFZJ7)vi{h z6yGT-J;YjM5{AX=@7gXiq-Kmv>CbAr19%bvU-L%4I+jifaNH#E6T_T+{Q!NA&(b|p zg%&+YGYl``g?_JSgtMDvIFO6pR@{|c?oUny7sDvc z37OjK1x=15sPPdFLcNg=R%K7~Of9#Gx_8j#D83FDmE=Fge@zHv^M z^;5wRjke#?9LjS{@Vp&-XS1@@$_I{j4rWJ5y$Ct1TLUp1CJ?wGWM*kI#0{Yf0s=RL zwr0u=A$VBzb2AOTLm=K%%^>iYYfa4}_R}#-?gjlUka+ik#G9%{TRwgwtP|Rj=4dYB z)jGH-dtxF)hIUekxcgGv@YL2c@m{MRZhW&2kjgjfD0Ud*^0oJPjn&(&9?%QE_HM>x z$Ui8LZFs@7cZoWka7)bg!&t#6fyy(dfhu*lld(d-cdjtPq( z@P;gDg3t_1uqr+XU@qVjsggPUN;j}Zf)8U64X!dvFJ_X#9Uj$7+WbJ=cE zijygT@je4ed-}nnv(T7Tp7$NaDNqocl98rJ&n3uxsg<^&^$JJWreB%LcPG0F*%{I< zU<|9Unc$F*v>%`9e9$yoXUq3hHLEIsqwv59=olKFZ1jLo`2BtP8wyH0SV+m*(qi zh(;_^Lj$s9>Srvez>Ex3OdD65#Aj}CX0aPdtw_lj1NfdhopokywtNI|&cpUg*?j~E zvps)PxE~@Fh#M-rX{9{&1gS;bfAhz^WOM0cwwVAS?nZ_C15$ywp+e*SoYW$22$g_u zqgMPWm#<-m(6t8+>!SNEg7G2UHy%aZz0KK@FBxzoycK>K?{qdd<~oO3YXlYQ&3h2C zm}g%#*ZD7IX+0%jy_2HI+9QF1n{P2xL^x{jFT+!V!463(Z6P3+|(`xU*Z*wRiVi^ap z;^cRvAC;?`gO+g;CVL=_g;~ z^BSoKx>Qa-IXO7}7;y~?Ara6fM@~MZgGm$Ln0gcp5VCKpkOicHY z5%C(Oss)roX4WP0yKXA|ouxF5OmPh0FrCP+CIR<232K}Q=o_e5?p(=i1Rc(Q8dACb zp1E@Rec{&9C9IZ!2Z*A;UAc1lg=RRZ1>yUKs8CO8q5BKo(w|=1k6j-?)vA%IO$gFl z%x6iw?yR$f55A*xERVdSbb~oPS59oYp*p=q8{))9Jc@7NfRn065e1UFm$Dts~mOAbhPZ@QP6XU!WAtr_O>PJOp-6 zW3Ke#t3Vmx#mP<3WIp7Y>UQcT==-_6>l)`UYolP0y74D8$0{fvRh+^HT~^$YkDgQd z0oz0B(V?#i#ITbyd+OLb2AUBynCf$PxL(4qwgaJ zk$KXYzb_E@IrB5Q%9+Ct9|G;nbMurl&nNg{!7Oj_nAv%nh@}W%(V6>EL1!+gpff*{ ztDSj`fEUiZAHj{z9Ckr8@53bTQ536k=70^Ic@XbnIl=GV&%Au5WJ!vr&xV{{CBM;@4)mxPf9=j8;l+C^}8Q(v->1oDCs;)x}5Rjo_;~8!T7wL1XVsUEpQEnX&h^eDYX$DSJZ$ zOjYF?I|krJ3E#chS3FZ&^BG^viXSX>ktlb52>Z;QSHH^5ojVkWLN3AX`=P|2G zm$Ad7UYJ*!H4wuu8saCu`e;RAW6hdUI5vGrdp$nTj&)0Q@ab&6jKw0KEPdBtu>>9s zS;MPW>!aJtSgh}R&N`OUG`K>a(Vj$M8kwpEWWKNp7(vev1oUUV%q>JbQ#zfw3B>?` zlttUyOUIP@Z0RI+IROulM}c3~UOFadhOw0lY=u|YvGv7vFQ81Np&=S@L;Dx#E6UksQ;2Zr|xyH*(K z3*4!ESF)>!y-t`E8nSB2YBz?Uka>+yUxfWi^F0^{;^T7~K3=AvDLlGVGQ7P$N!SXy z)b9j&bg6sAFLbGU+c)h}fp-l5O8?jSWJs6#cr(Ml*)Ny&;ctKDe3Jc1G=nkVDP7=| zqyE1@E{0Fto!f$^k0^bH#dOg2ikX7Q4l=`$PAbq{L50q6bSAavuAmm(RqGBU#o;7S zh`dT6zm!xUa;VU0i1DNrkwdK?a`dxz5-3D|n?gRHR3LJw(8wD|Eh2|nFLL~HatNh+ zTJa(0ooVJV7$*=Jx0G+B@F8npni_O-bp$`UwX~Jl*n!7<@4VdFN>HHQ_N4AcdFprZ zTVh4IjdCIk;e>#r4c{aX7!Q9+3NRktBMLAcKGD80_9y2E!#vhO#=|EFEXI_-Lf81> z;lH3aMH0DDK>5YP2Ro>E7=HMsdL0kPcU19kVnRt?rX4tsqDWOV49GAV4(9xj)6TE^8KU90 z-Y-q&OMdo6!wvhr!SI0n5DZhKTwKDn2u?8=rbvCk@XuODUJLa=H_Bl6hYm6r-qS$_ z!#g|3V3>3(X++W*osT+K8te(81)O>G_)rPpl^x|&TDh|{!eB2Ec$|7Pyb7T=cEqW) z@z@FHV7TQI03WB}RcyOms9ioUfJu!Y06-`{o!HprU(P~!c8eek&G0uJsP; zp#g-5V^A|BZGsmRAyeWs%y9*BhSY@B3`ya|44Ft=l5Ys2lN*>cT~Nmf@^=-G8yx*5ZbVl0x=7Bi= zcpKMI#x(_*-PXESJB-UZ$>Z&PVqHTGw&CBxKi^4uwU2g{UdvbCR@{OYoq(mwHqsFN znuK!J48d#$bwA>P3G-!#_(HjYSyE_Jjn@G?;UWHVj)@e)@A-%)%7KGk4x zx8s9z%A@(l4CuS*nwZS<+{`y+y2^Qx&4`6N*6@31VhDyjlli7zt~7H52roAtmu9)T znY=UqN0#eq>tunIy2g=&47$dt_f$`2t4S$d=9zkO2= z&ujxJMQ@dv=Nf3f-kDF$bCt8rv{ppcMb{>DHX4N%s8f8Wvpz2s$weElXN(9dbH%?X zN>F&^qBnHrMtj#NKjLEPZw-Q^OrtYDKsds6$4{aFo%!U>@^H+#>&o7;m|ep7Ti2I$ zW?@~Ro+jfj=|UDC(OuA;Gr~0A{*=3dXC8@YW1JO&%G=VX30=G`eF~KzKQkj9y!r`b zg2$ze@1=6^!7IwWe(-8{XV>SrneIP?!>!_7;(@X951eT2(4K^GWB2Lbnyzx*4$LdKHKeQ*z~^AmQGs104+ zQC;9=yV>`PfKnpwI1Tn*&Xu}mu<)+hATV3eqN{uc25tz9f3*&-B9*&pSXLlZnufy9 zN7h!jMzhjDs9s%V{OKkY7=J>Ajz2FWwHSXwEoMG|1xzuAP=n_Z_{60+nfD8HmGrQ8 z^>q~(xACX@x<*(p5h$sHJ*+h;_W)<4l?`XJDP<8p9ui=*-3$VO4^dp1UUt997LsCl zv@@%$ge@nfnAHR@zAmfmT|am{^ZHbFS#H=mfakL-T>0#I(h?87KGT)BrB}M*q1VXU z1eDj89?L1qOVIo(Un(eOUez~|_s%VAHQ5~+qYSpS z%xz_|`Bqru!*!U(n4+=_gDq_uUIlgwfvmVoy7?pbb?gZOE>uc7O&w)eRVW=bG{ba< zrmyfl@ak~aI!GQ8On40ZeNuqK4Iud9US%EqKz%a}p{(BL+5!|Wcb#BA5=0oAw7J5S zZ}}ClRh{gW#g5TxapUSR?YKWdJK|2C-{}0rok=W6kpnV(i><7{j~+_Wrbv%Flth3& zQd-s_im(PRf)433FOwgIa+XC};0=MnyB9GCwfkJ@>g9)DTU)OpWo;$2t&pcj5gCY8 zMIq$zw>F1hWbaeiIBY2uu<}nC(D5t!z|^JT1GMFc#pf+DXGD2;}La z1V`C#=66LhWu}#?E_P6GT#%8e&F42@cEknQDM1~Bo8QGR3~qieYI;Ei&T#Ikp%eJ> z>s>E|Sdh*4xVEu2-Lx5Cl)`j@mx1~xnz@`V6T=tWc@3w&foUE*s0X5gn;`pc8nO@>n~yLrQ@UvG02ndiFkjOnfk)--{W#zn0O5nQnDURphg zwd}5k1}<1veSGOfFIZs+v$G7M}%A z>rPx}r|#sf=yO628B+0Xce`@p5=2|NI!)v++~w--M-qdTAVA70hKkqEaJ_6WH(>@> zNar?|+1MabD&`W?-Cf?(4g|-LZF~T<;pXdSyIu~)y>Az6WZxVNojljI(hpi|ZJt+a z_mgJ$5$}7c)|UN;T2qH3-29rmU6=Zi4A7baq*}wXm3_yT%`-Q2m)=h+Sw(gf9LGby zdtIm4n}l_(<9A3Y>iA8iV+yV>aef{GeCIq@Uw`b+IP!S!`L0gvU;wxUu=2MimObVN zA0V_k!a$`!p%35h;-=9fP-qojbh#k5CJ50&=lP8wjE z85Va7A&n)rL(PgFGV4KYL1#T+hh?G4dgK!KCE{q;@SF88jru4u~M1Fdi>nC;(0oPqtPfA4(8~5;q%UvAKIWsHk8rbjlB|#KsuzDzvaS2p$}0XmD?nQXFV+fF26n9sI!2;-(yO zm6@OQ;M?~@0Qd!IhMn>$>69Nrbjo*!T|MG8hbn#$#2$C`@FNB)s$-`KelJ_cySdB# zAbnEss0NqsLl9Dc1pezvSArk7mLk2Ulp?dI9*aT>)7q0b+k&3KW2;Fqj`ehR_M_%w zj#UyWLKX}31cb5Wg?{kHd;M~G{u8bW%dnndeBA7^ayFbaM6WiKvNx`06LZ01Pr7Ug zAyggKu%j%44}93wiFcV>7VSq}a4Xz3pS99YlX$f|2-mCHc5n|n2mnT&?`zbJAFTzH zj1ytB6|5qq*w4HtpZAO_BM`ifZ3+Q-`LnLhevn`XGU-Q#TDA;TmqDM4HDmfZ*L`dU zLFN^meM$$mDm{@IG{ygM$*lB`Ti+)KjJ@{}~ z02nWNpe!vAzK+F(0Bu-M*4+;>l3ypa6NbW?4J!EwZZUL=N#It*h7~51Zy>w`xYq*7#I?O> zLizq)Dxti9G(@K~PcTc<`^$R;n>0)py~%JTNeV zr#35I0o# zaBm=$h#M-sxG~`zLb;y2V!1+!F2)rSxrLI$t5#Ge@D~?Wx8hUZbVbNpg}aM+_? z_M^d4O7w_FFM#W&Y*LC2AHewL=gT$+!((XHGX#8N;rg<+{saOzQ+LBDXBehOf8x5; ztSgaWx)wx5^%Puaz44t5Wz1k#5Eir`6G$lv0$_aUrm~}c@Bw_O`)HI9@b#W~XAnz? z(#cauv2x&#?ZnUo7Yz#p3%F>2v8@*k>wpp5D}A1@XdG}|19u$sczC5m&H{8O;G$vN zmp8-!WL77ao2?=k#Dc+mtVHI%7nI1{_xuvfefteqTqKP9#WqB4mM_OY*+`^`Zl+d|(4kRjYclCo5Dv#H6)FUuwN*ZAq zFv!BP2oCJcac{$Nz9T6`%vmHaFY&re9r^>`l@RzZdp8VeUPf_GXb}2p{B| zJ}N6G?#!oR5%^#3rw+j)hWl?F^wS%L`$3(QCa9Amt3d!T!XVtQHrRQ>ICf*pQvYFV z0SLZs7lf`96vnLz+cj!sBxh_gY`=AP+3hTgVDpN=I+8*;QcC5ER2r9xT_Njv%2jOw zN{p;@y`uF8%E`s4SIZgjB)dO>@CvLHW7Z((pTYipG3!{ugs}EF4X&cGQH{oFm&dTo zELG9!Y|;cr;9Y$DQLhEvUm9#d7^nu}on9&f)#(JCPoKeT+{}TE3|{$!1HP=-&9$CA zOWNVc#fWtyDMh6|8>Cbv*IKF6n@a30@2WLNNmw$SD%hWi*YicJ zkz^wHiAQ`>HZX~VA>IH|#5fqTo)Da4$a+%z!jSc3X;8?@A!NO7`P1&#Lqx4l8}4Tpi!$rW2H#0&=r&A?nG&Db0g56}VgY5>)s?)9qz)FLb(qQc>ygSa*JcCLSSYN+2NLqN9{>>VPfEF6NhId`POh zBl|j#+~<_s&yrjuA$O4XKVFuf9*UmtD>8@p;ArHw-|cNlz)FKOrQ$aloKeeaEy$9u8QkN=OcPy3_HYCaDJ4Udg* z(Nla(qC1w4ONEW!8_Knd5krIjk?5u1NOJcI?xpw;y~HyY9V=hhT= z8$N3ye1?a1wJ%X`K3|SOxA|l_PTj=x)MX38QX@QNJJVo$2{k*6PMQ zcU%%d;Pu{~MP7)lLDb~$ayX) za2NUkVuY@7s>ktKSI9(tWhZwl3o9gea7Nz!V^tU*-5rAc5>kaE3L6T+=xGZb>GtPK z3*E(R0BM79MlIiNbJMKYhzc2O(7wTNT{D^~ols$g4A&_^l>J6RL^8&Yb#qtvaTXxU z?4TwfOQKBMQ~X*WIPNY4T230GKuZG!TGfO=alr!dqdnbS{%>r)La3o30dF#f4`TAo zI2b}7RPfu2-SA8{X@@cVdx2d3Z-oxzV~Oq$!WG}gTk|;|mcdhO*UIU(1@9YH7E5LY zUx$S8HwKjt^pijgvS3l+RKLv)pREyY8Ye-80tO!hxbjt;-^*pNtAW(0|E-(^yRCZb zksn|rDv-1ErU}}--YVp6Pa0y+!LvzKenYWa@8F?`aj)h`k;v#R<9RF!Fu0cj(BMueZCmhX{RNakyV$ zFA;5E=(|A|c!}1((EQN1E#JNI*9iWY%e{bos7c7n3h&CHA->vcz73t10QZ715dI+m z()_Ns41|x93Jipy!WRgiCzTioLnQ{nfE)9sA!PJyhcPA&>OKcr^nbmlBi}URKtU@H zKEjs4hxB((w{90CXb}7Yp@~88uS<$=V;%Zv>%ky++kj!s34)at|5{rX$?^zpjD+7B z;7&AH2`v_paIq+$kuYtDk?`0-?zs>IeLu)uN1$8EX@EjwAUt-kd$_?aC1iADdSxFO znU1Bk;!xnIJ|qynzK=X7oFSmR=Y&OM8mD&DBuKpDc^9p+vdj?MsqF7pO**IeceSZaRV=$48bV{)B@~M0_-8JP=JrA z0AK&V2!M%LN)6dMK?n!|EC3e9kQ`B9cfP;B!t8T41{Je+2^=w0$OiVbJzjWfMVL z=f3EVB>AbPB_<}L zI%~pkx1#Exy$e4u&;1n}q08lsm_ecd#cLs_p-Zdew#TUZ-ILgL1RUqYAn=J*a=b$` zvC@bS0vKF{<2})jBejD%s4;Va`)PyCCuH{2y9cu+qyY6cpWn66eU%>|S|?lNcCaUc zq1P<}|4-2(^o2#Rh<`a4dhudN1yX3dorYiLcsBsr0$?&5O5qVZewpKoQ1JL&ZwjyR z9}0js=5zOh?o2;!U^>j>X`fDO&&~!wBR6aQeBJ5?U$xBLj}KaeQIyi&&&%KhBjrGI zoLQ|+NkAjcG0)wY?g#JVffp?CA@-6_Vp=yQ5bQICUN^lkV>Ny!Z&w1u9=IzVj5P*-&o2jS{w zmwpg%2KYh6+F2kbu4MmN%@-E+FOkn6fi^-z|0JO!siOImd&>tVk?F@fxr#Xrr}UYE zWt`GyiC;LS&$2f$rNgc42>#}CZXRM@U-7(q7UM(#IIl0$1zyt4zF3WuSJD0D_3TBB zU2aA`XO~m@(;&gCbxAz4q@UMUTjkK!YYuXd>%T7xx49kl!-h z@Je|E|7Cf34v)FUp2ch5aE}aOAqU@Z-^ZRHETe_2)CFE9>Q^;0@}0BA&DrZ3u{4fX z9MU*8fu==*a@8Z{Znh^7>SGOssm2iec{Vy^K>P?OL|Vp+Z^5?i2?zi7E%#{aMuC&s z!wNzK?cv^SkVQB{N-?)sv~ko$k75uxMO~2ogW$zjApC9jV=UYWOnJwqNGrA$1<0jJ z%g}Z>oYQC%@q$%~D8S*ok#~E=z0R~bcMa=G(BQovc-INg_+C4KcYgQmfcXR;l4>hS;EN}eb?=KOF^#L=6S2%) z1Sw9iT5xsOYq}F}wBrXJ8`rNbhimQ2nr@`r#A2rm`te%(Qv_TDT5+0&dN~T7I1>sH zFZmgZg%s8C8b+b42bAI>Lixw;XAJf>!5NzGt%`*iyWB_E=L8&M(tkR`_>>pQ`!V?8 z>v;_3@IL!tsK)#3ztU<*^%@5Q`|c0WkGRu*LiZb=EAF&w3DnEIg66mv%M1KyVoEg1 zrI`@yng4Y1rT=tyjw0MaT%@nGXOIS99rAN}q7~d}Pv!GJg)Mo~lPv(3L%uZ*d9VCIU!JTVnQIDti<0MgVSjY%*X||kNzyeq3#`%wUNP$bTZG&3)h^hp)^BaSp^3?v;Z>KM8UBuc z%lNpGtmH%u6Ql4-|n4|5Dix<(K}i?~+&LW{W8 zjTRB|n_eqi^4+)(esQk~5z)Yap3CMC=5Z{~&;?!wn)Bfjd;)axj`Ae_!n@^9F|M)8 z!Mn^YcU0Gs3bCVVEaNARz^RUxNI7n%LIbgx3e(VuU)@8KLa^&u5Wyk z?kw*Re^`{Dv|%#+cf`%N{swzXlq8PTAV|V$}29VLHOt(>)9nwZ-b_#xX zZ)BZGJGmXw#Zd}TSJfZx5@w^7;qa8u;K415&7L)S_On#iz`n{q;xfcF8^+UPY~6`m z5mK(sHT?EMM~^5%3ufpw|7erRTm9*-=I2hJ`-m-a3^W0De34_gA724FP*|xv7-il@ zxD|^gcC#qJD02}X{FnQjxwM8G#~gWV8G*!%$6_Lq`8f30ih;c%bcgZ6o(`L30f@Ti zlZsRZKYY4I-&6Euc`kd2l%k7WP{X_Ra&+_q2T|}7l58G<#ue8+Ah`J6%gw-}cw}iR zd?pya_u@AyAtJ5dtG_Pa%?^>~7}M$QR>AxJn#MIo&8-GAYc;o_LC*szaY=TgrDiIN zC*bIZcaM&2&r(UL5YC9_d%|i`{h&oRk^YB*A%0bS*r(aAxBj}mI!A?5346!2+@HAQ?!R1F?N2AK?ajX$ZTAl!GRnh$zpY_?h4 zuLvj@R?aHMg@H z2u5^0x}`c(bZtNBdfseTGc9U{2KUq7J-VEu{$})(=kzo>HOJi{^duL@CZHA$Cr$$? znpaC8;dhe#I9HQ}Xu#+8uXQDnVd=FjF|^U1UlL5AJ-;k|p*_FcuL*m;H?3wx2z$P> zbuHtW3l6m5J@4(-j^Fubc`^H#2#e0)VrEFxgq;PR!uECMM}|be>q!TVY$!`HXQa=molS2 zU{Uq}L6drw_nhb!^}q}3PafnwBCvTQrz_8w_u_-D>~%4ro>%mEUUZ?nrFlw@B5Rsp zhYEF)u#b^N0bv-^vF$|xMi!v3A%D5gn$G?*v~Uwp3@z+%Alr8|X9&mzU)*3sBpF-u z?XO}B_~FxyjxDYwr5IcE?Jr{s3hs+7$_X^a7PkH}wrCGbir6Bzzl<%YpwJppBjVr! z=~M536XOC${c3?4NBtV{3rGDLz#cN2d!$p%fBQQIjnIc347Qm_h(^+=3%oox=c@%k z1p1G=y7nj!5Sw9d>sBONiaY%==v$W<__AI3=a?&pawp&Xf#8vk;AYEQla>kz)DiM-;)2sHh0oMU>y{?A^P0CFmDEzke<-GqW?ZGqZEMb9;MD zEm>al7~L=XkgEHDy*Q1Oa`rKd_6+?&`0_feKd1^*Fu4p+`WTF8xpf+(C|gm zdWZ0_nU)poX`-G_;G{?`4!{Rz9_`+X*DSOy;5CNgA}KKC8=C2!wOE$0PYGk6EUYp9 zSnD1%!;K+E_cVf6!RN4z#Pl+_aBt_i_%#+4)DhI=ZlF=mCNb@)8JKBO<0V}z`K(s1 z5#>TL!b#hKO4`Wtc8`v+o>Jp-!O93FPU2SN@-qv1cVXKI z0$HpuSSZ8A@7~b?y5%00D`!MKzzcFlR6Nxhr#_#{*H5)tVuuN~bVg()a9BOqn$~H7ikBp^fRU7`|#2Q)^Ib0^J|HB-Nlzr zvrb~y2t(n@sLKXGccr@*FPUzAiUsExLjh-LjUot~b((nMOmI^Qf#Zx58sLoc zCJc^Q){)FY2#{k3jia3)kRxm^6C4K;IC6vrI!C2Wel$N_Xc@_h2^F%Ptg&505Xg42 zU>l9o<23|_tf7%$t=z<5sKhY&^Q`ue=fP&<`?_gVsm-Ea5-Q>7KPrCV=s%jri1^S_<1B^j1`&<{{hI-x!uj{(EN`)h-XKgXX<XOy!BG zdCjAQUTDQa@e8e3*cVTHDBW+LI-a#}kV!J^TeP;?_o{O@J<5 z)-aiE@fJK<-9TmT?k%_Ph!m^K`+l1>DX_d+(=7`skyoM1d(KzhAu8{9CGsNt`^S^E zTL<||Yf-IZ2!CR`HBmhaLAKqR%0Bgx$g|7gK_MQAvbNkB#@EI5XuxO(ukElV2ku~I ziN)zFGL;`Hu{7fkacemLY^Sw8f1Ark6Y#*BXWpxeT7Iv!t(i!<#6#y;8U^ZC`flsv zUP8orBi7FVWJV#MSkIda$~Ec(j-pSxjdt4Nj<$n3%pkRWAD&dLM=#dVr)i|oR9oV- z?IS8N+3`!XNAiS~F-~&H;{U_>7MsfY5XQI`F&Hv#B%Rg{X$CpGbh*XmB`{E@HTvhZPUr21 zXWu^(EqpqyE$Xgnoqpc8(;7Ry)8DSNbXQn-Un5jSSdg)hD#M}%PudTUsoz{}*~XFy zwU2adA(+rtF2HN_l`B-k<{CR){Jb@mXoY1FhM17|OzTpeH-6e$o1a~4scW+L4dTD9 zwWKpAAw=t2`;v(3-xnh;oJ5>h6{5l1!%&I7#4nY6XlWAD(~M+L!&?M-pMw zT%W2N5eFwaL{+qW(b^(Z{i3g|6&L~2(w`n{1!OhpNqDd#JyYG96D6eMq~M15g_D9C zeJd{&^vac`g19%Wo4g->W~|S$@Za9FPG?d541L8cD<|9l=<>_9+)+tkG%tG_D$vag z#_}0X<9>2FoZ3&m;&S=~Jh|*nsBj*aWl-T09r$*2A2!sNYG6M(+jA2H&h`KSv%P3u zIv}h8n@zAd+XF1l_CN)EMIb=u-6{R}g_`j03}`8<0lV{UQM}$6YfW`)Kc05RYK=`1 zd}&FbCJ}@sfg@+EN7;P@DtFAi)a`a2qe7X+&2|%J_>8oI0Pq><(*l6cNTCb(jP%`p z@)_y-gcQ@w>3$^Loa-lVa9ahHHUY%_S10;u&q(2iX9j@PV%&fA6M^EBjT2y9vHyya zLk5!juihZk_>A;bFtFHv^)x6co{=8xC!dj$j#j|_s{*JN_cz4j&HjMkh4$C>=r`)` zx!J?B=0k9^??&2)o4w-V{1a%VrZ5Fnt;1+OCS3{pD>3nqgtoAkd^+fSBJn*I^f-NOn z@z|yh-?ZEh&jbk=XKgM1995kkc-xYs?j67r8^Zq8`w0nVjokxC)_8mXW)1TqL8U*9 z`t^h*IkH?pu)A6z``Pf$|m;HV_b6 zSfho^1Br#|4U~D6SV(Te2^px}V&I3Ty>W|4Cs4e_gbb9o7)tKB#RL&*yu~O3N7y*h921jaA1&RC8i-HADz5+AQcGcr2t7U<%nPzM4kbW* zHVjn!@JE(LUgXBD!cWG$f$~<(9 zq#->Ci*$zhKV7JS`9DMa!u+2xsFM7@FW9y^K>mk~hl7}%^aoRaPXnM!E!%L1slUY~ z3*%R-+m^CIgS*WC!v@I-_#phN?IsSOgL~j0naH!DmypPlw4~=fkGfn?%jw6nB1Q*+rDJ02o&?}4W(OJ&}M-0{7_peE2ntz z_TR=qB$ezLB+G}31(h~i4Xb5qej8syfq8X54)zK+fl552cX+awZg5=NGwO?jWPW>z zD24g$1*+7WgJgcAO5qf`0vO{f4DcgBe*26-F~3y|lKG92>-kMx1;_(EvtyqWt*D)s z6E;|XyE#bK-;}|IR2)G@Q*9>s=OC=V@x&-wNHpQ2$D{knL7w7U1V8n?WhSdnn2G^h z-@|l^q8&l)(B_FT{7fBNOL%|CGJ`cE&4exyo@P3A6TY{ut*aU{Sf&v_eC@#`jo1l0 zp#@>5&HZ``;bYhkLg*t`%W?yy+@4Y{F|Wp`HsRn&A~AuD6~r^@Jl+o9d&a$;WC(an z3d0K%%M!sC6U$QZ3lq!I!IdPIAM4vz21qP8u{;@T%VE2SmY7|(830{$+4|ehF8DTE z^LX1PcF15X6U)KDa$ps)L}!7>wV0kg;{ zWqFbO19n2{vc3Xh-cmGeme_s-2@C?q_I?EzY(_L z2%gP7wpQ%=(=uG)v2ix>DgkDYIzwazsW-$JiloC<x1x{=X6*X2<2@6k7GE)ces~6kDN6?HI^|%BE73QDnLm>_@ z|AdNPn14ctR+4|lw6SgR&Oi9*wrgA4RF)!|(=}~^0nnwEmEU3NX%^EdoWFTIIFg68 zx7Fo0+u4d(rXfdWqIN@NCbAL)W+FfsOWghhi|GikxWsKWlq_)rbi$o6ROX|4U?!Q5 zdSu#C;rkr!Oq(M%L-3{PDAo{EaVFDNU16mLgyZBV*kbFTtm0V~TN_qJkeDJ?3?(U| zd?==f@Df3#Ei>gA<}Qn^9)D$jMtJ7`z{oL5DYtdDHSUcQ*=&(GsVZl-Xc73 z!S_12Mbs3Z87dciPYsm|KB}mG%1Ah$6x-*65{Hjf)&6v(eS=Hh9F; z@^9&z4wKpFWKY`=mPN?X-~D^pvQ743cobL^f1;PI33E~!{Xx9~uU}@{;>zzH(NgU{ zjJ%!WWscKHoiZZ~jYH&mD~l)DY>m8R3kUiW!s(bGgP*@zy*_?x6jT@Kh7f8tXlxMT z0T@aHzQ%5|sbHJH4Z?gHFzSNY4qI+C85??z5W@>I({5oA%uIX4FU(APhE520)iu_Q36Dro{)cNAkSi;ash1jXRBFCk*cV+E4br>KhO{ zm+WoX#{`kBI1sTR5AN%45Cr(B6EA3^g!9we!$PA2sOo-wn9M&1z!)_V{qqif>Ihk{YUl8r~oqEE`DyHEt?G`4Ma@F1f(4v#IHrC)#pbC z*>19FqzOJHn=)M9=Sm3z?{k1CF0e)O6GLoCY%Rg!eGafV?RN8nLv5qj!vv3P@7LHK zA_!zF5EFoH(r{Y>J5I337O)!I?8&wmUVnsb1p9;#A@7fncRP$G&3C}MAMDHph1;{= z2t6_ddPCP}es`g*I}0CSI3AhS7$NPDKoF=fAn<J#XtQ%-psp zl@lbg1|(&@X}ql$J3xq#^zC75L{LFaQSpN@VMlqGwmCL+{0mjE_i=LA|q7d zZS7=ucRYW(tuPJs8Yw+cbx-({QKZEC>&-r>V#nsx~inx@mpAi(A8m1t96wu>l= zbBLlCQ?_YeK@iXRXhs@)l%R3e_)r0vH9lQ{v&I^z1kM_T=I82|+GO6rV}3mc)>L
g2$!9ym> zA1Bji1#7gI_GpOqBYRu+Jl2pf!^w1t0N`ZWHJl&3$2p$=P--h=*@O;E3hy<2>SjtI zzfdi&KI=r0E3=dN=|ilc+OLoo*6owT1`sTUPM<;&I)#OSLg$R#6c=e|uN_C+sgUOn z%c%|d@6uk($QMHlj-=Y_Dt0%FK2pW6wKJCTl z0eX?R#g<6ipncgG#9=R}I8QIUfT9;Kc=uvzxhjeqs19x8@wyjK zsPmD(IOdP*hqm#k;|t_dAB3^v z1r-AqtSW3vcAsH{xk)gHAy>qRK$FC7MM1O z7a05T16Mj!;}`!0&&ny8e2a0-U|Vhe_G7lNpoc*j_^R35hU^id7Ot5eGywXV-YvM_ z3@@&)?itMs57{z8M7Y9Re8c&L$88Bo;=eLex15~KWuYSrXN(#@V)}%+V>U0>Cgq1m z%SkzK(I#f;vSardqPX&mZ3TOi0B~aVngHO$>@3WNALvn^@BY-*Nd3=fzW51SJ^Xu8 z{>53>1=1c9^SROF{`l?ae~{GLNY&0lJbh-%CeF|hAA$u$A@sG;eD6VcG;efDBREcU zfWtRC@I8e}C_74^XO7u&qDkM0nfVh>+VY~~$3U;KNS7dfVTCAR3>N9gTXx$E#Jh~+ z_~TF6mIQEi(aBC>-2Gm?u%LFpgeN@JDVcQ;?6g_5aCSl)13AHx?5XTx7~b`fcg&YnDmID77xf8gv)ZGesOb+(2W3!=p6hh4wV*}9T0Y53km z1;f|51d6^UJttP?1v>;2*v`g(t*z8?O9ZG8Y=+g8AW-f`F#roK9c4?Ap2 zW3Lk(gr}pA8vv?<`9)i-a>U2Oqh5rH=hgzg>_uCG^0BWwEz)R54TjR4Ul9Ph^9up+ zcjvFtoxf`Cgum#{o1{6q^9FTi^|AlJomo<|-~HUFA%51}`Gv1LHT(slg5l0{1S;H_ zKzdG034O&uW8nw)mDb}0|83Pg+A>ymZYS{zo!e<_WdphOaohX=&i&=MEjFkxwCDQ@ zZSkzX;6%o7bZ-Md)Zx#)VvAK>Aj~UYhrMcxsY?d0I%%3`;7%Cpo2R=4NC%I23&pNKu;_F|tg(=JU-q&CZFB^+v*tBe{wxU@}IN{uFH9zx`J`259 zI^An>Bo;IgM$+vmHC!QD!D)F*qQd==OAzTfF<+fN);D!)T#AS?hW{rMDEgn6gBTnP zfd21F{QtISii7)v_=WyIQK|pmeap5Yfd8kivqi{6{$F6i=d6RBTo;K>IJ_?y0HPBw zIsrlOiEj|Re!>=)K!PA-^3=&=rp%Z**%J!C`Gta28v2|eM}|VxanLa>95EDB0k}md zs8Qqa<_(|YDLrYcZ;BeHg+d(RgrQK6XPnYQq0u-T|F;SSr_?ZpUpr;%N}@o6M+$fc zn6+06Rn>965ug#>B;7M2;0A$W1Q06_YeT;=0<0tg28&K%1Pl?sFam~*t1JU-dDpfq zKm-gLYYUeVFb$aS@J+T9HiK9TBcR9t5S@6-_aOo%f<#CIU4_rZv`rL4GoW5t#$eLc zV#?GJqh^jS)V3UwxCquU`b=*5INuDBBaJ@U5H7=FGXY>&Y!CpiuqZfRFO=_@TfHW) z^>4UyJ)nif12QZg5Mdz}+m8`W7#5F^uy`gwSctVYaer^A;X}S*p~3GXVX?t4EHt9E zL%i}nAZ#`bl-Nj!qorAx4|G$g0$NPVW@nkyJV|-=zf8y$aQnj``?=xFh zGIiJB86Zha-4nU2YWK=`S+{w`;HcMazBND`>NdHsm?(t0O(+55gC8v0 z+#D~FWgGQRsu`Q`&+0aYa^f+Lzt%@V6%me4_=Tg^@-d>M5sr@#C}thv z8|wNs-$K^uEP8?g*hT!p0PHfMvH)EDUBKHfv={P(J#F|pg1s%NRrSrdsK!q^e_C2J8i4%O2PJwiEzQJ0C;cNoH zFq|m>USW9oiY-%JF#(fJ&t2SZTYHhBQ3mwEP#_Hg<&o z#U@R%t{yL&eMczZiJgs~|H1}`D7rySI@PQq0A9}i>sMR48tF!7!@>TJ-)!lu4rzv- zj&l2Y+AYO~yQQbAxP3jX5&TK?GCWPSg$kZ__Au!>F*Kid9o*ehsD$qBC4Qm1dx7x4 z_k}rs*cQ~;E{bQe^MoC^xo~B**4&<0Xy&dPwg}ktQE0_dP;hEAdPoMs;&;Z$-R3Nt%0* zp%Q-jho`rNji^~S;UU>Zg7OKGDYEf8LIJMmnn1V(?4Vqg_pX)}{fKCa)_+v|LhC;& ztxvvqg9g`w>%xp4h5Vi5SyB8z7!)DXr#Ncx(3DxBe3xSH{5QU-RZtklt6z=}H@T0w zc|j9<19qG!kKTF700dCJNO~tQ5ua_cKPtUL2&8wOugp7N3VFJBK7P=iNxV}e4Sd*8 zNqT2bd005ltZJXfekLd%?@W`8e;^d-9l|YO2MzC-C+gm*A%3BEYD~njaZB$^eAnKM zzdf`^174aB$FpA!wm0}2#}r-24B}xu3M2T(Ycj&Cx>G?OKagW@!Ws(6TBbq&BpZML z>ci*A#OMi3#GkKjKOp@>2&8}FpkDz;k4?za{c|JK-jn!ehBR@4p%VH>d^n4*VfLrl zK!Wjc&n(%tAE6NLi6+cQ|9H(Bc31RNL5#ztNc=*F6iJ8FF;38;!v)M3o}U)W*FT${ zVwyD(zCCwODx4WXgo;N`y!2XRs5)b!NXA+G==HGM`G7^>-6{pO?4xr6WX!Syx4$73 zBrV{1TTQhq?hmv7sq*J`#_dpdPUL%UILC^=iw8JI@}ikdLiyB$cJP+-@R??w9%X;V zbX*u9qFp4vy0Thr_A0eP^{%bSmoN@iQ_|IA6UnOQ)I>4WY~@w;D2TJS;#V{5p?uN{ zUxk#vR0w6ZLH%y$r5otcQqzl|UEbHGLbkPkii!N- z)A=pR_m_-hKa*DA)Er(jxc=?xqW)kAIP;$zIKW~ezcw`2%G1xrR^{tYr&Z+>>)X!+ z#ZH0%TmN!!LlzIe^l^&MSL<;l!A`$f)p$}s3l6xAml}n+VDsFRcza_OO#};LMPv#9 zHCCk1q^lY>32nt&z8*ZD<&ai)YAglL?FRu$7*`sD9NkpsKQx8%carRHt1~C@!W*zv zwS)>4-yxmuYoo=|M&V+DCtrWS0@2P8o>AVp9zXvb)E~PX`ik+1cNO1Juqjjd;Z%Dj zn@Utd>uvJ2-Xv+g37YlZYhZtuJxp5NvGpF1)|=pMy#t8@LwWUmrU+h|)3v_5k-Vtb zgZZh(_I2vXN%HP}nkphJdcxPD9|wrKMQQfFw;6Tn83zHfA@T3V$Z9N2l zj@J0enA(*3ys(+QB_A=iS{@rjTH*GC-Th|TSs{VqYGTl2o_Elm>_rYjTzpSA_if(M zma6@wK5G5R+$$5V`=U`O&ueG@HfSU0!S@~mQ*S03VYOmCHT5nuwbvbFLI-={ZQ4{R zm~YO!C@Vm{k?54@V)%rmj9$wxf*RWMKJa@(<~T;!{o z!bI~T(FE;SeTt7AKcCDCKhNtbtk|Ob$vQpMdQ%Xf_;mZmh{>V6MpyfvL7jmGUw5>m zDa#VfXdTNk#TbODeG1+heL8x!MmOwe2p{t1S1@O}4EK{em|rLzc+Vd8yI2RJ3U+j; zZ%5lsk+X|dQ{)|UojQ9GDq#1jTS@s9M>@+PK#XFbk`|`q$bXCP zRJ@yq|G_*t``ddtKU*wA;HANIzUPmo_0(;!l6a(BEKfh2&{Qplg~}XfHedfpd}wrl zm63bPM0v#Fzgb}&zV_?xT9IS^D|f~4ycfQT<9}Q(j0x~`V&~KjHTl3Ag#+0h(jT#C z&e>rA^hIUao;zBAjpJ7e?IC=Rdv+whIRxei-w&}5VHJiP`L6O)Q{}5KuMz~lOaln< z?oxS3cEeDD6Yr=fPjN712H$hjT%UIv0BfxDr|Km|2k3))|5Wj&%DueH2z!)V*b^$b zu;)|pEkgOKig?oMzAoh9ie4?!cFXbN$4jDlYJoi^cE7;V0NP5_6Ys0wVk;C{dV*a{ zokQbI3qiZ2&Y?-Hl(fZsKA&p0sz{`jM1EkI zJ(8+;{%P2_8%Ramno7mu#@)O+AyL>|yG0{#5wAAgOGA9EqdBN9o_ zgO2-xn&t=TII|$~yc2ciKw*5mVHfRPY9bt5HsXbn9$u2M-*0REeqQ!lty?4#Tzk2v zk_IoNNv-ZqMvk6!#E2DdKSwnw2DPx1l_q{+DJzX<7uo5nxB9-ykBjVqHqky-Y@fio ziRPq0nA61o=u+=6*A3%EFT$Gp)NELOV#1p{9n#IJlEQEfzie!(43*=dM+f$hrRP58Q3R;O|_!9&?oNsHo1_sAuID)8&mKZ7kUY2-i?(CU7{%$*d zkJyt3i%3Hw4^k+`Oqa$r+A1sfuBG-2wu&@ClPseq*(^=Mh)MW6%j_-U4TES$U=bmZ z1$Ql&oxuo*V-}n&I}8VTDEGi@?^-cQf;1+KBuIvwo{roQ40r^@+d^|pf+xf;OoAss zLZuHMJMvnq?6Cps>38t;UMQyy<4=^?tMkuR*`Hxw5_{t8@pA*9ci~Px7Oaaq!TvND z%jx3p)8y%WKTqS=y1~IdUDnzQS=4l6w1@->XGauou(x9=1demc@agge?F@pzm!1KE z85h{%hk%Nrf<`ktp+dGjCEI}nj%<5sY{wD=vIT_B7LW0c+hp&<77;3BJ5RD*L*U4E z9!P%FiOuw8O&!_`&_tG%*9-#N+<5Manw`p^|rsPavY;91U`( zcv(opJH=bm6;|>>R>p?6mJ-K{G%< zI@hRT0Q7E^{ZGUls&1*rPrh$2Vf76Wa*V{xkV~p21c3ns2t1#lJwaeB0RrPRa)$WC zTr@vA72dhZBUCsoacX>r69n=F1oE9k5Xcu0I$u0#K7cjc5i?|bhCOJHk?~2WWPDx+ zUwg;rCLsyqbNdXA&%`4HgvRHeB*H{|;xkvQvENVC6w!G@kkYn$2n9wbVWzuLD2~zj zydcKtd_nxe=zL*D<5Ey8Hz_7VF!Y58 zo1U=e#)1ysZhePnj+0w_cF>uM7l#<&vxA-lDyDu)XP$e|p28?K+{0bGY39J&d30bH zb;^_W1a=n@hg0GGPulA$HAWa|+R6yN z=4pF#M%r@YnaDiS68klRuRdg-<4=9_S-X?1@u&Xq8GD`=HO_yB3qm@x_Uq88vXVrF zJxCa$QYhwe0>ybYknw9%t6lM;$8QP0MXfh=9 zQ~_gGCbsxl;8RR&3E~$fwuD)gO+Jf`+II)YU;U54CZrCcJ-scqF#x*QvS;o*Lp>cG zfU&#hESV)*g6=X)RDH$XL>a(azGCke+f%4QlYfSxoBY;0J`XD(P+S79d-b;JdHT4| z<2kR{tFd8(EuIf^dVaOVY$|~&uiFbub7lqc(?13`V)H1bde@dbFRyAlwPcpD#4{}g z+QL^NGI-H1j+BTgq5&P4Q~AL+?47+t;0X33q^jY@&h!UsG-D4F1#sQ=fB@jS4eX37 z*psEzcCf>Q4hNOkLByUVP-F2%p>l`!>S5J+v%9M`QBQ;KPC_z!mo&sB+)2`9^^;jV zyI!BRWfV3s_#aqld7Y$NppcuFgskto$ikO*{~k+d%X zJK(_WAb#P%?NCzLz=h3tBLWQE@b_Tg=8N`p;JOTeF1GCc+aI{N(u2poHTm$Kh1z^} zydgr)XGfRF`Rpu$zzGB(aNfCuAaLFZ2%JC^l#u!CPC|v#jIA2qe-Q-o1qAYajv$aP zAauSspABFQ_lOcXpLK=WCrAIL}P927lqTI-z{wr}m!yQBlFp+50IhayBrf zVNuHf=(?0WdHZ33NiwUUsXI@<5*$*o>pV>ASehY27Ev3{##(@q%!@y_FJWB?9{t;S zHedX{qb1L3v;}fs5lP0lxSP`zTgK;CQ3H`dYO#{#RshGH$yn3n`kD zIciej^y!=7P=%}Cz_aB^lHn545YM-qG@Bp%2@by8ND!!j)?g2TqXw{R=_`0dy`R8! z4eIl-o7LL&^wN!6ZH^Hl z$hb3CJ_4iHCU7y>boyih*XYA8+jCetf#VniuZl4!y&laUSu*<`W+O!C`W|zn>jw}7 zcDn~Zcm=c=L*Qs9Xn+OzE|I}5Rzk3Pzi%A?(z;X`M_X2(Akg_*gC+#7yCeLv-No7y1bQDhQSbltI}||j2oZYUIahjr zI6;V>s{$boqMbw#=qD#vZotT2NZ@*>Z|Qh-uEudAX^A}m#6dCi_Yef?ptsmh5PA#Y zdv=&0bR}*X03Ibyla@M5RN@>#cq#E6LFg?&2`vV$6RfUDr7-~g5;5ShaqW3NK>)_b zAV?+%yxrG782Jgy_7|hhGSBv}4l= z9K}HcBL^%cSiSGJ3d}?3 z4)513Rt=r4uPRw>N2;=fr`L8kVw1$JlTP2vir;N@{Q$(_7G!cdi9zuoI-65@8*!zA@iezN-J8&(EB6CE=;}Y>6P%p5SiSbFjrr2(Fs_^dZKR zUk~rnBzQE7USJF%e9gybrxmA2yNccMj)ic>K52uY&~!l%-}zf`7Y08(({E4IuxtYL z&~NxXc#s#p&^pqPu6@9y(E>b9EjrcUq0i&pkI(1IZb$u!J;{y;g^e>PFhJE&3(9vo z3fL$DH*}gqpco>f7RYKHCHGOuEX!XbZmCiQsN_)CZo>ayi(a`ZnCQ&S;MqJb5r>cu zYwgn~{Fba`Z;RRlw^P`wgg@$k4BjgWaxP@Y2*O8*c8KbWw-&OYsxv><&krODWb`LxLORI)VW7h~2{S9P1{qfn0z37EE|tStI-X|X3yqM1O;l;T^se9_ zezdx?nNounH+5w2bs-^1(bWwy8Xs%Y9phs0{W2^B8Qs#(FkMviivQ|cOxtq(g zvqQ1)J*^#$SZ6{Z>O4xOln%AhP+qWgM7U~QC^vV|)PS2i45`||qacm%&I)epC05uY z!jH6tkOBwJ^sfr9MznQ=L=ywij-I*OIgb?)9kB#9Spcx-aKFJLiTk&AoMWpA9o%%} zmb>K(e z^P~9sjt&b38UM7SqZZG(m>21P8xkjek~@T_pD!686 z!Kq%Pcn)PpqM;b#UKG%-jTgX3yN+A61FhVb@1sN_#_vN!;?s-%S?GF+)j}6^Fhci)5GO+Sq_4QQh`5g`6Xz4PhB%DcK)r0h zzwWL@EoVLO&L(=t=k?G7_KhC@G+;gAw1B1ZFkmUb6R^HOjsZ)daARt~55F|KBa1IJ z#uY{_CBvwt03&MCZ`IBdwX`ip?F3@9F=ZW0>QW?4V6zPfF z38h-(P9$i2+%T?`Oi^c+1`b_vUuhukv-$907e^G&I;#XTKarmBT?1kiPq6C!D&-igf%?=y{h(By z&GVs;Fg`k8i&y1>za*c;>XD?yDHVlrN&%iY^##f}rBIweEguNE)3n$pPAM72DFqmD z8g;97o;am#@%c_psXVfHamDGujs^V;)@0CDAE(3Ig7RU%p+*btWF+2 zLeH#&7yoT|HkRSpj)x6*#QF>KMCLRQh>Uu#ubj<9&VBxJe8N+gvsi|wpB15F4fv6v`V8Q(k2KitswdQ4!yut9>f>nO zHQsz;)FV!dQ7R8(lma|4>I;-HN}@NwK$p*B8_+a`YD71&k;f#pxFK^B4Q4MYW&v*~iK zrAfba@l|6sG5|9yz7`P#mA;U`iFB<7Uq-OH6)G*hLPxO%uN(Lw(pWbzR$rec2&}>D zEnX%Fy#X-7Tx{zmUdy7j9jB|6vKKzE{E;tM89O7L|LtmX$eLghnsbziz+} z+U>FY<1$BP>@ksMXf6IRns?xZO^&ZsCqP?$Qv<$M-G~CjYt=v@Yw?s6ZU8RcGN$)! zZvxf#In-pahCr?Go@GEt;oVB0VpgDJ@$(xTiHuSkb@!p5HP+pSlV(_VAH3AKd8*@= zlDfOFBdxnfbP)hrchBNyHaQx5ixfN6NzRI}#B!wSzK^INs_yYdyAU}MAnjmZ*0EoLTU0FLj*$vGMw$u}n_dKEu=ox?yu;)@ z3eZWh?oLUC-jRlUt?vHZQd|>6J!A0DZ{qGQ<+~lR6^phzVDHQC23}U(e_o1J_n#?T z90kCZ5$!-3_2;Fs;7%!hbkPd#*KVcDGrJv5_~fV$cT@9avfj?%hsP>D?6snMlVyL` zRatT$KsX7@t9_Qql6xP5@DZVv+;gRf=z!LQz!N2RKNpY?ASL&CM3_->zlT6EDu7Iu z+$p_Kj>yqU?oVD z(u(j5N2*9S3>12txO)Sumj1%0#KlSHc)pi zmj$5RJ|g*+C$;sp`bcH+aETp2p0>oM0&$5=0iGqcFHkPADHPYri|RQWu(yelVo)hgE)*@KXIO@%>lA|i&`(aTGWCP zM$`@$@+hE2Y4Ar2vfAmv7a?6R)%x#_JzOyoy?o8n#>( zMQ*}Oi3@y<=V0fvORxFovuHQK()AQsTMtHk9NN zNehho*p(#i(^mS&J=TGYtdc6He^dt6fhYh?U|K1={KE=a2fDFL)`8Zq%V(iv@&z|J zZDT%JTzGC|aF@b5P@&Kp>p&yLFRTNN1POuaK=ApFQ;wbfbs%2#wBt86k5~Z9KqUr1 z7yJLE47AaZBg;T*SIRQbDsX`)13gLzumteXN?8JUmLSCPR}~0R26~MkaM1|}qXzI1 z!5WLlTkOVG-`DtlM_M9ZKpYf%GOrT^YNEFYS!Kkh-U7GcMH7Us#4W2q9wpL9OPwVu z(Sabml;}widJAJSUSERMHL0{50R6&xkZ$QIq%pDv1l9xQ69m?S^cJfKLT`ZufqMx8 z3j)yM*vy_z1;W5n4mwDPL@X$e^V0XB4D%9!W8WWNB}3sIfq65YtIE32_REgO>bceY)yt0Fu`9*M zr=_47Bo*Mc%=P{3MeHl0m{|Sc8E{t!5Ep+yCCfpS9Bu^vt8&m6hCr$#0JS3R_8l|djYL@$OGYL%jxHL@5L*sSZTI(x?&Z8Ud~kRXMkZbX(Gl45VBgFw;kKqd=ClwRmYuYK0LayyVjTy6*IVgq>l!l`Y<9A}8- zqJKOu(y494+!^Vt#XqY9Wg6N+Ty6&tr!BXsJX~&5fM>bw3zW-k3N>m(n}~*DJTpp$ zYie)IPstJO0=8kULtq+i(1hukU!-qs6+Wp?a-I{c@e$GxRlSf(iQz8X7;W^H11VEHcuIRxF}IuvkO^IBwrw zC;R;TI$11wWewRhMDAO1(-5A&Le?LiyBXZ7uv*k)Js1Y7MQP#}R*TZs2dEZZTb$>L zP8;qSaUM>t;et~WzWbMyl<4*zb{#zII!JcR_%=|6P%g>T*qzJgq&s^@Ax6IH?_t}O zpHFvoHFf>MRFRPq(p?e1c;UA2k9b~#kl=peaH7KL?)`9_&4SJD1Nf)0J6j0tEG`k^ zxQtnNO-;C55tk=w!R2Xjc{EJ?D=x1`z~zLvT#tmyO>t=u4VScNv3dR8x^USk zE}QC!f5oLvEL`HmRnMmjlD#a!6bni!s(*T=tBH%Y)+5atvJBh|3XiIW8`) zv2ej}y?-Kp;RnAbj)PzL;pgk(7kv45Q5E;f@$eJB2b((qe&OdhPl#Xm>Bj+X_=TVG zdtUs)PsYVfgkSh^GCmc4;c4cX;t*Lp|MwGd&LW=gcwL-nhbQU1Elxed)6>K`QEogs zOpHFa^P;%66r&N3O|pukLh!JXP_dU0UwVC1Y?Z+cIMY_bFHv%t>3&&`?A|b#hiyiN zh12<&$jMEs3XX;F2{AQ^?@>yt@w`*BYw+9-&ez#=G4iz|Lz22XbCe=p)X_OOdR-OI z(N`xI=|^9M@$((wMXR+wZPeB4d2x4Vo~czbOl&ec)mN{j@C)6YFSAE{D3yl<_gwy; zyE?HLpw>^E1=q zw%`N0clw-FcsE$d4-9Nwlb`L;DWYy}b^s;E0FWySB48E)U(7YZt&Xpmo9yJh9M10M z4?WDzY~ULfySnkyAJz!Xd7ps6S7P2$HvRT*M)|!urSQ`)Uyk9EoX&Frx!?YAp__`! zWBBv83ePVDaxxDoQ(r+h5e_p&^ac2Ed_tZew#JAKu;Y zv7wT}uMKf_;OqY!1n+D<+3q$zuHa>#nr1IG7T4b2gJtd(<{7l>NrRjtA#FmhVQ0|8DfMA*{+U6} zWB>OLr1&cmz3J-DA*M+nHg`f+Gc)|qk~KJ4_$*?BfY9)mAoS>}j@>A~05oc-bD#M^ z+668)6>JTk@iXOvOAaJK8Fvs%hI6G&Ujr$1Us;f8h95pQ z{l?d($7TPHYBqI`a=vE%i#FSvlb6I_3UyWG^Imr@Rzo)Nzg~CR%%PhIYh`?&_B?%D z?PhAVO>)US^;B}WT6+^O{?yrqCysTF_@70L`qxIjxX792ttAFbL!lE5m_Iz7lg_IE z=S@-+8$UV0+1~7+T@Wr)dlBuGe*Bo***XYZ1|Lygk{r!zPITVJ7y2p-tZuyVBxh@L zH>!l_MdUc&USw^OU%u+JNyhz&kDc$E=h1fPql6>*Re9$r&UMOCesYR4-@KfX7%sYp zbW+`*xhTBIIV_^PZ*a`xrA5xB-m*|fKg!vLj`*FXQIK847l$Crc)mCUc8BpBhaVhL zddSgn;DZJAqiGTZ58}GK`$l7{Nb#ttxyybm+ns{L~ERljg6f z)iRp6M&*1#Aewq*|4Zqi<(J3inSUix_=RtBN5uq?>;7dE98w#dR-Ydzah8~CY$k&+ zziUn(r8?g;$LUn7ZsysUu8HObegrT{)(Kv5=2t318D4b=FAW_R$_CD?*nNEaMEzzw`D&{0+WVM&0{IVr;&F1_iYqa@!Uc&Ntr>L;;=fs zuWMC)`eElTb>U`Sw9h%fTuNzhTxBgVHB;wrCaG`LX7L!ab&%+_CwtgyyAAED%I!ci zHuH=FJ+tHd5MCOJCk^I(RPKe89GCe)0m0#Nep3ZJYS^Hdk5i)JI(=N~OPjG?YkrAh zuI=lS#Me&=596iXhF9a3&CYJ>+0A_MW@obbQ%ZQ@wcOF_e`wdf+KkmJwfANo_NBA6 z`oU(N)U;a4ftR}(FZf57-3qGvBG(uYL3_f+T-#}pY2|)5f&P0SVDUU zR&xtKHluqBK6$nCPjd=wgbq3xxoEZ8d<)-uuhU^}NzoqPC{20cc5McucHDxlQF`;j zwa$UH{ltL;esIjB=H8<42IEJYDEM|L-&-?O1uY@dWk>kYFr?vE3+jd{!Mw|Qr;RvU z`|OFAZ*b!K{CekF^JLl^pFq~0je51r_!d6De0a0m@%bF&0I}n9{?CWZ6$>{yt19NT zlphAisx2}&R#8l#;CN_@432%2Py~na0I}_pTfAaJ*&}dq<+IeLDoDcc@RB6LqdZfs zZT5rmyhTcqH~3h+oK&8bw6Ll9-&BcfJ6x_hw7oGV#MrwyZkjh6BWS+Sg62EQ&Ip>X zNymQi3YvJs$=WkyFZnWjD2Nw7lIw!)-6C3e>C`Z$z#tOa8=u)M%eN1L(?rSozRj{^ zZEjvp1_uuIGy%~DyEyc?O~ofWocmOhwLFL?zEv;9Z1-v+#%<4XBPA()dEpjkTL}AI zdz_6)n1;(l)Rlj<$2rB^l`;_)FTWRNw{8j*23NZBKlVD?dXwYQY}kE}LgrI?u{1LQ z-|{63n*?Z38a^r6yw(F$l@v(KPQ&+v4EKnKOT%`5_8M)xyp;Yi8b0 z!MJLCsGPs^pmU^m10PYfrIGwaJ^zsN3-fD~r_WvEbh*51yh~|3L8hK0E>b@!|GT?} z_Wb;{a-ROE)8#GLM`exFOJz(Dca_VSODmU;4DQ=(JTi!(w;dziU>iktYpXeolc2=< zggCZ7I&hncw;yv(R@HdUlj`@3dYnhoO)vR|2eLEyg@eu?%(=8TIMZ_w zh^9i>V|P5y9L*1mPl@F5PdhWs!-)hr%L^dWJ&bF!yhXY5s`K9uLNz7#kaM(o25l|o zdukEKov?5kaKSUq0&|%k!3s&BPU3QpnytoH&_hJm+j@ZbK2sIr&~*Twsgl1E(xZGIynDWDjVa zJ#H^e>^pCSc?cy#_5&pQ2^4|s2iz+aFQFLZ3>d*#daW)uzwGR4UQelzahYViiz1M5 znWp!Uk1M*Sn>89Eg+bjhH;*q zkiSoDvlZW1GPk3&Schn}mGmoXtFduGbneX9{MKrVtvKm6r_r`BL$va%c}i8K5id9i zm9prqGQ&r1#bf==UV7paT=l(#c zcI6r8aq}jsCZ^hT1fmJPgRgO5ktOjx=PC1jgs)7n0VKKiZq*X(`uClS&Ck*{n2ny^ zDqk=-0JazF=+k}_CkzTq4p;x%q=)%yN`^!Ai>>&*A@eU3gCYQf*+qyDEAh(ItbCY0 z06gU|rEPJTDzLZuKhALxf<%tZlx^?}{^bSx`?iaN{(FzjGO8brO{_9C5v}wv#`kx!kj+bjrzlc(@K)hAX{ zn{1Qg(@RGjpZP)~S_f=MRmAZ*l0tBNjt~$WpL@YG;;Wd8&O1LgEdZU5jjfSvUPN0! zH%BS(4L!Ywrj>GJ1wRX_4?6zE1=5{S=MM zsoe%w_3>?TIh6u`SLRyOl5MydDge`>(V=PTt6&kafPdYO>2bpJjARO$*7_2hA~d~r zIkc`fQ?O%Wv1~I>r@V{=Q-lmR<$V#%^G?@e$~H_i@C8a~l5X|G&0a>wWJ80D7#ovK z&FuieWK&E0!emoxdw^sEnk5D`cK@(}SHI*O7K4dMi%^~C#SO5C>Jpb_f**3XhlSqc^C-AXcguYsZUI?2-LnBi;M_Q4`~kR#4InCrI`&##$ISoHL$R98ye6bo zU=PSSQPaY5T2FD0#Jlb)F(TJNmPyJj4H3Nry07?!%g$ov#7@9dKzC2RcaaOWl8UE< zHUlbtiBK*Zbla0xo^fAzG_Q5V`E)?W6KQ28qJ9trVc+-^=H$f26)I_}|A9#-^Cw-yXz^e(smdJO2dFzcn|D z-Dv8&+r=lkvhFIoeHUsHnr4FRb+Pl? zG5Fyzs))nLZ2~~!a2lAuE>sVv?vM|eT7GVNCK`P3J@sVW+n89RM(V!|G5DNl z(hh!YXs%T}VEkVFUMKO zY*E|n)SiLP&uPugF|M!KG{OlDUVC9qPd1l8(cth|-#V_%UesbBM7VstI#pT`1nE}9 z2bnP9jSSZtLeZ1qa(4VphI8$Zk1{XRcTK6`m0x8ssyx;;iJhPdw|AxS(|=UY%z49r z>e;w#!5t;D?)>3b=hZX0-`dF&<6Rl-tRaE#ZSNW#9YCb}YB~IBg6-rxtj2- zr>iwpzuqZdq`mHoU4L9+;Z5Sy^4!=67P8CmI<(&;!s%G5D?zY;S7V{>%Hn2%rEq?O083WPn)Kd0{9gdy{M7rK_9nhxMq7aopJ( z?;XcdPCM4yo5&DhL~tbr#Rz^F0!EYwF@pCC`(Ol55?sZFFoKT=5*ope5S#i$ zFhS|@BOGZ&@LVAUBY2+pg%Lb&cV!Wr(#AE(KY}|}e9*== zZZ?rnA@gw>^Em{8%=3B|H-l%`z Oa%{%LxSvfTmsoSa;VDwuexmfE}8E{RClX z4_K6t_~N)!c9@W$1i*SpDC+6DhkZb(P{J8a!hZ?EkN{Y;&ozQY=78{Ge$(n&z(V)> zc(&SJY5Y0_VK5ii3AVPZA;BVZK2=gdD<>-vQ>=8nR%pcU4R}h53 z9I(Qx<%7c-vsVcP3IL=o;99qwnd}@PK;9o~yuTv|gEwG3ysr}q?Kx^Q6q$;XgK9Iif>#`nQ5_!oC{#X>&v z&f;rGDuFD1gS8O!bY(AAlbQdM)LHO(RkOLN!5?ZQuzS4X+CW!Tg>^FEqSWMMJqSQ7 z4opD7PxqaZ|Nm(F?!c&uCt%;ZP?9|$Ata$BkkFgd(0doiz4z{djUt315R|S+6Hu`M z0#X(M1*Az2sDw_UG(mck-ivfZMQnVtv+wTBySx1OzTo!{Ic8^eW@l%1X6NnO=Z{)^ zn$fxaA`JVv6qOgFAy=1nWxN%MCtuIx)hc5BYj=y0%fmBYeN!4h60q2 z>DD-r4JYl^u58GcSriGzerY`$Qp)l_JG<)Ux1=!NUhl_Sc5zMeXWgjc=Yp34WkPtN zCZDJlDs85YojPXf$f@QX^K*ggF9B~mr&-7J)L+uF}nn#`Y%AD%w5v0ELk#fZaa0YIMG-!;$%9kUK*?4Kh8 zTC$l$qA`bH6`%tUJ@VZHT$^psCS!!3|I)A`TTX}vOw)o8cNpZVXd{LNtJL(j2b5u3 z2(4JOY*@(n<-x9^HYk=u77TW^V+Wo{9RF&ra2xTwC7PyIosVY;l}hRHZ@NMq>^FNq z(sb^drgNV(TBZ}aK$;F)V3}uvFr8crvM`+}eqor;bjVbiZ^{EZyb*x1!}*Dy8d8N- zAZ*0^sDLic9WsiJGhfje<+LP*db`oCPkj2K5w6J!YeIUtAEuS&UAl#oXRQeoi%L!S zt+!pxY}lyt$4dv+WgP;s?}>S%eS>K<3^QDEWW;RAA(VO?Sm$5dBdfASXHU9UOjFN8hv=-9%%{|wi2>?^VCG#V8=F<~E1$RGpb#sI+GDqL<3s*;$cag0LOl5r07fC18Nh7*Ze97)*)SioYN=tWf)|<3qeCYw-;e*fg1U^|Cv)PmAnJ;O)*%<=swj8+a$nPpCsoI zJ^~G~zH<8ZC9Zlo*-0V@Sb?07W9Eb$vl`RKq`A5%?3M))ClfRkP*IZvm0K(3zXTmM z3Fx?DQgn34FVbP(7QWaw3SaN2c#7^-d>#UXF^B&Y7oYytH?D#TD{b$lIgeMBFru^S zQfGF0SX7=(Ph1Np-yL-p!&#r2HR5=@(yKLVXzxu^>hb35T-8`T0*4WIWd;R6W&(%} z)&ra(Vx0YPy{jebO0Y550vf;H1Ty9T{PYdLZm=Id^xkZvYo-lbES|*JYshidS}b$C zM4oT}wo>ypxju7D70gD*#_{%>U5(ghq;H(n>5KW}Jy2(#P8x7lU)Tcc>@o@!DHxzX z+T!xq(EVhoDP{T8E=#@)*Hp(IDNA9Vk>RSu4v@}Kmc5I4>rB@RY%giBOy(ki3Umjc z@h0nw#|7eV`Oejp{pyFWLie~Mquu+-UQ5dUgI)GI+gvvt1->$u;3nH$ZCIhN?Dnff z^DEn3hgmd%i@wROxwh;(KfnKjtEpm6(TJU{G)Eoi8m%yCmkX?rbRotG(|>oDi?ezJ z?$>o4bNX#vx7qEw?Rdp2b-O(-gLNZaVAoyvzkA@hMHd3c$!~ecRfWAlp~A|$@S8tE zMVDeXIqVt*clMs$3nny<;ERK${Rrgm+om_;cACVcm34d4Qb+2SB|I4S8~EA zL%)%mm>tQ;A3N52_1X9!=yMAZ3kSVX4tgVjTZ2A8p~B)ff}Dq3Js3sDQD2s$zDfvi z)EEEPsPFxcQP-2B28L*+l%e0KP0Vy0wVJqCR0#v3wYescwNFOt!}j2iaNKoQWfhj# z>{$kfGD~E%E<+k8pLDfxG+F|w*-oW6YeHH?q=tIhfK#q|fwSFqi4~~t*HTN7wX2mJ zHZa5RLYd*T#EXPHg)oBf(w_JEymdIExVTVcbQl!E+njNgWP=ESm~|EU#{ffVM1bMp ztrMc07B&PJv3ulQ!k34nw>j&Ysj`o(R(ZfJ;sRu0lL-{<>Lb4M0vHO##vt(WMOf75 z6KoL#z-g{rgpd({J@}HVJo`2f`;SX-_#^-uN@j^{XCQW-E3UqQ*k4_7)n_OCu+@)D z%?EV;!Bto@Zu+5v;8m}=;sZN>`x;Ek>lb``NXL0xtP=WN% ze|0g~XpkO}&-;Htz+Oq9=xmFY^7sFM@>c-*xj$T8SVj=^nU7q>1JUOW&K<&UKLRs6 z6oh8RpRUY68kFdA5OiEssYGJvWC9F1^e>l+8)F;ufBtsmW<=pU{2$kIYLlh5y-xa` ze_V#bqL%s8g%*fb6R}KMO$2Gg4Z?wMS!uQ0GM-W>Ie}Fmt+?4Kvn&hSsjO8o&p)F0)C`a7T{Rt+O;Pf8efR_MC1^&WP>eL#Nz$oMvJC^n(2*aLL0K;gjmEw8yXC}feql@S2KQgd}0?z&E=5!Pe`oGYLi}YbDg+6 z3+HLNoNlgLk?7FLJNMRT3PozkHvTC0B&hrIznz+>q6QN=hQ~JzD-cL0imfb_NSXz) zDBDv5L5F$Q<}iHphZ{oD3q@-!6?K}*_d7!4`J|G=%Cm{2dzg#nJYz=}rYx5W&^Xd4 zmjh8=pGTo0(;c^5+A~G>*|R^8H!Y;O7=?minAN|Hq-Qh?iiSp=QdnzeBLbonXWCKBB zpJY{dm4$gKvL6TqinoJ`hZiplE~~8yVHXJ^c8%|6oHeKGENQjE&+jW_`1ymjitzJm zRs&O4;=lsKPhYtN0Y9U%R-93OxblS0>S?foD=mu>D~JQo_@-Gs8{{GQkQKTceh|+e zFM>s(JfZN73du5mA6C=G292e@9bXF(9rGp|2F3Ex6*R{6xSV9Zs5J{Vk|JOBtilEo0^djw+xzh1Wu8*K(aZd0y-|RON&IeQ zT(p5wYOS!*=p~zIeo3%7A1AGu#Uwb2f3dKqHf`0zSe|=P&w@EpzW}lL_(eU-vbjV+ z^yqT6VL4h%q2SRDK;wND_iV<0?ld%?jmVnk^@IqOGk2vd2v8n=sq0{AK(hf8QrF0~ zGv)uu0A%)h+;o;5(pl6PI1DhXSuH*{MG0f%9D+C|WPXs0oc-~hk%R+_;w}dxN=S+a zG#`myctG>f%B&7(R&SsU3p}7%m;c&8o5k|4vW(k0pPAQ!dU=n3=PA!;PWmP!2Oq^; zk$hSstv5@sSjYpKL3pOduY%g2xTdau+C@p zBv{sYux=7nsm$*+)81sG2omxdz6uZU@qZhkNn3=_;5$e*i%^M!Wbl4#L`y9RI)y*= zxKY<#Fxo=#suqW79VIIP7y(Dgh<5NOnHsvvIw2e@NaTUCAH*;5U-N|U_`-a3BY36} z^PE;77Sw4!U&aK$JWdAZ%c^jE|7JgdVwA@BZ;lhFaAP5hd&xr$A&ujMeThyh)9Fk zasb_#(E|$E=rC;wOOt6!t~B{1a$hoRLT8Z9eDg5XoQJ8T(VBgqkX~Liu6-b$(&qs4&6?f%RY1+AxZWS~*70P%9Jz=};>aidvcMrr!vD@u#*uF|lzoSVCa{RrmStlumuGbr=2>L5tXaT%zz>#b zR5H@C7W0rDu*5w#WohNaRS74N&?^t68Y#BVxcq_q`%YSCMxm(2wxmx~BgH^9R_Y9= zj3^Y<_^YKx%!xzNF!NL%h*h;JpS$Xn2**7bXGFcwuIz2fL>%E8E&y_U09O^6@n@hk zxHy2#BB-cMo|QHiN^Pp(?3fu(SuHc;iKGWHmohURzglL-!&hTwjI!Z3G!7ATOpEtZ z*~EnjYtytM3cE(|uv_E6CoGHrtM=5&vP%SDdC*_0nHj)Y!$J62aA0H##k#4k*#x~<77rHbvVeHARFV*RuO zYy=&P@2#!3EU1_H_|Kj`rHbI;QLbWqEALmBM-I?NuyGb2nO6m2oci$^Gq0*LP+P|4 z5faRGK3^mAs?XNQylTBa!nYQJl~)}kSXO$p*AI2GBP?!uPFA1&Owf_*l{GTMnmEA9 zu<+HHH6p=^=A&N>FU4|vO)O2k`vO#WR3BtTQSkMYq67>3F8sB8{h}giuw;Z*k;2LM zQ|b~Fd>H^*y&UjmfUFd1WpEQ}L}qZk1pf)V>IhAbg?X|k zY;O>yiG(fv#}Q(|=u2eAj16DleUm_iS1Nt^H*afGZP=Kw%^jsZO~Pi`U@rdlpiVhi zAHo>VNv4k0;2Vq+2^a$cCjb!;l!<)VJK85UL|X+ij(_s5*37Z&YqJcwf^>jo$R%HA z5f9VB0N^rNrPuVa+H;Yg2s)aqP5fGJ^=u-FM_~b&WNcK|yovR?_FSk*Btz4x_DOYf0JYcbFLjaCK#zHL45(%!MyJIi&x@Z({F6JenT;4q7|q#wLWjv! z0Mkml1~d<(+w(-a2g!*`{OO8wEUuq77XDKFTbU=rsw?wk%i)Vi zhxzv#nI}`0GEWxgBWe>)_;3o)@!1|lmlBrAn`?T*u%eD6kTRiRSOU`sEv#ONyvx$u zRg|nGed$~4(6Z8tH~vB^O}yI@7QLHt_j$KJkZ<{PXf&fxFvBGFCJ_tGmtvspAD#n` zi6|7!xBu+!xp?!rS~K?H6MInSX>)BopfUVq83SIs-1kdu16yJ5OfH*CzLm@764HoT zp42>7X-6h#7(bx+J!wWe*qW7g_YynET=r7&0;!fE6qSYmJaNNBd0K{WiLgRL0CY42 zijI21bC|yobfIJw(3M?!kuU;BU8g;KEh+%G^Y>PfjCPDwOgQgSJ#4MzG`I{KTObZl>4(7 z7Lwpbt&aGG8?`$8V7gYCk=r#yX9+pV zruKyAGXD(f)ieg%WCrEyvOP579e41LJ2PvndoQSa_Oi$`EP}!LtyG?sdsc=;css=;iw8xHc8B7_dVWchn5o6 zUvwj_Lj1xN`8|GNht|{qYBBxdy>#@8YB|;ciVFYu{6av8Ux>C;3r)9Q_D$DaLQmkMw`mdlVXfzT@Z0Gl^Ygy7pAY4) zBnz8*}{58ijcEzv-#9QJwcatHq>OKLpQm z)X&$+`x4QQPl6(@v29)M7G^N^s>B4yi!liT!(2tzqhbQ zgt~v7NTA^n)40Nnzj90)lMNp?CrpaS-#xAsRX4BW^N(v4*=8a^L=n9;kFWZ2&iwu} zxB;e0+!2_*PF}*c{3m$W_&XsL6CXLvpX`A}hF7Y60|OJw8r~cUy0Pw6n~5#v&5_eV zd%l|^gUnXyv~}`cwUwu|FZ0+CbND-#a5X1#E`_@(n4 zSG1aOpbYzhQOlAP97TK*3Jq?L1s3Xc@vW|QPq8+jI~2<=*Qi}q->~qAD@3YY(`qX0 zqy?9&+X(@{)y=%>BY=`WxUQ{X*9l?T&)N)jj{rdW20Y)hd2;g^H?$N7;EF(AfQR4I zW;veO5W*)nbQDsrub1UL+LiFpDOGOdh_mD{pWFt@(f5}2Co8xC@kIOP3^J)_twrXRs$>};uD4|&&P%G z(GRpr%3FNZ1Fbq6W}!$oy>~0Df%@hKvg*FKK^9oRO!=8@gAyYxb(@cufS=e`2jK^s z`B1pRSBq0;Z{QPu(-PPhK^e}Z48I}_m+cr-A}B*Fl8^y%A` z!>W?N6Ml!|EErWQZ?wu%>ULN@@m=~Xq%6SC_sNx01(D~C)1!FfNjXCK_{UmFr4?WO zSS!a``?C}F1m8Kd*d=e2TmJ3qr|s7(kh!(Afpbg7g>##S0M^M@S^39`{v&&xuuM_) zHtY=oK!v5fql7^TB8Nk-YQt{g&|hF5WPyF(0bS9)y~|CkrJ8W>1o~zuJuO6kS!Iju zotEWq*UOcQH_N40kDhNed82OXiS>MZF8v)w+Bgcg!9o`H)tqaCny3De8RHl>Z`njUEmPAqo~@QWJiA+O&E zSZ$v1PvbE4#SQXVeoF~6-UD4XoGtQ{5F z^r}NQ@w5kU@6m8V36oov_pjKep+W~b zRu0tRU3y9EC@g2k#s^ms8wA&b`j_7hMx;Je%Xs8CU&Tl=Tuz$L=V- z1Tp$R&U{jo-pxK_tQEvZ>owU{!Yd_O*BB8{I5wR97svN06xZliK$<1ZD&?Byz`Kum zLPsS^aq*OVdQ)j%?b%h*wRH4BDq{j@o4jue>Y40cf{RQ1Uz_;BLi%fw&uj+#(`TP~ z=EKyPxgo|2T~|$iv7qDOCMZ(OeKC%~4`14V0xvDBceFuK;9sSkDVMx5qL1MDP?C>` zbkIB>N>e)`GhE|YB1dW@h{c<9Rmwz*U$S1-Sp33zS>w%kuz{i9;&rqwM8^q^vZ>v; z5vRWrgDo=G@%i=(ux?_x41UP6fJ1;%W=33Z)LQi2Qv4GpVp=Zv=MD4g5M@(E<44%= z;Tyh>L?ANmIJ!Y6qJRb;hMpI%H_QI6tVx1x2P3LxHAJe2>9i0jRpE0J^f3+?9p7I* zJz>h6OBHzk;(A>+QizV@9m3r`K*jhuh+!5~{1Rp{J~i9>TMqSwf3#qIj>~?Z2W#n` z^gAW>Au5|?Nz2`3_2T@~GI~QcpFmUQK=v|gvwV!z9pu z{Nqx31RqjPug!M;UlAF{^c=i#dA$}p5s06DsJz|)Zc!pF_hXFa>?Q%goS@|EE9%Kk zg1H$#a~?ZWpwdDK(J~+Ntlm(h+ez4hWa3lw6yi0Z4No=QAK<4H(uY*h$2-)DTV#0z{)&$&r0-AEizx7Y%9}Ox z2CUr{%cxTt>fKahi+lM{jV7zGO(FJ*(T6)j_cTW`hn5ZQ2l-hb3 zXOhKUPE+In0in~>dW)=vwA>=AA*=f9!`WDiPTFyvy82)?fk1^F!xy?w)z#}b2{v*` z;)Yw#=2T8p-?0P|bruK}^E^<>0kuMHxB<*{p9Xpwzfl9szhXnZJjq>KKK1_)I-NAJtMXoISP9;zJwj3C?vEL#b5dG{0C|f0ute zL!Zv>S*>yz!;ekO?VxApV-sR7)!R}bd}w{WnW>HR$IbM-3cQJww*@$Kp{;&K7PS?P zEPsHJmEcNCy}F~{mJmMaR^J%jf745${J<~QD)TCfJB0B`Ewe4962aTI(knY7ELlv8 zt05rN;__~l7RRjT)A79Ah6&=|&+5&%Y@FM$kh=X4Ux|G;hMSi(qkr-R#;SJYEm z`QBu`EIUKR5G&z{tTcR$Xn56$$Y}m=JH0{nJa(dbbSwYodA*kNsKwq?=OY23c6rDg z!G2Sn??H!_S zah?&)YO^{7U4&i-pz-rJUn^?szG`P9m9_OlRY4G(Vbb$|FvDTctEiiUeuzU&FH|~= z|IkUV$KURx&rwG3qOZWB{5BB@{b^W67E98He04j$y6I0HqG7gAwhxudb>&CbLivc! zdSo^yUwM-oT_8TaX$fP_{Y(L&b3e!&TmKBXCM_FpbmHN2?#J+A6O1x!rPTv>PcR0v zwFH23ztWt08>YwrU;D&(f$a){j&o1Zt+_u*&~feoOh*ce-uf!mFw=4-Fb(sI8g(tGNF*`OUz+_S?fyW0==1?vB(Ky*Z_iv-=X}f*y?aa$ zZmCI`=2MKb2U2tL%CG5zST{lk^B^B(D4lsiUp-0fkSU*J6fJLbWW)V2#ghylo_rQz zp?F7#JST5&U_OiJUqa8z|JkC4<Yh=o25_5miD~1aid3^aR z@k{5W`s)qjU{v-=uO$F-o3&X!j=+p>r3EG#-&z8dW}eAU*VSt~3A(wmoSW4(J1HMb z)F|gNi_K>FirG;M!ZT;;IurkwHGxcdo_E_|{Qx9CFVrR2a5Yn_zeyw8jZi~=%` zKyvWem`=|-33M~Z0x{mkT!}~pb|wqNLAn^K7q>xikJi{utl2P-_1Iy$T_B8MXNKwZ znTHU=1nXf`Z$fM=?GUkf|0R(4|13fNEK>NUs-0xGP7&!w zR)&2`pu+6!(hIe0UaS|Tw3un_d?MNCcl2?#&OnXOGABsUi9iFLBi)jW~sKH>XxJnM4LK zX#rnx?a@3Dd5EvU=KEe2LjqZdFU)o_d35&YQDtlze>dIK2&j_kGww z&Mlf8&EECzTPzAZ<^#Qcp!5^$J)?&3yR$@mToLiRvy73h(X;X1hTPxFg7!n0c{rh| z?$0FW@yKGx?~O6EXu4vPna1zU?iT&yQM^6k7nTb(;$Z=PBBN6=e!e8cn`x8umjWYo;$(>5mx=IJq&{y!y>V>(;_OFi*y48NqZ`5I z{&uFG3uAWiDSA8hz+xj~b`ZX)zkq$>%jq#w_1-LW8w}X0Aetu+a%__)50q^rUMB=a zjk8cOWM{=PSjhejAfH;zQeE+}YZ$kv2B;=lOLINyKwT5%q~yHi9Q zjL;sx&j^4meq-68oqa%X8|)XIvza$r(~-yNwz@SVb8ibGBD3avRRD1L`Q>{Vn%|wJ zZ)WciJPggFx5>~vnlxY}n6XX9=9#3yiUiYP+Qd~U0qe+uZE_vaw#nGsRglxz3=A@_KT#A!1it&ig^>QqMz^yrm z+n&W7RM?)?9GKA<_~9H-emDmd;El$08HHNmxHT0@Oaw(kVhG1^HYmp94o{@Rcuadk zU50G;=@Jjr57{P{>sLX?;y``3ZDuI`gfKu~7$*Q;U%=;%4VHDk?pU(jjKs?b0Yu{N z>SC$cz)<`xkX$I=xjL*`7>Vb@|1lE753m25kywPuz0i*c#rsLCcmAp=Sxw&wYx)L= zP&|LT48_5D+&6hV2*RVPdN(U3|Ja#0#7Hn=5-u`g!kSf~Vi@V&ikP#v%PANKQzIf~ zH&`=#m$#5bN=8h&Mv@5;5i_dp4uD|9tS5e9#H_~?zR^nu37AznydA=~e523skC3-n zJ3(y*8!I>(7StCU7i2#;j>*&qVMv^u4rbrY>Rg7zAly>B?l42*=ym!VY$zd-JJ|iX zEAsnkki5@*>@1=T;F%lXn`XF&og9D*2ltc-{@8A|gdi$ajdsdHf1GH3bfey!WfDZ> zK6m(_ipmc8j`6v4d=4Z!P&e<8r~1zL6X2;nXvI@~19r$$eOV1VSXk}>J<_n8@Lc;S zW^qBoOHkYHu%dFfAdyj-?Sx-F_>Qf5?Kse@JrKKSFL`3o z^?#WEq0YQkk7f)mZ9!xVE+GK8?sVNDW3cwUzKk^?c)0vG*eRF)2BZPgdGE2ZNWN~H zUPOIaa@!k zj*9}U7)zm6jQy1gC1NZ^vtlfTVvNnX%QAP|DpL%k!x&4UsLWM<%2W>OwG~!@^oGhT zvr8Im8Pb5tY_v-%vk7Uil-Xbx8fV}Gu(tgEVZBBWU780WfgkFU@v+EckmF{DbTz~M9vUYYhF%d zH80nE^MZ-U(OvR9*g?{Zl??3LC6j^8AU`AnO1zM@DI@D7uXGk>B<2UpHj%o^OU1&X z2%0xUrxxS4&gw&0DSv{r2G6lL;TgDqndj+j9q`PRbqb{4Ij1knp;rGvyjN3~8;Ri+ z<19Cgl5R@LWb%R^v!-E$C=+-0NkSgXRb1j1<|?iqvfAAbyr!@8&r|BdvCi?ba;tM9Z!a|yyOb?^^n z=JMuEeIy%4NHBN6*9boN0XOr?yL|2~{bM%YAF0c~uU1qfj{5Eoa>IX5d=Ypf!Nim! z-4E;L9Y|OX6D+}WdhORlcLz7NsKG9fHtbifSb|6a$oxl>jrG#)nBa@c6-SBG&KmCi|Bo0(+Pg*)#vYOR@d}v%k z(3nXJF6$Kt01N*mcFV^~1k)`1k6KbCJB5GCLQemt=W)hc49z5`jRlcOPAdVx#b)pi zGRbN1P~XCO5Il?-DZ6=-ZppD>1dbtN=x!M@hLZ+sX&SOSi+pD6Zkf--@zIJ=F|wJU zruhu8!;q0ey2X$|0T?nU07J%nLW04QVqnPl(~= zPPsS&J5(ZNhf1UX)Cg4V>oN+pa+rd9EGtHJQZyirPH*fm8YwnvRLNnVO2nN9>1}fu z_27HEq&J}wr4B!z(}-nt2pl!y-XrZQnKbz9O40fKTt>aX@>QojS(uf1B)!fasS(N! zH9`SsRuq6{HJl0}G7*Y_N-Pv+^tM4sGC_!8H48$lF(`7;E|GX7V7E_7%?^| zKG1xZ^nex^K$lh!PQ6el#;j?C4&9$(Aiu(ejT9RldVk`NzLYn@XsR}c1vTPM;MOv(v0Se}x-l3hWY`o8Q`J-Y!z0G8EjI<&fXu#z5GHI|lK&zJn zX17_*L9pz$81xvB-O>(ZcAH}_$!-OW%x?4VgI~pXony=h88zN(fHZ<7TN zaJ}G%sDc=HfQ$4iGwpg$?Lc4EG4in}!Vu2oN2mW($B0o_KLW-iGqxTaS{y>4LP<(L zzM-D6(MhmTI9FU>fr)u>h+N7DA2Xw$Mmoc2_^AM3G>qLVGy3Wcjh!rw;9)Yle4k84 zmy-rey|(R>p>79hkfE;psA|f-EF#^3eHiJ~{QG1@%@W;wY6bi-8>Rd(_o4uZC^Z-b zpw{ro;TJ~^ZSh@Iw>!)NwehKdo4qG1FZ+|1}@>kT8=l6|r=xoDrPOn%ke zXrZuDq&HM!!hWg71k!+Ntg~OLu^wqaHR3^z{aL87#r~|+Xr{2h57kKdp&BUwhc*5= zqaLGBE1&2_WfHoiXh@6?|0oo*fj6E=hlNQ>hq^4f-=|Bw95Euv$g8rMq&L*%bW@kp zNdxL~rK!s_(tx_WH|p(bN>;kuVAo{<%OuU0YJm@*_h@}A^J7??HyWyj@;Qc4+;IqS zhW6@MiXHLiji=lWWX1ffWbS~ql{abCv20`z?y_bdz#QL9j8E+t>-Zg*H%jeTjQtUm z`LB|BU`1Bt2VXF1AaA90$KqM>HeXu?wOg+(_ix>?B)_W}`T3(h9SgG91H^m0XZ!d^ zx*^^M*`XUPmHgaz-l&+Ra-(>@JPmWIULKYH=?1Ubzuqyy(eMDAi)!1kBx@X$#mjDF zG2Lyn#Bprt+p$d0aiBL)9ilf-faMJoYI#F1DuD0?ie`BOg~GB_hIcHdhw-^9jn-_~ z6MN{s%4lcn7o*yhRYqwxo)C+uWsU;Cw6guK0+8cOd} z6b$EA{}(?L_VhbSAsZboJ5&6Yoxi#m-4(_TS|*LlPOgJ;3C~3uVA(0o`#U>?a@Nf# z4JSFObpu@{5DaVg7k3aB^FTMOz%TSLYJi8hyBn4ATMIy}4CcA`@IaT z;^4(3rH4_RweV+~malR(B`dDFmut+cMyX(2wO5T2Hm(?Czj)P1WIZS+a0L}~g9#ZG z64ARfhA*QI?P*lwox9?MV!9{M%`<_yctS4&zSkL~&y;Iz3h;WD-wxxqdKt0mX9sy$ zZ%E{3QB?101B+P}`d#Q9Y0*@pBv~B1`aLK^C6yf)2MR#*8QqdqwrND^V{~QTQ)$Gy z5I}dfkFnAQMY9Vz=!SGYP6SA=9BX_*pt@LI#L~K%X9x&)+^F-N5Q;eq3SPAt~UnLzaM8?m9@&QNVpv zKs*oi&M+gBT_t$fEta<~5-92#%Ud?6C~y6FNZQ=r1l=0qA99F+3tUbfG192v&G}=k z6|RIdIm!piTNGefR_tLv%c5v#SrlMdR;B+%hoc=n3M`8fBU3E(H+~{9mij3%TGlyp zqV~y&QYXT8$yeGU`!jiJite6?U17CokdOeYMT5mJtQHMEoK>~R{jTv&V6~|5d&XKe zfeyv@^zkDL>Z=yqtkU2nnnbH^GkHrwi5mW+b1OPzJtEE%18-}d6VC?on%KMhIW+4S$h?~Wt1d+FpB3^@wBLK0^Dp9=HClDNMh`zVr zD*IupQAcFNrs!4)r3pb7sT*|ua3Z{3NwG2KO7=q({bC7)V9FB8l+HJ^`K+=d7xol` z1rGBj$ozyY7E#!(~^i1zF z&A1HLG!R6L&-{qY3OQ-O_`K?fTq{?T25YTcaU_dyu|hS%*T9XR7&qR zLWfdLQ_>mEc*CP|#v76bobeZq${Bx&G*~m-t}l!Gj2Zp0fso^lp)SI1)xIl z0WF1EyVucFC}9T_4T-UqL!ns9`Sgi&&uNO2kADXaot#-@=PYN#yt)Y(;%rcc zI2#mT%?5>9vytnVW!{)1Q#2qh$Xl&6;uwX3SJGNSp(peZ!?Bh?d%)SiT0#XvjI%+} zP%6b3Bu!f!;ZkEP(^dJXN!nv7(nI=fH#1M zr_Je=(v2eu+ei>GL}C7&PM|0i=HE7`$iMd=lPk;xbPp#(?5SYzCA%Pb9{GLW$9ezBwj$Yx9rcZcP~`Os6R$`G-vZ zY0gK?2Gjr71aD0LUl+eH{eS&u4NAOF3P9D}bQ%7oFI*Qbu#Y~Eo8 zKg_Gm$8DBZ{=X?Y9|ZsSt~M7Ca<#c=OT}viW++j4$-W3t#;;1&{wgQk< zTwEsJg~pfePlyDln+baa>S^lD5d!Aqec^FnV*PhB)pu|RW0!ouB3d@FU2C%sz1rw z!D5daGqYprXN@_IVn2oO*iXBbbixnI4Dp){%>{(cPwY?fu9reT$@@?~K4J8CzC`I@ zUX!?9w?ek|Qy`A|yu|`%Hud$7_k^X_xn$&1)SrIhZ7v&iohK<{ zRNFDCw#!m&j;3HAb9=?c@CjFp=d){MhoFBYRXaA!-qRUz zt`pKvUg`G9C|aLDZ%@B+&&a7bKcIw9ZLjZ19!hJT z@&HcRdA&XFJH^A&A3lKNkLt=3{GVTq+Rik}7d5qbV{cgOLUG043)eijd z)6S3n+F597=S!&_{>mT5Rp)t1_teTcV=CuMn{uX9`8O=x_{#`Ylw7?1-$tS{^dylM zRg>c+F``I*|2LyLsOIf|jBH&U3G1?=@U{QKTB}f2xXP6h5NbC6nu__$RLuDg-S6?0 ze;6gE^>;6J)}b9dwT5b*L`PHpLJcX==?7G|M+xZyOr}qDS9Nx!+)y*GP|dtXG*gSe zox@!vo0g-r=c97ED>~a#eyEfN$>o^4ZT}T5PqrGPnw1KkbLgn zosTJvyQ!AU2j_NI!T14^ia_)}Km{Y`61fm*w3XfDeOVO5tcXezLhaH{O zX-n0Hu2dzG4=C)e$E(ygv#XA(ul?w>QeZ%lTft-zs9u4(P%1>BR+KlVZuI76-ux zinzPQ3LN>s;+fO%OZ*paNP!(vNuF}#VF`ZrRM*Hjuo1iO9TouZP77bo#tb&6=)?=g zH7UC{)%q+ssi-@*(?R=nk8_W37NL*}B{Y|_pnza8=K4wAq?r3FwdQI3!h^Fm#l^KN z@wBz7t4&Xn&pSMGT72H2x?1HlKB0A1q_i-i=j4_7+FYm3 z{QWKCKa_G;;dv^#!={&WzvkRXdjJP(2UiA*mkOOf&<5dON;)4<$X(xgoHhveQqxb% zGuK~(ZHQIwtqS0|_b3{A?k%(De`yQ$d`tH1JOgU-`T+I}BzT(J+cPe3r6?NqoNz|U zT%ESyngA`n<);a4#qOci+dZxc!IdZ1gvB7WToWjkTocBF4a1rcA#miH&`cXh$gc0jC?@;J^roB=dKBji4NYIobPn# zLe4kElJouf89CnqN6z;j;#c|^exjbcUK|KypYJ&WU>bHh%(qK%{!2jI+Dzs=YhiNS zOadamxAOHud{n8p)YzTV`4^QM zJ}1>0zr*6JMPB|}L75SI)&;fGI^^1D;vor*Peyb0~Ab4QeRzD3(F?0}1m29u7}ch1UMKlD4V zg}aTKbQYiU2X;IC${Xd?nP+)QOLuYS?0`;Z&`uZ0P90zbJf&3k5FAcUXQ z+-03b&XL&==Bff!itZj|r@~!G0E4?QMDca#TW7_)0R{Ny$&JGJ3d23aQSTg>Nrkw= z91lA8ak~>>=QzRbF70ei8RGOdK4;mDqWQ-3mB(E+zs1u0j#>kL(c|voY(RUFpPo&2 z*K~HLU@;n{0e_tAZfM8%8;sd=opZjyKuD>|&)3RXIL_j4>hwC*rTbj#`Z6cFVov%I zIq7QEv({-SyU&TlD2gs8J`>>KiEbl$i5LQ|^Gn4qT<4db3(Sk;t&6)~bgv1v#DD*i z`>gYOstsJ?w-SiScl@{6U*e$@-B}cpitDn-s}Q#|MtV(`-;0Tzq7y-&f!->XTbo1 z0_T05W4;hvKp8)dfM_y)P%IfgHk_03L*U5x(L(S#a*mHkao3N7G1}wDCOS;9XE5tv zZK;H~X_#9ldsiO#rlN3ncOK_+v|rpbbfFMjeL4vUu099P$xXxX^K#QLlH%f~Vd#0w zN7WC`%S}V$8Jucogg6<{>wsdvl9S8NuS1pdN$?!Y#6Bsg?&meAQgA5+vR&ax9Fm zFt0t(T_Endz@pWu!?Z)(Awykr5NCs+^3aCLj22%x#*>|#Ml3#F9Xp+^Xt!waohbwj zzN3Jk!CyZwQ<{nUp3TSOHst8z76k z!55_I_osB0>A!wKntsO%()3@xAWh#UuiPvXr4czX`QIu!N7K&`ztHqEplAQhvb6mU z!`xp6vHkSs!`)8Bd4dXx#($JROwLbpKMy3EUHHVmi~`)VszDJxd!+k0-r-GmmI^0|v&8lriq<&PoAj zd zv&mxsZ9yKQrFZLSzJ9E`m~#|u#_pln>>i_2a7D@JbOTf*-Irp?=yU*#OzdU_j&$D@ zg4K-+yvv8~#5mBk-Cqw8b*HcX&^=0VeobXVH_hf=%x(` z#AN(5Zi>mqT)9c_(oKW#OEoT;$y-L*AvyT*sZfpVNeR*XyIn$0R60+e z4msy=V$xIhc8>;&d!CXFnxH^C~rI4 zQ!H`N>Yyn3W_$4f4{Oj3IO7ZO0f#bKM z_{7ETLt57$y-&`5?!sqSr)aK{M<_=R2!h|P!Jp7e(_dcaA ze|DX_9IHs1`mv{&T*!5GXZOXmha;v>11GUl>c~A&c zCQiF8F1E$3C{uX+R(EAKjW9)(O(rUvBUPsUbD1Z+npBYYV=usG2lpkH;Otnt@c&3< zqyNbp%3Ef_VmE=xB2>28Uu7SgD*J$g$||RK`p#WgVcQ9rSXLs}_#5bVrXoI&ihx(c z(TyvldL;cIYC?*WIHAZtJ>u;FQQ3pZ8&gzle(&kg=f z1i^&~50L(GMXXFs;=b~iiuNhL8cQMGmF6j`4dBncxiiWWEsupdce(#i)%dG&&4Iu8 z>DU8%+(i|oCBOTlyAFHqs^z(84b87w4&=Ft4kWArjym?ro>!wlMU}?9?tZYo#+09! z@$LdZout84xwh23Di5@@Jm8+r-Xdh6XpL8i@nk2mdlghveZyjd=U-}Fl?Ow^FP919 z2M)RSsdKLKxrg1Q*gV1;RrEPg(K4x`5LjcL;rJcNeMj8c`HrL|*=JYz_M`4Z_8H|X zRJGY(RnyHeOfglpqE>Quc94+$H>%oav7xGhgJaJ0Dkt1wiu%V@zQ1=;P4*|@jjH6$x&_dnq-!0(+&%Fi=SWh+(lsm<}r)et^<(TK_ne)xh> ziqKp1H9r%(YYym^)LZ(bGwxW0l^1AM5PNzXQ_AoQC*AP;pi(}F*;nO~?6tGBi3Q=V zl=JRgA#UKym9y>2v1B5FP#;|D2_4iEF<e6fclk4tQY&j7Cwf2>zwY5H*+wrq|$kQxfjs>8v+{<&vGx%ZG*Dim3 z&9ered?EF@=YiaVvj8e~&(4QL10ap~J=Lb8owwie=n7m=_0r<%?T|V1f6> zt>_>TCAHvHc`&cuUH3#r5culPlk4+{d+uX-N?!L3>T<~RN(qfwMGL|&jP|rsOI{Zz zESm5Gv%X^f9%8SDb24R=l7%=&m+2MtG#WYW0 zK5>yd2Vb7&dO?{$>!hCn<2>DCvgkrSftvBF`&-t7kR;rJ5vN?2<%>?-{Rnd8@Za4o zHqswyC{*gj&E4ZjgR(8ToeB-&3>*85G^E`3^brl>s0z3=c8fQMuOUcCy^`{NmF*_& zDBF(f{C;N3nqdTvbO1-LS4jhMg$ByCUzchxu*U=md;QBCOrD>8=D@LAXuxiZkOu4) z8fdqr{&lxui3AC|t@1O^tYXv*BXH~$;Ml7{8n9PrAiYi-?rFn%6CCWc$InvnLr4Sm zDjIsXuEEBV2J96YNUwa4>Un{EL6ET9nP#`kNdtBZ4Jhme(tzDUgXmW6bX``lf?FCN z{YIO9yz%_x5{^{&b#7EQ5*Wecu=EyJi(D7?DAeP|JDxbcDW@lQoLfv0K6tq<_=^9U z4_-ts2`gJi#tKKUt=Dm6TElaB2C>^jvvb1}AdrDCdc9hSY3Eb2nS%{cZ-dU#S~iJ`y5T4L4NDf-?~P1~ z;^)3`&t|a#&l{ZgCTDZ2G{hO${oKw~$~m6B5yB4|CCjqPl#eLCh>TvTz%!#@8;T#< znX@-JyQ8*q$5I282S$kN=zq5X$dS+UhoZK-AvXZ<7mE&6TBL^Yp7}j5^78pTE8tbl zpYnSuu@PkC7)IX`gRaU)hbUoKb$I^I1g9k2P%L&zgk$^;~(-fYPC$WIC1i2}Fc}i(dRlI;3 z3lV*8SnrUf?bWQjL*Bjlx|&2hZYnd)#WxlZ$u? zKb1cBdi4oE?E1Vf092pwy#=Aqou)oV4fMRgm)(3Tl!p%==wdl;TJ-;gW{axoOXmht3<>QDpkwhw3esZHv_Da*DCILPrSw6CaHCJ92&J9)-Bxjn zxryUdHWjO&xTF!K9UWPuV2~vvRrJpz+~s5Wq;*wFIHrL7liw{_icKSezzo9GTB34# zQ`RS%`U^#Smh}k=fq~=l^j-GTyo9=*iLx}YubgMKs;<8&S0?yttxV;AORmH-3^-9T zal9udKmTiT5q@_R)WzU{{C#GgklTz#g85&x}8DbSTgILAfnw~~{!gx<8?^N}A zF8GWAesm({#@RVV72}4|@YDyyC zTHpLupjUzZx@NPc9b z+L7z|<5i9@{_Co0F}%TVU~_1K8Q*!rc(t@@WqHPslEGWQ`N>hlF&VA_%SfwMj!hw= zqG~7lsrGZJ+PwDlpI7=F4$m3AJVp7I?>tU^r-7$PHkIud2eRB+Q!Sps51UQqU*)gv z4}H3bP{-bq8edtkdgbYjJuBGvg#4+so?+)?Q@k;xK^R}Nwpuh%{NK&NQU7h~nGtdW z#NY=HfZ5(60-kGO>AsfBLK zaw-UA(|Py}cmY1Vjpt~{^B@Z!Q@(mh_9BrAm(=9jR-jF}9dt=(#Pv3w++0h_zP;+V z;p)kYO$syk;nNiiT#Fne0CagsGDp+;wzSoL-&O0*J|JXIYp3da76um}6QYexRwR6n~s>JrCczquSF2pRc?+gCBOC{U`ub zXA8{{eQE0K>=jRccAk)7hO*i}T%EDVyoQ4>h(fHk>QHMT=KAVTYap8Y>QF&4ht$jX~2pAG~oWe)*X4C?B1nvEm#kNh2?>iJN)2CPa`&nG$1)Nc**fBSCA2<)&$-a zT(SJw>w_xrw_ov8W0OfYqWlJ*$PMr8smbOLxVtkHsV3avV}5Q^gRLM9CPDo!p89M8 zfrC>u;9U~o{UlMui_Suli07Nds>Sa3DiK9l-slQEXj+rv zDWv{*2P+YAH3ctfdkGfv%N);t;+E~O1r~=KG+wTorwcnkp!)OeqWRKp9=CcK#Wc9fW;4_l#k(BcTWv=ix8nR{tUAO2V-!{`uiQRX2o+Omy)0D5ty=o!AJJ+ zBt>2j0F>4t-!Z&;2NUDKhKn$_zcsJT<99}c#?_U`L|U(5re3%s5BuXgTy*TfNaW69 zo-;$5m*ZUy7AzATcNf5TfTpPUg$HPg-jxSvI*UH>#m5^z%d?!9dV0PIbeglhJfE;y zg4~QT=rq+WfLFGsd4UU@CY9go<%!^@2fLjX%-9VK5gzw_vuI)(EgzT?Z4$+ z;y!~37P?RWyV8B$Aq_|l4PJ6Q$Q)#BsV(@JzMc_mE}_Me_3XPmqB9uDO45K%0}bdj zn@EG8$T=GTZ*=9E_XpNt;2SY_i1VYyrPZY@>ILtR30A>$8=f^hrrXx>Ro!y%lD+`^dSvs`p|%;|NK4T zIqwoI;W=<^(Sebk#%wZyBlReY8skooQKhy6)*|lgXfPNqtPpW$73l_jXxTmKLz_th z`Vcgr5A7ih=tIi@06w(u!N6ur{PybB&xf**2Ysl)Jkoi_sMv~BU<=o!30tzRSNKV?|Z7VpGBu;usQd>=cW9Q1%NsWRA>ZY#(Pl_ zfsN0YjU^i7#-PK`ec;IzO(gZ&W$NR5rpxrK#iFc{_}XEHt%y@kNRJ*gMUZi&cE9g?CRCCiSmens zt5XTT=*1YpmrsV0V4A#9CECo#AfY%Y7~|ui6ZfTiw25gK$(?7s<+Bf6%?iYI7g*Fw zbW2`ubn#WAE?8~y(5B{3eb&M-pV5q3{z)jGIo0znyKA-iQ=3_qof@vOV2)ovJnsS= zm#jIT5dd89HE_S#?rmz(U*snT;t8sFR0VtH%+HAbspWr>kE>1yIlQ5ZE63w%z{k-5 z6~D9@Q^4xRYi6l1Og>;ryOxk0172<3<@20j>NCIK5ozTg>5!9}6^V$U1F+v>#}lgjfAMdl=dCc_cAn=zo|%?5%wq*#S`c}x zVCFBvQ_N!p)2&wTygc=4gVLP3R;?9Fw|eJzCLjpA)V05uFE%t@`!dw@x+XjMz6Bom zwk9FQ1>^^5d2=5-izwUW?NT!(9NwS&RkY1HdI& z0Rcdl{FIMb=c&m*Tk09kDiXB&U6VDn>;rjacv;erunwL$cX_tji;m_GLby9mTs&(@ zn(>Kq(+5@xYCMoG{Fe~Z=fWxX<145QAK;4(f(>3xP1!VQnp}bT0b+Qem5~2aXl7p! zv(y9m21J1e=-!S95DdS5@(~dX$Njzl&~d|IlWQRh07_14FCtVpoG;06(&TU$84ho< z#`B8$g&a)GOpDrU^r{oXXCK1roM9sUxl z@PAnQ?)WH+=V71c5+K87E1yviy8j*>7as+rqBZ20A zHp7qRzQWqwJB~>59o$p6$}kuGrLBH^NbK^1R|*Fv@agO){QMti?i+-c6ais*>`?7S z3HVD{{*CyHEdR#8$nqzIvi$e`p|Wr-_7!doY5o^fKD>kDh3#b70l0R*wPu^{a`UT& z4@d9PBC>qIYZ{__z^=cT5Af+y|8!XLU$Im}){Sp7SRB$Mlp_d1v*a_-A$p#mNZP`}CiheoAR1KVL({N^2&HSfP!m}$nGR&iV0TZIEsfM&2s->J!3 zCLOkCj)=t5P>-AR9rlK`bPW}w`C{HFtOwug)NqQ=l66b#ld7yGo|NyEz5gmmc-S8JFU$@g0E8mX4^%}9#xDb>|t~+gM-0g{-V`Nfdvly0{4ds#!2&Ye{{ z_os#jbnd_6BT81CA>w7kVL0Gb>kNpYzV?7ac4jU@5`E+5V}xl)33qW z%xrx|nX&Un3VWsimSAl<$@+-<0G2k<_FWgo7lo(4V`aWt?Wk*T&EQC(1=*#zGfFcG zu?cC06MvCrIL}mUmwrF3oZ`-}3Lgup8T0-N%{cKjtck8=y-}KRgN7)7cx;99%Sq{G$OEoSyEeO7ZlcxSg95MB^Iu+w|+*~;A+B=`qgBir6zA-6H=46@fWGd+y9~_*PM~d z!-uq|vw&os*il>m;K0Fj)WN25{h0<052 z`UMYv$VYyKBg+Y_3HiL5XVqc+7`g9v*mtB;^O>v?<>Q+1O5;U8R!&HIomFSXU95l_ zLIEA_9>)ska5ofSA`gyL5!tLi3j2%OSS3PxlZAF6D#LI1MovGqwR!T&nlv0c_XH|+Zv`hne2RL?ao>j-rSxvby!PUUflUAKN zuVErFN;v$2zf8I3Y+>gV7@^?#`ZLoSwY^KX^-eKX$)f*cZ}^+8VMV7`pD)ZY#AOYa z+x~{*`Bl$p&56BGm}_1>E5}|aTpm;tzvc) z4@;FNF2Vjua}8G)?@yY}NTY$Af4Q)pV2v;Gm^&?X@DHxNm-)NNlbVenR z)-#NlNQrt70hSc-JA;$t=Bm!|;w4s(GDy##QyHY^Spj8`Qme#FGe111^1vUnQc7eT zfCB#>=FxNNIgDS7?gF%58UrazvStE{`vPL#QqHHIeO$3KhR%6FG^)TQzz<1-& zOkdL|=R!lopVul%J%~N8dJxMBs0XDNri*{CuDv zj!saOp3eN`?CKiM?v4y>3NL30_z|$-bf4qocO}go1yGDHR|zL8CgJ31q~@seBpe4! zY1|O*+i+vT*d;L05&~q zs~QZ)>UigTvCP&YMXR&*?Jm|r84Vem;M^(J*%~rZ^~#Y__rUiyh4%zv&Id*l-mGj{ zb=Ak}0rL}y&RfLG3@HujOV*&i#0qFoH+q|q z+dOby=_TMMIdj~kmo`A6oRH*fFF2I+(x-bu-*(<|PGvVA1bxMCJFhusWj8ba)_Oye zvLOQelM**t@V>FZpQ=Pqt8_HnbrW;WPGwNo}4ZSoQneM#SxKG}k?rbPlvg#z;vcCgU#eC@R zz?5I!z}cATKm(-%OIYiV8aR6j4j?HmwAj3v*fiIiV>!UkmJaR=<+K?f-eagS2Ux#? z+LrHZEH`dTi}TfQ?A&6QU;M3efr%BglfUhMvhIqLKR1xYwfcy7=5zgnclnHZlIIk1 zLgDNm_>02XKcHLi>J&=_Qhezj^kdie9V=Hhb(WUD7&@YvbF&Z^08zPcv8smp$9u_| zD-2OnTEI3#U5%JlBJm+8mDG{Hw{Wf!S*$KaL@h3;5V48O&U6-t0j!+jsXn|sLH2Fs z94(4jB|xuh1rQ>}%dJ_UjI&uO1$0nK0Ugm!kQ67bVwDK@atrq(tblN1 z0mg~jSplJi0*;pA#CKRFYW=?pEKWScN{J|xQk>Z2f{GJEO7sGc6O%8fIFZ#<+fycd z7{yxMS%G3QQlmgI{385HmYq8|Gg9gxl&|2!G*ea@lin&2*v3*WItRGn_BNHd_yB3= zVe+4j&iJTm8l$z7m8v1i%A_EG)W6OJ6^Kme>}(&l8zKssb4O{4=)zi%?eB0=IrI*! zK!+rS7gb2&Vx?rC@}a;Vl8nA6=YBb$opDh`BttGL%MX~z@^j2&`E7ti`E566lHgFX zS#2*WAC`R)-(Aj>?{s(W5~~;^#Q$=O|K+TJ_}}|o$q2`mi&ogMl@(J5o@O0*QFXwC z%Jkah6IKrZH}!zyrXJV;iSpiF@Hz#DQV;IcJ=mA%%#&aBcDlt$#tHS{gw=x+tU!C; zYX2zj8~Kk`C+a{I*tYkNK&^jh1h50-e9eE<5CCfG07p$7umQ;V#vy+Ra&&)ZwBY5` zm7jE1$PH&+RBkv0;NXUhy7J%v5Wz6UB{^Xa0{jX|PB^o#-wEHyDr1-AzP^?dj_C(Z zI9%zIyt$uqpeW&W-*)Ai6G1Nc&YR~S#z2%$`x`0Qt0rH2xaBYtvOKjJTPSw8{^d?-=xUa9=Z zM7b{CIj_8N&W~8Q3+Q=ZY*>T$^A!nDd4;wyh7)-;TE_}He-yl znmqS-4rDiXIY)|mjD8@~Qac3ok`$<^o-)|$a<&#NSVKyeRM1AHOIEm@H;7)W30eK_ zm(&(P=S%GD;BZ!pJcs9!I=?iD6<~A2gQDssizmail+O6Oi~7t$Xim8E$h@SS2dk-^ z$2l0)Am@>iiB!pXtioUTPygL^z=C(%Q&2KNp5$*fcq-+vZSmM1VlCFQJPECcl9!Ba zVLp0Erj7t_{WvQn!|*Uj#cvq4T~fylhzB}u0F21IYi_PDqwZ{7nTt2%j{F)CW2{B_ zsgr&wuiE<~HEY(QCVyAK8S%CTtD}lpi&|IOGX_|R3Z}Lg-s3Hcsn%K?Wz@(R97X_{ zq?AkOBPaR}6g%OgItpCIWby)gK)_;ap96{vH{?fONsLh!J)J*C#EqD!Tdol8SEbobG&Be991_3OYUn$eMSUoZ|$CB35HRj!Z|nw~Zsx_+3rStZ#pW7n&}qW$IxC+pu+Xta<1Xy^I>o=M6kF zH70AIQB$T~=WHfwT@@Z6O8uiJ;A&hY$9i2oWvfO1fdL7gwe)O65I<_BUhx(|@vY8O zSv*!*cbvQX3&UZ8mmsj89{4Q(^bYAXX zKe`z_+sv$Kh>;06x49Lmu2S zq8EH#bmoE)nR5Nyz7cZWeCO5jq1mozIX$<1gv@))Ia73Jm@qvVchoNbE&)uW82@m^ z_`y<)Z@FT8#S|kU#8{Oa1+^%KPo=M2=zLtT3hMUbJ&T;zi}{Q#Iu3uQ1_VOYEmt|amL6#?>XwoA@{;6?%fs6nxc`ZyBQ!RzrNR6%C%hPtS(0{#zUGPIcf$G z{CuUeHFc@rzQj88BWFR>02yBfsPj`?31T2ajY5)}$}Fs>%be|Pvd3fa$o_%VkWApR zhqW5J7@8PD?Mha{n4ik6o+L}9bG^8ZktGG0ZidUT-)6QIb6E)~6_$`vEn_9v#+WXj zUgNx7K!t!31T&Hlnh|-b-K!&KBktQx15*+01+f$8Kz` zWYi#TAMVg9WgRdm+nUx|tx|cJWnZDwNXxpf`7-iJOVwBK7cEs^G3Cr(#xxch;@}F_{SO$nBb3H`2-ho_Il_2;&+W*U3!5F*!Mz+jfWP^ zd@k+MWMqXb8dz;RXi)8H6;{e?{yBwmdgiv3*$9*Kkp?!nDXGm&S%x} zcGfwy1l(`xA&aNgUp9VHrVA3HbzpDV?osF9lphc?AGd>ylv?#wXxaxeuEEdd%Ch3D zD_J>_C~H`|paV2=E4^5(Au7E%3IViq0$H3YbG4JdJ>i@yZeaCjFt8NexT0wBC z6f3WJ+Swtf8b#pKfJ7HpjycK!?=3iU;Jeh@HbV;QL&g@Z7xyE8b^3MVSJi>vSxxG| zFRTOSEAGH?)dBG>Z;$DxuPu)DD~`@DZYM7;s=E0Endq2w*I=lP_#{t_UIiXkOpp z%o7|y;%p1JK%8)@VB1b-FXa8$cvp^KTBWjP#hp8eT1@5r<_I48TXZgoOeN$d= z)-a+sVe_C|+%^qSN8C2SwS>822j@Pj3;af8$rU^#nse4USw^3PJRH3y`i91?UlUCT zL9^ubFqysEIb3|iTA+olsPe{%MajMvdz=jn@e^x8cJg~jO}yo4C(g10vaC>WZ2hQs zIpP)Ac?u5?2uadj50sL5g%2QQe^V4MSL}5@DC)6VguHIJLf(QE5OOFWw5*98C+T_C%yG(Ep5u}^z;RS!o*Jr4AF`=&I zGoC||_)mZC@DoTIEgl<}@;X-GUSy+2OWwbgq}<_4jORe^(D8aWbZLaMf%qRQChPEO zxV8=l;5XV}VuEZib^?=!tG*grncSgYfn&^p6;C_AKCBxOVp_XV1GUqFY(07QwN;MBA&s) z+YOUTw-wG0%LXXBPSu80LWvu#WbAJ&GiY|JLQ;m-XD{IPSb7{yqiBW!1}pEL^AH3{BQ9kZJ8iF1>fVr!VJ z8&**fB5SBmqd+&_DaaI~wb{G%agt@H>t#jR=*A2XeUKy70YoIN+{#f4WL?b@z$~oX#BYqE?%K~b zvgbl}ZT0D*_Smz14|wVZ^^B6P3oKRPq9s*f0Kcj{{x(6 zaefrlOgFUBttsC++ltm2EHT|`HmfSL!$;N?tUiVbxhYz;tV4+92^D+?Dd0g2BOS)l z4XtyCtf8bg5N`e6*~KxuDh$Z=g>~r1sV89pijY(96?72e7)p@;cymluZ4{@%?=z50 z#AkP6gXbu`b1HMDy6Ve`9~9K6RiYV*QKA}I6%(g9apek%s;bOf>FMh5F5GcvL=@xs zI~n`W(Ei5VL33#4vXQOi2R}NOigk=xioMqWgBW|SVFfgO%BIB*GoORfUq+-0A1fup zzk~I0AN($F_&3~AqlLM(stUe=3I*Ss3I*RbK%%_*1f1vOP>L2;QQ!X+v0*uo zf+G___tGzfQ$TK>3s+*nn~K86jPvN_D>8`U=G&){d61(~mT-%<>hvG4IhND2q7| zdfU=7K*A?rB7Of{a5{{z?LbdX>Fa7Fb}-5$r>#s*dz74_nVg_q+6M*A;mz6;Npk8X zXJsBOCN7_@CI?=2_7G2V22f=C5x_;Z$?DHzN@VidA+Ep0x2)L}OYCb+AxL8M-HDM7 zS0}@ajF3m&uC5{~f{iemz-kd%uM#54>(vM0uF8CZg7hjZB3y30WmY2rKZ5kCW)lQ( zAsMS9T)oUomWV_(*CNrCH9`kavzcA8o&1gby*_r+upFFYv;)!#rqZY2rtvLevw1bW z1CkJ8o|iPMrV`z0!nH9sM1?DP(E)@pOWqmfIwbC9eWFy_Tnz}AoGW;#hA1tJaqSfk zYQ&U9Gw+X3Yo(PDYN2-WwQ(M?(_U+vtyZI0*Y)B(d#$%3)N<|%RzNE%D1a4Jg6vr} ztdaPUmC{-fN@=Z#EOZ{3ARmu&jvTYCjv8h@v{4~lX{BktdtgWQ0m7)YqJmn zELjnO`Mec!WP;0jvx3!9Nxj=50&BA-@w6 zEv{$vC@z>0sp5hetU%}FmdKtduEyeCR!CvNB538$7TpiOF)ZkYl>+NQ%E`@-RAB)S zp|F4xp|BtbP~SCPZ~#RF*GA$z%rQ!2PO9s$*v~j2{@=Cuf0q?#{*NpEe`1Bi|M!gl zKP%?{n8iO3A^tfL;@<{Hlq2tPc?5@2C*IQ9rNq)ozLw#-Ae^iv$tF*zvCU%z2lu$P!_(`hnz}N?wG6IT z6q6CNK9geJBxtc@8{f40EjpOj2(?zah9QEr(hzf*kZEJbr;FvRfL2LMZO9)07D0KU zxbn#2rLLBUn^r3vH?3BnS2P&BS2!5a3;?T@y>WBWWOSzM2KjOm7jAjkrjk(6H*X|Q zo$Qw>8@F<85+5_hDSA8^T_ZA1PedzrKL7$)R+K3xWx1A!?^zpiIpwN_+!%swP#MO?!^qLmj)|bv zn0NIk7#;0^`tlvX{JI7WcqSU>{*bvPxI-3}&xZ&s5gPLC)(@rT0i3MPJ+ zD4O^Q9dvuYgDL@gH1|eNf1|CO(FMGAgD4f&19OzszEw9-mh2`QbM55Tj;^)l@+f#A z%GFS;VD*W`WsJpjip3bNUJ%6Pyzi=?tR)|-RADj0^mJ#}6u|*B=@uxKZ&ED7i3*Z8 zzL1r`O|n1J3_aZ*^79LxkGB3!ew5TO;Sw@UdG^cr zi}LK3L7b3hkH@j3tv?EN{E9-l?b8amS@N37F z9O;4Zr9`gleS!2YZPMG?KD)qbFx z6;J>H1r$I)O9~)DbfKhivA%#&{ob`48ui~t@$ z#A=4D0D=|-i#1rCo!mRrRmmlk7GZSM0*%&+Gd5_5nw{$qKpFtu#yG>bKM%~U*u^T6 zGx9|%XXIlA0Y`0q1OiWi71<}OlxFimXy%VJzJlLqaOPp9;7H^BXccJy6><)o3ONS` z@Tan3T(0-TWkwKCJs^R}%dB((URd5@VpDrQWod ztQDhKPlMn7{7`%l|LTp|CH3TXhpV1E`S-+{H8l%X{xnt=dtJTa%E6;!bcQH?=t#qw zl)6hQOJwc@jf5b|+#Zc-)=c?&k!!vvWc;Rm@5(b`DE`Q0V2VGEyzc5JIFv$~!9p6W})ZUBTEt z6hmV#*7EkaaVnt=@-#mtz!SNcFIh$6=?fcAmW%l-M!A?XtUfXJ2V?B2>cm(~@SrLe zqX*22HhyE6$i;8~$@LeD=PxwRxM3PR6|#8#3vaVkW$9u1}>t&uC=oa)L7QN7`{t`=fa`RY$y z>&h-yy`dD-T+PL;<*S!X1NY9DLDQMbCV_QFc2IRS35r|vjjT7rngbQc0#ws_V}~13 zzp%i9Y5%to86yApF#aO{_b`k#_`fLb|77ukDih?v8Lsz3F8udhQ3kL?Zn)mnP~JMr zby@6Y5~9`r3mOn`pZ@{5x5Y;qvGSMut1Ex`ZgsZ$|HWSGxUCkg{v9>6mXZg(TwSgH zV_5Ks6(>-HKr5qlXml#`i}>e?*6X53IGj#!;I!U}XJ&QT{CN3z11DXs~CGSG#v z*owOFht&ljL0#Y^s0%iLwOZ#;>c{87{kVOBYnSK}3lih2^$xLWFgmaTTw9xPN^$x9 zp2ot>3IdC36Fva#?+GkP^B23?M&||%2Cb`yLLYGtawx+=>*||g)w=o?RzQP%gT`yl zQxYPzvIbc#sR1o5sX1C&QbT7*V!SgXF&iLJ&b}9d0S+aJwT<iR%!81tSWWzd)C1}D^dY@aEYtl>Ko1G318~=e%n|A zvkMoV<`;kp*?T)Sz#fGKsWtT&6MHELVC=P%ZCAP8gs&4{T;=K{I^pgfVto`U}q)&cS z;xF=}68cfWIuh89{n^c)o8l)}`~+SPli8keLlPbh;C?KC`!R)EA5Zn4-kQ3>^>De1 zls@-HS3^U*jLmiIZoLrol7{+~XvtHR_vg#Exo(kLA90Np?`y<#-E|u)Z=WRBKkagh;r5!IKuz-T z6-Y&$oZ4U0IyuE^DIfnF%#NUwQ?XFja_{#b$^A9um}guaQr<%_ck(_hKg-FNeOZt% z_in{}=!(Kj*wc@#LjGyHs1thpmj`R%)Rx>krE zSbM_zjl%m4gA?8z&$;>w4kf%_g~0p2=Urcj>b0OR+>eS{%8v?G0P(M#^gAqU5) zkb|=U5@p|Au6qQBQh%x;Dw~|{-|czLQZR6b3Gw`Wh|0D{Zxze^d|-K_+ZDt4_QuWxPC~cp)A6ty@gvlnvT!ntwciwwJv<<+F>~UfLeIQ zDhz(WQO4bH-|Z|TLrJv1Sg(x)okW9S`1uo8>p0zU>*cGH@hTla8#d)iPsFPYo7SJX zu9q1%caN6vYpzI6&^m(4IEJ>qN~+aKAhfi114wZ1hE=j?|Kz6)n>Xh7@$&p3SAMW8 z;m}q$b@zt*8o&I&zC+-YmoOOFp_pk1{-T&^2y{N^jJrRs+4_ZRNyrB@*H=DNnfaw_ zs?1nhBU3gw;#w{yF!8{sSmDt)4Gn}xS4Q(iaf8OGBBKyQO0G|k8+VRQmX}{>8703s zHU?hrD!s9@Sj5^=j5I$%#YpoKq|vCjAfWMFs~ogdzj+0RqU9 zjh3n3xz30mSPkX2L2K~X-#4tlzucY<^NEt~msug1nhVg%pE8I@R8H2HAhX|gbv4g| z@bR9_HwnsBaLnW?Y=A`B^+(rTK@5=j`3h)&nKV9-V-LYbSN>f_r1>sL8clYuMCg|l zC6KA?fdJLf1iWGNx;ZLQ@jixCCEiB>zkc2)+j#dT67LC4-N>)GC8HD6>M$SLp!x2R zsLVI;MCN<7Zll7o6*ivQ`8NFq$2Y>Z09?lYo>xz7Wle~;rx|ZAD&8ERLGn-!BP|6u z@avCtyXFbj-Z*hXPD8N$A_%!d+$%z zZqso((b{tiSxKHe1KWvQ)&0a^nvyk(stx@jYZi^a$eKmhwygm53vIw7?Ih-(bG;tY zu3f>QN(i|}`Cd8is%wZ0u%9rV^_wlfd=@= zm9(p^mVKqgqr>EYe_RvA5M4{9V+Yh$cC8P*F^#uoW|X-HiL33kighiz|1z6ZpoHtq zx&ooedoU_`)gpIWv69s!Lt195xz2D$$)$$7wb*R0x=B?v`pAN&a8tFo$b;uHhJD<6Htc?O`vA^0h4^HgnF7U`a7ubwVFQSK%})Y0k|)aD7{ zzO#ZhDHXN(Jj&fEs15Cm=>CMOnB~{nDikXAgh$G}TVtywupS16qCRNRWcO_%hfyP= z+Z_R9bfF5ZI~!GZKPg7CdgNn@>QE?O#NZUlPp;vyHyl}T03mp)(q|{PP57oW;K>8 zbAHIK%`5v&D-N|>K0LaSV5O4SJ7i-oqOSX4QMazvK4LGSE{$0NgA;rGlH9GM7}R3# zu_Sj3k;N;+Esc0yFTk1Xk?i&gRzz$WaWX9x>;YvOVCX4NoChO>uC{v})D@?v>&_h6U$)a=Dssu^M2%9x*T0m1i>C%f%&DKqu35(*#8X-eiU0 zQJn^Bk@BOpkIGPLL7{2yWxTb-?j9WG=#XTsC_~qkFZXf{NZ^*=uaMwRDGJF&q7;SX;V+6p@{%fyLcruf z9=fihNlB@U&vp+_q?h?rybzGYb#RmlRfFt7VgW<65yV`dQ&al`+v zD|r?^gFRLsrbM8`0a1{{&^;T#hAY5+zmgUN?)ZNf*+5hPjHsuH|XdyecSO1OZ0K4 zq4<3gC;snO{2zTOWjwyhI~o6X9REiz>`yWA)l+&z^&GxhM=#>d!51j#S&RL6!JD2) zSdaHo>CWqIc(|EPSXak$D|A%qS=>aWz1!z7BTE_Hkr*A1!~dnA`)vSL{giu>+)%ry zb~PLu=<5qIyD+A|{I#Z^l|vSe!Im&wQW8k80g8a7n0OvsApE)P?^h6eg><^I}W+4MFo*xo?J9Oq(HV^kwE6i{56hRzWckm zA2iKlN$Oe@{Kacgt8?5Z;M>H%=D1slh-5wbX?MHZ$^-Qrt>876xdYu@;$8@YQID8) z&4jC`Upsd4w3Q`s$uj%SF|DQO?Y^TDvk&BOH$1w|#QSRKh#t7h}bSX*Q zfw};;2On%on&jRfIT#TzGlm>Gpom%K#K0ToCAU3U8wpm z!(FJu{oRIPjFn#waJLiV8GS9UF%`(`+GKk4%Fz&CMmsSrQO?+16d_Z;{I!X!*Zaq+ za%9BFNZE6kyVA^$kST-RSz-j^3WZto4!bamSTEhc6$-T35D@4J*7Uy-Xjw3+Ac4NT zd`zU=o$G$hd?{JZ&4X}%H>0lw`a%T){htyjJQshe$lXSsy!M2UpXIwNbG-})-`trj zpDb`U6gwFgB)~&<0d8l#dd3pqQ-$tF#0l2aSnbXge=z_^G}krFNtp0C z71CX7xFUBkQEnaYt|Ir0g(c>vtj93!Ru20^4aGiEK=2>X945Zkh$WHRkXyZTLI`pt z-=(O8PmQJpk@CpZ?&|6@i2i?$5EnSAIc}G6Rw*lehZDXEjEYO&;j92VBw9ww19!OF zS3eGzmQ*3nH-06AOEc5MY6;c~r((MKUJ52&#>8T6bttY$J@|DzMQ)hrZk6&Kg1N%( z*Ze_1(Q|Yw<84ePR5J&h&a}#W+(J%e2?s*O=ErJIEQ7pZ2#w z0dDv;k!jbuyP1>gsr-Sn9_0^$=@jf3+sp=ecUXcV5e{u1N=x2meRr80~-c4 zj zZZKppf7{7AcexKas-}j^eG{V7MMP?VcO3Go&G6I;j8a@GoenV%)|au7uvKz$`S3=j zkxC~-5BE=$ z-z;&@vs;C(a`RG1%00__9*8QQ(a?ZtSbK%00Tu;OvUr($u-K=uGy4#NX35@EWgmu= zxu=QGcr&mM=0~Y&8)<(kK9H6mZ(r{2EPl7w`bF28d1-86ye{{54aw-a{Tfs#H@6vc zYHmN7s$vYRt>$)e8vJ?qq3WTGvvOk*sM4l>iC&>#d-MeI~eeUQWnxL>lWzW>=m0Y`caji$g zTE)7ATA%TQ;gA@?02B}8=Qa`ofn-lW_Ovw<^R9b=9PHj%MjX zznNGPlVL7Olgm>^rHduHSOrH5pk2t|Xf+gonQ*|c$$is@HjHy&QyMaB_ZmnVlSZaQ zl_$AjZMO(n^&xkC^O-c+U9Cef)8(W zPY?{uV!`QYYENuxn%Wcl_+j@bQ9WI&HV!R}K;>R~Vhd$1vUpM^4==WO2H);E}&NnKQer>1dcR{*xYl~QQjDEp|gzn}_)lD2p+6=rioq~CB zJ3~P9=sStGL2cj;F4V_94gLn0!?0KIxk)~TTO~FjDGq%fF_Vw^0DqB>`2d6oacC$X zZ@ zHg}?2`+Qmr^=s=k_W%*qKr3z=Nu++CwsMead{1y}DQ zYxIK$4I9YSqulv|wLzw@%vZn|)fQbDIdTv;Gk}^hxM;osp)_Y;s9?^t^?mk&dz2xT z+G>+kS=c~Xm4&*{vMMuHB}K@uUvg)d8ym=oU6A2^MAuO+Vm&kt=_0m30h*RhvdM0D ztGJoikjBHh)eKb0L6oQ3^}E|65m^%pzU;}uao9iY1Tl?tem84aRJW;7UrX4JjceOxdwGo$l? z44Taw8Yr_l3;v?nY|;>9%X2NX>S%;erUUI{-Pd5%(YqlWx#^XfCi=2glsm|2Siw-{ zK>;obIsv`R;hoKH4Qas<)lFlt6lU*h?$(ZpehQOyxl)#EDxz>*c?tz>ijy2bL8djk zqnl$f{Gi3gQajFt72%W`CoMLBYx)cT;~HhFRveueTI~ti0}2#)qlN*2(;C;1HJmPkd>we6oI;5E_^yDL|NUZ$xa==NzooaTuVTYN!IVKXtJZ=a`AW}3FgCIm)hidVSRH&BNNUIttOcXLe95X50 zI&-i#Np9~s;>XPShj^-DXAVrDbZY4}ojU&q8`WwbxIIgs zL39GEsP{1COIhX|T-8&a=Sf`8(W>w$dgX7^*={~|8k((ByZK8#cV|Yugp89Mb~cj6 z6nAg6o$q5{sDLwXNlE3`*<-(OpNo2%;Z%u~`G?&N&5s(%&4=BMqdwuqX&2n%%!5k( zWa=G_V$HAMANbBk)?YR2$@h=Alj7dO2ITgv_e9=qBrhCsuM8$saP9D+Ddnp2{=p3x zIOCa!eGsEH=!x^$;(=rld z>#yClqY~kt0TE-z;K)|a5qB5Wue8RjUwx0c8`adzT2KDgkh71uZ;h(K@nE;g*Nl>5 zzj60Uj9@jb(JKM0GOd5Ly7J?1+>4FA$Zmgl-fGjgpai+Bz9bF@F%FA3htK@zj+BSL zbJu3XEvwgGhJO!i_UFiKY+5yY|KDu-M*ZNQu!)E8z}VQBwVK{a%qE1EDIR4iVCrR!Sdfxr&l^`uZksr{ zj@yuZEUJu{S8eE(xPhND#%4NT}W1=|`c)7Q9(s23w-dk$QX&v1W za@!eqwJIx1_CWtujQu<@idUAG2Nz#wtdp6`W+%$SC)_tiA4M^IjsN?mak!k>z575m zyjDi`AWA$%ZasTP^8}7fE0{cW#+4*n|K{$SxRXsJU4hJNPX~;SWnbTFME14yDJ1%mX#1y>`}=JjnS(8)VMY}go@`k^tzN3*HRwWK@09Fn$OH`f zE@ke1{~;wyw9SClWbQKM!F;cEcqv;$@fTUUX;)s1B9&E{T=fK8&eUO8ugHxcs!9Hzta6An5=RhxmK^ zNacIH{i1sYeeTZ}d(K^Gn73xo0V2n(Fh2CHzg9KjVdaj0yLXx!GURW6yEDYYtlKjq zJ>!jsRFCPPz%KhiqRkoVAW_&w_w4`w86<(fo6WTu>cf6(8D(R!H@D_12;l2ksaT;S zJ}Wcmw16-5l6#UNK4fi4e|nCtEn@BM_XoGfoqS`tg5^)ij79O_ZoY97!cyoZT;n?Y zJtQ&2z?94aDQ??Px0j=86YJDjL=&4Dlg>aGU)|GD(iyf%cAhxmign-$z6X~U=eboK zBC8$dDGW1PHc^Mj;4i(cUA;!!uBT9T5l=wbf^&sPSj+!LdP_AWv#@E<WS@)E(z-syRe?oT`-;|Vfnsj=7HOMKe49&jkJEyq|B%N z((-|+yVZc_s6;DIPf@d3@RT%TnyFMsxjC5(1@M_z)UmEvo*9)Clo2V5vpr2kB%_OR zipxX*pNv(TsYAwLKo<@X`X;pYG&V#p){caPJ~*zC-3s>5jp=k>pC%Gd_Zcna-nO2> zMl+n~RyfcYe`m{WpUg>0;I13kp)^>dCh9I{?e?C#;zLwe(nT&m17}q7bAJ@_*Y=)Q z#A3!H=$>^xuWwlv`$UE~)GaEK?NlFhlzWNfl`Y|28cLyy~ikH7Gr{_loC_vyP~ z(5YYrx(fkn1p;Of&-6iLIao$^_l%Tpb*vXHU+L!ADSpgdJ^cx%c?U3{I9>KtLU#u=(&*)f^bQ{=4w~)yZ)Z1#VFP+t*+N)4r@-^ zfChNHJP({)N}Ak7+`uZq)Nz?JgDd3^@{AEnStY`>u(>*~_5drO)=;3|kbE+@6h3Ji z?&xJg6+Eow=c4-?o_z5tt4Rc2wg? z%}n?(9GHR{SX-Hb)<}7vTvF(1mC_HP+ntw7_Sx& z(GWFNX}4q`LTT<~L2vQh%VloQr(&Y5GVM@~Z$UehVmvD>9p_D#%kHec*1V&IdRu8O zD}^ayec^fzw8ag|a$b3H3-!_x$U?oebW02M($XyqPwZNc$9$xPI&bh8D==>HTw`vm z2=`Vfz|D`=E!2SnKuu3Banvw0wD)8}?{If8sCQ!@^fb2v66Kc1ie?8v0Y|P`+(MnM z7}Y|ZABh;{`9}QAc*W5oIsTyJ81;iL%#b;Uhix^@mP&?UEn!qFmDDo4swK&={DL<| z8pUu7C?LX%mIyCu0@5h)q|2;Hjhi|ex3o6#nlLIP$cBnQ`9W$81-Ogcdi6L@8xzoz z7&-cY7@>0{M%Fn=VzdDgW%_u}Ji(zP#&2z6oO!k94{c zR+->=)w~|);0QYqsd3=2wU`4kn&_CRXM%qM!B;Ex z&G6J0ZCTmeQ=S`PsQz&Y0|JhhtuSxo3=dS0i8$7XX&q+cd8)j<9CL z?xBj<{UN~a*qC7rleK4wR?*hS3{&%4J=X{hAgLd;*x#$zH~WD(8V@g|a-YOROON5y zYNf|HO%&zEhpg%zrVnOS}g9NtTRjWyP3xd2SK6=n9hJryE+Sqh>Q( zsrwG8^F23-<@Q=jTdDYQJu9H_4hnR5w!1Q8F2P;Px6UogQZXnDw~9gMWGS~lhvA|a^ocALgFeX$NO+I^8~zp%X1>@;;(8qZt5_%D6Y^d+|X}lqo)AypX6U0iYGmIttF)%MI5S z$NTcvd+w_u4?jT8KhUzKZfSjB>wD~5M+x6{h>-U_?x~i*QGp67^=yTo4Y$69bu|qs zd{8?32}nmftoHCYsQE`Lb%yJA_=|_;>SYJ(ute7@k`Su3zP&uR$@8q)DO*mz=xHLl zur}n&I%HR{xabQ7ptTMh*fB{lgUmMBN8lm@1$_}tf$IWKx zHrn%w>A|cXH5SURw*ZriS#4tSo{E@UrI-vuV~&>D*cc00Z{I?q&gNMghRk)+zuP*cvZ2<%`Lz0=f8WbcKDJMkdNn zUiFL;b6G7yGpDtR5SFn5Y7PZDLRc4EYDEZ8g(3uC;Z(m-39`ok9t4b7}wJ5yK z3Wx#}XbK+&mo}B9Kh5b4OCmo3dbn@xo1XdN7gm!99JdIZX9Yw63V=WtQMHX8VJNV; zhteSAE#C1Ih}7V!E;G3e%VK4+QX&ndejF4dRWOV?M(PGU@)(IOrn6Qmi;@i8*n@+4egCb>uOevbc2Ry8yqzYq2w+a z!gLKJvC3?fDLz`#hTLQ}FQ4zo9<_3}fUq0>%@c&;#tW2ItrV(F61jV=;g4 zFmPbMRqDzQpx|pElI|$?wsF9v)ix}171tJIY7Z`}wCy3XAVAXN z1On27?olMmx~FniHh`78;!yIzQEgSa!7oV4U9D!kqOOw`-lqg9?qh{IclAtLmAl%; zO0_UIS0v1rNSLT7l)Ktw$#N6J63AVB2wlb8)yKRLC3&DCNgmabq}&ytRkAGe!v70~7v+R;OnFR(Jo$8i9md`_dpd>kyG9k0?!RCj!5K9pN(flk948!!pkx z^ZE9arFg+kX=eqLUR9K^LzHHn)LuD^(N(H-FU0bE@FU^jfOe)kqn1G82Kd29=$DH1wpm8I!jvqJ^b zI~59GdWT`0MeDU#Fjd^0mlXVEZpL{36yG``t7=wATD)!PmE--gq7~1_niLi}DT<_cKJ4WDZ%^H!0ftP`Kmq4%TWiWFlE;s&YZ17v9v;B-k49 zLk;y4F8Qv5S|i?B+j~RGD#JQRIcH@Pl>@k-o2az$*$!&e_-6-|HqNTrDo&P&6NLR3>*U4guZ&XxoO#n{PuNWII zi*KA7=8LHBZEXs-E>yOPQiCpp67LQ*6hS!Xu)t({L)sCWfKak>-*xc8I;(>r?y^@b z>oQvy9aVr+$_mMm^ehW+Y2M#a9$Y%CiCD`^(blYnW+4NdN1*_N_?{i*sV7D?kJBBn zZV8okRG|(hNTH4mVC~&=D8(gnfF;-`G;Z~kW_Z&L*&^MG8=^E|`4@DD4sw=pLmfI4 zA+y?e8=60LRLRL-copo`@rrtNTJ_54Da)F9Td+=98*K-zPI02tDH{Mj!qMEjPH-r7 z>H~kLq|wp~OT2%2Mw&MPO~`E;6A;$R9N$r8VcT{JC@))9XCu@aZuMXirD5~nDkr94 z3s@ss#txN6w%2;UvD`V25uH>d(6gh81dM@Ln|2UHUxtZfP7e+B!V102>`u!60$HYpd#SB=gWv#^ zy|G&Hez)S?7_Wu^A4!VllMUWpJC&R&ABw8oM10PWl5+~GXbpr*_UPc@rHViC^_H`jOEC@w^9$aOpM7rAbyoZHjeI65dHtiC^8H^=*TD2F|wm-nQY z$~vYU_9PAU3wp_CSMIP=<;f%P1jm+KZ#6hb==F))G#%!(Lr^cdwX^ctRr+~Xi{-2t zIo_q6mE&F5S^4PF{@z$QqrbPSc+y_=F+vNzDt9>w;SRw4OeE7ocEW% z)vwGQJHPYRV-pi~N)zxq@4H?O^L?G`y~hxaE&;A2OzwvA{Zen15Dbbl9Cp`I3%vD% zYNyTi=8F_t#c0Imzt~zT$L4wG*1mh?+?9cVjMGCCkzyhSl9P1`IEY<}6S@QwvDT^` z5lW5&v3AZl|huZxNghRCrGdt3Q@!@ac)v7NDm zUWa|t{W-qmw3J6 zaaM%w#G?qH)9o8ocTfJWN|cPA;%!-T6Be;F7AQKUu@+n1;bf>g96*dO2x7cmnfFHV zg^dAH=1;p)V(e2^M(sZeYTtdD_YrZK)uE0TuYg3S)$t3gFwk-Hv95C2bnoLLu3NCy zvA)-k2THu%93{KD%7g2?&1%MD)$(1BKmuUe0AtIU-nOE-4P&&HCe)O3_g6_l>PKdJ zCyB1Mx{P`!8};s?shbxp!SimC;5mQu&b;H8*vWFWn5`NFs#7u z@op;J^hh_AZhG?;Z=NaMVvWgF9bf?HN3Qu+H~HRd?~0(BAizG7J}9cmSVs(A@1{N| zdVY@gYVk`jvOad!tO)W)Vyy#xOBCAEw?xY!-lrtqJSjv4XNI~RO2uT7^WH03&K*2i`aNN#N3VS|}3wnWRuCqtdQ zInZ%p6+;Q!vPr&K^SsRs;SA5CjIFXp;Og$uHUd`Pndqz$IGJyRn?tM)S#Dw9 z67MweQ!pE91itUC=J@xlFldf{xfE>KC02?95yfm7P%80u)#mZ49wE)636yA(b4oPH zIRFim`AsnMW9We-xHmaL2{99&FXtbO9=%e`ZSht#f>%|Q253yd3il7*JiOYLNdKPlAkvKk_T8tzy29gA(5<%kgT*Lc}DDIb+ElW z(0inS%obgp+06=rWVq)M2#r2rr8XIU7%aojux1Du?zUve>5vRLfH;5A&Uuz>^SF1u zsFo9~0P}Mv+z(-8LEP7V8d_e%N^RVa3+8@e1>6s@xaV|;dk!G(2bSl4 z*B0++alefRvK}jQ$nvjbWrSpTc_gE^0+KzfA}L^M19+NMA$gIN5t8T2BQdrEl5bc= zL_(Y#MI`kjSrOqlTpq`x&w3vdReJ@i65(+4QmW)&g+YUHc89k_B(qW^&zx|bUN$FO z59^j!rU;~<)+ocCgMhKE4JBKnK+V7!CG2?!#`@aoGV;Cbn!E{eCTq&&Ov=asIDF<+fD-p&toUi_OE4KW+Bl%0TW1a3I#w7o zblY}8==D4+wGG`4JM%AuWP10mT5Hk3?uP?Lr(>M>Z6HdV>BtK_LY-a7K7 zJ$<9)={??b@s+JTljjjTOUFX9WJ2djp1kuUPYxh?t__xF!@b_;Ma|wJrb0|_H5Fo5 zVURo*?1QP0!Aen{EF^;`I$vg1wJFvNF%b|yTdeo6A!O2ont_S1<~8pGk#DQZhz|`W zUKpCV37sUl@lKN5IDpKEK!n!Ea))%0bboLlWaIE^K*ug>PpTdK#aj%^ZG5RCJNF_q zkOtj6y1lH?tn)0#X6V&EVWx>^SS#2P7;ij>zJ6^#1n1C zIfayIYvdFN7oJuZY;VN(!MomiM#$6g&t3UGM`Pda_u*QQ5Pg6JYl)&aSE_1g zU~}a^Ao_sp@)m6m6D9hjSO`ibb^54{l;nfnheeiVMICl%(T6rt;Ja3HKZ1qx)PCML zIkF!t8V1;F_Te?hi(-5E$Uyn>kG*B$W?Q*&y`1}rx4pdW0P#$R&##9j>EjY)&#GaK z#7fpcpFoEybb7o=A9cg7f*$IPnPfmyZexbEQX4ZyAGI-qwbjPVtN1HfetO88lTrtN z^NpD>1n`X+36JOuklnxVc9%VS7DdbR);|Y}w{%r@)WKoL_=c`#9VtJeA#CsabA-~| zb$|r$NO}Jw-sR$~tui^HKl>=d`6nyXIsfW?)ec5%-#}j^<*}pX+@szQNAr^Uss#C~ zFa&s8ECTDPt9C$%tQV(5*2@M+l$XBp<_HcYUvRRI$}0WZN1gN*$Gq!BA!7_J2lXiz znE2k69LdUbmrATIO=YFjrAZZZ=|)?ZuGU=wLe!;PhKssn10>1=-+6}!4ka@^7*Sbf z+TX1ozxUoJwlIW&ZaqoeN)k`9Lfx-7tbV=8N~vG3RnV`4wtl^$`vsJ!Uz`&4%LYi4 z8-DWk4PuD;^?3Py`L_RzM{cV1(~3lvo|Z)Yln#cmLh4xQq^bMN)PCx8emW}!>t&tJ zuLo^Ip3a9`^S^o9I$(;biw$-AsjZs23=KpG@Rdt^aK2AJYd@$TFUBJSp$91Xm-+=nPsfEuF?LAwbX;gSLYeH_`mVm@m8N-9e|27W!>k?=GR-Jz zY1}UJjH1?}l%b(s&HlGuEz-TZ(JX3PQ@bJSO6@Ijw^{VExP@cIQ#s`--hgDR`#H1V zNl`qs+dZtPwrM`!UlvsN+Iw4nxvy%`XJQ*i z8_b$jb8|3jbaq#xvpPDBp$VMbg|8w)uX>ro`v=B~?y7R<%*IE5($XBDb&GC=hHe2* z-_~iD& znee~BOVT_^v!sMW<^E_3XC3av;q3 z1;328+A3Gf$TyVr6$2rEOm-TiowQft%X9Lnb|hXMQktW4oF8Wo7mN)kjy$|VpCJ5q zpn7BTHDpD8sJozv{R>;rAg}EVR9}xc+qq7Ypqhj5E#Br)O+_uM9HbzcfNPD-2&IIn zH^`c72mgRX(NEQG2F2-}tJu@S@VM5p=JwTs@d#41+N~v1Tr^xZYK%S-C8GyGU&c;q zi*ui}mi7;VGqExp&AZqX_K&hx7g_!S4fPkuNdmPGLRlbv{M1-DvLiPXj&`v}z?oT> zBk}9p7pudP*7i!g@9f)k192^RYe8Kxkg-JaP4$=W7A0RFPCUEZ&rKY(`R`RaLWfWaiOtLM_6McdeWV`y`6 z(3b;T5W%6YJuQi<=hEYL_;bV%S3GQ=skEEo`b~xRy4c%5-jMcDrPJEm@6_~92dT09 z>7Y^^ySbW%cG1b+S?GhkV?f#X4S$oc4OUN7OOq(RJUtd>zF<#>nJxNO(Zq?zj{2X2 zAf&6kvG|iIlnkMvmRsCPPSux>M}OMSI3R8bT(t>1MCQq04f*>!`OItULyi zBLliN2vVbr5iqz1`n$S4?00Jpc(#YVqi``6$lZ-Wh2bkd+5KWNPGf6xU0R17|Ga?daN_wUyoU)WEses^o3`3+4qa}teG59QH7`c z2jW_*okt@yq|mhJ(*vhv|CnzLzpt!_-Wq0hFNXwW)29ZhyGyBk?IqCxDiq6Orv|I2cHW{X2TCiTM~4G&Quq~q zo17jU?)_7a4Z;TCtl($Xc<*R?c2F7Cp$CQaA=dcA67xA?S$tq})AI^4_6NO!j9T_}5ARw!9te@&=eLCj_wym8KMu7I(QMN!&UmPwkFrsy zUtpD!8`S3xVT1S%{KK=R9xOSMVZM38cl=q9R4`MmCG*YmkeX-j4(~R>uci*pvTqZN z1&ZYH<(d~-Oi*+(Uq9x8q0BUXz8Wl5XTE;?h-^m_jz{G$ns7XdEPtQdELx5aIvz@c zjM~04SdG0$N7##aE?Js3(jKOXS1c~znjCFMEP!{k?fRF()R(g^PBhPJbQ@dOYPX_d5KVV`srXexXPX) z)-p$~5ht-k~J1#P6gNDvYQmQ%Z9+mBA*gYnH(Xe|AC8}W9 z9Uh{Fofv1o$8RP{*L8mwXWu1Wv3M~Dp9Sy^zRKU!^$B$)J?u50_yv0;9GqaEAWm77 ztPvM;#DaS07oHp{cdRywi&hzsk)Q3Vwbs8Ls;>T=#fJ!+<_)h11MLXynQZSA^no<~ z?-wQrMoV^8lK%WqKiiGOx~A<$XW*|7hC)f9y>t9Y3HGs9i#42m%O~+EU2Gs5S*rzO zsx|>lwKRBJoV}*4u7w>Zx$-UT6bqsj1ZYvQt%NFj!U;LtS?nlcBD= zAOX3w?Mr|@cI!iuK6?7}EPD&Vz_OPH0i9;;h3Mt7YTFF8RM!gsl`Go!F~-odniqd| zOQ??qp1allss3Vyde7zvYZUpYeVl%nOY$ai9Gue;rK9I-N;7D)!B%QDB3Cq6KZh0N z+coE{5~ZA@$$F}OhU2`Vw1elaXU?~G2tr)6dR-1_A}m|eG77SuuqWyvndY0{N z5w}5^Oz)AI#I24PwTO}Gu^JtDrqyf4GhEwe&lb;cRu|ec_5G$^cUyX;yAt)`xWN~F4l;wgcLD`vpXLDFwJDx)Ar_ZEhR%VvdrfpM=~6r-fmwm zIKZ-pEW{)2p?9X&9_Sze8zWd?Pbz(EseMhb4J@oUL6@HWsW#zV#cm4>(y8l^3D;KI zw+5(hMS=qX8l|tcrwc}eLO~r%IH8iHEtzsvK)pc-?bg_<$1;As{tuhM@KM=yO7qs( zf7XIN&%}KH(b#&y_=Be~=NKO}G5nG%`g{Dt6Z_EYir3*HyTy-r6ZKP*AG*#^uJof! zb)8|%di!=!ZJ1?+Xb?DoD_1{g7)eK08L%x~Whhta{Y+SXpdbpWZLl8?YBo%XhHt)J z+h89eS~DUfQj1~C)H~rHOr$oOaQ128H}6w4QB2ScjoRf(6X5J7`#zDy==cj`;>lpb zBn+fYk>k|90nm+aksmT+2s11r2 zSODZc0dFhEyeWC1#N{pdixQW&P+Ux0gfwz%C&#|5!W2m!z~Da9Gf$XmM3l~Ath(gyqO^)!9K zaFydMVy(Q2(dTo{S1G07^Lm+2+grp9lAQ4r=T?T|uBYuk3J$PRoSBFQQyeW95}(DL z1~d`MaM%zk#SCXmS=|R#kI8{m*}v3i$YWd$#`Ga7aFE z?;=iGbpX4iE2K<}YNNl)Bn zI>A#%?Op0v9GKC(27Yo;W@nTQl`9P%p|YVx$8a9qkx}zkxrr@RVWVsa+fp`E4k=y< zqiiVU75ghe*&dOyA>vgGJ`P5N5{S`Uqyk@&2EJw=!bCE|`G~+GnWdSgNG)Es&l5`+ zHGh%J3}TT7+babEIhP`_el(G4u;&eXA8}n;5m|lREs5WEf@Qzd3X2*WpkG;1!DA91 zg)*twC)uN<;z{|7l8Pr$1(;NXSxE&tZF^&F8H{?<-Y+&+!j%v6n$NAc%OuY^Xt$PL zd(+-u({CN9PC1lHtk2^Ayr&!_gq?DbWreiLxeRg8DTieP>68PsiM>CX`DZPtL) zPjURy(H*Q!<8(G(B~s z`i6Kaib~%QFCK&65Wn$({X1<8T>8-7#^&I%C;l~REPi?p#ZHBYQLzp1d8U&e+4udw zFB(~l05TE{XL}FE*T6ou_p}Y?^oCD!X4IZ1Av_VxlnnIIhm2Iab%Q^#FSf1Y%}(wb zol(1`f3r2-W^%I*AIYHJ%jy>wCe=V2cF7WEZrHVwztzV2BMMBC{e2`Qi2(Gvf$HPEk)RL>Np9drz~)yn4fj}>*1t(G)ZwH#Y>UL*16+>v_Y zZ1u!?$a#BvTPI#DDam3wC65T`9l{Ej^~@-mLa!^Ms@E+FnLU2O<-6?prH=}%%qna`fcjE&S^z(3^5*Vt^J z7r-CORtuzvofb%au+!AS7b2$?!)A1>1!s2r-Vj_@?BO<_3fM&%`sQqz!ldgPv(>@+ zPCwY+wEe^xBZ;n>5?$pbB+9iMNcd4{d#C{&myl3e?> z0QV1jHff`Wj$%^Aj#4uXlv2(#@cZR^ui4{mA-w6yOy^*|-6)!9*iv~3X{{~C*B$>b zwMG*RM5HDd{uucLVem+lYysg;L&eoJym)55x;>5B2CqmAIs6#vSehE_xUN+t?3cb=&2hJ0Nerc!G3^Kno{wzN z@kQeS~THCTebE-KDAl$LaHj5*XnMYi?n$xT*u;-9H1|F{E z=xEz*L2|B>g}IrN8{V%eY!Q%w+)7Wf@;RnV-Na)(WR;N9M6Q< znvP-C@09{=x>q9y*b;fER|wXF=9510ke1*$r`-ZciH;7o0lXC|Y_ctrLo6x-ph=Qr zhHrh9a(Z1#4p? za$q#Q!o!-Fy|hpDQbc=47_)S_!fR-LrTDKK`uRwoy z3@q>HXaLhoXLh!o;&@0cXMeN_oN`oepvrjWJk8`XI|__!dyBiD@P*w;YRHonl0WQ&}8euf)vL{TRmRt*QMse zP0@B07?5%KJ`(F0Q@U4)G~GS+>m9QKQ?lxvq3srhDey(hq5Q(7BUi47ie2fs{#DW|{y;k{yF|hh0tx@PlZpHhfSGV9NmhS|L^PKSP{G#%OG^+=x(+xycXsd$$;zbo%Kz2 zmI~dAL~nMiVe}Fey)|}74KeEblJe_jv+5{F>*nag27t*j)09&2hus`e@ZWBZWZMzW znxCE<2i9|R>GJLl(6oEe@l%>o+C6n{L>p}b=Us~fo6)pAHD=?raSWV1cw^P z>(Y_QrsXJ*$s|FuK8_4q5-;@=p}C^a&_QFtBSM$Hj@ z%?I-PDx~^JI}I>qAEx5o#e!jubk^%;LAhRU-yhxHTu#!j!&?RJ@Tk(V{*J$bY&&>U zuPpjD2lOA}aM-r-VsC(B47XM2H#;awm)<R_7(+dzI%IS*6T=9!&ypKDuL;h-M28 zo^qVv)781*k|A0|9wC3xBJv0)U7fRCkPD);HGOe}T<=K03v<=r8Hb}^EESm(Uk}PZ zaIu~)%;697!rUJt)Kaob;+u0mZKl?Tf@^lSrXpB)|yqjNAVTqn8lOzYEeDx3EJ(o@&3oA@wOUL<;eGCc`0uoJfDv__-kI&N1SXS`(*}3L1-bnpz;fW=U&Wg z1PQNYR)=PzXO4%by2sas>0L*KLc$zJb-1~}(LFN|#oH@SF@K?>AI!Y$s0OxiIF`;c zdDQ&pD+%FiYMcQ$Ho(<0=qIPSxc&=oP2-gA2wrolJAx?_9F@3M10EK`Z9b$o$Jq-4 zYNHBk>PTuV{4fUtaMq5XsM2ba9RJny`Yv_52>+#V4C!Iq2nohMed0y zm;&^1c?=m1L@uuDyuj7*8Ivt81Z5S5AE#34hg|%JkjP;@gj_m;rzw$c}rD#)qG+VU6Y?wAW zA{oTwqp0#^wjVkhYX73W zA-}VW%hXF9VbE(SPNGJXtD9-nrSH|IOl?&c+AbX)0r;z%t*~5!304Ez+o*s)+S|w* zIIj+*-9Hk&^$JI1t!9YK+SjRoI~R8eBc`A(J0fkeMXwlVs-impFeEe*3{YYaDq&Ul<{<`Ti9t zkh|6qrd@`@wT{&0eSZ%&voA}|5S2i2JZh?XdMze=S2=$q=dE|5oWF6fCFfNGez?;y z)VGynJI>2?jR53mvnSfkx`-BCYfA{_iZu<|>?!?yy`#EjOW`$?t2>vampIVSu5&8fB@=Trow8v;*Wrk@gdOA#XeS z*?b^$ka_BBXbjUiJBh~%GNO4!ujsI;*iqt(12f$Wy`@{Np)_-=ZKG?O9sg)s;M!f- zJzF?x($FS1q>gmP30^=7I`JRTEa)M(xgYijFDDf}P?3tBwp4_BV~wK zw231n9r;4!p3B|a94l=;V71OWY;lt91aD8qmM|hjL@}tPtj|jvclhEVWfl1-t8Hnk z?T!Ju?H7hZW~UkYH55u-t+>WZNKboq_G}RpnuDqT8(NZ0MlWpmzXpbeK0&p^ZNmRI!|IdlTkHjCFKIj8+EITtB8<*=dW$0p0l zwD}SNcoAXDdqmOAN~9PZ}5hz!7Iat7Jra}nYR zlBB^rd!w-EfK5t^9(TN@2er<{S2i0bX9cbVFFolP6vJb$ha@H^a&jNtN0Ow;eP8*D zCii_|`BRQ&F-PRAi01Z`)p^X5K5yA@zhh%fpJWf{+{sV-9naVdE(WDzb_OvyC@QJa zhTPo+_F@+gfe?fHfyShIc45t2^6HFfeWFR^qIl&^FWlFv+l zbb@ys0_&s}7I2+hH+Ax@(uoft(uprbW|lq>OC23J6QmBGilmP5@8E{N517>PwXZth z;Jc2?Hao{h+Q>%UWuBDHOGq1eZQGC0XXdMeLbG`>X=8dt+E{F9LmnE^3-i@cE2Kn; zkq;$Ohc85$$o(fBPy4b&G7Zn?UEH=b;eE$Fn(Z0R8wvH4Db!QEgoN62rtz4dxAV;; z`CVR4QoUJ`RHrSe=m6Pkrc_9Zr1Bv}Qu#tK-79_JG;V6yeBdP36Fy=k!ELEvhmyDQ)8}QBJ!}vSp{KZIp77luOodbP?gzb4MCsKFk z(YIu6ySX^zU+<9+kAJ08OIN>gJOnR(;fREX&ZC=qjyI7SfUGYaJ#ccq;Y&w<)W(0l zb|l9e(!r2xH_t!pXRS&uU|{C}bupH*#*bM&pi%Erkw(4k8$4a$1190c`xsksw}TJnY@(YzZ@?>NTx>-oGmkn?3VfP?-K)f!Z%w|F`3y_>Hy4j;zE3 z8?wt3Q`*nIRA{&4KLw@NZa9W&TElIoyFnPw9f8z%Bic>IJHZ14()E) z^{fQgU(4A5cF(&Q3;Q)^CEhe-%+`f$_m6+CO8#Sfoi)6Pa%cD&DETjwfWGjy0eW~z$ja)oLhk^?@+4L&lN!5 z8qRT5F+Ob;Ob%x>cXGWDYxfqtlV|OlQTv(diBcWWA3z%&4Oidndl!+FH#1G{Dmc`fxJ=qB}vYE0;Ws*tC$(In{zoF2Gw=7hum)( zguu?m&b{I~lX7^vb6n;h7C_2Nso=jtcwBu~Jy_S&*;&{oupyrARPR{E1Rz`}Ca4w5 zWzC$mU}iJt7?H%=*2V0A9{g%JLG3QrpP(N6ssI-))7^f!rMUr&8ETVS;fT;$rh5=h zrYw#QvvdI3Drb`Z(|C2QtyfaZFvwfwOpcJv)Oy`8`70dywsf|M7xFi^u3s%o1!^Oh za+FcBo|%P9+lu=|*5eIFuo|g}uEo&3i8D;=3)kGvOxpxmNHf1*#;d0<{%-A@C6=%@ z=SDa)^@S76g*B_7K)u`*(bl;(sAPiq6^!jxIpBaDuW!YMa$&7p`f?u@;8YpkhS{I& z?5-D2P+!?7W(ZD>awe68gtpY5pP=4}c!3oX_U9_X{<^}h55s@uq70&^mmD~H9Lm{J zFgXVo3mNL=sZPA>u%dZ%m@lxmPc8BUM;~j{RG*JTaL|GU-L#_}zmcA7ciESj8 zH%;_%NiS23vDzq`$S%j_(k{*=+H|xuY*DLVwvpPay%(Q%KAfebuUMs9#Zr$QA>olFsrcdgz`7hVS*>-W8L74InU*H%_WX#e;JyY0 zln-0p>C3=)eN{!Yw_t&3D6%KDn<3rdj2Hgc;iyAv1;etPk+AH0R~@m>j{tm=?d(xL zF)3BpgQV(CHt*dS5-x|;(oui(MJ-N5S_{s$&Sg0p2-bU+vG@bwn#bQv36sfK zw4Ku9n5+1JCM#F*S1TB;;@^RzLnaqD6Dqy3QVYZp}Jg;!x1mn$3WR;XHz}8P?=FQ!zIV0`WRYoBsIKGLZV1##WX5= zRzzh87Vtrj1n6UENB~j?HtDGs6e{x=?~gLSB9t>Ml+rwcB&q{r+BFaXnT7{)(Li$h zB-9ai`jLRHdCnf%gD^MG*$9?Q9^KsQnoKUGIwIQT;H}>85*ossd}nPqu`sl@*yoR^ z##lmh%UEZBKf6Kg2- z8SvgzXY1NltO->~PB7S}Id2xh3?G?0t-_Y8eUqf3cCz&Ah3cDMq0^m9wcvEgTFN~W z6GUHzidgGi0c#mv*7nSFHe;-XDb~8f$1`#I*q!0a@90W`?z5b|L;-^?|J9kPb%*z7 zImec-J$AM;P0TG{d-)uv`fN&h!d-l&q|b+yQ^g;w8)?%(e$`h0)$H^Og=&lI4&@Z& z7FP@l>)co<7v9Ghv~uAJTD)|>vq9+q8_afPcwCcl>~fJbjdm8T*T z?j`a|8`0oc>g+21wy?A0HvrATzow|<7dO_bLDyx@d7}1IYZPLynHg~SRFwgTO@-8M zc=mnva?F5R1+3a^s>*=7`j^TK7~{SQC#e7AC!hfC|BvjioLmt*6V*!8ahqoE2u^*UqNz|P9QmzPK=wTx@Uqf zf${jl$p4UHrX>ZX6cSzjPr>ztzZkS!wbrDu&X>ksOeJ2~Un=4OfGRY6da17tO*<}!5zgH7zZ+x#jt7~hgXQ^J`$XnJ}4~Xxo#N`9nQW7 ztyJb7>!+&RV=ewG^UB^2kvzq*PO6y7wXSo zHHk@l454BsCnzTI z2}Iy_rI-C^NZ&c3IIP9gYynOl*%j?+TciRN)FLoe)_1sIvy- zKIZ&FRG)zic~-t;iV|c2JTeyjTjWAiva*al|=^7yyj1pgh8Qy2C>=@fA9lbCS#^Q*1)T+*!ily6i(G*G@#7ZLj98_{8m z2<^FC$C2c-&K4n?sdQtO{8bl*9dI^}kCwlAwsDh%$;>urV|l&>rqe-j|41w14d<{L zlx?hM0P>D&C4gMcKWKO|+o<*|s`DXMkFt&XW~iuqpH*Njvvq>B!U%kWMSh6? zK5EreiN_0wB4Fb278c0ZJZpwpaC>fsip|e43>2GFCN*mr^c512PY;T(S+R7A`q_#I z{9qBFnCP^r#6GgPW`@AJ+lM9Z0| zYo6*fovD=C)G7$9)byFAQu|spl~Q{nihxSZzyhw+?lYBAyE6=yQpY0!QtCujOiC@N zh`=n104Ws-kWx7TsZ^~gXh(5niV11y)E@|Qjym&ws?vOT;I9}2cQDo{iC~RAE~yZ$ z7{B}68J2C0kJOW9dV7I#h8<`JGG|zeh9u4PP(}RyS0iWp+d8EX!0V;A7hOTA;;`I^acqQB)_pt)f2Ti8KvR-Kr3 zRKWB^#WbE#+VwUjD3;qY6O>U5(f4oT43-1DgA5g(omj;bTDB$ub=gxpJ|EWr^MwkcfK5%{~KIH0<;r^rr@aV4SU!W8Thnf$MhWQ^k zJBqI@5-idOAY6EUmWuR4PdlfHKY26HiiGwn*@Aj__{UlP@xJzKRJA9Y@wN$v<>xTd zr^kx14aNKl$Onq~-ykD?F+WPM_G*pcZ8S=spdTsQsi5Cmvh~d@==qtmRs4Ag=E3{8 zC8!zo={(deOcqL1-}P_Uht;5{?_dBL$D<{H#__u-w~YEhUpjvgb67o!`ZH&%05#Jp zPywp+?lZU`sTa*w-x=9xm8-eD4H$~r% zmF+o+;%Qchex)PGEg|j63P`*#o95qIZ#a40*)0e$t0}TS2`F3AyuJPbGN8E{i;sM1 zjMq+8fc~tK0MYNcfagU}0GilKGP9nk9tB71bgc<--#A;qrL(x8zc0uYEB^FD4$IEb zI{b_0oc$3|-nY(P0TFeA7rsIqGecZ4aONvIEhGIZWS*zy>(86}0YPX;Fg$2-58R>2 zzl2**T-I~dT>V9_Td~8f0niVML%$LF?2v8CnkM?xrdYJ#J7*7l#H~=PhO3##W=$n^ zJ?qvAQjQ!fz|NJL|K53vlxSwC%a<7$igdIp%CeYMSs4KbUc2n=Ev5K_yp3;^a3X~bVc&i!;FER{PX7DW%paks_E2i$aP!WNjECQ4oAOT7Z zI05Ppl#=>`NonlfGU0M;>uX(vXQqz?jXQedea^W)!Q)sxW zv)}+!ZW5I3%tBiTceNIuvASM0*JTZuytt!#EHj{vHx@+);1y*a5 z!~7e*%4*OoL@tW>lU=DvOCRF zCYR@_HNwA|xweYoj8zgb1G$kYXogk5MVxGkIK?VfB2N5YBF^;_vA_}$>5+(xo+Y9` z5QIKx2Cc#vFb7|X&3&NvVQVY);X`TV!p5tS#n`_ z&Ko^I`&3rz3T3O?3cL;IVVBm`5^l5Xk=Tuw0LJc?gc}iHYwtRwb%EF0yV{AHSqqA! zoo=fj{`bWKneCzVe%Ha38gGp|b8#)zLRBEYb|M%+CgLN6!>R$)eXNEhCM0%p<@hwF zIQ&E>S3fa@Vep3Fn1E>JvGv+y`#iGTngBtv`1Ih zTUyZW+fT>PR%w+tBrMxw*; zJ{BP5M^u|Z3u-wKe(#IHHDUo)B9(-}xnRS5ETE9BUA6O zfL=@PUQ~JB0D0>dHAGV*gfXx{eTk4mJbK<;X-z=-v#zOdHhXAv>Ds}rq;P#al9BHM z;J^4Tz*Jb~a9z~a!(=DU7d9|)_ck#K^g9=j1BIgxWJc<+KwbIY=yFZ3#7#|PWRA89 z?lW9%#VSVVMwqr3_HK3!f|+yizMsf*y&il4DMGSgv=QGj+N7KFTsPP74}1kV_z_uu z_~|y}j#=0tV%bz$svjDyui}Twvj0MtK&_X|R{@m2sCrWFj zKNPrhO~lG-=6J5M+M*Ux$7r9FSDSS^eb7YA+w_U9&B48pHY{9VG#6=%3sPW@h0M4H z;~%I%{gDOm)Fju?%Gy^~*gM(PL3CxbNK=Lc@PXe+iJ`Ygy3)Q56uM@LnXFlr6*bMG zAg>5}ZOh#YUq6`RvO)MX*K5ImB;nl$jTT}DBTo9+#`SZ*rJu6tuFBk$rt!BK&d+f5 z5Stk-($9Y+fa_KhHA*DOs^-|++%z`{H$;rlq7{Q;gw52G7QygujGJYf6nOp{qoz+o zB$}~pPq)gv{!R|0(IVwckv*>IJ!MV9V8UYb|1KDIyQ{r$Gqy;}jzw&UPQ*XtOYc(4 zCpS!tg}3*(!Xe>yR~kKRuRXEI)yLxu zj?Qlq2K!dJPU;^of@Q0)3qEDMP#1i}yWnfp1uD!u^$CWV8`;A`;cPKJh?KVJVguOT zdv2w}%&A4Ndkro)pJFUfPy8wYyeHl>d*U7HiBCn?V#~;@>K5<@OX6yb9`b=2?HwO& zWsOJ-gEs43zi6qDROIR=IxxCYSz0^Uw!2DKdM>uiHGTZlSU9pH*Hl&3Dpy3wf6BsO z@uLL~pv-9Ok8% z&BSQI>yQv+J{lSe;kUS}!N+&GYKkI8oK&}#sjft+P6p%659HN_AGWxX1cAU*ge~%KY*^4hn-o+g-2f z=NCh*9q2MHFv_GTT-os2*j1${|Fkcn4AZ`dTP|VR_i*LYzAqL-v%7IR_66gBRHxnU zr#f6k@eY~ON_8#naXlcSWyOCf@zZKU>K=1k>Zg6RMlU+;+vWO7>jA~P(TnwBgh^@L zWMefj@dd)YTU;G{!boL9wALB+?Zx%O&Ws+Z$my@54vhPh+f@L0=|0y`F`YH7vSm&2 zrNV>lvU~9(E8joh`byt+JG}RxD@6dKOiJ3ql(d(WBu8M`L#~mP9ekVM(!&^AH!(`2 zo@e~kQ^Xj*(^SumM_h(@gEg(PdS3OV!qt;9du|wXf86z3@DE54v=i>mqKwfd1>rZJ zyjJw5WkuzpZ@GjmCxliJH;zdTE)Mi`aH}Ebnfxa@; zHsvYTRFNQS{!1fIk6)tFH>AK-Mi%wl0UUJ$;P`{CSQzt(yCxiY8om1rNK;G1{c4U0hL5_$aCwWPR(d0~yb| z>Q{0+>N}S}_+eK|v6GP{O}!)mJQ{*2$5vBQKU{V{D^9UyRo2vd76q=Uv!^ivKKhdD zl>WyOIJPmT4iq18)fay;(xj;0xS~RqdM#>ra6w%#7G7=$Fry-T!~wf?0sskMOAmvQd}32^1@ z-<=x^m8s@f+QUz{52>VaX+z=c8<>y|W%S5v z&6EIcTZ0tu{gJF3gzq)YSu0kuR#i1EZMl~KS55*xm;y&Hr{f{8w_VQ%KaLdP=tCEy zVQ2T8D6x+*Kx%r_UrnW!np(c=%B-ZC^aqzh!{fM`_8=p8uDvlVQvS`=bf1!9x2dM$ zw48b33)ZO0YWmbmfU7Ah+z5jOCtdr3gO{O(GP81;i)#4GW4bi@^kvMSN8lgU+F7%b zQ!W9wzF%o~uHRS+oj$-V%NtBsvZN%*23OHvN`l`_6?Od3wM%qnyjE33dWU5y^dSYV zqko=4C)M#|S8w?7v}ogk$K09mId6$gtXY*cRb)}%n%eYr^DxN&()FEwa2aHr z!AbLTj4G+NphF^AdQWHS$n?3o<)kXT8<#LBDy^ceo;4(T9h1~ZZxLodg_kgRv*AFRQ>z3v6 zL}?e;ldpy8>C0iW7?ZB|ved(SohJLkuDXuv$Cg8*GTb+Kh4D>e;|Swhe;5BS{cPfH zTo$?UsWTL?zZ<}b$8n1%c~W{#cxU-(#p~fM8F6k{zza!m%>XN?cQ{gr_ZhJ6x+HYtV@y{8lvn#BbWK zjE<}=BqrYPHY%iJEm_;*1tu3(_m`{u8}I&~%E4B&G#mrq&F0|KSRQX@6BZ)N0cp`EOT(n8t|8986CxOMwk@!7E{#6 zmZElMjlwsVZ zj`F{};M_V89#Lt7)YifA2qRUjV?;?|Pf7q+*cv9vN>gE>9040bj! zIzeFrV~N%WE;YboA^jK|Qf+$LN-IayGT~&L(Lt`_;*7N!9Bp9Kgq!1yO7E5SfIs7n zB+-Krm1?V#=dZS#l?=E(o?q8!2Y)m)E{Zv<6}i4MyN~x0iy2h9z96gyo1cqH@UP!r zZ1k%dEHT1?qO??>y2w#g{G>k1)PLudKKiG<(zT6^)B2H>klzIT)G@{n>HbBo`?pE= zlyn@ZzbF>c{vH(y5$U<{@X_3+_)Y0IT$SBVZ*>R>dlsgGTa25~()Z;|S?n=Q>Ygto zfV+c(X7@ZJyC((CH#f53!{){eag8;tsyonsFctZXuOiFd#>sQjR>oUeT_|g1bP)Ad zS^Uz_kAd_K=-%ZcQEG*%$tpJ2Vf)U_b8A4v(TnvUKC*6TRaC0iUZv(bwHYtu5jsl% z*Ig~i9DWZShBr5oOKT(>JG7dEtyXwAp{!R>0vvB=oDw4}xID?&6Kb`sSp&*aj6K@m z(#@$xO)Y5bDm3?ALG|>(t5nEmxPUlt%VSrZg8{^WZd>KCPdY%B)h{j#ZzADuye<7# z>-zdw{KkOy1M)cwb+{>~G@5_CRtMq@2cBOarG=}S`19uyl+0Sv`HVst%+<_ar63|Og(Eg-F6UJ ztYG+BW0*c^HGNQ66tV)Eeow#_co9ww<~jI>JpA5pwfgFKds&-wV%{S|{MsZV-XDJw z^j@Hc!tSiBB)w=g+&0N*CN}z0TE{7ESCq7d(0hQm{L(P-w*I z`&UD+LL)&u?N8}RPU!_NrGEw*O#)LIephTgEenPZGWzNttcFWdj25t{pAm*mPAUn{ zAsanNL(ugWqq9^`wP{A{+U2>1vcX2Y!W09^*9$^n*)$^&8uvHwZQ3FD(&Lc+7S_Z4 zJy>fDP*`7_ZnUUV9_wm#rG%^Ez(P@ok#$-CFYn17vvH~=nBsd{I&^~Al9$D|vHZhEq(rkVJ9+>w`KSm)6(|qv8 zG=7oY5~Y?p(~Lyub_^#%qWA$~q2UN)mf%n+ik2*?nfHEB9D0>z0Cuok{pq|~-FoPN z|H?}(TN$e~iZ)AtXB6R;;8*ph)~L(C2Ut~-Y9Ev8uq73JQ~Xg`MynIzLDuftHFqY? zk|lrEMVrlQygbR97(PS&*l8m(hB+CJvzB9=t}^^AvC~zCU*s>k%J2&+5T7>_VX`(o z#$6Lm_RPh{q#ed>fnvl=r?E+R^?ymS&AJR%&7wLrbn;=UU|ocCrGBB2TYXQRG=xKv85r zw(v%gm+%ki2J(;!euut}#idPgiTEjs_~GYKtybD~nRv0HbA807_;U zDM!i*BY&<{VdQUrQonOj)$a5NRWitE9GH>}BSAYK2lbo@*1BqyugAsOmQ z>-#nnmpZ(1O zc&HZLQAI!d!z#3^&)=z02c|8+70-pqR#LB}x`1o5&aO0*M?82zkPb6Pt)TSt%jMQV;Ufuk109xXc(K?qjtG`7RUr zeqJDvV}bPnnU`28A;(e=aybQw4yaf-u>ymRZJil(SREB~e!No!9jsvnoy+o<4Qwlo z)^VZoHxD{LTLuFZbnaMbY!^Q=)?|R`_Al5_U2&CTmGh43>n&4~Ls$e$01e?#xVG9j zBa&DR3Kb34t5DI9706Jbb%MQXjh3PdgVRv&fDODuJstm$k>c_?6)A3#wMiY-RHQ)k zhOhRlH8>v3Bt~WYhCoFbu3ZLd&ARBQKmCIBnk)2+Gvaw z96(Y`QBvTd%*;*3A@K^sK%H;|iQ^r2afB6E5}fu(@Chp>2|nZ!oUd2{Gi)On>I_bX zB=7^o!lAoxrGP_8j2EoVp!ds9Zoyrbs3ObeNSKHsB}@b>u!Lz*WOhd@R!qV)!**W7 z>WF`!VFl_Ab0&ghNEl9rgz*8C7$XG-kQ_CO$f&S8jsXV1XjB}AAuU+`*%h)@;`TC{ z6wN_yWn9vTnkfO+h{B8Ydu#62Hx{YDSj?)EP(@s*ok}P}L6^Qu2L%g%I;giZHizkJT>%KNS2V+OdEpWDI*AcwqOhI-lH zXd!-NHA#vexD;(o^sf#W_5xZju=DDdC7-`FKGWP3ir8e{=HWQ$f- zKJepWQEz!+%?3XlFlxXP4;q7nVUbW1tN=6%T^m&3FL}sVDrWN*GU`s>paOs428jH{ z$P(*#1sNb$s|s2n9DT%?EAHdv62YzwDks>_3n;Q;!=$k>kXAjosd$N%s>r%QMOLJX zVLKX@epDk*oMyEsY`h4_gT5^gM{sExR3;jjX&(86KP1~Y84 zN-Avk+n~ZW)-c0%;zsPD88+;zVcI5@ zA~G=bRK(vQ&Gpr&CwbCoEh{AjuH*{5ixfykj-R9BMjofSYWgO%R#6jwcpL_9S)DsJ zJxe@dfz-PjWvR;qGDRs2s}H1fKR|3r`$@G02a?*(K9ku>yzGlO)2A9Diz(grj$zk) zz!Ar>Z$9vC*bnxv!0^k7P>+3b+=%so66yH&a2ooJFNSiYV z7HJ8&f3Zs42C}Nu`TdHm(W8&RKjcIwaidDz(u!5;)`PX8)a_=hD3eLNL~t5&OJs!B zjk&|7w1x#7Pktd|J*744B~nUjisUa!Yl@01NNbWlF?I$@Yl1#Co)ix<_Gmq0uLbas zE!t7_vX%kkN`C(26=a(6t5w0uQfhCuOhQuB!a+M{bQTF5E?b9h zwvv=&R!B(-7Rn?=ds%ifekJmm`iU_W2uq2|!D2H}VU<*(a!)ZODv?;jOjHa>>|inU z{Mty1dq#qJrm~AkNtp^hNbr~#%NV2)N^cPqGN^RO_;IDIZ;bgqwQ-v@1NJP4_Ba(D2lE_dqVR>+#9hhXJxIT=iW z8p8f?wz820yH zHI@W?S!sRcNAt03IelUOk47}SxzLdezmyq=MH9&ipBN=r0FMMk{{qeFqJxE4O@{(d zDr|q3avn#1G9D0vcndj{Z-HaK7(=ymIQJ)R)s{7w++F1JIykH~w@;mjmctFPfY*_; zqPcgeS0f=PMhJZNh~X4ZvYO=O9y1BNzzZY+EU*Z? z#Y%|)mRbbniSw+S(4H~TUgHH4Ef#nuT>r2_!it47;Yvqa!)4N#3iM8XtkYelA7ho2 zAFGe~k=&fa8m1p>y9IxBf*)@f9pc(cD0gG=j0<#QM@0u&+cY$C5cJwdcLpT~(P0a` zw;Z3DDp#GJ`^fOCu62ODn!ABdZE`1Z{`{n{mgu!^6XO|x`1we88)6!Rl1Cj6MM3V4 zKDGS_1Sx;T3E)AZJ~2!Ko`EFITe^bijgkzxf=%)lxq?k_E!f>GhHV^so5f+z4agk} zn?l@61LXpvs<~H*M>y+pZ{qRC(`#OB`wPrIILkFWg-nLT8FP5K_b4UzA#O z)W8lvxbWZ>Ik4lQR;W7?Zq#t+iFbK3IV#`WqEds`w$L7OOa*AjP7iG{?UYqgcDfr| zqn$=#4bx8ll)nybfv1GKL)=062RGEcj13uYOOtKx=QVNDR;fLKRRkq zYb#tkn3oE_+bfP3V$wkn|70Sll-rx`jq=kvU5M#suSdw_V4wW4h19h1Go7JIbvTzi{k?!;a#3GlFYGS2;y))I>2 z-HklxcrhYqvq z(lIZ62q)$6Ar=2WNx`cL?jeE`qRvV{e6q7@ZS!^(&F1)Up|p-U36Cq49*xqvV#y`> z^3C!W`SQ)%DoE?@ZS39{$b-*r;@%=2WAf5$?jZ}{AzQSiiXPnifYPou?i#RgyR8m% zY39xrhb&skiw7WH_}n&?o)r%atp|^H>ly+0YrJ@mx0SB^?QP1Hzp+iZ@(OT~D?hx= zbmgp)a^-umwRGiJ!*u0;%U_4LfoSFK7WbU|gS+zkEjCK?Te-6|p_gD4?#1_?3a_*m z=b8%_|5(I;Txu+%MMEe`0%!=K+Q_B8+t&SpXv6A}OKnl2TxtteKrZ#kv+W@R{IGZY(1=6Uj-(^Y=EO13m!=;d`w29%>NAu#j-p`JS~U>U_^SR)yrkv#egZ zwt5N4<2`i(&{2My3q*dK1NL@w+XV+mFCf3)m*Te01Zq)mEzNE26GoOO_x%RrjXL*L z31FT3s{U1p^3-3mswBo)CdLn5G00JCpUX0JR`FxjPWo!?LqEP=_2rBFb_1{socO9M z0gSIs@I^QGb0US+qus(b3_!bu96%k^yG2d1zBYP4P=?o^wIRv+Kw?ji;bnnkc+woC z|8H1m^^+OT85w-=R324k5b$IY$=W2y?d5JI3jIk=U?k@tNz?e2^mez2`(MQ1_1+i( zI4$b?mXLq5yN_NMC;;F}J9d2^pRrB;pLrIKBbL69{Qu*UMe_eo$Y13DpMVPd|L#8S zIf4AYvoB`wuQ6fC{~xme9wgBrU+*@U291&a4fbhiZF{pEmCp zfClLR37|oW>Q$eo%W$s>e&P4vn;?DZvUo9`wV)W0za3~RDxVe5V2PiA`)h}@-7U1+ zU`eLCtysuv$U&;l!=~P>dnNvXLk3@4+&#>lQoFCL%qI%@aBi5pp(sa&virM7V|IVf zb}+KsEyXT>Iy*U?N4#{-jB&TEQ=ZOta|e%MA$QFw(*{NB5ty8CC}nOr+szGv?dr(< zkdf|J#U~6IY3)Pgf;RA2fuGi{D6L&(HArjUb7}tYO5>-s8Y-H8sI>MWL*nsdp&+$} zj^)^BbZ2#TpuWv~gviv|!8#`%|4^Odr!)^46k6`#F*2kxPM37H*^a}TLrG_+{B-uT z!#zx7GLEFqw87wVx_b%34_Tc5@_e^-0-?wV92M8OW-$04pDsoEHZ(cy0pR_oaZ_z-F zakcpB27U_5P3F2VSdA@+brG6uV0gqJfuDHt!Y3OwZVc_brQ{4vB{RO}Hi z#fXUK!RWSFBxFPmK-0Y$1c~q0vY)pPQIGHzxbpgZj$C=|hyVETrT7=^t<>xOP?s$z z3dgz7p>UiD15Stc7?2Fd^XJHL3=n2G4xbB8nJ|#U?6u-HV=)iM3mF@<)mA;#{+vyX z#zuURmiN;cmP8ARH-_5_sF4=#%<04J^=xW&t3+HK;piG!9t(&~GpDukTyb^!Q#FNs zBy7Pw$-psJCntF0x%5J4_TnO;@K!kW6?@B^Fcl<>$kt1R7H2$p6vK=M-z;2ZpV1abvu_7VEsZ1;2h%>L- zohmOSH}*COFIky5SH^nV8}@AVB4dfVbI$C}IacAxAJ@&ed3tS`z>KJCDDl8FdlIv|C^;M9QY>Sx(CY)h zTxmgBWIl`y#jv9IL@})B{9Iz#;_3D`0xc*9&9GlkD`R`pvr-HzZxwjR=I7;Z>Ir)r zk+2LhJyW|zis#?Aw^pC9D98{NfTX*@d>O)0X4*efyYLnm!aB^CA*{`OnS6Tg1K710 z=m%vpMEWeaXm~g;$5)}oe0d(_$=R?yKY`WKyHKd5ccBt@v}h_|buouQ(Ta7p#Qg~` zN8Gbb-19yJ+@G>q!VR?yH{6Z+k-fiqfQk*29dnj{%%mC`Q|)>!N_?=nfWx&2nPsr zp7AEqX(Yxjfj4>$u#`_T5}Dj+)lZj&PiCyqs(<|_NqJfIdvrcleTQQ-GgPXH8AS@! zQ5Uc(a&vRBfc!1!J_Y6XKDLigw=p=1Vp|r-puB}uz%rtna%_QoCvt*SkP|xsExe)l z9Q?pg{HDlWVXq!35STCT0X@Yoj-FzdUqK16_!E02m6wu_+X!6XN@_jmL8ZPm#Rn_x zGt|(9K*jVj*a=$!v3Q+5PA$O7X*oQjb-{{op+LlX$T&`5mDmqkoS3lM+)K1o6%W@# zlz9_+GwLZgrf&7aoCOtFDEq-lP(OG9?Dm!v>(|&@_;7;#umy?q-4HjkYn4}RW>&nqwyHZ5P$WP3!a1zuNzk(9t z-e%Zk<)ze>k8^hAk1h69>fekj>dNo3E5EaHZ&#FvMe?Jlk&7&~q`njtwyhowix=rT z18bN$%lqBz3#UPS@hd1HYHowg7G6qy`PHW{aJKEB+LbXx-RLNicYvLAWaZQiywCws z`8MnTJ9(B>QZIDYix<7Ukk>g_c4E$2I)W^E_KNW#LA~HKp`e6F-37|UOQ{#_keGR$ z1K2$6BCG+c#Hrof1#)WlA^8L|A&&b*n&>cR?3r<3_@{}^HtZWsbhhIYO?0*c#{ut8 z_~$GnogCe39~m$!Zc5&F#mS*}AAPTg`1Y8+j_7(G=)~>=zxEXqJPOCBxz{}*{c?;aD|3!}F zqJOkl<>4YZwW25=vDh*cit=HLufRD9R6v?peYFOwpfC>=6y^ah?I+~I9qlLF zSY*a|1|;MB;YD&k0U*pc-yaFxSTy@EOv$fdDUb8VSPzrhIBN;|>V?60!v%Z%QU7)h z3t}`a-NpD3A)(O>oo94WqNJ&>ViVHT(fCA~I(ji_YQTi8ql@HM!l{ur7<>0?c`TOu#GthBDI_9-!9&Q;A+RvdBzOINow~5 zHX*fZh)<+;4VUDuc2gHiwF6)IdO)?yueYMljl`U{A5nW)y^*@t)hh7xBj3)E$o)2~ zYpejr*itnt5>gcd&~)odq$)nV08VfeZ-J^fd8H#98P2OXaL{ z`cfIXX?u+`NwZES9gjNUNRvYUf~ZNMf5j(K=wFxSGV5%aL?X-9E9`5O6`R;$<13DLfwRaQGXWQ}CJ3M_=JOCwkyvTTD|3Iy0F+u09 zY_-LP-|d}k)y2c#VAH6xe|39S4VU0e>li7TOzYS}ebygP_W|toCtNGj{7=~Td)*%p zK5-8OmFml+TMWqSGC?+xu*|dx1|)5wz%p`+B>}=Tik0|;Kjrn1Cl=j~7R5Igj);rL z3T`2Vu)rLch~99sXSc`p`RaOJir=Bm{=8sbEW|S`@#-3m(Q6?GSSeXZ78a0n?4 zz%73}HYh=tq3>CP!pf>wSp!>j$FsJJC_sLb>)mA{Wooaw%F1OTA{1WjWv4$~K{>Zf zT>Z08oO+Hmhu0oGl%S7A>QfF#u>IH)1L9R|P~qJ$D*7?u3<9x=BM5A{Zr zW_O!lPgCmZvG^Zu+-fdf4{^XZI^yB8UJFAU-kTtc6!0|eU%*jRyfLItCF)$n&CYeG zb6#GOCu!|Pn}UF(dwj2Gbrxd-{gn8opovLY2pvQx1%gK><%=e9?Z{r@_d;z-?8FiM2m%d`}$LIKg9LJ@E$S*V4mnd(6_RdqC= z{;5$uf!z(IlyEoQMWx|pZ=!D1lT zq9q-b{x8AKjs!$yP9&5PJ0cy0<-MWLYO{jPlzaEI<(5^5QBh3FsBkA|_w*GqoB^sb z`xT{{`ZcpV%G&&r%+_-UTd0z?i~^Qzw>0M&tzsj5Tn5D}=Bqq0!;NkN&I(1JMd4Ar zI)_gbug)#cC0-4VcRU|x)^)OxqmcMCrGJ#T*T^wQ{gDj_tsEa%1s(>{Cgv|_!MCj7 zBdV1gs#sOV(MGkcu=J454hJCV{?7_I8=H~f7^s%uEpRp#xkApyims6B$YC>jcT{Wn zLshe&AOoVG+Rh)Kl?6c4wOkmX&=j=73{4D3hNkbA%NaXBn4xI|J_U(>6&zLL{)5jv z8r`)7Ebk4YPq)3sc%%7RMny+nqmf765$Y(8)fvkX;?rJ3B--kwXl7!UDHoMq~@H19Noa`CMH{3kyIO^8Ayv_hz}Nu zAq#4lu1?kcvDB&Q;b&Y;lOIGxfy4)q6-c_(0&Eya)VKVxU9aWAR=YO%Ig~X<6O;}4 zIl$=cgxAk4VudszpATZj33=KIIU%3Cf=$S|29kqg>hJL{Xzb+Rjv#~N;Ev)GIk=;r z`>tbi@?0d+ zDJ@bowFk%Qbzg2)O73eg7LfY_@sj&0-pUbSQ{G-F9mBh<0Zpjil+v?4jgY=lda!OQ z(StQn#;ugjYaDAyFJy*28(LLaxl$f$T+M3H#%(M7@org3^Ti+#sX&)u8z&+d(RH~;OTPat|C;X8g@kf46B3FQEbR-gYY!ILoSk}^K+{oye z(s-;7O@WNQ@hTWSGWsU?L`L6aRW3&VLl;NDJ6)G`b&OGaVSBy+?`{=%$mZuxS6u0V zhN@y`ADBbc?Cxl%4zMUlqYpsR?OG*`K03u=S4Z;}IF}i@N^V4^ii94Hr`2@-`f0LW zNd=kUwqh<6$jk?>GR>R;Ni*-XN={M$!Zh>U_%u))?&YW!=fY=hqI#yGwUiGYV$6pcw|UGpl4UJH3hpGtMgMH4~FZ!Em%muN$ofhDom*;}hw1 zT)2Rz zhU!ZHHXr-8k!EE9aYm(Ct@fCe1tiU?<7(5au!8n#&*0NQVGMNCiF4tzk6E$y6g=q@ zvKLq>?$*b3_HTENL0DJdWV2GTk^5LcHqv=Dvk`TTw2`niP;F`e#lgZNbpVLkii0KA zNIQW}ke$FC0{}s%5~FQaYp;NS%!F6^w6np%uBRRFA??*N4BWw=@_O$QjCIxwLR9y* zbu;%4bxgOZT`kNq5!>p&d7o{^H6l5oUm0<7Y)H7c^8$nzCu>8Oc2paucUK3qQo6Lm zDIU6klLW;U8f9TM)4QKp11C}+G_5J#eaUfMoygl_I=BUI-V6N38j-kbKyh(*m}93p zgM(w%ZupV`q3Ro0Dn~$E9qFhg8o%t=sxD@*IKahnpoUBe9ErWC9qp)O}XtbIkq>82@{i=s-@Ipyp5Ob9TwY}z;>if zy~N=BST=Eg%UIrFu^i!L*@T0!)bO>ILX#3S=oDN}Ey+qz34#Dj9PAWaJ12a(&QMy_4<0gq?~Q@jo&&r7 zx}%QT)DN1l@97d;%?F-thOvgjOp9V25qRfE=CZMlLhx-MhSJae&5L$9rbO-BQ2;VSOp#q z(mu%Ff=a*#s^dlWM8`1o0}H#1BLT>{XRZ~CH#>%_D>*PusXksSw}+Ojm6s0W(wKbv zY)}q5)WU$IZ+{(Hy{jp#U?`6lI-E zH&s{#t$3=WIqbGl;@vb@hQ_i=TJV$*DbpP0eFGH$1MZEVSu4Jt=I9@J2Pu<$Om_<; z=$JPr0r~pX#O(JRRcud+z3;)NKb!lLXu?Qzut;2=?x-CVfP}e8#A#4B=nVU)8IJ0Z zF1~DrBS{_LPsqs#y8_SOb#%7RK*>i{Dzm^{r>yfOYaRfwin1t=m>% zoxJ2=(X|-Ww$95Koy*8(@N!b&$5=g4{zJ#UJTCB2f#Wh?{>ZTs+_#9E>!_xNt+!MW zJEjy~&t~o=;D@PIP3Jjkupu`iV#s=P$l<}O($mGb?}B*TVY zr)zu;vNj9xXps`$FG>tu^Ap zzj(pIE~8Zda_(=}%V_nG17ozhzg|YGJL_e%%B3+yt4pBm6s;JLj8+GrHAX9dFr!uJ z40yVbP2aw6egXi=qkhFo|zVNGe_-4MWW;aw?1 z`lIq0Y~h{Apvkx>Pm^`QGpHzK(xoZbf^=yrK9Md>&B#TU^bL-Qfo48cHafDuXW{?!|V#LF3p4moa07C5oo-FOMMT@L0 zX51^rT7!ah6Q_27)2cnPy9!#mVKW?E`IBqdZ;WHouol}psKu>9&q$-xNx=-nPYUM3 zCsHuihFlbE+^)bcW9#g8j8exiPHAdA$|~@X&Ce@X`c~bd-}@I9>-RXis8cNLq+7)U zkaJHK@$}0* zd4tUSN!wuRA>)Sh(Dt&py5G?&8~{u;yn#OF3 zR-B*Lt3I+UWS$VY&5?U|F#od=STk*aCQ^SR7%4h*+ScV3vXkuQ#o< zQSQt@=j9G&@r}}vMzCh&NQ*!-bfkZ8AT_uBftue^wmjtS~Q-U2=7+>O$Mij8vr@x4=yNb$xgM+-I6A9Rx+=%Ozj zMa7ISVcYS9Kj;w)l(rmm;fwt8)QzS+Fd*rdQ#Z;jM}RO5;xBxfDoTFsXb?9EpSeK{ zXI#*#bk5g~#&93rCV=xS04q4lisix2)K)`TDa{)dG4&fqhnv#=K%mlJyWS;zZ6 z&@jvFBKCY4p65%)X>ir^4o&@s^~Bl)ZNiu!Gi!(iWM(kNmYMb0B+cw822WJw{i$Bm5uE9&h%iq#l zMM~ibK*_xyM29BU|GHz1dfsA1UjKh)lgzKb%_}g!9xAMhv43T?m}GA|gW@*dj(@pH zS|?rYU39ah&~$c5-7E>j^9m#Y6&8VNtd7#l+i={%UImNd#J$ z1bXlaBmfl_0iD$nffil@#$S#R>S$I^Xh)i8-{lpE7Ah>Xvsf*m9Z6_yUrPDVX9{u| z6!I?zH<|v00ZIR|W|Le<0EFpZ_9Lx>o5ZyTj+$}%v6wrUb!>>p!94SW<4c?R1!IsR zZXVNXLFt}R4{~JQ2z!Z@lIeeo1!Vf5dt~~}e{zfn`h7EO5!6%?)IV7R+5mX8nc05G z7P-~1e=}ZLSV#G3vo!r5SSvF9dz(c>MxT}_aL~l{jtJ%KW@i1IS+ag6A&(iNagg;l z+X5_;^*6^Svi{~sED zECXx+O71~hr1gIk<{Ybz?eV`KqCwwM;cfTRU<+ae<@K$sSA8J~vCdeK=YZV*0l{ZC;`fd1Fo za@V<3QE#wPQvW=jzW}K_)oUD?SN;EBrKJ9kuz=Jbgm0;T@lQ?lFYzhVdsbzbuM#PY zg3frc=y;b}O5&$d`!7T1LHlh*v97(UvNovvwnDPamF&W?GWX-r7P*}Ic?+`v&N0~l zlafanQANlGo<FnenH$Cnj0-djvBxMLlG!uTIa7%m`$1)SQ-CcKTA4bTA3O0G8BKl6Xj^l|Xhw`I zCK3zCVqk2@VziRZ5w;{Tp`^2{T9<)SxTuwBg$sCLVU%*#*H8qrf@Jcz_^6aKNvW18 z<3=UcoZ?1#XpU3HNO3jXX-1ClOlCElYqA<9LXY~Q7LnDwg6PR=M&T1#&8W;=tY&eX zGhnjh)A7#N)ftRYvYIrjz(Y2_$&zAk>@#8Fa%pEzb)kh_+DZU&?gb!3oIFBicep6h zDCKE&3vY%oWJ9K0q^-@A+g!PzA*EiNX(}}Xl1lw9w8ni?fH0N%8a^$~6z`RFR*zeN zKe$#;W^9mFcYpSokj&6>&RI6~Hmjq}_{$5AH&e4&DK4sl08C`Bd!dvVSHW4(zfoIN z*$N~*fgIq&5UuAW!Xc4b&iREn2lt8jw4`;GBiWJXb(Uv*3W*slQVOUy7}H=t9R+UQ zi6;}Bc)o^gr!=xjwgY2DwlnTZ=WtQCit}(#)2(LWcr(@)T5UDnYMGGIek-lElxvw* z;<&AWNU7$GR~xXF^g4&KBlWE^JJQ8!$uu1t@AL2jUm5{kO0fo9GI!h`>FgULt1548 z6^X`xvg$kjI45$PGc25oUms9j?q)aGDl;ZIUKj~^Afyh%NA_O}P~gr?>8&zi#%`5Y zp=B{Z676m*V4|%jUg|Y8B(rIf^EaFF?N(u2?;R`VR~%kgTP3c!^my;Q7ptnl+kEv>0q}G6 zov-+S(_5t+h|g_BF9%t5(Bta;ii-t3;jZGf-BUhP%5RgssrmPS!eVGjN@7s8Z6RWM zN=kXLpf)KRb)?ERrZ!K&58V63j;!pFQmL3l&%D&WqDX1v)YXcNW9r9CJyRN}U05mE zBY+88uau@f@O~XJ5trTO?MQO%0iEJ4%BBdvv_v;rq^o_Cl@sQu@3uyrUX5`JBWKS% zi^uDt8zg7{KJrY?ekMMVv!A&wptFAv@Vx)@eD1N$Xyz;_o^9^jqORrQ!}lR8t%A|O z8|rP^ze27?vU8BS)50#JMF4W{9ouBI=-$$)i54xLUDYpnGmI9;x5;R6c$NDTyE`b5Vr$=@My7|u>mhaeo{lW1BB_^G1n*l zWB(?K1;J0|Gfbla1$hVPHfcv3HX-eRi+N4$h~G}y5isNDW6+#-&Z~holD4&XzM(d- zSddpb)UgUY#Pj(9spevDRruaxyN*snZDV1VLmYsdyY+VYw(DsQj04+eyBye_+vULK z(wGLe-F9^corbMAn9#u|UjH^|~Hcj;J4hsm@5*g|uS`@M8J(h!LV|=fo zpJH(!vj{RXQk;q{Yzr%gSxK{?1aY~C^SrvtD);-~RP#MhmE(g`h{rQW32vr4Yx<@+ zFf!P^u8|ptpCoF2HEqLonRt++f^jbIxxL0%qi}f{3&#Sg_DH8iRtE#pA303EW8hZ()4s_OFqVf`wcX@F-lzqetDElZIdW{mGWlo-BTo_>gatkl#N>M0TO!F0>!5cSI8EXva&BkrkXz`ilEZ!<`mPkhIF z@S|7WIIyLyfi=HW!q9?M)0e7Pk@r(2g#`|AQ0UGOQM*ZSWmVhhuT49-Ho*_6O*qJL z|Ba~FKG6B9%1P2>#yQB@RISd4*ls@4EtK_?u5*hX>}=%ImK5WNITYKyLqT&AZfiIv zDbD=k9)y3Me;fV`fj=YN8)1fl8wglAnJOlYbjO&5 z1RRFAs{z`q@iA4EYNN%&X#*QI9+mew(8D(UTaW8xlY16~-P;H7ddQZ00RCBxe=_h- z$Rzj^ihq8b41XTspVrghPY3)nZwCBXjDKR@hd=a<&4n}JiN0dEcosa-N3eDZc%rYL z%%3w39_i-wGI*^i-Hmz}Z#1LZ(7t`#bXx0=xHG6nE#I^C)9J)SCWdy7T3@y$ew`cHONH~Djsu~RHg(Hn_`22Yky?ySx1 z^s-a86`%~hA!5UDXZNb4-Q-8D{5dmw5cB7NmPc(wi$h_JB%O2qbk1-(8QbCdd1qXO z|GOKL!SN*aOfIX0juzQJ_U>b{US4OerJfrwMG{cFE;F5c=i~lD&~!HJ{geSn|Y@fk>>0uQeSn>(@N~} z=nC}j)Pg=;;-j&IPu6%}MOM51PuePptkKRYS{2@wWHbI@WT;YMmoWPFYSAP=X9bDD z&@s*;nh*8#xTgjLl*NjC$zp`){!vg=ru}tiLXgsRmq>r5=OFyA*L%t(_6~Sb6?Z4Y z%19sYyc#?LIxV(lIBRLI@a`x6+1sVOyh}tB?%T;WUeuoGT$zU)U+DJhaPR!PZ#wI0 zFLLxLFFf5PaweAWkr}#6B+YWQwCxh9lls>bclS6`wH3Ts)&)Hg^vYRYThEIVvj%ht z0zll=iB)+GHNYQcC!4k@{=TI<|D7f8wkmPX2a3Mto7v87^9UX5?l4K>R-5 zC8no2%W03fd}svAA|reR|J)^Pg<($j8`#V==T}+-&Z#vR&3G{m25j@)dCxh{7e3#D zuDhGKvHg~dsHfMf9V!l`J3EQ_>CWlFF9BEL)B|U6asP_5s7Sc#4AWA5I7Op)!4&lv zuc%XII_-Hh4rR!0(c;JcaoP}0hh#eqOSo(Y$=)affH0azpIOcx+G5@g{9R{JyF;Zs zkMshI#Hlg;lf61wWMbJ+kuIFs!H0kz$|y-Y%qf!+9yBHM6_-psaq%Az=8VI)3ySQI zoRN7I)V|$f;~ZxVZ67B~g1U(%Tu^(=UhFglwR5iXZS4=<&hjJ59&SpYiOL_lMPf?d z(g7NrEWNk978R&LQphtgz76uNyN|3+_zXqHLg&%oHo$~1!be4lnTwnywRS!{fs)!< ziK`3Xoe~}83|IR^C@Fi$F(~P~MB+ldqB3^sM2N>%!t`))cCj-ik0WDiE*33u z#%s+v6F4x%24D#vn5M{8OQjL;f(krmsq?TliZ{!z0^3G-DfkF&`gfH=MVIByJIaDR zqR|TH6WSt97PS|0S^Y$|N{USSQX{X@`A|ydLr#yRv(sNXvn22Do6;Gw%6ULL$(!MH zrdV5a!d$4wyv?x7wt?j9ME9XJBWzvqxs%dq7fzSsMD3krswwS20ao`)7Bg0s4vprM z5kN~*)wU4y_1=cqw$?c%%m+ZEFH3GLrmS;b*GleXW|O+E_kgZZti(i>Ch|3lafsdf zo$&rC!`WA>#ITFxvHb=_2cYM!xL5A`PTJtypgqZ(*yh-K3bEQ*M_!~-AFj2>T;)aM zUumrM_6Jl__R2j(0Hb?}F{4a-AqUuyz4Z278^dc7e|Gj%pax&R&u-SGqRJ~_QdwE( zAwew>f?mOUNQ^sENY|G5zyiz40+U1ruOSjp1NY7rpZ#=rWo&sony6c zd|;8rX_LkcUPCmX2D;Hi`-#_B_@UYd|MBC_f_c-guSHx0oVG+FhMhiH`O*7MHII~tnd6pN`L=yn%eWRAM1x-y~ z3D|}9WZ+E(5y+3xD1YyoiGBV3jx-;plPLRTigDd5X#dK0}%G#@F(A-xqTxDQHbgQ^fd z(FRqaeY8Op_7g6D>040X@Wl8ruM8FwzHrV8r20b=TS_ePHKf&M8`3-h}M1L(@h$Sc@5Ek8m~)O&uc9@ z0AkW1kC2NbERRrUpY#YEPL4}p2p8!|)c@MqD83dxbB_?inIexceVS7j zF=w1@wd=gjTJqfG#po84>-)sr_nf_i`x|Ff-&Qnv%-+}_kA_T|6Qf<>6v>c7_cOI6 zLoSFVWXPa5mLXTzZyItX-h!q{efcJ{=Hh1jl3BZv2ATCxd?K?Rx<8OvhaYJ*SaiMQoEFHe z%U*U))!yR#l39;uB_`#xkMd>KJ;bzhXAyDuigSQAlVK-|E*^lM`+c$Ds&j<)2?s`7 zwk?xFtNp1n&V1SwlNcQk#eQL#!mRz$6gZ$Xg)uN19#bee3+a(5e2q`|Qy%o2@Hrgx z!>g6!-^U7W7h|!&;}^*;Xp#CYFQz&EqH$gGxJWhS*X}0lgPi4fQNzXB%g#^*d@?Gx zdLOGvx!)Jbx11}3)B~nkhaF&iQhX|WK*pyM2bfBKyZv~w(uH?AW-AYf7SN$YAb{Q49zOvh5z{Vkt#nq`)C(@U@=UcHHqBe zHADnzEF!=0YKsWKc!*G-%0b&fe8t&;;v>og8n))_tq$&qzd{0yGPhzZ|0Bc&p= zdE|_We--PwX%680p=oA*{K(nNrd7x09+S0ZvGsT{g{$hH$$gQW4QOAat$%}H1Qd(M z)+-f&#^OIIOruR8#InZIC9C?`uWuMQSt|AN5!dVof@zadWN zY(zxf3jqJ)-_GWN;cKF^p-DcV6XS>0jq!z}NWSQex_OM`J#h0ZPOHLsqDa1nmrx|% zi6!Lhz^bfBejeDODftE7f?VF&&!o${`I&TiC(|lK+F+1zM*h`j(&L@vt!PGm44`pF zzVkCVBj5HJo00o4O0JHp9b=F}cbS7wLar_WpUBlE91P^@^hpH0F&d3AMbGJK)sY-F;pRF}C zasH|^LT)?Qd1H#_{X|w_y|b+k{%ax@Z7f_OIv0GFyXbgOx(f~{-9_z#%w2RuV&pES z;8RDjOVw+|x5H=dB$T9NbfP?&jPwPbZbkn znzR|DCv$j;>Iby#ycIavF3P6|DTzn>l-Hc<`ZT;InrbgB-V4{OD8~+pZQ*(i?F5HO zuJ`n_wj&}@0a4Rr_8efs42&t_e1x79wE%%hHX(9l2o&ThJ|`(k=y|D_UO{TfTpO_6$y$N;2-&2EoXIg*r3MpfTlrX1-PEe1yE!+ncko1=>j4oxaL zn`bWpHR=0IOB?6}TsNfE{v0~zF%)tiHL!#U{D9KwbIPsOx^P&On$qEO={Wj+P7+h5 z9HhKzrOoHkX(ao!z-4?hfJCQJ<8yQxrIcC9tkOy?Wg(31yr=tXZ}A4i&ICVp>Wj}} z^r_lM91zC8mB2T&+ALm7Vj1>c;RxSi(uo!`LTV^$Kd1CAZ9Q*A9b0X7Y@5}whb!#W z;;jKPKQrn>aDKer(3chtf%3lD=Lw&CM2|T&zKTySk{cZ#1ia%v8+jxb`4FGTMLzsI zkc*^Ei)Rz`fSVRA67}g?=pn%18FccF1z3qmIW2#i7G&L_;!0(3k@1xVMhdl@-d!uj z=tw^qfU>*fp@4p}CT~oBvZ^>0r^`dX@amqP>40l4NG)d>dq_G<4k(?a?GSU8u}G1e zWq*8%73(YNjp9qbNI^S^yqAldQGOfu|Y6 z)7ip9XOe+CyqVvZJCIvt`~->ifb&et)w_PuJa0*p9PwCAouv61miS1s{S*2W?R^et zIpX(tvE_(;iml-MdW|7ff|f(ilcEM!*FNEGNrJGy;g#S<*>g~}D~| zK*nQ~Sld+ZT!N}hMe(342&pTS@mMf33h+$ITen%PIMq^rE2!b&5D~MZLQS=?MN6c&f~b{j6&$8Do~^NH z(pvB34_Q_;A6BxC*3%z62rvrU>1t&)hWfBbIo`i(F@)uwvcX}wiqfmMDJ+UMjxQ7) zpzH4XhsEM;uv5{gt^SIZ%IV>&;rRMqtY&67$05>Z8pSg^x6?mVv~mBXshOYX(=_Q# zSCq&YJOu9j?5IDLhd1Hjo%D8L93|Y+HU7D$#qLgeOz``_%}nE536%ke$DQ;MMUDqU z)@EB6bo&Qg(~67KN=9_}J0BSCj#T8{1Pu)_Vd#i5yg~Vm)mAA%)h~sQ1p@Gkr5aajhO#<;))2Ua_$zzRWMjvezr(^Q?gs#6A#(6Z) z{QNoB=&$YM4Isuh6+i44Qdlf7^kz!gBLbX4aq-tYqlQRu={>8}628AA#ox=Lg&*`tJ z47VKqpPtiOXmLlG$u$ZDAMbSjN*St;(OU2p7VpP~ z>MweE@A168D5yK*n6lCs#}Ipb$HDaVT#%WIUeL=0YtM6fDE>%G{6*z{$a6<27-hD8 zSwCRYUh{7dWi>Ee@^i@A#;_<+q|dl8v3CTdoh=`sHwc;p<*CcZwHD<@>hX+DabG&m zjntpFX~LflYf#GD0G0?(2#TfSN9l#4c?V73>F#ty#?norz)V;BV`a)3E3tAMBIQ** zOWA!?M2*&;4cp5agTC$DR#vPSt@qJBXXQ-aUOK(1oeffM2J6vc^=tarpl>`ww)d!@ zA>#;X$XFlaB{w^d;(Q^w#5P95>KO!@c7j@PHzT8r@$^vY^mi<;zNd_v1$G2?P@Wvz=UOTm*Sp6o+gO%ckltD2Gg@DyQko zgD!iRg3^0wdQ**K^tX#d$>sscW^`b?5VllT3Nvlfn0!o|;!uKCrD9OXaqvq!OGk+r zWfCK_g2$PKcvrki&~fu{$jH1eOT1GW&4&{@9KuUX1J6%dC6MYWrpyJ`LnlNc()DXL zrTTGsLInQP36Wv;W})JXnfm#l9w37C6UNoldhy=V+oSHsnSXG=4>)!Z4D*x!h?H+4 zqs7HpdZWC}?uftAw$5VnY`uZjnG+`GFbqrh%&fz4dFG%kFac@BnV$>2lTCYzHw-j! zeGkBK;yQx^()=rpcWn;*z=^9lIh?UfZ!2E5<-y-2UAeZeUbcbWkZMV9yH*LFgVi4RTcS`N_1=9ui~V}j2u z;SDzYgT3iLtHmf)j-wwp^R6o#$7BXG?>c~0yUQP!dDrt+=p(~?0A$|vQ=jO+gpFez z4Vhgtv4!?7D?xW!St zqXW=$&pjcMc7hykuZFquD&B-LLvm?CnIT`S(ZAOA@+OoSvJ-l@x>qMj$;$9I*E+*oSTHCB(u>MqjPaNw3brf*cdCf<@v+ zy)#m$oQ_;NK<^#OJn5<&>|S#sM1)6;NYFT_eDm>#$fl1-e82B0!5=O zKk!58W%~{m3k&uR$y|Q`=FeI=tYn*QU6eAX_6mHq^gmX{)7q+XZha*YBC*kHD-^8_nC2 zcGXVW6D`KiZ4<&&-Tdks$AT-2rXst$EkubsMJpYp)G0BcQs0_l_Hq4`HpdTf7iG3N zCbM}BjY&fJXDcb|PSK5RS_ZGC;aJ0mW4jyB zL>KtdQq~DQPOHT$tZ{4ir5v{oyqddq z0me#Z(kMs1q~)x*Qpug?6%I@fi)fs-pp`5yF+FnHl6)9KiR_*&g5ZHp4AxAn4G6laIlA`P*G zPn#l6%QNmpMDq9gVy!c80kNR7Sa7Uo9*2@Kq;!yElp?1Eovc+)%i9Vv5}pbbjqm9# z#Ohf1C~vptM>a(Xw+WV!>xVHoBfNjTw=;{u%9f8jxQ7{Dt}>A5*au20;2AZ z`kO&VK|Pa8j!e*wb7n}2hq)Bb{uj-xCbI79l|}Z1d%>dc&w5@Cdc*XcYs10Q;@Ho6 zqIQroMS{KKFWCL2VE0PFW>+@aYma%ee^Ic1nu6WyC)n;i5<|t5jG&V6K{KP2=-$JK z6it59mj_q)3Y0XXYez^xfG6)nki=W=D`xmf@B<9rS4j*1q4&$bl9mC~UmCTwGModF zWh*SO>j%)jnl?PtuJr)FAB4lBnBV*G#=?K6_3FWLvOnNvHn@m8(%@N zt z*%acdgN(Pd4BqZv6yjP_h%fsJG5bhRsCXP~WGUZ#C9*<{3fei&0Lk!cF2n1&$gpSr z_3zYI;!;6ylBYNaB)VVxMR(j3-4RoCmkJrrYlXjNmII>e5_u2j7F=%&d@WS@{k~GSyd4t7JMX3uT;^k7|gL^ zqec|hcq5VC+)>u{HSS$?il%L=q%hnoLh_V4yZLL8+7;3~iboo4;&m+M8qtZf8FANG zr0wJ-s7CP}{Tprb0l{P7^xa2}%N!2u3mh@2BC=1%mXAJ-?I=_4D}16%y|2EeOugd& zV4e=0{3cbReS(f+LUCiU*gmF_DiSoKj3`pz4^`;VMv4C~`UcoFkx;_;SbM-bNUC;+ zm6(0Yw|;x*1&ijxI~Esx7$Qi)y*#`lIY9Bo-SboIdKkoe+3@nKVKDU(osu3;T zcxY77B6$b0ir2~*t^L+)bm2-!f-yvUjk89o@d_(3xk{UwPuB-i#1Jtq(U_>E zGwgEHdzvuH8l9ENFvz&&UZYHKvbNG6O8NMV^iY|+hCCG1Sf?dF00QtBliHKO^9WkSlktp?!14+G0g-?q4`m|!- zfOtvoV!n}j_d;dkiTFv#0oS|XoTaSF#we{Uw)9vP%_LZ*W7khPd)td`M=7<{Dtr{^FQv(0`*rkJWzTHJ+{R zYD&?wau6cUvN59Vxv;ZrX%q`TatyoQD42W6Ku8X|4@Kkpv)yfVMOH(jnpQsttt3vX zc_3Oi9BjlHEw~OcCXCZEw*q@}Dzp`doEhH+m&zfFa-w+?qmnY@tZ+uU%4y*!b+LC%;fx#x-d9XU5Yj{UhwUgk=QR$>|GpE zR{NN@2c>8w@H_Rs(4=#1n;Y#_hMVz_$#LYu!_zHbKZP}y+nKgsES0sj7e=zt($C>16h6d68cw%_`1n9PtWli%U(i_T_C#`Nqigi9$RY*kNBBem`q5bm z&?=h&iWgfMzXuAz>slMLweWM?4sao$u@aMF+N^wq;2*R~45ys*mpdn4c9%JamzH(c znsW#WicKsCip`%TxCUx{IT%IAp64(&H&A&+(sR%DvO#ma=4&{wprD*_;PqBeOK}y* zQ%p|dP(*&xIh+r6SUGb%{ga_rqoF}^WpiDQTj!ir1Q;zoVMt7sJc9s{DJ%m@Upn?b*RB;);jp%6q z!ac3>a@iN!isg@ZF~#zqv4oTwBt{4PwpDX2*R=Cc?3rVrTZd2brS~%8 zv_ibXisfa_%UGVstI3napJ!gZ8vH=7eh8`h1oLbxArYJ3xB)`atLLOh!MxRZ8AsaW zpqR`lb_+z2;z&S>6wM2rm(hGMut3p#NDdkUIgR0gXizv0KtuXxpH5LY_btJIJhzVP z36&Ky=a|kJBIn59Ob5N7t}8BQb1P$Y>HmO(Uex)ZruRi5&|!E#BnEYcR}=JY(uZJf z-W$|>l#folaeLwV=3PvmL1xI6euGcsO20Wzt~89fQph8qOB;@reWkc}jng-fZ$0jW z@RZHFNXwghti)s_Kc5i-i|Zr08pi8d!EXVb*I@95m!NN@gZ<~c^l)W31bMjFZ>5K; z!E4CFK@E90XiFY00Nd`z=b4Ao1{xKlhvT5q!`(XX@8NnPLGp0@zm;o``vZ;U@sCkB z+|7N@q$TJqGHq)P;QZ18WZkThd3+m0;wvPY4+trs=^U@+v|i=Kv|2*ivlkR`mDyw(C}=*_rT13%Df^+zxtua$}=d85dn1kXzPVr$O-h^IF9&fV4a|LSBo(aj(USWpm4GmH!`bkk?{3%(vX{K!@?I_Q-GLTkV&> zWj@PC_sC~)<>%_=^;vz974lh6;S>3+r!M5`v)&qEyd7|-FCU*VqZR!60)G@1`Y0n< zv};+pmbf+&Hg;a-Vj|D?A}cYwlTXjrO?W7e*CsRU0-c-fZPDUY$Vw2rf_&TC7o=~S za6xVw2Vl%S{(`S>i$qd|L`2kxG8%`M4(_=N{tj*zQY8oX*#+s~{(KD_+;}YJ4sIyt zjyCn^<-;*vOq+Uc|CWb+K)joJ9HA*??2NUk_Z_w)rMZDmq%=3A(nR|NI@7_qFNlac zy&KTVh4!U+Vy1@zro#4db&megi~J`q@}F{OBxC`Ly$|XR7MtHN-UyTvJbIk*N0@dI zu$#szbAqE-iOdOJw6Jn@kubsN+_ey^Gr7vox7#*!arG2o6ODmd6^2;m0tX=Fu6$AE z0{?RTc1cm~O{0$X1aF51P&{C}%&Tu2!8WZ6hbArUa8X9@Hh>v7CXc)gZ!X4efYW90 zR9hREqk-Yqz)A=nn*(;V1#2Y)&&mOoZh_G(AYczJdMyPqf*V~lGlDrN8Hp`OT%BU{ zi~|VMGWOvU{`BMmHxk{a8d33;v78%82o`wUHl+f8&PynqQY!E%piZg4r+IyHq5cDH z7g;#H2tOd4h7ki4PLXZQ1s2n$<>`A89(5^X<|Tf9k0#E8~Nj7%>|SR$-|u#@nV`mX|J?y#eE!G6VYI{(N=9@bxum{B$rrH4BgwtyLq49K1S~NlJF^qSLB}OhYa~R32Ul+jPIU95lr^?y9 zhHSfgT9Hahq01sY-d zm3x*LEmT(QuW)rZTQs#~z~krP8_62t^bGS|GXR);VT_l3*Wyab0_aylF7zD z^k^F@ZhUMAZ3st7G9C!hK^YI^H6-I1tqWFE#)6EW>yxOBP?sBe)SgKk{H~;8QdcoRGCK; z6QW#Yi{)fbB&|05Lv6MRl2Qgu$xNiws9%YKNVu_bBj-U0%8>l&E z9JA);TI^3t?v!zS3%pMgSeu=>B-duA$*RnZWA5zCjN^G%%#7m&oCgXU^mVm4S7gR< z9zSsFoluzDshk6ucg#yn51W>c&#M8!USimr_d-SOLy!uA$7n_O-Ft&Gmu@rKD9ZjT zGWi((%df4~au*Tt&XEzA6P+0sGRfvfJfgAz1&uqK+6 zD^~ET$Df&B#k_Jw<|J#$prlFH);t9*G=N?!HSqXgyi zS27pxGpg8vlYyX2L~g}NlNg&{Wj5ahegqKXGkHj{^W_buVZVK5l-HVY`Xn_cmhf3! zL)i;keUZM`s1>{d5@p4eAK=Q6;k@m?D7Imy*y>-EdEMthfAK4H@R=#fMcy9t(N!}8 zc`j#x#3#7;J`Nzhe-0bH^DRDQ=2e+(Jd-m(^2_v>-wacJ(@=gjXCE`1+7aIBUzFS- zQ*zV%BsYF`RV&%}Lhz43UZxoT%o!p1WpnvGmhvmkVlggj=xjk_5pn-^OR@fxk(ckM z`D&wb4+vqx@jcEDi8K6~pE`bTit{FkQ;a=rY|_dj(EkSmPP`@!_@ z5!C6LnQ+{Nvp|yUaLqDgTVIiN*r@B{4qvzg?y$vKqinvl5nfP-pED|HZ8#4ky&?Y6 zYiahVIWULm+O#D4-lQj4FOLMN-!4I!dKnZcHkiI9@ zjWJqjXLxInX_v?y7@)XgJ#Dr2h=+2JAx={c^4=>ry)<)>cfusmn}Zx+{@~tmMV{4f zf8ChXH2^?(J8((RVO~$ztP)1Al?mR zj>{Yd?1Qy|yb#;b2J#|&q7CFl*XgYT+dwAmp=E#cb*WV2&lL<26Ym={{y%6|Z}Ir{ z?NG7j0ch5C-Y?RuPg#lCrF?3ZMK6S98=qoy=pBS|>^jRVzRas>j~A**f4(sFCjg`F zLw@>GQe@wU^!1L;j%NBgZzMG-BZnr1dKHc z3yxjlH~P0M<^$qYCyvmRJ$A`br|Q^_)TstOkvi4*E_Zd>XsXj6zZ&m``S>V#pU9y{ za8*QG&J5{5OIBj?kv1dmIZfov+Wl_4tJxW1=}!86CwK09f5%daN9F)a{Z4wFH+cRFGWchdU-TqcyLs|zlp0>2BA3!wjUf(gV zW&g*hD7_X3mAm>+iVZ&*ote|Rg!D+&Zknn#tCj1?_+D7dHLW@43t#QeI_h$04|pj} zBbxuyIxlbbae(3n4H@x)57E0Ey|rr@bOV_4s5k9e{s&9QeSsvb4CB%qkoIL_ZpeL^ z7+ypBGL&MRbVI)2ugj}xU#1o`^zOqy2|sXO21I7Q;BO>stz8wP{=xzho0(z^bmaT} zoCN9pe(xLd{eIsZ1bdnUGrk>O%qHn+jNU~-ulEBIq}Th6 zt5M&UG<^DWHNsUnG5`s=59`w<+70q8f!!cVF=nN5Gl)`*mvVM!6OO@|n{bq3>{Cpe za3yZYO}MBVIns*{ajZ1r2cTcL6L)~u(1_Cjd}|KCMP5xKevV7$mXywa9RV|?76{29 z_o0aC#X@!X)sayn^Ci=VsV74evYAF>cwcK&+8DYG49P>zeG-gcKwjC)R1># zR0eEq*1}@n5$UR+J;B=%Yjtm0s&7lq$r^6eGA;44Cbh&z3Zx~zB_1tdrA$kloEy>- z24`vsWfuDsTbaeFyglfHnOW=uZDkg-V#dRp97irZP-Zb}Zf;v(ruGxV zE`#z9H)T-1dsAi`tG9rv$K_MNEO^TcVPzYa<6sm$%iNM-JBimI0{B8?LRnW+tvRod z0UN)J4DBfD0s|DWpW}{f_F?wdG4@i(gJ@k}9ecjvO;PEt3{Tw8c7>VYRgin_!(g&a*eYj7L$cOuu z;Cmm+K4!(tf!aAcBK4fm=(+BRvzC={{s%n<6}5XCwvNq5Z@K;y(Qlj?YhOB ztdHK2ljT;!Rn42nw**-sC%Y7%$jL6f?Vra7YaN+;T=fap^Z=fAc0!2<9x&ZvU58w9sx}MU_aVY8LHr@7jb7j7V{*#-l^u6ik>NIn;i9d`ya5uMwGi7BR z*TVK5JHxff>_3w7x-`K}+d`t@fRHe)I!9|cs@A-i991%wkfVbBTaKz92P8+;`+MoA zdh;5~Q9b{?bW|_$YI0O=Xy|cNwpT?~E0{BatbF~{lUTr)BtS;`shsr4PtEvV`lu38cC*Mw1hwBC%4+~G^PBOTcQUPF!yYQT|ow%w6?!vR=ycfRBGW65G~HsZo;3D<`=Cby2*rU5}}zy zC?-+!Nz`-_HJdaNKYP{nKVv_rEUD8a$wd7avOv^TFZC2J^|Say)K`0`yRYC=0`!r- znU!!velzRexWs*&&)v=Vp{rN$hF-e)_ZZ%k`Z@k-k9SYdg(~0S6WxE2iWdmbjRXbp zj2)eTyoCpQ=%mndm?%yu^+EVvnDU1AVHVj={1b)S%=E6LRt7%OX7`i0DMnk7r*T0- zOPoy@vuPGk4@a;u7~jL*y~QHi_-3N}OUqQTvwR6SV(xIgpglqWulvC7c>a6`mwrh> z&=0Y=ZlSWa24cF?6<<8SH9YQgQOe;upcT98kEG~bi3FJULE^JVZ3gh#BFpKjQ3w?j z1i3~SRZF)Q&2(2IwT>5Wb&Wp z0$?AVckH&0TrI?VF4u9jyM-8Tg>`j}>xKo~Niouyrv|vfZK{K{dHC2>R-7pKY#Z^? zA0xw+=kAIxwz`_BZU&M#!!iN)1AMffKp97Hbco)BrQcK()?7F7RhK~+D=entW$hg5yMp_8Wb=(I4i61pd zw;=I}W^w>5KWZ||?Rq_IEtcElSHOyjbhqm{v3=IdVd{FTB?*$zFh3f!`v0a8D_(xy z^|o^0uK4|V*A(?&?l{dP_I>|1&X`Q&Mb|}}dNFroX0GiyiL7`)Aauu*VQYwNJ z-WgkU6RgQGMtd9%#b~T!Av6O&ezkFft7}}P4xdOVJ|l4T3|F`rN#q3^e(NmPqihI~ zgbg2bEbQzG4&fClfC)}**(h2xx?(gQi1{yPj8V@>FC=JXRho$`ql->U7OG$PW0;?Ce zRvYYbBFi?qB-QG;M85Z$daWHVg9e+<4ai{I2>=eY;^L<9qVQ7=U)HBGhId$GUd(<} za0INw2Q)3M7eVwtB=2rgiW&))KK7qR-0S6sPi|b|niFPzcUWH5gun7lv8jWdf%orl z)ica`N8}jlJfeda$Iv=Q$QT+A|9~rl7@CF6laqM#OE9L7UGBP=1Ue&}m*zi^)gZ<^1KmViFgh@AVtpQ1;;P_xu5jJKx)KoZ+eLl(19UPw zACWh+Kn&iUISFQiJAx~+&qeU;&r75Eu7N8xe%Ic!ApD4QUI@2-o)_O=3QKgtvagmCBwaBGD$F*=@2_ zY5kP4$-R@|MLg^dg{65J=PO+z_@OU6 zm3-Z!u4U{}QvW{~NPKhyq!@MiyvIS9>QsF0dbmEC^n~k3*aVQnugLJ`v577))=9IB3z?8;s#+6w!{Bed;OfO3 zM{WJ#yuDqKM{RjgaPldN`$A0CRFS`bSNR)}iz?UPJRvRrV#xA%LlP!OaYNF8=W1?p zrSR-+&Dt68e7>0bx9p$QB(at`y7G&|@+zBiyK8Nvg+bgs>Js>EyK8~LXTJnva3%-W zwdH$H*Y8?9RySOvlDK^P4`-b)LzIaHRvmsgvNVA|ywf#?P0=Ex;Elx%x+c~lxU%Xf z7oQ*sJhaQT$Y6^}z0%#Tq2_|4cnWIF<<+l4)_CkS*KoGc&UBBBsYyjQ_5xvoe$s}g zt~c75&r;4i*j~bf;@&-qr>X24Qh>Fi?~lkdj`D*WMknyw-gI?khY827Ph8_os45N$ zf|_o4%QcaOAJZWw@FDc7_qg&|9HDFFjAIhN(L1hOmPS|*A4)0yXCJsHu&#s&@$)5q zKSD?R$(LQ1so+n$M9|{yN#40G!#(9 zv-Y~?vIhtgLT{ANPZPR^-l(8=l2U|*0t$WYr|t^&IblL*c!j92`Ok!o&Ntc&Ra-r3I;&;GB$EP!FMOaX)2Nmy2SWB5n#E3ghQvtEtIS8B!8X26bW-ryJ4 zB#S^X?WEM;B$~ojL&dNe>@T7QIH4~u%=0oPh`1L7BeVF9Q=r>#u3t?Sa~$YudtuWr z?qW0YIG*aUNK$}Jog6XB$v0%XS~^-Dm*-$CgYr1tUb8t=7AJeS{g4CyfGY^t)@AEi zX1vy2eQ*Y3;E|qP*dX(Y<9y%kBU-cmb_thL3B#lW^Y&_9{qX2^akU7*12zkOTB*BT zBxxP&Ea2Cm9;tSD4K|4gJUG;y&L=PRWU=cBwQ7;OI8v~|mTCjBMS3|e>FB+@(cKI0 zo_Dv{UB{O_*T5+`;kueF`CmA>Jo}I+>>m>_2dU@yFz2U7X<7U<2kDheRbZiF?_5Y!y3wwni zKx}v9JO8eiZN5yr;dmQ(_q|p>7ahK_9M zuwL4CD!6&p@DGgMT4JlQ^e~`{$NDYkBDU;=BwjMdNV8DUF?;Waz{)2o2*+6104<5L zHJ;loROu$u?Q>lDM>yYGF`yG0Ku|)?fmectTH_cFtim_O?Ytz+-H!|-4TG%-*+T7D zQmY*t1~F4@v3mQ!+Hm){FgAzCMyt;N!wIX;AO)y1KKsAo4}A8Yt)!*G_RF=l<_2y1 zs_UEGI&(xqpizSR8iQ|{m|TZ1 zNOX5)r8a0|Aa9uDUdjd%I_mM$!|tBUO{hW<2e9$Eo#r)2B=W2S(Nd4(4jAk3ZMWz0k1`)Wbf0RVFBMD}lj2zKDOH>7Ks( z|CGIU?w{Ced5bJ}x#KYa-?TD0g+Gzy&S9Gg2)6QxKY2k1_ek~xDX^ipm*|g3bXZ3h zX1fQF#wqF4EM%&WR7$D930#xo-eItxh&YUy?^MiuM+(Z~JXe^fpy1G`basXmh`HYU zhlWd?zjUg)FQZorG85!V^#NFh3zdN3lKhvBUkn#yg}2Kv%37V^8Q{qNE1VzfSJ8sy zk~*kO7AO!3-tJNxn3Z;xxZ9B7HKdCSEsBqshmDZL3k%#u7Bz7ADygX7k&PrOq`~lI zWrNHkFuIF7(y)**4fxjLku09y&HW*pL(pUv0Byi5fE1uZRzQJp$VyUxCRk2QutAyt zQ%RdcI!TAj09(qbnE;_fo+AV~H49eZ5U3OEK=Lg0*olfZj<=z>dShjCwucsr7f9r2-*|Pb_t}wCI9fnNAenoG0 zlBEbebHiVjw3ui1algeH{;k`Lo{9fkdM2I}pl33nKzJsL6rg9?LP01v3*aBYRh`W< z1=2GBEImUdpl6B+GI|DCg=Z)$j`hMbhKrY84yN*uYN*gSs?bEKP))yt)RBInBG4~3 zg7S-nDkl4iD`2u;N>sq!Vqp_b)qbHx=$DwkEq)0&`@4G@Y%768$2;c#q4?+(8$o%+LKR-wS?VreE&tK6jb5>^mAV`8ollpCbj`-Z#UU~>r$2G2~ew+Nn@qyU5GZYU7Jvx*d;yY7O5P_N!7-Bnxg^pe2?z%qEK z1Pq?%2{Hx`vWnoLtf5}*cn6ShynUBcM3vs6Dt#hVs@bnY3dsnfLNJ0Tq54Yic#9h7 z!idrCY<7Z3M;Fq1=)%BgcjFqBSC(9n$?BZcfmeH7aaY<}SNQVAe=H*b|KOCf4qr6Z z{XT0)5YeF-C#6F(NC7ys9pCw0SX0;~PAzjcXGNqCE!YEU1)Xa2=Z4GO2@JS#rn?nM zX?jbK0v`8&m)#Vint zdlqvDd}zB*ciCWyqs9Ro8byL&s? zjdo^y+1+$#jTqymlhRO^FmFGF?TY*Kwv7}3SYLiDGTKR!$bnMy3&6hJoxl&x zgQVkAQU^^IeV^MI@q(bD%{Eo@qSO)1_}*FJ(R}-S_w(!*QUh;^>bCWh0)7M+i_4`^ z3*3Ik=~HkDF@AmuU%9~DgI#i3#~m*2&Yt4!7rKYAvjkNbf>`WIiF#6)xPb4>b2!bv zPRZqC-&@?TJ5o<832hdEgqAi52F&A&-1o9{LdOAm^9#;!zHBj6=}d}*QV!sin?JOY z(25wdztpPfY1#LK8r8kk{k-EUsE@1VFK%`BW7pW=jS+n2ZSDKe28_B-6;*=$0`7UIs<-Gqu3pM6?xu~BxLcoir&Y4KuXi!@%j1RTBf z*&&@*ZHjW55LKI|jwvEc3gx*|eBM@fLSWZ&ceu&kwW(vg#Y^Y88?m=toZ**03_G2#kOJMuJ|@&4JKo5q z>^3DvNF`oA!;PD->TR5n1KQ|EA%8g$)aAgV?km|zJNRE`_`=8B1KD4szy>~2f*%io z&wJdx*3sy!YGc6@?!m0-Ssl+p>BuHP2%a|%;+w8>!}sK$bVo5k4<6sz^f`MQRK=WwLS8fL%^Hl#pOm$JA_cWs%PU2Ght|5B8RvA+XhVG`KrDtj zc9$nSaDKbkq>m+4LWW|EDHW_`#PVx)y7MjE+E|%{8-p&EPuk_qvT!dS>}kc{-{o$_ zde-DFe${>6%59zYJ+he%&Y@-b&X3zOqlRUbEx@vy-n_af9#c5HGSW}=BiNMB$?{)j zOcXgyZ*w%xqeUhx6b`zF7Fq71psn$1CG=)Y(2Q`=0-jnNl(T# zpJ&Y!H}&ws0NnGF&)uiK>3*W-t-r2;xVPYi*6e;_7Rcn))xQmz8oK&-|9`saU&iPD z1FyPU{Equp_OwPPxBhC8S-JI`y!H3Y9(R9(y+!Kb&8OYxfB9)3$d@0 z*oz4rv3K4OE>uV8RiqH0Cji}oj5p^t6DCB4PxK0-Y$tTB_2a}Udk6<=4uu3ikr(dj zIGFuFxDX#+3M%lA6S~Gfpj5x)k~$$*AvP2c>;#UN=Nb_%fo&#S!mFD4;C%t4K!QiX zP0mYr_2Uy0`R`wZr?F0iLkKVu_`J{E15B_wzVYD#@vAS;J$p`Fpd*~}0^QnkwhMF( zfmdCia|^NJpZK{Me(m4CWb=CtxMNbb3Kn{s?j9Z2@;04%tfGP_4oxfOlaG(M$mfGp zFCO`oCzAOHthhw?aEI^R2D^b!jY{vcY%U>)84!+d`~B!%Y+)2LTFUi;kzTeV0@O{k zdkGe_q%YqYGnz3$#CZlr3-Qjoz#Tuk>ly4t!i+m$&w)38aW`SlkpkRE(l^oGyQB`j zk%4_cdBoAp9(X;~`xX7o&oAL=>!)-wff4VZX|2`chk!2cpxML>a#Taf!KcGB*dKQA zqYC`21c$I&zRJ@st`=;*?^ADMOABy|lFBOj*)z(*fo^DG=+LEPe1AYoPAEDqL=ndFYPCE+|xf|@G9m>XGci^Za^MV z8lDWf$?!~VNdi+{9^7y6(#@VGj3VP+egjj79d7yp=kiDo>;O_xaF%U0H~E2n6)jmy zQUkZ!(pFY`ESriZh72!D^0cW{6YL@s9|MLGwl?tev1ou@WFV1@U4&NAU4&B6^dDMH z?>0Qg*c5_=gU>`$4n7k}0owi+Q`&wpDZq9wu(kUx*>316HXp>wAOQ*J11bT1@CZRh z9{?x%fO2BYibGO!o5{C^ds?s^q#7#pl1-tvq(WjSoLlH_MSP((LSIlh=nG0fUr+-2 z;wK^;eL*?2FDMm#F&=c(z2JrVo+FGobO@p=>N=z=>XHKC3V0LVWaeqk(g+=UL5c$h zE2AARjqr35-PGm*^~5g#qX#H3dZ36P3J<_jX3HX>yHLiE1B_vOOSq>cyNXmoHHIiP z%1{jlBnEc7Ydz5J6dvtP321jpK)cT&LecJ&L))EFaheEo&}kxzJ7Ybcum=bjT7ILl z{6zc3et$$@DJsfI3Es1#X& ziiA2wtj?c;n($rCpxaS+^bsYXk0=3sw3Wz2A5jkNBT7Xd<%7;TeaZ@4m+q-+uuljY zdgMdpkq=1$ctjq~I(`d-#PPkbGMj$6x7>@~L_Sgws1h_GCLSu`{u*Pb$ z>N>L>t0b6UHF?Zx_yuMGzKPcy4%LrT7MWn@c~8S);-s}kUmksL2gU@En7LzMcdqBV zFcw>f1d~{!;ZbW;9XaGgklR&Ha$3@h*(N76bFh5Jsl199FZYbLyoP%2E&j4*=FDjg2lM1kq?%!A-tW zOiqMuYqL@!zb-o2sLwZD>giomNo;aL;J*Hz5|dp^;IPRR!6w6x|Jmeh*<`P1azD0! zaO>831vS*#eGNNg@>hnm2oG!?E%~FgWLQ1Ttu6VZz@V0F&u_@Z<8EaH?itF&4;)>4v*tkZ{cpO-9^R9*U*uw-Pi3!|fod|96+F_CnKFPv|lIu+i4IL1@tm|718{%M07nN#cWgQ?!e##CN5*3*m4psf+F zP`ja?oFEp~<2l|bxsaVN8|Udwbj_D-nGS9F$K9EyzBPr#irqIk-E6Y{xig!*keCQ3Lx^^@a#*AGYxQEhOZl|TOaJCj#_Yg z9qzl0hP-U!`G_Xw_x1SlHr^_hN|+EjxxR$XA_WMIuW^7<#O_W?@oWGJ4u0wGuW%Fi z4ed&AV#5d*f|n|AH!0BIP>SGHq!huSK!6+YbtKV%>}MLMC0@XC%RcigGC!@y_bjYP zV}wT@3v92)_Z_{KJXas{sjwivKXrqU3N;%|_H;@4Sdi&az$@C)>L@_IP3S?QE3~AT zZ|vo|n4N-H2K#zht~~!eVwPX z$zHuMM!4*tc8paW!ovgi-{^VGV0%gBsu`Y%>@!Lb$qsPvq8HOsEUdWY3lA#hv)^p| z=HB`|aTd%+6dBnk-{ZNGow2b;3bx?oip%)qn@(NEeb3H`vQ!siZnCzFdQ9Kes>DFk zIi5lANShNZsQLyD>&b+G$wNH9WuB+Ag;7XI(GsF+*i9X(bR}326MZ?ZqB;vI4r$QA zi=MA456rmP)5O7s5pG<%mO5o-UrGva&8|;XD&SJGc+WK(PkF>KfZr*{@9FS2(%aDi zQ7w;EwBBle1>oheicQWSxOG{y#M6e|X~(`zVXu+c=7#$6RHYVZxfG+wdU3p&;Nm6) zG#Gb!EbL-+ObPqCcyF)}WVncD|KBEnBB`;k;Z{PU+dYRZRP_0mq@M7(g#+vLy3=!~ zg{njP2&r7V&?lC83Tjry06+h)l|NbT8Dy<2Zl@PJ<>p6!u$VYIg8Ls&8>|J>!Hf}< z%47tkk^+dJL5>2Z4$QjJ5)n7~OvX)L_zQ7Ui*Hk8xC1sWvnjUr?MQ-)8y~5B6Nen! z!Yy2DBdF6RN<~xSfzdPqil(M)=qG#xpHi{Ei0ka;VkQraZY3c4z~~m$?7NvfFoKX4 z2S#KZQSTC<;4iN8+-hln9=RSPQfgOq=Odm**2==MDa_(n-XUXNc%bRMp5q4lfIy;m z_bBh~AqD8&?}Og`k(LPW9#qXddO`212ZR9|y-TsRcf%ueprLp7Nbg#>g?DWPtT=AB3+LG!-&+{RYz|VcsyD(-_qWOgulq_2QTCk8GUD`+$QP>f5mp( zVuG(Hl7)gAoJh(Bc{}kQk9&S`+#gYg@A5^avj<77&=!}uN!r5P93gkMAkq)+xwf0R zK0ac!xM%-lU8_A1ylqWk$A@;OuBGouLhL(t)HWEI$^FG{aD2Kmf9F5m8*HVt7eF0+m ztdjN&euPqyv~7?R%_am9RYqU_<~Gkt3nOM>%W5)q*x|Xu!iX!;8o~=B<#5v@Qp_Xq zfw`}E%rN#m!NYJv8$2B;CzGd1DH`D&XhF<0XKRafgbm(OHu&U%Hc+qN0Z3^Bij6in zOoRy=m`_Ir?tBB5<;=n=o-=g51vWcJ_;JGvwBGubC)2`ivxQRPDQ%0YrW5*;1W$RY zi^hi6_Oh#r%=}0hY%L>0{k1x(vdEIZgD}{sofhs)q)Uh3suohfO${msCG?2`=i{oj zulR+l+P-|>9#1RVqITTkIzC?cu4iLyi`vrnJRh^s0zjp-(CyWtc7&#e7Pady{@x)h zQ%3QUuRJmQ&Uf5#e8mTzmi+3t(n$XMgYfFS30fFg_8?ifhGtNhz)sp#T@6H$}+>Zh$Z#?lTJabyA>lp%igHBBh861q4?ua1RqM z1ph^WpCSbs97++qUIXna1c!nkc+s?LOA~4}8Nc&0&th|8lw8{q7P+<^8f9DCMo$z< z;Mz7{2%N~@``ptfWxSx$rR{L7>mm8hINJ+hyAySxF~$7Y)A<*<#>L=CVqFL#E_4@v z_fXRqnnr&>LmS*=+9x*K5+dxhYPrzT88sOU! z`+o3b#cHk98}b+Pm>)e&nN7wZ$8JEz+iq{zkzZBFdqc=+@!rh1n#c|0LW@E}hSkm@ z3vatwI6|KIoe0JS6J^8aO85NYX>UQ($&Pj zAM#vgtt|5Dg$?9HHy>Iq7EFx~doD9sXM%=)&5M?P%_9Y3j)PFkISNbRfs`(Mc}29$ zEU)5KKfxV_d~P$iy2S;!xU!|VXmA@rCCHSDhSQhrrV|a&dX!gK@8L7maE*{sb&9>{ z-zsywaYrj-RO13_U9?QG*Aoz(Vy}^gFdvSV3#j}Casj1dPi@3d@HT&W7S>c19lf1M zskNOPQ)-HaC*9f6R!1-R$McZMz9VSp=x>yxzaa(a=)a_+|Dkl@=o6}aW=yct+B~gp z2mvrAzZ6(6oEpaH*vBmoV8_6)u#28(BdEZjR9j%=5@<9S<%PgV46Huy>1SAgb!7DY zm)c1(GAL#!GK{PFT+`c`jU*VMz%YjMgW+C!%Mfw~ypvfoLSke_Ooc>-d2g<%GVUeb zM8wtB;3OF#6b&QfOC2G&=$g|&CUFxR$Rut&{1uC?CkeiuA|4ae;1r=3U2nyxMb|r| zR%p>>ykR%O$1!sC1xCQt*Q+sd_4O*Lj;pW3F>>|wJ1M}+6~Eab{|QCrPUh`l0wM-t z4aDeJi5MHJV-eSLQL%C?OXlMuy<#j2;@}#L;=n8`*I+w{R$wD_NMilz6kqr6YQ07VNww*2ki<{D*CcxZmgOp z=hG6=n`f)0E)6zSbY?OGtF6%rJ~rOliP?bD`GEyp;U2tV{xoAT!H0DUejb> z5GByIXr51$c|IYfXrAANc_!6w?W6_5I){~YPF=t{jbuOlL|Vs&tF1G{T-l26itOCX zjE$34ijUJFr>ztnC-b4EasNM73JORbyN);vo+me$$NXSVPzs%_bMWlQh#>=|oQ)v|N5riPZC%P)S} z32&Rel#fUEGQ4Bit6BtEY}O*Ua#x&KY<|Z+BQhvVcL^c*RG9;ViyP>RdBhba=VPu1t86A&<~C zc3Ql^PULg1if+k@2#XK^Rb$4%>=INeqG8oa?p95a z-^as4wnc)96ACyTS8_Y@yju)v>ops$M;E3vG=n?1Z;4AzsNpU zqyVqGA4-sq-W(wXm}CB`y!3a-OZdQt4r+Cn4#?;wimbg9nW$qHy#(y&B@4Uo5+&dp z#wY>Ji*FdqAb{u~%7zZYH;hrLsEltI>+-L4(ZrUzVoPGLG%?)2hA|x8$aA*PX|9gP z!~yh2&qC}bBFCqMB`-O>ev|0gw#gPPz zD0p5oFOe@FG3|0Ti&OvsDw)5Drw;b^HY*ZkDg@eK9>3GdEZ@RKb%EoQPJw%dc%vQc za~rR`xV%46_VE3r6!X#}iE2zdN=rl^Kcrf4Qnx@n&PfJbwS)vrK4H2un^AB)P-u{( zLq~Yp1U0se@D8_dibOJ5$D{(?N7NDT@n6*{Av~~Yq_?TbG6*V06|PV_5UP-6WCUi8 z_FiRJ*oCYVEla&lpU5Jw(>LCi&e$%UVJr|~(wmVtYWR6wCwfPm+1y2B`Fsw=3WHbp52n z3!q{?wIWI8Q-nw6Q#U5r@~P+*LKx;#AB$frcvZQ#d&)BLo2FAUv`#9Wf-h>FWnXAA z$ASGjLcoKrFOuZ4k#a&X4D7b_|G?~R*{4LF*s14NOz=))rwLWuNNajZ5U@RAGW8+# z4u!9B#Ak8Wwcg>5sD|*^f_U5g{%gH$c{86k_{x1Fnva<1EoRXT0Z64KqKm|7WcA^f zh=w>tCDqrQ!APqFX89G}g_FE}9C;uN-;DjsBySEY(ERvBg3*ajoecSRCqlPLRB2q! z|A)lDqAG7Xe6^T>iLM_x5(vQy1y}LqRo<((Z>l$n3Hk-vsUCYDE~O^c-cEk-`pV9H z!?63?C0b0aCWTW;eDgH#e72Z~2~8esp`haAv5fDV<;~}Nrh5;w^@JCv`85sYNWF#> z*mC5pU}C(8_6+3_WA^5Ta@N@ne__^fK=k89G~!V8L^_DUNt}v-xwjp&5t8^dH+uV7 zs4(WX=`8bo;sQiVW#n>yS^B*U9JF+AHQdzyFmO|oaKWmCNlb!!xl`*MW z)lkmv3%RibW_+C8=QotIdwL@s2iif+1XVled$UI)zNs3T*^98_D8_CH%k5mXv?q+r)xzW+Ak(}K@8=T#*vvT+4lRqEJoK|J>1KsAs1#)(q zomcESu|c?29mI!KPHc|n!iB!avtye93T(&F}K*@SUP^TLZeyIe8M*#0W}!4k>&k(A{H@-h zNmwFB)6f`M2+wJy^-3vpz>h#q^Ll*^v+xk#S~%+GIjt+B1$d~?RTi~GbUes5lWZMnbYvy5U49x1+!hM!tnE8gpZ?~K_lu65%z@uA`r z91qnW6FVEYQ*xu2)nJb2rO9b?>Iq{444f1VjvB!C-U;2Yudo!_w|h{WQ{9 zT%@Vum*~e!r(JvwlyhH9A|LaCuQ8uHzq~Fy%Km#8|9qMEK&^5%T)dpp4PGBF#1S=?2MWiv7vtGC`#|3~4vtm;;+v_?hh~jbRoRpV^*9P)aZL z6`PYA%iYe&<446^gujFOMnw?8jd{_4DehWL^VWYd&C0;W)!r{n#~NtPu9Hz-{885N z>N0-TG1SR_yT?10Z@I_&bl5A3}y)myo>+Z@A^^A=%_cZ2J!z*)m z`zw1g-tH-XV_uT!tH+Qt;+(mmMe7Fr1g29pU7&w|XyT2M^q{-aM+sloefDWNv{*S4`>0&$Tcj z1MlDO%{PojJp4g#5o^*!ccoG=mXX9`9tj>GqQP1=5eCaOziP}oKjgjsVvQ8nL>UQw zggUPI{s3+}qxOLxVL> zczd#GL^N7xvfVV?xk;@WX1p zWp?vb$d>t}`2sOpyzpYn2S~O58v||%iJ=CBueUn`9iH(f7-4%rBp+4seItJRoxWuD z9?<~p__p1SpK3c!e9k-ZVk7PKpsC=8)l|O<0*$m+WgA|Rrs6YVa-IBKz?;dxT?;Op z+@mU-?@+WZ>@0yp6N=$DcDcQap9*0H?SfAimh??_nrj-16N+rU@pQY!<|-VA;ej*p z>EpXrz2qH`Ku1(i6;sjWfwGspv4(ZDJy?E2H~!Mg-c#(-WZg(GtJ)7J(o~@z&V?^r z{6Ji_-TMn0sxdiA!fzbcBB^pnvfKqYwZr=(t0dK8UiA*;n_lqd$}<#KvN!;0&u4BO z7sI35ls4oyP6=zl=G$tRvy;U}!2lzf?|T#;t*rc@UIWe_9-7Y9+BsK+I5(}IlqG>v zht6okBVO~iWLxd*PlniYT0_SbdaQDEOyRwD!=CrscJ9|h+<5YHftDYe?pxbnIMiKQ zXNuS7ndH73a+j*~uy{r)a2Wa0&F;`3@myT={GQIxTofBED$Bi#zr?TM{JZ(u9(%NZreOK~jQT6hWOJ{P$5y_$&#ytd4%vY7=fycL%cQaU5n~+trV6Qem1y{-u z`MMA~*qX{T9(~*B`g~@4cnef9d|N!;-=39d9ud9poz5&X#~8quzh;^3MyALG-CxQ4 z+gHl7<8(9B{s71n%Vw+0v>(Q|wNk1R{E2*ahl=~GWK`~apF!cgaG!UXaTDLS&s)l7 z*3b>UAqwvowCQ$BioD7Ly6xLjeoczjP3_TG>|oqe37^p<$PjXBlQ~Z!AA3F`#>|HH zh=ZXmyUXF3$IXOa_!7vEcys}AsUihsy!*ONPI=sZwu`L^*nY6FWegF|ll!rH!J4i4F@yXtf?MYWqJM_6t z@zf~7B5~J&sx*(|b|?i<+lEiGp-3o_yqW|U90 zP^~@9Ol!vPc&EICH79VPu4XoCM#8gwvkP@Ib*5uccgrY$D@G{9na@jS8rgj7QFSnA zw8yT8Z%7!ozK#|h|@_`wCm0`^_=DuXuG&DRn|=IBZ6MIkNAR>yO=$v^$Hw2 z;SCRG`v{BJ4KUv0Wj}k9Bi_^W;HVM$toe`4)Mnw&nu!GI_p~9^vLOyJYKZsBl2Jol zqkFFz-}=0-DI*evH;S9;i9m6_t;N9#yXeBp5P3u1;0rh-woz8rT>;XzV7Ts zf`jX_&uR2T zhY{PTx3lq@*n!hdUxi`rP~dOJ_zKu-cJQ64f%r&YnZfsj)rPJf7u{A1dO-uwg?w%O_K1b=Z0wy z;l>Vlru7XqG(0DV2H57oQEg+H;k4xM5FF~@nk*xNOGUAO!-MN_LJi#hE)&0S`@1Yn z9$fbn-1vrmShdPG^ncyZx4Y&#HSkL#Umb(pM4AMnpjxP2r>Q~dOJDsD3)L*&a^5}J zHz8%^D#N%${3o`{QOzYWl{h&+VFAVj^3gg-cICc^48o-U8sK`<o zL8|KXZ+LT={$1K!rhmPg%k=LaD|d0k8mbuH5PPJ%@7{XsIl_oXLR&!@_@Y3>R$Wjd z3w#^=gLe-0XeN>czDe7&U$(~qeL!Y`+J)-I;nwDX8!z{L17G_kXd+{2T7&gT%@Irk zPhH_#7{>n51=6#a2I~51PCfyO>ohQ`1xW+rTIf*2G$*$i|8VEYXnqj>vie`fM6k4~w_CvE5$W9FeKl@S&YL?O!230?~N_(yqt82qrr zd#sj~C}*x5tE@pod{3HJt9C5gpI5*}69@nw#2+8(yO)h5R9hpGB=B%6aKv!mqvk9H zJni$mer!I05L!ph0YdO%%?)s%?aSlY1AUkBrDJ?i{OdtFebbFl+58NPtian>`|=I* zJ``5U9=6FbA7~MHa-^@F!H<;IhN&Jl*=WJ!>#p%VVZN#Kf8x8m%hP*msX_(Dc>QywaTVw@BkM%7v*l|(~1L*e_yr|4~9dCS<%sg?O{NS&7g)FS4 zmVkX(Y)6^EFJ6g?{K527n@&aWZz0j4%v1BIc!bV*wXXobYIp($9>_l9G>^imhGE4s zz9<%Z6prl)!8r#~PuR-sYS$6dPK~415VS|iwDU1FB(2dy626*&4xV6Em2#5FE|~O* zoC{OV3ZVj~oR#7irks^6FPL)fE%)uHnR4>|6}}(Y&7?It-*xORjZTuxT4Yu(Zz+?^rdK~$mnUEATf-h9bwy%kKG0HTn$MF0OzEHiGs4}Z zAe8HfYM2pjY$-F%udQ4|&CeC?AyR<2P=L56NrA?N(jYEonz5~PL}T?RcmPd2*aLzw zb!$r)utBX_$p#gW0;~xIDEKl`panx|P%yryp;mM9qtkus8r%(<*GS$7zf9h4YFTUY zCMwJ1ZJN+S{4~TfrH&dTBB3A zc4N$oN#S&$jrp`mU9|;!J&}NSKju8@`;*;Hs5rkbX~jQy%vT<JH$X@e%~6v2MC^D}Vnxe3kL z7o?I-lRjxh(xe|+$t`K{4lkPDKF|EHmCTdgCv|n6w5OHKlU`~i^Q1s4nJ2|$gxn>X zTO1K32vog5>Oz=%SS!LP>===*31B~Q#3Sz6S;@Gixp8fe)@IiX*|P4s7D<>2GDyoV z%g`;W?rgS9)<#wj(h$*n@nYWrMhP&q%0mOQS%z$LR7R-HI1p1G>4BIAE-?WP#IuCf zI1tYkzi=R)4Qj&Eij1uN19#l!Yh26ebl~Vxu}0w5wyRbD3QY}-!7pC?7`*&`-(tRz zcZlO7?(~(ghcr4FgKLpl`5;(HEcAO0SOEtk%Y5&#ZKN&^SubSBA?qDdfI}7(;E?qh zDbPa}l;V)}Y=#_ztF2r^%_9o;JSjk2C_voE)?jsYG>W)$cTekMXjmMATM;I#o!(jw z!5|kG`#lK*wx?@r*`5KU0Bb@4${k4xbbFwbv?qa&U7P1(Q?0B+%}EM;9w|U@C_wN# zNdbZ{o8GUFp|Nq=c*M#C^Pqx#o)jP~6d>$wQlNE)Qj5;`Jm}X}R+tPG_#sk&;7|bI z>RHf}q*O})mY@XOR=7Zn;kLpf;OH7N6R99)raLlfo0%Gl%5rAPXam2*Kjmli-gEw% z$|r|+ib;M@u+Uj)nINbD!utXL`+7@z0j$_VlU3LM)+_H|Z3!w)P=ycpZeZOB6=jJ$ zvuQU$#TKY51Eeyn{C53SH;a#c(AVD>#2C~+D^y!?a zZ?U-#M2Jt1d_?&5RQ*94GNFClM(${2w2>bl+0#bO)NhiidZympM$TH#w2`ycmNs&x zcDA*|WN}1YK?o{_I~w(#_T6E!=7bS5o@Q-%&TkdTOw-kdMrsRBhS8aqJ?CrAy693l zF>kqTbgt2sG^0=3P&4q09om-avO+Vy<#}H-){G#Dz`o%91Mlxc?V-~z<9@Z znc)zGocl|EZa-XL4}t$pRgW`N3d)kHp=TFFStVYD9NU=Bi@mm;34hbBFYm&??pt(` zODDWyAJy4tSA%p-tgkT!QwITn9S4!^s*5~1q8q91IXt&R| z!DNqU#bt9!E`5qM5k#6(5G8oo27dxSFuYS6#|!P$vj#8OLGYD0&$p8g9N+=QMZUx^ zsBRrTDDTF45k!x6^3elI2^#)CZ0mr$rMzT~BR(+TQ{OJb@hvnFpFa>k@cDzeuk?2E zZMz-GtHRE7VDf_7hoS?5Fm=bB7f!XcT=r{M&Y7HKA^Ye}$b! z-VQfEYbTzN?w?dkkXM2nzHexQas2XMeH*PE18#|T4YdEwx6)vr6CJ_EY8}2`Q-!uT zT5Z1g(F%Nj9slNyaJK3Qr02hAaE>DJyuB8Yl|N_VGCXi}i+{Mm&XIa)Cw)VC%b($H zHokP{uS|K`eC##XaF*C!_btI^#PXeROWX`HUE6)&EiB8%WVUTD*T3DZ1@hfOko(2_ z2}`~MiD9kSm4u`8lyAJKimSb#fXXMQ`k0$=2`$XAN?#G@b

WIE%2=Gz)|cy!iDf}EBG(1 z1UMt%_AB8)0Z`QwHB!NMnP%XtNu=G2q{HyCqfVkxf_a<^mc8nqU}$W-e=%|Aw4v-1!i3l# zD(oMu1qvHVi{@4IV8=-*Dh>rf#bFaEk>48YxQ4L~Hh0$TAgrD5w9*we6e4y8DMf53 z2x5yZlcd_mgF4(86F!R1b^3cae#@-G5BzX-DkH4?;3$8(xfcdy@%%&~^LL5?Hnl}E zOvwB#lP|fYB0J@0L8epShkAH{NifsbAz()MCmL)N(RAw}e>#u;+-$|%gj&_4yx17U zQ=R0jAv_XL|!-1{|Fz{c4~b~(emNt>3rGo zo|)`RQlYGczu3YiVEM`<|IHR^_BYU~k`u1_yttu%5IaH;U_P#a;Hg>pgHDs2JayZo zw(R`BR8HbWjr|)f2oQ_K=Bf^I{ksB;Azpd>L=*oyQ@oP#14sSTRSSmZvKHB3H??3u z2c>392c?n%bP!$*FUVF`!@H7VbWT3h3puB6w%nl@)J*9SdCL}B9|B8{u!*|!WFz$a}#-I5o#^G5}%qr2`M6yDE#HJk5x zuOf@>CNSWw4!oo!Jm1_&UG{!9-pr-t{tvvZ za&lTTCr{ZMQ2E&q3{yxdtJL;MU6}x$qKf@vsM~X8R=Vb9;HVr(< z?jeG4a99m8;Yt=;O$tz9v4QE>0t(}ow4Wx$I5<2-b=`(`G+}JO&uMFA)n|l3NLtmT zWG4YRm|Z@YeMks6>#gQSC%;vhkfEuDI6fCWG_a}`y-)hbo4@Dq+fVwtv13Glw)0`C z`zf@u&|Q2zsHxUnT{b6TVFfgId|qRVOf>b%9P6OmqR9V_!J6mV`a!c?+$?qyy66Uh z%5#2ruBQ_rV?O|P><7(A0rrE-2?6^7aAH58oY=wc4GbK>MiBNOFvc@w51H9cbe2}JQKsT2g&r|{iG$o*wlXIz+vjX3Qmv=YV zV?;DY^g|$3MD#T3m>TUY@n_Vk4SJNyz&^6` zc$)+oZ%FJBQT{?r^WX@Tnx{OPo~MI1GO%Y*8Q3!}>8L{rhb`d5ohIT zaUjc>=wD!=YJ{W5;c?MV{}o~FAN7aSL}+}X{zUfczg9jr8FCfcB3yp-|FeE;cA8Yi z)g@&^-GBeH{@|LG$84;h<VM@Tk4=-&6eKYgR5CU%w}7_P;9UO!N1!)WbkYJ?Urs zo24DcIr2Kejknu7c4eIiiVpIePNdWI>V!d#!>KW~M-qQOwzvbypVVj3Ny8z3I?(UZ zrWOUzV?SNz@6Co0k+r)!`5k9JOJ%*9_mj%Cn=G}rGrnf!l8X8r`OGP}M!P^gU)^X+ zJ)F8GcC_Ro{I;9?2id(u3GA9{!CozyFbvCpg}1))A;C-R6{{whYP zdX#z>9Ju$*!h9+c{WtfDp6%hhB(%OTKa=jOnU8go9iHOj7)1$a1K!DMgSVO%-^z@9 z9lL0QvmjIqPiINf&=s8W$36LQINq;rI=h$F3!M+HB|1Hl z&vU#}av>a!EwN;nS|xN26%=xgoyhOG)t|^HReR?Rq6&J4vf;>hbh)Fir7|{X++B{_ z9bZ6$j@{+Bnter3LgSP18EMc@@YSw$o;+yK2ersBr29&$PnVz`#X1 zkHXIgE$bj}49)2vZw$?Zzv44OjXH;F%RSSLb-j!UVsOh8t~2d6J9d_D?an9cIQiyw zCS9=*?g@#vd&1-kukP*v*M{)T-EB!FuvA};59MccmRB(ndFcv&Zxa;4XY#MLGjHj7 zomC;c#&ql5erFiF#mQZzj#5^FoFMB*M&jBQy>+wzcZi%2A5wcRh5 zcAw98uJt#!2*F`IdL8WWY$MoWIEEW)FRk9cj!0NiTu8_Zdt!$?~pmQc|OPQGE2e^4ah4qBnfeg16Lg762e!1#mr`6pWhXba?9 zD-^^1fH&@k%~2wN!+4XlWD^J#C3$$o!~UTbZf&O7gj<-&^c2Xei4@$vxmhX|8&@FaF1fiG zTUJ9^xxG0!^; z9~_5Mclmt#p~w9@YB^y)`h@=hgMCU`4c$+juz#efp%eBU|LKIilFvN|ud&G5@2|%< zzdj?5AKMJ)Q9o%p6Jeg(8KmKq#hm_{!<_?ke?_ZNA2-lz!vK00=c5QSh?`5 zJ=4zBx{ExI?P@KMM}%vT*5-`bHpahJT z0*-tUp3Y_w4io@YEdub!eHGzC0e2|@4_FJ7fV+f%G3;qlh}clef{o|xdk7a|zp1c4 zw-zYuH>L7;-u^S;KmkzIA^^|ZFX?J?(itTn%37cVoFV2zpEBqY3e78SwRo;+PR!SHUKBsF49#7mW2?HYgB=QYbxbp(VSD{?s{rv)c;+_m_>coABkSqQfd|WP_FaPLt8sGB1KQ84*!A4Ku_v$eR zF7JuQVx7&vBoG;*@{x-o(59&bn{dsnT z%UFZ%&>Vf?wie0N-}oEb>$T*QzPT=qrTuGV{A>_a1=pSrb(3r9`@wYLHHpt0@V7G9 zWdsd9*t@$-(R-5uouZHIu2S@CNU?Aqe9N`y04#0vO;8xyzV~-Bhjf$MecFZUy$K)) zT}TB9o8esxO2kb(NsOI_=z7Y5_11K)Xkn=*Y-scn zjqGho6SfbSzxY2e*vkYAO&Cxn43GlU84si1BUGWY3GBEOr|h^C|CVs#9u9EgQk-&v zZ~8m_0Jq>_^q;hfa7(q_E%25{aElYiIej3ly%Q@lMG%GFp`t?Gu@m`<-~9s^rOJgs zjMv6WIP_O4f9D^66F%|2fm7KHL=lXX zX`q8x4^JZn*Z@2lUkVMtqwzaPF^-kDQr%bgkZXI;9nZ$K?&{qbAO!=AO2PfHrzo!2 z>j6&mI^_&`-A?55{_#(#MRjpH{!R~hI{q$^piTc4RsR!hdORN2>c`7aBywT-g2&^8 zBxZ9s5$Hh&xAuHX$&T=V^NfGH!OjyE(CDX?(NB{C5wGfyJf^2LU`^mh^HF~6pUnv; z_D|p(^I>^1qny|i@Q}O{VaJXS>}YMu9*cED&Q56N|Ks8{LD?3R~ zCG|0e@a3#LgQO)|8}ulZ5%Q>=$nlVzQng3V1U-6==%YP)iYisF*M&T)UUEW3phqbI zJvs;8gZPiT2qv}wJ#!yd&v{>%Lxm()CaR>D6un2 zxe-_12_1?D}m8hbvH;E`@&bpxW)XgF) z0T}lOoTxuusqbcQ!QdTy&#P-fZ%BMY@T&O(Vv``1E_H^Sy9eQT#!VC42mU5z@ zBGA*6fS%r9^YoIm@_q&@C9=`e13|2q)(4UT)ET$Ay`Xb-b7yNODMd%SskT*xp;;Y| z%XLRlw>CfsI+_Z>S$z@36^;f@v_Itx*`E?I)20NRy!3JTCW4IVHsuwF9A1k&#nNm{ zx1S;PFx{?EZ}Nu7WJ^6X_mzc~jwO#kKO zI}9WQv;%OW9VjQdFS^Ch1SjD}fx|bf=`@H|~~plSg4|t#bPEl6n=431V?-0pf$@1_)H=B5+C;u{`qeGX&A@S2Wis1Ls-o9RW@L0UKQEF;ZC{d7 z?6{v&;2(=Z9T&fn3z*nXYhW&0HZs?77PQ^vi%e(d2`FlNnu6BvO||VN6iw?{-bDPJ z*Qfk)er@OSm{pC($Fb(UbwCQ;xKU8v9dFa|;)3!9d}5?GL$ujQo!HH=fFy9yNZzYU zc@Eqrhq{|&wdP&R^F@tdV-EI$47WyOcD^<&m&bKeT8y`A@o+b#g*m-<$UL>^uxj+! zZ2oTd@)$m6K%-c8C&3X$;p2J)Tk~WOXid++_*O!{Fr)q8uv>qVy=T+GxX$@m3o_*u(be z%nq5fcR`m?C$5ixC&X*ed67H=hQP-o*VsPVo5+pN%`_0yVC3VOYt|LzzB;U(og2?w zGy2G3A%m1+Os{V>6+Wg=Qr;F4wDBe79as_J5DheYK-JKeT>n1kILLkPC@s&8)$>s& zIeTXC4@=AMWK;}}6n6|RAIi!Iv=}Mi?LXazln<}Tjn^xt*5vLpw7k&Htv19K*5u9_ zR^G+JEsslU=-ixC#fQMFhn25n>j@R-uLlW1%wOjEKJplla?0~bEkfODBO+k+im!fm zUtQihjO`|%AO#*~635f;5-N(?-G{qJ!}UbUE=ORoyYdZT7j`v)J%3Djg@ql_-yKul zn;j$UL3A9PC_1ul9b2By%)UDO2zxv~Furab2h`!E+Zx34g>9$yWbw7|iuXZUG|4F| zFOJtH>M0{I2&$O6jC?-CUH&A?Cv8%5}L@E#KUDl2$kkiYyllPw?> z5pXVFQCa@~SbGleD5|ZU*$^NzfrOG!5+D$2C<$F^AWBb2DAG$HklopxO{mgIDAEFi zmP;q-Ls3A$whD@1Z#2cHh*A_Rh!n9r1>`^X+}WKoyBqyK@O|GS>%FJnbK5z0?$wk$ zQjTqxTaZC8119(s*r>T$-L7%4;gzg^WN%VD8bBoYyJx}@2wveSB;R&JEs;G(m>mh zz-~{nr$l3w$N_lM>Dqc2A^1%r^7;hNjR@^w$;M0Ys*%o|b_e*!chv|lAygYsM!Mcxk|>Mcs3ESXsAK(BA6)VT|L_#QVLiqZV31oA*NSkRp!yyDz-f1W zgPjVwo*&Ay4h!UPR&%<&fjWsxiCXIqGwIK9DdNG?Tv7}Gd~Pe4c<*Nm%m+_v%&?zV z=Mn0x%a&=WvH83Nox*r+oC?6UCylS{Su)f9kfav=4XSa4Rv_x&+4jSdy7g~RjWvn| z^~TWLN^D=YqbfT%*M5&Lc*e8C%V)s{r0d63W!J9AF96@6k610^hAg<+|0Lc5C52}aEkx)--qE=-cFr*Rx~YVBnsYsm=CitZ13-L z6QV7Yj5P{iu;X(csm7+vw`W(@iB*i2*7Dhn`Sz}I{=w+)2ueE)gt={IjkG2H6XVOzgFmRd+eH8mnySbaW!h%JOJ7^ zB{r!H7YKazCX;Lpd$5tOPp_*q=mxaVNo%tkui1_JaO#?+{1^J@gnz?F4>!CD=UUk&R~Bke0?bm zK+CdyBg)lf#dBKR%ctX9(4uAbjzxv`GO9%ie2bTscrAY)FKcjaEPbPWytoy|zRG?{ zvdso1@m3uE18>DS@nJ?7`=FUthh3{Qt`y7NY;VpY9DQQh;eHcqu=AhU0&6#BRhOUW z#`5KHt(6_bSSR0s`*I48!q?8+30dwt6>C(y83JQmS$tPf&vdxgYJ0nh=X^&L*;n7g znC;cdZQBAGF=e%y_nY_6qNc*DQRH=;yEeYCnV0~r30?>p=5$CUq?sKR0H z=g9`2XwoMZc6e{hT2LDv^!2RRWPeZ!xdVJz$6vp%#nLz1BUt#|)N;yQA`4m)Zyvh! zceX6sUA**rxEmAi*j9ElV5yUB5v*BJ?Xdf?uKas9ymd$Y-IU5OZuRbd{plA|+Z)2T zp7zCdNV+%UkaU2-%NeI|inKpA?#}klo7h$ACaxUylbVi!)K?5vKbQxH1(|BVQ(cV z(}>Cwc6!egPBu%q@;IjcTkIXmB9l4;o>@^r*lCY-7Z>N2e%k)KvV~y4$ls8iZ!0Cp z8@h`lg6rU8ZvH|H-r4hFP|*D*DBfy&)E}zW79jY(355i&#yCbOm;6Bwdpb3S@5kY0 zl2*!1|4O8Dp*z1)1p+s_CnYOV4~tV7Z}k8O9)APbGv!H(lxqG^s9{tO!KQ(KEwX`H zJd@ShzjpM&PATyGw3h+ua%R8%38k+;By#C(a2erWi(H@Gj0L04+ zZ%+@}o~-kW_VwkLfWgc=YH#ARwJL?@17e))?k-M&?c1Ih#x_1_ufg*A&sHP3wVQ`O z@PM{~%K^05=w}DCj(Loi(;hm3Hp@%)zm#oOxgTPqvu7(Y{%D&`sBUcke!a41#>@7} zva-i47o)Bf+qg^Cf(_TJ#Ik+s`X%s3XqziX{3&3-=nyZ(fKhID`V{S#R_HYO^By8r z^f{@>XyO>fF$r+8tpMo&=A7);~(II`qwJxdU&K~E8h2a)jASyQC4VpmT% zcVqlLQ`J(ke@;%S{AmvnR`?i*n6J%d5FudTfSd~mfhizT0b zS>k8*S5*QnRw*&2;~3Yw5*94;bNkb_ZoObBoDf@$!AF}7iuzAXkyCq#(>#3%7i`ns zy-Mh6LwfnT8b8!i!Q^UO{nCR~KV$Ez_An_5`6>oLKGcgxdfKvD??#r5HIm#!X5y3L z0hf~&PiX2n^QFC`q^vL*@u4+MUJ9b~4!V?7U>lqWKC=4{sl^UjT$0Am_VRU5 z{Nm2k!?;cb7@`LehK2{dMVO#Vpa%gwrsoMfLjjxK8QVzyycc}v>Zq%HL2yyP|CS`+ zMN`04U)viHLz@EPfJ_;p6Z#cIvrgaGHwGHc>n>6Vn{d(IK?&_`dOCWG+`9yCiRf+d zmRQqv#?4Pef^LkzfU8DCi@#Xe6~ zatR!cG>5O+n=8{usW}wnvOd@B@qs8?u0dRNX$dG9*X=a|Q8r(PDEHx z=PH^Uqq5#V*$1)z-LO}c_w{BKf3~M6&k-8vWzUw>l&|*Y-2g_VPiz%zuzF(qtIdRC z0k;R1Et&>zaqj!7e`H0RKEyi8IH8owcHguQSBaSdMgs#utA(J}$`#eMEk_3Bf{ZH|$eF$7$2YH|St`wk`nj z{B>PI0h<-lsv#*YxwRQ5%=X-ZTY7G?%eU;^WDs(N#qJZ{q3p@yb_3KVR>)0qnZGx^Wg99JQxk9@@cn z1B??{V2CP7ByTr0^qcTD5lE#-KKGhh?S4vSHVROporil)j5(QzhWGBX0ongQM9 z8emwSW)ANohQu&1@N-$il%}b{+%$ogdfk+#nc3k%YKUiB8Aq0+r1+!oSYYMOW~s@Y zO$c+;R!EhY#&97#DAo9$V2Fu{jVcdJEx{efruuxIuY?<#BS5@ZE)q^4gg1j$ts&b! zW8%k!#St}tirj06HR;l`wwQh;WRNZTrD$`E{D62M1!`S8()bvD&G*pm@%VsW~o=Pf`5%Y>siGyTlv{!Ap%E1cxpGGjrog9*;O5Tlrm{xH8Y}T z1dc+|FmNP2z>ZXNxRhE!fnq376uVyC(Ozlm4~Y?ymR3lN8m0R~Vx*-{nuzC&^snV~ zB$#GuI8tNR$^K_7UH;%0bpc{L>LRp=V#D^r5x<3gkVV(R8%qY$HGXvrndWn*;={r1 z{s71(U$BuMNW+i&qDruN@{4v>{ugMVfanfI5Ye5}sX?MUN+ib?;hp1Ll3!BU_BxI( zF*kTIjqZF&+~CGb_GX?Y@s5?U@+lD?Ru69}Uy%Y_IDDGMzOC!BI_88d#yzt+ zZ`Z~r3X0#hRh8|1#lr*|krKBV@MvssDJS<8+YFEr<3Fa9Mn0CXH3AKm5**^=`igBv z4bTYUKWuOd$1Pv|RzH=b z@2wKs%D5Dlur=DsQi5$&WNE7=p2h7QpGZo4x~1Es$+gl&N2oE6>C4!3rUMNYx zYo>s!Ae2%eP(aaqlpi*qUx5)xp`~ayZzM%7pCJNokr}4TV!sK`D8Y8sGkjwl54^>i zq8VS)5oSgx#ZrR(X0>Q{xQjC}&Cyk^4t44((!zBW4p?<U--u8C#{PNV&d-R zNfQaz*G1iHD+(17kI+g39BbiQUO!mIw>4EfW+`R+0F$nit*MY&;Z?qawes-{=1R9W zRZf}&#O~&3Nt&NAHD8%wPl_?y&-gr#a{GOdqu9b8N3FL8J04MP5RSf4D~cc!Mc9%d z4rd^peFGp2W$R~p-apcLVW^``Af3_E&c`d2gVBi&E)N{QI5nrHN-M>9^n%gCPna!? z+bg;>GMx|hEPQ*_*`M=h*j_~iNAVmS;mDM2sr|(MDmpk+D0{u@fbLObdFV4HYzlCP zmBpFj4r?6$g*&Wq{cwjB6>NtEOEq|Fv6`)cmcoiN9m!%FCN>m4;;kWdkH-UBcQZ~( z@e({9=;mCU@Q?4L6fYqsrFfl&JGvA&paL(ENh$0|mLugJ&q8=l>(sFxF@Vjso9Fp3 z(R!M%U|~^?X9I1ZHS7Dr^giq-byg$waV`$3x49oV2e^$C0{|aI;O(i&dM^LJbNaLy z+Kd*HnkBVtoz)^SGbwXytHh-7W5$hZHNMrjq&98FCAMfYW_(iHwux<;XJxi*0efVv zK0BdY4P#ZW^-%W$P80U|Z91p6ssc`%(SH+I|!mKa%=i7ec4X?ZC zAjTVBx1h`NH@t#0s0P$oTFYDm7Sa~qAO}+S_!?o0psBn4za)iUrM!=B4rR7*%Xi0=Bp1= zcx2PXVAG%0ARG8@aK591nn^267EnuB;1x~5O$*<9yxq~w`nt48c4CGDCe($Fu<|c} zUCgM?IdNu(5)e_Hjo{z>t)$|g`-YKzr$6RUA~^{W+F8kEe4)R1I%z*IrhR3zr3v`O zO{Eq&ev#C5R5M8L$Kl&a>K0mz$JWKZV!%^REphl^LFeql3g2mUFUJi1Tz1sgrNY(K zls6t0I=akpT2f!4Q0gJdj zIY9{q|LbZ;oj`aLs8KNZkJdP92Eq%qI|M@jwPUz}Blqg?f+&0w%g(KIgvqd|@rt}; zonxJqBpf5v$85}8z!EwqUn$0b!8PB<3CJ_E!h|KLI ze+U0vAvaF_A%N_qlE~f^WaX6unDm&|oRh@ZL4e@+>FL%j4)N)!8vY3JzsM@?v8?%4 zM+fN~%h~FvDLy;}l9&($l98Iby44oY%9xSkO~C_m)~1NN=xk&y!6&O4?{Hj{)%KLN z*|SqPF?1Y0xUk?4gPIW9HrSpK@Dk+?Qt})f}%8a zo`u0=FNNpQ0O|eDIywh|Ki@K^1510_?5*LPy*FK0huwJ6QHRZ0s+S9b3&w4!e&Wwd zw8!?@Evp7WDO{$vRxkOZ$n76taRqvg6~S+WFpj}l`Z7)gbDwi;lGHntD4OE>#`F+& zylqZnwbUTu#W*D0d4#!F>g`Ix`s)R~u^Jr=YjmML%Zddp6vvvrq(7-PqzJs3WMG5c z%px2|@DyKgRFTy7!7%o8%&Bf=;b)18A~R{R1b(e`{1r#I6yBc@g$o)w*=n(}2OV40 zVWgbzHaoCu2OUf0{(~5NbXA!ZzUp{WcEW!!y&5m%pRKBt7JfWIhHT>un?($Mzqgz> zPy|e8L!akQ=e=;qF{hMTMA_r;yc(Fn;WKqLt-;~>T)Qr7Qst={5gss@6H&A!`qj5fwyY;vLtax@d-4(}%o-_w$ z4x65ulNJP)E6sX+Y{E)%(dUlj0LVDzW(U*NuS*c48tZiD=}?quFGQ;oPMHLG;cI*K zZfs6^PQ@T}52eFY5ITf7uVMB-zi?<)c)!8S@JQMrJTR;`lGPfNoZpCEkJh1w))*p2 z^b)XeL~k1m3rBPdmN}yLq6p}Dz$WQgI9o<5$bdeamU|H{zpSsbYU5`E;{`lw0}-(b zJD}eTpG;^P<9VZl`XqH0Dff-%mD!&M^GuvvQaw}<9NC`-W_)CSp4McXo-%|LyCY#>2%VB4 zA0NUppVsQBCn*eHV#-GWJLvF!28_>dtAWus>9n(x{5}Bk@%?>D0!PimL!?IX%^{d` zQ-7t^IKJN~iNjqGioX!S*U4Fv;#sXLVdXg+9ONx*e1kmbii5mGR~+OmB{wR=-RP0m z9CoWwFw?Ye2sLXH_Im8#Ql6gI9g`)s-B8k}(6+6I3fs1(HK;Tu8qS7fEL`yL^bFW& z@m!i?Am-Af@hs^NN0xe=ij7;+k9di9ON!aP%R|N5;tGXD6~8Y@#ox?kz_rCiFyfHO z-PQAygw!uLRsL$Ikn5wNM6N`ZxFfu=T4xw>7!|T9@t19CJt<<{b)TZl?IqWeQWqIpKsw8JEm_n5Q9uxwlPE-ty);(U|+wK z=2j4FjCTkR__5?i=SH!ZFAp?h`*x;AlCIKNSm7|d?aWvA7CHP>FhDIT z;2e+yoOq|GHO%XL*UM>LtpU2EY3|f08eJqFh?&8P!=VH-gO&I%%nViy`&D}E{PLGm&jhEa$9%tuQh3xBR@`x!0W09bXQ{@D;cCM1v!qyl5Yr>OrA7pu}+o-J8w|S*h z05E#%zJ4P0Fse((8Z5VFqLKj0f#~tTL_0PY{xOVX@*t?!Dr-;5&f$3PgKQtpF2rf+ zwpYPA{JsYp7?VBw)WWzm+rDYcJkeT5b%{^Z`NK&r@-b3uP%m)Yd%6m9k>TN26}ENR ztg7tWDq4}cp0L1NUJTwTiTgm-Gk1sBXx1x6%L)I8*B;~loZxN9F9k8BHV$XKKAcY{cqvHZ z%9NVXz-&018>{6;&ktH>cs2mRB{&(S*M;IaRd!=%jz2LU0t-_&WOx>`F)NjAxIJ3hi|gQUY%!h8h7>@h9z z+IZi6*&~hRhG|uc-hsUF+YPl1A+|?BH_RLJA9x4I-4sYM!5tv|+1$1KPQve|HDHIE zX;bAb@FEYtDGF!so< zS+T76B7C+p>L_IThqlq4VyzP)b*PS-0UP^7Eli4GX#GM@??m=hqShYG&Kf3ZEkd*d zV6HAdOp9h69@OsTyo=TPl8v=)r?pUQBLi&@w;I-Lq0RRcex|{J>-Gc!x>zbJPSNfq zDd@)^9`$-i>&oV|)>0(HN{JDVsGb3xv>equ zNI3v5(Lsj{e8H7)R=)hzD0Vhkt9IW`Dh+3QyJ(G-;Y1Lhi{|k{I@ZA66LgXv87bWJ z<*r(xvX)@}i{@M9V@3ST0|!J@Nj^A|b?T7?A1QnpHd~} zN!3~_QKQUG;WM0EVH9qWuusCt=A`bh{^N$rUp6Y5mAmTd#16OZb^kp>E;owp>!Kwn z<%kqs^Hprl3#rd3qr`EUGNaJxJb$HY3*bE*g8T2;PfjtJ2?KgycpEB7I-506YpdiC zu4uR7d8HF2YPRX7*}VQ1#hx9YRb}UrekjAvU2&KFcdQ8S*&iAN<9#*}$!El6{zl9) z^vX1h_~Br!sibTpxM0MziaGvs(q{ z5@^6le5$r^xVGN9jKK3pStGQcl<$aqU~c1q!*9$|E-tR(ivNWb2EPl*q5Ni2=W|sf zR-9J8T~rXB+OMO;$)mZWwIhl;n)ImK+5k3osMeen-&L#2A*20{9x3sDz;dn8;*=7A z;&ntFC_s^OfZWyuz!O2SS=yt@015>><@C{b?ueZoC8k=A31x6yPkSYo0G}MEIe7(M z(gQqwhm4dZ1S*n~TqsB?j8<^EPyuwKSl*zBy2=hxi^QSULcH^lmi?7O1PX~CFo=Id zD>!keFo}ObYLPh9dWrM1OC>eVd8f9*_P-89Zalsj!!=qtj%92&%r#mRDdlT4sT{lO){+zo z&HJoaqorl`y1z9V_-`3jT-F(?D1X+Cb$YKlBPFx)HoeW=E!IT`PAq0lhs`Ys&IxYB6l-WNoZ8gk7Di*_B}? z818KdJ>x^KLH|gvI1==ucnieA|1%A8;qH$po zMMN9couT!Tw`H;kGqf~iyB|JL+BiS3Maa6*1hg9QN9AR+%HMFtS7tB#9SuKy4YpM5 z#539~<#WR2$Pq0~{gfAAm==b<$S*a!=h7UlqNLm;fZKm|rODSaF-ogkBNd|?I^p)B z&5q+NcZL?h@4#oT&+zUD#>r*Jm}?I?dW=YtmtpzywDxi-sN=UKlp14pvJ20^;M8mk zo?cRtNCk}9c;>cvh+Z7(A<_4D=_GL5Ym=5-EC2Yr!Sr=?05L zaRpj!Je%amhb<4k7N0H8_bLe2O3p8z$nNB89mJNW*F4R*7QalUIGqGE`RODJ&7``n z0o-7gj_ z(%^>3O<8rNGVJ7XZ2;+m#$`#=^SZ3inpwEPkeeo5!5$+20LJClgLPP`HI$SpV@(f3 zPp&jpcyc9Dfu4-#KN6v~s_-TW76fJR8%)A98jHC<3rX}FkRAPo%8q_R3rxSUlybiro#U!YRYSM2 zKykOZo8yX5ETtTmpFvPI5;cM$Ck5j1lNZYFzr|ax4Y1&$yB#7Z=x$UZbT?YS-A($K z?Ja=y^C^OfzIOQcGKta&V(_zLF>w*-YsQy)lrs7nEkIw3D7C z&hqm&TbA%Q8>vA5z|3j&Eb)nEEU88RsLF0^^*UVrEU&{IIjGgEXwK2b9ZkRjQ>BE( z2!=PLbtGhAc>veS@f*?r9zV(?@Ng6kTox0h8CjSpRr(WL6bU{U_K7q?h-8Dcl}L>S z6AFEmGTA=M)i{ihMOQtvdU}*Xq4;Wx9~4$*5>WIu3lw+N!iy74{$*(jnl-l z=|5V3n^H_D;%KlrizSW7iJ?N_V6bYZc1(U5l!Vg)$^n9f4wXAHCy5y2Eg-^=2tfbE zBLdGslk?f_If93?+n3PV5xKRMv!nt|`vsx)y|1-#asy&GxxrtY+#VPwCO3JU>1asf zFG52dXLtFa;FDk=5+NV4CaHYPVYQ4qxT?lP}Q3mItQ z+(v2Q7zGx^cHc~N#4(B%qz!P^_WZO@8xx`oAWZ#Mu*U6Z6cLwgU%aTnJvd|h5Mxaj zG%lnfh$HZZI%z|oXRw?B&QhLZkGUpE%6vi+-DB=J(Rt^R3bXUFaia5XAhomafc-aXx$Ck*OL-rZXMr62SOd(){8)qZEuWm*vJ<&e6)97ECHyh` zcD6)}&u7%|>qt4U;R6_X&odFS`g93g#e!dE(yD+Djqxp@>cR3Z|Wf z1R7<_C$g;+vSI((T4Q?48m7VPiInPW6CDC6<@?WQtdJsxTTndJ=juPBfwIGdW;irb z*dy<2&svaiRGeXIyYGXM3LGrKZ?&Nn_?Ntv4JN=tR%vpnuqe7YCXIsm^v}5rm`^{= ze_=lTH0TL;8HLC24GyM?AymXhFAg2g?tG*b1PKeBII8VeekSUG?ToO{RkPH)Un6V2Lf;2$m2a5iI#(JPDQnm=P>l#eZ?EE!i^?V;KJWBEN*V`OT7ZM=xvhO`D3(&b7B|O%SUc$9O^WkPpaqsM zkzTo=69 z6v5+j?`4aVLY{0fyuAQ_`6RQ82#I6)PF^5909vWpY*FxuX2f^p zDznDdw8}~qhuPfdZIv8krBT}e{zEkL&jcL?j5wSsO zV{*tbOTEkscHHOWQ2e8-EYHM7vsZu9CMfev7G~n0auCMwj?Vtywa=9G6oJnGYaQYm zx-&DQ)Iu=iqJzHP^gZil zb@G!i98_w>Vk$akS^$H{W8BV1<-wJTPB`OAMdJlHPvx^C^PKhAiI0;~JcZ9YV)WU!&BH8j*!1ZlfcRNK$@z^YTwx-u^w`w{?9)P#bs!dw|7;`K#vRafd z24`sj^t3cN-zgTibHK7Z6L9uzXA4O=NkqoZa?~X{%TZDRo#h+(2bbt4KavVxKasv; z`>Qy`F*o^Fm$jRG10;Dj`G#O(Hwo88Hz}`M9aC1Ig7><_HV;;SGbxr{0@SdVz+b$L z8$TdT(#6K3g+HZc1|>Z9*wG|~I}ad%;W{c9dLI}8y^k6Jy^j`{-e)QGdEYo93woag z%$HNJlyYRuDLncQ$Vo~79_AF5{4E~ODNsE0+D!xnz19N3y_Obmua)=e;;z&E1QmTD z{e!Ye&|v0}c~BSk{{=d3gouPt+UU5nfIF`A0e3AUa4np-35ytUpp<9*r_SDza*@b@ z9(*47^OrQvlZwP?uIJ?2(EL1d{THe5d9eH^6}ybv>cYQ4C3oT92&ykwEZ1_2Jzs6N zpC8w76H_#Hi%lOaeQ?t!15y4pn}sO4A83H?M>RnAqXp=G*E>4zSQN#s{*`X+>aTR> zhRP<=p`pftblgy5Nd+2eE=bA^l}{>6L(Qg2EwdU*n$A|GIAfLR1k<$B6Na63kXoQS zPTo#Q?)A6Rbhoe*C5mKs%*$bG~NL6YVtGP3_dgbN!ODPl$4vNQZX% z*09sJqypCu=Po-h$#RY`R!EMe@s0Jv13AP4%H>$RO1dqKb(_$|aj_mC@#RAUE6H(k zJf+qg7?b6Lpaz%T40nafx81&{3R=m%a#;R)S6!u#Ke-;1+#@DAd~E1rprDf30kM9!*7uQ!mpcksEFcJfbHy;I1f|G4@nWphm*Lwf)u zK59-OeX>{Zt@DkX(UlzWSjiVT;<1tdK|jmE$4cZ+a#;C0&K~j!5Cq;T_vm+=Qzhjg z!rf2N>S8cY&NURBeb>2G8A#w!(GjEo6&;u>6s3@;XbyoyMFA2OrI0}sjS+J6%N2?y z=c1w&OhpYrJF>zoXIJ^bT=s|TGWE>c?HVpA&k*K*dK$03Jn7XlwUnzsIY{79&o@Z{ z>Uq%6lR|PYFIpB70tfS4jg(Ib3MvdJs4ztdqOkG7`pbsGPX;J#Nc@CQcv~(j)=0zt zr8yy59WlXlD?f#eq@g;&XxPLTTzN_yfk%ZKk^)pXZh~l73c2b<@Zk0Y67>W~)RRI6 z(bM=4zQzR6u<8VV4>klXJ3)AGsR=Bn9BJ93<#@|ZCEU59#4(JAb0)H!iO$!RMFbEv zTuBO0!$pRM6w=qELn}a&ZYLK$v2E5=Aq zW(Sd6m%lOB7#ND537dTW(XQqcq3>+?%R})ih_D#qSjG#?5XTMq>4{=hu!}(Q)syrT z7t#2P=EaGYMS=XpL^k2HGd7Ii;Cc*qO-Cn+UDI(=ixfX36i=HJanl48anG%ql9Zq1r3aegnwv8bia zM5PXaMk#Bu{foSMH<{$qyZtg}bFx8hDBQX_!QS_=tD!;*%oRrp0pp$43dT2Wa|)b& ztfhR@h5@pH|A<_)+}YWJj6E!y;PD=2fxz|awiR&VkxC4`ElsMz4bW9CJ;~=vn3tg8 zGk`Oa)-fliQZIMyjY%wNo%2)W zv{}a@c^v#x;ZDWhw2P4@vAB#0&As6e`1Nd?k{3NKwuqhoSn7=c2%gABS3 zTEXc;1=4+#R3Kfbu+aTsi*t!mNT85zfkAgGt>AQ_0_pB16-XB9p##ESmo zY#aLqFQ#dVJ*E?gG=-JWJ?d4tp0bz)1~;9{ij@;|!&yiWNoasiwo?%xYs7 zUh_tCBd3a)wfq#3r2uLee}%u8rD!-+WGNE-iPR@VTA4&JNkNEUlA`xZ-Xuj|KQip= zm%L%{W*$f%@D~w5vF)$I(NeBheRoV4)yv3A*d|Pc%OLpcl9Q|ijikhjFB?>)*(}lH zY$=0!n2`XQn315y!e9op4hA!5>tHa07ML+%OQ|m=yn_gX%L@ybFC$?oz*kL}U|9@}MUuNfH$Ew1heI7-QXf-0NUoGc8f!QPU%_Z)74blk_lkIeh`k~WDtPoQom612fG071#D)S}9(?om3ZRC)0{)s=iHVPj_4Q|FJNl-lW+b;egt&x(Tq|s?<0e4zB-v^#xq$GsnT2c~qr}=qr+%)dJF=3<}1MMBB z3FqxhDtyi>w+AfWnBH@m#e3U89rxZg1k(((XHF9diLs=XyRbZplGK4a_^=IDIU*qe zL~(0JiK6d;{OEgegdX}HEkNJHgaj?cPF`c0wUht&l`}NpRG^&> z8+LkwRG4-;M3wr;YNrE+oemI8(@qx+JAF%P(N14elGpw11VqtJlqlK>6hJ#s1<+2k z0PUn-biQoS6YaF!Vkd7xB4N6pJJp{q2E+QK!c0h{Ocze|FsVgjbOsJB#1a7WgOgbx0~vxiAy4hY;Zd3jl7s;RlHA0tUl&p$5ZtAq7Sv;wYi% z3k$GAKlzTb$VWj1o`ax}IB0!GQ2C(6Au$I*A$bmh&Ax`@yg-4%y#hXirtnJaEYWucH&Q1l~X_r%J(9G+}v{F3=zh zT4L^@h`^(kTS);IjMB>5Qsv_}_L74mLYsB+YXVS#O7y^&_YNP;r)0mke@jxLl@i2=( zqMiVW(Rd2!)w6=>T}I+z6w5E;!bq{4I#VQ-Oc+DfUL2;Y)Q!2zk(L#i2M=M-H6`wE zg!7-D$#N$;4=L{vNYwEJDL@_HGjybozDC8=!`B1_l?4=3mZAhv)<`|PZ7K^=ZQtSQ zLJVSvyAPF>ch3~b2XDKInjuNlEF5-}3Y-&7K6q6U$%hF<5I>cSWP%5PzHP+(2Bj>uFFCB@+`4F zxI*A@eegY0_*SsL&9bf!Eqz>g*JW=_p!BbvF^1*RrE4<@=QNXoB78)zcqYl$0X=?H^+!M6KP zPLyS%n!BbdA#;GH5e7z{5oHqER}N&U+2)7~mZr9FeXdlaSUmC_HAj3_{tDYbBYMbHt`|M94giRA9&)DllXY6wQ=GHi6=ycxkL4JB5~WvSSUh^GOAg zg$gfOGb6E?Kq1-ng6uQ2oReK|kbRj{AX%uOWbuQElLQE<9u-v2(Q;1ps6q87Qh`*V zf>LGt={Y5IE@?5I?vdw;v`i&h!RbN;q$7-5p=y&_Bo4I};+X4bPoOZ@(Z(R&lU8uz zP=UFQL8JodLWP$u<~oA-FLx%)b%f3_avcOnj0A}Pm7IJQ(EazcYn^+q! zrKygq#BK39D9_IiyDm%0G9n_3tEuaX+ucv51A9)i_{?!JA&u#dke+bmjQ% z4jr2(;us5A(qLC-DT7TI?21(~2p)zpW&%4N#+Xei_o*jZOp^~P$ntHx^+u0JnRU%SjmspT5y2Juffq9N%2q^F~*^iS7 zUvH4N0-A53y*ruCB9$Vo~79_Bid{}zwuIw&4`Za;#8o@;^No=Xe3=gQ;fiSIA$1QnfuJFlEIk2u4` zc_P~p=)Fd^gAzyYr3Ku3<$U;%7j7+)T6w^8=Sa#X!WEsC0Ym;F0V5R{w|{<~aM~A1 z1pu1sugO;L!*3L5wB)ay?ot=ForN(^I{m@F)<_jxTBNb?+*7Jpx z+L8*i62D7NZV702 z9#V^HJx|p-BGkf3G;31bisq#mb(Kx;uM^C=C|)xnleR z;fnF3!b~6~FA)CNmDHO4*a>ib{@7=M#UI;29rwp}1QVy4EU4g9&3ICQ<{3k%Nx3Y) zz}3pT^pb%Z&NT4Xmq3yhv%K}LddgCNLXS~GYkh?9Qx+hApR!P~FoE<8p@PeQfW%K( zC?xlODW2UZfL=ijhRs3>j0DmLgr*t3`IwX3Wo<*YII2~LhkbF9j0TQ!F6cWE= z`7H<}rjjTmc!fwMnXYE!W2opNl@zm(_z6!XnK(vvqsl^>N@_yjQTA4(0A+8oP=wh4Ghko}=oOvxT_dZ|XrV|YRbjQ*q@)W~b}V$ut)y~-#8hK{BiAte zF_Dbu^_WOT1W4HZF?3v8%46`XO{W>%!C^0WToWYa1;W@*IU~`rk1N-VZJp>WRNf}g zsNqpkfEvDSXhw5d> z{?}ZON=mgwruX@|uaO{$S`;*ilt2(s`xc~tYahZPL=uU@22rNI_;{efBGGP9i~QTo zkfh=wG2oQvoKTtihBBf>gAL70W#TG*WLX1mI9c_PAJ1OD=C z(MLpDj03&T3%qe4Gh6iCBC!_ufxzQh;1X2$Ru(rGS+|`Rppq{wE)XnS6JoYVSuFOS z;fqb5L7HV3n>3|pmh`b$U*Pr=NaB8glH`-U@)h9$b{7{T%3mxJnT_`Wjc1EMZ_F0; zAUsj;hk1cT@0llDN8$O5o+sh6uuKAuB95RU!VM!JB7|tNKXx@CAwlC2z##+~lSQ<^ zTy5kNFy40+3I^8%S7A?n;(FLpipUrrT=RFxxb*a#f_#I8B)H5kJZ)2vMSkV#BbQ%dT)#-`A-NzW`06qDGwG~rq|%)NaUv-!=^QliKw8c- z6DdnXW@0Rs?E+fniz zRh73dVWq!wWhhS&3}|!_36!>Rdl_-&JxfF^Wfd4V;Ek%tcK?DeG?3X6aV>G6{6&pQ zv8R4;EtTI{!dhH*r7G_Q75FV8@W(=68(7fyEL3tO?R9@60@HIpx@ra*?N~*4wHjVS zh0D)6X=T{mi>{u+XqT6;m#?^bD_4Tb@I8^?HzI@gg{96FgNcBv3#zwwLXHW5UQ5_w zj;GW$*KMW3QnL$TZpg$75#B=aAbBx6j9}o{U56Lo*bUu`=PuamH(Z}7T?ib8C^{|` zJLrz2LhPX1by+J9fm*)Z9Y$(#tRDmwzA0|pQZdDWJ7KD!Ka2Yn@)rFGk~zc8UMgm| zxuh0J&ZH!lm?UwE>%UY?ag-)Tb3lHKGf??)LrV*A(8d_QrPLQ;-A`n}X~qJ^Bdj0( z&oxe=rMMn@li=Y@K_SeUf|lY;(Qc^-A+_=B`_t6~HaLV1w#r4LRW6bW9%7RoV3Bv= z*#~)<=^)s}F~as2wV=8TBN{R^3ct2o`cpK@pM)Yd%5}IU9HIi}|AIFP>siT;lWQ*{ z&78PQ1lV{d#9PAuG#Z7{#6|(}u~De_*eJ9B?Gq#ETNGM~_PHSJBez*9uKjGeRLrb( zfZOtFmC%iOR(F9>4^$0Fc(mv1*W5*XIsFyXMeUVIVuqOQAJNys{A8z&jXXf zS!Y$RWubt5qY**Iz7fC~S5dSS+y0DU-4A@$#YGey@Bq$OMA1o;G(9e&MsNXe5jB$k z!bQ}`g1|)-P>Ty`pmiL{B19&cVxiUEN4wF2k8pESb9n+q%JJMZC%$Bahs^6qO_0 zDtT(e>bB6b>-u>wU5p%EZnNzcD2mSj^B?#OaPjrJVQfvjehaQfSXozZt=3r%VtBm{ zo~Lgi-uFSj{fH+_C#nJ~G+ayG#+u?NeWTO-W#VuBtmNi*5e#(GC}HkH6M zAbi16vH=%y12&hnPVCPny7OKQ2}f_aA*WCQ(2yJa4LQ-&OU@C7^t^vvuOz8^DDr*V z?-?r}d=JxSIsU?G^A`HukW;{u#Wr`hRR2r4bK4d5Yn}LahCA;w+>loKxO+9+F=4o4 zlsg*kXI?@*@I#`|dxqii+UW6;8oGk?oBK7KY+E5-a0MP#qrKiW%(JPTu1K~fD?-`+ z@m(sh*V^lK)Mk{u&+Fub6}Wn=7|>-OT!C*SOP$z>4tn-I8cwdif_3ksH&yFX?%Z+} zd-D=%xp<)w3^N&R^kz?;&v#4eD2jI9HXH8aFuDsY6%0S~TQh(x;y@+`>&zcCullPzf`@3q(-j%H@j)M zmDo+CPngAa>HXruSa!PpWk_3K$9COv*Hzn5#-{mNuPmX1KD5%?L5KI#AGya43h{M! zf4!61oH9piJ;F<9|7<2yksGfRZ$>W}phronMiKAZ)v^t9HD)LKnmv@A_%I{PQ#43# zB*9+m$YA|pbq!^U#@aWjb)r;~t+x1V_1h4A(mmSBwrpi6JKyk;SQUPlOCYq?UVm#X zHmtSKu+}4w=UkQ4H!0$MTkEi4El89SYk6*u(yL1H<&`WtQ-4ssLRp$_^?gaE`psvm zea)>EEj{9Ll@K1Uscxyy?GEuUaU2 z)>)tOkS}V((jSTmlW!I92yr4SzLii-{vR&TV_4#=H524tV54+kT<_>0t7;8ci088} zX2TdtAs9ZN{jOae5kM!<)#{WdSds4_Ty+~czp;9!$0h%ohFN)xxd?rHjasz!@> z7mRiA5){`K1T*Q3HdCELk+%QgNL6R@5)Ai&qjq^|g5C4W483)Tx`9GQ4xO3?Eh7Em zuA#0Y6`s9wb;+jgB1J6eY<4_L-sy-_pQptcLmjCh9FX0O%54^a6333W$_Zn&Ud?Hw zz8xITeZ<+$ig)8_M~eCxh0a{2rOLZjv6as_I#^*rtT^_+XB-FAA1Hz;*70S@H3CrL zSww;>PQB%i!g-wD?dW4gKzYJfgF(GRqgS5edmQzxuqaQRXB{ooniPS{6VA;9p``LW zFjSX~%Gc|%?BA2i1tD<0Wljfnb-o@ZLxhRra=`{H)!PPv1p~KKQ~a5UHrYPAWz`@k zh07qGFwh@`^N1_ZbF2t__8=}8DqN6y3){b6uk4xooMV%u>Xazj;`+w)5O%z6PGfZn zt>a3;CGz@8y?seYf4!hLRu=_98da#zwjx0b#j&O@=})Q~C_FZkzFM3CwTQ+MJjE9r zRU~y+FpNDNbE;ce_}Re-HCyb!JF(~ZD~@m}{7phMlwI#+tHsJ5bZk{WB;`DG*nwR; z=vXShxtiS=np>F_zUp{WJ_G;3^lH42XUkMdiw|$KIgBULEn-NA99`tqtHgPZm8NZ~uNwrOAM97{LEx7?rFXZ&<8Uy8f^t6t(ld8L zlqpd5oU>Eo)B+0cm3{dqjwS&JaqQ63`a|kge*|DK{29Gg5O{uZ6U*6Qjuti$0-l2j zuN?#!U(j2zOK+gQ5rjj;Zaokwo}EpH(eji(ybR_~Pt8dS;1bVJ=Wl}{NS`}82Oz{T zH#?ZF{?8u)bOwp4vrc!O4&}f1>iyKPwZw;U7^%Wu-K!4`LiA92PD^&~8PhO8?Mhw#7%*GN`dQqF#ZTL)T)?b~uKbFb9fm4t<(TUs!z(S`afE0#IDjiv}V zya5|L;%*U+3~v+tF{GC4hnMvtD+fOt7{}+S4MbEv?0|kVd?_Jm3~r4M>XX#fq}(^S zRc3!4)O*QG*NPFY*;zPju<~2Sa`|y6fng33mJzS%6IDvof0Q#0Gh4*LQSR<)I?6Tm z>^`LTkkq484jkp)2VU^;iuyjSfp@~=Sgo}oiRw9845M<2cr6^Tc&gTl6?f6u$Xarv za&{D3dqhw5E9P@jxi|D=^$$v(H<}eN^4Qd9_Q4x4ELp_EVYcR>j8g33lsi+|7hNV+ zmBQKnH}xKB`E{fVz<4_rE-Sn6u8{=@3@KJ!heuj$16PHzVtY(9o6!jldsKT{Z%rn4 z<7A*k1pRFoh%6=OiG@FRYOFS+G6X6GW~#ytKbKx12>!WA6{Fc#@8~tvE`LuX^Ig53 z6@UMnoK*RpwZ2xzt1Sv(-NLW7mhp2f$aQ;dIx#QIy}CpE}>Mg84tfXu(|v^RKtN0 z^+j48cQPkS+W&VwK-ibN_0kBI>MsZxYE%ysgmX`K(qR^<#ayq&B3G z&<#`7y0irQS?-Fmk=9}~aB^X(vaI_li1&A7u2Ya}=}a-Xk>&P9C9Fnz7I_W4 zLA7jilcu>-qv&p%I07C_c#jK!2NT}szwltf`(Pe^AILf$io)j$AV!2QYZrZ`KNBQi zbmJ@iXZ35UiWx9EONtHV1-tJntvis_X!}D=w)d2~8f$tU)*&|t3lTpG!c@Bsc4{y# zhBdsPA682Tnx(2#)98YBQUD8UX| zgA!nX%oG3)w@y|MQ7EK*z@YpQtwG9AgOtCZHKuM*?bQt>Pr0J^R&P>Rq<_tzFRdqy zhM_YChf^IL)$+8$BoBCA^8Ea4ba1cuo8Z??aIApf7o{SCU#FpIAovx@!A0<^BNymq z5lgB{iP{;_7hrda(zd zO>1zhynfNWR<#u4Xg~UnK26@Ro)y-G^xGzi#TR2TTVKLVvtvCj#9)q+?&`y0O|6Wm ziiMN3S!-(LjpOW$^>W*0Gdil$n?Y)Vs=}wVQZOhPnqy>KrNqnr6lZCbi9qu_$R;rjWv$mH{N(-^`%Z zXc|iin&!Q-?un|U7*`F)&*n^2pP~4;>aYMJ{s6`8w&L@ammVeBHDxPQ_Xp~6N)46! z&}jD$X$`gvek=aX2K-iBy+o^VU47wiTISjYaWK0hbQJ#WxY-#i3&#bnXdMezw2q|& zwYyZ_y+pMXqjv9c?clS`RgrGE801cJm^>MJ3v5;3;w>oaDvt){e5cZMBk^?{yb^ec zcktpn70<^N+l^VJ95shlqg|bU$7%XTpJDN89OM)ur)KaNK zm00z#;64686W8N`3gCw8#f@Ua<)K`-0_@vL?hb*S^@u4sp4CrbQgwH15c6EG z>>kY{^GNHZD0c_x33fBe-I+yHkxI*8;t~{RUq`!}a70jb8{q7(;(nNe6J;vF&0eKL z4Qq90d#bvd`Z#r|hMeY9b9dud_?|SFfM2g-71Fm;>r6GromvNO->!1PMzKl<2gFU< z$W8tZIEgW)kzcu29;Dbhn8T!z}=dq7~Ly&eCM)kdAz%U zw1~YF?{1{k^s~C|L^6dMAu9_rbPh`ivNtztyEci< z+MWRZPnX2shRbk|c)2Jk;x68|$^{&@}EjqZ(q z#EbpPvMP<-wb+aC?nu_Nk-M_`tG@)Se_iyp!n*EmVC{Yh?gszBjU~8GS$zN}ch@Gd zF&wrDT}~P;hQs1aDa^VG#LXdHj1mXro5RYjH$w?-4%_fwxH)XYMmKfW3$iz4e>8P( z4YD~r+su7lP3QRDwS~Dk>_dtT<^@mQ=jQN4k~?1=MF@*6VGvf@$jxF)_;Yjj3+fb# zg8PmMo5hxJKCQuh4b z2^&)|P8!|_na~=>tah{lDL2?6DEFW>CS|DhQs#TM%0ZirWpr|{E}sed1nkZzyx5&} z2P?tuEQW)N-Pu&mn*ZlxYqgf}Eo4D8wms)gRi<6nE5?rGV05?ElNWeh7k6vonCmR6 z0PfaSyw~lXcWdCawZukkI;D#nwHaOA*VSdT824yPc?sR4Suk;rwv8g;GG{X{!C3~J z-`t}epn$jrd})i=qrF6HaE`$}nxz;AdEBFYyhSY9Pf;w~&z#s&!XEAH7O`T7$Bfe4 z!(vUXj6Ir#6Ry}TB{<|gzeViP_H7}1w9;Ei!=X;LtwJXotwEh|k7g-0b*i~l=oCk> za3d1SGW(Xe08H3gf?mcx&B6`!vXtO@_5seIt8AzxwrK;X7^qhIRr#0qgWIQc~ zo@Q**01KDf7A#zDTT0M8xKFbbo93Bkm}dcHgXV!N8%s9NijvG@Y}72=&^(qBG*7C< zJVjUCw^a|70{N=ltsBOfXhyC+Jvq;1A7 zrUga84L~!NImX>SaB<#oo7liig%O!=U=rYry>|nXK&hZB;09*kHnD*jM5}QF)4v2J zncKwP1(@Ix9+||*3ERxQ%XAPO_bxLjRTTZv5~waTMaPvski(T}pxFF_Q`UW?y8=7$ zE_~(h8tKLpK)BC1GZNQhRYtjM;sa^6sawRireKN-S+GwDB*(45qDPZ0#IDguraI79`pSpoiec6XQmqwTu`qbi=qeeaS$@?IbzKqv_$ zv`|A5dQa#mgixd@(p!LB1Em)QL`8~1RuQCk>B?CU5=FWKB2Bty?yMRei_w0dzHBUNYuZ7MoX$_Sb9d3tf*(N5=ZTcdzEtB zo{9KsPw$06A!@`TkH6ujrR8F8e{04eZhzw^OKeim7XhvT!!lMX`U?~trdB(>D}~_P z!3~Q9MtAaTSXAp`<|>y_Rku@8+_4N_oX3u3EW2pUsKrfpvV2B$5>X0^LW3j@9Ycbk z0+_OYV#|n8-et#a@YMP|ANh0glD`P$D=)Jpm$y@R=j45JsyaMTXKrS54UJ~Mtl(uw@NJm2<~4>^Iy1s zDZRws;nw2W9R{&?MrSPXvw;~iCgUT$E@$A*0?iFfO#(Kg&shDG8<-1ShX=5;^@kT_ z9mi!1*IN-0Vk_fEXnM;fVk^^oe8wofCnbS&ytA@I><6A-!gBwH@8yR5Z7s|;O~`1j zkMu(Aq}l~89DgsFn9(uPzp#HeG-(4IebREuMWp4`mxw2ZIl4&8m-1h2SdYmW^`l$z z-!uzPMn|aiTO4Tp^3S~0~7NDln5jDUJk*P6o%4F%&$^J%x8Xrk><}2|3q7GEycuK0-IUd zUrR(1`^-|)jtmp?Kfov8_6*+yAY>_aoL2w?QUm_Co zGcellAxd$0QiJM%eX71x^r<>+!9HPPE`iNHJ-1Z!sU4-lKDAkzN1wXp)h8nQd~Ja)wWkM3!*rdboOOi6}Gg6|lt{UkX>hSt3e(GbQ!-^B8Y&hGipj;GisKamr;=|n+c1y{(eR@`*9{oY1+)f^?BMXkV4Pmc&di5LFwRm%F-D)tYap&I<%wS{P@u_s z@C3#aDS$}=@2>jyQugP2kR&L}ht% z=&_lQ0xtbe{lzCvB!inzjI^NqaYG>?qI=*IClc7C@A@C;@re_O9vy$dQkFQx*;Ika z3cC>H8{zA-o0SaL~2D#^twQJp4a&!rohwvD!~uetl`i zS$#R}jv1F16R;tD#=0ku%dyKduIO6{PZ5ayNJ-zaOa$UpD>7E<`zQ&P+`d^RB60RI zITE+fd{EDts90os0IrPz;oM4p=TCjdsgtow9Qjy_HNzjZ{HqZiC zN3jprX1u7!Q(RQG@^ZnyA#LIOmC9`L8rTd@nBXj`0dDxwttgZX44l!?ehK3FCm-}r>v7w<;BwwrqbEs6z}d#IiCZ#)^d*F)YtEL8U`5|b zK;mkTEgV9#4NAoz+lXeH=5?&XW*5kxr0=2Rn0M^r5R66Oxn|z+6Gg-reQvpk(dTH3 znRiHFGe-ZuT*T-6%&hs*Pb(LpP)aHf8^TqGW52aUu-5`{rpg5X+pdbvnEPA(^j zNA(rZSNA;Oo#I7}Z5gHYDzw4OJ0!5#r&cROpW09=>{E*sdGx7Mo_#VB4@ngENrGUX zDz2b?s^(I%GI}cdII0DX)F{w`KYTrkwwM*KnG_83)u;yo6;`|?Dy(=(5VQ_fydZ}<}!-%_sF%Y8;K_t6%!m**+i>?KfP zFC{AMr367OzuBA7T9?865%c={GV1G(D0}fVHiaPloqZW^`=MX6KclIxtt76P2mQbU zkW)$W(Mr1|E5$SI*NhMJ1j-NXQ+1`7uT^Oa>NT#}*gCod#?iabY;0}4CB??klMs=9 z@pl=OWO~%A(n^neV%754aQbrOdG;ziy6|P8ACd#VTSZd6c_tV`X8(g^Zu|(G-mJgi#zqBfLcE72)5eKh?hiRrz8k=>bBe|Jkn}Pb-+F~1|4{SZ%kV-^j$dUOw=gUjC??ZkxwGR$R|P2 zG#K9{uo>SoD0_?$5+a^xNf7K)=+Fz zNJ2z<3|SHwwVENcQadHuqu1MBmWm>hUNeOwrXfvLhPTar{O4Zit`3o_wE+5001a zFg%!5Eo#lr-hQ0XOb@4$@pcYBLes<6hyZ5)1D3EjN`e8b>>3fkO0N-*tTdq*7F zKogKtf{jtEUG*6h6}e9r+~?B<^IXElRY#`?6ID)pW<>ZmfdTOVT83(bQp)yDK1n@8T2u zrB9`yv25by7WvpJ^`&?g^ILQQ*1NcMsio68xZSkcOJ(%uDLQ|YK+m9JeW8zp_w$ml%9IdZ#@0wd0mie>AkFhBFm)&V=e=R& z^=xn6EVG2w&okTyOvd`y^M8|E`c$|*93(g_Dk01J!4z|o1O?v;ffBHwsLKt>+`bKPgK3wN5t3B zvkHGCJgYEmLC?ymUG4`p;UoN)}gZ1&+{}5KN8Q=z!>v8(ACNyfICrT z$^kP_e3qv3N8(wUF0`3@k-? zy~M~f=3sdobII~J<`M+&Oc_(%3dNy=v`gq~eOW90_cit4N9>nGYm5(pxSoj3 zsv;EUxE5f_GUgSGVhi8;q9C&c4hvv6lB|VfTD+R%A(g{xIb06jROGAJqZ)8|P{?}X zZEnS;*R)oVnTr$`ZYI*B{1LoT%P#?5PZaNu057+ZR05l~i!RQmBnE{1;`tcK%;c`2 zmXs+fXWliGO53nYE!T_dIP##v>o|J*qr&SrBr5Yd4hJRRrdC?A+y=0G_~09t4NdVw z@KGag0xvsge(b=nzfi*YOi5%p+w^eNSVdg9jjh`(`bH`T7m#)9#R9U9w%`IX>(zqu z)jjLQ0phlqwD1rBpVR<3X)A(;0l6K;^ul0C4QmJ7>91;CE)=m#Xn07 z6BWO70TS?90!ad&sBHGQ>Q$BXVxmet#EB|F_(Wxs+6D%=3bnSLg!c?L5bsAfihS1E zR4+@xI0FF@Ke_IQV$=K2g|Oh~tVwWpy*X#$0_}OvS>ycR-+0cNthe%(5WrPo;bCxL znYU8L6+GR&NkByVcGmWO@bLzop?>h&q*@#M;K#C$Q?0G_@!t4q$qizO@>U3LSmGqXf^EEe&uA6~Gkie8fn!NnqBqgX5wq?S>`HmhwnighBDwqT<1 zEL-xDzeJXE%yhU(eHKG#0!j=65u12xDOq z#b0|hqpk4*9Y{n2NfOaO5(EttIM{kkm%!M;ul#iI(;-$}(MxP1?u;EQx=DCiQQCrG z>CyOBofC%v=e#8J z1*J%43j#2+g};2?!n03h3_D`AmeI#irl|I)yqHci)yAY0xZ%p+qc&!@&4#(N+o8iq zcKhQn%x)uxlk654VRkDq^2`UYKMuEKe;jTJg2RnvSP6{FD82*!J?$x9L3Ifc%dipz zH$xGd60`)^n~>&>^2DTDJ?qQ`kFLC{yGZkFb)IP)JuS)s2C*dk8w2GAB% z2@g;tFsg)S{u3!Ssw5#IJszM)VAQMc7LQ(d<{uBWFaD-dG!(MTS)kIHd81d7x(E1l zAJIzxn)2Z)<%D9j=B z*#(Jo3IFg|{x#NoWAl8zm?unCPhbRaM1c1`|wk+ z>Y;WJKzdSeXoDb4FMVk}3pqNvVOnjV0f?#?u=wp!{ z^asns>p!lZ+137MvUB`Imp!K{KBl>uEFhTsX{6{LEhs#Px|h zHC6xzJ~dWQ4rmc9l^*&;luD1#W)$#k9s*9A03GjFx^bb8x>K}TZ1Tj5N z0-K&^+2-we5+Wpzk(st(1$7B351lI9+lg+s!f2ccZro^rv*v7XzO$Ku$1n|K_{*ME)Afk=|je^{B6c&X8~=;)%U%;y0CH^ zI%AwO6(ML$cG!)~22 zx^;@SV7IVbbRSgY<)R0)8MlVNieCBNC#5juw6!K*SMV704&d>bd53Z^gH~~u2wEjw z#PiW?k*+*OzP!sb_c3UJ1Pog6*Ih2MG;$f23N)d7QSkqYZu zM=@wgi0Bl@O{c)!TptMUd^eZ&v3TRFUFJn=e|;C_gh@~~hq#jUlvPeK`)N3B^iiKzx!8-Bz)2Dc z*$V0Hyd|)lOXw-pE<=IN$d$NqO$Pg6#_-;Ws#k#9q%d2AZujAqbp^TodBrGsaOcCx zA$PnnJ9E`qi1iMQ4rhN~B_$K#6w_<*G>)oOf1>Kv;}=DrdqSViX0dqg~7!b=I@+OCuJ?M^-m=en#qqt}+dyMA4uEFYCi-Pq5~3 z`{&|MT=U>wQ;dopLfP{<>52%pB`Nw?3di|4hC^u8Ln6ge!YoRJ3)c(|!G#N4kCYPD zQcO(BR(>uPu9dXKEG2ve&3wDGi#FrBl?5$+O9|h7E^?-UFzC$(*H^a#A`iRUDGM_z zyZX7v%C6I9lyEsO33p8i7jIMtHMsT}1a?Jll9&2q;Ho2g! zmNF26qOAtk7}GHyjWHctRKO-4PSX>p0G=qY8U=0q2{l_mn^8>wBVb|%EHOq&EZs3m zg+ai?Od14C%p{1pr<1_uo~|!d2op025feMCCP-kB*m*wnH{w4q!D@oU1b1fBC@EGG zWE_65j$1PcjJ|-?gi8@%TC654pq#LpFtV`C&m*HNzYtq9urrnx%-LeR{v%1kt(gSD zTy@#!Vgs`nhQTZ?9HJ`VTsZ*l!}nzeXp31|xCYI9uH2x_=yzB0^1ENr?^Mtpr^-dZ z<5T4#<$&hF(t@^Klomp_dpmaU_BpB!TII|;PbJt?53B{n^0}hDJ3dTp+SP8Px5c0=^g%=9DN!K4ZiePXz2G} z=y{<*qDOZgNlDS2WgL$?OJI*Xt8Z*)SqH7H^tUJ1gZx>|- zkcBIpBnv%Df|z9n35>mRZI^r1t-38oFa9N&3fQY6Uy5_fBDBTa(n?^l^6_i%t5a-r zQV9_iDD9qgs{W+5i>p)Y498Hmmg5RM0sI2et|>W;h1b{M}H||-&jh47JlW+ zJR;Rp7F*3$i?0|M`ka8rR}3fRfF6i@+J#>ld)h^`9cvRG2noJ-HLZacid;i$;G*Q& z)PfuyVihM#Otuwe{778MW+_!6%zjN-qw+iRQvO?1-s2s>?P7hKALVgJTeLO=1HPkW z^=sSAs}$GP#t?h0wymW*UW0PDne{aSZf3960Y-c?%e1F$#Nl{vS*7~OXJCDgLZV+{KPxPj!a6koCHQt$@8rYbY6Ij@wxO*h z+9u`IYBhi^JH^{J?u0?NQk&zZb{Gs0cg7dM{rOQeI3wP(IFm|4XMBr8+|GzMMr~SG zH^5c2x$PBIUq#VzXS-~NSS6Ox7W6RO*?zIZ*x7zb+tCd^14_Rc;+`FzptSj(wS0sb zw2g-!LFVe#wgb8(6F0X$sEeprug&cx+UAu^M~IULi5xe#3wGemMC{^owx-;QxU-dW zZoadndk11qaiG5wAmTuu{}KoKJ8@^L&zk`d<3m_{(-OnpYG-Q}iC`mFb+cOoU&@MY z5}mBBnc>O}OK+iAIHb?~@aq$!IN##@pDXXcKR@w*KAH>vtbu<Gpa!q%1^rzi7{ zxD$1}J+u*P-_iD*C3Pp1R##4}$0of~M`tltCk5(_I4*kc8smfYy;2&LVz$x=S`{!4 zbiN$)F#WrU@Q?d@V;<&&^iGlV=h#=BY%eP5taN7>>Oni%#n|*T%O_yt_RXRbEifeP zrFG%4?=HGjC9{3ys@imqny)hZHd}Lc_(W((>QoczR&7R)CoeKgE}I_7V!GJ2`DHxx z$r&%1Y)f)=>1s<=w3VjHq9ZY?5)!?FL+Kus_Dp<1G&y`+2R5m@?fKA;O%^al@Qvg$ ztVp48<#?mUnim=ur)@VexDXi8<_m+__Cn(-vxLz*N~j<2MVW+~w)h1cY-X%SeE$VCQ z`DA@=!9bBBET_SaFJ64>I$RZ6HKS$sI7Si<(wRn(v?rhGo& zxgvB_+*2K%8XRQ%RwGR;yp6pfTQS%+D|CaY(axaE_}FA^n+f4wTZzs7I;e`e0Y#^< z!ykl&q^>nlxTo>8XvX-b8tLY2XS(eL?SRRck7H$a_;GOkqJG4s@6Te3hT2}#PI*%- zPA!-x1zrmC_U7J2nDt1Va5i&u?+DiG5xmMfA-7K@?G9lzr-Qw-dK3HxE`-zmBn^FT zi3a|hlcr^xZilAA>)?P4OMTaHOzN}6TY@7a{r4e=<$hf=gPpV5!V8`TDQ1E160?^H zD6A1OrcAb%QCDQK6q~JGJB}?1eD$~z{J+Nc7x1?c1G?)F129zV=lIk=S8)JFoL6_^ zd&+FnTYZ{njY*e|%(j$I@UmC=zti!s)Y5g~HJciuogmurB{p-s5~3aj zBf&mjJ4zbSwwS=*1n=fYQ`#@28NK@kHSPny-hE_KpHdN~(He@B3k34|sU$G#f;~+O z{mL`#gd?Vn4M6=~`hIYfgr2Ct>|6YO?+RLJnI@HYhnEs0^z1pdDxsu*kPw8OjE->? zf5$dT(P|MEN?%~S<6T=*tr3A@INJ285~9>%J?7eyd`U90t0rje{gGIJJ&V->qkM_d zh6LBt`uHOPIZ>ImmcAsjGHtarr#}+4)>k4!qTTWGTBArrEaBS7Y*``NJA@;e0Q)na zKs_c<-}#EY@W>V~(JZmpQ?-v|^i+hHFy+721LIpYTAH2Py(9f>k1B>>M zP@!iv*ko_2J@d8Xjj8IxuUPgr+aw8H7|R8NQbiLx`wU9* zPS{gD{?rx%pCkuwL}Q)bX>02%vRf8RouytPxrUFjY;7cTK0k<$6c9dgpZmyxY7wrl zvTc7_v~LI}FQ+nItjqoyy|5K??zT-)Pk+rG?Y7O-&JsGDKC>al72?Y%24#cx)Yn)x zRF1RBMAp|?pZDH4vgSKQPw9YQiBoiCO7*^mr+nZVw6V3;_5t|eM z@6Kc?1p&aA z20SuXYte{h)v$!9r@rC`QH5QZM{NlK+CrikcTXZNR&?S0UF=9||01l_Nn5hEj-aDg zhAr(E68b)eVwwW(!HyKGUe#6nl3u6yAJa5Of)kXq7L0Io^Ddl9Ih&)##k%D(8hn(E(p zTo2ciP|n{yje4=~4*dBndvO}fCH;b}fW*VJLn)buvFL-`T^ArE`1A|qCdf3YT+Ou? zZH*;#j|leV8TX1OxJzorv%eSF;@N?pyfj2BqO{I_q+ub2D(AH>loD?9*)B2X!F{~u zyx~`wyKv5{@9biW(}%Y9_+_grwoHpQi%8~vNj%&L-fywQlWgnLmxOC-IW}iWwIwrMl&ws3+*e5$JG<7;eFpuMST-|anP4I5w=~>~KEVlcg1~7eaE&tL{W$Rss8~T3wkzBUZ3lXnwY#Mo2%k)E-_! zF2W8?3P@##PN-d#)@*W^y(DkoOQ2gDuhlO>^tI$3vHC%uy;eWN7!QRl)qA_yU*Y!F z9%H^($i6+06?|wb&i-27v9k6W(a>uhG+cQin-gL$%B~c%&(!7+Y}2X}In-lS*zn-~ zrI0IM341L?TS{om8N8N2Ju_Hcx`#b1X|EyC;5wMxMG0UpMu7uwmkCoj&4VcWn-UE- z8d+Lu38O9A121s@mM@+~m9lqKPwip0Qug-RIWLBm(}1>lU{nbWez*&547KQ6+CEIn zAy7UE)zf?YB~$f;%o8wB5BsI4KkPwgX11NMpr4Gf&$Q@!A#0ixRf4@1Yj3HA?=@v{ zu9gDO%(Y+*OQKhz0>jGKwOl|HIM@1SY;ZDVjAcZ!fR4_7>8DWtX@24sBt=4NrHaRs-IS56%HA~gBr z#4YxUN(fA#68|~!szz6Jz{+s#U57@>x);Msv-pT z7wc4%&)hQjyd@H3mead!jmr+S8t(_6Q0NQ^MHLT2N03BSJBH)#LyiS4DUQ9A(w8 zC$bCi1;f>led1^+p_~1()|!ywQpPLP@Akg=Bn4_zsf8&C9tYiA*WOgg#}b>^+pzQf zqC;4>MV12WTs?bfHlm(=sl~bvZU-wiGDfo#JxMBzELxeeWVShyG@B7$>dr)_k93AJqaqQ`%B8z{?{z%(P*qSTTVFLAN zsO~+$&iArcmS`})#iNa%WSZ1a&f2}F-jmH`-?vI29j*h zH(d)lXifr2)j6T?WDgaQyT#s3D<-3-@=kr&&z>Y<#^!U()+)=GrXE=7qKvu0qfCPv zHC|$Hw)rpnIIT5dn9GlGTW|nwz(#EJ*AC+I0y<2dXVQ)51z7G7d-(`ceWU6F zqVSxJih={xGHmwo#)%AFpkdS*J>9 zz%7!c53^5_pr+q`BNK};lW>v4p_gH^N|nL^Kk=``$|$I$P&(MOrK&F;6o)O{UD;Oq zAVvGbiw}<6Lu2F~l13c4uy2i#EA*}D$T)HZz9l0U_3gipobe{Aya16bZK4vZQ78`G;bky%ZDrPQZbv$chMzam{*na6p~Gqal1yw2 zoeu{bIts<1v;8YE4jrY#p}X%MItD{m-Sy`vd$^*_^J0eMHwOlTKhQ9TG{X2*VeP*O zD5tLZmR%SFd!Tis6~}ND9m7xjjbYj$Y4#NnyA}|KV@SoBV|ajw@r0PL0h;_FIGO;m)KH_l*DHMk=_&d}6 zu}?f1mId+IN9k|~XMStUJ{&^!ctJYT;=Op`2v+`1j9_Kbh>xV;&8SVk!<$jH=A;!z zFd4`^>u2hBI13BV^^X&nGNF{aD zcThR(UrrlCXi>kHseV(0e$x7$dC4AI$Xwpt%CYd*!C9yWF7FyWn+U24vE_d(fV=Rb5{ zX{NodulPGTfjX;N_OB8w>}Pu*8#sMT7(D1*OJnUARC2fft6mswsIj=;D|Ps|HB~Dd z@;DQJ(Laf_P7duQg>2(PfZcJ+)78}!+qyaak(15$%&ZGfG+}NZ;EAB}JbGtU2 zU?JZj2H&xy0r^4$@_mCen0%qt%{R7#eSo%5+%&E`7^tdl~mGonVVy`ZI@p zcIhRKfJ5Ofz046~m;UA&d);W@D(})&Q$gdI=q8Qetfn%jHyjf57JK#j{{!c9@7Lo@ z0mehiQ`XsgX!T4m*{-J$sL;kTQd6O0_yDF44K7`s{L!$C_4aC#5ZpP|<+yaKPPB7{ zZLpVAw4sEZxkft)6cyuZv@(?aw9#HwBEkF)H|bMll2pJxu?dv&5rDm5GPX$QfMn-p zdn0d>bZw14Y<1`nk=9TNxD)?EM(3(5+Y0+KigyIHgQfx1428vXg zSW`SseUtFx!CSk|0T{d^UCG<*HB~L>d)WaofmFX238YFId7QSC_}%0KQ4xB>KM{oz; zMP{9oP|4O{`2Ya|gjMn_~ z2RM>EEE6|}&j$vCNVur>j$`)MB`Atd%kEX3_RzoTB~N&{4$}5NVYjiNN8FnSKV5Er z((b3rvrac>kj5&o3J)qqOF)xZm2)Ltmm<0slNq6~UAMZ;Nv zwHFG-G3x=H;k6ftvRHe0bVO7*t{)Mb(kn;sQ5TJ7P3ESQ=Ih|(B4;{GHl>A+0T?%> zMffk=lomOb=ce@NHTx^Ro6`YURiJfVqV`OLAlVIUytot#sGaX7Aa5DxCxYHX=8ep)*&Q$3Rx8~d1s)Dy& zdxsz)+nEO2#iRk*LIbkhKpIT8Gm)**i2rFI-i7sJwe*I^=ngM1*Iv%O!z0*YhgbfX z&kpYx7mYi-v%m+>VbAB<8%6_Hd50Hg>S*ln@PUXcCYbEBej!kto%lcm;EJu54-sxs z{`NtS*IhjB`rVHh`?jzVV*5na9vNbFB z&%&(aV~DvvjL@7N{V`JNvTKj+3ndclV}BVt6%gzEX)h}wVvOniRs8_=)}PS*m%T_V zpa;8k`&_IJV^b9wBTx=4J4jubm+K97{U9!_Hm}p#%CBn6z(3VC^KQaLd4*>;XV#% zFho!q3=v)cV;@JMXl>lb{VlUj)hHT}Zr@t0c)Q${2{9O^HSkG`y7KtoEJ>CZTyT zfnv9k!|Q6wN!F;Wqk=C99sq60gJgb;V}(TGrCw1n^L*9YAM0>w`w3UmV88%9~w9uDxuD^uK}Xf+Gi=OhZM1DgUy<^19 z2rh2HL!(8%l`UJeiicfQ54);@oo2F|%JaV1fQsqMcCxgJjuw&FR(u*{vt zRbd>$uL|o{i}Oz6{~YI8`ceK*NB;grd-%t^DvYDOfhg0lnOqfy#CU-Y5`W7%fHIQ{ z4X>iY-`H0M*JBOa)q0X=_dGW$rH~7HfIs9(EBF;HcmoVqG`$V~rzd}q5Fbr^h96eo z@keL7D={O;X&ve4H(+l1Sa|oq=b|y-^$b(S7m8%ISp)R^e3+mcxlFNC zYRz8SIl8>Q$Rp(aQw%QGYbI_GTR^~|IA7Ujbba!DRN~U`qAV)Wu_4tT;{i|3IA^S* zs;haDW523@NmOQd8K7R@Q9WP}fZ38(mm=8SmaZs$AH{-uPiwHO@h>F6ZU0Le40=vI zdWv7ylE~hw?PwaYoukr6qrW`GF4T5Z@FS^49Y-Ve)+xr)9SQnv9}$O3S*oi)8!{fE zjHH0eT(L=8!7zu1Iw}@U_b2XJUB^Q|;;>_3KS~`d1pgHd1_Oy5<5J-zqVT$o1}u5N zpl~(nN4$(iy?l!GYT&5pw}UGiINHe)@j}v=hK}BP5*5KOBvrv8ryDx@$pm;QqEBz= zz%%^3*}g`OYO4M$Ws0(Rxk>Lx!CaQ|EW45HXf5O8F#p}GeIQFdG9ZR!r8tVQO=-y* zyHj{TAhRtPT!h2m-q0V}%>9EaBSPkuho!{Ik1^T z-{oRpE#OkD_Xqha7c#AHY%*rDRjnLv`w{hF`@q)f_8(dHw?pFDtYk-sD%>ZYrKJVd zR^W$(OPmZd}Zk-(!DogXSiJ_Nd6TB+(@Qe8?TCV;W z#FqTkHcr1zJJ0X_R4#Lk64~r#>EZRCa^YZcZ5;)4Nd1EmM3dyC}#JLc?l0Qr`VRh9Sr`cq6KyAI&Y42%n zORtfjz~{O7`qkt#zDC7o_~I*rTQXZ8$CG>?09Mt0@LBN=&pQ(JYE&Q}#E1?YLf6I0 zr}1VzC5|O@actBFPzwA^!Ori)o>UFBuVAjmoo4*%J*6B=eA&^4O9riuEdVVU=YWpIjA+t4?X<@9i*Ji!}3+%)R6(`>_N2n5rpOtj5fZ`-_P zs6Xknc(rW*i;hqA9hB~=E%b#cf?6oybW|XleYkQU+uzHPz+Ua;n4?}fjhB|`*Qf%f zu`U_L$~E1nMjuD3CpFXg(=4p7qlSK-N<%YQ&Um@d8KV!U3^T>_b6n9QITq$juqK7~ zcO(bI0)!p@dO~TvEN%1jKq<{O_cp>EIB>!MSo>iv3>e_3_Jo~KB3ax(M|oKnT%;$w z?hIzLrZ~eh6UK)HwB(v8Go6+7*8VkXPBiO?nuYQV0H3l?g%|eVtzbt4+qAk}c%deo z1D#-z%re+9PS%0j(HFBYmtwrl2)2~`Ax8~iEz=#f+2I400QTn)$9r&&nwbuBe7b*? zr27{Zc!r3A2vHpkF_^Pmsw zaNXHhzeqJR{qig^2t2D~@J*eJadjCAIch5yqOI^@K6_ zf<`g+-n+Ldv*i1Zu%|JSlEl`JcEssPR5q?gT{wi=sJhTzsmd-o!9Eim9lNk~H%A4t zu(6OGr&9(`ZK*+qrK+B#p7(CTU%IRMct?x^kL{;T0IBa%sc5oI&e{ozVX=j##f~%_ zUW{p-9KkH--CI?j+H97$&IYjymAXXh@WWh=(Qq5R4L98|+*Dz>;pIAJ>0eVaFju>X zK<^-#W!PYZohz}d6@zQCoT-lIb?qGK8Q8WGUUQq8kAMLIH^CF0Di3VIvd)bj zqL(0y#TUB#h)OShPJE$jQ1Kz_^#n?SU+AiOPMkefJSWZ`bH47|MQ`nc*4#upvc{RF z_of*5p{y5841A*WcGQrb`Y4Kq@GO88RqV zr#SeXE>%6pKT-}Gi^3y{7mDJN@c8lp{{{bLy*G5O9bKINkFFE}R3-deSFbLPN&24@ z%$JA;GyVsTlb0Te zuM%Ne%J>d6h~P(UvIzW2j3gAl=JNjJp3lpO*%$1wj6bWS&!Z|}p^cy9$=Jx`*+q{1 zGT5w&tfEZtlQ5DJ@ZF*cGAVu}Chfd9IBN%8;ZIIlmO759`a#MIt-05*=3d%jTJwV2 znm^HYwB|X(nz!<_rtx|Sh~UR%x+DUP#9uzt)eFRPJw{T23dcaA!ZDB_?K=;Rbv?h@ z@s^?&qm0mg{M1a3p!DBC((#C6@k}0sjmbJk#NzomYE7-K1 zlELP0ayZ!dRifIHefQSB?UYfG-TEnA7>5-C(o7Ic$bnMitQA*S)Aj{EEuSLOJCkr65 zl+VgU`=Lm7-^-=9@+O0A^^|N!UzrGJaOu*Ym(jaZe2>9^Xx3Mbnlcd|@lxh`Ydo4q zdu80~HTY{sXUof=E#9kTd#_zWm)Hz4nMr4_uu2FtY=X$N?+$!dRZZT z6_sApHE*w@n4pVG{7vcaEKlN$afKX6z_neHU}hZ3 zCE~W8^-2XQ%s3<}%s3xce&tb8cON$<3%xy zUp1*$qYOa5hUQ(9UNi|GO^h+Gom3lLV*DFMvOG)>sVIgC;;x@OLxvCiK6_p~_EPV> zcl=jZ0$4*d@=9;rBnMUcyIk^vRS0 zKOi^ZlF(!LC66BX0l8fi6ZOdU(xVpJS#!i){S-w6>$TI5Q3#r!zgsPX&6M|-OU4G` z4kg3h+%$Ug$m|W@K#&E~`0|7#@vk}~UYCX80DNzBG~4Vbe&bErEp2c*W7+$+9jlZ| zEai@)my*Di+;ODnNtcNWdx~jFJnN9-KKX5U8BcygaW~8Fb-{{r+Djedczr0G%$g=* zT35L&W=$2!8|`Axb+k}BUuJK-0t-qP+H8vMNJRG*qWK2v=3PgNyhIgd7l!5wQbF$I zW^igd;#Ws|brdKu!O>P9<0EC$`N9cA#uUHZJMyceM&8|XUzA?R4E;vm<2YydoK4wA z`B@GW9gEUYaJ##9UX-ZtU2Iwfa3jFh6+gVUjw_E3=zPR~;R8A!T^3Kgzt0Z<@QZLz z!eTkGbq2Aa4z$M=xW=%9Zul@vNf%Olf$DN4Y92yZCRtr25lkUbc#1n<_hl z*rD>y{Omyex?wD=QU}cgtD>t{phNCb2J-kz=7BY>5)=zdMn$iP;+T+9gkeo9iK1c6 zDgFx9v{>oKVk?BS05r>4sgwp*kc#4JH^9M~6Y$4!)*y<8tosSp`bgS>{GkQQS+CI+ zWSzD;u9;$Tz8K(Kr7xgZ$oV~k^IF=1oS_9ZpBv;%(m$omrsja-)*P#Si}N`L>qjUq z3i;L$a-O!J5NP3V7wEsx7Lz|TOZ*FmI6u*Yu6hlls$Lb<#KN=%`9lkK;+W=~qL-n~ z9wCa#HU~S~8a^a$s?!@#RO~|?Lq;3gf-;~5WQe=!^scnolu^ec1FMR8_&Zh=k6#v5 zMT#S;irX)nRmJe*d_rJVaVi%HR0YDF$f)^|`amM6Bs2*ah?G65#4rj|zG(MJ}8if5XBobu%TD`iq@Vr{0B z#*Va33GlufSJ~7Oz~ZJiiwKiNs9> z!lgH&+F-(7@0v*1>(Lf7Vd`+rNSHd&c1)PsUlZwH&ub$6n|f7LTuoJt%Mw8Z=H8MB z%)KQ@N*QN+U4o#eRDZ>;v)+fCef6Wwoz~5#cH5tD-NaOwl3>uCc_P)+miOpg|T^aMmdBF$XK~_+-zy@Zq7%ica{n$HnMS zeH%qb`)o1nlO^nosk3jxs?T z`7(*G3{N%4V9sP}WjOB6`49AstH3}>^l0Aqsd?jF-Ksh(DteLY#Qo8{;n#)3h0_+S z&ZM}7<6pyoTYBQ!7jCSX6jr2fxf&jz($kaQzA73n9)aSC0=4qQG*1TF<)KHo^!@2 z`gtl2C+um%i%!!PGr0bG!w9bTX*&jw+#4de{(U2_;A&Jxxrn$7KYmx_XX4YQ-vK`Q zoupE3l~FC#NF|l3f1}l&5K8AV3pK1gO^H`Hh0vZYGrR5xc?eG6rQYHcvo+U`-SMt5f%nRt>~MwtafhHr$|hCl4?tju?`_hqIi1nackcg0L5W;J5!qkoAJIqMrXIalyQq18yK2{UTVS#Q%YyT2COT`mY37 zeS+{9%&zowmQs>gz)L{al+vNu8{ZWE-S(#28%p-d!yC}MrNKq-mLTZeyL&kw=n@#c zyVuVo4~=Kj`@m8)o+^aSJ^H3_?$NZx?c8zdoSP!pze}63C$o&6EOht8E6^tjw+8;` z))Ieo>#dZf>DEAiZY>eO%26@1aY!l4o|~}iX&e%(@1xYXeBcW?hEhjw;_?x|H_U8y z$)aV6W1EVhg(W#?VF`j3=9iV~5|}4@^U~T>)pMyH-1%fYB!gV?ZWbTlUt&EoL`MegT!18(0E%An7ESo&s*;EBJuzEgj!RomL zHsjTjTSmNEM#-=vXb2B>B6mBQ6#_G8QLHkcL`Z?0mPb{8GTV5!h_pqD= zh5C%>SX@1Oi(QNvP=f!(w<@ks1c+j<&W1L5--F?+&;qZSAXs+!va-sknE#COv!=Mxuv(khS}2R7$eR4)1pK(MGB z$$w!{Ir0~OMPkNd$@Zi7m0zj5<*O>@ro!L7_*f8AL_kMKuO zWV*AhOaRq8cv|v*;A)X<(%Jk$`uDU?%H{?|G*lhPXC0;#P}#7VlYT~$7z@8aeW?mTg1nHpaopq!6v-x9H#$B`C;de8=XH+ zTd?zs&zJ3LxqBNH?|3yvzen4#_c=!I|H9r|VCJwR6~`p1w~X!sXY9Vj8M`k*un#eg z(gj)Le(mzJ#$)~pVLEdb&?PMF(owTZ81j4H79qd=Z4vU@!e1Wpo82L^1l=H+L)>n_ zLq5Aa*BQ>z>J2Wc_ompqXY7@E&W8B%F55NFS=&9XEI!lOM(<3qG2nN&BeY1qAT0U9DAn01^ zO!pH62QPE()U_O7;9ktkAefJU4e2vRJ!KHwR2N?JI=?$GB=eVnVXW~AsBV=YVvN@T z2*ePaUOY#H#GVbaLs|Sv=OI0TU@;!aV8xoe7EUHA=7?7UY_p$#R&VWt)m+BH7YBO# zV7-V~N=0^fjkAM3injCEsEm-gTwd$!tBimKL*C?7iqI81aRC!#QOsTjTm3NKagX* zKR|Gd_Xl#!C|)dzH)9kpm{p87T43J0#`D3})kqswv#J@1n!G1%3m zM7X}x;t*Wrz-@W3%iNUOn>CIO3SvD!cWUhMt(Qw?h6cs3q-{|7>qO}>7PQY5fv`Po zF?SY&a*dtE5ZaCl)qq^FP&sqO#=Ia4-|4IxVfG?eq~IU{V}c|BV}b<1n9%SuX9HaV zn@@Pnp&DRZln{}=&F9W)zVx{5T=pNxpZ&twMJC5pv~8{kt8JhsJgnl0-CoKMO}Wc3 zl;>zWn({}(l-KhzrSTF!NI+9c63~umy zMq6Zi+2Xfs=Ow)g<%hP2yDQu(j<%pJHe84fW|MwRjkh$p3l9?inwqGmP$V=+qr1iy z{I1)#PVaKoCcb6FKoEnq5??X1o97E=w)?5kmVO{+_WjfteSnXcK86^pN6ebt@Mxpy z!loFsyCeqfEy$Ap|Hc_0 zP@xqiDzu^mK`Wm9*4aas!Q6_Is&x-!L%wsy>FTfEE-Yj7gQ}NSr$+fVL;AjFjGA7^RzD=e(v2E^*^X*-U>bH57b z@BXXE01LvDyJw|tX&g}3`c({rB*Gj9E9Gns15n{GNK`ls5(I}~)Zu_Sx(t?``3))q zoms}_!;p2{nc#;Bo;QB*&-5??aT-Oz0Z97QGYxQ0&@xwKqDC#&`JD4Fy$(f$0c)q%pb#7pECWhlGr~M~&j{A-C>i#q%{}2$UGKRU zR35BJ%3<7|CUIVL(aF42;G^H~Cuh7qoQlAKmq>ByNDv&kgnPn7rSEx6g!>UW)8YFO znxqk9;eKQ>myP?8CHxoeN0vax^4O28y#fcr-cNcqU}LX3-_k#)-7xnf+X&c@K4bb* z?MD(>V~3+OJ6Ci>J{BD}Ac9r94o}YPBXY!s#E<0ky+`qzDp9}g=zAfT|L@}d3Rk7p?SAAeNh&e z>-u-2-l5)9D?fxxP17K-Kf#X?bz+5dv9-n5bNY#d0yC?ZL~C?Y{H6_p@f zspwZ!16)TWY%?2@z_^%F8H{&9K?0gVl7MEAAZBJLgXLga{x>oo&=wN5X$uLAwzwc{p^mvPPR3rjFBaN? z_i>?xFSsk}i2iyvDgj;Uc@A;A6h=hnZ=&`&lH#IK?7s=$m?(^*mb)*CpTmC>A#n($ zz>qlbH=)M!zY#SOSi*|Xs`^J18+BRZrHgSomQ4{cEPhELW>}QK<}e@o&G7aUlni@x z)acPgX_%u;Z!awNuo7oH9Frh81fLsyT_gIc_5`RQj-rSdSLuNn|eGdiWqa!;XWJZlh^TCg0>FOwLXe2EkTa3m$d6{;|Y z;A#o(3IVu{I`0|QIMQ15-I%|^L|rI}5@8gIe<*@+JZ&+Tr|c`d?*%otZ7`s|Y1cq-3f}=FpyXRfao?{%B*9X2wrE5MJ9E{_;x!M@V_wZjB$M=Aq zzI)WgvpWo8g&T}m;wO&((O?AAFHj4Zd(<-oY)GFm_sIi!TB8v;`W?bkgla!h(r<%h zJp0kW-$A&0WyQ0x|Hs;Mz*ku$&-cCLC1hV9J(TnSNk~WmLJ1HO2rYyViiMuggdhm= zT0#r9vmiwvt5|@uW1(1LK@HZkAz03WBB*!jsT4i+q{x4EcHi6GFAwxD`1={YH@iDC zJ3BkGJKGGpzrdAO(k@HgqHBabuY(NmW* zYEWv&Am^yWBMhv%>W|e*qN|4M)2ivVtH;iCRH=M2f8BVZ;IFvrEoIKRj!`NytCOCl zCZb20${?zfZc)DJhoR1N(=q=XMTH;KilQ@HsTRVHyPQGLqCkVn+2kE+Mzq(rp5PAb zRy9T1>m4UVSKXziV^@8YHF5#X-*j0=bN2~ugUU~E2PUg4RyTkQ+G~vr+G`Dh4orhs z9M~r+8)&Mv+|pEQU^D_7Ilt(@ZaEDvkg%_BFoBqn zC;1dA`Q+JzAx0xW0)?TGKw)SQ>AZBX?z{%5e4s?M+)^SM7$pKel(is}h;a)&e35gI zu?9hY-(@Uk;64;z6%y6Mbx(W4C2!^^j|lf zP!tz2*tZ47Q^Uw-K6b%K&at*~vng7#7W96BV31e#jgO zI43$LA$3J46A)a|ev%dp9Wb08+?!oM7O?uG%;wN_bDU-T>4$j|%D!0NST*CXJ8*pZ zVe|W5LVs(2gwVTgTH2oe=Q8IVWSOMHs8=Q~WdL+EK|H*nazc+!To^+m<~m(};m+Zm zmpNnUn{%B-L_tX-YMu2#Yk}zcnvdhdm6TKV#)|4Ijgz$VJm=WZos6x=PTA?A;^Gle zl1bqn?xCquVNkpM*A?0E8V+Grpa9+X!q^UU*$3GpV&}+8voAC}OX<$borBD!r-YKS z5(RgU`MSr8EXxbcENOGt6Ya$ap&IPu9r@?@9$>~Q1$aKa| zCO!6j*Z{NdY5wX|!&etYn!`>rXPO3g`lm+G-@MM6sC-sP9ZD6@%j=wn!c}78@}KWt za%>?}bs_`U-9I;)1wdrt!dSYaTlfOHa4Ez`761h9`Y{UVS4*9Pb>3M(BB=#owc6rL z`&-MLrRGhiabvu36YaX(If$&)87QOq+3;-A&8Jy}TkLn2sKa=#y#Z58W3Q8CeY#Sc zPZzClmYWZ8D(v5nS2%OY4w;oJTgq+Si4mBJIF$e3A5lr5nJb-tGv9%HE1iSMek%#A z$=iWxh_3xQrx6#hCQt=WZGYNOyeu}cg$z{jqE^whH?$3ET6wkeV#9GvvT}-I2~~8y^%c71ItW^wg;GMGLN>@uBkzL!wJl2_ zsoX%NOyFt#&?XE`%Sfw_HkpUG03_p<-gqkxD;W zYzjJzUYTspop%-dt=R;=)8czBgc!XfkysQO71{o0j<9zA78sQzz_`3l`DODuqXXT)+4+^(oikwr40KO?M0YZq<-RW9sw-LCMMChu0~mxiqz zkSw}y#Vm#K?3P7n!Q_SgY?E2u-AOTYZE|WPy>pW@%n+Wqfjt;F@eH@YYfn!Iqo3dN zmqwuHa)tO1j#d%j?r;C=LqQ+C47%(gXI#_T`U+tp04zqOf#9|ecPtNGI|J05Tz zussNA>jpG*B@gNC1bdQ?WcLSo;Df8^Y@ay8->0|~3*yd!s{k|hqSYCd=^bB5pAJ7m0cDjFj+iIGz!|Bq8ICuyC zmphzahNrg*@z=%Pn44NcvL%FZnMK#WWY0F!;a!t!U8Qv2?Ga&>$uf)2sjs@}LTJRa z$DH#?iNwwr$fV6=TL0JpG;0Uas>hudkxFZUh&Ji{;{z6G6+(~4b?r!pKH+?m%+$+e z(L;TVY@?bkdJ-)EmDa?RJB@6!x)qIl+1ZaYSW~NmZG%`U2x+7_xfP6XTvg;YYc9kA zt1^cNyM4K0>7AP$6Ua_$R^;Uo&dUqdM8xw5@&a$0c}WU++nNO#f-F9UYQ}rw=#poh z73AO6tVjy(*kslIuQd@#eW8*v;UXJlQo!FSHzA9U6x2PIzWtnYBk5?(%1D{<20cD$ zNg>Iyrf&IYMh=a5*$IcXE{W(&dRx=6PEcASw4m8Jo>W=0BB2UFXsR`pRm!Mfq~aPU zMr4x9tr?IK6xS&2d(l}=uC-)sJQ|*32s-O6X%y+KWOVwIt=2@Ov69m;Cew&loMYnx zD=l63pZdwPdbm3$qP7YeXqElSS+i$eF=IpRTXa!cP>e$@#w=2**`XDjyY^IGG^bB( zL3pcHSd7P?-(h?(EO-_{B#Ad8Cph3YPDckaJy0!Lf>aDJdhB4r(Ky?9$NREYVurLZ z-d1WJH0a6`u55BhCiA|G6QoZe3cuJ@MA2sd$Dm_QID3X8U+h*&#vDD^&eoHD+9l|( z#8jk*0eccEZvJ{7IGWs0ns|zFq*iRdWbqWgKpTy<&D6Af6y0+7l=E{Uj2SV&(`e!f z_n5bw_nD3;NfajqskHgjwjetC`<0obgG^(h6hqOdrfu&yR~dRq92P~g{8&-(+Jih7ULgWP+qz6r@v$v-a?~Y8T z-gMirrq=H}+Ztq?g)Y9^J=&xzzi@SQjFyQI`(x)HpZ&mjzc~+*_q)1~`7)X7R>X#J z{mr?iqFWyL(WSnJMYmFub9x)IX!D28M8_-4w z*Cd?rD&hn$n6zfdidZ`9Gv{OGhbArEvZ8|tz+MNP{T(VQK8%%GBc|9o7kJrE{O8VY zw*RtfJs98K{I5x;1AzRdlNb8=OJleTPQ9};@e;L|)%|GFJ&(9c&7&afL(ajr7#l|k z3%!RAIrB(+o7M%(XhYu+LX9t-gQ6rZu_O`2;P9e&4_lbP7fa*6a884_raWIb^GT5v z7n>p*y{y>8d+yzJY{!$`BNHV_!M-XP3TKMH37;T|_*y3JU(Pp3jfDGKCY0v?+j)mM z!N!~C%YQqMnu~0_c>q}Yaa{+8iVvG7K{6pMiNXYptY#9(3Jo(Wgk(pU^msviZd1>1 zoevn~4xJ5Xp}|XtVdI_cR+%U|8#`}nK5nDO54cmwlQLO$1Y;MIQvq!VGT?zU7VT=b zVP_zUF{crqxw{#UvYd&i@weKz#%mP$Qko=kisG`y;UAo*9a=^iD)~z0W-M`q(=#KE zZAW2qp@u^&r%8?R$?210pfRL%kgj)Vl!Ak}oPuSdDyP&SE~j*vEahY-2T7v@uOL*N za2B=@k=Zeb8sV-4lo3!fuCD7yB(_r&MWm63>cut<_}Q6YI5aq}#+X68cR}4!FLUQM zb^g^k${;f(Mid&>tyScKbeo?vt}R|RuTUoDfBro2%la%*r)OUG2*2B^8e*Jv<*PZv(g z%YnLL^J;a)=G7qBHoL-H^Bo!(wLjwLVmqDrz9W}3>wJnXpp`&G;U73U>xi&{Mu0S! z0|pbZ|Cc4D#!zt9gUmv>SGmw#YIH}}%~o&2)uAIif_7xwP`WtO6-hT=-6@`&urk3y zQ#7Qtt2@5WOt(K!aQ>tCKm%utPHC)(=+x%(k42R7x0;`faQ!pbmTV8<(JA(UZ#A#I zq*oZdbhE7uT^R4$YYd?S+qu%nFuT_0GHHH_(a#(VVHp2xXAJ!4Q&-@qRXyaS_O7bG zHmt@)tP#dQI;Mkbm}8)%F9K6D7(|`z^oLc&Dp#r57gn&cTyP6VN7qvhk6I2@Oinvi z$TZd!xQf}J1RZ#v?K-_ED0#)kEk)-uO&Vc3Ifq7Hdf4mYHz7r|?MP@I`25LN#73;Ew8@V?L6d`FaLXb$pztVpS-2wo^)7kCWB19Fy_++xVL#6|SjV zkoiMu!{~KouBq^Vvg;A^iBNi`%+;GT>EwkdA5%rS=PaU}eLiO0+#X5?40CmHY?llO zxxHtV+ry$p4+^=J40qL&uVuLlBe$<46;*CKHctzqx0kzKg6q|%jdW#^h}QnT!UzkA zIa({q*8zTj^2Mm5IuH185Sp)XXpI-HLTZK172w}%hef1x{$ippUS zRr!KxewAwwJdzSQ9PI0q4{SR~i7a(NL}(1~(b#zjkm|)1FC{)Rj2_D^PvFCf{Au<` z+CQ&+tn%~uyz-8=%b+r!=9TA?xjI`yz_U~VFXjT)ht1%!x>GRPLSr}D~A;sTyF+g|0kO)UkF7|tVGC4`Aw44)w%9ka7MRWEQM z%&O7o<4SFkHD6_f(W+kM$#jhe_GC1?<_f0G9(x3>{oIyD^A9Az&r4lb2E7a1(ye>S z^U3=<-=a|`Lt7ZVe^7Y`dUU4i^`L8jDqYj;$tKt7^o2C9Ql+_;OH;QFhiAJcpN}TC zT@HkOo0-BgyV5bC>2VGQ^beev;f?+~gQzlGBI@Tw8PYYT_j1RRYB8K)FI*IoNuHNr zX&uZb!|0gZ4XJve3t=40$Na3RqTi8nX&5c~zB-oXPJ?-1#HKI9XvyWSHRe%}>*cOY za$ILqG{FyQ6P)Bta1IX$XrnHOLYv=)(c=qT>5gwDTVf;;PAqNlZ&Bedd0XVY7BYvV zvP^PQ^LY=zj3ipK2o(8CstEP|{3~6CF`O1GcIA_Dog$Z?F_aZk7f;5M07F=GawUI* z3j>e+06pZqN3VnEG#5;J2T7KMf17QU-9W6C*`M&i>kr?DEO6AT#ZZr*J8jD$S4ps< z$MuBku~rBNEAiH_h{sP$48_<4m{!fpjWm+kWO$^RV8_)Fn!h_a+iVACmDmXA z!r}r%0BhqR!w1W1Xy1C*GKZRhJ*3!=p00PjN#56)&ZKPHP~|=e_3v$3bN=zfY&x*f z6-s}w1x3?emb%^{-$^=5WLdQNP+bn!2z(jwOTzXL#nCMd?jmAyXeujqDxGPOy^3_S z=EOZUsSU0Q6ELRM)W^~1?_2DkZK8uNB0a2`ao0?qgKy6%wWi`$AV|d>P@}D>Y&(mQ z*LW?bgnNKWHU-ZjbF3Nny_JES+^SD}TWb3$ zc=r+>Qj1&Tde(4Elw7yi@G@PdNuy$e60|NO2sU*l+hD?x=!&MluXD8xfC)XUGY}GE zBHew9t6zXJGVXodSqg4j?|Si^1#dk|!Q_n)7}M&@TsnPpqw9P^ZfIB9I4+SyL5}dS zA8C>hF1?71%L!pX+|dKA4m*10G;O7>JcGPz$&AaMd&6;6j&@z=3Nz1$70-;nyI-+= z3vIBq+tf7jon8)1DBFVbb+|Ip{TY71VqBZCEURyO7wi?>c4-gu%W%FL_oYN5R^zIc zWb`z{+t78-x;m4#ZJ?-h*y5B8X`@hS--fToDO6~~`>x(LKuv3Y3hLl!Nh4xP@*rD5 z8;F~RMs^`R0usqni3|upWdHr{AxH$b_-I6+dHEI}5F}gj^9z!#_W6I{`dsjX?iqdv zy4AHgj_zcZ&XZW)+p9_oi?8158m1SQdhGd=I3E1FD@DiAkTNKUuKheHlicvfIG|4L zX!EYBC>_VayInoW?SEW+(NJ$ZU44%$-CrCRDBlDHVGET12**7PblJVGL!{Y?Zr|X^ z1cEiVXKc4jDC8a{rFy->;NRNPcRZ=Zh@^^P@9xTTo+Nt1F)8x8$UIc3<-plZh623XPjVv5B=c* zS6e#ugfoMvJ*{-QdoVK2u;Ry}$3ozoCUh|R(Sv~dh0w@$^wfhcae9IGV0!sBAKIt4 zxq4|Bv0E`dv0G`P@OP`-@cbd$Ij1!_uB2-a>>*Vvj8r`%U*?224an_!okcHeiDUCF z*8&{}>gdy;5<*9DuhqwoxoS<)Y(FOjG)`kD<*Cj&^j@ za~YFtAGH;V`-v6}cO@2~RA>cH0Tr}@zsqz^<kXswwPp_uZV03=Xt83|M{_JIo4?261Z%Oa@p ziaU)AwW4N=@ARUlgpQe25wxbax4WihHB-DGakfj7;oLJXyaSN}zt4)J9oXmLLb--~%;uS4(sDDr|@{0t^mNAb+&{J=?hPEiwiIzMt zHZuhEZ@jP+&;I%42t5L=Il|Lo{CYA8KpEy1pGKlll(541vaIMxe@nxY4q@@ss_O}{gvo&ee#a$xIDACb0GX5rA6UCcUt0Xq52Eits`?af7mj-q;IY+TYYbq{!TT4XE zPDi|s2wP?q2t*yl)qLwZV~|V>QtWP>qPZ39Bojs3lt2pGqdG{YC~Z?5t#r2v_;Hr* zRus+KrbuE@+Gb`n?{2eYs?s*oRT>MU&(+-kJ-31y9be-ZooN0sID?~A65B?DVB6e% z%r!>OXla{UbzVi=v_$leP@Bf8(lMZIPZfMRRNJR{)tz~ck2LkzlDx-)Mz@sFj zmyU4+JyvA|!~5EhVUU>?qjH>w7dw+Wy+j$^vDgfAxGjA5Y;yeW8gC=FSaaj4`_(br z0IZg&Vu-SEW5?FiVY)NS`{2m_fQD@HfXpMisd10B&bxS>wGsPNn>$MxG>f;#SJT^U z?l}&PHgsBb{3~+aC`pThjjMv(D;#@OFzQb6WP302PYGs>@;++rjiIjxyGQGV7`Y@l z!pz`D-c@pVnM}8)-FEj4!K4+0?v(JIz>xfv-YM{_p}XDa*B5R zne~@G^jLNKFxzox)2)p~1Nd3LBQZ@o+q<7NX!kQA?dj@{?n<&(uM^id;|;pm;ZAbA zArsZv-ysQ>+8@p``*r|iZXD>&?6Be54J$V++mOlCOG6e&4fA-uS3xK{kM_@{M-ttO z$w{47rBdB|p|*-(UX5i|tc73%=9hTRs!z)zZ7%?oGm(pinMYzMJF%!t0<$>Y8)aWp zCV_wB=F%)y`cXV_{g&~H@>%dr&SVthNzeQkin*)7xTZRra;;4tX+ba&_08@q@-@ifUSZ%>n} zYZAzGh91Ny_Q{K-+o=-jU%Fj?{!6#8Tt6eYE#2L^e>Cma**%BUNjgkfU^Vug&>SNU zZ*?#h(W)-)i^)1`9=2F#yEzV`WZilfkB&@A|IpRNum%nwc;BO@OTW!rym{EH3>01fhtRzr=+MtS+yM)-FsM4;&Rh*3DF(0iEbhiq+ z{oOX_vv`Ir8|(O=#td6LOSAHUql9Dzg}kkp=x}s%d!G9q(%X_5CkZ{``52*xOcXAs zWNmOaqnt(*xU)!wOy$l7=gh<7fV3}HY1bodqR^(1J>4160VwmCoJJUD z3mOE+ozL}jU#xS8>*82#PC zXdyjW{;-;4WSX0@C z6BAN#HwbWqP9cD3YB#p?JB13LKTz{=f3O^K>HZ+HJv1KrgZAyYKbSMZ-8*q3V+1-t ztC8YjtOm&$_Xkbijc}(Kj#O5j_Z>WtB93llNiY*FbSXHxWu~^LN4vu8wPhiBUZ`K7 zl13`Mxx&3jFNp3Zdz3q$jIx%&OCnO~6QkUn^)l#vjvX&MKkox76zxcoL}5hAywBwl zA}Y=1sB;+<4IZ=++q*$Cs@%7czgaS)_qn<~_dZw4M0NkhUG2r9;ue|CEeG!3xC5@g z_a9i@20z$pczc%B=YYiija%FENY$+pjc{_ff8)jW+#tU!lQ|Xia?L80z3q9ZN}kP}V^- z-%y#ZG~Xb&w9wytRq*3%%~#xkH(#+t_PS`!e3Wvg-&Q^&yJG5*) zwwVE9JNu`)6C5oGpnk0C!1SX_SU>_dsswHgK!7=HP9T;Znipb+@2%6_arCpesU`IB zNp7*DVOJpRbogYq*wL_YvRmwEP<4;(XlRN2Qra*D@UqRBEEEGOWCMzmBxTB(?W8eo1g)74HEd~zk$Tf7J z#G)FQxgEKInJ1GK19O=|#Bfn#y1P(o5L^oc%)CJ~621m8vpVvwpCu`Xi&!)Ww#cga z?hJNu@c=)(I^whB42RXa3reF~mpUKk0Zz(5f@T?C?Aga{PHm zh2zPjSAs>`w?tGB!hjmLA#V4*WTZ7Oi|RUtNvJyZ*1$OS-m+;xrfph+sBDcars&?3 z1VzE;1+HvLQtd3}v~YMNE}Pb<9r3y^*V)20EKA@L=#hXDFlU3CWdR#~Ai)OT>R`(^ z_=drQfAAgmcg8#pzVBvVIQYIh0RuJ;HDGi9iY0EN<+%I)SC_gCvfC;F9Ctq@q5g6A zo##L9?n)zio{6M~UJY(f%@yuX$a|6wlYdrYpUZQM1U~eBGeH@8e`m=^*@k;PXBDv} zf*9l!E(>pPG|xzUW4^45qjy~8o=Q4evtr;SK2h9lX-#GO@L_u%4$pgA6LEMBMR9lz zTpzy%;tEyPTu7io5SVIB#R&kU0)<$*^*V?_U2e^SWFU)=3~oH%|2OwMa;+sR-fAf* zt+%9cnXD9)ZXW@MhjuI}j3ZmE`H&ps^N~Z@C4Lw@nLK03+SntT2?uWl{f8xulY5er z!`nLlY0ZIzAcv2T+_ZnxniXaEogj7Enu;=nRBR=ZWYGmA1F1eTIEf0N=e2Jn_$N`_ zXy4C+vwbruH8Y<{JqB6znN)X17H3jLNqi=ibSQXq;u}nT)tS^2QlCX+4ewAGB)Jw7 zDLE%9mucL2;6)gN=%=^1Cpff%IKNr@YT^0JZ$wwE{vz1n7$_;9;twoL+Tec9aLiEQ zXk8oL9u-W>8{LbyK)=pa6DZUD{|(L#z=B*9T9?EZh1OeH@GlCPYg9h&Oya9T3Ja923PlGX&(B6_0syIx zN^Fr;lN~-AS$Mk}-Y$GvG9?B@&E||?dgGVw_Vk9^VV2SNOGo>lmmnA2TKjD#-CP+Q zLSB)DxG-f+_NX;^CqPZ$nxdhqBtv*SANZhm{x5j2&XA=pBCl2#%N?Z0b=E}q>(hG?Bq_-sn zob=9vbe#0g4@hFJLc-IM1WrU437qn3B>dxE5F}1{H9_J`M1$bCmmOYkXkZ-o;t7V$ zI)h@|t7S$U>;yvq9P${$&OeE0%0uuDtcD+%k^6*R`eQ^;Pkxpm03tll@WCJB@E>T< zaj*d#yY237Sog$-+{|RB2$D;N2h2Vg75J&VBhzXKAna~ zbTAg6=$l`sNeb6#BC!aaUdT>16sGW#4ZUTuqSHMTBBd#OWUmmRc(4I5bER%c0;2&F zQh2wS6p+Lv3W-?(NZ@3Sk-&ouP#boz!L|$lDe+U&$%;To=|wxmY~8#e07^X7;6rI+ zAM#Yg&AWVYfV%@?PJPT52UzeJ!~s-cVE1F#u=~M>&y0Z=_eGqb&9VDwZI0bfgJ9Re zqYWAuH6Ev(A4u%1xkUHVG9wN=+Mt0^QGe1E6^}Qp-tBHO$O#K#uBj>9`u-vlh4uaB zdG|}Us8pe;F{%DKOY3V!q$&&~$n{As2={VJ$Y$dWKZe}q!5*dJ-9e@U#>Dm|#rmS!fb)S*&2j8}47phZel3TknB$W_Ng($Llz794rT+J<|9fv`|N=p8hCEQ#5X1THrxwvK(2)@sXR# z3_O^UY}j*jPB7lE5BeL683|X_^xC`bVFsC_bHm49Gt+o0&6J6oBBk$CDg72eO6=lo^J^|8T6On?93Y2M(#WBdGzix4#AmQ+O#@3QC8k?c`_Oh5 zA(Ba7F!OWw9vuY=X|EI##vsqYG?&F7k0kMU)_3^3H^rN0)d_>R1b^#c_jBRnBnxoW z`k3OsrO^2{`yet&!kMVx&UlFJ*&sJ1LH0a{T8uyF=bJOt1YH3|m6_5a9h2JK=BF#& zZAp5|?#53k!L#)V~~B(kdYW~+iDXvx#?w%DCIQ(}&^i9vmHB#g?w z(>?hS+fz_$oF+V@ml6TlCuJ?7jP#bBj15%GUFrT#MjqACh#e6RVGek!D4jPSO=sIS z#FmKTdJ*58&cbicrm^3--wq;Soh*8V+imTgxKXjoRNv6lF)560&Y#}dmedJGXLpb+ zk|HxHT_vHD(qLUXVO_(uu?0O=FuhBRw2?ikdGB!{d8zb^;yuG_#3cWz}N48-4zyG>x&Dov!y_0iv6slUzRBL%< zri#!bEx}Cal}S>LVso%s5H|PL;+StV&9eMPC{c2@I@ zut!IvJ;LP?-J*IIRK_X+RNv|d#F*sj$SsUTTpd}@zHoJ9edn`oXWiP`LtCzq&=p~x zI`XirEjLTJM)H7!`qxPAIL|ebL&S4WTmZzi&vaIT(zarIS6@(C&CG++cSBY^D7~L? zib3g*JM*A)>o%TIiO(>w8kD|QsS&^D^3>bfb_t_J&++$A)E z9(s6OVVGVI;a>YOC=Lgp&2c!881MPOoX~|Y$xqS?iNm0msP&!&KiHDIQtwvceD1g| zeD*y~ViDdLLzBxu#5m?yA=A0W-ATkGzNN3TsAOPMqh@i7T9ykL64ye+!uN>I}ZdxzU=63y&=IYIpxIYhv{^uo)?X zEju!9aMdw@P--hP6a#P1@$~Q+cr`OO@Vz0cZs6ZwMA5*%3zXP?{-1L^(-JEgShYia zC3B~m7IpKiH^?Uv#H2ThuBpyHALGbdrkzUlLrFsHkvu9PjHu|)-!mw7Xb=YOk(^cF zX(nNrnqu)-g*{VDD`cXWd#BjjEHG0uc^ENWCM&%*IaBcx-7>iydzVocUV?=Y&5oJ= z$&(4>aPDoF_{2^k4T5v;(S@E%9U2(DAFim3k>z>C@pz|}8F4&P?dhT8K#O3@#1X3j z&*S#?d`jFFY%JDBmv{GM_%Hlo!l1o+cnbK#!+h>Y-|pcN`{z3Jgb}B;=Jb}Ho+}s% z7F?j+3O#(t8GBhAW#MW+1gnLS>gOzs;B!TES}&z!d4JC&e@Rvu8s6J8nAaqaZa=v= zn7Rje_S0^CJib?wu{ziFQL4i(sxVJL)3eQKr*xvi6aG(aTYDDwgh~xt2~YT65G8v{ z=)V$+5{G8Df|h!^kd!P<_r%;g0nqyQXm-sCtUoru%>AH7!siF+mqnf~ej%SJQbhI8 zV9#RegP^E>?~kG?9pZr};!c-@nWv$fv#87W8Qfido54?8EY|rI9cv+j`Z^X2DPA^K z^XjeDvy1AjQmeP=EY+jGmU@!dYiHyd9f@%0E3-I<3$s)XMPT7Iy@+7*Web~ybXB?M zMe?aNGy3w6Bvkd~8W?>!JF#OP%i@PEew3vYdvHXp@F`y5a9wBcu*EmbM4)988@@DZ zn@4%ZJ2VLP*$;#uUY3GDFRoifw&6>)&OSE|mQcF!9$kSxy78Xu3*C6nuIF;&4+iko zSB&v&CZiaF7T$V9vr91puv|N-tL{sqDbSCjc{yNO#PyhJG455%ppfoW|IQdduez-(_p0MA0k1lV zfmQ!DR5Hr<@-+Q^iKn|kc1bv^Q|Hn)u1SXR}u{siLmy_E>m z(6egPFsiLVq-WK@(z9k|0}-jvBKEIkmY!7uV=q0>mB)fU>dII2AFlDdK`N~{w@mgF zXuj2)oz2BDN6#uO>C9|J99N!A9M#!=anO)y(knR1B~oGIw#@R>TEOfgir%w5#iUW@ z7A?=7`qOZ*E#vf1HTN~>S^Cy^2Afc6jOBlT?NVyK+?CtxJs=ErTg2-vFtZ~quQI4l zr!2dPzseR%tpC=F3b}lt%H>!9x!`W%gHkT!6CDo()LYNA8kt(nosB@O7~E7mG)L5VxGW~ShEYZf=6Mq7!dIi=2?w~1 z(HKkj)WYjHYVUw*!@lBX)?d)Th*x|yf)_9JOm=7x){r0yM1Sa5>yEVgPJ5WyA;&Ki z^f$VxVE#t6TRwjS=0WsL?zjNhYj@=+ZlR0YmYQ#=oC(`_vf+Cx?cs(UH^07>0N>-V0hqd@Wl^m&4 zo%}Jrl4nMcSef9H6swDD_hT#rw)=7Rh3$Tvw|ktru^iH{E8UU9?`wZ}nP+o=0S8H^|NH^C^2{ZfXgMk`PvdEV}k3d$t+YjZKwH>Au?|!Yb`Di;vS)51yAY;Y;Q@ z^k9SMa*`pj^M1-gA!^ys<`oDpqG6vd8WeALFNg7HzCr4qub%{`?J^6^J)v;r_&sh~&x)BZ0;1cbB~>?%)oERtmT z>QmFByUN=e;TsjWoxWWdokIWnSa~|RQ^FaWskHhAPfzG!HSfm9*q{(y^LTl-LoH3Q zdOP)UqI#^r%}E=cDnzP zNju? zpTB{7I4%I<+NHV7#wVDwa-~_Rs<#)IH-o@g(6IV8&qaw#8B3}gx=i7bUjl+}H8n~w z)0k28g;C?r$4m^Tm9LiD9qT1pu}HmdsePs6UKNaEt~Eb}6x+6glI{B`B!ldf>5LnA zt+{9X0P~StW&HhYE?sn|=c1T{&K@UI?9kjXj5i<^dr& z1L8w%177jo>JisoMdk4c+0BfKn2=Te-IJXpt0^ucQ3=APh_}mA94d%!zIpEL^0BtA zKJqyM$wQRQPrer?AFhxG$5#AK`S3qt;LNr5emVmqz`n50FUSkj=W)FIA*qR{FSPb#(&dXi5W{%+J3>$X zP!ni{WWx=1xZ=VpAsn|}EunrBaKm|-fRD&s5+~~oBEGUIkFQ@mY)!@W3rK~7Q*pH6 zl8Daa8Eck(#^S+79u8mNkveG80-FC=ht#+L+}Cc*<923w9@-hBiVm3XZAb6=mo2RI z20rFJ0I1kdX3J`ON#aIEOtm--k~$1!9`URrUr7izHhVAmtEZdb82CRz?2f|{qlldR zCLxSQ8I8Crj}QjL-V3$D-h0p$RJr-Qn;u}aMK^^#uF0{rKQahPO7zpPe6iITK70(FqI(W48coV1 zgja{{-!Os4$e}AbIJEr7v%Q&(#bHUdO95SKaabyus2ApMUYQrGT+YnrH?pf-9)8A~ z5*>g^9^%nxVu(kBV0dN)wJ+A0!=4_J&!fq|TddofKSxFwY zW=6aFfP|`cR|BKnP3bf!4-ZRa_E{CtFNLkM6@Ylq)&;RIv~@uRfovV#_Ll#=XJd=0 zT~QNx!L!{Ui42464PtE5UP65=ta{+Q3>!`-+S7=4M-F)MMb8X_^pqr61Be5^`2{?V zoI@jC_B=x>teJ4xcQ|DF%@aqP4~8U@iPkJ7kK40hBUJM%usk-$n#ks7G|WhF4fqQISS>R~2ccp68Dh$y_F|Z`4a>(drJMNyuFxx!anEjQNW0w5E!ps7g2Q z`}3;gXXd@LU_@OyY)#adIciOn%m`&Vt>-wWGBJ)|x|krE3fm#RM<8W_RzhX!Y)!?{ zk*^JVSW{7-AQkng)S8Ni&LI`UK0aOAcffNCnP|<5>V7fZ`ne~b8>Knc9N6V9rh5*9 zQF2=oQI{_6q3Y80dY(VlCF2^7{0_Y!?`@C>y!9g6tcl2$DEX8%5yf*2-02KfiM*<( zB17jkO#)(bL%&!P6^4X51@+X_;oRy3RblGHjgx4LBprd^4j!8S7t}e& znh5HY!^K==O+wx-?!k3wxHT1Z2~ss(y7z0aOEuQ4=;5aHR4mgK)-2fPAPe@0W!6;2 zi7|!l{MIvrtkDzySdGk^1lqgxlEP|3Dw=_v)>LH4SM~*KDzbDFUHiSKH+fr6{9{G( zvvgQ5X<_N8HC1Ejv^7<-)QP(}QuzN+C8()il}uktbk;El{vZ`?Qx9t@+9qGwQfsPc z#gZRAm1MLv5!DHb`qT+-Es3MsuJK+)=2)|`H$Um2-+YG2ZB54xHTswf2>i)Egbnay`bo6w=mv%k*BPQ$d)Misx^_ZW!_SVhKYXn)1UWoK3={F zgb@;vmtU-jDlb93G%XQr%y|(uDN4_BZkq%pQIW8jun}_f;)24=Las$c)>NiNhG@Ux z)ex@1f!fW1sHuG{^w3t!ObvNeVgbDL2T^BgP#90ydx8{ z+4xiqLBz=ct5{9Jm%#6moQq)oLiQ5)eG<&)+PJCxu3r3>5UmidsBCXN?0iC{I0ee4 z&BsRC9k)x;Vp(O{(U8`L;{_Ft%MK0HJCVF5!ID!OWTqpJha~BxaKd}EQ%FzS0Z4!Q zct`>HOfQ~E8&;I{H$U#BL@&PXMOQvlpGvDjjHvL9EI$unK&bE3k0CiR&ohu3er3e_ z{}j?C0C9}*o`H0X@fy9gej{SMr&Z#lH;?fKB!V$sO)ePYZIQQyNa?_=keMVyCtsN) z3yLYcTF~CKHEHBhgOuo{#Bx;s-t5+ukbw^P@J*dng&HftN;9!i>wXKFpqFBmh?cyB z@r9l~y>UZJe4)hTn}ydxW|}%Iv_sRDw2@H;@yaX;F((i+?i@MI0Uv=_yitN>Dbv}T zFGXpEEF6l>a|{0rhxzw<;kuX|foRzt1`hY13Gvbc;a=RLYN6AHOX7h)LuX;nkX{D) zXFxjd0-Z5I70Vp(AthlU7Qu<_<;3Cwi=A$rT-U#GOPkol7VV|#4#oHGDso2db(~O1 z@@^a)dL=RY_&HI8f1)?dd&GN{UWoCjsA?4FQzd7o;dvu>ku)7AM78^c*lBa?iX1bk z59{CsbZuy8N_+>IPt&N?`6Fj1;r4(ycFVe~p*XJ&B&qRkpO~g;twY5VzMk+- zP;qNo@d)`^nr}f6qeFr7>thEm&D|N<2 zNOC!YqHw?y;%!KYoxNQQa)&i{{@^9V=)U{5~XOfcT#>nUiI=T$t~wWDoV>0b;df zSb#V%QG6SeQHN_8(<$HP4$%%kueo@H;^+ht4+LhLXBnKvR=JAk3hbC00-B9Yt z@bU{hXkLcb|I#hq-LW~tE4IsjpWzjEcc_(uyF1QOspcm`rs}j{2VQ*R(<9sJPz;7^ zJi!e_MS33W{5O2RZ7eD88=&*+nK70gF~M3>#DOE0$$yLk@0Zn>!Wi_%K76O-Eq(Y- z$<<%au+ymp-eY8?1t;z%UDlVY@iLjHs`19YU|YizQwWvmiXN};tBfqR_QkGlX=#fd zr}54XS591Z9RNi{A-Utp~XH*P!rT*jh0`FH7IJa z20<;>AgF<#4_jYE@`|il{I{W8>asAck`t|oNNJjnL zVkL|Edxt_69=oXS?d@?c^;Kx1`ZD57eT^64)&g%Q@^U~T%_@<-NW{`LEk;-&gGSg| zwV~#}i}-8M-vlB^pBN}K*!Zz!l`KYBp@r(J(ekUW21WJNAgI0?1l9MWq28e+rk_Q9 zt9Cq1h~!&U-#whJfFAYNTC<_%oBg={z8#1leSD-( ze?M$lBa8kjv`~LFT7Lc2ps2qZ1oc;gp#GNB^$VgYkHKxDhsJsf$ZtBc;^c%@Ob#bB zupCa1{+8Z==Nh%lsLL7zb-ApcuFJPJhMXYz7Idh~IsLgV=g34=m&^JKT^=ga6;Q7q7#rSEsiHCKas?Pp@I3QMNq9ta;(Gsts zD<^^_ULBCijVhH}IhAv(vO)({S(7P_hudA^8%gxL#4?h2=n~&Z;(wR?iIIdt3sqU8 zZo#N5~*eSGu!l+r^G$nW-ZjDiC+2P#D$O4B7q9~Vw z0es6&$^gF{aIcCwi>A0QPmQ(u_T|9@*?%4(b`4`5_o}RAU$|FgE!}yU*ZRs7Zp#}v z$9rRott#8dgH{RP?z?*>)ECTHb$+|=hSJrw-c_VoB4z>?=L2>_d%*dCSi1apO%~Z} z&4cT9yFqXeO*fw!AWsRz1>m!`X#n46w`G8`&o0Y60_DA)Sh{S!cVJ=@BN4AW;q-S& zQv|m2UJIE+ewARx?kM`#H`ooO3;q$(&hcM~Q3R$>d&_4S4tp_h6w4w+aKaoz%>KBK z5kadKc{50q%%Ui38+eb#f3`58m@DfMMn&wAV_~1DU{)3@EcWHw>Fz7NWja~x_uUqI z$CB;T zxu>g3?%UwrbZIYum%A$ z98bU7ACm6Sz}VrZ0$c1%`lw>w;meB^!}pZVs|bia!JwK@Ua0rF=zOow<3PU9ZG_0e zs>yp@1*0Yn%nUEI9WD-`Tdpn7BVWpNMU6gJ1@r?KP`IK-uuk#Lb>%rqON)55M()mK z-tGH?k2E9%LK{jagImEHrSn3d-}j>`cpUy+3RE#HOOo>xq#T_!eV>gn1Q%G z&m1+7y_6x=oabA!qA8pUS^b;zmRPgkn(AD-bG5e@xxt#qmMv{_2co$ZoAhqi^Zbcr zXUdUp*9(f}REo?MlIN_c$d@SkrZo|lQ=usCt;)I9r|8Jcx%a{dj6a+WBW|iVX-!p` zXDAqsQ^f(A4sZeSQ_O~s{WQFN3w5oHBMap`%I zH5HehAr+k^C=;+UCN_Xp!wI(LwV;jlI)eY#soYYL%dl_Ps`aEQqp zMEAY&UE2^m?769guR8Zz?;V|3!5T|-&b?*p3FrL7_aO@$cT3L2BH?qVZ8_v231;1k z`!4hD629uJ6$0M{@9kc=Rp%{|w6^N}vI<8pi>uCWNwDP92ATP)vsOy3Iv;{`Ty_3J zFD_P{50)sN?)wsD)p--kudh14#6aq>fDy-4=a$5A)j6nCtUB9EwN4{eoy}5(ctj~* zbq+`bSDiH?IFM+Ow}nXgs&kG`zA{M`6syi^L3`7lUqTuTGDI&WhBc*7CtP)g51&U+ z73vZRR+@>G!c}Lj6t0^|Uc@kBKq*d!;)^6EpL3~&%zV}PA16ZM46;mSQHa$6F7ySDhu7qPX#j3MPPOLg-=s49?=k!6WkBL?1WSLLXD9fs|tf5$S29oNk^Kb=? zW%gl?9mH3i$ICpdnqt+t3b_%h&Ql>PTXj|}4PSMZ^uV`(w9~^!Uk};_Eft4%<)%L4o zKOe+{Y6@A3t8)Q~Vo;4y$JM!Cq4q33{98aWKdWSHgZV16LI!Gw3mgFnVN}gpyP?$f zl!&U4#KBr$;wP+V<5MEEW@d1LnucMFI3PI;tZC%@fi(?^Gdc}|fi(?+{T%~qBXk}` zU`@*`18W)>ao`|j(jVi%z?xPZ=TaN6H1Gj+h|n?+XOP*lt!k1*D87I~C?;Vkm#-~hA8 zn&72_@lbqRLMy*!`Yr81xSD%XeHPvPOL}_TDL>BBew?Q{P9m=dF=^@R-gF~{&U)Q@ zX*|M3)W^qY^l3Xy9hg{RMxSmv9#K2QurWx@rpS+IRp-!<73>Cxn#Hw`Lab=nhT0wY zPiC#X4A`@=Ki<=T$;JNE{|EoS z;m=3x4+`T-CXqJ@{MpC;On`n=JC*%e-VXlY1M-h0z!yG%csILj7H^&I&91}4>q*Pl zjYW8++9q~k4Bme;%V2j^;O!>thK5?a&x1+4wj-1MEcOR)DOk>qD&jff7`Eva_w;UI zVLgm_7P2W3n{l~nU*w7q4{bkX1LCV$O!r66&kkl7Yv{VG%~ZO@Xt2|&cf7BYK1@es z*kc4eR%Ha6g=K6eS6~AX(5*c}(`?W~>Dv6zjx_nT@U~6A?(;rmgulQxw@4O6d$zPLtB$#%X4{s0e$gYc} z+xOJPG`0JucaT9=%4+b+rIf} zyn?JzaBcb6J0j>d0MJG5ZW-iuC27yEUU4>=mf?gf`pF;=Uh6Ao&7OJ1{F=E7Hq_n= z37>e~QIZc47+yms9DqQ*O6gE|U9I_i8J+y8HEM+TyU#}FjWRX~>`o8uotu%= zk{BQZU1-aiHk%&*$eTmI|I8ciP^gztu)(7gc?mu(@``J^=AhSMkbf)efrQfNbDw($ z2OR?_UDRt#JneYMn?rt7GD%q-Ia?i00S~>s-GiQFSjK!99Y+sQcfL{^aqOJY_SL3@ z9y{nQrJo;$+9*7=sEsIUsZFubfo}Q2n?(|afSOtdvCQ}28H&`ttcdO6;b&c)tJRa#qO7D z*$Ea8q5J#P71(N@ETbjgdM8~FVe)FxEt}>f88vk1e;^`WBU$4L5OpnssNH`m^4VBX z+u58ngw|xaa_NdI$F`G%2FS-kGj_FexlfQv@+~>^p>CWOnlr@2Y@mvEhQNMKZ0wa(piR z<*4@|@`X}+Y}jTpt$*b~31z(*y~Bm)<0^7o(xFHluR{w!z4jPr;_1u! zc-pOpM2aV~vw!i9BcrWZart26P#$%jVogOvkczKu-}oyS%6WR0c_yS{U>SI4f#tZs za^M#Lj;?DHO&4@^ll5(;+2e!3`OKZUq4p<`=PEmTq8S@t6tE~QD8`|pp*!tMQq7Ns zu!wO1U9lx1jD{cZMkLG`Kc`P^K{%|CG8Fv6l-n48@RL?QI=)vDG=Scz4#>6xt2XA! zvAubJ+N@Ly#~bL9Kd~0SL&*j%IgWmM63ziWqCowH6J=rHpOnI7bnD=TJleUww%lwU zN=KjeR+1M3VTqPlg83lo`Jot>i+fgP_i20WCqroU@818Ak7b&)4hkyaVm>%GDma5N zMyZ9MuhjyBE5GT~DjmNt0PB8?A-qI4v1n=Qrnii`js}St28oLQV&N57&n~sqC6EXu z4P7>XoY{Wa}>flfqD5HBK>$|pq#L?@5>jvxKbNCk$g+o*a zw#O?@MXiWuoxSc+9UBa8hT{<22xpaoi_Cl2;69pR6dxufp>wUA5%B0u$unSgp&n`Nuh;Hk0LlvEf-!2xSQ|JoOSs`&W#8H>((7-4< zyc+)rg)=ENHM1hMBaXVSiIPTfK>GSHJ|KNlL4_*92BgMo=c?xi!{ne;(fM%R=M+k1 zJbOSwwU9DOe=#+l0lcUqv|S1#BjZ%;9CJU z$cz!eaJ3XzvOZ=dNwb!~n~Y9C)3ck5)B^Ny>P?;K57BkqNKb1aJdz28utR8tutQiO zarEn$x*K)uD3JX8PE>IRv=4CNu4pN6u{4>QOWIvbUa%Nf9DL|`At z%jS*4`4!Tul&pRWU|v7`Ec2Si;n@4l+lJE8t#$p)YlgGnaRS|!dqqy1M5P!}hbTnJ|Eo}OxW8Eqv=pex9qR(pc$swhP~g^JON;ad68aN1^EeK*HP60gu7X^UEo2%tnJlzcV04ldzWOX8$Tx*I{{eVK(# zLgVPYDRuXec2=|&cPZ8s)WXfF(CYhzNSmcd*|v{3)u|}WemJde1Sz)C!W%aOmk6O# z{x`5Abw^F=)|A(|F4~|k+^{yT>525Z5~Izv8&+s2s z>aNs*aoV6kDCMysEYLSPZU*BH6mqd?z zI=emHN0x@ul-_lAI-*Bin{bU;y1!x0L|T+rml5;?RAPP2$MFGcbM;@ZO#nukV)E+j-vC%ydOGhQX&LHZfQDv6hFB?nuO%Ba8KN&%{e&Nk@e5ztt^h^CH^P>@bDQ)fP z31LMSmg_*`!#IMFR`~y&b747tAt84P_9usgpQIhjQCSnjOnAK+x2u9}KY_6V<{vpkU95 zI;Lyj%j-s&6U*s4>>V4~aUQ){-_LLAOsD1#cV`*JbOaklWv^ zig}67Eruf6aah&7+(^?X$0&sPJL+Qs&EK7zZJrpx=EbEv4iP|WYJYXH80|yDe$}16vPiHi2oWjMdF8KAAXE;4BXRmoa0V4 zFXF#V;D1O>LHv;7ztGk3w3;l5Kpr2Fn(=TOBHV9Z=6F}l%TU?&jsy?blv?aKq$VN# zy%Gb)NdmV$kCSW~QwzUW}uCCyc6O{WytEyQi*oWB8OFhg1~dT zd&dXLk7lErHM)qe)*>$8@0H|r|s=~+v9IhLFQsfgxy{tVLUNp;H|x10l+cy@C&M;05f+H}k0 zy0M8ZM5PJ4xg(4{I!&pYXFgg%*G;Lr%&|kIiaIqgv9i0PNdq&lw4;L0v9$ust0;nO z&0FW;3O;(dVp?5foJwCd5pDo-9I#LsO!2V6M+}T@`94^ueM>HD`t1K$`|iN1isfO? zxuNBpKtc)~l2A1CDhLP!P(ecIy@d{;gOpnnK%_%xS?K}n4X|A-@PddaqJX_qEYE@h z&-ZK~e6zEA@6MikeD6Qo3c=tzkTgnABnfkrAx!su-XSQCMZ9_pQ`!tyC`p#R0)fj%gBfI|e-10gR zu3chKc?3}7jEl*>v1+~KM=jzxK{tNzo zkGrvsj~>~3a=DiF0*cQ)MhC?9FZH@d>&4(fA{1<%>xt74cZWXD1eymA_}upz_I5%Q z-C=XKaEHyLLb$`FrPbQ7PPy>|&F26HJ_~9GDGaPh$C}S%ld(d}V+ z+nX)E1G<-@oo+-_zS4Oiv=~l6bDi@*Zm|1( z?)rw^oKQubH|`~L-k4N4b$&O%aGhsS7}R;UUPR{u;XhR8U3&?gcco~k^Xa{W&S%mZ z)cI6O(9ds8hV!6#|TYS`4Oq|Bcy`O+VAz4XP_C4J?Zv2T7!D|oa*HV zp%)jdnAz!@JJx2Y7h)@zANNx8F|a^=Xe=-Q?kq`Rht|7OY^|6NT(|_T(3|)mj(Zv$ z_WOdbW;N5%Q5^-F5~w;b`}5#Ncb;LlBt$_U*=BDzx?MD=hTW7@1RpJQr@8E&q(~$e zdYIXD>;YOapHh4FX4~6&rs)W1*Z8gOmi9!7fKy&iwqvV%lMWAp_pGQEhBf6Hnw{GQ zv6D;B+X+0=z0I9P)*2Fqip~zFxijILUJC01JC_XgcSJ$`=&m+W5@;RpAJb|1-I>SrxV*EgdN=Kt&l6bt*s&3(uK)T$4*75fEG_YphQ7Pi#r zUw_EmOc$hgho$h{u7_aQ=s`J^AhG#~6CWKe=Mk7lM^JnmNHo^i;wtf-Qgr^fV!&wE z42q9EFB0FEkY}+&zj|(oB!azn;eSEn(Umb48@6d;Mb`ZR2&MfrtY@4~O-(4}`|$B4 z)BIC7gz>)c;DRpI67-!apvW`E+MZqcFs2@!<bQxDI9o#D${_EsK$!_>o$ z?mT9Y%JQCcXQp7W+@Amdc8R^+G1*}5?H*isi~9}(eqgqtL+&9?_9gfe&NlE8l5OC1 zxfqw@!SLLD{LeuiWq^-kCS)P8qM^HLu+ zdTJhA8d=}kW~txgm$J`rq>zAcK&cta$-Est3tFqG)nG3$nwwjPCvx7-gFmvNiVHzK z_q2PrY4>IOH~KQoa(%h8H)E-3HEX$E>RyKR>QbXwS*{h>Cw(E#pKg5?)~ogVhKSYa zD{>Y$lM+dO)%Y6^7lv~dZ0mFGr|sJabrITc!%Ju+f(pP!-;oC=geFd|0;8&X4&4)#@Nz4e(-)^!w)fY(29-39(#U|p@@wQ)W4&K=XC>F+)X-z_7rFsF6Y?UY z5Zm;XZrTQH3Q4h+x%nK}4}ZdL%1elw^157P${Uk=7q9~7oXAo)`dYIeI(MkedOhQ| z+0iFzrI`;(PuWd9r7vKhr*LV&Qyyl9E2A45`44wp`v@nAq8^lCi2oSfa`5QjzSrF` zhN}bom!B-PJM|+*hjqM25}ED$iMcfO!SV^_-SD3_?&j>%!4&_O|xxjZEV&zl-2 zV47@0S@LyO;s{Yu0;iCVb1}>3>vG-#he~`x|>`f4wux{N6xP z3;;L`-+$wy<>)WmuiKLeO_9foKhUmS3MrMGawqkdX}sfS+^^Vq1cG5Y$lG6J-RAcv zDLfVdwm}2yZSSQJn7w*jKp68`?=Rg`>|+!FIUVUQ5_j*@8bpN}JlK2eD|b`-OIi)< zWtqJL7)*SH^!FXf>S8GJDmmDUf+G1w14J7- z(i%=4c8UAHf@SyFl$d&UPg)yp0{=Ml1$UMiY60d4Cs0siF-Eeuht?pAF@nXuV^!+e zi)gK4F(%AHWe2xXP)^9j2FUE-qqK^1H&~beCI_SVE_jqk4&Hsy-Pkn++$-QNpK4P` zksRy;aQvL~m5c6r@c<{2gCB67Qy{3}Zc`JSQy=g85rfLq;LKVTZ1(3RcWu_;Eq8bO zGb%DpCRe_yd?UF!=tmP-QMoCl?T;x*o?ZxM{|in#*+0;7VAZq6_q+thXL*!bLsfab zYXd}H@1}tOpUk%huqNXa5)}oRExS5E34PiDF)_;XsksYy1~P<+By_{~My1*Sq5{h{=RmrXZFQT|)ii zPaO~g5pR9(ouwD!WSzecChM6$c*nRt8z_$#eL<K$l}xIw}iail_7!^{{Y zVr30zwTK-JBDQEXNVi4pLCO}u0d1jk;I?p<$TX5xjJCiu(hw>F+Cl?FTg>=+;y9hG z!xqy9Nn6aI)RZlz&{nxYH_>e&^LbPNX$xA!?<&e1PV68Y9pH8_5#RTm* z&kDodO$0%U?2s1OK`KP__O=S19Q#?V7+lf?fZ|v<#emrcj)mK=IiN+-)&w4SE}UWr z9@{QWYH5Gu!0O2n(1;oWsJyaW9AUKdGCwjIT2HT(L zdBk=NR-Wn{$CCwt>q4pKRnXX3xW!l_*>ezXLw=g<@z_-UiAS+^V@rFukg0fMHJ{ zQlf{90gmVAR+&j|9eRf#xnCB+^bAMNB(EGtj5>W^kXj5sqGnT*jFe`7-!nD@m6X@_VSfdvF5K* z^S@FUJPM+6tcgQ}=97mI2S&{&3{ie%)MBUVd2seZ#m5a1ijSjMsQA`HgyL_bHK_Pj zgr3=Dh^}}bBowbvM8!iZQ1N;zxZ<59DeQ8FXQy7Q@_kdNM5z5pe9ZT0#cELex9lLH z8444A1%xPi`zp{U_x4q!LL~ei86pyXkI@>`%tKT&&kD`BU=>Ufe!GXLDGFGiLNpdQ zx;aZ^!cQv>C;UF5a^MW5!J#)|!cQw!`dAJ=fbJNCNus=I|4Ha^Rk(f!n_{vLeyBw* zB>OU0?^kLk1P`|KG;!HAhLTDUqYJwf7ayCXRuVFuQ)MVztJ~BliA`(csb@Ecz>42J zHZ~4`$jbP1j_Exkl{vOwS~Hp9ao# z_D&{bp$=%pJS)2oMAIi0$^J>w;?>bxEFo8r7Q5~Psjt7(=5|(;G0B2+TQDiz%JMt- zlgZ2^zi6WQ7tTz-2;bzZNqoV34z9K{%`pQ-f^!tCG9e4g9_!?ZHDTw4+QS5F*0k_CKjw&v>L~RZj|c4Vd2q|Ukq~rHSyS131p{BvNI#dPNif$QOI8YF}8}W zk>!K1U7b>b1(H}OvWGjvcUO4o*eJ^u_Vjc%g<@sq_;HG)RQw1pPLX>rP;pE4k3n{+ z;Gt~KMbq^bH0^ZRX&LrOii|3Glgj?FkR6A~OXa3DB>g8txc#wV;?mhMN(dL|;Y(-s zMXipzF<@Qn=hp zgSvYf32fwGPd^>r(H2QLZnzlCi@6!$eZC={YNVgZ2ERp0xAI9jB&+z8Kpn^9drHCG%5U;g4W36sEZkf}7yoiML029<*Pkh#2ELFkA#(pB>K9MtkPl??phI8ZH8j=V=YbF`)+I zn3re`_=Aj-LN&%ofi&Ji=+q)@uw8Bhs3SD2p#-Hy2>O+14bq1i494zl+OLjXmsW?F z7^PU|SWlJ-JTOWaT?Hgc_z36&ql6SvLQnVbLXw)pmBrws34&rmL~9xEcVPc8|Zg{SYlirR*5Nj?eIn(h)eXnu?dajzD?gd!32FXJ&fta+$|Q zu&Z-CE9^HYbsWXcjPf_KPtjsNikWYWU>)XqZq^ZI&Gp=Gel>zw^E{dMHxx(d|2)%{ps=4aUkiQ)@-Ekv=)>?xTQuDb}j(J_N7nDS2J&i z=Xf9lfR5Ii*hRh%%S8(vwI9M#KZ57lizoQ|=-hd`E2?%&)QX&oc;x}UBL*G3IV--e zM%74N9)bs-`1CL{tyXNcyTrJy`GXjG;mmCV({0b9Z32tS5bbncjLU=vhl>#Hz4;zE z*1C#-mXQh)6ntQ$SYtgztNG+>z^&h~*7l7Qb8kOz16X1iJ9r%)o->xQ z(f4|s(wQmCVFwRkKibOL4Ct2oZ(Nl zzxgj{9K6rdL#Kfx&-{x31#ASd~hUr)^G`N zo<+fP%RM6vy9uF*rfe`un6d$>;HG@ZybEf0gs3~MfetX%yknFaWg&+>dNsr;z={~B z$Q&h>-MlClL=9C{wU2iTtH0(D>SkgtbhjK-dt}0cNS+!3R^X8 z-pzWkTFdRE67f+`2SjJtvd%MHFGfSxUhipR@2B`^tw{c8ZLL^1E1wUK{1^CWZ4Do- zeKyf74U0gG4J=|{=qABy8$BK1N(iBe*8WOb`zul*I&Se-xx-vH<-k(>M%VwZV+cl3cF*or$8@8h2UJ+l*)h#jl|!( z1%`gDIPCuBIiV4A(Ma5p8hN5S;IZ53BgL+C%1CiGcr4|m2E-g*92yYuY;Yh)_-{T% zKn3}7RHrak2nF$8f$xee$U*(EeG>*Xv?ywLV`t7nkW4cthl(cmbwP@Q^2Ogg)j~={ zyq2s1>VXyRPFrCpMj)8hPQlidBB_EYdDe14Ockn@|oj_*+6g%MzY zkDBlw{85v(fA{<&KUbKhpGkssTpxZO0*_X#;ai>!%m{iGx}a6;tL z&f?L~QJEuebmSNu!4fw)-{+kQ75qHuz9XJFH*lU5#CJo$_w83bE$yL{H6K?J^PJ`! zG)9~y?H}BC)MFX;28se6ki|ND)AmL-+guK_Ku|aPgLm*pN#QEMNl$lHFzD7;R`zv& zO|HlK;&qlEU-vu|^CEC(d$YYw?3bw=N^1v7(%NgNH8@!6AHyGXt;|jy_jI{I^_kCt z>E86TvY(|wp#DDMCA2&2mo0p1j5tAh>V#*9eSzZrZ6$uESO_HsL5XeQarm)iHgy`B z!oEG~O|g^5lAf#dl`yshFRKL=@Bprv>t{nxdj{X2rr;{^h<7~g?KsLE71fNFP({U# z6^;h4jGus05%b>l`0P6<8Xs;Fn>+Q}IgD2H9z@9dz#+ZxA=I{G#39tyIKs$7s4d2j zL#R=PhTP@=z~7PyeBfE+7*6o4>0KXs&f2S~WS~wN0bNdtp?x^&|Ba_-p^pq>9Y6LA zu(uJyBKWy)aQk*Cq*SuY-8xprK3jd_DYl;`5aPh;Q)5N!^Rcl!K-t?qP9ZP?`I>@& zvzX)U^ArN3mtTw((aTG;263SVqodbo4XpcQbQG#FIx3hav-pfY!|h7rh-)JK#BqXt zU0Q?mp$6%=efoo^QBCkp57yCVb@*KC@(PBO*)o9C0a4eI@QZ-CG zDA|i5fk|W(E{hlAt`1bk-yLCF-uJc-#$Wa%7dB`It{8E>v$jLwe7j^Cuhac9>7 zF;@9Uxs$#tB5~SYRbJXmY}acb+0D9 zOTMVA$+FIdg}qh+o+bm_aIeJW6>kTG{D~Dk@?uP|AkJIWwChb&ZjWA-K2dm8I;jv| z)d6a_S9PK_+^fv?6H6E;?}iFEcOu;i;z^kmy*2DM8iBA^jhQICY8rSWXSbCwuQR*kcvEu_lBi(53M7^cE@^cd5AbP!dX8 zHDt4vdo$RwO5TJpE=Fqk12(Kef}qAdNkdz~5*h|F*@%7DYp_F=y=@h)?n=ebHgu&| zs1#vWG7pucq!VB_e)v|7kQLQfB|nz9o+VWCHVyN2j8YPaYAFa0PaQMt3z{H2dbf0q zcZ~gSTFjekUYICen~Frh*QQEOQa;E+2u%xMji@1TxyV3US;X(YohYIp{5dE#BGp?a zj!G&YgQ_)A8&HGw)4aP(yEWm9zTaY!@ckB~LaY<=c6mpz_)$a4vVx7?Hs&T5I~>=# zme~ssc$ery5wJ`2oK!-W7zP!pOPJj!iIKLuMuA(t_{f0f=A21vUA4S)doHcUJ~68# z26>aPPe7kbxW(I!Gnm!ETg?RwShH?*Zg(;G!9TTVZ;qh3sU(_v!ZeFBye*K{>B4?h zZB1(IW}rgsX1WS_H`7Y6oBded+s(DUQLfh4%Y@ zK|_8HPoshFCUk7-b=zN3%yq9Xx}D9O5`+lUp4e0}=+=oM2gZtlwH@bGiz z$>Q*HS6YKk)Tt!W*^|QqE1p0HqGDjxsH4Tr$-?4VGkj`kbL(W5T0gIY`JJ@S4-r)VSrXO%IP3%RGVGC> z;AkIE8TLqBWxPi^OHx?rOz%Bfhhc!>PexAP7Zknq+o!iINFjpR~h96{W z$qym;x_DdLTCv!ebb;47@1)SUR?`5{d5Yeio}uH1oyW*v`)?Yd(kw%frU_%0>=$TZtl@Ct&7&2R5)60USn8GvrBQzM;?cZZl-cYKJ5zYx-?5|Ssi&r&kFscJ zl1Pu4r;j-s%shR=$- zm-j`xGDXA)P|_3;!i$G%yr21@7jCt?+f5_D8Y(ahSK;f>-6FucYGA$X914MPrQr%f zh1C{NFcj;aDI#ijAFV+GP=kS~jkE^(hl~nBHAV%YJu0sDB!xx#k4pM4(Hf)=HAw#r zTBGPgb%?$StevN@NdF5-{}Qc1`cQ-PuhAMsAF4z2QGUExUTG?^H>VH5$#p|ukf=*5 zkbL4)PCkX@4~nmAx1iOE2f&1QVE8S%--z&A42T&KexnE?{PsQcZXSN);3E7sn)8mC z!bZ*sG_MI>sE6M!(2gSBjmB)oL@F^4zp>G@~$*z-gzLaf`BXonXTqGixU_sJ0;m$#{7{i^tripN;hM>ZolPLn|w5JIO819Tfz;LHG8a#$OHF&-cB_@?$ zK%=dd;m!?|o+I43eVPb&?$lsHVMlXoNv3!d%*!|PUJ({8JOdp*aakH7DYqG0+CSt1_mEhhw+6y>L+P zDiIl7{Wt0AzmW>%>Soe(5l>2)uDS^0jt7W$$s+ft`%er}ZKaJXzUffu^D&WpRb zvqV0IpcSjAWLGK-_sJ;u?egF;1Px!mdkr^kGxNRhtr1EKRz@;p4UZp0ZQZ!(n(Gi3 zmLVRECB_uBlJIid{ExB^zN-4>BJUo(3+E5vwt1^RlK87MOK$k{~G2T{Xh6vC_ zB4B{7g%iQ3!kQF#``a2k7mKt&#%_{lkoa8Fbr7GUf{OT@aUa)@3{pdnrvAI{_2gc@Jiy-<+NkmU6 zqK7lQ&EX#Y{>|R%wk9+N0zh*(gz1{&eZ*Ok0-suj#E4cbBH3L7?d{*FY}|cxK-{dK z*a}|?4i$@Q=pm$`liupbj-;!OK{BjP(dAY z{7m7P<24dt$6Py8M5)%%YV^$2C2`maAKv8e0DbO!`Q9si~FUsB!&I^VebOHSXn0vv_h@Z=1~X& z{6Pdp>--|E^9!jE)={rdRGcMDlr)QYDw-&MRtYAm2^G{t_AFr{o08zsSmRc9`3Y~j z-G)}6aas!66(bHVc4nua^tK8q5-5sLtVS9Y`HN7b-ZZXAXGsdn*z2967b`{n>`){= zDd8vbq9Wa(BtE;lNriY)V$&?~qy(ci*u)JbHE|a<(FOZx^18&@S>bJl;bse;0Uyzr z!AMg-qC`F}p#k#g9as2AsYJN?(%^9D!p9}FV$@85?I{iE^N@#Oi18XM!sFmQ>K~!k zw1V~O_fy49iQgP-~fS0h8HjOHcFYL5hT<6&nzmbyf~3Xan#4Wf>IiF$lJ=+N^n_r_>gyvy@Udy;WR)r z-0^>S59#>IrH9J)cb^?@KL%E{jW~dJVP}t~S;;hD6VkyH@x9UmToMedzQBKBVD*LB z;z&OYtg^kYcz=i%QayLX`=tF2Z4ZnrGNk%8DVEA#^*27L2ge|LvL>hfv26EI?{NDZ zp-wJ>M`4p9akhx07RT4>ZdaHCGKV6y2xiUE!7$)@ za|Bpz1*QV79V5WnDKHG>MHgIz^1cL-BSLu;L4@+&m@Pti99)F*rgFAl&Soc0cpKLQ zHRz$dH;E?X1@1fF^3FEw*;HDL<=xvvK?wwcNIh%i8Yb9Lcy+=?M%v4g|fQSVhm+v-ory#>8$tU>|`Aa2SL0OHjHBNLD0x#(?9ce zh=j+q$br=kmVOQE58O>Tk$vL7~Ywr=!taTbpI3lrHDLV2b z-PU_VSb{qee_C0|BCo(Nxkp5_A_c&R)-#|vh-k3}pNa!EFq+Ch$o{`#`wzu7T0kqB z6d2Ibq;M!t3QUzJ0$RT)PsT4HiB~;;BHH4fY<$l$KZLE@_oSRSa_PCkk;~3?IIBZ(vb5$Sx{vP4VIy3Id&Jr2W(u&b3@tEDMR2rO_H9(x1@pVtFSdX5# z?w%{pHf2$2VN06bN^0Q1xtjCTRA!SeeNwK#gTM4ii`46qa7-IVgQmZYt82oDgU31W zxz9Wz6An0DV9Hm%UQ$8q#H5`z(`p<{H@Si2xNxlL~xk@|HB4sCY!QAkyfQ#@= zIPqkf_s$VZyM35%qumO= zWDQ^zv&|Fe7&yU;W*#a>G(px`S@5PWl3@C()n+w?Pr@C&*y@~x<#&>55?mLpXui&o~ z{_AImyDWh(_WV3re(nVd_~%}l%zQ*To>kbxp>3tCb*l4*M<2HeqET2 zw0wW-o@pcf<`|rvy_a83!8g3n{^AO)bv+gY!!+sm<+EBd;ch4c9bl9E|Y z`=lzYX`*kO`P6)tS(I0m*YIVKMlB)FmrbOQcX=FAbTD6^k2jgE<2v82EdO$1tohn} zzBZ8`y4m+m`5W=FNcAPf5i#b=d(B#r^p)rSXGY68J-%`qE`QSVTw_%)Q$3xpr=ub~(h z*}{?V;j*GD4XT&SeT7kb>4X0(g9qc& zeH{&J9ce9?3oc(@Dc3f8wJPNe$6@Jz#+l{R@y)S{6bpuo;dopHb5lCI?ux6#a#|YI zDn*eZcPIE6KJ^FRSEjk_Obm@h=#n zpP19hs_F#EDdp}qS@ zSd9-K<7z}e68YvcerC)1lSqIKD_&Z|vUnk`z?Lr%@59w->#Ji}l|4{SmMw*TBi2mv zh@E7Ts+`YrD9u=YmyxAe`;A#$%%&bTYk@!AYOY{-KX1v38=K9{#van>_8t+F+v8?^ z-uJaI>wDCGA6Vf&Qe%ZNIjsakS6LtUKCp%peul@F&U$_5Yi^ArrO@VVV>mn8(RX(w zbbi9rba(|(Yjn0b+`~?OTh4+~`3aknomk_B3@mX3lf)};s9Xy6VD$}5VbDZ+vcvwR;}tqDQZl8&Sl zThiLgeyS5_772c-moMGw;{Z2Wv!ZM$k06e17#j&arI&ATBs9{V8wowNx9<)O+RrC#JT`jd>Vyf!88V+MzOwfV)XXL z#F{UA#g|bi0%uc)RX;d8)B44U#My8p>=POi_6e;7`^4izeA_JB=kR97SRjJ}1Y5Y_ zJ41ahTU9A?D;V86WehIGiii2e$JBu;mhgP9O03gx7^>8#HfUpriZn@xRc znmIMLL#ISC!-PIKOH7*+yOLAha#7uex`Fm{1mF=%}2C|`nMjUwWJ<8d(6TVe5`Y@7kX$Z!J} zI~rJnG_a}&8d37i$HH7n3&7*+uvf?W>RX!$8}9MR1T3^R&Rx!ikMm_ZDWtQ!uX?t$ z9{=wsOdStaBgFZFs5|3na5y*#EtBWWK&==*v~XO`H2&ZVFxYGG&!PY7#u%dYh0d`n zM#RrQg`WhJK?>;)Zv9OK}H=N~7_O-`; z!cI)~-O42kljE1wv_^xGGFZVGU&9o|M7aelR%dPKf2VN)4X7?ked-etRbem@QMGoH z7V<8FR6xT@suKqjeWOHI)k zf5a~=o|Q#QPS;W)-2*@R~ZJ6wooyM2#X)d*D(Et|#7M{9EqE~sR0 zKbSRIgK|)p_i!oog?6eDex>XN)tupvCNSqk0zeuJGMy zf6JSL?LQw7Pg8zPN}!G_Zq>9K4s*-$;azsSNkU1 zz!P)3R{O@<8p-%IzQr-Id9d<1onltDi9luWQ}sWx#%q1+;~D@&ZX^DuNuKyreMKdz zOu5!%`#bn+h%ePs9#UnwfFQn9zq`OUJmoxPCB66;=-oVb@k>DZ85D?5)py{m+rgi3 z?t+()+y$@8MXtOtxurnL(5LFx!uhp*8)01q@49w?XC-T;)l7B80|0)Rp34Cq@sRp5 zy|s{2Ko9V;(Mf)pX$YuN{tLZe>fiT*WcX^yPi5KO<&#FU;cdd1hUfgHSbw-XogIzs z+8bxPE8{2F6u#tZ9)u6rcQdS=s#UzL+0}RO0`x%nl?EaJ%Y0jA73?P!ULG^b!A>Hv zB5bXmQ^lMd%`H5c=gch}%@er=sKFx^8cm*qBf`jFQG_t3hL^p?Jd-Cf4Ci$2BEw*O z&dq*1D}Y2F+q-G*jU*VtT4Vg#+c+WxxKZZFvSXr}>A>GNQ;)*e-1UQHihPj#EuAm3 z3jD|DmV-yLtE1ra@yDCw)@ElO^HnX}IjJ&>pPW^L75AN8lZ~j@H==UOxN5G3fPHFm zRx7JuYV;2PiV02RU=|B%As7`LbNEgnZ~#1;kWai=AzK8z{G4&>Y@k zxV+ytBJrAYj5z@HPs4?hNS<#e=B+fp$!Eio@_Ja`>fFW|UpX25D_`u(yMurWSB|R0 z@~inE-}X#Qd{m}5>}X8U10&>nPS;Y%8PvNQP|}US}1c;n_l*PWlbk|r;oty@N64M9OW()NvH`6NfPS5 zsGy59(B9S#9jd>%MFGHrttqU3v9Fi)ybdMVKD|(+h+freAt|;HpE$7I(JL|-e>&7y zDAG?MVfVh`TWI~@ge*SmZU~T$Uw&sK6}R+1GrxSnc)N42BE<1hZ(NW}H9f^I8L(pqBzY8XA(z zSiQ2p*++8u@sm>N)-1g?qi}NlE`S;0feEna{vi@zr}7410t`-KYp>zsu9PyJsJjUStdwS2&yWHKid@e)P*Q^JPr`u@HsW>IW8>m8yM|&TQ&$8h zPb8$?Cwxw?^Jm-d@B-Z6WiAxSsCw`CQVi=70R(|Ch-h9|B!a^iRArts8C7<%NJhmj z2EuY_yzXZIc(XKA?DzFBlNO8k*3LyD1!XSA6cp<;ZyI) zswH94XRN;t%dZ${YPBb&Ty|FM8)O-a*}0Cs?iNKk_qDIircP5+t?XzR?Cp=>s2hP7 zGh=n7X8FDYl?~Uu`5*fpuqNmD%v!1w5oTDt zSeRk4s*EthPHBc+3WlK>wo5ZS?l8kQ_gq-MAKvpGB_p9nm>mMrb|D}mNn@C1}iP$EnxccQdC zXgbV5Rk&CAu4+#uQmU9$xL2g195`LAjFP~2WkW8_0WRFIT}dcYdw~Z#P`X+@O9G$P z+t<}5;1R7aFQPjUt;clKctTdSei|vo))(!aY8m&k9esUMY=R z7uk!77ksS@>wX6x%)4&9S9ttJRSA6Tz&>*y)WBU?>uFWP`mFTBakP8IaPu-Or+LsD zh8w)H{n)+Y+T~*k0rrIaX6(#yvGvXO0FCF;KTy@8-@GH~oxN8ZzFa^@T(;B*;&p0} z8oQAuHFhIXBD&G)fBCjsF-w%&!Dv>O4gJ~I#Ii|g*zICCEbEz`m#txiJ4VfDNM_6u z%&psmQG{zG3Ug5jv16?LkMD?eDE7pO1 z_#NGEV4c9P^eq3)x4^U}JNRHuYdqWaqp!L>Ue)D^ROJI#e0N%2Rm}KE;sQ94rKAWl zOSzf=V>>WQIev-AQc?uL;p|;j3>*C?tcP|IOdPNP39YUnq18!=u=?n0zR#@Z2mxSC z=Lvb7nBak{cFAwT&R_QpalH=hnVC7H>ZZZ|de&Py7077t!S?u)O&|OF*~e9-FhoT) zhgA`Vc#UP2_jfjrEWs~B1}_@^vM%dqg(t#WoM_xdD1|s!1s>c?+& zD}x}R6#%|tS$};ekFHib0;!QtEaxBX1W!lZ_Kb$ofJ+imLrm)EIjI|$Y+SgJhqEzq zt_g|SwjySxV(%B8Pp{)orh#|RAQvzUi|ro6w0VZG>-qxaAe7Chu}dd&Rl zma3Cx#N!1gRI%`t=kJq!7Jh`COZM3>RFUvb?6c3`C;BW!ASVkh5hT<@DrI&^U;as!HaNp~hIv&p;}=fDzt@s-)x^;t2j)33gA?2}6V z3OZ|Ua$-`6OJtVg@H6*m<1i~8WXA+6Rq>B8tRX~L^vZ%)`&$Oc$FDpMP?d5~TFaf< z-JG?Q886OHx8|s7oL7w*&W8Gz;sopB4IN!~Ty2(mA+~}sg@cKQmIf>p7SlMP#Yl;; z*!mj&`>pMSC9Y=%)r4W`K~fs-TITkp>}pN_?KZ)Qm?7m;zmyr8`PEwfC#{2oEHc}X z>Myj8l2XO&;8M0W%|FH_I1%$?J>gS?nXr%1mn)<*pC<8)!k4f)=1ItR7KwECN$84j z$H}@zIOB%z3NHw4`0yFiyt7$rS$b0MitNn>HR2f_E2y$e9xJG}Ou0L*t12xM>#DlT z!s{x2m;fe$bM@dG3W*9{E~|QbZ*FPcz6|={+`3jrRV|iP?IgMG%fibl{;5Y7(7`b- z3PD__jRrivP8;haI7$+nrU>$rj!5wGkFiyBf_$A;se+;rifiRU@51v0roBuk_R3PK zSb2_Mhr(p2-L1TUXt!nX&4&IvTrtH^&eCSV1n>$$!426VDews)a2!S*ww1lhBrCCth5}%J=g$vR_mb%6MN0o4Sg!Oi^x zbR<3|MACmAz8^f=o6H)w@IPYxK?s2dXA|%Sa@bqO71Wv)w}9aLGt2loB00FFrT<$a zrt)%VeNIpREml?dr9}l&mJ4^Pvpj77J+1wX$O5IIAYYN4Z|%R?uBZse#@^b--_mNU zim{#LIb3LVw&8P@#Z#(S1Q(}RR_Qi>TPus8hWjQw0QdN9u)cMmh;7=)Xc%V2305X_I(?_4CaXS8@$xyZVz)d0hD{?EA7FR3J5;VW%HJc z^q2&^sv3e=#UxfY(617!&bC)rU|1AzsHtL z15M!$z)p9BarOie64lF3IYdVYF7M?3#btg1FSWt>hFVdHh9hZRSlZKR9aFR*oa}mo z7K$SdmpN-Z;_xs23y(PbYq>b$;N?9X7it)A4|Q1#v!}jMwG7L?)4w`utbO<2kF~c5 z=HKOyGc0=r2q9x+8282-A!Su*XgFH+zhKIMX=V20p8m<~?e6~0RyD*`9A!h~Z1)#fPuz5ujfZS;gXO2uxD-i4=U2B6#wU48aSY8|v@j zvf2GWJAlX z63Y-!JAQHeSGXr1db8%-O0n+;&6lZ%lCr) zl2$8!Q=VnB%07QL0xg!W^`Zfr_G(M+ zC(d7Pah9a8l}ljzM2Z;)5{6#~ZE&YaqncXk@z8 zh`?g-A!Ci`tF70B`zizaDo_u&dm@vjc?8+AZDl3D~hTV7_*7UBVc-E`^%~jc&&5nI}25Y;` zf0s>AA_h!(RU(3yz1{!1-CgmLE~?gs{npC0;Q$4MF=4aMTH*bp){5Hw%P;!AvU2K zF&LLq!#0y&t~lzH0mBYaF@lF5^4q5Q?phIchzb+l zsx)N#TbD^>eINA?w9e@~vTG_sG!}-?Xt7!6>LsxjkNJb<#s7*|Gr?=dfDKF5gb5E3qxbo{r)WD#SydI5z{5PfQql`Rw-`mK&3|DOrFKEd zQIwb!OkNb(2D{SY(f4#n!C;GsbA(5?wRz$M|Jpoxf*%U-rbt81C4>Jt$$?M6A9YiN zS1!j2a#I9>F^t23b6?|sIB&cu!hh`la6snYIELID&vMt+Pi8`Ju_F&g;b}6H`v>gm z#VrwN?uNjZS*+H)(G9H}-V$v4Py*Pflfd^ z^0TUd&vo*VpPm2cawBK(xs>c+%Cz!vR0MhaUMrHCfA+>T54;w#-kV)X!E*=w6-?K2 z1@h=U|A9yEE0nGm%N`z;RRtdONoGyA!&k*(5Br}sKP_N~4*MHgpA$WdZXRgKiq?;6 zY82q@wGF-honZbGez$QqXCJ@fUwi{z3=%Fk-!EX5U-h@M-lxp2K^XrJr`6sm5D)d7 zED*=%n;!L_x5}^6oVX|J&@|&lPR^q&);i>1oMe|92HLQ*OUlNYCkn)QdH(uQu_QVN0M}YSUO;`lp=?tId<@VJ$H-53;@FFa;HJckI_1i-AjLIIA(CFzZWyf4C2n_8uHrD7tP}gDX2tKlA5U zcRFD@D;TrhdXXv^Nr1q(;!P!Es16CI@5fv72qdzEH`~wnZ?*0vrKtj#Hv;EN>Q6yG! zW(RI_RRym+)6Ph>2qYVQ&7W>wU&r=e3yg^e2$@CM$XQlpr+@G_t_j|(kKCqGE6g4E zmK9EUTXZ?IYZy*UrXXOhpP7zbHp0LBm8kE)I-w{yFyb*QjnU!Ofl7sK%_OaG|H8n2yV^!*gIN6*;3;p66x3Fw zVol7ScZuP!EVD&kJBwhkg=L@-_{c#kf|Z#b$Tq8O6rq9$aD3$8t|;L6vJ?dekD->8 zxfP;BVcB5DZ~j{idz2yxi&%bU7}F<{H;N?K6jjakC*_SZCbIoM!#!vId^}&t!Luo8 zSNttq;E#@6SViR{@=n1hR(!=@GYZH2?e$Bs_^bYV&D9&(<>i69t+h_J5OLGkZbr5y zSQF;+fr*j4Hex8%BF*DnDZ6?EBvA~XQ#+fdHi)R-TN^Mm&+@PPk6N!2fnXF6mlj^# zC>-=vQV9-v+B~~ayo_?5R)9wuU+B#+FKi5ZB|ePu$wm?H`$Qp1s}vs@(A=D;BHaRA}znkNYetW(CBj}o;9;Wt0q51x%Fn+G=uk9bfaNsqvk&B;w->^rTh zg-5(aXnv|piBVvng+W`35LKpxmY^wVOTwn4g)kbX2kRyT;L6q+D-a9I8!)51uT-W` zc_ljO^Cq!rSW@V-jaux4(PNp@HsQ% zrkmh=WVWxa)!2b$CNYLLrW|OpM|6q;j<=;E!13w6zEQyWZ7EGCN89BqaglAu+fuoN zqH6nWQi>+bWq4D{qTmib^0r4LpO@tbD#r@yFpuV0Ipn6xZQVj$1H9$vimFM>f z2hm$cKv$u?^`SFhJi*tv$&ynCPu9kV@>W4c81ET6jD#)qJ0cdG|vK!ROs~ znd+?Pm_F~GWTLa4R7kS3;&J5PnLLhsMb-0d>p1gQLbTNV;Sm7eHv^*hz8Uwe{~xFV#Qnk(o=`}1RrkUD!n;0F)neFwkI+1?Y=|pGpoyzGpea^$f4~o1)m?Rx z`Hhe%y*ca(xT@pmXh9;I8va2mIQ&zsge^!5arkfea^MH6{$}NfXvW^~^;D}lDaEm) z{$}>+!9WiU94G9qQ6N7#1k1$;!Z`2`i~^2N^;2-ipd{0nM1DE&XBP(^v!)Y@*Z}?! zRcjt8#gS<`JKQa>UW0awOfnfs*ocv719*cRnecNv{<{Nt)-FOn?3CL#qf^@3Ri*Ts zQ_orT%;z?Xz8_T8!f&40tor_8WpL=SwUc214F;;jAK8-0NuZ9SK^$cRzQkWT{g9Bx z@e=PNfm{i9=2g|@!Ut6wW(Vq7-#L+R0tY1YCBlV;eaTtKYV``-YSB{Fp|@-f>km(5 z9LJq}ruo7Kag^YB*thXh8FjWOPej@IGnRH5FHM2w^PL3V6{%3a?Hse?7KqQzOSdu! z67*~N{ej!JD24Xeg0H#oF)*`VpoMuGV9G#3rB(`C4Nef%!6OgN5irwC+Y*)&Q@%8G zLS(~~uU8QiQ3Xu-M#Tv38xT0)GM8@=nbD{)?9`Az_Y^HWB$ZKVy~vCfafX-~-Nk=l zW^~sUkr^Gz+mysrhjHbQ67hU_(_w*aQA5g){;iPm2v(uqPmlq8tyD~~V0fT`VZB5& z0tS*X<)A7JDSp-eigUTbA1B1KE!p0#)^Wv#M3|#6&wXQyj4*#YD)72>mf&G<@v|-B zX!%E5_?IL{S-&{}{;dGu*;tf_xaXX_XNMfyhs z{r5?^YQPa}Kr#yi=A>I+Izg}%01|2istE()R|zO``Au+%-R7_%s_8e$1q0%hogn*; zWOV^cX-qmEZrRUjMj$y8v(YvY5AR4S!fi1cvCQd#6t?eJm3mfBCj>SH@IzcMTpiu3 zNx1q1xHyKZ2_#=Sq?`L;goAK(0zk-cwU@Izv4xGC6KGx&`i35_epY#ZC|>>7*~W!> z3$klG<0KhS5Rhv2E=pmg=LUYX)~aF=$X19lkgXwNAbXFF)3va{Xv^YdH~>DgMZ~f9 z&kwXVtV2#%{=I`2w~4joi==++8&H25u!}aAiu#fP0C(1?Uu46I7?+ z)dVfXko|1Mkc8|#s+5H6IjjiT6D$(4Uq!HRB{-X1TMVBWh=9iR=?(|9IeWYK76b+7 z3rFI@GGb3!p+)SUS0tsqF=Ai5T}13(QPmi+HxCg@o!E}Y?BI2!{mTM_6P5SN5dHJp z#aBlod8iouS71em(X)e#Fhs+%0_J(b3+{msT0ZCLK*3Loj zdA@djb{mP!*V>_c6Gl7{o3FM*bh>J!5<1;!v-J+q*KVT~ysx#|p**_F4!y56+adZ| zGlfKVaKj|c5vp3O#D@@?6C-Kj4i0FF9b6v#z#ZH|CmBB>vr>`49UMo;enMnZJ2+4S z_7kdxa6fStinu&2g$+=D>lq>r_xKb75n65K!Z?U=c~VE>b4MK{Y7#I)Le2{^E>B>1 zgXDg`GMGZT0LJ7WXMtS9`kpWd`@lES2fiVdIPj{Nytz~C=VNv%AHx0oO*@r0l!xCC zhUIUPZ4GoZuS#dQs>n)bz>s{sogxZ*3n7U^W*tJZ`OdI|VHg%@i7+f7s;meNK`YXR zgsn&maUVWxN8mSWAmNT1>ye~@TQP=1uwf0#SJz;1%lpNXffa1V7VO^~)*QG~q|+!> z$EYO(^F$iCtNv_PpvYQAxT81)qyUG}Wvt1bz-kT9F(}AOK!k%B6uxwL#5WHFcELu0 zFbI1@5X=o%sjMKWba=$O(j(p{Am|aNiTTcG9$~!2c5MyRu-{TB)FFPA4)MFH7Nf&| z2t`+s?hrsrI0PZ890J;b4nf-yb_iO?9U}PF<6uea<|5_d7;SAr3eY1s1grUOpt=Sd z_6RG}fneTTB;10McDRMS0YzkzZZT1!Uzv~c4ufzkuky@gm%bz4A_!A1iINm>d?=juh_bIpOfUNs3Y}g)DH2oGXQ~<<$oNQ6{6_f?#s`5U&MrVw%r4j9 z2hJ`x?NWZg$0g&cq7u6+?1ebFaBQ4hh-AtOw-gC4q#6l(AuUwl!N!C+Iu?cpZzZKT z7&K;|91LVx6q>sS8+IT(Ccy{VK0XA|CJKWTaosi4LD6iyOSmcpcetwjA`KCo#sy~+ zipU4!f*w+eeTajxeLK8sEsEgq!^$FzLO7uxLLve@M1H9yw8WWpBoMG3By2+dXzto2 z2D4qH5*@PWOzlDD!ChkI{tsHq*EuikQZw5d!ro%ZZ3cIRLs^_SjxdyX*tX6>cImZ1 zrbSDk!E(Odu`ATK#7)OPj|EB_)=j&W6NVdfRW|4<6`3FS2`6GI?-o6wDnUmdPGQEI zvTxPd9rj`D2^DvX&Q($2$j*g%nD)EnKBA+-*f})4J-w8Cf4v;2s4^JUrWa-9I-VM}=B*9k_ z*75(6M9zDGRE>o4qTh8dVp;D89w^7h*@S2Yu4D4Zk5}k z{EsWxEVW1Vio`wWK`w||u+ukptj(Hk=ofG7QJn*LpmHgXaOZFqvR^+646$e_D)-_K zps&_M3{)-wqsm3ikUFs*?o^yxn){a;F)$#$A0j#Y-J~K26!5!s+hMcB1LC=a8CRG1 zLeNBB8VY4#K>TF$T2H!`?14KbWfSUIO9>WgYBAB&I-;pgZ6|a$^OTkBDf^ELJGKzTmT`KBoq{vBykTYui~I45FPVRI3GYE zmGx^y0q^u}pn*-m3;08CY3%-QVG-Soz@q_qVkM3P!_A!v5FB3h0NZx~zIjyhWv{*U zwr)lhw(VSCBJ&h`%WER=>4*dzqy|o^hRTWW)9(ZSw7L_nO7=dals6S#x1V+)a7u&b zY{;fwzWYVkh}G8#^qEZaCFKj47@?s!;-i=tSxDHUD)2)?(J_K6F9sIJm}?&pm*JuV z0Rv2mwH0shXdy}2Ki=3PawHFN-k2kKnE%2Y$-@tnoFjp)G3H1<_)lPC)Evp*_%<@! zJ{iIGo%B~=b$$(;u?`cpsO-o=RT}DutNtfE8~z>`WSvsfNm3*V&)ky_$fQV}Kj2Wu zHv|tO*ykS*>5MNP;7Jj<0UckfyLHV8^@j#E%1U_-uL_0 z?<0RKmzjCy>CZefJ2Q*_d}e-$xjI_D`@0PETG^n~9NBz*5#O;)1ORZg5FOw=|W_S*vjw}uXl=8d9vvh)~BrHWz#w%-R%J?JO0(12p z!`1JUE3OOLnl0YVe+BqI8K15DN`YZh#+on7DP!u(Abi>O$P}+SYEWIIQ@naF)07be zMON0KPm(gi|0HEJy-ZU^3)2T4v|xu~q>m0S6JY~c&YGer3CN*2BSRO>8LL+lNzNz? z)bxf{RTJsPou8_SR<!WC1CxJ))w{AU6ASEmRs!Np*muBH8YVd@u+7F zF%^}hiEYuNHAKAI6|a1w^EG7owx}uAM6)+M)g%dGgk~>1t(vM-v#Ali4SHg0VNtEnwKTkQ%Op3y<;lZqnqEe*D7Wn z@w}|HG?-*DmEd`&I5V1CPi!Pu*>db}#9{s**u>vjt)>3fN`Yb4Ki~tVq{l%@ zEnPo*fcA*=Z*aBor6hljH-|kKdL+vq&?8;`m<&J2^2bzdFHbRaO{cx^a&$|=;KWfF z%9QmF5CL%%Rs<18(H7Fhb+#0ess6%Nh8$wtObgby$>KUw$1JYDuIVC&X~uK`I>Z@{ zytvM^p_2)H*P_ZGL^r@&{Sx0RmMS)>suz8&vgRM$EeZ6U9 z`s@h5@doN}5Qa{%S-{u5a$ATU_yOx^3?9VvLFjsb_CYNxLKg|bKo1SV3}G|~UuYr+ z;i;PL(72{@kT}>>3BtG|Vq0uS;UJt@S?Pn-A>B%pw2sd3ep$;ZMxH(GQ6QN-VK*)f z=LvY47uwretji^x1S)EMQzH%ipcgZQ4;WY?h~tbfKcj-c!u;{()2)~gBd`6x%RqNB zimh}^0W&Q8!ZZsH3n>|FTZU9JE--b>xRCscVok(#m}ZR3=(xbtF|Lzwi(NFc!05zw z0W(A9HWi`SE%sxwicVEOWI}b=Dz*^X++r7GDS#zKiQPwKv)H{ZVisf~#paTXXvsv% z!=NR~AQP$B5TO!>xQpk;p}e+Yzueeupno!tsz>Khsw`MGz!R(KJgOX{CiAEn_!pT+ z&3GmLJPIec@VVCHW+hM0MSoYB+%1FbNTc~zMB$@hzXyCqlN%lC)L!h)@$fhPie~GQ z=P{DG@Q8dx6PGYw(ZqFhYunS1v6GuN@DKb=R&*|}@BegdLxK7zHq6&=;`86+q~|ug zd4+7E3E^1)%tFYW8&xrP(C}yEtUWUaJ=Iy9r8|mABn%&Zg?^s(4WPwF0F z>gWPchcQ`3-B?xes7ZzVBkQrN+tA5Rs;A`om};d*_(h~#6Zuo7*GF@jWVS%IVzIGq zCes{s>L<29rly%*ZaO;E4+L1fpV&;dRMTV*t?j7Wq^W3uYBtaG^3&HNm~&^NckdG| zT-n0@;spNadgL4>c1ITmiaE6voy+&wy@3o*i|MG*AaSPd6SmL8wc!44rMY~}RFeTqI4($n3tsWA0a}I5%1(8m}>_&LoHn5 zRNW+|97m8Y2=5%{#vzX4QZn+WUWztwKR7^8*Ccr04y6FbMilQ~>$m3#!c zNBip^Xr+5I3K6-zKd%(8-rl@)#f+Wk&@xug$ddwSSBflXTZv>aj&KkR4(`g4t!DvN2+5JS)l_ zE1uS+ZDj16SWzld5^Y6Ys1;2eCw{~08Zu3(W@~-fw96Ov43F6~iOO*PA*k0F4 z)l8gZL;B%qE%_E384cSvqST`kjEKm6>N8?bM(*7xcMZ|HC&gZBq#CiyEm;<@*waH( zCyK3ku0I+!N*vC}tq1K{)gDVc)Z=OK6vvlrM049o`MOao1H}(K<>5!Lv_G*C&wv^( zEUS})TF&I{4C#F+0uP!!Ra~m`u>Fu>@j+4SubagdE5qVni^kVL)g;lzc~B=woWn2O zNQXtZP)icKsCy$T4@DnZE1~31|EPneP8M@e*JDX{@>@5e&3>`9Zaa&F@UWTXVIRYT zeu9*O+Gjhfqefrzsj;}p2#O8V_%(`<`Hm7S{dUV+L2(9`bYUaBs+v{ON_UAR4FZ5{ zAD^-GeXq3-W&kLnLO!z*oqI++qC3NOr=d%38co-wgJY9J1=Gc^I9=sUj7xxA^U&Oh zb!(!{?Z2&z?wcXrsjI;@p!zx}!nc)Yh>xMYEt?AH-B&B8sJm&sQEY%7n<;+8RYu)r ziEY%i3X<1mi4AquSp5s|9UlF&kSOJ$BJYl-2@#!n7Ob~2T0c7`qFQsrPP)PIaQyr_ zEZSCxqZL|y1ny(<&lNWSqJnv%Ud@q4?ERwsEcD?#u{H;nF@OD>*ikoIMGk&*mY31j zs#~BchQx`RjlOsutXb6_veqHGwQN(IutL+1=8F^6O^KU4wLol}ycgP|AtQ(7>Grdb zV1BJoQBfr;w+CG-6X9}wJpLTrgvKs=(ugh{f21j6c=uDbW^W>URMeQT1Q^$mo5G#{ zWuoEvqA#m7osQ9x46lE*bd@6Ff@EKO*F_b zRCtchh$))}FN!zS=rr~&i%}J3@Hm8Oy|SkoviF*14)t6kW^udMh@&|^2uMeXK4x4R z7;OEiMy3*v;Bu@h?D9oTbajrm zif$*{AROy(EP^CB+1fx>b5Iq$=moA{PP2$7+ zXPePin?$Sb0*h7|63()^`gSvuGVK5Kp%j#Nz+_|;HiAkK@DASst6FNjTf_x0m9T9U z+v)f%j5#aF{$`MII%L=;`eSzf<~Gr;>70DSb3*e5ztxA&7IH3@iCHaYk9gL^f;9lG-p3$vkS|Uw8{sbkG?TmgcbMSs~DgW9Q^yhwYl5QW{gW`Of4?vD_ zgso%!uHHe>80~GUu1K;GIw-E;_iZ6-HjLR$q?En7h3xLj+{K__*hLL`RIQ5|ABHae zwFSL*Se&f;jcLh53PS8(Y#mE%>|{dK6%b33iF^6WThMn$#NPaGQAAIoL|?lFqC+>{ z5XbSlf~~+!c=}ETuBAuCWjYI6Ob8`I%Z#_ha=u_I9kW`zBktw9ZKbPZP>2`3n1TE$ zN=tLJ?U2|xBewkTdS}~(D{G`PAzc={$|T55ZHD(CXZ5m#5mU%J1}XNVY%wd?1;@mK zXe&_lLad&A>nZV)?le=Ub;|&y zhy|y?u-=E_R^8_;B$3a5J`|tRea{vX9h^8mw;DQkS{%!NF3ZRLkr?9tlx+qI=jonq zt?o}Fo6;DR5ZV0lvDmu;*+^72Gd_W&yZ$!D&WUX5G9`*^Le0;JWxOt*sYGP4_uN^r zrOw0_liWEUInP1v9NoV1XRy53Ek^t4pFv`%YEMMiZg}mHx(C_z)Qqu->9_jtA5$+aWBk+xdnl{~}O4Nz)`!=*~k3TJotx`k|(~H!SN9v+}Uy5&5 z-^rjReB`07Ux{YjKBin*Z{v4vLmz%6Hq(GzK0LZ1YVkFsGRNbB?f4p`!(u~34Z3f{ zp}I>NsJ5u@kISo}ecy=PFh-KGXMHOM`Kwe7xKOj?KPOrk)Pq`n2aBf3+Zk&lc)$2g z9HP^)#Wd<-yj`xq#*7!g7vX-q?UCt1fY07eLoXC!8b8M3$9VjB5s z|FJiU)(w=_@>`}Ajr+H_nm@H2W&JL8seKan`XM~LB?Q4IQ3#Gu1V?TeLFnQChg6)F^YJX;=XtbxbZ7dRCHbJ5pO!T z>AL92jQwf~B1o@1E1Fw%ati;^EAmGR;LR8QXo1)dzmDmPAHU)W!!`V{<3BC;=W#wb7e7wn!sGaH2oIzC;V~2w*y4zML># zPM9ty43`sTrxQk}6DFq<2B#C|rW3}d6Q0TmKhp^>~uotbV4Natq7tc@^+Hw=n7U8(NSxxD54`Wogq3RFNlba$m;>3BeJ|ebhHdB zis-1Z7*SHsh?2(OUqnewsFL8%d+;x!BQljDI(i$IVI7r_H1#~z;3xQzfy-*)M{oS- zjvqv4e*BB*Y&HG`Iu3wClK#D2)VNqO=harCr0nu+mEEZzu20`=gbd^qQ_S z)^a#`hnbc9S*H#=@CIQ+B}|MHmb2<+qAAHzHShpbJxR(=y0!)O_qS_TfG%*-WZjV1 zoeYvY!Fw)C@^Wm)q^D7U^qas`QPnF54GLJTp*gI=m0RbYD^xAw#J}sqKI#{XN5-Nv(EP zL09`#vgq_m^$tWR{c-Ovy)i3Cg-j zfNkMwdm8GTE-lv;v3&!Rg?z?NBDf~ECOEVxL+X&H?6pv~SztNs5J$2)hQmQ|$1TD>y?ul+*o^7s=THPr%(v`-5*>I=SN5`O`R-dhiLjH6h zLnazsSMs!4iaR5_?3A|YbS!7uf{p z>;@|MXe(RCG>xV*Q?b~On1*pIHgR8Bq_1r`(r3DF*uDr)Uobp)P$|HTP&6f`7wzGW^em2YeY*uQhmZkR#ha|nVs|vdGexXVC zwo=Wi_6=6GAF!&ux1_2ejS0l^MkR`_4*I#3R5=N762sQDmip_yWigO&3~jOKnni`< zIP9WlC)BR{{MGLpHLoZrgS<&1kV}`epVv#fs`I-Q$Et$n&8yZBJ!z0y=u((+B7V9n zh)35Al3m9_ku-y`O!=_B9D$CTYn$eFoY^U7Bl=bBS-Q&iL{;cF2!+DK36R|VCATh%sUpcVlgb#V+8Ai$ykF9zlU=0VTs}J4L&`>uu2N^6 zp6!G%SP(*E21&U>fl@=QYP3D64(eMh-1Ev^W4 z>@GR$D6)}10tr~~`dxHI^ALUa)P(6f!Z@B$;CD|?^^or8#$Yza=_W7@v5yt<<75uT zDK(UXxnDJ@gnqh5Do8GeDm1Ug_)IjqTh+>_?Y&ZU-Atu9!_737n+2Gg4ybESsR2W| znF<@wYFLshM&Alc?R$Zp@1mM%T_ovH&t6h(^i?m(s(XzkjBpr|ISeT^l*8A1OFfg1 zW9AP34%b2)8^q_JtA;Nsqal^*RMDMOnll_8V>vuaIV|iWIT#M*4U2$Q!=YTU;}$p! z4ecv6=5%+w%9uD|=C2UCP$U_IzZB{;2FInLF~w3VT?Pw__h?{y<7%VBh0@)KOm*^J zMV-1!!x+-7R5^e|L%Lk?A4+<9OnXBOyiz~Lv1Q|B+zNc(`E&-lai8?Ft}9C(e&@?L zq&=oX`uPW6MW=d5_0Y}xrH;D6YzIU(17D@iI8dpfvN`&=YUk+={d>?iv~)=_@y%a?+=vj(XC>d zQ&(Ir)4yD)q4XboSgM0g43Z4VyPyiSn`pTUjTzXk8mcl#s-X)h%^8k%C>-&JiK5#h zGCOGhsHFyl9z0m8&9HelWfQ2-uqju-waOK;*<*<0;V;WnHq3TaaU3FixBobYH zA@ll$QWN2|Yx18mo0%wQsC1X^FQpN~;eQwoEAPRkOgJ<#EVZR90Wu9sa>d14V5z55 zx~OZpN8^ZGGxXRXDNksoR8aa)x}-MA9ibF;3^+4U{Wl)2ac9|l|9rfRnueE9Ix7$g zGkp6!$~eIHmbtmxBQW9Oa{>CdD$!(^Wv2`+dH+AnlTnP^MBYPEI88EA#zcUgkZ$ON}+SS^ns zqbnu&=pHoqQK_eJROtxk*&f|bN`ahWL(?&%rDZy%Db1#$dp#oCLQLjDCmxe}^2r&m zf#{3om@<)hoRp!^~y{6bD*AQJB0V8_1$EC(;N)(iLir0Egz7qz1ggauw zFI*)x9_*#9Qps4qoyF1}T^lbAXH*+TfJ!DvB?8+$S+`We%wV>29A>y$Xu}gyv5tX> zl9=4P?ltN?F(sz;9@&IgQ>Qs==ZR9!I63R8iPGb`nJk6aU2>;0C5-vWQ_6c$>cd~> zqhkZ5>gbJ0Qvc)^p*dBW=_yd!Y6hAPA}e3R?`Lf&kLOYtyXZx&Z7Jn4^92Tu!HUn; zTF}-Jch+OZaT$~)lrsCl(^9|8IH3YvT{zo<#!QyR=#DeEXrBHaQxd_B`b?1y>ONzt zw0U|l<$-~wdHVLL(n$ViFd>{9v=ODox?kB|$ar(@HJTe-Q)=jRwqvHbm9FyMh{?*n z2JL4{(gQlCeU#yqEhSN?LkM(zMPei=8n8=oWvd^M&cs zN!<%98DuY^5~<|9#41QK=>1wQJrl=m=gg3{XFQ1&nvNApe#xq(pSqv9Lw;)vtMlZo z@lH&^HvHI(!8YJWGEUby{Fs2l`Z)Y3!}b!ukGJvTP5ju1!CryKgvh&B++8{8YC7qr zoODr6z{?3}IRPu5P*N8toYDgl4T7C`Cc(Z2lR&VOSvJ8=Mt*{wL@|P$xH!gM0wSU( za52BItg?;1wR?Du)LVBRHz30JWG{Vdca|xEIxL=9BmV2RcJKyETFPxhKh2d^RrwQl zePb_LI8U;-`UC&*7d*TZN*ZHr+>IYZ8&_~uCj8k;ejWG2US^+43<688>?LQZ(c{la z?u<_`xXcs$lDnh|zOq+VFhJmQ)cGa4ebA;FJR;|)aY^JHHK{7WI3Gu;$MdHoLGNhJ zGY1=m@)t_ys`BQ2Xw^=CaaSYmh6roa|0Jv?Xy^+tKAc=3)eu_aJ_#eO(RVAP1r564 z0+M(#Rbj*>UH5^WpIP)sX1vN%&n&W_{;Q;g!Z4<1ZnxBx9JtLGqLeb7qB-yTOVVT3 zp))T^^MuI?80u8R-zOUgk@c5Fshz~M@VE45gnoTV`hnBUP>T1_{aDpsmYx@$Q;HD~ z*N&dnzWTB>mY=Z?m44v=SYRO0wyjd1`U=XrQ7HGJYk@$Qj3;roM0hMOXqD;N$Kr9m z`LsVf^vWyJyrk;;6r!-0@yXEPnjW1HQ6dj0)vdO$4FFOmSk8!M52amQYBvaiRre}4(Vax-%J6wPwK<}v=6oZ%zsYR z5=)Rl(K1R(7)3f7x(hPRTKmzZ^Zs5!?fr^v0^fc38vALka&lH(Asb^Q4%{lLFYuQx zQtQx#-O>tPXvy?~O{b2cM?HmXwx6bQcPTA#=ftVIhB~|^b?1bxN*w~O8=^UX2D%Ep znNrL;2fEoOHB`06oHIC$6lX_@GczVm&^}&?3l;5`+Ht~Y1_=@P6HEcYIvN!nlp3iT zYOun0)T8-<gqXqnqQDPPn9L zo&>!j=az$atJ)Jne$h1Lfsi(DNv%~au>u+?a+GHc467h35RwVidT#cMe98e5;+sT5 zJdU)oeak0h8BoNXfrGW_Z%aiyU-tk#rlGW#^KYho;^=hEJE=iv%b)%NPS76!r1EG$ zOwG;|5Si-_pp}35-P)E7$)Q1^XN=~DZ}`WknrkF8DB68l$+!|oW^fcJmP|(I!cG5h zjvq%Q!zf``RQs?JPI3V|AE2lTVktpB`=YjbqCW!q90hF}3v^60R^mc&#=GICr3J!f zR*>PrGkt?nimihNC{*&1G%`-r_a8}%g*O!_8oFRQ(M))sDJ7bH^8hOPuxx;;IaU=D zwdMWT3>hJi_d$;Tiio;9IyrZLLuQ;Y9_QWJQeV4^lC)eNdxgOCr3W!mp&J z9FMpems+3|UrCL)nOLm#xm4tTa9USkIz}X$8&*VZMG<9C1%8l&QWyA}p$%V4=egAs zwg5Q`{XK=Z+s#=?#tM3cXl?%_-!|K3GAQ@CF+paBiL_qhi3W4ZYmD)FBW;vA(OO8&Rho&Vt= zGV~0z$@~}#iCW+H7$Y%ZKtQZ-&%Y%d*8vspJe;3`D-|1Qhoo<2S3wvv_6UJhQZ+!d^dlW#xa;LEZ`^s zohh^_lzl_WPKMKr0CqPjs{c$@Ofb6^Y%AxVo5cArSie|OF6} zC>t`PI2OCAioaRd5Kq3csSyVs0%0_=4AT+Y!xlqT#KRU=^M3>9;|ZwjV7nPm>|l8> zVh-X*y~R`t?Xj&KsdmKS=0^iDAU2gzv(DEWUP36OtO2W%z#+`Y@$f z?sqA2FO3F-AOVQkoxZ7A{#S*eY$td|L(<^kOevXL3`JA#^bb?DhOD5g1y8+H+j|Eq zkkJ9E@EOc}I&#(ZUlc^8B~3^O=4nhR!7QSi_53ZPTdy1sn+hJz_V*E9(17qFXdCv( z=x>v_Y3SPgOe?c*ixGP)UQnm^9?V8#=B;kR%=lU5(-}Wo5;41d=)nA$_0jon7mbRO zE!>mq|3i46WepO*g(a^EX-b(w721;LAC>-Ytg4W{fqyn9e5urtEP?UT7iDW6C2lIw&6^YGpaFU7qw>er$>1 zxRw!)31w=js?R9J%-}AYr?$i1yLJ7iTu&UsS7q1tuZ3`jnjY1sElDdUIl z+rbZGR)zXF{QZ)J}WqCh9?z zqKTh6_;+!98yQ-5H5&s>2FXTHkRYL`hq!zE*?ftdvBxHvBonc#`g9@Oq<%g99++?( z>f$%@o+HTcwbYTBXE?)j)4UW->gr$2Plc}$4=#T=W^Q?1mg&Xw|RNi(@9IRl^WiAd%#B;t`bk zP@uPD2I3EZvpAVbI&qOH=({> ze^wHI5VR1_Kj(!(h+K&h$no;BK;y{NpcfP*FpMq$&SWOoF5(D-jDj)w3T>F+ugeML z7TtMQ%3E4r*1?L>bn$7jpHvL)TgKoc2Nf`SAxy76Xs@iX<8^Z98CgN(1m zw;}Y0KaxpRPQ~jxk0OIB(1P#&mNuR00(21l%IQ>tpnp9-^sV^m)E!AQ8yZXjO`*P} z{@NTr26~Pcp(|@Z(5GeoxxDli3D7Zz$?6dZ;!xq`y@79$42qfSbpbJBk7JhdbgUPU z6e_l^Lk~^&H{^v)STnJWCrhS6)gf8hV@njX7&Vhfz4!_k&%288;Dz&}7)$Ip^hQ_% z#KYd71*^0C7ZK~>UO(Q8H9cZH#{eXO@w_1mgl|p=n%43RZwlr3HEs(qt$ioaWFr zfp8ie{XdA&_ac8AP8c3vDqZ49B{!xbB7+%pJa!sRwINpbxMzHn9oyS6VkWZ-xeKT=`Tik?ScQB_WcF;&mnO6DmFEAY3EjJ%t_ub zZBH+)^1sM)Z^w^O!y^!?7DRW>t3tO>qaS%@{X-bE9Q?9#w*3ljxBtTSrR~?)T*JjYEW|d*w0)2 zdZAnm+6M!Kwv{agS7wl*L)-nsg(d2?^2V@D(-vC@8m`H*Mk*k@q}Etjeh)_T2J(Rr zW1Avl>n|8LeKI)oU=AjXtx%WN{gd28YAtvFN=9 zv&-TM74Pz|=J-$EhHKG+Y0Qg+IdZ3OF?@mh8_=QB^i+oM@@V8?!Y?&nX67#@Abe&t zENc6z-!2~<9I9M7kxf}k20&?Y> za1B?;f&b(le?e{qSWxkim08VxR-hsV8uCoh%mw`U-DBffAlbV_MktP|K@eH`Jn&)q?&J5LBl#+ zYQptI1&91b{QZ|heyfQ4C@;Z)$-i@h>t9b>LrQENp{+VL?wQ0W^0^K?AcJJXsa*D+PC1 zN50?#ODj7L`;S%S`k<9N{r$Q|R#s*`@;`2XeXPSzDd^ma#Wia8!eo#<5dQ+y-SM_H z_~`eg7A@iS`Pq(KWk;;KEj2>;T=_Bo$n@A%{$u_X!bAlF8hgVJ8)1uf2x&?o{zdHh zVKn=F|HwuYVpZWXvfB~glOw-G%zX*=$ULXCMh!{=eX<{pG?jP8&S6_z@u!FGJmLSH z)2&pB-=RBW+nw^y5Y{Qh$p5LoJIeaNU&60^hi-~xfRKNJ3Y)wsmc@285a^n&?1^O< zLx&#hHJ zuktS4po$OE)K?TC?{;N6e24B(t#i@;1TWmh^o3PeM}d_0wl;W|9>vH}S}Fp2N8T+u z{B!?wPH3kzVZ_jlDaB%d>l(Lz>0hsEjitb#mN&;bZUuFlul)hYiy0(}1|DNdi3Wzh zOYX>0HP_&lH_5sw?u^)MlkKW#%)fSJ)WgCc-XY72ku=)2A?T^Vr|e;$dPrEoP^)pL zPILmilx=ave?!>B6cDx#{k0yB>-^wvChTIWFz-pwmVOE`3W)4kJ*sKXZ+aJzJ*%4L zccHl-56u@o)ikHw<2|dI_6?Cj(-jR6#_`C{eoHhAaiAM9n&T_ZRLwOG)Fnz%p=($D zjW{9wJ;iGj3#reP65~uqpZo&8u4!E)w2p3g{a-*i+i=y?z+LEMn~64|Q*`TVzxtc2 zT4TZ+Deflk(q&W(mIcN^cjQ&$0(cj_|Wp>6;6-{iSRFyL?|G>4DZ zF~Y^clG#qcnD9G@*`g~lTqz=)#*`8fifF}Oevc5<8lMUiUWjge=!So+sv$7NW=Iq`0?DL@&foNp;5c}358`3;;EZY>)&t&c%bilNF`IQ2Jv^Ei{IUWb zQ;lPzz)29vRWmOSSCP;&35`81%@l5^WlN8}CYVgNeQMLcw_R2uw)y>tctLI z7)aB+r-hA^eDeF@^?B~4ncY&}k83@DQ|=^<$tpH^JG5neKH$o z-sLMXM7~eB{`;C2wsqg9TY4)4-l!M0f6Io&Ecpo6u?S_wUt1q&-+^o}jq|>iOd~YW z;Rtm$EUVZ8=^qgY*{oe0Um|@l(b%8l&AnqUF8+5izn~l)E}xqg8vo_uejPla+r@ zt*Ey#MX>|ln^e4XSAD3_J%JZE{!1BJcFoIbXzH4I??Y(<$-Ehs4Ev5CCLhE>(_>dX z+A9#=%S^TbrXCM_Br(7m$K&!PKvg8*gpTzNH0SshGPKNBQ#CZf$g1@^baz%1gST3B`dt^jC49HOj}oQmQR!jG9+nl8GAk z3p7H*sx7I4hTI2f>9MLya!{{gC@U-4n}LS(3t0aP*te=JN#`Fuu6Xf#lG5XK_ zfkC$nQCxjVV}2@#DqaL|YYFCiMpfZV#f?l=<`;9U47nAJ?wvEAko{Auqh5f9QP4MhBj?tbP67fR1 z9rH}Y4LdD;zFP`L6g#?n5H@1}r;C~+!_dG5{+ikee^LX>@+ISUf9T#lGz73fzFN!JSecu@$4f_A!vh4(DNtgy4GB!50%@HQ_!_W z2Rg#?p3(&8&wY}PhslB;YO?ege%K6X+|j%{63gl*xLRl9dsgEWGYy zLo4ooDL;-n>WvGGid_|2Ixg@XC#0TKC?@L_yT%7>!ktVhrWp3ZcApT?t6F1%nTQeI zB+i5#I#p!~Sb@sBpZBX$6S9H0<4M&J-VW0eJ9xB#DrE?NAweU(H8LbfmW?_#8qz3L3q+b)> zn9K?`N8Ar(-O$%l0_{-7)KCpoM+D`28h9R1KIacKR<%6r4?H29kI@oeg2!0fnHc

>$r4$V{wh4z8otM6*5l?-th+1RI0q#*_o0 zsWC0Or8lNIw=~9N!XXWV#&wuM8U_nBk5tgUoYeH?IOIkb0e@nBaYw*MlZw|=z^`dy zS+qj!4rJ9ZoGfkNityJhO$7Y?7CRkunjqDOz@Kh;TEP#5Gw7E8bqKU`PKbzL2&7_Y zh7P``4r$}x&4=_ETt|nLFQdZiO?^w5Jgaz*h~!D$LZA=78vaFwz@qG*Q(WL9^r4jX zXHV6bR#^vzYBicVj1UYJ&@AV&%4mPTlK%Yf%8QCC37HI``w|7iVX5WD3cOM?;dd4& zTl}t9!DoK=9Fj01B{(GiK2qLyj|p=Q#_EeEE-wCCUJ1#O&=|TLl&AxSe^F(}SM`#+ zrb4{8ia_(Dr@F5pEqU~Qn6O!+3mXX$6Z2k&>s0gJy0o~5K(5#(n#9ff2MA5gyTn7b z>wedmw=usg8(>`L>TxSqU-Us!6#mdJt{yVhc~-Y-(8A^m=6%}}wL9hvSa7YRB3idL zJ02}KhV#5N{s01idEV-O=<~b}4YUNZ%)%EeQBf-+R~1(i=c(j5Joh8ZGXC^F8*Q;wj=Lj)!aOdWeT=>z98}PXIRI;%iq{7Q44F z1{rfpwKdGR4zo(_v#&4o!n9jg-Q6Phy-AQ8T`;=9dgTsAsd>doBLsY9abrhoRI>kr zAVaU0#)V$)Pfaiq|Dsa< zLp{qtfG zVjYv@CVHv>z8$Bkfu|c7UfMuW42|jt-=w*CZ9JtpP2ptpm+8)=r-K+9pOGgz^ zOy=O+tG)rjsaNgzm)-)}|D~A&nD9ua_{MdZL+Vv~XdXpKBE6Zf?ads>j?S&lV!d&@ z)veDt?n+gE!DIg>sm^7EGBR~Q6;xvsH*Ak@3mS$}z&`$vQ; zXzu@de%}*}IP|Gh24z|qobn=r6HEr~^w!f|9WVQ#gKZsNoazQn`!0jED7Sh#_W9v! zG)nuKIMsc6h`9ca=6*sjf$(@eT^08^H<-(_(hS$%Ox)r*55+oRAnT)gS^s<2YIh5p zP27!@QrVI2C@;v}{{~~Lo73HQBLZ#MNAy9Cx8#9dKpz@`25ev5LV0_z<3~Xr4`FF; zd<XsHmt)R z^xG_|DEOihp>nwzt8f+9{^YPH_-2U3f2(_E0AZ06Uide4lj3~*e}88ugBF;zvRjS> z`AtAr88yN&SCIFEB1GfQ?!QsrQI6U2Zdjx1vo9yToskZLi1DbnJRkPZv1mol)lEW; zM;kY#F6fE!ETP%wZAXdx7og25C{UraNkhVm|IG z{u&3~!cvDXUIzl+!a}EKI@Y5jGadWHEw{}-0kn5xfDTev%=#3%-|d>%5+(20&>Rg}G+pc%8f09j*cLm^3vyoosNWSd zm`eg8U|v0Tsbi2JkA$$)tMC5YF+d&%i|G!ncb7R{7DwJ;ve!WAJZUDUIP4B};x&c< zRBE@3{f`S)!!4b$!V(n=nz@47FL^#q%)6uUKe>diONcuEvliE>{^xSGLy*Po9Gv@~ ztq`30pMpDj|Fiav#{Zb`Nc>NTaUJH68qj=HT5%c4!08>4coR!ed(q4_7w_B&ZO(UG z7DfNN=1vIl5h;I{_S&K}wLALwh_&yUe|XH+gFJLP4v1otyXIae#|;9#j_7+=zbD|@ z9Z!z~#ltdWumlWb=|;ynv*qW8O^$Q&Alyl}`yt`qC-p8qX;ALU8_4!s`SLRUORZOp zZy+dE$tim`JGuz+WKfCd_oSCg9IfT)uvq<`G#Q;LaXhUB()p*2Tvm`OTc5)cl@I)j z>Pe|fPh2m(iFtSs!7?qEuwZl}$+c^%G=0hAz^Y40S{#}jc z8*@!FU_oYe+YKYHc=N7@!n^q93jgd52R@MNkLK@m3^0tKKe#mU9@BRiL51CpW9+Gb za=RU6LT!S@<9;PI7@yFgQr_6(=qLzH7?{xoODgO+H>}nm?s*slHWB@H2PidW5U>Oc z^3wf|ujRhDr>fGE6BfNdiP{?fqI!fk1K@y-4jgctl81nn`si_scL8E!aTJ!Q_|fu1 zE`Qtv(f7^&IXC_Z2#7y)v3)iVm`Qc&5Q@+9q4$f8ca|ljV^P_uu)y%r5QB4y@ zsZ%zta|x-k>vc8{r@Ry2DWP@B+g!YJ9ldrOHopwyYFVK>$gNIM!MHl`Up&54GHeOY~|9 zCC1bemVmJxf5Gu(sIkhr-lnO!bQhI`K9|9gKL6G*R;>0 z%u9~v<>z6A>e}0ZV!&aY%Z{5u8mfH7u|>`RP4t<-R$N{w_gU_40BEbCQ|4cFydlUF zK_xpqQsevrYuiHUtDuE(YDu3q*`;rgd4@#}Rp>7r^H@puzz0H8f{#;Z@M`o~xVUR5$+JUWUC#nBms? zC8SGSQ0mNOz!Ft(sLmg%%g8Uy4-;?P*Mzj+2*V~W<1(&uhcsovpN=mDvEl;;&RvGz z0{~84#w{#D?OjBd?`vF!38Qo!X;QcMwsADGJkWcJaLf;7nRyEI#~sH8vGW7-*;^kz zD6cR;3kq-kO>6Y#J;z0{Kklm8rp|$SuzmL(+2ZgA=8j>I8$#n4UVNaBSK+us?--z5 zm}7t?>JTW&j~wL$c_kSYXv5;N2cMQYGv#HlLbc%~pjbtQmI%)E@_JB*%E(^&QdmM4 zjq4wv03T(NXz!%l4=4=mgJnwK!PoPnioGp~y<(+<_Tpz*_p8x>H za{&CBay4fhIuMX1kzWzid_jWE)$WOhEW!2wb`&Sr>M30$XS^W1j6RZ`E#;1oB#|_} zXI{tZdz^B61+$tX%4rZp$K^!cb|B~S?_Z6%bhT@5#wA)D;Jk{T9sl4-XM1@zq)3_k zNYCVCPIwxV=aPP0cx8FT7tH_epOX+h3wzI!k!6p&G|iM$UI zrOfWqGdq>j-o}`nT+?|*kS{_w9kU;BfL|E1B^Dolp^W_Y7=BmFZ6@r7Dko|?6>>TD zg1XLE*{dS@p;1&Fy~HAX=VoXrh@Mm2EOmphmN{nh|G01YKwz@5RFe46$lL2Q8kuT4L@ zT2y#sU>!!$&}F9@i>Immn+=_tsCwKhnfq6Bg-I-M9`jNY^t3rc?Fvcnq~u^|LP4`Bc4Al=IDU;=@Pg z5!lH`;vR#vC~aCgPn8p^Jb~&p{KhzmyI%(amY~XW&pQ{3O3d?4n<$1nfetoaZ~R&D zk{gF69^b~#h-(j7oFxy7YhOc`p}c534uK`=z`7)eRbb)zYRavboTml3^Ai=-=uFfS z#4y*xzz`jq-@y`<04nWBHB5aGa|jMvYn<+r!Wo2^iJGP2I(2?mud{Q8AimGR`TTA& z1gCm76pzbg1>QB8`UILX#;Lgk*32I0B+s}fO24koHbRib9^ITP`Q4ngg&^Ze4?2_N zd?=SdsnQQqo1Q@NJ)HgJO|Zs2=?Pg6idBKSMl6_)7^?TG^9}hZXo=Xaug+h}sO789 zT4=??oXY6TtIlxw3~WV0iw}lFr8TNPrA45dwS@9_ogq8ynwTc9IdjDaPoSf(IiHsw zLF_b>{POG0blFb;x-58?dAbkljV&=;Q2&X7_Q{6k4G#`#1;5Z6Haa^k7!hfFs5y{2q(= zN?+$&@~d8ug>huvyd%?X266RGGYT}4eA(YQMt&0#q#E$j8_t39SXfMF6K^76fU}jh zy>7stHX3l6g@?p}K${L!O`JXxyG+oS_!7c}iHRdzr$&<5$NZ%SBVFOw--P;(hw60OH}o6IjrFo z**Ebv?>K*!yNSRpkjYC(A}H|$ej6pP%1Q|`ZiFh1SI3ULnkx(^eRo}HDQ6PYCi*uB z*Ae|w65hq$UHFgza?P6x0g2`bBhbphPWa&RAXG9KQ{sAO!r#gv*_nZc{X>l>Qr2OP zvEIw8nvjp`*Vn@b25gK`!`;fmzpaR_PIAVh&DnS}?l#CZ+^zhbh;H88)Lv3=rLdu_ zF;4f+&g3E4O(ei3n>ZNv$u+98(5OvQs-fSroWGk`opOJQvz%#YtTEMjM)vgq+CaTm zw%_TOWf>OJfQ1{Pri-W6Gk}==C?`q|HiW2H<4PUZ$5#z0cdQK(0HCUUO5BIej|I66 zsHEvZu(DaeO(`BleB^9jBL*~8@fd&Ybb&(JY$^pyR4i!J3{}nPTeulM8b6y#h@0s7 zKwPK#*@H8kHc6b!!MV0ifZ){64))Re*?~S9KWoA$@v~vZbuPX6p(5tSeH@j}4r!P2 zwOz78o^)RKYt|+APCeUa&MyAqZXZ13SCYV`tE#6w$p>o(87%g0CfTYdd{6$4K-nJ^ z``0KWSoPcWzQ#!P{%;Lo&6UIYkG4P`;p`Ae8B61lRvPySNs|G-!;rZ4?2!)&b(G0p zIfH!AhQ&@V8~2*}vuz1AeJK|f<*8h!)kkcKlTLVf^R&V3ONp^MkWJ;$!A{kyD@O~Q zqXcDZfpfkfw)Qn&+C1-uhw%qrRvTb^-z;owKpFz1vBJj05dex8Smzum8078t**B zNuAGQsPx0Thzj^)tX+j|Xyh6-&VEPenW$$8u2cO_ug%VTKEi1R&E3z>5SqH59Uh8M z;;V5#ka<-g?7Oo`-J|bZKD4VKqxt()?kkov=iU$3QSN!tAoF|YAENLqf%mveT6H%Q zxQrVzXp3@ohqIrL5Kq9o%;!GTgE{v&kBh=91k89oH{T5b?MbX(j?L#Pm(v@RAKs&^ z_h(RGY(57|RPnm>Z7Kc)-(_+$^vywMo;;oi&*cnhGHNU+QGwC%LpT{_QrGveYi!s{ zxxymN04*RGP1I{16LB!2r%X5g;EWK2ds+!a za9IhQ*U^`wj+N6-?2a(j4JLLykRu!4zjYmQ4(D@M%hCB9xMl2!!MH+B*|@?Ib!c3? zulHx)Wm8T#w+0!j0BZfS^Pt?&Pe11ML5YeOO*n}ILL91m$~i!837Y6XwU%-DDMD#I?i`!QW|pw)Y;A6?c*r0Rt~Jc7iYSjM--K%D7JHd(ZiuAV(8|F84}xtkVPMt8yDyOf@_j z-Fbl1L7wfq{gF}uJ-zJJs_67XrypAX5Zggl1MtL0&IMXoJ3K~WhY$TL8teo|AN^9B(hde?FG+70*%DT1&x zM|oz&!eR0XSUmp&>kDXJ?uPCnDvzpGP}*pr=!JyW3;qv#?-@|V(LD~ki7LCX~MolJy4S1s;VeoCK?RON4SMh#-JnsR|>!`Rb4RGnH;i#y& zDM^WGrKRQNN#jb>l2a4XOVScc=*EQM1`*s1neM+w|NKh zA zsX^0b4OV;2o-v`yB;uc@jFv)!c~z$F_Ej2~1e}i_(0{l+ zevlbQm?a#~G##K%46Lq~+bR=5nu#g~rG((Su(kv%gS-O2Zi?plt?KCY6uts8a*?^S z5R7_-C|N=&nj50z3J>5f4NAIb`2qbJq6}>E5CK$|&(i5v>kYN`=|zHueXF%4}0>{vN~w_@5@af9^r@i(ctG ziu|H?oQ@{H=ml$I$S-;i(^&G0UP4n$e$g8zO2{vII=GblqGut-kze$zM%e=LlkUkb zC%@>=~7#Lq&EMScguJD~+JwT1E$QtliZ@rRp!=ysvdNT^Uw zL?}6exPgWjdc$|9TtQ%+j*U-{#iP^hYulpdq7=C^aSy)mb83O}q?&OWgswy>U7M17 zuW+Jp93>3#y$3xQt;EYOxoCO5DcZBuo?q}HDB*ptzVBZ?RWTq&nIjxmPQ)mygg&Q8 z2WQBi|ByfLlRqDjKj+Dx|B*i*lRuZppDX0gC*;p(_)nQ>5P1ed*!)<_9xaZOQt~z3 zc`d^Ud=2<5a~t&HPYXJS7_ec&7-;>L_*Q6m2j!lS=LtSl1N}vXOdukAg=Kr;A4)=W z(_Df4LJ9kdzQFg(VEEhk&rJTZiHVd{&g6DYt4yTZnaKZC=XqYZRkTN*8;M`YN>U=H z?{DL!G>=oBZX~v9M#m5E6v()LDPQT;1-@wa)tgPxgn}b-KyWiBXXF>wcpdM7XknSD zb;Lp_vYUcE)a@yT4+kdn)8h`wKWGgFx@$N&dx>J@8#8{8wej6k+h2*^^Z zvy>Ksh~H``?yW@nRH#j3GK+dHk3f@#m&tg?y^<`gP%9Dbcj28D-a-XB)Kf{6045V=$N{1XJ zT@Wpt2^$1tOuX1znIgTamaFuOwr0vBeH47e7ot(Y0dhi^;A-k4=NU|nAb#2m_35j0 z@wujU=#=L6zDhsoYqcB@a;+Kab&pajLo7WV{56NG_0d7Z(nk5XpE64D@%0Ag&%{wa zK$#&0tK}*c6dJn-ea)&Eot|1URfY{vf?BA0YQ+TO?M-L=A%;4_yr11aun^cG*DkO_ zR8gtmH^E+B*xxJ5yBWSArec89(}+MZlXk^+sDUO!-Ao(h6eyd7;poEx#UzacZS7g4 z6aW^&7$%+)lf3~!MJgmwlWJydP^wwySy+Ou z4p9=MWuU>xWl9w4b+58eS_4Y4&lTVgoUMi`Gi3nHd~7|O<7y0!Z&=C`iPL5GtlYRot(g5oitHeovf>Kw26@T(Z_Y^Dl z_y8OyiPmCeo#ZdM{7m&Hf<^beKrB6p?c7NeW-H^O0nMr@l3#R~?~L8_5mfY5#RF0b z=$dE{_(d{nI}t!&R|`V5BjiTP)8mxRg474pQOmpBsAdqFI7;!xQvhmoebD}LrJFlo zMDXBLX%s-`(CZ#j&dQ)!W}?w**hqDw3bTdzNkV=b*6zg#{K5&!5b*kkika??iS8Uc z5v2HD0WQ2deB655@&s%w~vnPq@k@p5gS*oX1%K2~QS@B%9A0!rH%VNtrU zjnW1_tEoNob!!C?Jq8&xYwC#Zo2(o}1InqCNwyGvR28Iwx`(orv$}!qXRqq)UUp@k zbV_XwQMLL#yCqio0F)AKd0{YA^xvf;WB||f1!OmdaRxhQQV*Z592A6`I;jKuD|W+V zGJ#F0VfO8r%BxZnS#>0xHP854tvxndA)90AUC9fMnxn-S*|~~HpU5Wt@c4eBye0?S z6wnq|VU_dG5$ES9zX~E=NTT~5*&3ph39xaJ(p_vX>z5GQ%5F=DLB@Rhx2iFP7*^pB zbLiIvp=i~2lPZr?TU($i&L2m3qB~%8qFpC6swS`#% z;F6{gO5+M;oglpfTGW})Rzt)fC1SDiqbQvRh}dcFm#%;U%K3R2eXvZ)lmVn0aogSd zpaC6FtLlXOq5*v`4Knlrasd_ZQigz+lhh#dj9c5d0g6eV9`~o1hT-X;8zvFiYM)3S zm%lj&H2QdWN3|RbXpuf>`ms-0{skiXi*AiO$)XR4_n>4MM)YcTOcGlH6=}7yA^^X* zfkgo#I_UFdcT6q{`f~UvkA3Dh;8*4Yh0w4R0t%pp&>7Pza&sYjV+FsLB+Mm^J9nr_ zj}lQChmtwCN)071?NO|Pu!$k_NU{MS(?~MkM;}S%__#+BLsAimBpw{R?NbVVY}W>~ zN?b#Y^7)}2q+;A2dg2*{yh5(NJM)o7CLaK{bm8^CP$uZ+v&t|5U#3gs$whJt;8KxX za1+UYec-oV42>*?1gss`MkbY+D0JdoRl(uD9u?dMSK%gH+nA<3uUsM< zSqZxST78!r=O=MlclSlri)vh#j-})Kw(u6tkQmaaeiu_4U$?LRQY%6jUADow+NheI zb>2BfS1_2Fy7=z`lx{4E85&7U^(=`=OcKs5Ov=&sl=BjrcM!`VKChw=*fXoj;ZxrI zDu$b+_E$#Q}JCndN|b(?I%6j8&{Q*CV0z$Q|jUL#ddJDquQm+9}-x_#Od5U zyMl>cn1v#~Qs7HvleA*LdbzflUazOeNbf)vzcAOPp z;xvwhg8~@G*hrJ#83~iOIp2(;?*}z#?#zrTMl8>jekWZT$FpCUqVOY42iJ5&i*73I z#a0}dJ8y7v6`4A(*jyjae!;RF)zb(8Zo?Tt(wC z-wI^EqwE*NlIHqt-KxEG=RzLCFq4#P-zl;v&cs~d4R(g+nWsmY@T0O)5EtWKw8w?i zUJ6|()XAMz`CxOl2dJN$46~cNMFSa13%@sRn--|1FRC3V*Y7G{3(`>{BxmR#N!{V* zsM~K!jdU1P(3wNv?|4@H1}LSO5C-4zyAtXS?ss=gjC9@reB2+(7I*NhGAjVDbGmIGw#*5%JeFbSQXp{0mRlEe0Qnu%! z3qCbVWB|=NYO8w1Z1;}v=K?%y4_0UGZbnaLZ``m|qjwE>3sB@SOCUPiyvDn0$ zA`fSYU-@aG_7|ilsr;6Hw^4VdLyxC)6@n+1M;6KSTCKY45UNWu9TH+Yi@{Ay0Zy)%x4WS$pkFi zkR+F79D>6lA`eB0!?=*x>txapASB(mG8k96B&@s|U9(&er$7-8^ajXO!Xy0k5+02E z(QP_1wk?+D8?vMP+P2q&5JWg3NM$KG4_zeR}A7tqt5EeHwe&OJ<4+b_oIp(iS7+o_`kPbr< z$kgKb7O2hGnup}))e7eO>UYchHJtrtDZ`u2G;JU96aaTA6u5sV+EQE->cP?9D)txy z`j^lcK(1j#d;uVJ~^!OLhlWKoG{Eu8{Aa?=4_%07Q_&efQ|m`WviW>4t*?8WiZbvgMiS8}0D;^BvkDqL2xJgRvuA2R=g#)BZx06AtgRj=38AIwuMPC#Cf96@bK76t0jmK%cSBAg z)D6`b%mBpbIGM^gaRrC8D>YyHi0gwqrwT2(2G<5@QiWBR z8*VhR1||fuNK-}D4LLPfeBiC)6Jl2 z4Ww+-N%`-Ggn2G8vsG+Ek3zn_<{BwASXJp+Uvr7n6BN*iNGe*>+}uM0NT)5&K3$qC z6}m%j@-z3AL9=etmP;<`)UN5;U8%qMSwR{Pn$%4muNYvG$)j=1L%*~zZaH()qHS+C z^J5-@NkY8&rgR5(OctMSss(DRXib87l7}kaMDy!X)0QgzB$m?P;Rgz7;BAUVFc&pgT=I#nlO?~2r+h@1YD(tk&sjzMhZDH z_n&-#O#LULrQUxMT596Rp5+ytJP3;h5<^y$1?lF)g7h$una&U<8Hk3CGS*D9C`wB` zV@@%^q@#=>CFuDc)Sbx;XLC<;jJQ`T&0RnsxPh@5S&|o>Q=`E(}c+`njb(3Vp)O5MI6orANb1 zI4p6wh0BrlpsNc40+q9a%;&wNL9JA;)*0i|f6t`06q&#B5QfkY^LdYFR4&drnu=`q zn&(S%AT1X z6GfxUFM0Tc({eNx`wviDSnT27ss*YnT;_9unNQRh^F%M%tF_B~@QIn`)<|S2G2bUi zYBBjp(*rf{>eCdJmYVOu7wjA?HFt1FRQ@bA&l98wL(KQe%y&hv*6d@lrcZJz34G(Z z$n^_YAm4a`lt~YnzZ9kJpmn@Qf2`C86ktO6`KRuv^+e1Cgr>8H-4o3#rD0l>0(@!Y zl1b)AWB|=X@l40bWvpFD1UM!emctTC}|tiTq( zGH926H3S{0bh`ZOHp}W3&ND9zH{9*-g8ZC8Ce1g$A7Xr<5a(VkU&wAu)7@AlAyBzT z@TdQ9JNk{*JsK5;?}N4@xntw;q;wE!e(h#~c&infx7eH%b_xq?bzu4I8MDTh&FDH|^0XOK=afw@ zn=)%=m8m5Or?o*Qi&TUe@WAord#wcX|mGP zl3=Olos;lCO;kw9>=@r`56exIg(xhssRyiw4i` zF zUzJi14jZpz>|AC(DUBz+sFMQTWZ6G#GJAzN&I?-t`hD8|Xdy}2w8DJ8skkIme<*h9 zzdRKC{MYz+{H+03d;=<6^pjsWuGDcJRtw99&8kp#9@ax0JrDc*M)O+fklGQ-dD>DC za!@TGzvv)b6^bv<$lejEyk2E~+e@;kAV`R?L?P=IbDZ=VDD@XCEaZ!}P?Yhn>j|hZiM4QXmW<%Z&Af&^S7<4mR40%&8v!K3)Yb6v!gBT zklzk-iu8-Nu>wLbJv0HqueQcKUf+S&bmTTpv#LOtM<;k7x-zjzV}e_>%N&Fb?=*Lk z+WrO5d!+ck02PE{cH;(n>p;CQiRjKZ-mNrpI-6xFXoK~|rm_S1-5x-xDB&~nxM)y7 zV4Yg#SOHj){McH#w%1(x>Oh#<0YB4Os)B{0t0VE@wQNVvhRSn$%@+h|mRgC4>m%AsAaHYYvR*wsMCT|4k{`? zlnGJUDTn6InO_q{d<`AG{RQ80;5xXbqDC_#)1c}Ot{I42e{fBFk5LDXhNxX6vMxX~ zRF%P?0H_k(e!+YcUEYs_Y6WxbYpN^(Tr+g?oIk$7eA$)x(vK>m`;?yWOLn68K1B%)nrlJQM2pR2R%TR5(cLd za$*<&*4_8p4cB2)Z;R-hd)3S4T2U>@- z4|U3KX7dP9noT;SBUc5gK7a$yLYsMnG!K-nKV->6H+Nb3;xm|2>^LIoQIuM{IZ}`| z=yBp}&2Naa!)UgzLDB_{@x~g6Hs%SFOOHlP!IH%HB#FyO1@Ot;3d zHBwY^HcEVhp&I(ZFMFOVpfGaD({sXk`et^Rpe{=?)yb}B2qX*#qi9FID zA7k{ZN4;^K>Vtj1GXE}$#T=dc;An_WeQ*GNV@Z2`ZEyUfy?R=~gNva$+z;KlNtw_u zcnPb}x?5&=@N@;En0<0Ze!*3KDCV~L6k7CH5rOW&yFz@4tOMZ52s!z6%3Qo|TjyZlsy^rs%@%sEMtaUoVb zoiM+If_^Z+v^j9Sucif>1NeulWRvkn#C_fV)tqlcq3JhsffTJp;0}+mTKtabhZNHI zI_-D!vr-Dcq49P6ALdo0ryu?>_tW4|ng#%HCr!WpY2K`djN0U|^phTRhgOOOOEWZ+fmWM=X7HE!AGZz#PYH&K$u(4&f22dSJ)&gkPP$JF>M^o+QXg3_? zS`$kbLE5KBDsE;uOOVL<4-Jxzjjrx&uuuZ{0>+1WO0Gjg=*+U6(c;N)O(=PX5aJ<} zyou}7P_kXN)HW7B=jc3?di|7NtNO6Tz$( zlA`1DUL!tf%5gEuQY%%1CaG-Apn%4O>Ig&+)k8=+1$x&2GOnFvmcGrX%`dEqmoDm{ zy>NSI?db)rG~hbohj}7?a|g@+q#v|R>L+&jBiym;bli7hU5-mm`w0OkC&7ZZPqO`u za`Q;fek1)nle}aZY52Ny=*pmTXa2K-olv$G4?{Ly9WeTs_*{ zWXmx@c!HrBJ&vv7u5jUMK7Ngl)PMXM66v0Y00|+QhkybQud!0;C-aRg4~er{*M=KU zNS%-!P{qoiI24v)DVN?PS_K(N_-kr`K_^e5>05$YAm2<&jdV_hWNQi+K>>BWbJ!fn zeHIXsI_WI~$dOr=DH=%KFt&}$5)eqep&p9&pgY&i&O^M2oCm{8oC&$iFZ@TE^Q0)x zZsCXPs9Vtc)&qN4rVBzhj?LYo3q+@G(K1T!7Jm4YJjjdz2SCKkEj-jE^fq>j`=a!2 zG2BTq{}ep3kLA2DgV1d36=p8hsSGa(js4;HM0B{X1s@F`^n5h(`SJLJ?4QTqJrX4> zrrdk>mJ|Bs=Jd5VgpCZVZfAMNg{pCuNl|)d86M^CEI@A5SwcVo5OOngd)@j_rB8p$ zQ=)X7sE*q{9ueB1xIJq+OK*WvYQ@K+(9S`Y!y0h9=K6TPrKj{iEjU|q^&w3=2lU?f zaX?F-mYStdP1l-roBR(w*ttiJgpKQ6%P;gao)E3c*Zv?BddSy)WpwfzeC&mmCj_xI zN9P6}5)II)fqO;k4gA-?Y~b~H>sL;1bsGS3qxF`ag9)R~$p?V&VU`twI4WAd;Xw_@ zx4CHVXP8M!=Mk3M`1~Q}N4x1%Mfq8evhhC46hWMid%;K4!QOurMc{|C?nl!fusF}B zh$Et@8G|z^IkaALCIuKRwc=n<0IV2wO+Ox~1dXy(3(`TN9;XqHw%jir0R_~44@RS9 zV=Qa5kXoDbeVi_u$K>lkWnaLM6Fx#cwa_O`i$ zPZF+lvZ`Hjh>y`fM%Ehb8E0wJ6n_&rjxSW}g~)y@36RIedQbr9#l6t6zCD^gZ9^QI zIKk3aDkgn{5j=RbS^!X$2$Q9wmo!zaWNQbyb*DIP37`>{bAkfUs`G{ka<)uZjjE?u zoX2V8N+1)xFqh#v;=0Q8sg^#1@DxMj0cS5nq?%tFLj#T&R*MFWx8U16_&anSXrc=D zP&amlvBFQgDf~T7qjR(8q2TSo%8r?qL_xSt=yludsYU?jy%yJ46G`Z?mfN%NM}G^# zSHv#%LHD=Xjz781vFsD>QqJ}JKh>57adkLbQXYTU5+{hw+IbE?L!Btp&hS0LjnMR* z#a+ZtV)Oy%JtIp5a$_L~6hOsqf6VfzCy(p=xaC7Br=89&d#VMXA!Yhp%N9`@tX9$w zA9T(&0u+)^hMz+@zQD3a157_8I+krnktVo9M^sq4YoO^|v>^MyAn9>;=(t6ec5cv= zkTveW-is~6HNbRvXU$^ETxl18rpr6`EwPNiv{x^&tk%SX~FKo(hi41ZTGFlcrfIkFz8EL>qZBuXEvpoU??dD8`Gl9C<* z3Sb{-Owd7+w7AZpiFey+l9nGyhaLux?{J+fD@XI!Sbh)#a6}}l-8_UeZx66(2>G?0 zK4%> z(4*3JgQc~XG(@dr9|Pz8Jg8i{ACyw37=qeuwsh7&Q(K(3+47?_2|!a@?7aJcMHqtS zZ?Uv-Ls8z`V(}8B3O!Eit(I5BAy~xD&oy8jY85wH$O+rzG-R7)em&`4B^$@Wwp$9M zeV|vmHojXefU^1Dc06mBs?|#Hjm`{8)rHmS_H1EQkHbIGozf%Gk8~KRcCTfprX!ud zuIH=+LfKde3IOFOf4`-o9)Uc;4C#0q+uV94@lUczyuHniNm8Q@TC)ll)dE0((^_}1 z%P4wXSa+`=wNOD-&j$M4#hHXn((MHbeQZXG1o+tO)=C{g0o6hL;fj03$PVlEk+$v_ZVf<0Gb`~={^AVbQ1jvpE}$>Y1nnm^dVbORr^6$oR!7v^C3$?NgZlW4 z%8gTGz($!Pf&$GX;P9C$I2r=HX#kU;New|wm=|9}I9A?%KMhUm-Ycut+ zS7jnd?6n#3YzK6&#nQ9US^R}=HHz@P6^%~yxFLI)PDG-&ES5O&&-Q3cuPYt!4&4Z= zB~*N?9qM7V^u&j!=2|U%8}Gm&ZFM_jx_z^Q_)~jy$7*RSzTJVm^OCaQEbgV!L>jKd zt&zWfV(3a!cRa#Xn%<&+d(slpN~P&1`uA;urS49=hW}}ztBjwMU-S#<7vvXRqr6Uj z(HYE_NjMMsWr$S)cOCJ4D z*jdZ_S|qxmTkX$>ZG_PDN59m}{g34}pNXJdzBy#_e=TR^nV=jM-8JWn6Jym(1F+-g zp?O6*XGs?1<**&f&ZG}4i{vL@aZYz@F6#NAWu&kip${!jX_0j71bFBV`EIWbMiaAyP;$*yKlHy|ZM{*Ok1bj9X$W31U&$BW0s;(B^~2wj zc#V;E`d;;LAwuVmh!%s&&deJgpyb+7;Uc?-J0{{`FX*+p=a=|6bWAgW~juP;V zF#-I2kT3rl0ZQvD7H>hu?~AxRk@ehc&dV|yb=5LSZVl^b&jB4(+i9V)&R+!a?Z~c7 zFlL)Qz!9xtae+Z~(OAGXX39M@y=#4sziyEUL8vcu{LEsL2WpBxvkaE+g(Z}efgS0` z6D=&2{DPX=bh%8AAPhv0d~R8wg(oHr7~&6AK&p7gKpqqj=V9^S%m?iJQe_dvyaA%J zy;b|JTW*UYzT{NhnHlkVaA#ok?F~?MJ2SN+rZLZLXXd^-sN?S)z-HJ{dsyN!aP-1A z7PDLnB}iVe3b%n07cenyy1T9~do|$BP0L*QB!FZ_Nj7TA=U_3_;>nIE?6zfu7C{$i z`Z4*y-q}vgKW|$;62xzGqLom@ca}&X-vI{rf@I^&`Sm3?EjXP=P;q>?^6opE{ z^t%>Qka5-RyL4HPa1?vzPOiOv(|GfReyu#9D4W9uA2z6Bel zLp<4;EB^$G=@3u0=8CsEp@3%A7z3=*X4Vz5+!@FZ=Q(*O%iH=W!BV`fo3vO|V380( z`1ClwkQRxuHC79%<7lBLj$W3n_{G~EuuYmcWT5}}S{KV1umZFCUwJSrp&DzTSxCABYH_JfjV&+mn$}|(8LnD0d-YpO)ObKsA0LR zK9(%SRqA@)rXcGvv?9oQTHMcD;PGUSwgu*eBEFhTw-0q`XZL_&NIkxo0tXbsDy3;l z>*HSXyHJF>?D|OqNs$p=@oi(BB*-5@RO&=(+Hw`v5!ds=&`2=N4nZ5*S_8DWIt6Vr z=#~b1Lq1#z+M`tv+1A&zi$+0>x_DHOh^t%*Qf^0Be-gwe=Dw>0rYWgt__}9BDyN)d0xZn-E$?nL|%Ysa??3!_PMeZbrE{kphqK9Hg4*=-rH#3fdxN38X(Ag?A}IRiJ1 zELE_ChT_#&PI%{x7FG?#PwNrzx3{-DTZ^>tG(z6f1$%rAgr~9N*Dltb-s)jD532|>Pksl}pV^y>-)>x7L-u@-A#*QZzq%TY$K z-BYa(X<@0z3wMhR(SK8|xpJ}|%L~(vDw8px8YU>(mE@^ea$h}$h`BCKxAxN_Bs^0a zgHEMS?JAEnM98oXGC(+f5ox@eGsEAIMl{G;f zds_#H-}4suuyse<0uPNByXr&ZxvqaPGOpI4uuwp-+^%+XVdWp?+i6^A zugtLS48lZ%x3e5E=wj>cW*QI51Y_TWQwoL-Kh3=rzs!26GU{*cufoupGWEQgtb&&1uLreTF1zHUuUld+|XjsrNT*(@~?UfEU2%maQM{-3UeQWre2y8Df@JD7wpfQ ztiyEhE=Ix);9DYVM;$z2V+yhs$_YmBTdZ@m@UGB{Zfvl6i+|#;CS(n5RU9fNQCCAd zg{4tJV7a#S-1I!y2dUg$B;4 z|C^8?uZKw7{+8{u-m8UIHL%YBe#tItFE{u|bbFVzi~OjPp3j*JJ3gN}jTT3kLz_{HmkThsWzI7rkJ z;8vlE>B}{{qQ#+FZi=)N!4;DNCpUb+nEafzlb1LxUcd2D)#wH;>d6c?lWsx$KhEt@r(@QuvV#cCIaJV`^bJ@-P1Au@NK$(ZEFBW)y6$-+gk3e(o<0zP ze?ajzTldOeK@2j__rj3$Xo|KEo%x&pruq9>tkc_M0q{Z1UUxOvGu4fu!P307<62*hHF7pLG?6%_d9NV!3Q?Y<+QNj+=l4pal9B*2(jp* zNDP{E!fMv`q7&7dTvU)D7Lcl6!NbXT*d|#e0I}?CBUJjy=e<|)GQs00<2CCvd7i$7 zK-GxfS=B)=u))o?)$p7*oi;t^m88h%pptzxd_4iJde{1u z4AJO2DWJ>KM%tjOCy)qLs`wY(Z+lJ?F6k!w?-Mk^{|=$Yc%E<*SGj_}^6Dw;MFAf{ z+;ave=Xer8o;yj@;PT-AV}d^T-%QX1e?yYlnwD|Z!2i$zOuu9zrX}k4=O$x{;FO@| zuJva@C?rI?ZF^NM^*WbsKEqB@Zk@B1i$XEwRlmnoMZ2j-J9*xENf4$pG^0CCRoow3 zxG=(t0}}OTMv@bm>;m!qFpE0LP(bWrL0IBahjaNX{}(p{5cV?_vcq-K9<2`HaJf?} zOe9>g&J~W=BTIqbB5&uiM8ak3XTsTfMA<}-HR=iu2v`4#Bz;||8cABP-0+>`;?s$G zYuuUWK3GB_{uQwXqMT;i0})=`Z>W6miFLjp`zB%GJ4euBlQ|M8lC6^*42z2*Ecy65 zQlo3uN44;Da5#7kPlaM3JRMAYQR(MahZbHJ=38+QXt_s;+cQ(SM za)Pb7SVt$mSJQv`;MJE&ni1f0(wFfF@F`=BopwPHKU!ZG#7%c>u6KO@)S~hM;6{?( z9ss%|>j!|2$wmV}9;*J;3Xc)0fw(u9W^ab*jQztgn{_M) z_0waq&|i+Rj8}sOyAU){s#mf;-giva#Cs?Ywn7g}RK|YHS_CKife;ypLn^Md9IEZ0_;BQ}iOvO!`sFn3w#WQ9%jj|JIs1#xeR=b8RWF5z7aF-dtV*!H|29>JVxk65aq zV}l;$>z1}og7_-##nZ%on+ru_s@t)&h^ek{ljFjae{8BqYGYdzVK{cW#M_}Ex>JeI z#gl#e9_GkJVYUOZS1Pb~I?OfzB`&oo6WZDi2(mw@W1Eb!BW&q%D_Bg^3V-yU2-{Et z_}jfMrOTZS;IBp6258~w(&m^bTUWV<0sQAtwgMfzcFpb}*9hc??!XF%B`ywKlB;$a zrg{=+T&l*=iU~Q!jy4)sQAeYjke0Nwb!{ll5a-I|5` zy4mKlabotgtzF4KSBhs-J^R@ieJcU+wqL}nxL;3h_Mrw+1`kf>-&z2y+X@u}f9&SpDpp9`qa9$vVY?mo4anXz} z_NC@cAJe*-rU_~{2m!`H?K-YfgIdpiwgfMs2|7DOoh~#?*C6xc;dYundAN>+pk6x? zWK1NTE*Mv}&Np_?gmk@o#$k#m%`Bv$cV^kTqNxS8FY&XSnDRQ-i~{&;OZTuAl9Z1J z+ZGDK0|c#(iG%Y6H76Q+@DW=F(qj=?P-gQ*_Ybkn5hjvGjOP*Iu5LAvEjL{s+2YbQ z^9U#?7TI8lsutT&W6^DM6WtcZxGu6ii&nR{c95!preQogl&+6wThiU*86>SPVkeBW zy&`{1y7Cae61lWA4brq3mZ;pfzMpbW-o(Nu+^OmE8Ptz}A>EGR@0cLiO|S^teYCRk z0h_Ov7?8nShmYvZGt`c76WscLP1jrhcU*Jqu7EnMKirTBSCsGPeBjV+n99n~`#}b# z4fuhwpx725h{G~G5AB1wXooP&B((6$gZQd|Pi(DFw-Vc6G;N$Mhz;@=N^Qr)@(j=8 z`!Ib|&B|;)i*s=2+M7z$;QXKy15Gctxo#>MoI#xc+_QldP;SHbZ1CY7%BwEB`sN{H zCwSUTZu=PbIwyE&B)mLO!edp_1MvDrybG9(Hf$wvx!Lkk+5%7o_D6krr`|i4<;Ju7GF-mZXty67Pwoq z);7W2qH!j53!uwCxGw*#TP$_5! zTdF93OZxKQD$g6a3QanXRM>n4xj}c&xQC2z>lkwmFSZ@8XRi4jI`OqN4%wI32FX#d zYnpe4gA&ynA6{y^A;*I%FcD9O#dIQ$cN8qQ9nr$;maJ`@FW4PhvL3s_mMzGIuu+<^ zo~gtc>quBk`zk~ath9ZggV!dk4x_%P3}Npovk|Llz^0GTE$FUESm%=djT6>Kag~~| zR;;n5d5K#%HV;mlwAeg2Rdm;n*^hSDWUR(il8iOnu*x-NpD}W&>QPra5U6qmncp#-LuYe`4mX+N*Y_kM;GU>}h;Bmg;3h~)$6fAMI z=#s|oPHDJa4_uk0af9W6L0$g3gh_|LWH4@zZHFlC;-=O38+t56G;er!B7R` z;#IJpvOK#&upSS)LI=`k0XluaR)MFwMF%}h+QM9@8lSk5rT2+tj-NbX_e3D2VMld%)z<4PkZ7|=uS1j#-Au@j:IxWA0b_N@PT+PEodWbwE~u? zq|SfI8T>ob2LXjmL=&zJC|(U}9bcBGXD#DJcjM~>mH1~guBqley0&T(P? zO)tr*HI%W?8~HnIZU?V=^)&L7hfu^~yl_i1)}hIG;dUejGw>N<7->BI-kmg&9M~m`!{U`g8Wh)xX#CNHMmzxj*kljNG{q?!aJ(d zzj)%s81ZyZ&3N}7!7@(!-o{ll?W1=iZ+O?%L=>-cZ0`2gwAkG3&tmJ>z8vy4*QfI; zwpqtJ8(+VOkwRLDJMU)H5SB0m^n|W>@FP&628IXH|{PFE&IrJkGKJM z=V`sk`Rwi#BC0m()sz$QEvWcOa`qSJdmFUnupo!xnBD9rrLi*?%2z2K-H)^BZzcg0&Q8$9CJ*c}C>hz5*0PX(@rvNAGP`vZ0;CD2NkNpNK{>BZg_)B#t z-uY;)3l}SXk$AHXojV_ceJ5L^^EcgeUj5JHHuaXF+yuOx?zRmsm4@aR<{BH<;l;6I z+pt%szlimmjG+wlEF_TT64Bum>-|Bh5t^e(HHz@iB!Q8%j%cK``OfAm%40}(&MZOq zVfAeX4PWzJ6njI2T_b4z?sc3OLh^b90zz_Ne*nFIupQ9hF=j3Q|bV$1@*g6L4>|c%5S*us4%}Fy0ddm3UYz{#@pW`{;1vO!Z zQqM8WB;~*#w)UdDYD=R$$@F8s%3Ki=rfe;4`7VYT>v z@4zMv8kq3%2z+Ji?-8#x~ z%gZJm8RvUFaFv=WwU+F+nh6h5Ty8-3X>qv$<@MGZP>CM^jJcsJr)(l*rU+EOnV3RYfQY|M-1!Z z*%kM?T7j-8{@7ceZd~EQ^psH6Gj)5$qYU%==w&#dkJ~7OwxRJCKf|iMHFbUsT)g)}ig!T&-xdy}yrM+iU-s+(srE z%k5V;x&7=x$9}IjL!rs`3^ef$&NTdU4Hb=#uIx#*yJZ?b|1+ZhOfe){z*DMJI}B7= zm>L?tRo{+72h;4G(1J93i8wOXv%){(f*;13;4Xe34d2xAM~t2CPxv$4zEYf!>v^cX ztZxMy!EW(U+^?tk;^$5b# zCHORBAI>AFXZyX@3>EgoTEDdoYrWQk)@?4r{iUy5sln5fHRn!+zmXZB%xwFTaKr22 zT%q5D_6#uxqC464%^}7Y(ef*eX~TUH)Gg26Q&@qf!*2ef{IJr|w%(8oI@Uo9oSXx5jS$L<+cei>pHMR_y;LG*44%Y*jOQn^}; zGfjIQ8b8XOk1ug)H{5INIJ*1Abzl zW4QE{4$_A-h;4=*5sX4P58@$pYvhAI8cd>w099uGj4y==l->h;RBe|0;ej+HKotC02 z6YTRffVxikb;o1sWHe%;Jxh?*z}A;JAnC0b>6NUN5M$EW;d)@ZT*n&QEt-EN810*E zpCLU1x}$Q92p*g&y$DJPi#`O*X^=_m|Br|sxMkN!@g7k@Om=}V?DjYRr;pdgqsC_I@3Ntlzvqq(0Z+m!&zHD zaTy!8#bn$@HDpc!;1xxFZXXv73IHk2AlME|lwBY#Mc(7`DM}I0UmT;TtqPIHLghP; z*lT>cfnt7O;KfJneWf(DoCSIsIlH03kJ)ER0Ex;nTID3(y*H})B;<$hg~m@8U47g> z1Y8TPVkWv{vTLEI%(drw;irZ%W&(;o(i-1dOm2l%F;fjN$*s^K54%P?jUbWV`LGC7 zz0m%eG#ju<&3AYEOKIMqkjBv2_nx&q&w<%Y_bgl%CG*+7VvueYy} zG9igLet_1N8MhX0*cy=qy-<9$^Ac0_0`3w0G%LD8Ntc|4;{BTGToJCq#>Y2ZjIFZw zz*jJFY`!2j8DQhwsk?YzKmA%<5f;(xV_}W?S{%K6+mL9q-sUiQ&}hMv_9s19$8Wew z+6x8eOh3bSsimrQxMcGznm(&}3ngM3o|?*s0VvBoUff}yBGstHEYq62(>~0H06Pb* zFtl)+Jq&%l)9x#QMp)+6VVC`obP}{dqsHNWO8jp7a6tpVevf^nblDx0y+7VKuSVSb;$SeczGVMdEa^`dBEY4S zYEV1R#5sl`Cn>2%?VAO0CguaL@5dPhvrAeGcqabDF}n%X9J4PF7vnCqYY=Le*PIP# z)|?*fuU~WO%SFdl7$qPdl<oV|sZ+<0fGQ&(#CckPw zE{OdG=vVSoloooFr(U;b3gSrIi}s_LiW25RaSDn)N}4c0??<5n*oXvQ#|1*6&g4N# zXWz0PlU86h_-cx}))Br`Emg(p9BlHtpgWJOEs3ccC{duf-X3vTPjMF}5*wg;b6lks z8*q-iF&cj|DE|FoSNtfzojbPPU|YvC*d9pU3!@AmkPX?OKxM`iG}bWvU-`stlWvfn z*%B^T)%y;VQpdb85Z(WoeWC`OE-p11q~bdvE3Vl)X&`lmvcZF)1R0Wzwth|pO{W^Q zdsjsZU6B75>WBZ1gaTtTX^*Q^Gr9YPeX@|paJiNA2DsEp;s)uhr2U|OWhMS!8C%KJ zL3%5h#E5mXlG-J=nxXe@;Eyzqb;G8zR3%w86*?j<8l<Q8%kV{w*?pF5-R zozVc9vNOt!oniS-x4XK%qEnC|ximV*7*@GBxkhpyk?j&N*hsP`U+;!H8THH!1^lq? zkwx>v)5?;|OH)eIGRjlalhf0Zic5F>K{Ma!hTHH)*iC;rLmT zCspx8ULYTCUEk_lgD}4)_6uO`bqee&H-UZOR5zawH}i44A$k>fPTPOxeKjcHc}`@} z`YiN>uj8f|Sl~Hz|3i=VLvzQ|VhrxcQ|8`?KfutSfVzfLoWJMmGxsmF;`~e}&MYR* zMw5zXl|Ay;PkL}E#DkHdJ3H6A-MzHyNN1ryZvj0GIn*@p#z_&Cw5M7926w4Le&$mCOS$a2^0_~6ui)mB*!KVpw1~K{5_|LOrcJpUbL53sPT+$ zgaYF!Ko?v^J%i2^lhPdfQNI|6j1tov)#5gyHM{KGZ^7Ih0jB6mg3`w{kuEx%{C=i^{Z5xb*f)cs8{`r!unNTk83YN>r1u; zDn&gU<3#Bg=^M@+X-sy2QW}$w;cl}XHVwGW9#;N6d+5@eN|9bqc1>#vpQ!Rcy1eu< zu5y`zvZjyYIYInGYXQFkY-#~txLLsEe`x_%`x;w7Y?0mq+7(fH-7KK0pCbnaT(x)b z>4_m+nVfUk;Oh8|U4x$fygz;sYRqre0-eURfV z4WLfz2mY4UmDmD@w;*i*{m_oLf&$v{2K3EfN4f@(blg@Q5Ng~z&SS5&Ru?*kiPB4; zN&kBtb0iBWAbt1{2y9DqMScrfSLApSUECPxqs7#AYBB1RJ}4JH%<(_zKd=k@jaJ=n zkZ*Ixq$z~Qtg_Q-npKip%*0zono#*Q>Bcxze#v;^-(~xcbW}DLnxf(n4%cnpjfSYm z)IIJL=>z1KMgJ~9&Kqm&9*INr?$HesgH_<>9`PmEJr;Gxv9X^@t}Zs_4Wa%4cC&Uv zd&W50G>tXYH7?c@9IsLbLA}N~_DeHK-!L}%l{tn;kAqTbt22>}ltXBpt$yyVd~T~- z%N?f$X(MQo`olI*K>OIJ#7uA$Yaw->c-_4dwvY@m1B3kKrZaz`7lXaRY=z&KS4+q+ zHZ&WqqJfw$c$}N$7$pi9G=_E_AX7toZ3s0quw@!=N*;qPlOI|(q?4`Q8dqJMW^8AT z?$z6wc(1XYt($@EtkKsv42NO}w=hhXehI>-PTFWQkOGuF&?bdgqQ!E@2=goP4n zG0!ndhtb>`iFV9$n5C@%qjeZEO2ynCx>PzF9K*nju)l_oqlC(xCUP5B7W|i z*ENspU*R|(Zn*ErmHi(^6)W*&vQrj0W=IzRNmOohTjQsoln^RjxEJkQ>`2vsV>;QI zYWR5-+`w7eFsm86#L*t_C{#h|{ym`LwwzJe8XFt~mOCC7rDj7_gHuWM2c=ZS&Cr0A zcyizdjpJZLbaADlK#F!pS-Q%x%N>QvBE=p0>S{+98FauGelyoN{*>+k;MA%s*E;M% zGjz`rj;Ay|=+qqH&OK8z6o<>*(S>z1jL>_>rVrJOv{MKL#sP35u2KVF)&@tjhT=+& z&F3P^0XB_*Gl%Mj+KEG1N(Wbbjj5z7zJ^sUW5k!RvS;;N_eUvOc8&sqbcuDfhMf^l zI$rP+&uG~>39ubj;4YbGtBdv!%!UxdUUU2iI|K#@vvPd{{bfk^55@pUTKOCA{Om( z&=Xf~XLEnz`iB_{5DlBjg90@spj-PL*Q8?1jdSEs9eDyMrH)*T)<5ld#2uQ3(#Lhs zUbs;fN@43dA1n9ZWAy~ENzg>;MNi`1VH%g)MW``$x$U@$x*WapCGUX4M-Z(X8^2}t z#o>Y80GXQTeym=6+Y87!wiDIhV_H1vFqSRdWM*9T`}2k-DqJH*rZBvmCK}%m*RLvT*Q%i5MKb0sYy-5`p}wGDH2|CwAJilHIztQk?#RBH7k07 z(2H8~p9d7^qV{td@@*E!KJhIV`NEnj1HAz*rM}vY`se;V^@^X}@nIwR7U_(ov3wX0 zeATf>`bjM&8)f^VQxnHZ$p1CRa`D!1wucp9>P~ItANgliVL?~RcLt&puR9KS_^`e3 z4LrqbKf*;a*sm3>mKxaeac0li7uF3Cq+}ITpM<@_DTl4GBy9Jymd2voTSdjQ!I>x4 zNCVUowxu}!aK*j&YO}NNIePj)aK1t6*5QhHX$(NZ!Jci9^1{$c_0p}Gg0>raif-D& zC-S7}0F5SBFD&1hLeP-Ven+$fdZQWvyPaM$;ERo^Xixhch2rWFo_ATjVSr1gGm%kq zQ_7Pv#w8?|m87JlCufW+$w*I6Oe!nGTSpU8lM)h@!j~(a5|UoPbkF49Lp!t-oQ~~^ zHfMMb+W~*r^4ZZnz{NWTlyEMtblj0FzRb7)Z(XTtPtFHSp=K%W?YB_m^>r=6>tO}O zTNl69a4)71O|Q13N0<)cpR2uQ&zMkUBK(;$Fk|@ohVFzvT!13wjV+|tNevHU!UvA7 z5%u(vj&fE8g><;}7XE0=(A6A2+AzF0IXxjQAvGPVwlsNMa!N)*NqI(EQesAF zMiTxKkBZJ!1uC~oSFRGm%hOX+Gt%Re(#nfdlhg3m`S{|D^5VpJjF=Q(l8CpuRR$^x zZ&#fcBI@Zo0evIZ4z0KEJI61_qjg@je&I=J@#B(HQ_6~yk};LV85!}ZxcBswap{TU z;!{$UoK9<}Hf&pxoR%J+9G{Yrl#-B~o>-h-nv!0UK5krbN?LMK5-PsDvXzqE8$E+r zDNRlsmr!0@TAH4mT!y(WE-#JGC@W7ZO-)aWPgd}foI{AHr`Hlxe0p(0c%7Xlr=aT7 zi{tUN{f?;c#Po!58S%;EQj=1Xl1qvcOG;A`Qp!?N%M#P$OA^wRqFl^HINtt{Se}}i zmRyWCKa?gE7pJ7Al&7a9CdDVjXQY-XIRjCx5S|gAj$JM>wX7tmEV(2;HN7k)32P!f zDLp9!bE_u7&WUU#o4XwNZ}ina#Tw(F7@pOW7jZ<&so zH?K=XRBA>-X-P_YVtjdGVlp4*}w3&CrYS`%N(fY@HQ~EcP~<}KBY#@qb_+)4Mbe+gQp=@;@>y+$J#qnPN@Y6$s75B;?yzvy9$R^%7mNZgwIqHEuw+vzfix)ix2ttdV>(e?o1j z+?l}h1c{s~h)1W}*LF%FD&TqMsRj5NHF}pCT!vS%@GtsM`w;=HKkX9=Xc?iW<#wUa zNF2(DL7}m=H^eeX%TPC3p6FQHDfu7J(gjs?shuw^G$i2vvG?5ZQ54_1n*f2^P*aeS z0-+d4xRxsrLPC{JK z6#2cG-MgLL+Y9>r{{Hmq=kk5Lo%iO=oA+kk%+9`S+2LT9(*n#45&)DDXIRKC ztvG4il!?~7H3ffP7&NuHW0C4LMG$GmMdL^f1OG?WCQMF5DO$(s9uEWZ5C~h{(h>h- zE|<}|sA#k@{9ZW9&^az~+yKA%KkSdl-6EAKjNfP@>_vLVOW|A{>KVxdT|WY2$QQyw zen^^}U%xIiJ2tXhQ<{`4EPJFoW^ig6oz?0@dsL^j!x{#q(T-(o6k5~Tv4hPVfS75H zI!sg4JHxR?%8FcBB1#d#dmb%?aE0HJHjV;r5M3Q^Zft)F6KF2fe)0L5b?k+ijtML` zhAKj?He^QHyR>suVY!j?6D$d(kE*;RG=E+nWgQ%cSgx2RB^R{Mx8Hu&F@ojh(@$hf zt1B=im(+aI)$ujM?Vw3<0#8bwnhK<3PRi=xD2$aTOc>xmt0<>uVH)CkI)-w`Y2L(A z>=Y)TI{Q~W9iKB{mw*uO8C?EAF~~&!?-UgM*LgBlM725aAh=_+|mB! z0F=|$(Ncln!@iDW?tv1)mPhuw3IwEvuz?^q8T`Te{Wa9+?{Fv(JnHXA=b{w|>}v)% zMllK$%?CO3ToVNfbYhTWp_D+@&-M7uqLs%R&-uZQK4Fnf6U%6*Rh)$MOQ$ac3a1VOCgOLGu#n_-myB)vM&wfUA7I{Wpg~Iz^GB4<7;kN z5Tl;?j>AkFJ1~l7*ewAjx)F{JQYJEm335vmMvmHqjdYyij?(qW{31a?)erW$qU>D@ z98D{-rw7Wu4}au;oM!Sh>+Z9e9dXxPc)kJNhBBBhq=r5N$p#OMs$FS&1b^bO>@*`?+z5dh@={n z#W#qS0zD`NU96bqSk8ns8pJzwEM0&Wvt+&cX=HuLF(+DaJV6g%a^%CUDV7G_6&xQWn&Fb zAub2sP~(!8Nd<>U1l+WM@FOhrn6n1|>4G_S!hhbxe-7h6UtxV-!hh!DKXdS(SMi@+ z_)l|8_6+`075`DepD6`zP*p4{D8&4W3GYROZ!zInO!zG#ycQ8Y#e@fZeqBePC(;oG z66pv;q{|9OM`jfw9kF;K-Hd>ATQO9Vh(~$~i&szqcb=~GG#qc%SocQlD(Fy;Z!4nn z+2a$1NptWZG@&h=0C7GOQH32ah=jn%J=ZaX9XUvhfbkO&_YTWy9fuyybEsg0$~(ug zjGKq6@sFn9WzQlKzZTJ)R#BX|B1}MH>4*U`p2^r0f&ywqyF)GJJJzrVXyNw_!f${z zC?PQ}o)|>WcJ(!3U~%Zdu-rsQ=C89KS>QMx!G1)<$!;I`z=&vs;=G@vadjUBj9V=F{nM$utWR6*WfLpE!h6dZHvkqA>|OoVp7w+v4~M-hs^7>iCUoPcy?! zsVOoLa(`v=+(}-!)>Ls(b0pCk>c8D#X9l3^I~*Er5LJ%9VQ=gXhmFgn(d5>g3k_dSjr?kG)x`wvrCX4~t?xJ$JlOx{QoH&(ebDx*(! zb?rr2q|l8LJHVF)Hl#6PXZj5}30#uTYsTH6C6?KH3UBY%=prQAcIyV>$5LFT))wEM0Fdqg#kW_>1x}oS^ErK;i#z8*+7&~YP zdFe-GX%k5`!KD0VOzaWI4Tc>>NYzxDHjy+sT4D+}r-PjzA?n3RBRzbB?~;cDidw-*2HXbd%3R--mcs zqtxL~Jwo!8F()OeJ5IM=raC)36ID0%f@2)Rd_k$M3-=jKO?2l7(w%)MecCaUm{@HM zm7CyK&8r|w;QMxB3Vi;xVe~O3E^HXBn0v=EYm)E5$-eYc@C=ynA5t(nd*#m^8>_Gl zhLJ(JejpYu5Y7A$Z?W;i{GX{8X*aiI>kY#@3N2$JFu#H%SiTg9*}|U!cCxf3+#{;r z@FbU>S?+i1B>WZZ+28utcuBB|l=aY8s)s)1=%E*{hrlP+rj^cmsQCT;v1sM;{k747 z?2VP|TdqSuY43jB(ThbfpE>Fyb%&yM)Kvok9d)lDd;va==c=f|EyGdj&#+5&fqsTZU-rXc=;Y6^ z)fY^a^oye{=T#zb{o;6EN`Ob}I8k~2v`w_MME-ahBRY;?blp3V{5kejzd437k!+5r zJt6k3|Im@dRiW@?o0w&D_}G`GKr)fK3H?b6KtxKSF~K7Brc!)0%ORdirT7w?+)sf& zaUC5ZDZX0qv{Z^Ok#>**E&n;mf=NqeM0TYbEGPme;o|yGcwP}*bHweYB$59x1^$9; zkbo9?m79`(Yzu%mCy=tB2K7E)tje4E7VIea4jsS-gyeNeE6c=Uua(? zr$15Vx}>6p>~7G7co7!&GFDcIIeR-i!xN9)8{r(ounvKeKWoapLsODTXHSmY`M2l% z-AO0ZgtX~f+howE8V*UOs8idL?&b zgb>xfqndLE!zEip_vCLY6%B58sLp$W|GzHDjzdyXbwY^|P9gH@pu%;A=)^2|hC30F zbLcB;IjgY@^b;l)I&uh2O**o(Mc$EFmf*;XRt!}?iM&EQ%Z?2gBf?3Gm}OKm+H;F( zNn}ybLPSjIX=bW2H!}KJq%fF@3WM*<((C|2Cx&i@NF#o1R&@G++Y^3`qN>buQY>b#|obKH6JOcfh;4BWctlE_5yvrr$Qu@N7b$k;FBN`Pz z=jgA*t-~`P(Hb-bB?sUY(l;(bO5agvdf8_eUifM>CZU7VYvA;XK}Y+8I2|lnvbqD zb556*w={R=aoZG%CZsrDlNKece@St+0orFB8&d%IvIYlIv z8XSgv!`>g2Bs&M7TP>WCQU)@0{Gg}~yjZ0b6l^I!Nrp_4Q0z{wWahhx)ghMS$S$<(0s~DQIo;uZmxXLyq+68XevvM@SypG7CrX2h@|RK3*zt}KXWOx zII@v58J-1Z02J5%m5S(LnzM-QENxLongwZ*)=FALeP5G|4(ptfk4Iw4X;6q~_7szI zHp5NE^##UC?0w_ym0CK(8E!oNgbambWLrR^iFJ=hZ?$qZl$Mv-PgUVVb6QN^of68} zaQnz~r;X*d(wxN#chhJx_HMPJX>GtsLJ+*IL{OUPY$GL*iRe$9B^41&JcRzxqbxFu zirHz(q{i?K79)gZUxsI*F$`(vY{&j4wS%8&YGMc8AUn8>?I7@7S|~ZOQ76%@62$_D z4CwJJ2ou;%2($=}+U#iO4{zFYjcg*NJnU-#&wxi@GvPu)uo_i!7UDM3y_^mkrmm{)kU zdfq%_P~3xI&6OXpHpA)0lJBtErh{pY!49of6VWy+( zVa_P((%6X#Ju^<;Gyi;(p?iV9Yfx5>(-y+a?I&`a2N~|Rq&{irx8Bc(o)YnnYY3KT zpp|$y&NswVM4AzzD}?2Rc7>97=n>R}j(L(5r}F4SrrS`` zcN(#AU9VD{j41YHa(4o4>h19^q# zsI!k62Vov_j5HsGbhp!TGRFkxK!*8xut?pP+xs>v|9NU z0F4nX)Xq(D4q>@paK{BkNvUsK{-?e%;6>6uBm+z>^vR2&Z&c40YnJy_Bs{~u!CTj{ zY0f_wNb5|f1qXSCrY6=EoiBHg$ozlgAWw+s0@-YEHV1gUPq(EnEse}m`p|7bAIx%& zVq?j19cX>Vd=WRQ@30N17CKQ!7Wj`-yK{cFMw$9#rt+R0j81+9{>THF2)n8Cs zaf%);BSWy~A7ih$$(bL{w7|6Kq37l40b0qJ5iy)7p8YAv%I+#?{kB}||HZ`Y&yUfh z+=;n#hqEKYSwTO6UM36LgNvh|MhV?E$8)3TXE?%-#HFDl$r?2q_1fv|jhf^PiIj4Y z1@I+;TIey5>{Hu6-sOB7?p~MFA|3u#E79W6AeQDPj%$@s%9J&xP7qnXt!s zn0tk;lf1OtNnu2OsN^;0sCeaPP>KZUukhcHk1L!zp5fl1*vR)c_X>@n*%3vcyG3*B zqi0`tI=GL^p?_V8p1hf+If}yj1$;x2RbkxGg-Og!Y|40lRP)}>4%kIPEr`7EOq>|{ z9duq|*r!HF*7}cVax$LY9xk65yx;@k74$L6^76}k_XO#>Ngj~paE|>)#zCKhDfx0!lFv}pXqG75%OF!V(j7n$~}{3rbA0By_}AEoOjkj zo}_4xhesgqJ5C>Wn0_MT>QUlK5}oxr<#aRLd773CW26n2Xf$a96hyVq+*~Pz z#RWUSHx&yvUq3fdT9~je>$JKh_q&{eJwF27d)IkFfq=-P8cC^|?3n<;*!P?>qy)0Y zUsG&6ULb|&*00|uK_J;MAX!wjko}W-tCZIXn|RzU7C`GKTFckPETkvotyJ zc>PGZ$2TAO|K#z%g!K3+Bjp}H(J#B;@psQUce2YzhW7411d6@TR% z6%*pw>))TKkG>nVrV7$0Ijh^VE;~PDxab0^HKJ$Nr_tDxm}qqNigRnI@+}m~H^1ss zOUsi_--@p~|Kzgh^5lz+OK#^LsAN`|Get^7PUH5a%M0@4dYo2SQR#_?=0b1K`rspi zIbLTHx*V;KL;z{Hu@dgmE=^TpLXKOne13K~8hp*!Bdn+Z4%g4FR|nxMYqM8&~!>fm|3Tf2PUFIO#2rkCT_7nX-FRL%9ceb*$VPH1>Nk;(H?x zH$&q}RwuEIM)_MZ;rC4)RHH&SBp#lThLH5Hr9U{WESn)v3k_*SljDXkO_2A2WRo#| zlw`aQA!d0^xcVREouv_@`QdY)Ti84l&ql^)}GW=U9C}GIzI5gz>mDN%Dl_SmUjXBo?7McDkZ)fE* zL7as=D;@eFXLWm2ecyp_R4v<;ZjZ0-GKDdlut?=>w76wl>=$ae)M3m%Ox9cRwa1+R zg~WyC@jb$hA1xnRM<{ehp1eDraG8+OE2(pV{@{<6DI2ie^0ez$mMfD~D4n?<1{hH` zLKZdG>$z?)-1juC82bE7qsb!T`_cAg@h**wf&??)CAdy-mBvsNkYMJQMAr-K_oKyw zf7Dd^r=nP}+<3yU!y?V0RkiH74PA>_t_fY`gpWK)=y9cz7F-J&jb#smf+)e-CK|O) zYFSB2MgprWIR(?iKD~*n0wXOes;7^fAQH<0jze~>hM|&bGh$KRGp@c03~oK+dX~$R zGl1D{ak6W@LiwJ}TqbU+LV0g9S2JmO*_y6W1%3%Z8&7%Wg#K*q!Y38U2&lfWJ&D~q z#y`W8A$=2;B1EjRo>zcymB8Rs*Y9DhT_6{x_%~^C602+( zB|YDDZ0MeU7M_9W3rBUxWIkM=7CPQWQr-|hG(%;r5S$R@C!ERr^6 z4K0o=GAZF36PU@L&vd0%W{->|=c^UxjQ&F392zT`#rH#d@Vk%=n4x?YF9Ck?S$sK` z>VKQXvjtHUX7Qfv&43cfhHN=H@bWqcHG$vn;p)Vohl{pHqVq#nSEHtOc+!VKxouqK zoO9SA$oSMaVl~v%ZilITau^#mF0>=PE+>W=y^kHLZNu1?^>uB91l{98d(qngYKa#; z;(Lm{9b}VUg>G`oyXn7}-8TmMsl4IXzHFeYjOF@+q5^h7rmGwpgD1F1T*g29%tj9e zx@Mz;LtRy+v}F1sv&lp`1GYaXz36yLDFHc2nA&(pXKtPnL5n%ZlcWShx^?ohkV`Ay z;@T}ON&<&vbC1v9_R!^Bxvou6eu&joA}ueQ+Rg+tNGXSeHPdabohyd91 z#1{rLlF@j_crsfkeo^CApe5UJ4I0d_naxI<(W+0=<>l)2W@E0+sLnHK%#h$%4QX2S z_UxlYyBPhuAaHO>V{sSlmQclEx?zEvU8r_kQ;Kj3!b#*3L8pQPY51(=A>xDh^@Tv{I$75oq%mISBAmph8$DsF?9 zt4lkhVU_Q74f}0mWz@o1q-N64pn0y=?Bnr#&c;d;a4H*2UR(f#@E21R7eIOVn+6pX z7d*y)#UwU$fuw+Z<693yz zSc@>rT|$1ICl#|j$T9!B14ios4E+L+glrG<_bj?!@6DvZRZ7%+%pV+}77DL1b zI!u6pDsxL+`*$U-J>lFKstBJL%DK+fLp4Q2V}7ks{K;dL5qvJ1&Wu5uk!zxgB1FvU z(jN7IF+ZkvRq;zms&e`)!|u_ybfZYdN!U@vViElR|Gs8AHA zMp02MlcaJ;sYx?hO_KM84kmp0yS{(k7YmQOjz%juYC#8-eZsX#H4jU|&xQQJLtLpy#EN}x zANY=IVHmfHdd3gp8$}F1h_9N2T=o-j(xPOHeO*>G5_1Dxk=@o)=!jrIl$j7c4ETjnc||jVDq48I)CIqH;ddH-@4@eV_cqRk28jN&s?R#^HTH%b&K}5J)V(e??m6{oDpD4uyF=wvoh=}H0v)4=ERoH!# z(bNT{YAF$E%=^;vJ#f*UE>AOQQF2o!&X|i{np0YZ(MnmjTvXa9l9oqUjemc>R91)7m3lThQa(=@6-sPZJZ1A$1CL{%VH?`lO&MWfjtov2{HwYW5k ziL5mx;71VrWoIl*Kz)~%Cada-ctpgjH3emto~*;s1c<0Ag(`|AV``x{mX)@XmL!p0 zo8XdrmzQQrOA?;hvXWs?Es7i!-Y{6;!73|N7|RL*tXNq(N=1n(*UZ{r&5$5M**9*L zlrB*%lGid1onKY@jA|Z*m#q@EE7uaQSPS-35})ptq_euXU~5D6;1tPghu3kHAwrke z;8`GavA11Y`ZU9y5y(>zzRgTUQ|8P>SLDdwv4RhIoY+cpUmQU}sBa*vOu5aLjb4s9v*as!|V z{H$6o)UsjwQ@B%-E zP=d%k<$|&e$0{}phL9EmU#W{WceF>K4LeKwtM*b=l5u4B3#i-6rHxg)sRuH*`C7Tk z5Sq-{RVv9N^T`VmUn#})gz%NK@GRgf=+rBv-?MiFY9Y?QNmCPF`3wwA`ik!C3xC&F zLMm z@~ezs-@ejrY!9d*l(z^Ouac+wz2)$u`6f8I>e(wED1DPr zy#y_h1lf3XU(Y{!cCRetWuWZSu0B*cjR{*ml{$&3S}kSM1D2dU-YC7wtrYP>SV#6s zUJ=p6F~gu7zgHq55cf*#G6LYw9xc_YsN%%cq5{KCca{M zgQqyWG*hFZDCCXcghpKA8xgDA2>uXh{ouA!-A1B1bnkfSXw@^6C}f6jgpQslO;RexJkd68ye^-k!0#J-%X3$^#D>L8<5zmI6mL=6Fb^NvUZ)O< zyMFZ>uJ*Km9}8naf`}pNW@@8@H?F2gOOiNT8(eb3w^zqXOM-?I(e{dE&#KzXinFz+ z@c{-UgIvQJ1tpPX_KaIsi&@oRie>fhuJ%&dCvJ zC2vP1NC`+AJV$yYs}{)!n89e)_g4!gg2=`iokA1HXrb6S=iMBY;Sm21T zB-Y2_%g@u~;mdz`@%`tB(2gT>W+mw0W>2`<6K==M*XcECqb1L3%hQ|T+FG5#oU2x& zHgC>Z^yE@Cw$7=|R-GO+tmn$ z?KfS15KnC7^Fn3M@sv7rJ7rrs$|&614b86Peun>S(pk878vbV*J7T*0T#?AipXV~b z>dqfmZ?P{z<cKcd44p`C7AHZ8e$ma^bRD zZCWlMa?|qj(Xg{~il11BSnb(ztahBxvNKYveLu)*4@!0Vx=g44*lI@xR7y-Rw447C zq^{q1bp?*feNw!45K>og?_i@|3T?U5g$irDL@Lyw>?M2W5TjjJ$$gY<^ipU`oh>I# ziEw|zra@()EOlXk!f&Z$FsS;H+*E&)s`Y1?TK~DJP73Iim}<1*5Q{7-H=ZPd#?;X- z$%lxMyt)F)F6P{4*!kt?d6gi*9KW6)Tse@As;=JK3SF)0uE&oMQ>waGvg^uG`Fc5* znbq6}*xlu*d|QA*qVmEZm5+Rh6p$cDE=hQi5G{) zy@75I$Od5=(>gj8CC9pZt72vZ@K^@^d_#0C5lgl5POMwYs*=QKJcV>6d{C&6VnGfm zDDy_9rXNi`;ZJ8PW`;Z} zX*ELl$E4M=5aw2EW6)CWV|G_^TdXM$$b4wker@!<&0NUDYkjC@$rj4mub+v+hmqp zxkU;ua=f4f+f86VmLa|-kqfSQ$`etnZwXQ4rjcE zQro)sqLGygB2`qSa&apviwj4hI=Zi^q6z~Yt~C8eC=ioP399kpSdX%wbuS1Jir#(J zeMn`H*GBgGbRt&dWv|l3-IY=Ni*i_t?D$rUTuK& zs#>cx8sRX#QD@Z{bNStsCzc}X)K3dT@2;c>J$0c_vb%DwP(ISVCFn<(NseHZ{x7>L zO(+wA-V3=-#a8j0TZ`_mDXKB1Yecl)|`vUO*NUZ$Fa`fAT6)}lk_zkCOB z)Ae_^Ul0Dz6LP>m}JpOESR2I zg-NM|&$-y}12>#$+(lKc@D_DlfU_uLW=l^Ds(i-1JVdbZ`Wg2s)k!&D5^Nk7v7%u1 z*FSPUV7Rl?GyXK@$7kJ5RiBAyK6E=H98nV_1Oj>HUVt4aioZMx+$3m`YCZ{p;wglv4-Ap$VTV6^8%fr!Mi0J# zHK+ep1}sL1ASfB0i9t}sPu=&J&OEUY19hZ{NerZ&Be&G#IlQIPXWx~@C4tZrnzGN| z6q3371xZsT(bCBFP{vD|Qt1o#ZDxg}DNAW$(v%m2nlgTlB%CX!714^%(59~x=S23{ zoS^uPmzQ2qW`7M~#m_BZF?oTKRl1lwHzz2>5@Z%aEJ`kZZ;C>QmV+|B2@*7``N?K* zv9e6B4}<0W=_<&1*$Z;knk(9tRL<&i<#Im!ujKTW1<6VFKeFb^1+w_^*&Re`^$a?k1dPRNQw*mv6cks6N3` z33Cyd4rV{yUlk=HMO(9!{A%`R%0$Z5+~pw6ec|tTVY$2XPuM*C z4{mMHH4tKJ!-c$5_jqER{njIQI>Uy|4;>Fzk&&RykKJ#xwdRKohie2Vh{pVvtK6L@ ze&SW|W*H>M5d0@EHc> z_?yXs2-f!M++1amm1jDkUKPt4DzGQR(k_+M5Lkuo!;F&nM?5|wrV2=pY!sv2{rY57yX0RpcYG=*-;22U- zOyQ-V;xkmA^EaW{x{PB(D>MJfqZ;SSP&HWcrH{%om-tUqnXhV_?V%9zx$+7nqh%_2uoNX z34ACi`M`%lh_(|DJ0qmn!-K@O1&NJXMVGZjxd{;S%nT{=^dOOK<%=AxC^BjqOKc@b zzx#p&-4iURyEX_q{{{%^3MuHRAVK&1SAw3cqb%sXAVKd23p#8Oyrf!O4_;E`Cx9hX zSQyF@*oAUSxcgs8J2p;PTHQjq*{VSn7&z#7-T4{ZERg`huKpTS+c~7L9fO2bFASb} zseb2ILKH%@T@>4(>^;?FTo)b9N{?3z4>6P`DY6W>!x)@ZRfjG&EE^E7&bR7v^YV51 zW|Ll@Z^+Npnv7{`ZLY~^F_;WGdsg!DapCdWe7#n0H5m0KwO((`HJQ|TRe{k>Og(+B-kfH&C(JhR2B)9XxHi@|8f zv*o54^YZg;hBUt9#VY&vGxecU%s_3_8TDz_G>ai0imPolvp!F!&qpQA=0)*sdSdOa zQ;Rk6`X^MZd4HW5Eo)Pj(86FyHS0%CZZT;{gPAj%Cp54b@(gNgo*o)zg}OmxgV|y- z>++$&CT*HMD}6Co+Y=7sq8g9ZMcZ>eUbloPET^lC23rHDvU9Hi!@Bou-=W*E^379c zmX@}pm8-P8219^3GGwofihn|@(1ZAO$#H5U9MIHj)kb*dr8io17Nb#{Z?>AP8k5$b zu`?y>#)rpS-~_T&uh(k~xmrEsmogd5y4*Ci4ctg?)B61^O=mWPX@YZEboyK?cq15$ z#bVT`%_eIu>J_(G@UwEOGz)%Kex0J9#c7NtquK;sV*@|4X)G3fo?2(lgZ|6~fl-lq zakRa9^gJ+3y$#kr;J@lTqh4!)aR3^VZ!uW)nmnUTZO^{6#=*p=>C*HzwOI!vi9xTo znaoDDMXOc=r8UoBHKI?xUo2SVlWNu+UaO6>lv^pf?<^aQs$VZ_T;B|XM7|~u6lc?0 zK(&^9n-TJO8Er7&!JXJ|z8-B?$3ZLV=Ni-UEqW`Y_=1)|WeT6r zH!@c#-yU@usbf7sWx3#3NT0nnCjJQxLRnYVCdZrej9M^3UB1n%)7y;tTyvfkW*>OT zY&Ki1d3M+BQ{%$x=b4Q#QK`*vCK?>cVl(9$w3;;Nt$dS7Z*Ng!?G7g1pv%+ZIl-*e z8}t@!nmJ!>HRv_D`ZTREH$N90ZnQkgKKuTfub6}HDV^g47T}E zS!8^^8hT2f53;FkdYx8h)~2a-8jC@r&V}JxZ+C_58XsO?50jeKnx@l0C#%g`izyE* zO$YOoO=C7A7(l@N#w^~)#HCqnX?bb3G_x(=s5ii2a9x_spn>Lt-D}jS`lEGE+cS&N zt4v(^^`gYB^EC0f<<@IPH5`jI$hl{2m3U)*nn7zyv*=-7(VJjy%{ArgEa2W+*aI== z+Yhf;3!}R}&uW0#In9)xm!^jq47N(Fxw#rku32NV<{EgH;TvKDXR??zFuy_EVbp2N zT2ND(S*?MFSgdbFAQ(oTP$}BsEQ1;A33WmnjA;A3vO4XwjYm&zrB=68tD6s=0>hC} z1KqDRr)ss7t7&ZTO^890X44p995$wbHR<$fi!DDtU#C^uKe@aHx~tsd4Cru26l351 z`n<*9Y~^;BPAzqxCzz?Mbom<0*J5W&J5UyrP=1qiaF?iO?lbXLqeWwbfh8|rYt~q)_jxMV700(CWA1>Xu&Mg(!fc~My)HP|4GGQx~zHrZiN+y+5lZob)^ zpJp>!^7Hh0=CoWO$v0Uw5cinDE>YrO82@uBuZMWC{90`!UW|W2t=LW>nFkISbw;fT zs5F;U(9e z{R4vWKi8VCHCf?XAsYmX8Z%7Dxq5?1Yt%rHW3mb{7zr2S%C8kU+sxA@lwYS-&j*W< zTgx&aNCLw%>20|Ng8{}28-$3t26ev4m=A_%QX}tYFGtz8|7Y%?@OY!ymS)lB=czS1 zy*}5bGec}_wAgG0by}XP>pw`2G2C!%=tOL|KZJrS(5vw-eVAtfV zKgB$;?!)uuX%e1LE8L~}7BZkEZOW>nF0Yo=NY$8A)6A5U8T7d@eQ9+tje%~BxfV@s z9?YQ{h=+CRG*siewbAz3CyHUBE_crr^}1XfEqK}!ddnd7v?my-Ra*K9noGl;_WrHK zF$v|j%dE$q))=J@*p-G7qIN~1&kmGz`FEN2?=tP*Wg6Z^_;;D6xHSBCnfC88Eoce- z?=r32wc)?Zw11ar|1Q)1U8eoJOe<$``0p}JarsFt)6BKjvQIHj;s4EC!zV6V0 z+OwM|qz>#pN#UIx97vuX;!xX#mY$6v@*mA=<#{_+IcI%k{{8}Tdd7c$0r^MJ{RL>{ zvZeNJJ?N8P(oKo-xWR0J>rfI<;cxhQ&Fbgv378kq>*@=n^_7Du_Qe0q% z-EDQq$A?4-4%%-92mtE{1x@-$k&Zw`V;UN2AGQE>rt>MlmtS*T=I{N`x<6 zss96RBR&-3zleaY6t0^oO-0WGn~H;?d|8$F{6>YpU1?FEr(-uo+Dh< zTaI{y<4^rP?cg?L(*V!2-28Gl*5En9rxZ`(ICP-rdv0?%tZMSC))Q8-%DNLW-32LJ z(qj*1+oMs=(b=8D-d+T01+PL@^W${A__iMAEnJNWC9q5t$^fEx86@n80aP98na+N? z2rVA!X~%s|b0a5Q9}e{_=dRG`!x`=#%p!7xOj;hB9M#D&e2o`*1)ir^P!@x`#C|2m zGn(NZQ6>0KGbZPP%~vRf;)0*@cT_(TDwhz*Dv#wW|D9L4a^*oP7bKSG2wza$kj99@ z14MkQJ`5iGbsb!qL|E`3ss|eLB5CO&q(kHKJ)609G#dLJMcGt=lJwos;hwL;`W6fM zDkHCWQn^7AK5)Ak+rJpakM%U>`qNLKZ~2^h+!z{-@63V=#P*N$j0#o0P@(+k0#ABS z`9#!wlxH+oA}@~xn(&s-NGz1Hmt?+`&!M6rV7^XWSe2M;idNJ+$!v*^jrKUh_WRpT zZcTrKD$bkALB8$ic)q6!du5@RN)SCR;4$QuFevt5tY>U+G42Z`ma6d{b)YP{=55q? zPiO9yQdy;zHsf0gpR4?hme#RgsVtD5c{cmT)JZUL1qII9)S;;MubH!o=`l^;V z3^(Wdid{@{t;Q-_WY9<=*s{devuAk@a(g88f}1xKt4a-aa}t>F7tXM6fe6xoRU}mh zlcERvTv7JdXM5JM><5Gt-mD#|qe2Pq$26k`7rg?h?9Lg5;ZJ_&4Es$v(zWHQpxKbK z)3G#0^l!+!cxoem>kRiBtuJzk-p>?F{2q@+DRUpDMN({|LYz6wd*n_hY;A?2u zc1t7&sWY+ILX;>!57`=?!6d}rLt{5C@$6&R!2-E(l6nA5PL3dVSVB%xQ@LSVqr=NQ zfrK+5M8s)fLy5n9IT1hTVC;e=a*5~qCB~l@w9vg%>8WRm*5HN7QxL88U!Q|aR; z=4Dh#Nx{bnQq-mtjW$7JZmHI{)EUrU`#ibz^yXBJ!Pq=OtB0ciX>h=#rN*Mxv}_5- zCrqf<4o`YTz69F7((^%TTB=Fiy={w03Gly>V-wV=+DTQa1oJi~G{q&6d!6UcDuEh} zXy$94olW(ra85E+qcfyxwC3gs8u)*cHWmJ){f)kq{UDoSEXXo^cB=NeD<_M0r8 zAz=i=lQN%XgQNu8u!MZ)MorsuNr?zpB|^U8f;K3-?mNv?RFs6st@RBHbON$1shvHtO%VXATx21^O z4@JvD-4DermQdjRpKj>kyPl!a8i+8P>7s%#(eHVFkru^wwAoGXdnz*A0h)kpH!lCc z^A1$d^+QiPd*COACf^sP~%oTw6(TFbuZo zGI51VEju3t3nR3{b#Zwn+qax{JPszsYocg->P64*44Y3#sbyzUKn2~ygiM^$t{|Fc zzB-x7zQ9*Y-2yJsatgHk$GB2%{^gR;vE8HmSsVG}wfM%YwV;#TZ`JcBJXwX67GjaL z0-gmHS*XJ$&nWhQKrO7X_R-X2%tOoMU#qTwcFAv;RF<00c%uBw-=a7)VSRKh`>ZcL z6&UU^-Q(E(*h|Zh`zz18+$H)6c9J+znGKbcNp=@IeC^p6_RBJQckvIJ5vk(0WoX?M zkB0k=egcVX8lm5=c+_0va>|zd1arUfjFb|H`$_Ri1naMQ8c7LoBcjAcG!h!|6KEG- ziSvMxM(k00k=x^9xDN6v&^KRsIP|K=(}l~TpAp}S^LjG5el!|4gC{xd^|TBk5%yI_ zDwACPYDPUNiL5D&g{HJ#&hI!WH-+DEqPo$q0oq=Wx4%8w9(&z$g5j3Y;*f?tz5$!U zYiTs;pJmJWyqm!Uk8T0Mt8xNn8R~k|b1_r}$K>T%zJgffx#g*d|B=1zSTrKM&&taJ z@0qvZ?U_Utnf*2mX}?qNcnXXdZ^ZSo(%4LIe+%fa`gIlo)z33`iZPV{8zht z%XdhOk18wL7JuDRo$oz;8Lrj}nb9-V(8oV`HgMJG2eN9K3GGm=;QL**fveb1Ymk**QHR-jBKMM-mbcPfcyCN>cu@`1Sy--@6^WPs=@@>-K4;u zo*{?ww2DJ~x&kdfMK%v#P#Jan$#*SSfPJh%yl&Me? zJ^w8(N6NMewEVv7^j|!CBG`?DR(S&Ks6Z>!OD4d*<K$lz_F4EklaA^5om>) z06)NL3o!wnhG%2~Bv&kFvffVN>@|U0m;uXZaxw#+T_K+VPea50!3-FqY>akugqLNw z$}1^X!-<5s8Z?HCXqDlXaC|eeq$~+o8_LTvmC?B>UbD2QY`|IiUn+lbmbD7xg7R}{a-#fhE9J^>54sou@s5yGTv@k&C-T_lZ%xo< z@3NKh&ECa+*@e`KU2A%KMXBF&U4)^aUCLM+msNoM;>c_x{~D|wTpF7V`N)$uEA8Y6b3eMYMHX_os5 zcaDGQNsRAL8bb{AC&5r9Wr`Dbgwq3yzr)Ri9-2htrZ2TpW#hJ zGfiIdQW^J0IBq1m+FKus{xWzgp<@}|RE2sl9d}S(Pb4M==O#J7;rPb4zqCOY^xmH6 z{6}yws!5tReqB^aRVh1SLM}NcXkmPocaXHGEYPSVSj96Xe5~At$K) zCRKvGS7&^@o%rYnqMiIsqlvZpO3=~{-Z5MV0@W(Hc>}>K9pwbFhEx$6QpPtVR=FWT z5tG0D60aaH_NB|XsN^&yJ-upaQ5YAJ)~%n}j2op;JiM1TO%W~BUBtJ_ytPU)H6Foa zA*RMd@Qh52HP#k2MT?*FPGc_!)WXboj;1CvxtY)QfswDMb%eRBFc7ZBjH&lTEK;Cqsx3QF5Hd@*K zp%-RMB33Ns8Sl78;)?CC5FtjZOn4@`;?~LDh73DQAWuOLtjD{mXlm?<%(H013*IOy zZGYyP|J4!4OjUNo;x%$dT;LZNJEAmiyk@z#I2s)vx0AE$mwQ)5vpd&>cF*a8lDF~v zboMU0yl*_i9$6FGJu3^j7X2izPA>H}VNXLPp}ccLfI{M(o7c#_bHSSb-8-A|$sOnY z>b0`mecWpj?~Hv2-uWAiCb7_c=sWD5!317RP-QK}$4_9HZLcFGkXdkw@Wlc>oRIl8 zj+%T#qXdZG%0aHXCsNVYKfMK9DqS&&VwzEyU|KVpFkw{`TJy;JkV~gZ%BQ$if@m~1 zvRM&BV?_RF)?;FtI3GDXV6DWl`r>**I94Bc7I3Vi?rT3Y>_mY&1?@O`q^pW1CNtci zwelIR&svFNg^-Y(feP`gF#H;xp@U|)&1>b3wZSj2FvIPxaLrktJ-Rlu3q2>O@(rF+ zXTQ_%T1kEO187F58E%c7%7#KoC z;uImC#f?^WidWXjonoh7V!edr+uV|B>1gnBNj`8+7;uVy#c9Ig}af}@ci;_87FT7jO7^(x$ zth#nGlof7TeQg;Ri=edMWymlcMPWov01@jhg&m(&wd_aMTuZLVHKK|NFXG`ob}ofR zlNDzp^!lc2Nebm3ZMxQ%YZF}FzJK$z8jO@c=ARb@71HwZMo(kJ7N7%LiPhkg5sA@{h=4qe|#Oada(|l;j)zgym8xKaxA^y)z?T z`5cg+X$+b$epM=3+Q|0;*Kj>xX^)CYpfI99XhLJ(Uz~<|#($c(xruK8XQt6iQ(rNw zSd5(1e^Y!mcISBSDF*=_L@J5d6^^sfjiIr5BeX+rr8-69m7nC#mftNg8^@F6N0 z>--<0l7A?Fh{_b8Jt@8n*0dC5w?CQ2v_^5MzD8{Q_2fHLMuWzr`cmLP#imqWYq)jn za;mQ(lZzgu`dSqhK&y%iOmLQ`xS%xzro{#I2}T1$cX2@tu-M{)XoAVbf5op(XTm=V zNJD2~h#Ukf#1PrCn~fn7`4(Y_%=U9IM8?>;7$PPXF%N^FYx318{vIe(?Q6>1LnGC` zOU!k2Sm$eiwv6@FVRx)Y6WaPRP|Z%hhRCh)#jytj%$@Fl8K(8sV^0W})n;5q>#N0{ z5iqeG0dt@wl({5e=CuOM^4?Xep^S&VitIH3UGsTBch&o9v-bpyr3YY|l=)KGKLyPB zJk0ElFA3gFP0;yZXSkQI;ku7}5$L76z9{(ilOXR6fKpYHT@mQmt`(7y^Vi_h^t_KY z$0t zUDu-+8;_`x3&mQSeKE`g9`UdnAnvrQA0?RhEFS&gAVA|LGjPrjH)lf!KwxDt&|r+H zgG;2e^2IW*@CZu=AYR3YH+aOswt(1{?yJiI(W(fwgfPH06WkG|6n(Bs?q zqM158VjOO*yX;17rU{Qo*8+k_pyv@=hX7)Gg>M@&Sv;bt9uUK_pksURh{Hxe%siY> zRj6wak6wapa7bHUO$J|{3Noel1_V*z6drNg3W)CQK$^|8Nx^MMm`UHDSCwVti{r z^oqS*llg&1RK^V_{qqNp7=jJooekq!#Abe^+u2T_VWS1iU$`rVZMq%JHV`l`V~fRB z&$bXSrMO#hO>DY=X^DLkI|AETz{FsE%pQI_j_oU8>fjOcMDgwVtX04)@f#33Ucl5J z4rQA6g|T?1fH|ZC45@1|7;(PO!V8Cl$0xAE;Wo0n1k6qoV74xvQ4igl1%vKkpz80N z#GdjKXy7qv-&q0k9oAdn0H2!uO2E`>510d`w=>xr0_J*uz^LZ=sv`9dg(_4!(8sa= z5uSa9Wo|vl*M)s7U=XIid#)%2{dMJbMV8ybE4%+t$O~|x(+_pg?D#tz`?P>g#(l8# z(d~4$v4Hss4}GR;clxn90TYFX%h`i{wNa|gPoF6~Ym6IQf0!?x?Ji(e4Ft@#VZMRv zKmnt{S{$6?Yt0T9Fdbk%L8q*DwCrR7qr>A#q3YX;Xyfa5bZn7;emE4+EzT9HBKV1A zxqy#(4)9x>?e8YwHwpMmJi(;&I?|nQ{2l>)8V@p@%@@la6)=}>&4f~CnE?(4(;B4ED6b844~ z-x-)N^vMVqLTX_)&RO4OG1Ym*ay-bq*3FZJ9v{9_k*SZd8R*zZU(Len;qXd(2aX$# zV(0*dzQfQ741J5CGZ^|ALzggg1w+>`bO=NDF!TwA{>0EV3{~C$&_fKxVCYK>HN?41JBES1|Mq zhTg!?5ezvn^eKkUVdyM|E@S9CK!pY0V(?9j{1HPg3_Z0Gp#NYf5f zE)3~0bO1wH7}|iL9vJ!xLxV76$Iu82UB%E841Iy2IT$)th`|*Yynvz27&?Wa*D&-h zhTg)^MGT$B(B~Msh@qPpx{9F>F?0t*zhUTC3~k0x_$GjU$50Int;SFshTg_dvrUx? zpDNgbK@&!vz)%Ma-N8_A44uKyFbv(r&}a<3f}v>`D#6eK484Y-)fg(p&~^;HkD>h- zdL2W@G4uAKk!4EL##n6u!`T;{_82ST4>oF9u8K6Hg6pf*mG1LGX0V*umh{47fc^N}G z4Bf&|CWh`~s5^%CVrU?SKE}{+4E>6s$rxINp&|@9Fti*)?_p>YhTg!?9t=4#bQDAT zF!XL;4DQF^1q{7|p>Hs>9YeP<^aF-|!O&+I3fl_MB@9)^&>9TY2WZOD@X6z>lgLM| z*U=|EuNzUXvA*Gq84orZwEdAU2K5?!D~UC1#pg1NoF0=$!RN3AnyqNU+rBt-zw@o` zuuS=UobL$Rb1ORB^?DWy&%9TCS#0W7l(_4923mamrin>I58OTjS-3E8v21{UzZ*A` z*jYjRUjj^>8%DMOt`53#vloh*1VQP`n9hXM&6q0e_N^$(YB)qd&v=wPq`r<$k!caE_7+$0po>yWRhk9nEMXx={M4(cauL}Ed5c>~< z*t?`E>iV_{tcppY*&}bpQT~SVSl~-%42mpua+W2|Z?n<4v9}YMkvvPdrA5lJ#WugZ&K@sRgcqf^YcN(t z<~efaOg0$y_LUH4uIRS64$7%`qaw48uLh1vNUK@d{1%6*Z}!zk7uVjci98da8aRZB z3(3^7OkNF9%U=_3r{c98*11#8e0w;!d+TMsHq1#ymdE8RnZ~z!p%v3^H(~DcEWZz8 zc^lMnaxKW)qF+T7a&((g39XoZy9#qhv4)#LH3+&%W$W)Ct_iDf?`kmql{o)Ilvf3#s4GhyaS^uy1(y^KtdAI2rWG! zw9rEDkc5tuP^A;Vf+!FKQAC%SZ*rCRm;uk5E`y;Yqyciv!Ph;49tdb(K)(PBl4+~ zaT}a56g>&4U2u%5q@|+VI(wYP(C!s@wdy&;u}4SuiqJ}Y53<{`sm+_%AJ?~01MXW4| zG~WL-YT&X?TyqgM@Z_BG$)?a3boN<|&2?JlBUDKWrG0=QnD{Q`eB~UBCrU~hi)!!c zW<_PB;8<6n9vN`wVlswv!(TuPPI@i02Bmz8*}jW~*HP!?q+lq_#r+K&mD*;?vL&TCfJzO_7DS z%))yLP4NEOlE#jsChw5s6?R7{XRm{8vfo14t5dER4Y_B1Nlo}PcWy-I&we8`M%?lh z&}h1SAC*MWoEs5Q^xQCSjQGa_{Y!^JQ4FA8Ho&!CUx8-6XEx)j51kFC-vNh9&1MX={g!Nk+=nfl~` z_e}jV_B~UfJpFG#p#*&A`;A=i3hPa0hSCv0l_`5CBw+}*!t(8K zXH|S(Z-8i|7!6Q?=6=VTiL30yj*?W-MWQ+?sI2AaC139COayml8nFGYLLN6@SpfKISL$LmlC`lu+9sAa*ZZ1I)_Kstam z=I!rGlEi*V*{e`|l~$FCS2l`V($*Cwc3YU==}ff7!{Q%_`^y$L`Ybw{ZPu+);FBUr7^3n(-&qwn;V;8d2$& z5ix;A-uYw6Lt?-OG`Bw{bd8mL0xfZFKQ?fB>#Te1Sd-uO=22DyXBmn;SdxTgCW|;r z$NGB?WnYUfPcv>;ERQ$NOTrv8^jw~>%Y`S*YKJjlt~N9HRL_8Qq0u#s3}PwuX2lSi zeaIQ+_(;#-eY*^N{k}Xcf9bs#N-acnA2+l5RnKbnGH*Cdn(hpxqQsbL6#o+@=%4jm zj@ae0&V$No^)rTI=!fQFvh0V-a8GRweRLDdaH?Xex=%ttn^v-Ya z&yJD!Q7WFh&#?MY5mfLyX1C!M>JVFM;c@JnzAAz9HDD|8k_Gd;i4hgBIcThkp%Qsj zTp|_rZu#%;q{8m`(%EF1a|*Lc$D_PnhG*nHQSu=<$~wDHg`ePXDQ2YVa5;$-sb|@d zvS4>iCApg;XkjrF>}S7uW9eLRNt(E0`TC|5@$U~QEzHSg-=pVR(77|%p{b#K{_r0q z4IJs@I2UAkrhF8fcdruY=g!J!-~~{yzNmAa3+8ZJp=jJzs2I8AXZZ$u;VHs0 z(oa0(g%4n(PTXJ;4-GmO?)cDbe6$k-e@9Il&ac}&&o?)`SUF+viL5yX>*T75jp%z` zn);V@?1g}!j+_L(Y3iFdVv^}&T& zdl3^%+rW3RRO?bnb=iWc`@1>HpqW{OH^?|=}`I>y}>q+Z=LQk4kihIAG zQrV$bO6rQ~7WTAYw(|MOqzU~jU;Z_8vkH} zZIJr;JO3d5rN8C#JoWQrw*MGV|5TF@>YW%DAw`+4vf^%nKFz|Kf)t5Dd zyH(Oly!nYajc_gOxmA)bmRP=BB;~+qVY3(uZ^K&IBMG}y!uxlS`!^=xZg@3m%ReRA ztW@Aol3%a8S(3AOl`~UZlY}cOVYb7WA}(2EIIqiKQ0RH#Y~VBanlqG7iI^y!q*Ybx{g0}!Tu)&!zIn4G`Oq>Dma^n+N-#GV!G=a>8pK+RU6YC z5*it9X=Tny;Y7Aob=u}AXJauy()#*oafEk*Yrs;qq22S}wD)41ZNwZ&o9U;;(u=Xq zEXR{}w8w*K+y|Pn2?uZ@cpd#astAcvo+dV4Do>zueRC4xqIOuQ{UyDGxG{WGwD3~JEr+yfB5R@~}K@0Qk;_cdWcEoW7lbmT%g>QDn?9ghN}1l4%C)j>5*Ei;_$91STg1zn+@ z@nf~ol502{JL)h(DO*iWFg0%V)j`!h`+t?1ntE-Ri5#pWAzwqh2w_O2Ao~T7j_P!{ zmNVB;&iGGDIy4QA223=j7N0xH1v{=bny*kPb7~!DGHwRaN;*#~>8(2GKA)Rnt<}Xk zl8K&=MhX@S(+CpGl71Lm(&Kf}K&MUG37rOkLTE!hi20k2JQhI0Xyua5vnwg38YIBP6X~p)= z*7S3$pid|0pRzKm+W~4HM{NA%{jdW@2##6@mlxZRHs$>++gabSN%^>GjoeSgeghJSt>&(RP)3QINe+&g`u5skNb4NiKOB|}09aQ+g{Q&OT z=!D$0!(`XS!i4{QUM_bgTt}D&dm9>+b^CXo{ElMLbDcT3qbs}RdbB$&>=UH1yR7r~ zb8e&F-JD7EZ%1c0!bh>RtDCbrJ>3abLsQz)$=OqkS?60D^3VT%tZJk*B3=n(7E4Wg zIO7p=t!4J&I%V;>gzofku0_-}e$g&zwTQC+83dSygNL|lrQRy#9 zPThq`$M4m?W8xsLZSZ&U?f|=J$%h{QwJ@BgWzzGt?pAJY6u*nIzs` zPwPIwuBFN<+KHJkvI+W$Prh(^d=O@WB^Lf73!lB3OYe0y5I;yczgO9py0{Y+Y{9Xr z(KK;1%Koi|y(7TpCThFhY_eAC{oT&kfn0N{Y85%8;33O*=8|`iQ%0k3b>~lX)}TY@ zP{}QZIb+35Gb5#v|Mpih`+OS=$7-P-qePw0m3Axci@mSg!<{*fnlxv$vyW2G)ju~n zLyk!O+*i-2hXK@gB?eaOx!QxyWKnqo zjdr8$8$E(qkel6C#qAJki`2%H{j)PkX?2{Zcmy`6u}vWYM6Th?htPdHZZP+?vK6MR z;jTEcVux%UjN}SNJ+Pt)^jaPv3rZ7wPMD|6jA+`ppl*BlMY#M=KIj{TYaYSDm}!A* zmCiS1gTJbIhv|a}7}y_3@!wU%N0W6#_`jX#%M{Vy!l$OPfFgTD9Nj>DlRawHY6>j6 zs9HF^RRH<++p_ltv$xn ztH}`=%RR3 zt7v-gG2fDj`?qgPs4;9Ie;JgzSrn+7!(&|o>E$OeOumD6;{!*I(&dLa$k1tEb$?@f=v~_$1 zvw|+#W^*o(jo2(J2&MUt3MxyX8=%{J&xSQ$59fxAc*#0nDr(zTQ3;ec0J$g4!E93# zcbx^tk5)&D)K^?xRp+9*21#CjmFKIk_9D+h>4g+y9_WD&mC(Y>XHY%QNZ1?|7F0js zRAGv&8Zpztelo!3Aq0tiRl@&HlBzr&^P}MapOVH7aJJ3-r|86iFHJ+HTl(1yv5%4J zUcw%vnEq~bzz0RCl=-5R8DGT^2Vh|wwG!tnLVEan4(R3avh^j5op_3Q1qsU%?e$#PhI{j5d_+)S(^NCZ$$E|)_=Yhgvn+naS=lksHlv62 zj8L2b6j}&FVTB1t1aWXRtzPM@Lpv_UCs2a}*j-*~%YDO^`)vJ$n8?@FO^*X+Cj0bE zcC>LP(T;8j>6EYts%wvJCcE@Zc<{G=9qz$@P3{d_Zo$3a&b*ENao&KxZVSJv!w4;_iGLUZ0k5&Gz~o;r=YUgM1kSwWrRX_Gu#AtOc`!PUK7F($rf6Uu*jDeCnp zJ&);n9thhWKws=ms7^JOIino#f*3`IZ`EJ)L(80FaBfm7`Ug6Qh3&8$)px>V{H8GS z5)in1`dJ8wHm^#B#}lGy!qeCtn$;Lx?3fNe>W8zc!6;|dR{Y}0HP+*X2K%I2K!Y84&sj+f*kmfN3VnS$ zc72(kYOvl&k&2vap#9*OXt^w%CPkYfMFR#g%hIZkq2eKlDHQf0riTKHq!Xm1xYP{VKctEzH}u z-gYHZaht?Qy3;fZ5W*$)J zTMIFnr|wJgoumE0VC0H-Ve=Sqa=^qA2mdU+c_En!Mkj^SYJ}s8B2a^^ie*TVosokf z-~R&B)*%zOU&YCl1$NJNBt=l+mvANSwa|96)H&k2&Av{^J$&~@XEPi^VHy8Xp%E{+ z(kXjZQY_`iCMT$^XhB~Kpt%(xIJe?kvc6G0{O=i?%~sv$@ddXyGX2q#qVLz{_$;U= zVNurAfT`82+JUNR}o^ypc zCeY3eLF?}EU;FEKg%Pq^emgepmPycCCJ4gB(vF#~Oe$WSj1E0IIh^vt+_4T^vjUo8 z-{L+v2x~^JEu==@2F(6}JHg#6xw{qa?-P97{D+fc>BKjX@;jZo(~b*0|GfB1BCjdP zhL?QE(j&>yRJc4dgbEA5y`pn3*>Oi-Mm_ww%h^I?Y%wb|jV6DO3gvp(`@QoqoM%UZ zWkH-^r0S(l`wQV?z4pKd)mPGbE41_FP@zPC9Fdzoqbhn!>OB<7_P&cMqg5+>w$& zeNMst`yWfM=)%&i!5XadX=s}2+sxjON~2GqH!uiw+MBZeNs-Dc$@r7nOz|}Ngl`M6 z3cfe36mF;aXTZ#p%w7s}+f<`!FF7;m&^NBixOYWkcC}@)hB;aS4Kq_RpH!GUiVIxl zn^9I*G}q%gbE++q<;-v+Na7R8{7_-eI_t_@5}KMp9o)`18tFkrzNd3n{5SV0FEq|C zlKYdwMV&tEIINQn*pgVY>^=ulneE&<0w-D69w>00jWs$cOSrteD;bduT1EbAi{ulU z*Pc(!q^z~B2+>G#8z@}j2?kBnS=8OGTNkyFVwlf?=Jp90Plbz9BWS@QSCkkjvBMOs zUtIhQ+YqI&NC#W+11)&gS8J|7U%f1$FDg(P`D97BvFb_Tni%ChAA%dTfqu?{e%gX& zZFTv7&{khb^cO06$5!aVqB|+om;9ZoXe+Vaf?i`mbKk1{C$x)8qW@6QeyOQ2B&{xW z_yrQ5wqQ?Ku&lHmya8-1+-2V)u6=G*mkeq!x&+N^1`qD`I9VNY{&rR~9x60`qq#WB z8>w>lA8pAR40?gJ)kRagu?BF z($3q?WJ+0&AT_zO6g53DjryEMjP>jtrtW!4DGpe%1Zxr<^)@25rrVZcnn5)}inzXe z+;KJ)A4?YE{{2;Bu+aS;!7*>Ux+pSIWnC=8=TeOs#@%9vtFbsHkw-P8F#{?(^!>JUHgZnh?P@9R-f0f)yLM8}8?M0wYk{FPX!e-2shQ>0aH^vYa!0H5Lu|C3J_|eByNzz(h3l2odvPlg5bjm4@bGO zgi|8UNQ7_fbfV&mJ~eX6LOgCE;(Tg9S`*{S6fxhJO&R%(*_8h-ME5O_S zij?3Q=fQopqN{;uFF9=_$0ylv(bB?cX5r-g;qFVBmBD#fa>hwcqzm$7k4Uf2W{tSt z0vi*6u|}A-!yNrnjGmS&?v?)>VEnT!^_t^Oqtx}-YL{W)#w}&y%Wqg27|}>u5Ci@> zBUNw7TBIoP%`Z<#Pm}(PpZ%YXPH?psM=YNn{6<-xe@=OcuFu7VZ_MR6{$^+@@#8oC zy;|d1h_9xk*OFU`mFRFaS62vjZ?dbCi2YVyk4JqQMDLjbdcAL%jzjvB+o1*k=ZZlY zIJ3`?nc;D$-!I^C;Jez!b6!+9Tsj-XgO=>>mS6!JQ0OO?bAL$Oj=mSCQLa zMR&+Q5tBfLSJO=!PpmbOinaI|3!WoB!I^nwf1z{uWLS3ElbdpC8} z5?3Vsl1}&a&6>)Z{JbsQtJB$s`Bh6-1$wo)D*>K|Gc8@Yjs(hS;*yspa2J}{%GH@B zwyPOuF377Ie^(bbm5c;)4XX4RAG|hv5X|jn!yStwOd2iMmWCdfN0(Z=(j8Bjw8wN> zpbdAFNl$0n7P0smd{O}JK&)0f7&FD!(6d-&&5;@m{mRf_qrWvZ799>~EWWw%TSEeA zOBNkDmx0SMj0(_Jp<8zaR-rt8R(EivAk2yD;txgowI`so<_v&2x^Js9g?4m_PB9&7 zr&)SM!JOC?SdM;I(kx{0-FF$!Y*AXzvq|)6jw=(&H>V4lFoI&TU0sRESmWkm?#YOt z9l7Xu*u2k1>uT{9*ul@1O^DmjR&<7>(o{Uv5m+9705zcK##NNJ@h$YHw z+={}m2NW0<5Lo42KVQdG8e?sV*wD8U**fgg&D9bc?TlTdU}1k{Qo$n`RjIt0t=K*3GOqq~MMs zU*p5Znk9NjTvrtbb-=Y+i&DqKNoROJMJEd`Cm6@Yhp-LAn_ys9)%ZJ@1 zbslgvM0oa!aTwhp)aYR-O$NcS(@#;FWsE;rl%~T-mGjB7^OueDS|&gC;@4Z8K@uKJiy5I|=*OY(P7%)k5g1v19U;EgNA<~sv;!Lh*PSx*BoKo zA>fQ1FJkxVgDVOt#@aN{{A~6#pXRD9I!jKj$}tv}OZwNuPFF~+G6BcF=wLy&wV=5h z6g&Yd{85RXq@p2WKPntnuN)Olcg2cFEX0Q_MELav()pxXm>Yk^1p&(?_H7l*uA98l z8nu@s)QmEf@|za)5(^qF_O$p>0)J3}XsH76y#?`Y0Kp4K3{}<`KS>P&4Z#2YLTZpn zr!ncv<+O1%x2UquR8Z}UvEGWKMzbs?SD;hQe=a1xUjOihe8J$4UB{8%0D3-ajU$Y-)* z=Zy%+$)4B9=h5bc60|@EA>t&7vLb3XF*i=tOzF;KCEuv=)IsLZX_2#v)feS4q zw(g@98(=4DRS^D?Ycx*WYXwIHsujrIq9^CUTXaqe>d|SwxSJFzx`r;7)v2~zBs%pR z&e-L^6}x#pOo%E!;xPoQ5l6ok)L>i@+0I(E0}eb~7mgpPtrkf+uRz)RD}vSa#6_^8 zW);9G&sJ2YAI&b2qvwEY8OP#{WDVIyL-NehaG|TAm@GjPbrAa21GqR$1C7%_KG_6Po)*1)q8!6jX+(O5Hmycn8kpQP>4X%m*XMmToqAo#?Bs*K~xekE6i zxFJE;b<;9wm@2!oKi2e=Ct2+F$2FHfoG*JVw%22@wAxm2t)Wi_5GaZ^< zyDXbb#x-F}gIYJyNYMK_n}`kGhKblua{K7qcDHah9>R6{85f5IBfAHX;@N$s5rqND zx~RVVHx!HUZ%3rrZ`pvlkbTbZ{ZC%*>L!-$H&xTEp3=$XK==a$)s~F3Kd@xvVDSzw zBvvui$aX3D7E|(qZs%$dAJ<52QwR52|5n*_bQ!0oAiknYzJym@jkx+_CA>vvCC#nS zeCy{_Djr)W)zl>=OjC48v5_E6o|Ax>CJ*6^H172sKXf&~c^{_X`Y%5X-j2Gowquzg-v8%45z@$x3Xn`_Az)Eyz{*S9!M zp+isB!Tr5^>!=Y8cylON=+|{F?^=64bJcL{HQ~DzIIlt;+30FUJ07beBM-jQkvnxH zYtP8FsMWtrcP}3Xu zzAbxYFq^F+3}@Cf*fTH&A}`;dHaHCtQZg-^dVCm&o#3Y#{)8aL)kZZxI-7w&2csr5 z?Nf><7~d_x>@#h%!Dqx&#e*J(K8C07TjW|~TuKd43~`Wd@r=w&YH%Sj#B^K5nm;mp z%8DL}!k(YhLu_ilyX_ht8TlkRV#&L(KXP#k^iqTZY53y%FxpFB$V}v4nhq@Zq6`@{ zmvt*6HCHr;pr%gZald6J45vv_c)ZjREIj5;rq?tz6Z}#(;0JUtx9!xcnKdbOdU841 zQP)*YynV<#1)^n8!Q~Tw&BaV<>%dKAlglF8Tv~kZYASw^;(u>`7^wTLQ(bkJL|kYX z``Gvl<2vxs8TcQ*7#!{@n>^s946Y)c7w7E3y!fZg<9~V{(VwFP`TH_)6fOdn30%M5 z8)NvdZ0HwtI*+Thdoix6A2xeWDy=va)O&CR_i$YB!l_z&#v7?>d-AOC`;V~x@+7X8 zj^p04V@qa3Gcc`(Ex4-=W^1kTL0D@uCHP4lyxoXz;BHvDGgH;%kK1N3RnLNL;{k_Z z8-F6R_)yOx^@wX6!e;EMVug-liI*IO#J@<~PdbhzM!RL1citVg1s~AC+_jJX3Ia#%%@{Yl z-*e15Kh&nQpMyJuai27LZye28o>`V6vs{s4q@)j1=qz^XakwQ0+kyw`V76w)oPeGD zvc$a@z%4oDth?m9x*4Y4e$JNow4cZ-8=8;RbA&NM5Ik`!8<*o8G}A7cDxM9-1Czam z!N`|eoIdTUB90v~RrcCPy&1+;uRpugOH&RZl+l0t|5mDa#`U@50{_U&0)OXh_nT>a zdFuFCd=Dz0I%2O|@=-I3)CDCn9wmWRc+9CmG5f00VVA2VUsc7mlOpP+n|5jTQM048 zGd`26XTV|!j*fAT)<&vo?6ojJ{xFoGZdWrg{;0X(r+p8%*1d`c4vw#2(rA{`Tz!wE zoXde#?Pp$SO_Flqf#+bk;E0-HxVwUBuh`M}_TM|_T&=`+lD1Q)?XQbK&FGc&+MCWd zIKG0pU)ymxHe>ij#AaNP+)FwarJrhexq@k4I~rm~UN9cPx{A?}fTy1fr!cnwqKP3} zpL+EvdLK5GqYGUzqUuk&2dffN;K6eE>yUR;La)NPa*qk^rb16%bv+?ETPV3Y1yVht zIP9J=|x2^GqD||nU6~(KSJZ0&(HTA2|cHxc?uSxE!I@h-WmO`cT5^>$? z^}5yQ)xYY7QqPIrFeB0?4Bs8%e$;W1MO5tFb3gm- zUDhMX<=w4B(lKr~5r51ar;s9+u9bJs5><}r12YaOhHE(n-TsVe8|NcS^hvV}9zo^wyMyR&#ta#pCE`Z4a8#5)$w zQhUy~vF@JY@G;(VQz@$|x(mfV3uTWzrF$iJTX9=T^RLQ5Esv(`X$@px-wg}#x;-%^ z-knYb2^V6cYu5=nt67&8Mq_`lHm#`aZcN-0?!+Sx{I(*!|2E!LsA2p`9fvp(8SBnf zT9jJ?Idp_=!nA?GwC8Xwp~k>DNE?P&+z^L}dNwSR^!TJlr%W9+_L0Y?Ouhe6P2}gy zOr8#8;+RaMAH3Ls@;_{l#@~l4-_yb`+;NWCx&$~SX(K_E6n8tvdNYGHfeh$MihDK= zNNT0P0ZALi%rtj<+@{4faYA7XPIo_zOMEm2&OzERJk=pb1U0IQwkc1OQ+;i-GXrvz zGZNGmL99c)pcdh|xpz%>a|Amuqq)MsY(JW|Ctollr?DfT(Xw#5{WyI88e@coVeBOTo9S-mSY$GA;TA|WLZ^ktqJejcP0h*F+%su|Ja2j>0BskU)Z<$t- zVT<9vvG#Sm$q|o^P+HNzt-B%0{$?mn!$#zje!UyJtBU%+ne$zy@quY&f-!m{JSn&e zr!6i*N4o0u%wPzgbWdyG?Mqor-HGB}Nf{7C={w1jXj~ieSqwE}oU-xj|${s2B3JaCdgh(s?uNcrh*AkBW5?wK@nD z)6duNJxY4IN@1p=u+=I7mjbk>b18yAL0pG%H?oF{&spUuE8898Xrn`0YEYIL z8>r>TeIlzG9k>@J$;97j?n4_J(8~$aV;7yc6NX(GwHT4P?s0h9MU(b^JMgnE)a$a2 zU@nz%zY&B=c?KP=ZYwvOtXs1xQj{mFEFBo$25~ zQNu3ie?Q3#4+mvMGZWI7t}e@X+?K*4nLS3h|l+Q*As&!7>jrl+`gB4JSI&I&_@HX=j+Sf?poqG z3Ba1&1Vj;Td&{caD1$claaYFdr=gx=l(;IJ1+}R+3lFmRj=n**&CG#BZw!ticurA# z4Cj2rKNx7GWxhD>ZyBz-f&DSMyi!1yPr$&y+A*O~I$a*qD3m6x$qF?aMskql zo-p0JG9L`8Y$_hpD2j?-fb?4jWAL`M&7#$RXK{Q8iZDqQ;Su9^M#l;avaAR3HhJj~ zw>rokvd!dyKqk12VO^e_?;N<=ClAI!n$)M5n7FBhscU(CvA>Vgf569hqFc^$n@^al zjMK9*t?*M)8#xcn*m+h0{upM{cjSppm&HF=Ez9v(A&xd1Rf>V7yW{Pn^{1`{W;uBBHcW(N=26wj?&@Ne1kX^wzMG$L1=8J35-IvoQ~=JV+enPF={9s6>okpT{;+hl;l={6a#Vr=)AJ5~HD#fP84p9QXeOC+Z6 z$h;6n^`?Oi53da!+jKT`?j3oLqY=xVHX9Lo>M>s8^%@>W!ubX_7idf~A{qoeY|RIvFLo zxbfRBweQ-t);OuI;RgLT?*5s;&6l{BY;eg`)C~Fn0KI}Z*kINMp6e_lHt2@dw6oa#$bGH|Digg!MO{5qur~roB>*eR&nU3KmW{8U6 zcTGpU;BG1gSy=roERJwl{-Qg{@si1UUS+Kg~%E6(I2kD3PZYwOIxAJ88et|;j55}Un*rNPd*8Y z-SIT*RSeb`!r#>yDDq6ObWgm7!I^`=Ib)x`z42?6h7nqm)@*DRMVX&@!mv^@Xv+Gw zrI8@lx6P>0YF>k}q|BWtxer^oi%=(cJt&xV|9{d3ybfz*sieK3(=gsUVUDmtm7LUjjL0w#YVpzKoj0@R}QSq&-1c8$N0xFQ~Ss70{l(MRUcQ_UezCAY`5C{HOznuSn& zdZjSY-I7fgJsYzxyo36FN}{K$X!NfRVwwdrMaS?YJF^H1`eTXtK*iv4V?+$DaHolP zEvzD)#U+1rB}6(VSw~e?ptP?pLusj_Cq^8yQ1|OpF6is;fqHj|IhgLEGeww3xsiAr z72)U=O@ANlbIZc}$CmfT2bh<$B(J{0^Qn$1wDvrpk9~-to@xBuve>F+r0OHI?`m|_ zH$QS$6eA>jr~>B)E%VnHL*Qd9W$(4+4zT0$A=^ctU&;c*Zj@ZyH0!TiSXrGMxa!-c^sDV?DE))NDM4oxkgwp49H(q)$L(k= z+q-KaTMXinjo}&TRE8%H`Pu8>MhtiAgEAB;L4%Tq`p4@r)Z0r|8ZM`L%hI-p z=9tXmvcg153%Z$(W-&k805Kny=y58V#VoGaJeGP6@`Q=|Ex<845YLqlpp9R;lf@en zxL5`9kOZ&{y}i+$Bwn)sU)6y;#&>^(F}}-5lSkryM3n~}Uz3=(dJ_iOb_;KdE$^4j z;9ZphUbY7wY68RgMN^N}%;4J(Wc@m)_=; zkrLGAtT>$8FwlESV0RT580m9d&C1ZW?e0pVi-p=zr=oQp71JefnhHe2bQM!9gaVzw za$Wldb^U?FysKhZqwVP2Jc?EwJ&WguEx=_uklQ!m2X`2KJ*rh0RoDfO=TR45LyZ$R zfeDRUx-`FeIZEvb{D=evgB2ByNzv zbt;fw7)?Cn?kHAUSfA=F))bQuLsOiQtWzqBHAVD{=H+SF5oo^S7T~Ws5Fr9jh)A3h zF>Kawyu$38W~07E#TCqMojFSc@lju^pEK5r6mvUhQ!be!l|ebKJ{+b$4@&u|pDhqurnpSOS9>LBRQDA{i(4lkP zh%0&5-juIUt(>gEL)q;UTl-_$y*wCb9R?$#pXtlolYNC|2|Hva#*!=rwOClh0xM3++pHJ3-$*KmL1+dI6T$G9f`fEV&UJ9?fiouAsc8se!Uo|p7z{PbAz4aZ2M z!LZFVyp+}4~ z?}oc+a*AtQt+V)}Jjv0U7CoXp-e*{Pu`ESrBUFT`gDlkkw$#s7eG);(sXcB7sOTvtUXuLhrNCL| zaK+a07m!Ku8y9O)K^z2r#)6)sqkRFawZ)hCQ(pwiN*jBr@l%sp| zvMbP>!t8JgOY}sF)-taaN?thC3HNHEr!S(1HFzUCIL9uhBzv;NgOYZiLc5Uc$#;y_ zK_l%zFuw;;eyXRocwK@PDj+^@h`!n1@rq7+*^Y+L+?T{o3EHNB5a=9ET$jPDXp3Lwx7MB3;1NU^GnQ+*0w8N`oTmg(gG_kpxalzcp@Q)$b zCgVh{OJ>t&(BbO7rstI=524wua>6KkeESgYPL4F=M{3h28wpZ}SHEE9gJI7qunf+R z7!&N0oq^l>3o_AhAGl=dj)d>!9sQ26jL~#o{w04;<@NTix}H?=q7)bJ@3Oexcxw_~ zWT{2bPv*qXCfxt-cv=?{Q8#`epThV4u!BDIYkg0q_(C$*D@@~E8R|6w?F4WciXNAf zObr*E3&SHFS{1AcrmOohcN$`%`9soAEA%ygxvNp}w>ed)WDRx_5YK{YRRRKj3o80h zDrp3-QN(3abC$;;cf-$*>Wd}J+F2A?r(+21Zw$M;++|&J-i;K)w7QGdwcvrtllH|X zn6z6-U~?6i+6rBD&VHkVW_PSg7n(x7HL*~$bSke|igG<+RH-=%{eVP|4WN?<%c}~M z{bNpT>RH7bCh{%R5jyp73(pj>NU{n8EPl!(i}Jg`50cml5-zZ?=IJaRL=zT4d3SE@ zi4!{{b*oCn60_=(UviS@=C3)SG;Ap>tIZbjMx7ied&)~4ai3#bPlUM0_*`t}_}a=> z{;n6Q(YDh$Av9ze>_LwO@6_?=`~@Pu)NK4JI4`L-es>X9syBHIQi7VC4a(u;(KxfS zJ&B^LWOY(mK0ihcN>1)rg=Xi#zm`)<3omb~6|&f2-VE3Gg_1f-FKw^q^qo_o-;O8>lW5koyC21%~JH$OFdu-*S=!v=o-|h2efUGvDwU{ABwsguC?G)?Z|72k(wJA z_83Y-m-Irl50tQeI?U(2gY^`aTaCt7?i4|N!disT@uE+{@M4l(E12bJ)& z%xkuu7b+r)3Zrt%EXjk$e#(|TU1J+1pwHTOst^$xiAIG;%;S zbn1`BJ|U5aXV$74>H*hKbV{bW1K@nZ!4Tu`TE*iKo~7bx-tbNpX!8d6w##2N+p-+3 z8|dk3HX}sMqSk{viMTBhsg{)zboU^&E!md5^eDR8#Ctu-qPaviQILV*{9|Tr6s^6| zCX@;W!{?c0n?rpqhk(YIF%(LB`4CT(7%Q{MSF#Dr7Fn-$s!Ge#;2J3$ifl&MW;66Z zv-!7mZUx#t4A~UQY!=vNliw&ek`ArwWNytk=GkWRf}V|kXdW4XUb*$Ec|B2}0k}J^ z$JPw4C$ejR4H__@L5fE~gPfBhdlZok1+t`DZUVj1Jr@B3`KS}8E&Ghd4m9qC(Vk@E zCA|kcxgrjS>HT^?(70K7xmD=W80hMl|LM~}BvOK=0oJC`_o0-XOlXb@WlLh)V00GV zx@m9Wwb6OLP7;l)Lpq00*e-VzP5`mE6IF7cldOHLb5+V8l?#P!?B6_W$zz@f(gC~+GQbsqmx;$%y`6;>A+ig2Kl;5Hr|0UOw6w0ss(jfN3rr-H4*x| z#x+xcq|=$nhQV%Fz{M@0hb~Xg4WqXwL7%1=e^Sl#L?c12(ENrVpC#Q=;AtrONn{@d zxpuHCg0L*DKt+>1*|^9^Lw2`A`uc8dF<@aR1iM2YL?g+U3AoCAp7dVfCBL;h2&`^b?-p zI4Q3c9Ov(?b;&I~eY&R^4u$1B23>tOEu0-RRrBRQZJzNopzKavBdOTkx-1=>j9KI^ z^OxEza?36kKC=1c3_QZs#LOj2&jqVNIPv;kXi3AK02>#{8B%EMOe0k>4OsZUXL{P= z{1^*ALdW7pT|7`c%QM6=)RuU!M)dUq?0Kxia2zqm6NPhS%$}#SeaftX`P*)D(ScvE z%>}ot1mu{vB4I$PJ{8Gwri)m)}e&o-4PCtNp$K&pG$yy zT^eogcLDcUmmu`>jBPHbv|N1Ztd@xT(;UV)5;s4nqxdvgXB=zdKWVKOZlo%$=d0^5 zy7?lEfgH(guXBC%T!YRZh7N0=fcHSSyHgwdFVSnFPwa$hw+_QB5KjY*@v)}N)^W>@~DC=D&vtA z+OSXeP|B|jPs*ydA@3m_zCQpLcU?AJUGUSes|#Kw)$gOk<3`;u8xeP?FAEyxzO6N^ zww8OU8yBe?e>XaZvcfKR!|wv)u3WVUUAdJ+;->Uqf~`uWD`CChu5=qFo;(j`@{Vr3_b`+fNhYpG4`yP) zT9fAV?NNpz-iL9Ei_&et^K>wei54FiUK_`i~QLt!GA zttxTjclg3n$#LD539TP2Co@NX3H?-?Ca=XzU4#0r^Xc!>Pds&LtD{FK-Lny0Dc$&! zs=rf=1nEx?3|4NU`QLj|@v=1|`zc8Fe)EvJ7}6t>Mr{JOkIwCB%jE%EC%*???AYvy zfa9FuvlaNkBFJ0Xs7Dw*@--%hr*!W0|K=8MLEEk|k*joM!B#jsKGta;*wXxs1V1?o z_?tp&xCo&Y$8-=bfwHN_K+BY;b=%M~u+?|^S_Yu9RDY+ZB20Irs*Q4&kzi>Q_M`Xy z#*=|3E0_kG+)s=A*3%oV77bM27Q{B;`0qTmunoc>SmAz9RvhN1ystfYP`X7Ayb!zi zo=|gs8ll67+QI`}r_hAM4EMvi%)NG_%=2{G3$`=_5e=r{arZ>h@TDaYxc7nOHQpii zRU=Q)tS?fBUx=m$e?V{CsKYnd!u$S=0X}c9r#6noFc&tspUd}KGxt#U9@QwNCx+0( zAK0maAE~W%#umW7sP5jQci{e}4cM>r-Ep8N~z>Q+eoxF{PIoUVo z^S`l8W&9f+FWzP1J@am9{8HcO*Kko#(jko7F-E4+bGx>NagD(wyizcV(dw4@aHPoH zS#G&WmrljwxV)>JamBPD_S~B^I?FYfd=gin{B=F!DE|n;I%Zj9pJB>w+%|fYH-B=D zdL|%zh*7I03g$JOGV6L)r&&MrG%u?apIT5K=_qvD#}PEdsN+7V2(!hfUv-pH?Z|l) zkt&~^jTOIIct4vw@dSe{6Op2R(AOqr%xZT7489t;jg`?%_*6 z=n4|FeZwkvwNI_X)4ySE>u`(bV9^$jXQSEi`KcFi9l_b8UI|q789W)=3SR}s95hFY z;XlL0EXRF2XH&%^67-NCwD5$dr+C2f`B?q);06_MO3)HNXvVvc==iRS5tKckY@GRI z;35mRQ0KD#IDgtxOMEYp-};d|H=e6V%eK198{AZitk5fj_C0~kw;dMlR-Mc0^2QlY z2k}42E%kHrGa>5fKRn&UMGNSh2@*|inJtU6g~0P@5V@PfPJBF-U46iO+lvXo--ZF9VQQJVveCV%a0 zL9e9u@!gSgTuR!fv5Yekzgi^y87XqWu&5tigv;&LZF9i){YFCdoDJ8wy$5*(X7rNvs*2(uupp6dODN%B)2{E;n~8>q(( zECWwT@NorfE(6w>;A+(HZ%pmK>R?X?x z5uY{sPv0O-{o85IVDui+v_V?sE*f3HA(braq??|`jt+F_HqdSFqQh0axKQ$M+!z6e z=m^mY-snhgZ)M5b{4Q!V-D_ywGv&NSq!-WJAK%8z{fJ3KL_WVCYO&~6US-M-`znEcb9iILA`7@s2Xold z-@;qZ@x4j@RwX0Ws~R1;l-G=+%NR=7!rQ9zxDIQT^=9IhZI-lD<@MQzE#lz`-bgAv zaIr2`Jc7W@ix%iP9m=L_-wQOW^8G^LvN!h4y}zC zSWq6oUJ}^D4p@n1mF=6vQDma4h1$uaiY9l_mDsa60v)Mut8+O-fBE!q3HqwhBaHV& zn|Ck4^;#ib8Aq9a$s@buS4h*krvv%a5

-
  • get_unique_classes() (in module cleanlab.internal.util) +
  • get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager method)
  • -
  • get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager method) +
  • get_unique_classes() (in module cleanlab.internal.util)
  • diff --git a/master/objects.inv b/master/objects.inv index 20de89e700042a59b56314dc80404e6470893451..eef5aeabda3ad4c644ebe4c21175a15df5f48bc1 100644 GIT binary patch delta 26857 zcmV)UK(N24t^%g60=@*?UZ@>`68QU+-Fg{!Sn>I{ zdhj7-zC$G}mZpal+;XLQSm9kQT-|69t>a~x^FBDe%;Kd@mr^y_$;XR#m$#oj{vBZH zgQ?F|K~2!c9_&?G>AI0%=qcZML?G+)1jZ^Kh@>T;G|H=TSCy(Sf0}h@G#XTw?mhf< zL;p})a7$nf@#+Pc;sELpxPD?-ZP;)K{1B(fDpr1g(-ygT!|+3aRv(Idf#<2?eO!1A zwA!MqoX_kMA?9sx5&`CIcoG2)&;V)Z`2Y>Di+i93*b`#@2G|o|{s!0+VBQAUZh(B~ z#^=2^K`HY5jZiMef2_?=F2bx0Q7(e-rYI~Ar@c8=Si_Cu1Rv>tRCh~66fO2Na;UZ5 zHHY#9Q^xpSu`-~jMpe+_pE&#JN@%$&vOPJwdUJbw`S$Yc&8N$oYxQoUkM#cY)u&6k z$>S4+tX@A}5RLrm5=F~AE8`@?QKZzhnyuWzhgsxcP zM|g<#+i;bLR%K6?$vQ5gWtJ)MZOZEMJ~_L-mQHYE>=pT*e2P{Gmq`|nZg0ClBC`TC zl!3v{1wy=9MZ6OHVeEG4qd)eGb(+WJ^PfB-RO|KNrn3tGTFbcF!AXOYFAHJ<@-~x` z3o!x|>XXI`!vVvSiVP$YebxmHb*&WIw~S1&rAtZKE#;HI3}FGulOhe0I@^wEM|-Xh zMW@f$6!4`6AVz34ixDB*Nk*#(!mIqb3%@-Y&p3KeEV1flR+B@|1_}?BL^ICdxA1(k z?hQx*0oSuP510ZBMc-_dEEW2ge-YSov)d8V9)D4vl()+7u98P}IUx3T&N|0(YvrzCOSB_~GK?+nbN?FR$N4XIGzZKV5u`F3*EQf`11s zfq&nfXsVyq`*$~L-+cabbxBNKoBry}e_UMM1_wd?4l130t1F$9`Q9pAqQUHl-$6y& zoM<>)LW-lAtKUMZAgCWG zss-(Ara6g=yK0NF@-Q}P;axD9&uTM{(Gq>N$Le7o^OU_MLDIe(^0 zl+_>GN0@lD8nw*qV>~^nZ8*kvX=gLd>|=aaPs1^OfXRGTn|X}y>1#B`%X!RavN^~2 zp04_1yoAAgmYREv?(9;G!$`6h@9&^ zhtAsiYUygO0jHcsD`R}G(+z2P+6m!bDx62GNsGY$XroUt{RB)E%D7VCB!7yQc~-_r zhNH-fHeCc=0*88%9-EYC>rc%VK(o9O1IB1-Q41xg|IGi8Gw2!yexw(_^9NL<@ovX%jgV1j^p;l*rNKI1>BoOu{{dJkF<04vS*+`!pAfR2e`BMp? zHL6(Vq%E_AN?&C9f+%xVEaym_%!evx*VlnU8D}cMG8wEA`O&3iuT$8acJXQzvEJiJ zKLJ3mxI-OxyY$hQdViF+a!GeeE!Jrsm(PFlq*udUr?5lqs`Yv}2aL6HoV!L@cdF4I zjH?}7=*^PSlZt&50~&`aZ<2IXpv;%9HG7@H4zrk~_0)S8xK`G4P@)H-PvTl%zpb~6p-tgh*=G9ntFHiKLgY?s@A_(L>O;o@-6b>;-XdP! z!}1{7VnE|TWxg<+rRFUT+U*pVPH3GJlM)>;GvIVK;uDW-?1eLkQtc= z-NjZl)6gMnmqAfAkU#gp+SCe3Dxwt3;} zz)%N5mw&*aroJP0nn61s@wzfvAzUWe*c}mDH9vJQv?&}an|so*%mcMzE_I2}c2_=n z(}=UzDeO?YB2IiYN5)&Zq+_Lqv(-D%tCLDzp|C^k9(TUxKgwFQpgWDedE1TprnnpR z&E;;?KT(lW|HqS3Eq|@jY6>Q+zZi%OROJ7wL4WiwNXUgZkV291^i7GpMDcP%dad$Z zjFy63#%TUl!x*afwottKy&}tLQmlaCBq~(B;I3qbKt@!qREHB`l`nN0=E@~qskP1v znotCMO}yM7XuE|M9py-7WUjP_L)}T7CjUfHT6orf2+Nevl?~Dy@9S zs((A0x*CqUnZ06)+Kf*mRu!hodb$RZY=yq5PEf2cotwnpCwV^+f7S!)lB%Gxi<#`v z!)QSdH?LF`l+sdtWnXk97-)sk;$$j>WH#$$MG8gbra*X;rz;%M;K|BL8JBXnW98GD z^iH?z%WQTWmcRuQpSGhvCK=wLWtkVV8GnrCjlFDOjVb3d4Lvw2Yv2d6*|0qBSkSo+K`r&1h5h0J%!05AQ~miQ<&o zjApHNkbd{5W~wofym0ky?%5snE~+V^PrE=e>xjN&Ft=^?k!^^5+6eE+U=YQ{e1Cp+ zi)ccmZHv*!h5HqnKAg_-YMUjvjCPM?uvus)_Fks=lQP&qEqBW)?t$zJrNn(W zb0m_8PgZAEQS)+zM)b2Ki zPu145mJN(9fqRX!JW|cYWub75qFLU(y8K}(&+67Fn&rKzOTz&1JW6vcBY!IQ2Ea&d zC2pZNh0rPNL(4KEeqIFkPY^D>E8Imhr1N8jS^O`o?|)&B{ukvf_M;gaf*jYHgI^=f zZyp=Ncr!^!xJI)DVESl=bZ*T+7l!l~{{fkOEF&uS2Eh09Tj+6M2i0@GH*6ePeNyJg3)Aj6I8woVDLbIwIS4=3s9u?W*Ci(efAa^ z&)hdf=FJA`j}6$HVD#yM2`X;}P`kKlul(RO))5MCO8X6#3OcC9OMkm0zVudq-oRS( z(Z>$PiM(mA`3Qo&4W^$&P$BhY59D|Et5pW6?tOJhyy>m=pn|>jQ_m|*6Z*1*^0N!p zMi_g9VU)(3>gta(*egH!RKo<7F9Ya3;b3ip$p;;#34K~ZGclJFb4;h{Ql$227_F3j zPRufuyHAPMr%ALPjel@rlBp*olxTgKMD=M2YfFqgG%-fvOYdZ+l~bat^?I$m+&7krCh7zq`lgt`sQ+g&tjo7bM=Ik#j zk7+2;`ZbB(qZ5v-GWigND!DJ)%xo27d-%76`GXzSR?&LCLw}Ene{0RR$W?pfLy_9M zVRRq=aAzKcr$DrL%w{T`%$-Yq&~_)F~}6Gdw8hM6~7s{GuEIs@+(GJFQbovqX#MKNLJ&wjd( zr8uyd!qX{g#DBi5f)B8BgRORM@H{&=x(~0|TV?tg78O!&_Lw(fZ5*ujAE(xS#Kqbe zDo?s7(RwpUK8qa&AAT7o@Tal*gD?*C9(^8Wip-l0RI_>88(<{6_b825)%_;>=xL&w z=3}4Cn++77pt09~_(7U65?^|Mn`zhjoA$2tH-EdkSgStuxXmP;x)~Iox{;_f z@!X9J>bWu0a{~2T2kNCU)Jp>OQXOhEMPH}5p+p)0N{RUJF3uvF$SqkXOX?S?=KhnB z(hPu-51Q};Jw#S|mEc_(KWgNB9+KM})RfSlRrZqW&t#Z=Tnk!%=4o@3>!-PPV5LEL zdltGj8-E>7Bt%vg(gzzIN!CePqGDvY;sxlS#QrU%ZflPJrrLW1{t7%MOBf0lRT$nE zi;KH${Ea4vCO_m^w2jLm`Q}3O2?R@e4Yhgp3$%(d^hb1;JPaO#n$%CmO0}Sx#6qs+ z#UpFQ2Exj?D3nnZvC1H)c$JmBGRPmPnV51;iht$g;`YZ2_DMmy0m8j8fF{Mu6kd+% z6{I6d{o5$NC-qP2j9Zd1gzn&9l}UU)mL_N~8`zN-3-%x+>?6V+5%PfugpDlL;Z%knZV^FrMt zlhU!5G$dbikR|mdElQRPs3@Zc;t#Ay6MrO?gQIRiV;vld;Ea=Z6Sm8-dF>|P+L8OP z&~k&8_ptWID8m)z@d3J4MgHwHj_!hq7n|{s66fnOS{CpOwc?V=-eAMf)*O78iiT?yMw7wITLm8(6=Vy-|?0UjIFB6x;z19|mjdW6rT$j%q`!Wq+GN zPe?{#ZVWvbEfw>GhXEYX64GvocOHJU+W|T3l-m-i>sJ%7nNBbK9tewPoPlLJ8cqnb|xX z(~8==VN#UMZ5IY-KJFExO8c$lb#S9f50_E&laWoJh+^5o^LU& zs687-*l6Cy#oge20xuT2zWMn6&DG`qBF*6an~(1vNAA`(aI%AiC29COhH+ger5X4! zGnKjwPPw@^f277?T32=(KR|0h?A9ux;e9#^T^wx+UrKvl$-i%Y(OAj%iTr9m$4b7h zk={yvklM3h>VO!U(=sin9l2-Q&`}(`gt-URJ&h+M@xarqX<_Ga>(z;_5j4uGt2n+> zA{IB)Py;}BPekwZi%8Sof>GJ>ncUzLi$Mz{4(28=f1|A0YMnsn%V_~;OzF}T{{}=95c~f=|$bd#!ag{+zeM@>zU3K;< zV^RhI!bM)F-zVu&(9y5{O%35m{gVMyORI!=pJi~Ne7DiktfivbHGir@Ng8Ec@T4sW z2eZnee_EDN^ILtSoak#Pt`lenJlq?rC=kb5C8T#|ON661gENz>WH~({TH0$0-3^=B ztrmSv%1wm6#iY=x+NE%56-5}87|x=m@pORFuU!@7n+wQi-OyiVvou39BXe$r0)e61 zA%xe7?*VWa){@?}fmUc8lbJla_iB&xi??q+e_wry{ubyJcdhN3n6-kuiDeGP^{R6p z%Y;Zn|3S}fAH`H{9SF4^y+vh_EVbMxPQup3^xujIW3|Rht{k=XjIj*q zoSOhu%ar^#&So*f9-1+wJ40;9pJXm4i!+*=VOf>=dhN*!zh1ukH9Eh1e{p?#d2=0| ze|`RR^Y(3ENaxN3MgEniCh)5L$D1$F+0EzcPwI;INmO;79>FY{yE1cyrixL_b7(1x z!bw=lDf(|kgt02(r8EY9gAI=t z($Z~`*+^R}^Ly0KP^G^4F+xon`S5prStM0BLa@x!ydcYUQdHqk)r1~a&=$15jl|Lk z9mYz1Y#UPc+U}H+(=Gn%(-Ej6~KbEO6O^CeP0~L2j?dY9bn+Uk3e}ukm zLqNzx2{YwA%4W4r7ulTDz(Ru)^e~;RX-pvXW^4GM;v>*<)Ej_*jd7CHC;dcvEy`B> znUGan#=Bf$E4;zgWUE!$M4e@t?0Ax#A}*)>*hxk97%G-C7XBelD_3%JUeiU4q|LWv zF@j;sri|jEh#&2R-e;*?(o6-Ve{`ri3JhgG9WQ4jJT9UKdUC>E?3UGJ2@_G_S(Pnp z;q0nt{oGpI9y_H{Mq^6Y^}=>U%lc+8dVE;gBEz$Ya#HOE@C0Aqa{X{n@S-I znZHGkt_1#{(PJ=K!bDX1$Rfm>BGR%Fd+)E$Ppz1Va1D02fE69s7y zkR5KaZ}=T%3T12sj@C(N~i#043Cw8fP=KSHKfPjKA_HD@}JG+P|lH zORO#w;EAW{32!jm*SxsLn&Oxs=#x0oG|Myk{4h&N?nBcaf`wce_0o5KrDY3lT|Qwu8qK2 zpTvc3`~^$riq(8I%R5ww9=eKsDaN@QQMphO`)iX}zfEGNZ4y`8ZCpIMSB&%3EN`b0 zMt@W+W1&NRZd;~0ggqiTVM^#ne`D8Gu7+jJ!Q2?z`1ia3&JTHs zqOl;LuIe(*n&rpU+M6s)+wKIT@pdOXhS}VH`H>H}Q*+WNEuE$YM(!!lUd70YpVY;d z`F0DZ_1l68#?|=fJ}I~p0UYq~X*i+82E}Q)i6$I3=aw6mzy%YZw#(sV1K2>`2ZxDm zHVaP4f8mamPiq!&c3M1U_-hW>5uDoO07Pt8}m*6T;4P`fxf!KD*FvG|g~Q zI?J$sYa*(&3SOGN_-i${2+~^NTF`nn&)(D(ktO)(`CKp78WY1ED_vWv_aa7QWif3q zjqWqK8$3bT&l2A)q$k3YwoKS9V zZ5hmKDT~q0oz3*dIz?7`c2pmHfW*R9nn1n2lP`XUlwB)SlK&`qB105%2V{hQTg&}I zy6(o9NG2%yB#Ii3PHLlC49!q`L{k&f00GNM*ZZb~^Mrj0n@{?{`z&-MnV3-I$-r4n|wgf_(!iB24JWqwDLmi}KJNzW8xyHjt zri4oR_dO~phQ6|DY^UZV9@EvC@M;p4e`t6wCOif)QbTpA1zatKolI))|Wt=Xnl&1Kp*AYDNIre0lF+?kBhei?JPn@B#48oa{y0Zm66TqH_ z7EG>~^~=^Wir}soxwRV33wR)U0X>){y-!x(ut!S`0NN0{vk3pdFLi3q$(rUEe?l{+ zbZ3ZNn%6J1&M>wNp&3(pF~r^khy9yFf@w+b&NL4Rh84g+eRYqPzeZVA^~Mh;jEmmT z?t6ig?-)!xUm(rsU;miHb0jL=QJS;A{`ICRZ`SAXZZ=fJSi+I}1DaBHFAR(pvyyi7 z$c2H-{i72Kh0W!6DZ8@VV>0h8f7eD|W*B{tVfY<}iP+^}sB(X;PJf|s=`!Dqhs!1F zZz=WY*J)wsOX=J;uw;=wZbnSv8s45UXk04J_5? zImcr`W6F*5(=2bIf+NWl1=f)>gQTZ0W3I@$qPR;k`=&I>QlCUk7mU)if7lkSHJM(|{H2X>dY+o!~80aF6hWec_iMbYvLec?MsuYMzSa9I0>;MM(zUPqkpn zmdJ-v5)@-fSBk4{&f6(If3i8ROX*JW(vzyChH|AVb!h00{8i>fvWzM+1r%kRWP?YI z?UWowv*zH^AZSOH31~Z$LF8!G99$a2dq>{`F(q`V^%j*e9OI4(vUKw_Vab7Ph+SG> z^rp7G-u;W($|SCI9M3Uer{G?S0k!h3RKxKDS^w?g!8hydv=i9tf0H=VaU^PFsa`jR zq*B_MQlynbM6G~(``Az0>|+?xxm4NXP=ob{8tiXXr5-wQ-XWL@h)D|b=kD9zCwV^+f7S!) zkt(203?TbuW!p1Sjsxw$WbBYjVFX}6W230@Iaz%b$Ii#9l%7tv{fQ2sO!~CiD!ytMy6qfekG3J zn5wP=p;n7i{?rH&Z7Z_x%9u~+XSFNj6N1QDnMgO`j}6nv{IXGmiI!~Qr;STz1!zI* z(jdzIoV_W=fBZWgDrNPRy7!3RH=(jRdzDr^?GKKU4fusqP!sj0?E0kp z{-i5g4EdKDMD8un`g*jOXA|_%jHq;spwzj?{nKgP^+4**J>X*qUPR3>$aiEC$9YvO zQLxIFl@L8?y@urmE$_oeQYwU9$Z(w(VVtHR+<3uZf4&Z7ja+aQROwGof-@)@Kv9}q zDke2f3$Cwga{QyUf_`Y6w>z+!y;c)xC~ip>F{e(ZbEp8_A!(_+9iP6aeZ+T{7M-F zj5lKtke>p|AYcsmBRv5y2q=S~ey*$4FWK&j`~eAV{~?LPZJa%ZdAUJFSfb^IzNtN| zjSi1jC&48vF7zQ%Jb>Z>EgrPRJCbI&gg)7{fA>Lg`URg8O!iyTSwzNvRLSz5d@cq@ zBeBSTHvjz7kK5!98e?|H|AnH5)BRCRT8a*Gzvf@bf`k`9@K1Q>o8D9Uzy6&JHh($! zO8{PDuqzPJ;x8x9hcTZpry-1sJKFPUdwPhABwmn~mc?5#NRwuF*RRJx=`&f$zu%0mB z%t1mphbu%}DY%M|AZ#Ew@Vp%5Da=T9fj}&vEdA+8nC9_{j&@{LT_Q5xkvTNne}79{ zO>)BTYLFlCe&HjvHUAipj{$p0Tv6f|Cm}{Dq}qymu{q}Ouz{PU2nzG61n(Qi+Z`Ee z_~A4}MO(y+Buz@g8X{8MI+lWXWsGGI2mNf7^g%&7<1m&%hh@;P3_2{8ZTj*gtZ=&s zgGmI!*4)38dEshSB78qj@+H1Ge<{>1L&%H-g}858yX1c*2*nTW^1_GSkk!%N`%q`>I$NZ z6WS0@ab9C(=(Gl9+6?L{3XoZ4g~;HC#%2}iNWIHT_B>W6CZMe?5#ZdZ0Ax~Q496z5 zN;dpA3_C#zH9NlaG7B_Te|o7m1-x`N1+*GE9_<>{4l&d{p`A%KqgmAw42Yp@-s;Rv z+QTO32chk_S|$1TSlum3N9l8x(}WoAl6gPSEVAGYlxRYf6#twNPe6-fwK!nXj+$(D zc|pgkt-6TfU_HuF7_&QLIrL~&4o1Q4lmhjjJ+zIrf0AL5R+PGkFPH}`BHU7h{}@Mj!JJ}&E)eMW*a1Uj zO&3tQDTT?%wNA<~B@BtT=6Jm%QJ>(wwZ|g^DB%(?E-n^BGSj@WSOZBkf2FeYd8N7Z zk;%QPM-FMRziJuM065 zM2Np)q~_Z``^zErosz-x*MU%y_3VI^G*<5PHB45^Wc>&oG|R~ZypF51Y&Kl53mpl{ z?F33!)zjBOOAxdK&F&61*7ya{IDQa%38xBK!Z;`T5{%mp#(58;tL+P-Eh*mi&w3!_ z#f^1+3Eh=?f8t~%MwSa?Q9)bHHqPR^{&7z;RbN7H?LyE&`#p!~YWfm7D|PwFN{*He z#L^my-jPW|Y2s&Vsdgo5s`fhzKtikLU$B*2yUNuvN$tW5KDJimWnBMDRqnMvFSziN z;TRRoU>#qgUU#+7h4brn%|Q6n>xN_Uwp;UhZiYbDe{(c~Dueo8@o9|AXUs>V$9(RI zeHveP{>M_7H1JoTAV7_s@r(;y85=umyi#vd^thv&jwa{)RGRY?NLjR zu-W|@k04H&qFvkA3UHV?0>%ySC7CZru^d|GFuZ@V;2`loR{g*{Co1h>590NImY1w zvB^qlI25EO%s&h;|Jwj_;t+5Waq6e%{~1ZpCz;Za%+Xqbbhe32cMMR7whKhp^EzFM zAfCBEB<{kQPVk;>tusDB%V)|!KM%z8f7PZFLGPajqWPTB&jWG%;WKS!@Z60eeVXxIE>Dwkbrb0 zl3h(~@^tX>ucDWw-&(HZ49L%-i>BCyjGQw;7)yUl6oo%WpfAHsmyrLdi29Jwe{I%ZCC^Y-G5*Qh4==!bSymkB9Z_~`EXix-Jd0DUFEA>GtahdPh zMnb^MW|H5gSW#(7fwqwmsaF$of6ml3hHgPIget!ru*djG6YH6}tgsIyp;ZD`x{}Z@ zJh)~O55E3?|IgFwYKw|w`QsUB1$U4cnyjCfd0K5V{A_X(baN>|Cc4|xn{s(gt|3Te zb#nheF5`R`52TuXcQ+2?R(uI-mW&-$C+jd6`w*EnGI+mckyix{?}~W0f6+3{OIVfE zJpVS#^Chf0c)8$j0WTM{~h}Q+kK$P);XxR=#VLcFO ztqnRl%2o&By#e_M*aIG0IQSb*jq6p*;qPJ^IoTcXVK+NeakIPP=sDUQIka7Erx!b< zBFzw5oxaM^DLEWiWk-}%e;30Ju5s+i<;eqZa&co{SPwTgBqA$a)o|+#=-txLb_J&I zY1q30ohuq6p*h`M%+B46&l-GRjz;cO_ALdSq_MS5!_%8R8>OUywUAzLP!Fpak0V;M zUn8^L)Yqb!&3g^3?W89N0%5YGX*o~n%&;nwb@@y~9Kz)C@?6S7l~xd51DY({scj ze$2>JQzlE*v8^i=aC_HsyKT7D9s4<)xnbW)pKrd`9bZvkVKu(D%cU=HGark4W`e-Y zTr6&oSqiK(eJDu$e|KOvCNdN-k=fp`GGpo+u(q2@$Yo!U4!*T#6+XX3?Es@p?zAxeV2-AA@ zK0V}_~&M_(3kch!4*4$)F08*T+>nMf16_7)ut)FH*603 zx2oEK0Sknyv~;BsaQw(Q4(S2)!pkTM--INn3ysNge+TKy+r$=VHkVt?DKB2gQOQPP*J-j*A2SY^8(W-+rf z%1jtv8MC@6(a+*Q%XUsQB5B>ZOjEkZP_sFMT*E$?BE1Ag|oi$uHW# zznE@;G>)cpNd_&xb4NyZN^Lw%=>iPccdp6cwicz!E$CRCTQW*bYAfz&3K^O#f1K#| zV=QaW+0{-eL=7McRWD#zgbUMackST|`B12-*9QTrje{|$_Be)ocnkz$AzFs%UBC8h zhP-?B?Ep{OZ%~|;o9Rt#p)B3OrU;M}WmQYkzI8*7WVA;_reL42JFQk(H+tedd8^2h zU18PEr?IDkZKBM+{7PvuO>$)Je@X7(@I_yE&&MzJRe+1_aBQqD_c}z(PiCtmRu~HW z67KR{a~^qWtliUVALl|DhZ4i>mWDW}iD~;|#8BXufD_lw;&czH#NOC@rz+*WQDNcS zSGd#3!%im;>rP%TpA83ub^OQp-~$Edi1YT%e@Y3-DlYqT$&TVdcFGKYe}#RioO$H% zR1-{Vf1Tn_)^AE|Xfbw@FNPbXPz=uYQSZJfCYO}_Yf=oN=CG>pA`c8@$^IFBnCBNs zQ~CAHzGR!gVtR|VdGR=HgkL$pr6~Zs0R)5S<^BZ%a4ZOerd9L%gp5JJ8BFO-Gw~$r zH7elUC;ko@oupxCp@%J@e^EYQNJk49MCfJ#ZT?xL2~kjYyBh| zOyqRU!=p%&7DUb2g$w{P07yEauqMOPIrBu%Pg$}K7UU$50f+4L(`VYvE6LXU zC;(m9EK9K&G*>^HgVURsd`aWGJG9cUuMJ3JG0KE$&zXpguepQToY^K!f||*M4S2%T zZkSY9N&Luqu;Ho)5dcKcKv0uQ zS0&6R7_lziFo z6tSsg-e1-Je^Jx<2=CTPl(*n#B;Ujwft~SO;5}qW($R7vQi1LYgy8|p6Y39~^d2CL z?-8k)FwIr`gfD|!J5z0sE1?R2Dj25xIuh5b{v|s7_ zzBG<@#vgBHtCCNA2oFBN2!2Zj!0sx1T*jfNQ;cLEdNpO}l@tvzPubag#jFV9Ql7Gt z`jW&5?a$Jb2oo~CIAOccv`wwa02uR}_;9)_McXDjDxGzIq*FCnT@uH_NDTsaW(N17 zet;dCf3!du)Rc8*)|N7$lp4lpUY}ws3AzF&ly`J>@sz%4^sHTbnpbA?43#=g^Ar_Z zanN2=lLVZkUBGHKf>&ZA5Rwbjei;po5`v0!hDXRBTJT1=HPio<*b4OUUWv^>NXc7! zf;2!|lLnl0FH}2WkDmtYA=U_$F;3ysc)8iaf5~woYQ1zaH_cB2rqP4`X~0Ti`=FNU zacP!qng;v1+i`O4mY|i3-tu#|w+u4>x!Xl@?!OSf&a_|r(w<@ilm#kj=%G^=OFpr| zBc5=J0Cp0{tk;iMz@epW@=sQ@edgZGBEPif-+amSOS>BlhGP)D22?`?Ed-tLdvOyH ze<+Lp=u5gz&&Ps2T4kex0y%^BLA$!e`osyA7O9pLH~W zsfVdYX=c^NmxUGAhaNKBP(JG*f2xtef0qrJFFUtG+$3ZWYPZb0+jOE4Nu_p!rEW*; z&)&poQa%W+t;_=?ZuJSAVZW~%qIEDUxG*+*AM;2|EfdCtq1of8re>ybf@B37gv1xT zM{K03$^U9*t}hczX+R)Z!FFQ+-`ObEeD8=)R)o896Xg%6fSisK>*s!H_VhEcf8v+s zPz|vm9bcAY-Yt@4@P_W_XuWYN7wSoTN9y2*@GGM6z3#E;&L-qKCo3yxKo}u7cG*Uk zh?Mw5OS>m;Oi|BzsEkqY715~UL+AW;XA6`vf_6$6!I{vrCV)j5Sz4<6N-AbAxoiFv zIv&%9pQ)I`fF{D|*p>0`XQ!q7f4R*$e=Bpdp{og%{X6ND%MCapZS)NEswacdaZ+kR zDpGjW0=(w{SHl35CTL=5{~mCf_9tqLdLG#u*9KH&PZJrR!y3>}l`DVbNb4-tfF=;% zj+fN`qLFtxhSsNI_$eKF73{Biy8Non7edi>QHbZ$VY)so&CmL3LKizdCogMs>`b=c_^T}yQ9RHtBUPx0@YSz%T4C{+B79kISob6tcaRZKM z)Z}FSej1SJj*v?eWd2pj7GHlLLr3{%Oou$WXS0cS#J(8DKQfSRQE|twrIRZ8KTl6F zir0C(4ettsGV(XACi34$f0PoT$Uk%~R%YUe^Ica<(WmfVLYB%98d$s#P(P-&5YeTS7Ds+Q#59e*UOb8{#?@?D5U7m zg>UGo9)*|fXYvaBY5d@D-L`%{uj_66o+lYuT_l)@u&AiqL_5~If5BXcKWqd4A}osJ zTl;;TCc7QfJPg+OwVp*kA4bN0YQY+ocBQVPL}3FF7OIRXNWu6MKJYIF+kUTM0|u*5 zX9xC3e{=4G{&oPbvmO7$;h zzH~u8tAYr0!Oy%Ue^R=D(glnz;B-Mvr=d1Hf8Bd>k)QM+D`iqwk2@qhhi9fWVDz3` z9K&dwfakCKk1z7GB|sKXvi5yF9i2~K3u#Mh-=A)z!!wCRzNm1yxB4*D{gmn6-MsH( z^%o+o4NjR2x;y%GCm)_@WaN8m5*=H-klBK}Y!OvAYPX)?f9NEQ4U^hhj=aw^VUrg! zn7lRJ<>NO8M(i8mkPCa$+*nQnULsr3@hw%3ttN&qWBm#S; z2>bp@2HP0wf7NTg(x-O|>H`DR?_}4B{|spma~{N}GZBkua!xwN`sp=o({xD+^;(dz zo2~-s1El2th;5Cm9e@vAKuT7>hK3^|+&B}VG2&0J1HzT9wV|m2SGsbg@1cevUE;M| z1I|^tR@X7;&nM5rr*vL?_BvcwbO(GB7x9wJjo_Y$e{SDX(dYYt`H4S-yCNYYGF&$* zDqbG{5T2ZzJTo+KN2IroMG{uY&x0BzpeTWe(s4YWieBdr%v1d#peXdJ6hYyQ`G){d z^eW&qe9C+gsDZufEHK@{OkX!2dS)Se9%UKQ?Wd z9;hIHf3uAc%lQZN!qpBUL1c{1*_%{bRBrMWmd=|`pV1vkb{zs_juww$vkQM>VP2nzGy2nKboZ29zTljLmb0F5UxZJ=ohD5tCRFf<9y>+@KZfw$S+lHx z^V{?R>p$u~*{o{lsCB{`KR?*cax~Qg-U;ofeRKn1JUcyP)+4wzuQB_0!ubv%Cjp9&UC2o}WT{{^jJIxXWD z$UTbDc9FJMg*t}9?AXM%O3OqzZZYy;;6yF{0x3!j5gUvD0;x=ECNeW(b||A}60}VE zf7Tg&`%QTBP5Rtg`^MYk+it>}Zf#j9Qz~?vWqBEspT_rDdu6Gl7j^Ik-jE`-Td^?v zo4Qo+pWIUPmOn%pX$Xzoz<6I2vk z8(30xUO-m=vd(QvA2p+mqQ3A3)7Lise;v+6K86oDk2N}Z5k_W)7w{~AXK`M@(*k9{ zF@gr8zMcp3YK;*9hTW?%QnO3mje%<5hZpzMrYT2B%@!eP#brXe@KVdHlILW!;UsU& z+(Ftpb{KNcieNL!BWQU{n&s6A>A~XRSvL2wV=QR3C#jAN2=9+tykDIJoPayAe{8<3 z3HDT;)Q%-lb*9jn0=uS+h1kt5L(8458+fs1f^IIUr);Vbo8nqJ*0WW3*1>M3 zpYT5gY`Qaa)neDPRa+d-KmDz%g7zeCf4HZiWr4Rcdj4Y|{x~TKyNM@Ue>>?Gqni+a z)sgL2HID46oNza;SB&me{B=@(f8s^#_$A`DCH9=dI!d@B!*(W{LMGm`mT7tE61Qb0 zbi|%>S_df`X8k@Zc@mon&iwxFF0O)yC?#WgP(Td!>eWSa<(T#Y*3bGIud*y&6Ov87 z??*d4%vKZm|Hf6BeEe?@X6i9OI&Q!WC`k!9r8DvNcuET({-KF((W^dme{$lE#aJHg z355y9TXhWLQ?k-jogbP=7`;J6XFs8|j;b##9+{oc@P*2AvoAECo1M}p-mx3%^omGM z+ESd3p2VBb;Z2v_M_@;%9pMAW3?KGhx0sSu%$L1Dk2%zQf}12wPwPkQe`xRB!@uF} zw(;Qagi`0$xYPu^1{sGyf8Y?b90Gv@dv$IMhUB@LIcrxGt3IANaXAM}#8cEvIc0mL8($1i z`@Q9cmaY?W4)hVZ0BXM1D*u|%H~z+^IjPKQPFI(|lG|02>>W2B(9?;(C0B7KH)}vK z8}CZ4j~AzEKzbepe`8-cSbL_=Tn8TRVm;$(lrN8JHAO*{_DG|qK5g2*dtwdTo~W!3 z^K|kcHEQcAcdiA}D%Q{il&(E@SsxMVXtN*$7|i z+xq*@8x9E9O?1~fL#%k%6rXf~BQVUAQ=lISC}1eY*)X^`+p;HGG`7Gx5{mQcFehOqg?*yQ?XI4*EMZS5 zX4zRL>$rISf0wC9OjlNxtf#~0tjC8X?g_=rJ-mo4xYCoeKLr7rC}r2e#Jfgu2{&`l zc7ayV+u8_SOsq=Rew{Ozq@kNfjAQ(_;A4A zK6u}O@HLoNu7$cP`ds>S#ctg&oNwtdvnIh6;Da^kG1lhNgOdEe>2hr^S^xn(|5s?ozF~G=NX30pvLw_>9P|}YvL7SXnNOORaMaSRh_n`m1BejqzbJV{S%C-Ay;sr&R?LIbzq^^G- zYchDFD9mJ#W-=r*DkX9MXmE$Q3ToLO`w|i!SA#rGg?|^C#&SRINhUrt-G1aj8-S8V zR@xn2mHp(tCgQu))|ldJ)-5w0M*?$HvKURft30%qyl1JG?K{Yw3u07idLC2dmT=z| zFWYC2Rk*%vA1M>Belcz7c~0>{%BViCPWbVrukmB+wTfuqxeE0&6&vWQMgVTi0A8K& zRV`39b$=#m21A8V+bfl!!nJ;Mzel{L4gA{itGB;nJJ4CWx_#k2I=dL%(L}7%G5$`; z;j^+7peSdJI-j#>sY5X>uviN6OY=_|g(AV^(73ObbTho}$f4MgC-%XuI{!LfvIDL;yVb>B(;xz{ zmu=Ox8Rt`fhG7wIc-5cTecA~bb;H*C(piP9B@zi4CGwqNul#M8hmhYP-wpP_GQUTe z)_*ZRDaG)t@(GIfk5)YWgua!}q|IwsAcu3zpbqoTH6!|3%sImfdYF4gRIr(YhIQ~V z7ma8k9l~k({@JFdB{b~GfqYms>3~lAQ2$&L>q8U6y2IW_jeyDULs~T)!_Kp^4tc^g zQ!;nZharX8^lM(M3@xCKL)CA{f|iV|;eT2(ary=_Mcwz0v&#yPA8H@g_*Wh7`v=@* zh4+uSk7&2e$x@g(IMkLrzXfaHwZRP9@_RMDP>lOmL0c@K#hUt3ZKZV!kj>Qk8r+U? zt3S%-{y&jP;SObprb#5z&|^jx+TdQ9JuLqm25rWT^n%-(Tl1d$a~QB2wB~#Bn146< z&S%cxAOENu&OiRql|r}|T2Hgh;3>>;^=~56shf_+aM@B2cmB6)hQNDSC#RZ4T&*<+~Il)T%=F5#C8j_WY@1b@P-o5w3L{?R67Dk-_5~bDt(5h0-<_k9M$1 zuVeB0BW$vI1+YzY|AW9$7)AFGX@3eM<3YXIY2a|--yye>Fskp#0|oX3vQhh&2BxQK zt>IV)8`i8=sO~x+1a5yK>kInKPisAv(ggxKG%HDyXl`(ZV$TH8R8;Iq4ahb_8Wp7% z^4p!(5AsYxQK|UF>-#JV?uvM~(Nr96*7N(}_t)3qJIVq?sQF%B2lPh@#((bBL+y5I zaqxoulra3i5$P?MuTP|(U)nK=^{kg`0RJ86MBA$Hb|d0mFmi$0}>`=f0`A5bosnCP8lfJD`^QtU%qVP{C4?EFc6m z_Bz$^PGYiicGis1?e)PKi9GnSQ)E-??+B*h)PhdPgt|VH! zLDcs~+Az5w>TeUW42sUyX_z=~uH*${e&ig7galMx1|(Y=y?;~t{XD4q0-Qm92{vy#DKfuEU3$$+mI zuWn&_BU$Au1w~!b4@2rY9(Oo-Gt?t)E;T>cePZy$`%cr)D8MmB6RVjrz zgCY(rzLZS#OG;K8`d$KrG-a3k)OynlSXO5e(az^}#vN9x|IXLTBIy$H6(#K1`VU z!Kpy4L2l6Bwws;aK;M@uZ3BV1ysGBcHy7)jex0(e@w`p`@Bk5Dk*4}aF-_%YDx!IK zP}+9oH%Z;1382O3tL6}2A|T0Pz_;UsbTDle8bo> zBi!Zb@trVDdZVIOd786nMQ>8{CQr(@(@Sr|>L9ea-mG`G^*);5e0J!`fAK@W;cLM` zNED0h0MFU`c+PAOAK0M_Q!uACydL1t`zDdFdwAeQhDdo5IlM50ZGJA{ZzG}6%1jOL zk!V4#=Xz77;zsw69D>2{`yD$9k{eGw!$&b62d!YBJzn<{4Mx*Y8{fTi7nbkdji56A zv*1b&6Dp!B#@8oA$@vZse-lcgs}*R2Z-DM$LS2lDk(4?|u?^jw!P(ud+8*Ypwh;;Y zmLT|7teU{Xp1Crh!DH+ZYnF0T@mNKL(qLtY-PjE3I7c8Oy+gZ8BJBMZK>i+&ewX$* z<1X!S#$DQDd6y=py5cAvib|QTc34|#I-70yB7QmS9C$1*)5JOef4!UG`DV)SQ_PRz zn;*;Dv|gg(D0^w02@^hF<9O`i1M{4;amND=dIZT~2Dq$)h>s-y_v)TE2mK=4V3Dx2 zZNfA}I41e&SNFV02^yN^Nj^)E5O;b~Tc#Ia!oo@&cD$u_B>h~lrY-4G$OYe-#9^m} zI?Wdf#;_iQv+!Gne}K?EH+?GB{I<&H=ngffKG?N$aZe`jpr{Ki@;T>RSg*~+J=w!- zYiXY6hUc;4iN^7XJrPE*71|V}$NlVv$NlVv$9t%CQD4mC9DVL_jz0Ir=!fkW8Heo` z8Heo`iNn@2udu}F0z#U$H%qSRh+fCb?H=du7m0IMT3l3sf5~U9m^B^2UnGv;UIQq; z^leVP*Wd%KW@8wdU;2jTdZn0nU|oLcTbC&zK-e~`D_;*ZW@1ER5} z@6VU<0cxQjKkypV0XT1O?)5C$Dy}8G8_W6Mxd=$&%+H5P0+m_ zre&IEZ&%OtPCxTca0N`ZdL-IdsV_J4TW79>p?;LF8s(;?0J;X*IHT&Z!H=Yf54zBwz4jt6~~DV`)w@Qg;3CRh?ym>5TrMN}6aM+Bibls>->z#8Sft~WhX+6 zBg+DFF`tbp1SJs(?ve+y)e7mTJV6I`3@vry#!k&K88S)7)8j#GgX@h6UT=&kM8H5H z11C}oe}63?Ez7ZXVp{XG0Sn5SPq6mJVi+uS;vC}@5kcFQA3y@Ibt9aBKfeH@jh){x z9<-zm++g*O#tL36=40tU-ve4}|wkaOU(o4Nerf4(;7Q_F(93S_=<*yAg~!sQ>=rRzj~ z2C~*zu2-I1CO^3@rn4VGF__7rWX{L-6obZ67S3(mO}TDQU!9cSo4<;wUpNyA zbe6wrfzFF*J-;0B6-9d9`}tSoAYV>wf8%!^k*lE?;j5?oW;xxw2m3zGP&SdzaJioC z7S79Z@VinKdXfEpOWqW{+@`Dg4*Umea@~Xdj|l9kCwVpf8v~018S>faw}QyP!@~;$ zM@BdM<>!BN^V4EM`nrt8LhtJ^c#k6>CWEpRdVY=f8Gn}1S;WhLfM62wsZ*JX>Gx9As}2Fvpy>qO0<|Do4NGVifhmYN}@ueBqBqcr{r7qOE{5 zy5rqJea>8;0aqwa^r&dr+EF4sf}9hel;01GfF>( ztLuL!$Z73y8>a%laA){fc+YDh0=gre{U$`k|E_2}ei;!OqbL4#1R=mPv5+R)N-KI$ zXb*+; zJK0p%b9f=ESsxiXNad{ED80F{oBFx~K2x$zN zl+}6#D1-yJQ%|EKf5Yc|rn|+U0Yg7#xLf3pk*_$0aOAGUl>f-)>*6ejFSw8fN#ed8 zBFx|g7t$EA;G#D!LxhPEB8j3uwMdB3VQ{T{yW3{!QeGF{1>{#P+%^@$bZ4=lw&tP3 z=N7`-Y5hKrEVLw|@Tp1CL{?53h|nq0(H`xZit&HONb295e|CY+%XTkilu(O9v$TJv zD6h8_I&iKtNZYo?MmK*ah^KdhW-}rwzfTYqu`l)H0$jlft+TV2c&&q9608vqcEZ)N zyLo!e`Q4FUCAieL(?(s4PF|5t#4+-N<9jtxUMcX(=JxBt>GfSi!ku>19Cmk&x;FlCj5h%0C z;3u1hIv#)B&M9|bqIH8$YCtBOF=v_iZCQCT;gBuO->+5^hqcg6-nJ(e_RlsR%WAus zUuH6(#ym&(xs7yPO;cM@sxfa1_&GwlO^FN}CDcWCfBZ(UTyj=Sx*s3r$=@SF!1wL! zpam;b`cs5Nkfxs`3%K8Sy!j{L6`2;^8DKSGwS6~D zjw>~cEOR{H-j>ENW{-A|!$u*w1N=5hG(A4QO@pLAY8lbcwu&R|;w#u|n4ZXHGjqVY z?-N9mBX6{dJ!Y>_+e(c!Osvw_!P+*NE$!oze;VzOp4@cvv?9>KEIH}P*0ITtHg0*+e ze*hUE;grf57_N#5Sf>+(V?JAl{K4vpTPzSj?|0g`B`Hi?0)z=Ud$Mj2@sUH#|- z4U^{&i)3e!rWm743@wLAG{G)#i)U9TvCW(+3Wo~W9$DdE5|wijK7j{H!XF`(H^M?# zue7yyL4;D_P``srOxvsoymwu(j=ujce(WHnU_9;mZe?QZ#|cq3HS;^d3jbo0K%g!4XW>BqX4;$Fv&LeX4#8F49%b!{TSe@s(c z=n@d|qPkxLY!64k!k8W!^s|rM?LBcsQG$LDI`Kp|jyA|M?&k$F73yB^KvkOuG?=@Lj<#fJs zVfO91cNdZsi}aOxs#pL7#NI+m3JHK^Qc(a`CKb{`EY=GPU?`PO_Z*6te-xAJXLm3l zMpPXb*dWEmjoTy{S{^WTnga{sB?gxxQW4F*>FIxMyl3fi3E#kYanPQCXW>y1FH9QZ zn;mEIHX_cie37(KVrrERl5T$GNuwCH0P2q(w{p}ij7%0P)#XrFU{$_#MvcZ){dl;Y zFPD$VEJXym}qBy-{;f5L@!k3Sxkqqk^xv9KaCK1;lq$ z_LX{yX(sv7uS)FEOMY5JL*$prc3gg1J$>Y-6_YK$m*MqrwOeYVfA#VcS)%cBz1S^R z+6?QpsASStY-}>q>wo|I;kV3K7IZX>yN4|^zv9G#QP>%oUtt>W)*WG9ZZ-pJ!MS&F zFCb-m0mmL2Cho-bGRYkiKnrxBvB$lHv;7J`NV>m*>4iymE4IF&jK`K0V0=~I$IkJz ze9N_=;M)wg9xo*1f1lyDUD`~v0`ha0z`?mJ5z@}y{h9=HaMs})Ws*1b1Hz*oJXyAR zFX!qr=8bhJ$fXL$%u~}!eaFf5;DJPQ@RZX`^`bgs-mZCF8iM7KHyGQZ{7wu8O{h~h z7(>uCuifl;tJKs<>DV|r40Jns@6BP_c5isrDuH?Fjhy6De+4I=FhllUp_V#62%s(u z5-TC`eg?dqX;Mg^VU7>d^JOaNu9Y+{_R&x6dM3NdKal8pGsR>cR_fbJD#tg$XO4`q zGMLP>6oW$M5M^v*GK;9^wl#t2yPE#3Gt>Y1)9*_Ce?i6W2RlSrS(w~Z)5Z3NNn?@w zZg1%GJl2J{e`#z^Ue{e?WB#I*q;S?8$|_gY1LRD2n;E$$2)^vXHSX95o&(4NZba%C zRRPq>1nx%sZIEGpY}i3Z+QG_aR!-3|%q}+_;{&WKy>hk?hbHcWJIB@p3WyHpoQdlX zu6@TyOrKKr=@#iB!c4b8)6fAbJbg-0C&!=B;8p`O9;Mg-Hw zF-YtI7{m7tJKGmo;tT*|*D#P!AG2G)jDccdt1Y9HPC-A?PYyL$f%l+y=-I&8w|tc2 zqb)hdN1{+5pXY*ohiK9*hYH3crP~03BAPJ*+xc zO8j(te@^5Z%bt{SE{xS!I3Q5C+^I)tdx#aZz9d9*{pEU9L6N;nc=+t1$=`CA4ger) zI?B)?k5Ku%l}&NATajE?`3idsiDocls0)-JBcvNhjQ$jb?QETGuSbT*q) zVvSx=7|f7!qm=R{Lp5PXQAvtlCz+ufJ}6gv-N5EL1-?FP7*qHb5JiLPS0FS12IX+dqCM=BHOJ@{gN?al#0nVT=?Fkj1R zsV$6dKrj#+^!Jlyr2;q>Gy_|HgJJTBfietUu!JWAB@{!%Qcl*D#J+CppundKOW?;E ziZa4$Z1L0QjC^mx-ujFiirHJPrZ6{Hf5e3Q&Rmt|s*tM#hM%vL7gQ%FW3RFJRB?u8 zYghxgX@z<)>ybd*ya9RRpRM7sBh9crG}mE)X>c@OkQ^sHk)?BfdYx#mmN{fUIe?TK) zk-XRDQDR--%zeOFNG%$D)>RacX9`$|2W25D?WNPrRR6M=USC(U9#e@-a9T{Q4Y7hO z&ZY&`(oB?PVkc)0N!@Ts3%vIcZ0V+UfoLPF!~lq$HrL!u1MrO+2sFt(CWA##QUuyf z0udC5psWZue^FzCt|P=$?KR4%e;GpFJu{JFo)3boA+Ug+^wD5xUc}=MC@P}(B8zcE zzL<&GE@j#%ZOR&Jo0K>$3d&vItapnUY=-)+UQ|st2NrXIGr`8r<}EuS3|kr!=KZL$ z)*V%+f+NgE`;z!9(McbPa41mPg-!u}N3l*ssb9${Y*Xq+Z&?q?xu!opf6{uu3S#7S zht2$_Cj(t-FjOcxLq`_xFvwWx4P~mBu@a0GF;<50i@jwx!{-_EvD>*&vUlIb+GyUB z)WhRv7=Xg#{^4K19UHOVit zHJfi}Ec`WApk&JGGxZ1ke;?Wzuzh{1|M=7lp@$@eE&d!YY(Ed~yZeHd+d9?JGWPIR zc~{=GD-|6rS`YGgH{NwY;*Eauh-90$j>Noi<4CQo?<6a@FjofauwkkvJ})jK=Yv)C zz6JK-s)pPGhp@h*J_`@q*MA-!z_0&Iw59`21{(pv;?{e{g-gQ9eKzzI|KJvtWZNvv6B@rna$!fx%)s1tjyCe3_c3tKLyk@K{q=lx&0S46D%XUK4(N#>;m7%UY>L;0ESb4qP zqE~A%#i*ak$S5gFfsx`#23wL1W_#-@aPuw2@Yy4Jw%Rt+e-l61FlPFxzyD+lZm3EB>!J(}^^*aFAtgWI$`{RF&C zgSMSh(*fByf1JJE&ohd&*Y}Z%t8gdII2l8-?jGHHQht!+F`||z*hvjhaF*I(ukyq; zWcpOrAU>6~hWlK8br|TUv0Jdy*bP_`&aESmED7k=oz|KH8*6z%QgCDGH-s29P{vw$ zG;qc`$ZJzs-fi|ymps+BxgcONCr_hv3jt%5vy})Sf2+)WB<4hrns(C3FvMxFoY$At zLfc&x80apIrccOt;3zngBt;^R7Yu&Z#@FcU3|JXh<7KAt*9ofpV7X8peP5fX!9Hr^ zUo?RbJKokN6k_*l+C(eO7;+P@G%wGQFXmbg-9Sgu-$o)FZm~LuFbdC*J;yqbEQ8`t zco<&Hf5};soMxeoRmSpwh$pqEeykWO#YRI72$DO~bh##waTP>$|d7W*QCK$gf* z3rxyb+Gi4Mv1Ol1!Y#J%x$fK>_7X;cwIBGDCt3B9a&X2TxJJRnuFp{5MRrYD12Hmp zzIr^C5G=Bt1-QA(Ac3RLDfn%q!f{=G8>3nTlg*AE0oIf3jvF0vIwq;`KBp0tc#o-6 z<30XTk@rNY%ZKPnMWBU8lO&HUKl0$SQZN564?eeUJ!$du49ogp8_n|H8$)>opkZm&4^ml!k+L?CX} z5qTLWUStKhKIsoNmKAhs0K_`D7ZOc0^3VmIXjES|-N$)FOr3S2#s~rYqWGM~Tu+jz zx11z@Z#79#dgyE~B_~IpwY1m+@4q9ap#{_LJKLzR@T8dukQSgcKmAb@Ya7|E ze!v6q;D3d?2{>%x=)M?$3wP5?&pwe`B3fuqD~!8YOYD1}Od;y(WIQZUSqCRgR1C;5 zDn-qJOfRmNUK(eUz)WWOD5EcyFVo*?b_WvgMSP#wSU-!?JRxsG4EzP1xS>qzPWzk!z4Q zfnbo!&x*~yp6fsaleK{$1k56k%BmbrilQY!d2a~=+6rm2d%q=RxK*YRUH>iO$%}v% zN#(Ubx=wd*PiVSQcU)#|IPN@UWPj!)7!JceyG_X7qyGFYh}d2GRaenwv107`w$s6<=nLrfg1596JkZ$s@7=k8flsPOIX76@^{C|I}^;=rb z<~3JK0&FmYMvSpZ<&**VDo*Hjzh5opx3|C){POiz{Tyy~PO<2Mo=k%Si{;OZj5xI@ zqmnW@q-B&$5zYvFA{pK9Mn=Ul{_szk8hj$@km=r+ZxED&-bX|32SeW&fVP}(i!aX> z^lkUrr7DMY7WVBRJIByDy?^c(^Y_)_-XWF{>`_K8Wh6@R%^ZXC^jk_)9heHCG09BH zH~A6>X=}aZZ>rK$-uuc%G?b&44Nhg>?kYQ2?74o-3B>o1S76{>HVv(}qc7HLvfWi+_iwH$VtWn_sy- z5gbbOLBGBHjkjGB`|!m>_QCz4-u5BbZhqwoY%u#bdk^TyACR0Py#R7@!kWN^Vw`%F z$;d}3a6rDmpg&6cpMS30M4S35#(CI{ck&j366q>zx^jmn7yhvzbWh5+nH)*9d0oC& zSL?;BQ7Ljj{1ygI&TB;!n?)esGRJQc97!aIX<5|>_7?*SU}W0N8DnA~m7Oz5Ofj*y zJvft?w&=V=D%$MCgu^<0QaU&~ts%g2<_F*bb2-47%u$`48h`9P3udHwyAdL9P0I|?<)dwGy{AxOgDdfbFWpy z8RQKsAWA@zj_BKVrX&=AQiWkM2SJ5l=v%M#wv&UIhf)D9R)eZ{`>24bURsK%zD>&F z-&uOH;0WgR>VKD?|FQL<{c!7pf5At)tn#F0N_ICcePq|qeZlimu1fT;Pl#xmo{BL)o3RlFWz0=e){-# zfTgdbK34@bK^uFeS7~|cMuMUDd*=~>EXtGGPjZb&S^`R=yefB9f2sP6S%*fWL3Qcg z!(TV_54Bac1lAC*UWF+RpbmlScZJo44Tr!Fahj}R72K?>}FC zx}-ZhK2gZ(_2UK6$geI@w9KrAsUy3 zH-H33wBIFbc=Um9iz&SxYlPJ%a`21Oo&#`!gVD%jL_Us>cu;`uc;yeMNaNiOVrJCn z<3X5)v6SO}u0u0EAXJ>D5v`QH=ZnpF7IAi8YZxsaIqyFz;x?29qM~o4_7d>^;(=qi zVu>H&_1SO3SXCmHJy|B}xQLcnrogu;tIPZ3?D|?d!Huz32tus|doY{EZ90JsQtAdQdE}>Sk7xL(c{ZuarbH&fvH3 zX0z-KNC5#Svo#Nx0t^}7Y?Uk(`j~$a*c-Fi5z`)j(bt>+)ot;6tJ!@8<_7!@YWaKg zqUP|Pz7wy>cBANkm8idOWR3LQRH)^K(xGcre}Bmh-1kzy_`9rDJWFkU53Z5@2G!xJ z(rCZR0oHd=tyv!RDcfb(_g2r>H__+o^NWukEr=TBFc#N@TW5%#QdS zRJ6^3g~L^@=J^FHl<%Mtzf<>XCeQ2pak|_bfH+)*8lQ)7gy*7)dtXBO#d$@@QM8W@ zZ1WXLBjTa$suJs*WatvoGYg%cv_MCiRktjE{fqr!E~qlvd-&^yp&8J4H$lBCJ+CPm zR0~@Frh%d}+l4}!68g8uL!2h0IGWii4Xh2ZC+ol)%F8sy81A|5ihP0RFb<%e0qO^W z`hlWa(9UL>leoC6wkRtPW1|+{1(W%#HscsA(N}w{9_BHh$>tinCA#X3;R6ijv(%h_ zW4c6H{jq(7iASqZ%gjE;(}UQCV|L#&`8J9ODO=%xATk$M~MUMq|93$9yK6 zbByolsz1g{7|ds>xySgPvSwra024n}Yp-<}r0KCRS9|B?gHrY#1?m|MH0M|^)m4AA zA7?YC?dBWtuI3tW%4xJR#`ikikd~*N5dNjYdBmEu2>g#W`V`Yoz*M1(D+Nw}qG*|C zWt?OlAjTTY{rGDsvyk zh{~nfZJf)S$^wKog-ccS)2C~Ht13WfQ#e!Aca^^XeD&#)9)Aw>iaXQLcTIl0c=z#w zjG>AHZd+VQLo@f2Qb{~ujHVW~P=fl;{0}*Uu3_LudapZwKt&qwcI?&&8HGk~dDT!F z%#=&2ioHQ`T5c5XF%1jbV=?hvRWQ&gPE&U4BC2`7B|jq}N7!kURTaK}h_m~;CZfe7 z=k!Mvr%7pM*11_xlj~wnIe%VQl0!ie*mPGE1oRMW!!^GH1ndj?~F~sB(6F9VnD>rUERJ!77m-U0U`!h23cvuT~N3 zJ)ZOv0Q8DG)N!{X z?ZLR(!G+!|DLtv!M=_vrsPZOBR|U#^=~}bbDeO?Ye7j4$jh{7ljj|3^+f}~QBAgY= zIaH@w#lG|b)~W^FX|&3#g}0{1nX4Cds8_Y!MZ36MZji4@paY?QOW;mZ^bn_>G^DIm z3p&*3TUo@gX@m4PBP^rB58W$^HYH{uwW!F4jQ?4Sv zQI{@;Hic_tJqIOvAo?V(_4V6&yBOLOu9a=3U%&baFeXIqwDzvArlvl0EYMv-6X7l5 zCp(g0?lfO2G5Gxhe0aX zww`lTkRV#pdpFB$twoONfQJVY_0|f}F3068RvHF&!^VTHyapcnCd!51#wJYMpS94^%l}kESYB*cH6TLdAB4p z-^FMt*kz37Z#9gedT$HGtKTcKoF>Hz7*3)>)eG)QW(Z_NJB%`uMJzrE<*$IvBk zrK`Gsqp7RmsGHdHqp}8mAe#-#W*^yx*r$!~jtmA-T+HWx zXSawZMB26(ja;~2q3OfvEU&g%g3D<4NCunbMm5IJC1USoia#lX4b*bCoZ=qHzEDcs zhf^2rm2<8ZB#O-vdR336{(k5qF3C#uIt2iwXPF?^(tK_9;y?TS6fuZ&|abkUWW)iy6Jbmky>#eL{{7tt)UipgTEG!~#th&*WTy_Pj<*hB4Z zbNEzkJ!{#(=n}ZsILjl|TwE3k*C?9h-K)zVrt++AjiOoJo4Pa%5YMAD$1paQ_71(!0W4G($Q+W|+nQ!utLf_UM06-eNzRu_4HDtvUEL z(){MJF^o5pl!R+ETL7kyW=QAO40K^gfAJrX*~c=Xa&G{9PfspKtK=>z@l2K&0JS4` zYa5(wcPYxen&OsXTq|ncl=h^5s8))7TaBj@?oW~VvVmSAerqdCrsba|^kxawbp7^5 z7)jngO5;m)ouvNO+E1kTpCa>S1N9_y_9hrjMmIs_%K!!s1XvqF?YRI&YHx(K~*CnlMCLPCkwmq}Egmaw+O$U_rjB);@cW?DHV+AF8T-^$70 znF?zIs6AStNbSoo8qWb(8)W=hfC(yJ2GD-;!rBZf4`3+K`ZdX{VK${_GSrCuT4m1u zqVkxA60Kj8=sh~&$SRW$QK*vpvdzp^F}8<)OPD{{VQm$y=R5R&nE1EWe2ZMQM?Ms( zy&FdN@egjYX5O+?MGa! zjiK_SixRCjljO75VesLXVFG^|t3L?iK=0A#VW!Bu*+4a$x4i*IvU`uxcvanRvX7o7 zs%bv<$-LP>@d+Ax{f8f<86)wf_qUmLt-opST7UDmYpwNvoQ<{WQ;*wB(y5z4@u?e$ zN)ylB$e^AZLp>)@&vl?)8biG#P%qV?MpN{4iW^F#0icwK5AWhEqKVv+b+V*>k!tQg z87a*GDEXiXKhQ&DrB?~wrSYRi&gUVy%|T5G{aIx%x&BOs*~hh@^=Fu zgtup*YqQaR@kByoWg&gA(UD}Gq$MgwhAUox4od9bQtGzm_;0GcN8qo(W3q&ya8ZTf zeX+Q>+s5B$f@tzXo<-ZZERt_7M4v#gq}NcJXTLzJC_{flcge%xF{nxXWUN#Rs!1&5 zT3$S|R%{@wjEh1URS~NUa*9`3$t#2Wk(!Aq=cHJFPA+bLykMUcq#GdI8v|%kyiDQc zs9r%jqSU{Q@_SPMq|Ue{8AIp}{#BWzSVevrneZl5=Ys}p+aBtYC$f_CMT@-H(g);L z5gGW4eD`Q7vmK}nv5sZ>ZE+0F*b-VG%2i#$I|FfghZaSw*0?$pyj_XEso_W~wo?dh zF;^vjijwSsR8NA@_-r>Op#_*RrE4>YyrXrIZvhb%7@vB*U|R8>hv!=HT5(cc@H=J21D6T3A~K-Yt~CZJU|R z!!fO>y&EP)+1z$vkT%4gtx~_Zy+qMhl-zAf^^HrHmO8t+etUU-aea0XeYv=N_v@#N z^XTIG)5n_+e-B(U^lVYO&x6Z3=lK@XirTYbgpKBHT-*)bC-7pS>zj}7-&|dP{x8xD z-oN?y?(#Zt!^X4CFiO`^+ehcL*zLvD+oSA3p*bzng4&ULwhbM{!AqEX zP~FpbLJ|)=-I^A59=Bed=o&$zth$QhJ0)UqLk%?mboWH`PQQpW{Vf=kEuYB^KCu|I zK;mF-@-oV*t=0*IzMK|t#*{8iLB5wK>k^h_taHquQDcO5FlLSh5CJx9t9o!>fh85p42}XK((|= znD2uao5_eiCHVin^@*xT(3I!u}p|G^dI!x_EAjL)`3ue>(N_O7Rge}ec~i+ zT}=P2h%i=bywnOUlNE~UKEZx9k<1v&kj}XYP_<0Sf8%TxBkZ9WQ@S(6hWtt9a|bx~U3{ErEil3J+0)}Hu|{BJ@>JX92Ufpw%XVXseOu47rm z8HURg*Ox_7 zg(C#ZJk1NTTqi{p4pmL)VFhhL>)S{yozP*d)W^0V_H8HnZ0sS7)B!f8^lhGPyxR?D zPxfP(8qkex7S67U*3Yef#qF_EDrF=#j7Mb6UGG|!YkSf6 zSt^$_QGu+XmnbT~=56rSer%C4)hKJI2xR$C%S)o7fxu0rkcrH&PS_@xrZ-kRNjNFF zjHh~0Q!O;kLMmx6e%Mh~%vAC!Oa7>kQ{j6ol}nnakdTf~dQD!e)BG!SjWDwJ&g5Km z3Y+SG0(^yo_9{~0|7lO;?+>pCgRgcEP@!urKs~zZS41UeFJ!fCK#g2LJno@q17CDVB2} z`pG&eU5ih7YLs=M2E_7rFu2{`iv%Eu<=%K6FmtvfMyAhQO zC9%IYiS^qgcG@O!wcWyxO-HHp{H3nm zqY$Qqel&Jnjd_>Z&f|tXY0st-Z;@wCzrRFdA=n!ef}t z?Ux_j z#VI#!vq}g1F(K?srw^xpGvu=i?MBlKC#ACt`?n^dN~_?d>5IQsbBiFY6|M!XXY=e$ zT@hJ=kDkxIF6-9maIJZZ~>-7*%!jWD$n z8>Rvy!%;$NH~5zpmP+TLWi_7yQV`Z2+Lpn*ma-V_+}TWTtW#uvrDsR=!3RhzY^4d* z>pS`4cSzZ_LM8c+k|#1mA$LGV__wv(FQn^kjEQ7|qEDiz@#v&Bs>RR@wMR5HF%1x~ zoOHc!N;ps0r?B~?54_JpN0NyNMP6Puj|_4iX+yLKWO}Gd6fNRanlGb8{%w5P7#7JK z$&}Eg{;+aR^ZXuvt>&+2svPx-+pL!j^6Q5&G zrWr%DqIPH$;r+xJ8p|M@IjK8a&@%z-d1%4pidnyGEu#qTijiBZ;kkMPd5SlTi7enk#aM-^&B$$@; z?o9KLU|0cv{L@$WX!&cDRaI~NaKgCg4eh=cIQfpj#PbExjQ;hHIXp+A(jBEa`|DqC zs`6%iF7IYTMT{jJxj&#OW%t6sXfZ2kM~_?>$lO0Vp-|XdewVT<%RMIZ-g0g9WrooQ z8HV3sn222thAQ{h>hu>HmoD?&c(`1${+3dYew`M7hQ5?eJiufHN$8`m@T3a3KqxDV zeD@fw;oM`q+>9Pp9FkR&xec+Jrrp3&eV%hX7Br^ZI6uwuCMr0RTv1>hIWtIl3Nz-4 ztSgGUB(rZylPvW~)O5ipU5jneT9XNex&+f&gK$i;v<{$x|Hq|FFmPR zYA9E_Qiq1_$X{h%B+IBGQ$SJ1Nj7-Y*iOlRVKi$FE)9ZqWSM}rGZ{pVX3fE+LA-bL zJrGkums)R88N)H|s31!>PZO3L$cEUZ1x9ab+w0xGsI5%mO2_dW19l4Tr5I2v?@Bcs zKalm`E*^Zd&Q3dly*`OE9Y>-@mg;q5NGheBDMea2MAQnnw~zg_%|3=9olBKH4mDVR zf2hIEhZ^8W+llvz?V=b{PAR^(c<%An(r=QP+8T5!pxP_hU)>Hb{Uy7(1K=%~-kQln$^@=NKH+t%P zQ0k!*=N*EnfS9B(f9}5heUkSR@n=1MpdP6L>cjxDUskp~Bjq^I4ot=lxfDhK1~fK` zDxZ_pS8?ootV-!gwff`P9#cJ4rrC|Ps_Ao}(&7VWK!;cl*tu@ngnm}LLOvmg zoRx`m6aLsRjm$3_MVM&GCVtwubXI^Cv@Q*z?9bVoV$8qOp;A^~se6z3eG@9HvsY=w z)BfNn*??a-1vOD``hMc1kQRu4#+2?2qU2Ayvc-^psX^r406Fow8Zo%#*ZOnejXH}Epb8q6~K!IB7;qwtw{T3Nr+HU$h0Bno zmJYurm3Zs?oZ!`kTZcy$t7vf@G?BE(BlG!l#aXYS$zb!BlfMMuH3qu^5iS05@_ZQc33D34xVWP|pSGum zxJcp!X=z!!C4)3+c6a@H9F$Ij;TbI%)Fo+4tV;$NeMFa)91(wAW%RNTg`x9@k&gmG!@rRK3pEvznhKwjKc1@!tjpGEo8hy!iJ@hr z@9A%<2F=jdka1B46-lnq*MR?f1cbd0zS0HilYL}=w}52@hyUUfGl#56rat7_Oq8d? zLH7{xr`7;zKWqrJg&1U{FI*Wfsx&T6lHFsrP!yzprs4MJgl_0Oc3T$JvaAZU z`tcJhOFaYHov-N}cg5#8HMyQVKMCsz1I`>Igmbt;#Fc`p2noUlf&B1cwM(w3$*U9Y0~7x-Cv%?Y3bUDT*uPfOi6DG`(m){oDlJYb6^eIUYc|hzJ!?fh zdu@*T__!U~cwy#DLsPWX`b>hiKa_^&H69&GLpGGoGY(@I{pggF6K|+mZo)Dlt_2a6 z8i9w8|7xQAts?8X9BIPD!6M}XC>Icw>F`&V8&e5=EA{3(AfS`oC-N_;rB$ujKs%e# zYT5jM&S$OM;$*gltBoa{d!R%pO`xtIx;UW?@f7DZR)$V%P^QhGuA%^$RaS@$erRk~ zk&e{6ykyT~bz%bA+7bcIoeDrEHO6pkQmbUcf5Wg7q)@ZtOE0rPW2KjRQ@~4SQ$VYs z`$q&;kZf_@O%j;mFYkB`;eqI8r#XE{xX;Vzl? z1I;1}-av^aL`m__8SwtbS$*oENJ&;9U4YB6cbk^`6n3`X+^1j zi}-?hz#_seMfi_#gcr;y7U%+jj*lHMRMvC>rJGWij9lxa3{%38cx#T=OA_@7-dlS- zGJp~;0psFgF(fn1D~mOdMDtfFOP^PoOCOost9nG?OhcHLGS-Zm%@8{7acT`En$aq} z6nWFpDm)i?^U=!9_{RSm#jA%nTcVYJ+9+9eR|2g=Y7x(Kl|BAufplsRh zB&bXCWLY4Hw?b>y8o#7sJ~euFuK~lAlj1RZU3wXLSEch*O$;;sV7cWVr02M78SJBY~w7x>mTb=)%@Tx<>rD=z^MpBGgEyD)|oaI9PAqK)B+$1fGD6u zK~1D(0kV*sVchK7f}q+Ao@5p4Y5d%?58uM7hnRY~)vk%^IvfcCPg#R+XPqly@NKPn zAgY&kZMU!6M=v@&sVP~1S<+}1i#^5*ur2_%Vl;lXg{}nUN&|(gWNC30;iSc>f~~rZ zH?OO2yL<`xz{-~s#QtnxrAIC4z}gzQAuix?Yr{~t90;O$9O~c z(y|1Xsw1?Z5n=syfc0C>`u+9g?I&?(k`hp*8Ui{pcL>G?W>L4P4N47NrnVX6-Z~B*mTDLg=o7#bUm-rr3m7g3q;~BoaqGb+15Ja6SRD$4D|CrOkZs} z5%m6fAezq^{X7uIAD&Z0DOYiEAJQLmL^>C!;NJoJ_avBqe7k@aG1@K=MUrn9(0M^? zyTE)V8Mv=8DmL8P2;cW^aE!y~YzhfTS0dTf#3oM%FaIifS^BNzO3r}%EV^ilZOF(u z6NIt!$3#*1a|HS_+;j=~pNgmt2|Y)SVQ2FmrH>){Mu#tc*+%6Ejzpy2G`K?90Llie zY*3eFy=CZs$jrDh7(JkZj_hCyGtv7zT0z;D`T+?wvB-Rx7p1NsoQguTe=C8Jv4*bS z`psLnul+X7jEV+DV3n8k8op8=q!O3;u5Ba)%xot4ZHg6@mK10k8IgK5G3QKOW9SwX zL#Xo00eg&}G_jtk%L@BY5?Up2r7H>j!h>rj@!;!!|M&kqy{@*XNR~gIkydaAnW4%0 zd6}oxHp9;*CqXxt5@e#gJ-sQH*W?<4R8}YV59Bh=ckw`~*>`v2KyJmCux82FQFXEo zgRu{hX(NO8YZiG`;P9@9cN;C!yo6Or>==JYT}9gO>~b7VvUGTP~pGrj>AUR;Yie zz~5D~_I{-H}7v)pmNZLn_h?q1EZD9G#NGfmL=yS#>e&;2OuCT%J4t zCl@#Nh4pY_Ln5-$RSmb^fZi<)ZC7CWo`$`DE6};3F%p{7-No$O&G@Xr_vL8hPG#Rx z&`BCw>oh#Q*|Skf8dwYI1qb!8n(;WIHTyL(>rH(vn%TV9z}ilFf*=qkOPZGRl+FyR zB3YNuG{hlHE-%leO!&9Dtw;|%2$77i#+b)6n6%$|2BLo_`{9OB1}Of_Y)R2|#8QUSMjEw|f-Tivmr!J6P z0c*Rdgk1Io`5;n1Z+AL}LMwd%PTQ@2%=;`;ivjecIBoYP@2{`Jca+6xyU|E~4Bic` z?dB2e zC7&tNeJ$#Fj{73Cn5Gs*l{H8E;w(-daf0>5{z$mghxgvpT!@_H_a^*X|E?&1Sbfd7 zJ+(+jjeG&m*O_|y`;yn!jnBF;Hw@-O1M{H+bJ|`!ZVBn2#R!9jF!(U#x=VC_AeEaJ z^#PQ|&DGcLw+^Gmtp)j;Pjp0UJXj?OUx#GzNfs}m7{_{u(@MVvUWXTql^B`&jj=j? z9k7pq7-?c3RpcbAxu^M#otJxmMjBFuOGtUQF&c`2*-gXjOkhSWN|t%;=YW51CJTLO z9}--#Gf4drP0ckOmHxLW=3Q-?;(Np9uz#zn9T>1cxJpY`Dgnojoa2xlP%pfUqVP>f zg1XR{EO(H;yiII@W^=ivOvLyAZAtWJMXBKR-h`=bHs!p4_*2899;#n|K+viFRcAt> zB9VqqhUe0*YA-u%g!*hg7*yg86%do+nJ~#XBIGVGw%-TNl-B8QU8aITc`;VUO)+i9 zdge)&fxuQTRwYIJmUUtX)E?^xW z`oaNkYrr!R@MU*iU@TaFt;bEsh_eW47JL_Xvf)Jd%tD8Uk;48 zy=H&QlkF?1R(sl2YUpLWY#nRh!QG3OtshN()$l6_yJQ6^bk>i|!VY|Y!t=7`Ni8dN z{fWqRDP~bq&tFub%2s4VWy2GI-4%JY!#1O$sLbac_jdw!nOePn@&PNaJx;!I?r*$O z@Hbw$@izz*=GkDHac%L)I)IV;M;PAL49{DJv^QKfd*HV`vrIECEgo6dxKwuYesXU1 zpA^jglN+coy#<(>rPg^ z*+>ap9$wPiP3udg#&jTNrLcuIphdFo0Fc&Rhq25Q7~lt?DK2}m?#N0OjsY*BA~yQA zBP#R91@t7m5J|;9RB-A3=D_r5(N*38+kttp(`lgK(1fUe+kKMNsiv4f;b03PS-sE( ze&IF3maJZCOZ3u*laj1nX$$hoO`ZIr4g8Dg7D(f0N|$8N;yZU_bf?tD)08g2fPLqh z3~p;ty4-?})ww03)TFlJj;4^I$-;?#KgP25oL%jtLev1FQ1t?aMYu4%cGn)hkPn5L zdVLU}+Bg`0gKCds$cM*3AQqx!nBMhk&t}NGXWtI+r2PiPX}Ou+#1_iZ9c+pKNl{j{ zB<))_^hic~L}Uu~3A@v3m35;h-jlbAEZG%S?R*-0D%d84#&poa<46rj1N9gfQ~qC z-~6YPkgVdeKbPz%9%QG?@K@NE%9%$FPc^}`_SY%?Wc{YZh8ANd`C_9$6G{qp{oq$ zm-Lb4!k|^a6Cm@{$WK{b3l;&)Gg^p_YGMtI1n0vT|~PCtF7-Mo@)&5r`mh0U@Qn?ZB+vpG1uiOH8VzPm#!4g1=F zG!~;wsP>$R*!Y?|sLh#e!X&7fOxS=YOznnAg_XpQ{P+bKH#aB~))b(TbX~z(fQE&v zM3AmG*yJwQk3$3^1RJh;5CK304FolRxpY;+e1Z|{;!R$qE9mo*mnq?f8QrFZp|?al z^^Ka%IO9t##$X9X2>nm;)Fq@}qj4J;wt%)KD6=XvDmO0-!C~3cxvPK`9+7>U*4|0eZQy`o0}U?M zU&GcfNWO`w_d0`TThEHBzQ5{WU&^ps|3ML(TIT&#?H@IrkMM4-M0pE-M)FO}5!e~e z1>Qr3Bpod$A{FSaKo}mdJfZ%7z)9}`!uTGMnhDcf#ZUM$$h9-o_P7$N0H}g-ssN}0 zoClO@SgizS|NUS8yX^WnG_(f)g^6^F)KsZCb%pP90`Ymt-Ybo~B%OD+-Ql0T*-Jh~ z+ce_S1?=~XuM-EU=;HCR{t7MWL;ID!?@QxoXZ-PIwkr9=hw$JNjNrF_WB}~0!pCJC zdOF2O_Mul(hF(e05c8Cs%~#BdFfQdOJE<>8jL`lpO^GleZH>p9ZWXwhwBl9+zg>rfIOByB#OzZV6g{x#%rFcYDhq^Pjt2 zBGWAg6PS9KdX#2XZG2f+aee3^(+%ab4)UiO8GPB0 z`Lc66#7#m5p?1r>yG2JoGYV$JuC z_+&-6D>qU8fC|XzII({2mu62t6Dxjc4%HAF((z?U=G`J$25;z&j@BEea-p8Ycccz} z2)`m4-|HTKo9=8vu5+@of(C>Uf@7C$bcslbPqegq^2QYPtcS`N1z!=3IzDvHUw5`Z zDI;j7gb|zxJ!=A3l#!*S%CDqi_L95iU!mhMefXJ*ISgnbjE-Fy|9*B_%Aebu^S3fL z8@ifM*}s!cx!iyw(nilfuX-{V9VewGq#}h^Ex>z!4sbOLKxu*|miF%fr)htp#;E6! zy>V?oRrWNI@j0vk{ZzT~M~<}4Vhv~l@$Gm?{Vy7Mr(U<#- zT^EITJ{_j()6)E`4=bvmkIm^axh7uDmkme{Tih73^wV8O(%Hd3sn0})KcAe2#PR?6 z`U`%X} zHPg)4t#cK|2|q<+_ISNqN#f5n-GM@i{#^Kmp6XF}*?uOku%E^c4%cn#=kvPW#_xHO zk<~?li3p2|%1yLmy&KGh_`^2vFT$cozO~=iX|mfv&BI`gU+Y=)^I>G{rxvVXX;J;VFI={`{Jyvm`5r z@&{7=+5Hb>>PjItN*1&gsI^KUCZ0a(nd(ayKo|VXTOy?kC|$tl0!|mybQ)^I z^Vhv67x_sKvQj2>^|(XAb9iQ214i$E$;B~@#tC@-y8rkhKU)H10VQkS*VEDY^tF(- zwD$e!Mmju`SmcWemwT%ZL)}lA?%mD%K30Dr(%RsZ*`T|lPj~X+iAF}gwgY_m17y{WD}0%y|fZ&$0R+hDIW=XNs`zuVk=|pX>bwzi;H*pa! z$=nF;iRkt{6@9)Rn4kDVxGNGeBExl~qT=Q858=tl$umO(cSL&YSR`S8mHa%YQ38q* zh$tP$^Qq`{{=hud9|DR(uSyXV-k5&~07b6?PQ$0n7l9hsyUqgB9nAD~^Py)JvPZuA z;BH>&%JJ5L9G!qf!)5=6%6oV`i4Mdc=6 zVd=d2^cmfuWY-};=4kPM7&g1`Cl=;)Dn`e;HRk|0(>)}{SvsRXeMWar+2sq)IcPcS z8TUo_6x?ajWMV=EkLa;uH1J~x@0~Tv8aTgAAF%$T?vu@`hK^b%tnu@M?JP%AJ>Z?t zj(U<++pdcfV@NN*DG=V|>B_urS}opKYw^}v3!!RX1YEG7BN$zO!UR;XdW{FC+~a@= z)?4B+!C1%R$N#Bd!GvHzO#WZc3Z~OCeu3Ph7;P76dsV1oD9nycY^$_PgyR+?4+c)u z;xCY*)DW?;_%D#kv}PhRBW8y(Y9>L;q;H+kx8H;}-=xp2wQsylzU?Nw>DHE&GNnSt zS(cYE`DuKgwO5vZN_tTTZ{Q6nQo9ukv%jfJ1^>w{MQ`~-l#zze*bR*LwZ)p^ld`#Z z6mYY{Hbs+7xDqF|~Zm@wRRp$j{^)Kt(ru0!W+9>J^Z!mprcoydcJS|WL93yBj>g#zhuhtlU0btm@8Y4BklVl+^e0tz(BF_pAsuqdbC^$D~Lsu2I7yClCYb2!u7Y4ZZWzE@mC$$epTbhuF45_<9fyDUd3N01-@9yF%c!*Lm zmInpIV6R?XG*^ykFJS$wzws)|;x!@J!|v| z;*r^Z2@PMUJU9D7^SRk6ec~Ovp-!)eF7zk2_4>a*?k0dblMRJqqulB$^MF!7h#GQJ|g2nYXi$GuzFcy5HH&6HENSGw`V0JYy+ZfNN`A?H9Jkqe;ad#&=X8GYk#Y?_nG ztmbre`760yHOby_^8r1b_*-%nXL7R!6tnTJeHs}yC>Gb?TN~N`Y=x?4^pGHo^t0}Agy8zT|nvDbC>lIp-!%) zhE73k$QYj&uwZ_yujG%vZ75glVvvpSrM|7d|GeRVaNR_Atuw@mhfVQG7f3ENAC>o< zA7;O>8I`*(kLz(9)~z~|w_KNZLtG$So=(i&1Cp^Ya)sFe$F^r_33fBUg#HeHhiYhR zZhr5G#TN<_Gj3gq&b0g)1^%uyKX=<4tfiUYA3x;VNEn%wT{Ny`%UgkqMRWwMTo=YN@s#B^n4$$C0`&U$=U;+{~< z0f#7f*WAO4$bu_9Ir~!}OuTCpmvA!&e{C0N1--3}(ACs+Zk4Pz@Lac`MWDO9f&g#f)5A$?SuCn2w#JV^Xh~j zZ~7WPwqC1<2A-=>KU1-RzG?*E#th)q318I$Wm9LOW-wF;wY^dqDqQPF_j|-^+Q6?J zzk2&Swga7|tJ@deqqB?Ae;rN4IvwNhlpH>5af`Mw>8wlgkG8zjYWvU*qx*Z(&L7#A z=y!V39N6f_-GybPvO=fqN-Ei*G)otOU&M5 z*wP0_>RowAp2lypDT{xm#g>;2Xz2jnVXR9BZRz?--GoBY?QzWee_ALKOb(6vYDqW4 z>y8|X9eH9O+^X}h^CdgrnzLJ7>@^J{0DIY1U7K+}^=B9s;f7cJncb(IkWn{my)T_r z$XX(ikWnJv8TQKGhIt729rE2^4=nS0lxZE~lTr-NDxaWu|7gY2Pv~3uOxnDL1#&pY z4C*ldTr;At#hf#&f1roCXG8^?IcQi1FLTj|7SbV{mhYc!dRjumo*c-BRg(_rv=8;q zHL*T4F|0f6ebfk;3_qk*!!hhUE9;OaTr(we2Ynb)m`%Ut#mdkE`Z!emhAe2w$QrIC z6Q^$=Q`CL`IJ>Oy_@VY;jephQzJI`7R(SuI`-pbioGgWze}hA9$@5#V23{M?pe?^w z;|s;Oe-*UF0$Qx8FV$9Bw*c8pt*^oD7`OVPZ0`RPnH26&hG?2ZG7UXuWT6f2mD$7c z&tcGJ+(<9Dt+_St$v=kyyFqKdH;;Lf?|kMA{_&5x;r!ztT`7cnq4hM|44%RqSN|q5 zox16G43{khe{tu3yJiTymvwTgS;W;U$wwvFOLjRR(O$kwK|-x6bRXfJlw{AJI#xGN zNfY5($I)Il5fm9b-ZA%S5>hB_WASJQtMob+uRp>jt5*QqME5@k9EDMI50R!YG9J{M zodymU{vC2F38VU+JWyayARD!RX<&M))*6m=uwl(=e}(F<^FiSDC$hev&-}F3V<}xA zphL5gG>PU0XDIee5KTqJp45PBGo(>bdLh5vY5gG2Bovj3U%bB0vf!?WcNsjhq+sk`J=AWe76&ibPYJ{S8z@rLd>W(h7;hbVe@sy*-yta$=i&YHG@f47|V`|HcwPvYsmw*#_t2%4D|u4Pfwcpc_>12xX{q4Fi&#hvS*6EDYpSAyT2dL?^UqJl)jZ>tzS(5c7*D0-TOZq zaN3)xH5~mKbPq^mzUv)nU3QPO&Ut#4Nuz3Fmyd6fpW*S`dQ63V7}K!o~O!dVyUhCvOSQUe(u5G0*y z(mmH*L*F>R)r@F;Kq!%2A|@EWbui!)yGDHaIv`Fvr1*o&v+(fYGEM_{(Ma12r;xM@ zScPXTD>!;bojpj#MRA0W0sHu;7bn3}e|QluCl&WB;P1IBcgUU?FHXXzH#M{Hj4`7I zIp;^O+t0z7fJN=m6{Wpn(Dww!%miqLJ)jZ6H)OiJa^Pw`+JMI~F3vPUP4h$0JQkn)Ccof2L=m zXg}pO7PtfM(>=&NN}l9ce@GVDWH-B~olS5E0*_|Msv?_BRu!v$#ce>c%RzN&e?J9v zKLcfugRlaBZ)-Kfh-M{&!va4uk&*#lF<#xm^hUDER|>kMABNO*JnnGvW~fKpTxx!> z`^4ah_noGpQGjEN$eSYCh8Oe8AFBTjVuy)v5a&ol3X8ike(kZ`HQU`Nt}3#4t-AoF@L1JacXV?)f>j}I%kHuonUzAdmDV2&1E8!C=H2H zk_d+F%=+LQXb+jq8lf}rgX7?wXdfm_{oquf)*v_NZ`;jIZ=mnWm9~MvTwYc4>zj-9 zPQOlB*LdD0e|Ufhut-yVt(c~AG!@Z2JSc6u^6MmTkkKrhORhctrGA%w3V#X%bzFFw z#)gD`Wq%3^6gilg<7|E?9bYi*76YAfhweT}(=gt+Lw9`yl-UiZzrC7ou{y_e^S%yk zv4I>yfrYIieuGcxL#T$ZuhcMhM!sQenGx>t^!QGgCcRP7t31uww4ygDdXp#R+v%mZ zVRaDNTyNI9+j<{Oa6UWqpY)i3X!-sEu#mx(myqu7S-&fx6sR&5V+RNIJzeM=Dh9;+tsuxG9eXz&<&#G0ktR6JHup)^=o zVmCH}I?fTuNbk_@k_dah1(3f-qu-@H%D78=lyR5#NZzH1sjfJRhoVxZs~y&sn$Bh$ zzKCBAI|m-g%QUeLK!5LMc)po3{1o$}_~u9QHm#SaILcmHXTpTf*Ek-z_`p0TZQSvI zgC0S0m;o;9AmSs*|Gm2B%|X8iH&`SrZJRI+5spcI`qe#eQi6tNd6Lf(B*dMb)RyT5 zn6R)?haGRJ9Z5eItZ7TS6mr3LCUMwlp-%IKf-$TI;Vk@?A%7rr&rP3-HNUO$Il4p5 zsSkGTT-=ihJSgfyi+s*G7uIWYaZmOz+gh6Ex#4;2c%pH9Vo!t-Y=t%j=}|ws;ZZ-k z;n5yyUDOxzC`X@rl%vmmKKfz%dB$P;dB$P;dE&73%quK$x`2?T?ah*FI-=L{a=XX5 z`+4Hrl@=EjV1M#iD`rhc@aKsmxYq!RFMOL*?=|>9tJxTa<`=%9xn3zI9$1%O_||1g z2oSc->dMy$zGyYGK%N$}s`#^W*nnuP>HG6#e1KXg$Pc^*bpX!Wn|nP=wu);B@5XZe z4=w_dIP-I-`_IlP1yjpbjK8d`Bh$%+YJ)GAl5$Bs;(yQ1lk}d3Ui<}}%MdBp;#X>) zh`*pO*^u}PdW`w60x~hDbv>~$b`x~3hiRGS+1u4~z0=S9V_X4~tsaRsR_e>m{MMN( zVW=PFt46tLDS+<8`uIl^g7iS^-X|Giyg&qPeWFa;^@RQC6ZWHT#t?}kitK&hRWr`<>6Fj34r3sdV6(+`!WD(Vc z#}Pp&4y8|@7{Use*g8LBa>n}yOWBDKXk+I$j0Y{L12}D>% zxPPzB`NXmyuL7BG9QOE9uyFaub?G{hpMk73mg}V_m&s4Ai|On~Pz+{rC|NUmxvRJ9 zC2eIBtqN;XhmCndl6FBwB%c^QLbPIft=0IC$~#CHS_Q_s=S#R+?;wtIUDlPJ^ebm5 z!MxQ6Nu^ys#oO)81Q7gwoL6@|xyV)BX@AkCE8*VA`k0eZhoil9Kh77hbnYZ(DQ(;}A zFvXy;l!bF!cT=w0lb0vucjm8R>KD$00-fcrTA=e{TF);>d_|F-_kR8zImnk2+kg0- zN91ZKM)>L}zgbQ<@4&u~Gn7r_GhD7`yM^hFg$p%FSqHcz61Zknq2o_ z|04o>>PcQre_&uyAVWSI{Zv)_cM z_}>+c$1fv7WAwzojvxehCKl3UTWLiPDs783RZq6_+g27`or(9quh!*uzFky*D|)CZ z8H|$}4nY#ZJB|2VFYZ<*0QZbqr35jnNL!kWSTLE->I_lh9Z8t4?0;_-n&9NPPKl6y z*COq>s3ETg{2@&^x>@9KO7Ak3H7Sm-;K8T(>%(bLWw66`-7BYip2Q3#mp^9yt+YO6 z51}+Q(b7@vAUP2?lv$LygV+Z6?lIl%YI=#~Q?qz*W1`Q0w9w9(W!aSIn(x{ON?dSY%VkJ4;fe zjOTWc9HujiVE)YJ?hKUy+-+xGCg#t4?mbq0v!h&`%hY+3B9MIq<`CFN64E^fNPr!Q zGx?8mJ34R8@COjmAUWK(LxdST6CsTuld@W`0EKV>cj{?$WPkXa&vdsKG+^k*40ntC zG4d715RTlHnDQUld|jO7@C6srAW7V}LxdT;;6fTh7F_hkWr#3QLL^c2rxpn@It;Fr zZ+F{FUCQgiyMX+vh1;e=nC>h#)Yd$7_}oHxJFVa4k%g8-6h1Xcn#jsY0}(n!I@+UM zQ!)O}7)kw`(|<0|dD-rzj1p>bXqNWR6y^1{LI=)u25H;Y*y!f(1o8B4&}>E|<@X7q zBKD=8T!1S$p>=ll60ddeOM*4x!A`hZb~jJ2Ilnvds|1(&cG{?m(a9^)i8w}naD1=k zi*4e-pr6>j!OyN+hFOzm&e&G;5co1|veUrL4Q6@?}sQqfR&m|7uVIrX4=I{ zwl!SjcM%4Den8HMVm*Y~75tK7DFS6S8T@4PP{-r1+d1V9OtfzBNe#$^Gv+Kazbz|I zCLFS*`McF>;;mP^ixN%!N!Jo$S>2>8C89kgJDN`H!w2-5VEgj_o!C(`L{W5VldS<kN*hoIfEt+wx`$#JEIk!6nO+uPC@#_Z7!a@Z&&cYxnUiKfTr zw`q{{M=c{7+E#I-U3>+54bv0ZY-SEv_kDtBa^#IxvB&H+YFnwXhKW@gJ6PK$v!#7} zQh%cz(vzERo>l}pm?bAY**Z4)(Z+2Lp{+ygVVGbF8^Vzpy3z=pFp(UN5XLRoXpL9q z`+{p3PB+&WT!HZ@KTh>;aNoF^E+JHJy1EXN>z4Ctx|RKyK2?(+KV<=^hN2;e(J_Xg z0)omAJj!KV5VYNBDceVeTuYYrQ8&w?AAcYNB%D$?1B3Q}Imz3bd0k#;We4!O+M&_g z)A#y;H9!(A)h02p6_`*B(kLShqpKgir(yE^VUg@C(iCHqiJ|2%i6+*C3>y@_lE{ISn9O@5{iD{b^f%mQ}*3tLhWq$-a z+DM&9xSoyGiAU+Big0B@U6`PIUeJj;V98ov#lH2t5&?6$<-D?Md0mpoH z{Wu}YhCIdfYVsx*z>x2b@Il)1f8hRy(J2^~lowYg4kJf~Bc_SWQJj1+n{M8fm~h@F zE&W*cQrzp>u;Hw;8CHN}htB~*UK9c|P^Zz_7LYUQFLEb)&Y5dqmR&6Mw*r8sMC5 z2`;fyXXZul_1&ZR2gSXEa6m)5_a@k}41lBD5o4i%7T2!J8i>r3;oywHeZ(0 za<>9p^BLkwZz0ixVRj+v|D7f)tDMePF3i4N_wGWnVv)X7PZSG)fY@6|Ng)BSOezZC z%A`VCh{bwg0Su+`$(}I7J* zGpbC&EO-bnJOPiSfZV&p-sPDTkcVe=JWkm1Dr@#ZXm)U~$A+-MkH$nXTip+ygIBM^ zwl``n3SvwCSwRetb5!sZmjf6gx`6nO%Dz%hFwG=i`c;WNddW|VXo&n$*^bLktEZ3r zv|_U5_cFX5taeLnw0~ZHEK4+At{1!IN}FN57L`o;ij7TXdj0QzKlp|j%Yu%Eardxg z=2x6pFbX>(^D9i_-MS;p%gttBEjafs?ggZ5FW}f?!^EAqUM9I?0%(B_H1@ccaJFCJ z2TAu=FugG8ZpGF&l=0ZI0*tTf``9_2mT$Q>6nvY(*5ieQ{C_jtwo99dRzQC45;!=Q zB|_TSyI+%l4$eA!qfGLqen5ECgD1;2@8w*5%Dk~I1-Vq=n0aDasc$*C9z2j}4xVzF zsa{lP%-c1uOGB_c@&;pDl;4WMpb2&A24e`i=Czw0ZE^c!%BU7N#*z^_|%axRtA%KnqpAM9HNYEOlA@F+_ok#eOJ>TIy3#B zJ^8lO{})v3ey~H7m4(SoHC=3Pm^2o-@Aig1%VS-Ln}5dUJ`GYy~51F#1kb`B+7Su8rF zSI|6sHh&MmRCw4iFzgvV9O@YiZ$vO{9D~FjfH8dMu(N%UCC&gab`1jw^)b5z%or#Z zw%RgE=@j%M{p3)C6?hMNhn@|bealBVKH8FVd?X45@_9B$JQ`J^O3)sVB{+znG?1dw zKt6a0ik+w-q|m3*I%wz6%^UKgon>An*1$?=>Pz-rlSlU@(7jBTGw$7$gMLcYEdQE^J1W!hD<*VKe-~L- zJ)YI^72W6DtnbR{C1P!Z)lXq5X7eX4mw%qp<9;y$&)0X#&;=(j#?ct3Fws>^_j$Gm zC@rYX^GIa^y$4^+uiZI7D0B1W9Oi3TEwzQw4G0EegZ_TftW*HUf@WaLZ!kQeD{IfMYcBC2Bhvqsg zFb$68bCTnvha67!0L6a0(@t`b3 zrM+~znd)B_)9dSM)?+G>2~LZtwINoJ#o4r=TAGQnOzhm zl^6iA)8?AHX#l=a1A!*F$7HYwN{T?cNg#p(5tJ1H=PznZ&~=2Es=Y=THGf0MyJsd+ z%=1BzH3SyW<31WJ&5L;a0Yya=pJy?S$QLs)+oen!rA=95ZIcqGMM1gioAqungUwLC z)r+d>=D=bua3(gkeiV!n_|<*1DtWRB(jZXkQYaB|7ON5e@}PyU;1X?6dR=q>93IoI^ZhksfRSV4@u?y#Bv^mw344TcIOXXwb{9R?XIy`fAMGggAJ zBF4%ve!jQtX81f~K6X17O7`x%SR2iIl6rXj37<*d9nDT z-ZQXF```XretPhygFlf{ulJeq6aD8Wxn}bXjfKC)3Y1J)eX9PX|9?X}1GcYE^dFy? zA@q=>u*IL_h3)6TeRp5*a$Bc5TE-sUD(}j>cBP`DMe9Kx@5Z|>NW9T+9+7PG){&Su zZXBt#^_^q|7v{=f9X3q$#OK9jOAmrnHp`kYk;7@riMVsn}-5ekc z8(=`ay=*5$9bLslT^Z`iqkfVphLzXrEqb*UQ;hnljEs_^6c{O9J%90&4P&OC3f$M1)odOVGTC>h6lA>$11FN71pJphMy)px5ycR07iN`= z&4|GCU|dE6Ry6xG7Qmt(l8j8n5Y3y5Y*@xY=e!q4VRED<5S%-K6s$cTlYBC&k%85n za^-+MB0<|Bv_~^O8(ZKweQ=wWr=NhgY0$QFYC0erhkvuz`*}u@_WC|jaTV^w87E^% z*4?9fPs$IHJVw+K1v{xB3eHkH>{XuFhD@Kz8pNlv)^MN8uMPwKG zk|hD%y3<-yU}G&WND6K&{e}>u2Fh3~j|R?I2YGEO%e&3q>5`|~HWvg;=HzLVZXsZ- za<&oyWPg>pkHnk^QqxX48HP9wmh<|uT4=kg0t4Np(ew!!4;%$&lB7uF@q)q6+V~oM zodGKYYrM=f{yIUGKU^-9N8i^bYOs&m_!mte#E!SM35D4Gnl{l&Glty6E6vMuab5wHHB&S(uW0kQyAmT|asvj$cO0m&U z1A^qvG+nLBWhw`&addBePv=B3sf z{m*CCA1OmQ9_ty5i25d1R6WwWkIF^0{bQ4kj~hs+tLfExx-7M2Tdh7om)i&TT5nw6 zeb9H@cONO_j0H@AvtrJWvV5ntKH#jFv--DBKV{wudF#K?E2#e^{`y1t4G-s+pZ}SY z@sB`%L;6iQ5~?uh_T!JuP;QRzh2hy8BZfBbVEL@CL}lGxaqcfLXc~w>+^Qq;B2K)> z3UGbgA8ITs=+*#;b#N~vnrP&q3p~-NzHGXW^NN@{>qLza0{BJoIgPoVBvWrWN&eny zlA`p`*^bPaRvs7*Jky6TkU%_{s$1nQ7eQ&-(l&$yx-pF zZPYXPU1~xLrr)==QDNapGZP>!KxuyZqbSxkvRlbf4joG0rFa%1Cluta4YoHS7}AjhZ_H3Kre zxL$f`oJ|5VndPI5zF59Yf2Y+sQ;VhLl;n-Wd13?!wj+WpCOq@)Vmasi07$U}SY`*uW|i>R`xRh` zwbS(8s8KP(;^u6JH1?h9i;>rVVi&fv^v%b-oADGNO`1~xT0bW3?^ zz>hg1-OJ60voJ{;h_TZh&KxJw8vHy?+;Un^NQe~ECdSeO{Btoa0KamvS1nz_sx>5e zdY%0$L=M*8=G} z-Mu}b=}O&knYH1#^OTW)nWv1{N(|jM79lX7r{gG3$5BSdVPxB0`Vd@t<7|kUK3e6k z2*{u6ok(RzFJT|WV9g*6`lH3UXhTnL&kFm#W`kVRF50e@5eL)gMJIUad>n`MO0hT& z%mc;w{(TK}lqn={&~Ib{QJD8IeUU-B$-`m@nxIkUuwakWq1*j_wV2=D0#oqI*I)K?xY;?yq6>O54Gt`pKQl7o)S`?^%IJ`m zQ8Gn1Bk+l2biW%J70dYjzhr9giKIiOdtbgmP!4(@4Y}_PePaOHa=tCTJX_GW-D{Vs z9M)Obw}b2)L+A8=x?jxSRf~IvSVFKz8M%~^D8<)v49?SUDN%J`Dul))GbLZ=OCY4J z^_IV>N>6$3D;v>Jmd5K8b>bVl%IfCCyc1`TV7Z2G7_ltVlhhV$;l`F8p>|gIapd)`ka*Ff<$jJ$70vC#L>QyEqAEm$n z`2vIfDD8iLx^fe3>Z=&%VK?5%8wg6ItFY-2Hy;OMl50Lz&lfCtRw0B15sb#`ihu=gyOk>>42h`g19toyqvsB zJY+G+8z`jt z0ZBTdZ`zrXPyk95hRGZR6^5a2z1G`K4rU%o1-MuZs^0CR0;+mxDWdu&DT{w+>B)j4 znAfX+Uw;1Q)`#}Ptq=YMAMLWrlbR{{hVn?^#eQ;eufMe(jGjl87s_tLQ6LUlZ6uBf jZV!Y(6cxfcWI>b=<4x{BBb4nREoCvl;{N~yL=q5p_Qkq{ diff --git a/master/searchindex.js b/master/searchindex.js index 98cda12d7..6a5141eea 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106, 108], "681458": 10, "37": [10, 89, 95, 96, 98, 108], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103, 104, 108], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "visa_or_mastercard": [87, 94], "change_pin": [87, 94], "lost_or_stolen_phon": [87, 94], "card_payment_fee_charg": [87, 94], "getting_spare_card": [87, 94], "beneficiary_not_allow": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_about_to_expir": [87, 94], "supported_cards_and_curr": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90, 108], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "009": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "734": 91, "493": 91, "060": 91, "225": [91, 102], "330": [91, 98, 103], "505": 91, "711": 91, "476": [91, 98], "340": [91, 98], "971": [91, 94], "328": [91, 103], "310": 91, "749": [91, 98], "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103, 108], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "153": [95, 98, 103], "110": [95, 103], "111": [95, 101, 106], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": 95, "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103, 108], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103, 108], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": [103, 108], "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "40165594": 104, "79it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a01": 108, "1108": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "80mb": 108, "inflat": 108, "182": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "1mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106, 108], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98, 108], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106, 108], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "getting_spare_card": [87, 94], "lost_or_stolen_phon": [87, 94], "supported_cards_and_curr": [87, 94], "visa_or_mastercard": [87, 94], "card_about_to_expir": [87, 94], "card_payment_fee_charg": [87, 94], "apple_pay_or_google_pai": [87, 94], "change_pin": [87, 94], "beneficiary_not_allow": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98, 108], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98, 108], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "813": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "540": [91, 98], "493": 91, "060": 91, "906": 91, "330": [91, 98, 103], "505": 91, "579": [91, 98], "476": [91, 98], "340": [91, 98], "730": 91, "328": [91, 103], "310": 91, "565": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "524": 95, "991400": 95, "356925": 95, "363": [95, 98], "619581": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": [95, 108], "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103, 108], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "523": 98, "535": 98, "543": 98, "567": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": [102, 108], "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "104640519": 104, "71it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "6mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 035a453c2..5e784d0c6 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:41.701646Z", - "iopub.status.busy": "2024-08-12T18:53:41.701187Z", - "iopub.status.idle": "2024-08-12T18:53:43.282413Z", - "shell.execute_reply": "2024-08-12T18:53:43.281715Z" + "iopub.execute_input": "2024-08-15T19:27:32.175444Z", + "iopub.status.busy": "2024-08-15T19:27:32.175099Z", + "iopub.status.idle": "2024-08-15T19:27:33.655324Z", + "shell.execute_reply": "2024-08-15T19:27:33.654740Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:43.285416Z", - "iopub.status.busy": "2024-08-12T18:53:43.285068Z", - "iopub.status.idle": "2024-08-12T18:53:43.306423Z", - "shell.execute_reply": "2024-08-12T18:53:43.305786Z" + "iopub.execute_input": "2024-08-15T19:27:33.658284Z", + "iopub.status.busy": "2024-08-15T19:27:33.657612Z", + "iopub.status.idle": "2024-08-15T19:27:33.676622Z", + "shell.execute_reply": "2024-08-15T19:27:33.676082Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:43.309404Z", - "iopub.status.busy": "2024-08-12T18:53:43.308901Z", - "iopub.status.idle": "2024-08-12T18:53:43.590676Z", - "shell.execute_reply": "2024-08-12T18:53:43.590074Z" + "iopub.execute_input": "2024-08-15T19:27:33.678883Z", + "iopub.status.busy": "2024-08-15T19:27:33.678472Z", + "iopub.status.idle": "2024-08-15T19:27:33.873449Z", + "shell.execute_reply": "2024-08-15T19:27:33.872840Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:43.622837Z", - "iopub.status.busy": "2024-08-12T18:53:43.622392Z", - "iopub.status.idle": "2024-08-12T18:53:43.626532Z", - "shell.execute_reply": "2024-08-12T18:53:43.626050Z" + "iopub.execute_input": "2024-08-15T19:27:33.903610Z", + "iopub.status.busy": "2024-08-15T19:27:33.903202Z", + "iopub.status.idle": "2024-08-15T19:27:33.906628Z", + "shell.execute_reply": "2024-08-15T19:27:33.906168Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:43.628660Z", - "iopub.status.busy": "2024-08-12T18:53:43.628290Z", - "iopub.status.idle": "2024-08-12T18:53:43.636581Z", - "shell.execute_reply": "2024-08-12T18:53:43.636072Z" + "iopub.execute_input": "2024-08-15T19:27:33.908779Z", + "iopub.status.busy": "2024-08-15T19:27:33.908450Z", + "iopub.status.idle": "2024-08-15T19:27:33.916596Z", + "shell.execute_reply": "2024-08-15T19:27:33.916032Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:43.638906Z", - "iopub.status.busy": "2024-08-12T18:53:43.638534Z", - "iopub.status.idle": "2024-08-12T18:53:43.641123Z", - "shell.execute_reply": "2024-08-12T18:53:43.640620Z" + "iopub.execute_input": "2024-08-15T19:27:33.918799Z", + "iopub.status.busy": "2024-08-15T19:27:33.918620Z", + "iopub.status.idle": "2024-08-15T19:27:33.921313Z", + "shell.execute_reply": "2024-08-15T19:27:33.920844Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:43.643076Z", - "iopub.status.busy": "2024-08-12T18:53:43.642762Z", - "iopub.status.idle": "2024-08-12T18:53:44.178834Z", - "shell.execute_reply": "2024-08-12T18:53:44.178253Z" + "iopub.execute_input": "2024-08-15T19:27:33.923111Z", + "iopub.status.busy": "2024-08-15T19:27:33.922936Z", + "iopub.status.idle": "2024-08-15T19:27:34.437568Z", + "shell.execute_reply": "2024-08-15T19:27:34.437032Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:44.181632Z", - "iopub.status.busy": "2024-08-12T18:53:44.181238Z", - "iopub.status.idle": "2024-08-12T18:53:46.388740Z", - "shell.execute_reply": "2024-08-12T18:53:46.388108Z" + "iopub.execute_input": "2024-08-15T19:27:34.439919Z", + "iopub.status.busy": "2024-08-15T19:27:34.439733Z", + "iopub.status.idle": "2024-08-15T19:27:36.488622Z", + "shell.execute_reply": "2024-08-15T19:27:36.487989Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:46.391610Z", - "iopub.status.busy": "2024-08-12T18:53:46.390811Z", - "iopub.status.idle": "2024-08-12T18:53:46.401301Z", - "shell.execute_reply": "2024-08-12T18:53:46.400756Z" + "iopub.execute_input": "2024-08-15T19:27:36.491442Z", + "iopub.status.busy": "2024-08-15T19:27:36.490628Z", + "iopub.status.idle": "2024-08-15T19:27:36.501144Z", + "shell.execute_reply": "2024-08-15T19:27:36.500707Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:46.403503Z", - "iopub.status.busy": "2024-08-12T18:53:46.403168Z", - "iopub.status.idle": "2024-08-12T18:53:46.407486Z", - "shell.execute_reply": "2024-08-12T18:53:46.406942Z" + "iopub.execute_input": "2024-08-15T19:27:36.503355Z", + "iopub.status.busy": "2024-08-15T19:27:36.502909Z", + "iopub.status.idle": "2024-08-15T19:27:36.506883Z", + "shell.execute_reply": "2024-08-15T19:27:36.506329Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:46.409604Z", - "iopub.status.busy": "2024-08-12T18:53:46.409263Z", - "iopub.status.idle": "2024-08-12T18:53:46.416637Z", - "shell.execute_reply": "2024-08-12T18:53:46.416174Z" + "iopub.execute_input": "2024-08-15T19:27:36.508909Z", + "iopub.status.busy": "2024-08-15T19:27:36.508598Z", + "iopub.status.idle": "2024-08-15T19:27:36.515533Z", + "shell.execute_reply": "2024-08-15T19:27:36.515090Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:46.418720Z", - "iopub.status.busy": "2024-08-12T18:53:46.418378Z", - "iopub.status.idle": "2024-08-12T18:53:46.535003Z", - "shell.execute_reply": "2024-08-12T18:53:46.534438Z" + "iopub.execute_input": "2024-08-15T19:27:36.517527Z", + "iopub.status.busy": "2024-08-15T19:27:36.517180Z", + "iopub.status.idle": "2024-08-15T19:27:36.629610Z", + "shell.execute_reply": "2024-08-15T19:27:36.629050Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:46.537339Z", - "iopub.status.busy": "2024-08-12T18:53:46.536944Z", - "iopub.status.idle": "2024-08-12T18:53:46.539790Z", - "shell.execute_reply": "2024-08-12T18:53:46.539324Z" + "iopub.execute_input": "2024-08-15T19:27:36.631718Z", + "iopub.status.busy": "2024-08-15T19:27:36.631278Z", + "iopub.status.idle": "2024-08-15T19:27:36.634138Z", + "shell.execute_reply": "2024-08-15T19:27:36.633600Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:46.541970Z", - "iopub.status.busy": "2024-08-12T18:53:46.541632Z", - "iopub.status.idle": "2024-08-12T18:53:48.807764Z", - "shell.execute_reply": "2024-08-12T18:53:48.807088Z" + "iopub.execute_input": "2024-08-15T19:27:36.636064Z", + "iopub.status.busy": "2024-08-15T19:27:36.635797Z", + "iopub.status.idle": "2024-08-15T19:27:38.770424Z", + "shell.execute_reply": "2024-08-15T19:27:38.769614Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:48.811078Z", - "iopub.status.busy": "2024-08-12T18:53:48.810181Z", - "iopub.status.idle": "2024-08-12T18:53:48.822087Z", - "shell.execute_reply": "2024-08-12T18:53:48.821596Z" + "iopub.execute_input": "2024-08-15T19:27:38.773797Z", + "iopub.status.busy": "2024-08-15T19:27:38.772969Z", + "iopub.status.idle": "2024-08-15T19:27:38.784753Z", + "shell.execute_reply": "2024-08-15T19:27:38.784189Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:48.824275Z", - "iopub.status.busy": "2024-08-12T18:53:48.823917Z", - "iopub.status.idle": "2024-08-12T18:53:49.001638Z", - "shell.execute_reply": "2024-08-12T18:53:49.001079Z" + "iopub.execute_input": "2024-08-15T19:27:38.787133Z", + "iopub.status.busy": "2024-08-15T19:27:38.786655Z", + "iopub.status.idle": "2024-08-15T19:27:38.842380Z", + "shell.execute_reply": "2024-08-15T19:27:38.841820Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 5df852fb0..69234e81b 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies'}
    +Classes: {'getting_spare_card', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'beneficiary_not_allowed'}
     

    Let’s print the first example in the train set.

    @@ -880,43 +880,43 @@

    2. Load and format the text dataset
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1219,7 +1219,7 @@

    Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    The modern AI pipeline automated with Cleanlab Studio

    diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 001a213a7..249aadb2b 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:52.248151Z", - "iopub.status.busy": "2024-08-12T18:53:52.247987Z", - "iopub.status.idle": "2024-08-12T18:53:55.894101Z", - "shell.execute_reply": "2024-08-12T18:53:55.893473Z" + "iopub.execute_input": "2024-08-15T19:27:42.558639Z", + "iopub.status.busy": "2024-08-15T19:27:42.558470Z", + "iopub.status.idle": "2024-08-15T19:27:45.876667Z", + "shell.execute_reply": "2024-08-15T19:27:45.876117Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:55.896748Z", - "iopub.status.busy": "2024-08-12T18:53:55.896431Z", - "iopub.status.idle": "2024-08-12T18:53:55.900025Z", - "shell.execute_reply": "2024-08-12T18:53:55.899460Z" + "iopub.execute_input": "2024-08-15T19:27:45.879087Z", + "iopub.status.busy": "2024-08-15T19:27:45.878772Z", + "iopub.status.idle": "2024-08-15T19:27:45.882150Z", + "shell.execute_reply": "2024-08-15T19:27:45.881613Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:55.901985Z", - "iopub.status.busy": "2024-08-12T18:53:55.901681Z", - "iopub.status.idle": "2024-08-12T18:53:55.904870Z", - "shell.execute_reply": "2024-08-12T18:53:55.904262Z" + "iopub.execute_input": "2024-08-15T19:27:45.884279Z", + "iopub.status.busy": "2024-08-15T19:27:45.883881Z", + "iopub.status.idle": "2024-08-15T19:27:45.887053Z", + "shell.execute_reply": "2024-08-15T19:27:45.886505Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:55.906806Z", - "iopub.status.busy": "2024-08-12T18:53:55.906507Z", - "iopub.status.idle": "2024-08-12T18:53:56.076228Z", - "shell.execute_reply": "2024-08-12T18:53:56.075627Z" + "iopub.execute_input": "2024-08-15T19:27:45.889108Z", + "iopub.status.busy": "2024-08-15T19:27:45.888664Z", + "iopub.status.idle": "2024-08-15T19:27:45.942599Z", + "shell.execute_reply": "2024-08-15T19:27:45.942052Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:56.078447Z", - "iopub.status.busy": "2024-08-12T18:53:56.078088Z", - "iopub.status.idle": "2024-08-12T18:53:56.081709Z", - "shell.execute_reply": "2024-08-12T18:53:56.081260Z" + "iopub.execute_input": "2024-08-15T19:27:45.944734Z", + "iopub.status.busy": "2024-08-15T19:27:45.944391Z", + "iopub.status.idle": "2024-08-15T19:27:45.947974Z", + "shell.execute_reply": "2024-08-15T19:27:45.947514Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:56.083777Z", - "iopub.status.busy": "2024-08-12T18:53:56.083428Z", - "iopub.status.idle": "2024-08-12T18:53:56.086941Z", - "shell.execute_reply": "2024-08-12T18:53:56.086476Z" + "iopub.execute_input": "2024-08-15T19:27:45.949985Z", + "iopub.status.busy": "2024-08-15T19:27:45.949666Z", + "iopub.status.idle": "2024-08-15T19:27:45.953173Z", + "shell.execute_reply": "2024-08-15T19:27:45.952721Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'cancel_transfer', 'change_pin', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies'}\n" + "Classes: {'getting_spare_card', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'beneficiary_not_allowed'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:56.088941Z", - "iopub.status.busy": "2024-08-12T18:53:56.088604Z", - "iopub.status.idle": "2024-08-12T18:53:56.091760Z", - "shell.execute_reply": "2024-08-12T18:53:56.091308Z" + "iopub.execute_input": "2024-08-15T19:27:45.955186Z", + "iopub.status.busy": "2024-08-15T19:27:45.954879Z", + "iopub.status.idle": "2024-08-15T19:27:45.957998Z", + "shell.execute_reply": "2024-08-15T19:27:45.957466Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:56.093930Z", - "iopub.status.busy": "2024-08-12T18:53:56.093483Z", - "iopub.status.idle": "2024-08-12T18:53:56.096951Z", - "shell.execute_reply": "2024-08-12T18:53:56.096394Z" + "iopub.execute_input": "2024-08-15T19:27:45.960193Z", + "iopub.status.busy": "2024-08-15T19:27:45.959764Z", + "iopub.status.idle": "2024-08-15T19:27:45.963125Z", + "shell.execute_reply": "2024-08-15T19:27:45.962546Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:53:56.098867Z", - "iopub.status.busy": "2024-08-12T18:53:56.098591Z", - "iopub.status.idle": "2024-08-12T18:54:01.596872Z", - "shell.execute_reply": "2024-08-12T18:54:01.596260Z" + "iopub.execute_input": "2024-08-15T19:27:45.965041Z", + "iopub.status.busy": "2024-08-15T19:27:45.964733Z", + "iopub.status.idle": "2024-08-15T19:27:50.230959Z", + "shell.execute_reply": "2024-08-15T19:27:50.230392Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5fce0f83ffcb45b1b4e91907422e2fd5", + "model_id": "18e1dd389279416b9826a2293eec395e", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8220af5113534a53bc94d0f5c8251a66", + "model_id": "f0dd1debaaf34981aa3e55254958ee72", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "399a7f37c7aa40b58c950e18df0b5960", + "model_id": "bc18025481124500a65d4cf4f8fd81cb", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "49e67bb21955496ba2eee2c0e6dad0ab", + "model_id": "d098387e1f8d4bfbb22cbd40f5b8e0fa", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "289a07c93d8049998a1f7e65320f71c8", + "model_id": "5904a3de384844e5aac5db1ba56ac44f", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a94fae83aa2341e5b8d1ae56f3b7cbda", + "model_id": "105deb524a014f529ced54724d1d08a6", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b2f79098c4674c5ca353b28833562218", + "model_id": "f5cd8fbfe34b4c5c895a38fe30e7362c", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:01.600043Z", - "iopub.status.busy": "2024-08-12T18:54:01.599613Z", - "iopub.status.idle": "2024-08-12T18:54:01.602661Z", - "shell.execute_reply": "2024-08-12T18:54:01.602180Z" + "iopub.execute_input": "2024-08-15T19:27:50.233659Z", + "iopub.status.busy": "2024-08-15T19:27:50.233275Z", + "iopub.status.idle": "2024-08-15T19:27:50.236294Z", + "shell.execute_reply": "2024-08-15T19:27:50.235798Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:01.604735Z", - "iopub.status.busy": "2024-08-12T18:54:01.604395Z", - "iopub.status.idle": "2024-08-12T18:54:01.606950Z", - "shell.execute_reply": "2024-08-12T18:54:01.606508Z" + "iopub.execute_input": "2024-08-15T19:27:50.238340Z", + "iopub.status.busy": "2024-08-15T19:27:50.238008Z", + "iopub.status.idle": "2024-08-15T19:27:50.240555Z", + "shell.execute_reply": "2024-08-15T19:27:50.240110Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:01.608945Z", - "iopub.status.busy": "2024-08-12T18:54:01.608609Z", - "iopub.status.idle": "2024-08-12T18:54:04.445747Z", - "shell.execute_reply": "2024-08-12T18:54:04.444939Z" + "iopub.execute_input": "2024-08-15T19:27:50.242583Z", + "iopub.status.busy": "2024-08-15T19:27:50.242263Z", + "iopub.status.idle": "2024-08-15T19:27:52.943233Z", + "shell.execute_reply": "2024-08-15T19:27:52.942408Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:04.449080Z", - "iopub.status.busy": "2024-08-12T18:54:04.448318Z", - "iopub.status.idle": "2024-08-12T18:54:04.456608Z", - "shell.execute_reply": "2024-08-12T18:54:04.455832Z" + "iopub.execute_input": "2024-08-15T19:27:52.946310Z", + "iopub.status.busy": "2024-08-15T19:27:52.945599Z", + "iopub.status.idle": "2024-08-15T19:27:52.953757Z", + "shell.execute_reply": "2024-08-15T19:27:52.953201Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:04.458815Z", - "iopub.status.busy": "2024-08-12T18:54:04.458476Z", - "iopub.status.idle": "2024-08-12T18:54:04.462554Z", - "shell.execute_reply": "2024-08-12T18:54:04.462062Z" + "iopub.execute_input": "2024-08-15T19:27:52.956161Z", + "iopub.status.busy": "2024-08-15T19:27:52.955782Z", + "iopub.status.idle": "2024-08-15T19:27:52.959772Z", + "shell.execute_reply": "2024-08-15T19:27:52.959213Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:04.464756Z", - "iopub.status.busy": "2024-08-12T18:54:04.464321Z", - "iopub.status.idle": "2024-08-12T18:54:04.467750Z", - "shell.execute_reply": "2024-08-12T18:54:04.467293Z" + "iopub.execute_input": "2024-08-15T19:27:52.961719Z", + "iopub.status.busy": "2024-08-15T19:27:52.961422Z", + "iopub.status.idle": "2024-08-15T19:27:52.964455Z", + "shell.execute_reply": "2024-08-15T19:27:52.963932Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:04.469960Z", - "iopub.status.busy": "2024-08-12T18:54:04.469551Z", - "iopub.status.idle": "2024-08-12T18:54:04.472540Z", - "shell.execute_reply": "2024-08-12T18:54:04.472051Z" + "iopub.execute_input": "2024-08-15T19:27:52.966586Z", + "iopub.status.busy": "2024-08-15T19:27:52.966179Z", + "iopub.status.idle": "2024-08-15T19:27:52.969368Z", + "shell.execute_reply": "2024-08-15T19:27:52.968804Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:04.474585Z", - "iopub.status.busy": "2024-08-12T18:54:04.474184Z", - "iopub.status.idle": "2024-08-12T18:54:04.481135Z", - "shell.execute_reply": "2024-08-12T18:54:04.480676Z" + "iopub.execute_input": "2024-08-15T19:27:52.971503Z", + "iopub.status.busy": "2024-08-15T19:27:52.971191Z", + "iopub.status.idle": "2024-08-15T19:27:52.978128Z", + "shell.execute_reply": "2024-08-15T19:27:52.977586Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:04.483285Z", - "iopub.status.busy": "2024-08-12T18:54:04.482950Z", - "iopub.status.idle": "2024-08-12T18:54:04.708333Z", - "shell.execute_reply": "2024-08-12T18:54:04.707743Z" + "iopub.execute_input": "2024-08-15T19:27:52.980349Z", + "iopub.status.busy": "2024-08-15T19:27:52.979987Z", + "iopub.status.idle": "2024-08-15T19:27:53.206595Z", + "shell.execute_reply": "2024-08-15T19:27:53.206045Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:04.711066Z", - "iopub.status.busy": "2024-08-12T18:54:04.710654Z", - "iopub.status.idle": "2024-08-12T18:54:04.924095Z", - "shell.execute_reply": "2024-08-12T18:54:04.923546Z" + "iopub.execute_input": "2024-08-15T19:27:53.209225Z", + "iopub.status.busy": "2024-08-15T19:27:53.208818Z", + "iopub.status.idle": "2024-08-15T19:27:53.405064Z", + "shell.execute_reply": "2024-08-15T19:27:53.404505Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:04.926831Z", - "iopub.status.busy": "2024-08-12T18:54:04.926424Z", - "iopub.status.idle": "2024-08-12T18:54:04.930340Z", - "shell.execute_reply": "2024-08-12T18:54:04.929826Z" + "iopub.execute_input": "2024-08-15T19:27:53.407725Z", + "iopub.status.busy": "2024-08-15T19:27:53.407340Z", + "iopub.status.idle": "2024-08-15T19:27:53.411137Z", + "shell.execute_reply": "2024-08-15T19:27:53.410613Z" }, "nbsphinx": "hidden" }, @@ -1120,30 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "006d5af724ae4e22971f736a55857a4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ea21d01843264621bf231835fe9aa860", - "placeholder": "​", - "style": "IPY_MODEL_7999018889a84b9f8c94ace4e0ab66c0", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 50.6kB/s]" - } - }, - "009d75c3861b4c879405b5a7d55acf04": { + "06c1b1b3a04041acada0062360fea245": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1196,25 +1173,31 @@ "width": null } }, - "09f32f04be0940bebe8a6742dcb99e85": { + "105deb524a014f529ced54724d1d08a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_64f7783ccf1b46a491d0f394e3d3a360", + "IPY_MODEL_ca81ad761da2429a808c5ebf4cd373c5", + "IPY_MODEL_ffb02985dc3d4167bcc926f924321ac1" + ], + "layout": "IPY_MODEL_561a85d9ca084bd09346934332be1447", + "tabbable": null, + "tooltip": null } }, - "0a8c4fc01ece4f01b270709d2a552fa5": { + "1227bc1e2331481b8529dde07c438142": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1267,80 +1250,142 @@ "width": null } }, - "0c05b80cbe854fdd9294576db3ff05bb": { + "130c5d67803d4756b979760b1a187831": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f68e87e3fd74e96b35e89e7314c1250", + "placeholder": "​", + "style": "IPY_MODEL_573abf0118a440a3abd69d26bbc474be", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" } }, - "1db895665fe44642a62670093127e02f": { + "138755fc53424887bbb2c7512f3a3567": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_88f92a5405fb4f9db0cd99657d8669f4", + "placeholder": "​", + "style": "IPY_MODEL_51736303be264ba19fe1593f3d761157", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "1ea2c29144d5400b8748c646f033894f": { + "15d48ea962a14714a6418902a5e05366": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21b6f5ca90f946eeac3ef280c0a17592", + "placeholder": "​", + "style": "IPY_MODEL_b34a55f11caa4d8faa49324c068aca1e", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "2456c9a661bd4b3dba4fdfcac7612a7b": { + "18e1dd389279416b9826a2293eec395e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_15d48ea962a14714a6418902a5e05366", + "IPY_MODEL_999bdd12fc13426c94d8e3a3526d8b11", + "IPY_MODEL_ca3e25e1bd3b42708a64be01838386b4" + ], + "layout": "IPY_MODEL_06c1b1b3a04041acada0062360fea245", + "tabbable": null, + "tooltip": null + } + }, + "1d412638f84d4d65958cbb05674ddc95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c9d5a88c8a64cdd9cb0823ce2acabe6", - "placeholder": "​", - "style": "IPY_MODEL_4cc8077d9879462c9de005575bfbad8f", + "layout": "IPY_MODEL_2eef4564482c4ceabadeba69bffbad05", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b0a46974e704a68be481a80eebb6de6", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 113kB/s]" + "value": 231508.0 + } + }, + "1d9128994b5d47e9b6e3394348f0c2ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "256087a5a19243bfa05bdf6c0ba10805": { + "21b6f5ca90f946eeac3ef280c0a17592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1393,7 +1438,7 @@ "width": null } }, - "25bcb9c6186c45b886561f036d828a86": { + "26073d8909d74969a761afe8992def87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1411,31 +1456,7 @@ "text_color": null } }, - "289a07c93d8049998a1f7e65320f71c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f94389f0251b49029639e433e5aa755a", - "IPY_MODEL_c18c40bc53e74acba0e92d6acf7c08f4", - "IPY_MODEL_d42046c8642448498fca534ce27f1983" - ], - "layout": "IPY_MODEL_4c86ef1c9f1841f6a3258d0e5669cb13", - "tabbable": null, - "tooltip": null - } - }, - "33ca193d276b47af9b1bd6a968bcd64b": { + "2c85b26705d645f59749a4611993b2d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1450,33 +1471,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4efb05c35218455aad7fb4cc5db56afb", + "layout": "IPY_MODEL_74870b32fa794d23bb4d5af5dfe3d6f1", "placeholder": "​", - "style": "IPY_MODEL_63f8b0c136af4afda525f2cd9ae8f291", + "style": "IPY_MODEL_d2327606e6ed49f3a75616197b1c1d83", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "343c3d1a93274355a1653ea076df4bac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 2.21k/2.21k [00:00<00:00, 424kB/s]" } }, - "3778bf93f04a411aa0d5e989e8c6d9c3": { + "2eef4564482c4ceabadeba69bffbad05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1529,7 +1532,7 @@ "width": null } }, - "3898d2c8d96b4f43913ec0a16a040638": { + "34930ccbf1814df692eea267fbe45cba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1582,47 +1585,33 @@ "width": null } }, - "399a7f37c7aa40b58c950e18df0b5960": { + "3a003ad7e18c405999f3ac35c600db4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4ea1345727424481834f52e3f1cacd94", - "IPY_MODEL_bc04b19aec774203a92404adb3103b97", - "IPY_MODEL_2456c9a661bd4b3dba4fdfcac7612a7b" - ], - "layout": "IPY_MODEL_c43feac438144313ab89f24fd448a54e", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f688fc2c696b4860a85813276d929448", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5de70a7654cc4ec3be77d45ef3e37140", "tabbable": null, - "tooltip": null - } - }, - "3cfae654d8a94672bc68d05eced1d0ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 2211.0 } }, - "43beca2bd35e4cac86fc0777b9ea9844": { + "4e3b890b72a5457b9f38e65e57c35ff6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,7 +1664,7 @@ "width": null } }, - "4432435a03294629ba63a9de48043548": { + "4ebfe1fff427429d8dc82ff437762c77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1693,57 +1682,25 @@ "text_color": null } }, - "49e67bb21955496ba2eee2c0e6dad0ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_535c1e132a924ee09c0f3bd3213827ec", - "IPY_MODEL_4efecba95fed4e0c972987879f4d53ee", - "IPY_MODEL_5a35ee0bb8d946e3b40e44a3e2c5e0f7" - ], - "layout": "IPY_MODEL_009d75c3861b4c879405b5a7d55acf04", - "tabbable": null, - "tooltip": null - } - }, - "4b626302897e46419c4844e76d79662e": { + "51736303be264ba19fe1593f3d761157": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67ed76d0459b45109ab7b2e474b134dd", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_be482aad3d2b4b9ebe88ee672e4c13ad", - "tabbable": null, - "tooltip": null, - "value": 48.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4c86ef1c9f1841f6a3258d0e5669cb13": { + "5547b8df2dfa487aad9f7b4ad0df80aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1796,7 +1753,7 @@ "width": null } }, - "4cc8077d9879462c9de005575bfbad8f": { + "55edf1a6088d4f70a8c9d766428b7ade": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1814,46 +1771,33 @@ "text_color": null } }, - "4d5c6911336a46598cf358d62a000f88": { + "55f82b5b8aaa486fb797fc7efd50b505": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4ea1345727424481834f52e3f1cacd94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_560ff6ebca984f28860bb80375bd645b", - "placeholder": "​", - "style": "IPY_MODEL_f9a9d69a4f124928b49ed8b7988813d3", + "layout": "IPY_MODEL_a5dabab66f9e48deacd8912856df30f4", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5fec597f52cd48c583b9ab6ddf0d7113", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": 466062.0 } }, - "4efb05c35218455aad7fb4cc5db56afb": { + "561a85d9ca084bd09346934332be1447": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1906,7 +1850,49 @@ "width": null } }, - "4efecba95fed4e0c972987879f4d53ee": { + "573abf0118a440a3abd69d26bbc474be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5904a3de384844e5aac5db1ba56ac44f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aba78ec1130148a088aee7881625a72e", + "IPY_MODEL_55f82b5b8aaa486fb797fc7efd50b505", + "IPY_MODEL_6a0cfb030a77472f9d0662cfc1bef7a1" + ], + "layout": "IPY_MODEL_4e3b890b72a5457b9f38e65e57c35ff6", + "tabbable": null, + "tooltip": null + } + }, + "59d4b9536e3a46deb47183eac8fe04ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1922,17 +1908,65 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_feb09b19af2f40f69cb7cfc1db49ed90", + "layout": "IPY_MODEL_addba272217942119280b2dbf954d63a", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1db895665fe44642a62670093127e02f", + "style": "IPY_MODEL_60d92620f07c49589327da67f97ca3c6", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "535c1e132a924ee09c0f3bd3213827ec": { + "5de70a7654cc4ec3be77d45ef3e37140": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5fec597f52cd48c583b9ab6ddf0d7113": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "60d92620f07c49589327da67f97ca3c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "64f7783ccf1b46a491d0f394e3d3a360": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1947,15 +1981,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f6e51f8f6db4d66b7e2193ee7fd563c", + "layout": "IPY_MODEL_d8859c9f90f34867badaa51228e31605", "placeholder": "​", - "style": "IPY_MODEL_db67b729e00247afbc555fe194fcc18a", + "style": "IPY_MODEL_4ebfe1fff427429d8dc82ff437762c77", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": "tokenizer_config.json: 100%" + } + }, + "659e738924d5490885c5c8c775cd8ed4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "560ff6ebca984f28860bb80375bd645b": { + "67bf2377bebb455bbd066cde02e3d8cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2008,7 +2058,7 @@ "width": null } }, - "5a35ee0bb8d946e3b40e44a3e2c5e0f7": { + "6a0cfb030a77472f9d0662cfc1bef7a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2023,61 +2073,86 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a4cdc14299324bb9b3549553c857737b", + "layout": "IPY_MODEL_a13ad14e5a344f52afa2c1b3f569437d", "placeholder": "​", - "style": "IPY_MODEL_edddd8f6e9c0463e9d31f27de693990c", + "style": "IPY_MODEL_c057363a08ee4f3daf41995561590c5a", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 199MB/s]" + "value": " 466k/466k [00:00<00:00, 33.2MB/s]" } }, - "5ae1be12a0fb4986b459d08405f465dc": { + "6cf93b3633e94117b5fb6c17e1df5dea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_43beca2bd35e4cac86fc0777b9ea9844", - "placeholder": "​", - "style": "IPY_MODEL_343c3d1a93274355a1653ea076df4bac", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5e9c3c12b0234dbc8b747d3b1e91ee1e": { - "model_module": "@jupyter-widgets/controls", + "74870b32fa794d23bb4d5af5dfe3d6f1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3778bf93f04a411aa0d5e989e8c6d9c3", - "placeholder": "​", - "style": "IPY_MODEL_8fd65264c4994715bc8aa9df8f9fcb1d", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 385kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5f6e51f8f6db4d66b7e2193ee7fd563c": { + "7c65de6f829e4987824bbcccd5daf999": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2130,49 +2205,46 @@ "width": null } }, - "5fce0f83ffcb45b1b4e91907422e2fd5": { + "7e80bb1a85344816bcc11e1ff00457e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_33ca193d276b47af9b1bd6a968bcd64b", - "IPY_MODEL_d1c1a09dfe40433e8daad1afb926a868", - "IPY_MODEL_006d5af724ae4e22971f736a55857a4b" - ], - "layout": "IPY_MODEL_0a8c4fc01ece4f01b270709d2a552fa5", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8b41db768d54ea79831f8da7766052c", + "placeholder": "​", + "style": "IPY_MODEL_55edf1a6088d4f70a8c9d766428b7ade", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "README.md: 100%" } }, - "63f8b0c136af4afda525f2cd9ae8f291": { + "7ecba9d5ee594fa98c56e604ad01727e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "67ed76d0459b45109ab7b2e474b134dd": { + "7f68e87e3fd74e96b35e89e7314c1250": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2225,7 +2297,7 @@ "width": null } }, - "6f78892c67d64d6baed0e8be90add294": { + "84265d44347e47c1a0e80451d53cf6e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2278,7 +2350,7 @@ "width": null } }, - "7999018889a84b9f8c94ace4e0ab66c0": { + "87c269dd125b454abe5ca989542787f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2296,30 +2368,7 @@ "text_color": null } }, - "7d0664133a97496aa32722b323b0654b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d3c7637e637245bb9da64cb04a475f4a", - "placeholder": "​", - "style": "IPY_MODEL_25bcb9c6186c45b886561f036d828a86", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "81807c8fa56b49aa9f11554e16b459ac": { + "88f92a5405fb4f9db0cd99657d8669f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2372,98 +2421,113 @@ "width": null } }, - "8220af5113534a53bc94d0f5c8251a66": { + "8f3b0c608387435ebe1eaf18b4a4308c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7d0664133a97496aa32722b323b0654b", - "IPY_MODEL_9a851b8ad98941f4ad8c614e0c16e343", - "IPY_MODEL_5e9c3c12b0234dbc8b747d3b1e91ee1e" - ], - "layout": "IPY_MODEL_d42199adf5474d8e9f6179d5eb3bb243", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_34930ccbf1814df692eea267fbe45cba", + "placeholder": "​", + "style": "IPY_MODEL_aea8f1bb7ba443c4aba1eb043a494c33", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 665/665 [00:00<00:00, 118kB/s]" } }, - "84679d8653bd4c14b683abbaf6d1f0a8": { + "92331526d16645c9b4cb06ccdf9479c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9651004c528d490db508bda8d7a2e6d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cda47a3d9e50415098e506f90bcff7f9", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4d5c6911336a46598cf358d62a000f88", + "layout": "IPY_MODEL_1227bc1e2331481b8529dde07c438142", + "placeholder": "​", + "style": "IPY_MODEL_b7a4b7fb1a7345cd84fda80e0a20c34f", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": "pytorch_model.bin: 100%" } }, - "84efa85f99e2425ba0e0215a7f670283": { + "999bdd12fc13426c94d8e3a3526d8b11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_afe48c32175c4349b6e5fe5b106847bf", - "placeholder": "​", - "style": "IPY_MODEL_1ea2c29144d5400b8748c646f033894f", + "layout": "IPY_MODEL_7c65de6f829e4987824bbcccd5daf999", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ecba9d5ee594fa98c56e604ad01727e", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 1.78MB/s]" + "value": 391.0 } }, - "8fd65264c4994715bc8aa9df8f9fcb1d": { + "9b0a46974e704a68be481a80eebb6de6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "913fa127341a4e168bbbf77059264143": { + "a13ad14e5a344f52afa2c1b3f569437d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2516,7 +2580,7 @@ "width": null } }, - "970cd2e565e4472fb75e9cbbb4303277": { + "a5dabab66f9e48deacd8912856df30f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2569,33 +2633,30 @@ "width": null } }, - "9a851b8ad98941f4ad8c614e0c16e343": { + "aba78ec1130148a088aee7881625a72e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c6a490410aee4ce4b7ec065a336a3a2c", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a4c11a9aa2d14652b78d311c152b105d", + "layout": "IPY_MODEL_d59aabba0740424d8114c863d4165651", + "placeholder": "​", + "style": "IPY_MODEL_92331526d16645c9b4cb06ccdf9479c6", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": "tokenizer.json: 100%" } }, - "9c9d5a88c8a64cdd9cb0823ce2acabe6": { + "addba272217942119280b2dbf954d63a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2648,76 +2709,87 @@ "width": null } }, - "a4c11a9aa2d14652b78d311c152b105d": { + "aea8f1bb7ba443c4aba1eb043a494c33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a4cdc14299324bb9b3549553c857737b": { - "model_module": "@jupyter-widgets/base", + "b34a55f11caa4d8faa49324c068aca1e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b7a4b7fb1a7345cd84fda80e0a20c34f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9ed9a8b40434639aeebea63509733cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5547b8df2dfa487aad9f7b4ad0df80aa", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_659e738924d5490885c5c8c775cd8ed4", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "a94fae83aa2341e5b8d1ae56f3b7cbda": { + "bc18025481124500a65d4cf4f8fd81cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2732,146 +2804,80 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fe7eb00615784f9b82e4e80051fec909", - "IPY_MODEL_4b626302897e46419c4844e76d79662e", - "IPY_MODEL_fc6e5cd23cc04d5cae53b65af39d36cc" + "IPY_MODEL_130c5d67803d4756b979760b1a187831", + "IPY_MODEL_b9ed9a8b40434639aeebea63509733cd", + "IPY_MODEL_8f3b0c608387435ebe1eaf18b4a4308c" ], - "layout": "IPY_MODEL_3898d2c8d96b4f43913ec0a16a040638", + "layout": "IPY_MODEL_ff02c545409f4f61bcd70042fca729a7", "tabbable": null, "tooltip": null } }, - "afe48c32175c4349b6e5fe5b106847bf": { - "model_module": "@jupyter-widgets/base", + "c057363a08ee4f3daf41995561590c5a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b2f79098c4674c5ca353b28833562218": { + "c5dabe0567014a9c973f4e55d7b073a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ae1be12a0fb4986b459d08405f465dc", - "IPY_MODEL_84679d8653bd4c14b683abbaf6d1f0a8", - "IPY_MODEL_84efa85f99e2425ba0e0215a7f670283" - ], - "layout": "IPY_MODEL_6f78892c67d64d6baed0e8be90add294", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_84265d44347e47c1a0e80451d53cf6e1", + "placeholder": "​", + "style": "IPY_MODEL_6cf93b3633e94117b5fb6c17e1df5dea", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 266MB/s]" } }, - "ba5b94455bdf4114a45063ba921c476c": { - "model_module": "@jupyter-widgets/base", + "ca3e25e1bd3b42708a64be01838386b4": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d4eb6b335c954383ba4d20638b2f9975", + "placeholder": "​", + "style": "IPY_MODEL_26073d8909d74969a761afe8992def87", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 46.9kB/s]" } }, - "bc04b19aec774203a92404adb3103b97": { + "ca81ad761da2429a808c5ebf4cd373c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2887,33 +2893,59 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_256087a5a19243bfa05bdf6c0ba10805", - "max": 665.0, + "layout": "IPY_MODEL_f506f42461dc4dfe9c2a79496ba2d1ec", + "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d27ce44f75f94a13b65ca3940a516c91", + "style": "IPY_MODEL_1d9128994b5d47e9b6e3394348f0c2ff", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 48.0 } }, - "be482aad3d2b4b9ebe88ee672e4c13ad": { + "d098387e1f8d4bfbb22cbd40f5b8e0fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9651004c528d490db508bda8d7a2e6d0", + "IPY_MODEL_59d4b9536e3a46deb47183eac8fe04ce", + "IPY_MODEL_c5dabe0567014a9c973f4e55d7b073a8" + ], + "layout": "IPY_MODEL_67bf2377bebb455bbd066cde02e3d8cf", + "tabbable": null, + "tooltip": null + } + }, + "d2327606e6ed49f3a75616197b1c1d83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bf787eb818144fc9b29e9ae8b0fb4835": { + "d2b172ae32a94efead1ec1eb05cce148": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2966,33 +2998,7 @@ "width": null } }, - "c18c40bc53e74acba0e92d6acf7c08f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ba5b94455bdf4114a45063ba921c476c", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3cfae654d8a94672bc68d05eced1d0ab", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "c293b4a7900345eeb2d87c80c9ebcace": { + "d4bdd834808f4efb9b644b367d22e72f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3010,7 +3016,60 @@ "text_color": null } }, - "c43feac438144313ab89f24fd448a54e": { + "d4eb6b335c954383ba4d20638b2f9975": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d59aabba0740424d8114c863d4165651": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3063,7 +3122,7 @@ "width": null } }, - "c6a490410aee4ce4b7ec065a336a3a2c": { + "d8859c9f90f34867badaa51228e31605": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3116,7 +3175,7 @@ "width": null } }, - "cda47a3d9e50415098e506f90bcff7f9": { + "dd99eff7c5b6455abd972c4c8028665d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3169,49 +3228,30 @@ "width": null } }, - "d1c1a09dfe40433e8daad1afb926a868": { + "e21e172906084e91b7221adf24c1e2bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dc8b10b0aec34342bde7aca6e9c1d831", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0c05b80cbe854fdd9294576db3ff05bb", + "layout": "IPY_MODEL_d2b172ae32a94efead1ec1eb05cce148", + "placeholder": "​", + "style": "IPY_MODEL_d4bdd834808f4efb9b644b367d22e72f", "tabbable": null, "tooltip": null, - "value": 391.0 - } - }, - "d27ce44f75f94a13b65ca3940a516c91": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 232k/232k [00:00<00:00, 10.4MB/s]" } }, - "d3c7637e637245bb9da64cb04a475f4a": { + "e8b41db768d54ea79831f8da7766052c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,30 +3304,7 @@ "width": null } }, - "d42046c8642448498fca534ce27f1983": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_970cd2e565e4472fb75e9cbbb4303277", - "placeholder": "​", - "style": "IPY_MODEL_fde02940308b4c9197554fa44cf549d5", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 6.13MB/s]" - } - }, - "d42199adf5474d8e9f6179d5eb3bb243": { + "eeef1d62ab4d436ab22573ed0f5332c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3340,25 +3357,31 @@ "width": null } }, - "db67b729e00247afbc555fe194fcc18a": { + "f0dd1debaaf34981aa3e55254958ee72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7e80bb1a85344816bcc11e1ff00457e7", + "IPY_MODEL_3a003ad7e18c405999f3ac35c600db4b", + "IPY_MODEL_2c85b26705d645f59749a4611993b2d3" + ], + "layout": "IPY_MODEL_f12968ae60bf4a919899b2b7c522f333", + "tabbable": null, + "tooltip": null } }, - "dc8b10b0aec34342bde7aca6e9c1d831": { + "f12968ae60bf4a919899b2b7c522f333": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3411,7 +3434,7 @@ "width": null } }, - "ea21d01843264621bf231835fe9aa860": { + "f506f42461dc4dfe9c2a79496ba2d1ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3464,130 +3487,84 @@ "width": null } }, - "edddd8f6e9c0463e9d31f27de693990c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f94389f0251b49029639e433e5aa755a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_913fa127341a4e168bbbf77059264143", - "placeholder": "​", - "style": "IPY_MODEL_c293b4a7900345eeb2d87c80c9ebcace", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "f9a9d69a4f124928b49ed8b7988813d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fc6e5cd23cc04d5cae53b65af39d36cc": { + "f5cd8fbfe34b4c5c895a38fe30e7362c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_81807c8fa56b49aa9f11554e16b459ac", - "placeholder": "​", - "style": "IPY_MODEL_4432435a03294629ba63a9de48043548", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_138755fc53424887bbb2c7512f3a3567", + "IPY_MODEL_1d412638f84d4d65958cbb05674ddc95", + "IPY_MODEL_e21e172906084e91b7221adf24c1e2bd" + ], + "layout": "IPY_MODEL_dd99eff7c5b6455abd972c4c8028665d", "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.89kB/s]" + "tooltip": null } }, - "fde02940308b4c9197554fa44cf549d5": { - "model_module": "@jupyter-widgets/controls", + "f688fc2c696b4860a85813276d929448": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fe7eb00615784f9b82e4e80051fec909": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bf787eb818144fc9b29e9ae8b0fb4835", - "placeholder": "​", - "style": "IPY_MODEL_09f32f04be0940bebe8a6742dcb99e85", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "feb09b19af2f40f69cb7cfc1db49ed90": { + "ff02c545409f4f61bcd70042fca729a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3639,6 +3616,29 @@ "visibility": null, "width": null } + }, + "ffb02985dc3d4167bcc926f924321ac1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eeef1d62ab4d436ab22573ed0f5332c3", + "placeholder": "​", + "style": "IPY_MODEL_87c269dd125b454abe5ca989542787f7", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 10.4kB/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index ab2369b3a..753ff1fb5 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

    5. Use cleanlab to find label issues -{"state": {"d7972c555f854ec4830cc1462507f6dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e524bdde26e74dbb918e03703935b9aa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cceed8cc8dbc4c2998b2aa56d37c56cd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7972c555f854ec4830cc1462507f6dc", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e524bdde26e74dbb918e03703935b9aa", "tabbable": null, "tooltip": null, "value": 2041.0}}, "bcc3d779d9ec4bdda4a144acdd9536b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03f7f54757af4c188654225ff568cc15": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "11533647f3334084be47152e5df913b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bcc3d779d9ec4bdda4a144acdd9536b9", "placeholder": "\u200b", "style": "IPY_MODEL_03f7f54757af4c188654225ff568cc15", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "fba2a74e14a442f2ac8a5666c47f101c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af55ac5d4b8343f49f8eafa3a8393609": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1438f73581cf412b872cda6b268a44cb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fba2a74e14a442f2ac8a5666c47f101c", "placeholder": "\u200b", "style": "IPY_MODEL_af55ac5d4b8343f49f8eafa3a8393609", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007489kB/s]"}}, "b625d5b3df6a43a58e4dd8f8487787b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27771d0db6954d13b8330016db2e968d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_11533647f3334084be47152e5df913b5", "IPY_MODEL_cceed8cc8dbc4c2998b2aa56d37c56cd", "IPY_MODEL_1438f73581cf412b872cda6b268a44cb"], "layout": "IPY_MODEL_b625d5b3df6a43a58e4dd8f8487787b1", "tabbable": null, "tooltip": null}}, "da200749ab8f461f8631919121dfe71f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee6f990c3c4440e1b161a7386ee60cf5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e1e79e04340c42c4a07b65de15d378e8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da200749ab8f461f8631919121dfe71f", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ee6f990c3c4440e1b161a7386ee60cf5", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "66b483bdb67f481d9a04248eaaa928f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6698e8a3edb642f5aa1cf99dae6c5d9c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "66a984112df94fb797f03c16ea0d8871": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_66b483bdb67f481d9a04248eaaa928f9", "placeholder": "\u200b", "style": "IPY_MODEL_6698e8a3edb642f5aa1cf99dae6c5d9c", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "d83f5f37ce8d42a8a710791ab26be95b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06a7e8c848574d27a7e9b42a3825fab6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "499bfda7f0f2413a846e584855e03e83": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d83f5f37ce8d42a8a710791ab26be95b", "placeholder": "\u200b", "style": "IPY_MODEL_06a7e8c848574d27a7e9b42a3825fab6", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007132MB/s]"}}, "dbd814ae298e4662b635d3981cc98115": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54b0a200e2264ed39796f6804956206d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_66a984112df94fb797f03c16ea0d8871", "IPY_MODEL_e1e79e04340c42c4a07b65de15d378e8", "IPY_MODEL_499bfda7f0f2413a846e584855e03e83"], "layout": "IPY_MODEL_dbd814ae298e4662b635d3981cc98115", "tabbable": null, "tooltip": null}}, "e72c130d931142fc86553b3079a5359c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6dfc7b27f58e4f92b4a505eb402fb2d9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "494870d44ab447f59b1edff68497591d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e72c130d931142fc86553b3079a5359c", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6dfc7b27f58e4f92b4a505eb402fb2d9", "tabbable": null, "tooltip": null, "value": 3201.0}}, "6aa0c0cf24374c218f799b51cbe4c313": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "684c05db502f40d28dd939735db61d61": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3ce08a518118470bafdffe4fda5d402b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6aa0c0cf24374c218f799b51cbe4c313", "placeholder": "\u200b", "style": "IPY_MODEL_684c05db502f40d28dd939735db61d61", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "7c9dfa3179eb4fa68cadc1f9bbb924c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b0be97f0dc34a8793149a2ed20c1e6a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1f7582c5b66e440696c93331f3f021bd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7c9dfa3179eb4fa68cadc1f9bbb924c1", "placeholder": "\u200b", "style": "IPY_MODEL_7b0be97f0dc34a8793149a2ed20c1e6a", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007613kB/s]"}}, "7fd7da3595bd40c8b1faffe0b53a48ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f932b3088d94f10b72edd6565da7964": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3ce08a518118470bafdffe4fda5d402b", "IPY_MODEL_494870d44ab447f59b1edff68497591d", "IPY_MODEL_1f7582c5b66e440696c93331f3f021bd"], "layout": "IPY_MODEL_7fd7da3595bd40c8b1faffe0b53a48ff", "tabbable": null, "tooltip": null}}, "9732897bd82b4795960f3fa636882b4c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "644aa3d4a2474af6927b1d63fee9198c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cd5779376f004c009a4cbc1ed71c233b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9732897bd82b4795960f3fa636882b4c", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_644aa3d4a2474af6927b1d63fee9198c", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "702b794e5f074a9a800b1fb24f613bb4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16b8ca036731448b9d41d1e3f758031e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b53fbd141a0c4a8ab26809588da553f8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_702b794e5f074a9a800b1fb24f613bb4", "placeholder": "\u200b", "style": "IPY_MODEL_16b8ca036731448b9d41d1e3f758031e", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "9da1a583772d4e5aa4706118496f70a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbbe413f447e46a69b5ce66589c01b7c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b35d0be8f8f04f16852f200cc17d2a48": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9da1a583772d4e5aa4706118496f70a8", "placeholder": "\u200b", "style": "IPY_MODEL_fbbe413f447e46a69b5ce66589c01b7c", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007219MB/s]"}}, "f7727a55541349bab503521054f0b8fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b2f65e78619452f87f1e932c7779a0b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b53fbd141a0c4a8ab26809588da553f8", "IPY_MODEL_cd5779376f004c009a4cbc1ed71c233b", "IPY_MODEL_b35d0be8f8f04f16852f200cc17d2a48"], "layout": "IPY_MODEL_f7727a55541349bab503521054f0b8fc", "tabbable": null, "tooltip": null}}, "24e4db787b034c95b86daf73c904c1a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc570043ee494a73a8003a18a11c32cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9e1ff364598a478e8995918a356b3b5c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_24e4db787b034c95b86daf73c904c1a1", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bc570043ee494a73a8003a18a11c32cf", "tabbable": null, "tooltip": null, "value": 128619.0}}, "7adf59dc52204c3f86660622c4666c27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab9f37394fa44215880e555b1930de5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93028f149ffd473e86c3c69dc9109cdd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7adf59dc52204c3f86660622c4666c27", "placeholder": "\u200b", "style": "IPY_MODEL_ab9f37394fa44215880e555b1930de5f", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "284f489d1c0940a4af6498cc4ee288ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0928624b605147408eb9eb71a02f2be6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e0a6f2898caf4d7e97c9b4699dd4cf31": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_284f489d1c0940a4af6498cc4ee288ad", "placeholder": "\u200b", "style": "IPY_MODEL_0928624b605147408eb9eb71a02f2be6", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20071.01MB/s]"}}, "d2b1d0dbee844ff2bc4beb0af94c0cde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99cd7f24e6c24e2d8aef090591fa9515": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_93028f149ffd473e86c3c69dc9109cdd", "IPY_MODEL_9e1ff364598a478e8995918a356b3b5c", "IPY_MODEL_e0a6f2898caf4d7e97c9b4699dd4cf31"], "layout": "IPY_MODEL_d2b1d0dbee844ff2bc4beb0af94c0cde", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"2623db0a2734450b80c1e3be63b7f6a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c2bbe04d63c4a71a5d88f495d296d17": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bb36a5a5014e43508223a67e3875b76b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2623db0a2734450b80c1e3be63b7f6a7", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9c2bbe04d63c4a71a5d88f495d296d17", "tabbable": null, "tooltip": null, "value": 2041.0}}, "4a1ce75bb14e42ef947d67a9c59da213": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec8a1f21714443c69f469ab4cd1a64c5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aeb45dd1728541dda8a390bfc8d72ab6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a1ce75bb14e42ef947d67a9c59da213", "placeholder": "\u200b", "style": "IPY_MODEL_ec8a1f21714443c69f469ab4cd1a64c5", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "35c001e7e1734661a6d1887c045e0aa4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e39178e648eb426e92df68243556443f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "98b3b0ebb2ff4cb392a2021915e75eef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35c001e7e1734661a6d1887c045e0aa4", "placeholder": "\u200b", "style": "IPY_MODEL_e39178e648eb426e92df68243556443f", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007482kB/s]"}}, "a2ed1deeb7b04afd85e4f00c36e73cf4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "981e47ffead148ff9d76bf2cb9f42aa2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_aeb45dd1728541dda8a390bfc8d72ab6", "IPY_MODEL_bb36a5a5014e43508223a67e3875b76b", "IPY_MODEL_98b3b0ebb2ff4cb392a2021915e75eef"], "layout": "IPY_MODEL_a2ed1deeb7b04afd85e4f00c36e73cf4", "tabbable": null, "tooltip": null}}, "71e439d142fb478899a4d9b72670bbae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37b1d5a2b3894b38a6d599255a2907eb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6f02278ba70e4e318353e3b81611d497": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71e439d142fb478899a4d9b72670bbae", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_37b1d5a2b3894b38a6d599255a2907eb", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "fa7d2861f63d4fd2b06d36a4c1770113": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bdfdee0a36548be893802cab63f5e95": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f9deec697be14d0fa86b7da2217704d2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa7d2861f63d4fd2b06d36a4c1770113", "placeholder": "\u200b", "style": "IPY_MODEL_8bdfdee0a36548be893802cab63f5e95", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "a199985b3c83450681f4424cbac996a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c674fd56a86a40da953c9d29c6086da2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2e582bb216a42d190e9e34295a3050a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a199985b3c83450681f4424cbac996a7", "placeholder": "\u200b", "style": "IPY_MODEL_c674fd56a86a40da953c9d29c6086da2", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007228MB/s]"}}, "b599fff89b744ed3b689e7a10fc976db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25d668ece5a44708a39baef8ee1c5d5a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f9deec697be14d0fa86b7da2217704d2", "IPY_MODEL_6f02278ba70e4e318353e3b81611d497", "IPY_MODEL_d2e582bb216a42d190e9e34295a3050a"], "layout": "IPY_MODEL_b599fff89b744ed3b689e7a10fc976db", "tabbable": null, "tooltip": null}}, "df4bfbd4f16c4ea09bb9bafefcc209d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57204267a6ef4db9b80197c36c732037": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db47ca1b854546f3b5d03a685dbd2068": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_df4bfbd4f16c4ea09bb9bafefcc209d4", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_57204267a6ef4db9b80197c36c732037", "tabbable": null, "tooltip": null, "value": 3201.0}}, "7ccae4a7840e4a5387c2c5d1f2980523": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80c6d23e72ca43d4a20a5b42f73cd9af": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "90c46affcd064367a00baddc74b4637d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ccae4a7840e4a5387c2c5d1f2980523", "placeholder": "\u200b", "style": "IPY_MODEL_80c6d23e72ca43d4a20a5b42f73cd9af", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "120a98bdc4c84081b695fb89a00a9746": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1634f5323dde4e2ea85e4d2bd43614bb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5db3894a2b6743ae84fd6d6193b576df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_120a98bdc4c84081b695fb89a00a9746", "placeholder": "\u200b", "style": "IPY_MODEL_1634f5323dde4e2ea85e4d2bd43614bb", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007647kB/s]"}}, "b8615d0f523c4416855c168af06f09ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "905f69effbcd488aa5578a9db75d68d2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_90c46affcd064367a00baddc74b4637d", "IPY_MODEL_db47ca1b854546f3b5d03a685dbd2068", "IPY_MODEL_5db3894a2b6743ae84fd6d6193b576df"], "layout": "IPY_MODEL_b8615d0f523c4416855c168af06f09ea", "tabbable": null, "tooltip": null}}, "3d93e2ea9167491eb86257b4befaa3a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a61c904301bd44198073b8aa120edd31": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8b374ed6c27e4f56b126e56e1f0b6ba7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3d93e2ea9167491eb86257b4befaa3a8", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a61c904301bd44198073b8aa120edd31", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "fecc46417591410b9a88844d1101719c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f3b021f3fd0464db89075d787887db1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55bf8d81484d49c389f99cac404cfdf1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fecc46417591410b9a88844d1101719c", "placeholder": "\u200b", "style": "IPY_MODEL_4f3b021f3fd0464db89075d787887db1", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "2c10d978a7874cbc81cb7d580c186475": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcc1d2cd57f846b3b296d5c58bbbad14": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9907ae52732c4a50aa803dcc86f60c45": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2c10d978a7874cbc81cb7d580c186475", "placeholder": "\u200b", "style": "IPY_MODEL_fcc1d2cd57f846b3b296d5c58bbbad14", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007274MB/s]"}}, "08c9c5bf41184f87ba5c48904be68aa0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "944cb89091af49d3b9f151f85870c366": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_55bf8d81484d49c389f99cac404cfdf1", "IPY_MODEL_8b374ed6c27e4f56b126e56e1f0b6ba7", "IPY_MODEL_9907ae52732c4a50aa803dcc86f60c45"], "layout": "IPY_MODEL_08c9c5bf41184f87ba5c48904be68aa0", "tabbable": null, "tooltip": null}}, "0921e822360d4e569fe4f2391c92a2ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7e2ac7863824e1d9a22b14858025f09": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ac90049be9a942a78d9101ce6f044983": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0921e822360d4e569fe4f2391c92a2ff", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a7e2ac7863824e1d9a22b14858025f09", "tabbable": null, "tooltip": null, "value": 128619.0}}, "96f0878847a44615af118453a43d4e52": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04c103d649814a1bbd94696ad4e92ed3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b82a723ba8d4f5bac914fcba83b273d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_96f0878847a44615af118453a43d4e52", "placeholder": "\u200b", "style": "IPY_MODEL_04c103d649814a1bbd94696ad4e92ed3", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "fc46b14cd6be4a25b7ac499f50910491": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85d287612844476fb3645753bbbe1f26": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "62bc08f2cb164f5997e4b7a3db5aa06d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc46b14cd6be4a25b7ac499f50910491", "placeholder": "\u200b", "style": "IPY_MODEL_85d287612844476fb3645753bbbe1f26", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200717.1MB/s]"}}, "b7d1312e66eb4d028b963dc02bbd8c51": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78b51867d10e4d658593b29d18e6142c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6b82a723ba8d4f5bac914fcba83b273d", "IPY_MODEL_ac90049be9a942a78d9101ce6f044983", "IPY_MODEL_62bc08f2cb164f5997e4b7a3db5aa06d"], "layout": "IPY_MODEL_b7d1312e66eb4d028b963dc02bbd8c51", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 7872c7594..9edd63b91 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:09.544273Z", - "iopub.status.busy": "2024-08-12T18:54:09.544101Z", - "iopub.status.idle": "2024-08-12T18:54:15.657460Z", - "shell.execute_reply": "2024-08-12T18:54:15.656888Z" + "iopub.execute_input": "2024-08-15T19:27:56.797638Z", + "iopub.status.busy": "2024-08-15T19:27:56.797467Z", + "iopub.status.idle": "2024-08-15T19:28:02.359167Z", + "shell.execute_reply": "2024-08-15T19:28:02.358559Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:15.660155Z", - "iopub.status.busy": "2024-08-12T18:54:15.659633Z", - "iopub.status.idle": "2024-08-12T18:54:15.662867Z", - "shell.execute_reply": "2024-08-12T18:54:15.662385Z" + "iopub.execute_input": "2024-08-15T19:28:02.361992Z", + "iopub.status.busy": "2024-08-15T19:28:02.361440Z", + "iopub.status.idle": "2024-08-15T19:28:02.364744Z", + "shell.execute_reply": "2024-08-15T19:28:02.364216Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:15.664832Z", - "iopub.status.busy": "2024-08-12T18:54:15.664650Z", - "iopub.status.idle": "2024-08-12T18:54:15.669779Z", - "shell.execute_reply": "2024-08-12T18:54:15.669342Z" + "iopub.execute_input": "2024-08-15T19:28:02.366877Z", + "iopub.status.busy": "2024-08-15T19:28:02.366431Z", + "iopub.status.idle": "2024-08-15T19:28:02.371038Z", + "shell.execute_reply": "2024-08-15T19:28:02.370461Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:15.671738Z", - "iopub.status.busy": "2024-08-12T18:54:15.671562Z", - "iopub.status.idle": "2024-08-12T18:54:17.893524Z", - "shell.execute_reply": "2024-08-12T18:54:17.892681Z" + "iopub.execute_input": "2024-08-15T19:28:02.373193Z", + "iopub.status.busy": "2024-08-15T19:28:02.372896Z", + "iopub.status.idle": "2024-08-15T19:28:04.255968Z", + "shell.execute_reply": "2024-08-15T19:28:04.255122Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:17.896656Z", - "iopub.status.busy": "2024-08-12T18:54:17.896108Z", - "iopub.status.idle": "2024-08-12T18:54:17.907522Z", - "shell.execute_reply": "2024-08-12T18:54:17.907061Z" + "iopub.execute_input": "2024-08-15T19:28:04.258975Z", + "iopub.status.busy": "2024-08-15T19:28:04.258542Z", + "iopub.status.idle": "2024-08-15T19:28:04.269974Z", + "shell.execute_reply": "2024-08-15T19:28:04.269415Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:17.909690Z", - "iopub.status.busy": "2024-08-12T18:54:17.909399Z", - "iopub.status.idle": "2024-08-12T18:54:17.915243Z", - "shell.execute_reply": "2024-08-12T18:54:17.914767Z" + "iopub.execute_input": "2024-08-15T19:28:04.272212Z", + "iopub.status.busy": "2024-08-15T19:28:04.271858Z", + "iopub.status.idle": "2024-08-15T19:28:04.277516Z", + "shell.execute_reply": "2024-08-15T19:28:04.277042Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:17.917203Z", - "iopub.status.busy": "2024-08-12T18:54:17.917022Z", - "iopub.status.idle": "2024-08-12T18:54:18.401760Z", - "shell.execute_reply": "2024-08-12T18:54:18.401217Z" + "iopub.execute_input": "2024-08-15T19:28:04.279385Z", + "iopub.status.busy": "2024-08-15T19:28:04.279211Z", + "iopub.status.idle": "2024-08-15T19:28:04.717999Z", + "shell.execute_reply": "2024-08-15T19:28:04.717421Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:18.403866Z", - "iopub.status.busy": "2024-08-12T18:54:18.403673Z", - "iopub.status.idle": "2024-08-12T18:54:19.860815Z", - "shell.execute_reply": "2024-08-12T18:54:19.860160Z" + "iopub.execute_input": "2024-08-15T19:28:04.720477Z", + "iopub.status.busy": "2024-08-15T19:28:04.719986Z", + "iopub.status.idle": "2024-08-15T19:28:05.547658Z", + "shell.execute_reply": "2024-08-15T19:28:05.547111Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:19.863289Z", - "iopub.status.busy": "2024-08-12T18:54:19.863103Z", - "iopub.status.idle": "2024-08-12T18:54:19.881662Z", - "shell.execute_reply": "2024-08-12T18:54:19.881178Z" + "iopub.execute_input": "2024-08-15T19:28:05.550114Z", + "iopub.status.busy": "2024-08-15T19:28:05.549770Z", + "iopub.status.idle": "2024-08-15T19:28:05.567955Z", + "shell.execute_reply": "2024-08-15T19:28:05.567477Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:19.883637Z", - "iopub.status.busy": "2024-08-12T18:54:19.883457Z", - "iopub.status.idle": "2024-08-12T18:54:19.886532Z", - "shell.execute_reply": "2024-08-12T18:54:19.886084Z" + "iopub.execute_input": "2024-08-15T19:28:05.569930Z", + "iopub.status.busy": "2024-08-15T19:28:05.569612Z", + "iopub.status.idle": "2024-08-15T19:28:05.572741Z", + "shell.execute_reply": "2024-08-15T19:28:05.572262Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:19.888530Z", - "iopub.status.busy": "2024-08-12T18:54:19.888180Z", - "iopub.status.idle": "2024-08-12T18:54:34.498733Z", - "shell.execute_reply": "2024-08-12T18:54:34.498075Z" + "iopub.execute_input": "2024-08-15T19:28:05.574618Z", + "iopub.status.busy": "2024-08-15T19:28:05.574442Z", + "iopub.status.idle": "2024-08-15T19:28:19.351516Z", + "shell.execute_reply": "2024-08-15T19:28:19.350891Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:34.501588Z", - "iopub.status.busy": "2024-08-12T18:54:34.501212Z", - "iopub.status.idle": "2024-08-12T18:54:34.505069Z", - "shell.execute_reply": "2024-08-12T18:54:34.504545Z" + "iopub.execute_input": "2024-08-15T19:28:19.354496Z", + "iopub.status.busy": "2024-08-15T19:28:19.354033Z", + "iopub.status.idle": "2024-08-15T19:28:19.357991Z", + "shell.execute_reply": "2024-08-15T19:28:19.357501Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:34.507196Z", - "iopub.status.busy": "2024-08-12T18:54:34.506852Z", - "iopub.status.idle": "2024-08-12T18:54:35.241502Z", - "shell.execute_reply": "2024-08-12T18:54:35.240901Z" + "iopub.execute_input": "2024-08-15T19:28:19.360150Z", + "iopub.status.busy": "2024-08-15T19:28:19.359816Z", + "iopub.status.idle": "2024-08-15T19:28:20.080726Z", + "shell.execute_reply": "2024-08-15T19:28:20.080116Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.245317Z", - "iopub.status.busy": "2024-08-12T18:54:35.244326Z", - "iopub.status.idle": "2024-08-12T18:54:35.251232Z", - "shell.execute_reply": "2024-08-12T18:54:35.250716Z" + "iopub.execute_input": "2024-08-15T19:28:20.083716Z", + "iopub.status.busy": "2024-08-15T19:28:20.083264Z", + "iopub.status.idle": "2024-08-15T19:28:20.088269Z", + "shell.execute_reply": "2024-08-15T19:28:20.087684Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.254892Z", - "iopub.status.busy": "2024-08-12T18:54:35.253950Z", - "iopub.status.idle": "2024-08-12T18:54:35.371220Z", - "shell.execute_reply": "2024-08-12T18:54:35.370579Z" + "iopub.execute_input": "2024-08-15T19:28:20.090852Z", + "iopub.status.busy": "2024-08-15T19:28:20.090343Z", + "iopub.status.idle": "2024-08-15T19:28:20.210836Z", + "shell.execute_reply": "2024-08-15T19:28:20.210257Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.373827Z", - "iopub.status.busy": "2024-08-12T18:54:35.373627Z", - "iopub.status.idle": "2024-08-12T18:54:35.386543Z", - "shell.execute_reply": "2024-08-12T18:54:35.386056Z" + "iopub.execute_input": "2024-08-15T19:28:20.213328Z", + "iopub.status.busy": "2024-08-15T19:28:20.212901Z", + "iopub.status.idle": "2024-08-15T19:28:20.225740Z", + "shell.execute_reply": "2024-08-15T19:28:20.225286Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.388685Z", - "iopub.status.busy": "2024-08-12T18:54:35.388421Z", - "iopub.status.idle": "2024-08-12T18:54:35.396287Z", - "shell.execute_reply": "2024-08-12T18:54:35.395747Z" + "iopub.execute_input": "2024-08-15T19:28:20.227956Z", + "iopub.status.busy": "2024-08-15T19:28:20.227616Z", + "iopub.status.idle": "2024-08-15T19:28:20.235719Z", + "shell.execute_reply": "2024-08-15T19:28:20.235239Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.398352Z", - "iopub.status.busy": "2024-08-12T18:54:35.398175Z", - "iopub.status.idle": "2024-08-12T18:54:35.402421Z", - "shell.execute_reply": "2024-08-12T18:54:35.401981Z" + "iopub.execute_input": "2024-08-15T19:28:20.237779Z", + "iopub.status.busy": "2024-08-15T19:28:20.237441Z", + "iopub.status.idle": "2024-08-15T19:28:20.241592Z", + "shell.execute_reply": "2024-08-15T19:28:20.241124Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.404458Z", - "iopub.status.busy": "2024-08-12T18:54:35.404104Z", - "iopub.status.idle": "2024-08-12T18:54:35.409696Z", - "shell.execute_reply": "2024-08-12T18:54:35.409125Z" + "iopub.execute_input": "2024-08-15T19:28:20.243713Z", + "iopub.status.busy": "2024-08-15T19:28:20.243377Z", + "iopub.status.idle": "2024-08-15T19:28:20.248908Z", + "shell.execute_reply": "2024-08-15T19:28:20.248378Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.411873Z", - "iopub.status.busy": "2024-08-12T18:54:35.411459Z", - "iopub.status.idle": "2024-08-12T18:54:35.523406Z", - "shell.execute_reply": "2024-08-12T18:54:35.522815Z" + "iopub.execute_input": "2024-08-15T19:28:20.251049Z", + "iopub.status.busy": "2024-08-15T19:28:20.250697Z", + "iopub.status.idle": "2024-08-15T19:28:20.363458Z", + "shell.execute_reply": "2024-08-15T19:28:20.362991Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.525613Z", - "iopub.status.busy": "2024-08-12T18:54:35.525277Z", - "iopub.status.idle": "2024-08-12T18:54:35.630701Z", - "shell.execute_reply": "2024-08-12T18:54:35.630133Z" + "iopub.execute_input": "2024-08-15T19:28:20.365628Z", + "iopub.status.busy": "2024-08-15T19:28:20.365349Z", + "iopub.status.idle": "2024-08-15T19:28:20.468344Z", + "shell.execute_reply": "2024-08-15T19:28:20.467858Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.632969Z", - "iopub.status.busy": "2024-08-12T18:54:35.632608Z", - "iopub.status.idle": "2024-08-12T18:54:35.735760Z", - "shell.execute_reply": "2024-08-12T18:54:35.735250Z" + "iopub.execute_input": "2024-08-15T19:28:20.470535Z", + "iopub.status.busy": "2024-08-15T19:28:20.470195Z", + "iopub.status.idle": "2024-08-15T19:28:20.569954Z", + "shell.execute_reply": "2024-08-15T19:28:20.569512Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.738090Z", - "iopub.status.busy": "2024-08-12T18:54:35.737656Z", - "iopub.status.idle": "2024-08-12T18:54:35.841118Z", - "shell.execute_reply": "2024-08-12T18:54:35.840529Z" + "iopub.execute_input": "2024-08-15T19:28:20.572095Z", + "iopub.status.busy": "2024-08-15T19:28:20.571825Z", + "iopub.status.idle": "2024-08-15T19:28:20.674749Z", + "shell.execute_reply": "2024-08-15T19:28:20.674200Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:35.843257Z", - "iopub.status.busy": "2024-08-12T18:54:35.843073Z", - "iopub.status.idle": "2024-08-12T18:54:35.846791Z", - "shell.execute_reply": "2024-08-12T18:54:35.846360Z" + "iopub.execute_input": "2024-08-15T19:28:20.676963Z", + "iopub.status.busy": "2024-08-15T19:28:20.676678Z", + "iopub.status.idle": "2024-08-15T19:28:20.679761Z", + "shell.execute_reply": "2024-08-15T19:28:20.679288Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03f7f54757af4c188654225ff568cc15": { + "04c103d649814a1bbd94696ad4e92ed3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1410,130 +1410,7 @@ "text_color": null } }, - "06a7e8c848574d27a7e9b42a3825fab6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0928624b605147408eb9eb71a02f2be6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "11533647f3334084be47152e5df913b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bcc3d779d9ec4bdda4a144acdd9536b9", - "placeholder": "​", - "style": "IPY_MODEL_03f7f54757af4c188654225ff568cc15", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "1438f73581cf412b872cda6b268a44cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fba2a74e14a442f2ac8a5666c47f101c", - "placeholder": "​", - "style": "IPY_MODEL_af55ac5d4b8343f49f8eafa3a8393609", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 489kB/s]" - } - }, - "16b8ca036731448b9d41d1e3f758031e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1f7582c5b66e440696c93331f3f021bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c9dfa3179eb4fa68cadc1f9bbb924c1", - "placeholder": "​", - "style": "IPY_MODEL_7b0be97f0dc34a8793149a2ed20c1e6a", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 613kB/s]" - } - }, - "24e4db787b034c95b86daf73c904c1a1": { + "08c9c5bf41184f87ba5c48904be68aa0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1586,31 +1463,7 @@ "width": null } }, - "27771d0db6954d13b8330016db2e968d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_11533647f3334084be47152e5df913b5", - "IPY_MODEL_cceed8cc8dbc4c2998b2aa56d37c56cd", - "IPY_MODEL_1438f73581cf412b872cda6b268a44cb" - ], - "layout": "IPY_MODEL_b625d5b3df6a43a58e4dd8f8487787b1", - "tabbable": null, - "tooltip": null - } - }, - "284f489d1c0940a4af6498cc4ee288ad": { + "0921e822360d4e569fe4f2391c92a2ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1663,119 +1516,60 @@ "width": null } }, - "3ce08a518118470bafdffe4fda5d402b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6aa0c0cf24374c218f799b51cbe4c313", - "placeholder": "​", - "style": "IPY_MODEL_684c05db502f40d28dd939735db61d61", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "494870d44ab447f59b1edff68497591d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e72c130d931142fc86553b3079a5359c", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6dfc7b27f58e4f92b4a505eb402fb2d9", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "499bfda7f0f2413a846e584855e03e83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d83f5f37ce8d42a8a710791ab26be95b", - "placeholder": "​", - "style": "IPY_MODEL_06a7e8c848574d27a7e9b42a3825fab6", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 132MB/s]" - } - }, - "54b0a200e2264ed39796f6804956206d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_66a984112df94fb797f03c16ea0d8871", - "IPY_MODEL_e1e79e04340c42c4a07b65de15d378e8", - "IPY_MODEL_499bfda7f0f2413a846e584855e03e83" - ], - "layout": "IPY_MODEL_dbd814ae298e4662b635d3981cc98115", - "tabbable": null, - "tooltip": null - } - }, - "644aa3d4a2474af6927b1d63fee9198c": { - "model_module": "@jupyter-widgets/controls", + "120a98bdc4c84081b695fb89a00a9746": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6698e8a3edb642f5aa1cf99dae6c5d9c": { + "1634f5323dde4e2ea85e4d2bd43614bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1793,30 +1587,31 @@ "text_color": null } }, - "66a984112df94fb797f03c16ea0d8871": { + "25d668ece5a44708a39baef8ee1c5d5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66b483bdb67f481d9a04248eaaa928f9", - "placeholder": "​", - "style": "IPY_MODEL_6698e8a3edb642f5aa1cf99dae6c5d9c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f9deec697be14d0fa86b7da2217704d2", + "IPY_MODEL_6f02278ba70e4e318353e3b81611d497", + "IPY_MODEL_d2e582bb216a42d190e9e34295a3050a" + ], + "layout": "IPY_MODEL_b599fff89b744ed3b689e7a10fc976db", "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "tooltip": null } }, - "66b483bdb67f481d9a04248eaaa928f9": { + "2623db0a2734450b80c1e3be63b7f6a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1869,25 +1664,7 @@ "width": null } }, - "684c05db502f40d28dd939735db61d61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6aa0c0cf24374c218f799b51cbe4c313": { + "2c10d978a7874cbc81cb7d580c186475": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1940,47 +1717,7 @@ "width": null } }, - "6b2f65e78619452f87f1e932c7779a0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b53fbd141a0c4a8ab26809588da553f8", - "IPY_MODEL_cd5779376f004c009a4cbc1ed71c233b", - "IPY_MODEL_b35d0be8f8f04f16852f200cc17d2a48" - ], - "layout": "IPY_MODEL_f7727a55541349bab503521054f0b8fc", - "tabbable": null, - "tooltip": null - } - }, - "6dfc7b27f58e4f92b4a505eb402fb2d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "702b794e5f074a9a800b1fb24f613bb4": { + "35c001e7e1734661a6d1887c045e0aa4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2033,7 +1770,23 @@ "width": null } }, - "7adf59dc52204c3f86660622c4666c27": { + "37b1d5a2b3894b38a6d599255a2907eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d93e2ea9167491eb86257b4befaa3a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2086,25 +1839,7 @@ "width": null } }, - "7b0be97f0dc34a8793149a2ed20c1e6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c9dfa3179eb4fa68cadc1f9bbb924c1": { + "4a1ce75bb14e42ef947d67a9c59da213": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2157,60 +1892,110 @@ "width": null } }, - "7fd7da3595bd40c8b1faffe0b53a48ff": { - "model_module": "@jupyter-widgets/base", + "4f3b021f3fd0464db89075d787887db1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "55bf8d81484d49c389f99cac404cfdf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fecc46417591410b9a88844d1101719c", + "placeholder": "​", + "style": "IPY_MODEL_4f3b021f3fd0464db89075d787887db1", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "57204267a6ef4db9b80197c36c732037": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5db3894a2b6743ae84fd6d6193b576df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_120a98bdc4c84081b695fb89a00a9746", + "placeholder": "​", + "style": "IPY_MODEL_1634f5323dde4e2ea85e4d2bd43614bb", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 647kB/s]" + } + }, + "62bc08f2cb164f5997e4b7a3db5aa06d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc46b14cd6be4a25b7ac499f50910491", + "placeholder": "​", + "style": "IPY_MODEL_85d287612844476fb3645753bbbe1f26", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 17.1MB/s]" } }, - "93028f149ffd473e86c3c69dc9109cdd": { + "6b82a723ba8d4f5bac914fcba83b273d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2225,15 +2010,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7adf59dc52204c3f86660622c4666c27", + "layout": "IPY_MODEL_96f0878847a44615af118453a43d4e52", "placeholder": "​", - "style": "IPY_MODEL_ab9f37394fa44215880e555b1930de5f", + "style": "IPY_MODEL_04c103d649814a1bbd94696ad4e92ed3", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%" } }, - "9732897bd82b4795960f3fa636882b4c": { + "6f02278ba70e4e318353e3b81611d497": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_71e439d142fb478899a4d9b72670bbae", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_37b1d5a2b3894b38a6d599255a2907eb", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "71e439d142fb478899a4d9b72670bbae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2286,7 +2097,7 @@ "width": null } }, - "99cd7f24e6c24e2d8aef090591fa9515": { + "78b51867d10e4d658593b29d18e6142c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2301,16 +2112,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_93028f149ffd473e86c3c69dc9109cdd", - "IPY_MODEL_9e1ff364598a478e8995918a356b3b5c", - "IPY_MODEL_e0a6f2898caf4d7e97c9b4699dd4cf31" + "IPY_MODEL_6b82a723ba8d4f5bac914fcba83b273d", + "IPY_MODEL_ac90049be9a942a78d9101ce6f044983", + "IPY_MODEL_62bc08f2cb164f5997e4b7a3db5aa06d" ], - "layout": "IPY_MODEL_d2b1d0dbee844ff2bc4beb0af94c0cde", + "layout": "IPY_MODEL_b7d1312e66eb4d028b963dc02bbd8c51", "tabbable": null, "tooltip": null } }, - "9da1a583772d4e5aa4706118496f70a8": { + "7ccae4a7840e4a5387c2c5d1f2980523": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2363,57 +2174,69 @@ "width": null } }, - "9e1ff364598a478e8995918a356b3b5c": { + "80c6d23e72ca43d4a20a5b42f73cd9af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24e4db787b034c95b86daf73c904c1a1", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bc570043ee494a73a8003a18a11c32cf", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9f932b3088d94f10b72edd6565da7964": { + "85d287612844476fb3645753bbbe1f26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8b374ed6c27e4f56b126e56e1f0b6ba7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ce08a518118470bafdffe4fda5d402b", - "IPY_MODEL_494870d44ab447f59b1edff68497591d", - "IPY_MODEL_1f7582c5b66e440696c93331f3f021bd" - ], - "layout": "IPY_MODEL_7fd7da3595bd40c8b1faffe0b53a48ff", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d93e2ea9167491eb86257b4befaa3a8", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a61c904301bd44198073b8aa120edd31", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 15856877.0 } }, - "ab9f37394fa44215880e555b1930de5f": { + "8bdfdee0a36548be893802cab63f5e95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2431,25 +2254,31 @@ "text_color": null } }, - "af55ac5d4b8343f49f8eafa3a8393609": { + "905f69effbcd488aa5578a9db75d68d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_90c46affcd064367a00baddc74b4637d", + "IPY_MODEL_db47ca1b854546f3b5d03a685dbd2068", + "IPY_MODEL_5db3894a2b6743ae84fd6d6193b576df" + ], + "layout": "IPY_MODEL_b8615d0f523c4416855c168af06f09ea", + "tabbable": null, + "tooltip": null } }, - "b35d0be8f8f04f16852f200cc17d2a48": { + "90c46affcd064367a00baddc74b4637d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2464,38 +2293,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9da1a583772d4e5aa4706118496f70a8", + "layout": "IPY_MODEL_7ccae4a7840e4a5387c2c5d1f2980523", "placeholder": "​", - "style": "IPY_MODEL_fbbe413f447e46a69b5ce66589c01b7c", + "style": "IPY_MODEL_80c6d23e72ca43d4a20a5b42f73cd9af", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 219MB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "b53fbd141a0c4a8ab26809588da553f8": { + "944cb89091af49d3b9f151f85870c366": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_702b794e5f074a9a800b1fb24f613bb4", - "placeholder": "​", - "style": "IPY_MODEL_16b8ca036731448b9d41d1e3f758031e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55bf8d81484d49c389f99cac404cfdf1", + "IPY_MODEL_8b374ed6c27e4f56b126e56e1f0b6ba7", + "IPY_MODEL_9907ae52732c4a50aa803dcc86f60c45" + ], + "layout": "IPY_MODEL_08c9c5bf41184f87ba5c48904be68aa0", "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "tooltip": null } }, - "b625d5b3df6a43a58e4dd8f8487787b1": { + "96f0878847a44615af118453a43d4e52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2548,128 +2378,93 @@ "width": null } }, - "bc570043ee494a73a8003a18a11c32cf": { + "981e47ffead148ff9d76bf2cb9f42aa2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aeb45dd1728541dda8a390bfc8d72ab6", + "IPY_MODEL_bb36a5a5014e43508223a67e3875b76b", + "IPY_MODEL_98b3b0ebb2ff4cb392a2021915e75eef" + ], + "layout": "IPY_MODEL_a2ed1deeb7b04afd85e4f00c36e73cf4", + "tabbable": null, + "tooltip": null } }, - "bcc3d779d9ec4bdda4a144acdd9536b9": { - "model_module": "@jupyter-widgets/base", + "98b3b0ebb2ff4cb392a2021915e75eef": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_35c001e7e1734661a6d1887c045e0aa4", + "placeholder": "​", + "style": "IPY_MODEL_e39178e648eb426e92df68243556443f", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 482kB/s]" } }, - "cceed8cc8dbc4c2998b2aa56d37c56cd": { + "9907ae52732c4a50aa803dcc86f60c45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d7972c555f854ec4830cc1462507f6dc", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e524bdde26e74dbb918e03703935b9aa", + "layout": "IPY_MODEL_2c10d978a7874cbc81cb7d580c186475", + "placeholder": "​", + "style": "IPY_MODEL_fcc1d2cd57f846b3b296d5c58bbbad14", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": " 15.9M/15.9M [00:00<00:00, 274MB/s]" } }, - "cd5779376f004c009a4cbc1ed71c233b": { + "9c2bbe04d63c4a71a5d88f495d296d17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9732897bd82b4795960f3fa636882b4c", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_644aa3d4a2474af6927b1d63fee9198c", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d2b1d0dbee844ff2bc4beb0af94c0cde": { + "a199985b3c83450681f4424cbac996a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2722,7 +2517,7 @@ "width": null } }, - "d7972c555f854ec4830cc1462507f6dc": { + "a2ed1deeb7b04afd85e4f00c36e73cf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2775,7 +2570,88 @@ "width": null } }, - "d83f5f37ce8d42a8a710791ab26be95b": { + "a61c904301bd44198073b8aa120edd31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a7e2ac7863824e1d9a22b14858025f09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ac90049be9a942a78d9101ce6f044983": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0921e822360d4e569fe4f2391c92a2ff", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a7e2ac7863824e1d9a22b14858025f09", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "aeb45dd1728541dda8a390bfc8d72ab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a1ce75bb14e42ef947d67a9c59da213", + "placeholder": "​", + "style": "IPY_MODEL_ec8a1f21714443c69f469ab4cd1a64c5", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "b599fff89b744ed3b689e7a10fc976db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2828,7 +2704,7 @@ "width": null } }, - "da200749ab8f461f8631919121dfe71f": { + "b7d1312e66eb4d028b963dc02bbd8c51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2881,7 +2757,7 @@ "width": null } }, - "dbd814ae298e4662b635d3981cc98115": { + "b8615d0f523c4416855c168af06f09ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2934,7 +2810,51 @@ "width": null } }, - "e0a6f2898caf4d7e97c9b4699dd4cf31": { + "bb36a5a5014e43508223a67e3875b76b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2623db0a2734450b80c1e3be63b7f6a7", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9c2bbe04d63c4a71a5d88f495d296d17", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "c674fd56a86a40da953c9d29c6086da2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d2e582bb216a42d190e9e34295a3050a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2949,15 +2869,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_284f489d1c0940a4af6498cc4ee288ad", + "layout": "IPY_MODEL_a199985b3c83450681f4424cbac996a7", "placeholder": "​", - "style": "IPY_MODEL_0928624b605147408eb9eb71a02f2be6", + "style": "IPY_MODEL_c674fd56a86a40da953c9d29c6086da2", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 1.01MB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 228MB/s]" } }, - "e1e79e04340c42c4a07b65de15d378e8": { + "db47ca1b854546f3b5d03a685dbd2068": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2973,33 +2893,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_da200749ab8f461f8631919121dfe71f", - "max": 16887676.0, + "layout": "IPY_MODEL_df4bfbd4f16c4ea09bb9bafefcc209d4", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ee6f990c3c4440e1b161a7386ee60cf5", + "style": "IPY_MODEL_57204267a6ef4db9b80197c36c732037", "tabbable": null, "tooltip": null, - "value": 16887676.0 - } - }, - "e524bdde26e74dbb918e03703935b9aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 3201.0 } }, - "e72c130d931142fc86553b3079a5359c": { + "df4bfbd4f16c4ea09bb9bafefcc209d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3052,23 +2956,66 @@ "width": null } }, - "ee6f990c3c4440e1b161a7386ee60cf5": { + "e39178e648eb426e92df68243556443f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ec8a1f21714443c69f469ab4cd1a64c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f9deec697be14d0fa86b7da2217704d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa7d2861f63d4fd2b06d36a4c1770113", + "placeholder": "​", + "style": "IPY_MODEL_8bdfdee0a36548be893802cab63f5e95", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" } }, - "f7727a55541349bab503521054f0b8fc": { + "fa7d2861f63d4fd2b06d36a4c1770113": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3121,7 +3068,7 @@ "width": null } }, - "fba2a74e14a442f2ac8a5666c47f101c": { + "fc46b14cd6be4a25b7ac499f50910491": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3174,7 +3121,7 @@ "width": null } }, - "fbbe413f447e46a69b5ce66589c01b7c": { + "fcc1d2cd57f846b3b296d5c58bbbad14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3191,6 +3138,59 @@ "font_size": null, "text_color": null } + }, + "fecc46417591410b9a88844d1101719c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 7e94808be..2ad2809f6 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

    Functionality 3: Save and load Datalab objects

    -
    +
    @@ -1566,7 +1566,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"8d3040f7badd480cb4758b3ee6ea3615": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "175635551dce4d5b9d9815408f4ba772": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "07fae94dc369441db55c36885f885497": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8d3040f7badd480cb4758b3ee6ea3615", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_175635551dce4d5b9d9815408f4ba772", "tabbable": null, "tooltip": null, "value": 132.0}}, "9d9eac6aa2924c35b65ba9e37e8f5ba6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53ad7637ce9042aeac54dad41f926eab": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c597b0be955f4f83b9771e52a77f5227": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d9eac6aa2924c35b65ba9e37e8f5ba6", "placeholder": "\u200b", "style": "IPY_MODEL_53ad7637ce9042aeac54dad41f926eab", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "b2522c28b0f649deb2097d5ca5fb0d82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "879875d9a76b42c7b40a46c9b73790be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "732c5e8ebc71468e8791a9689e134749": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b2522c28b0f649deb2097d5ca5fb0d82", "placeholder": "\u200b", "style": "IPY_MODEL_879875d9a76b42c7b40a46c9b73790be", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712720.23\u2007examples/s]"}}, "c4a1c8771e3d4954b668f01917df936c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "494ddfe9435b45b79bfc08b9e766f1b5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c597b0be955f4f83b9771e52a77f5227", "IPY_MODEL_07fae94dc369441db55c36885f885497", "IPY_MODEL_732c5e8ebc71468e8791a9689e134749"], "layout": "IPY_MODEL_c4a1c8771e3d4954b668f01917df936c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"0b1f6ada33c04860b9b1a85bdc5ace5a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52a8766f0f944b56a5d921667059f5f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "70521cb5d3d24101a3af3fdab24add52": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b1f6ada33c04860b9b1a85bdc5ace5a", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_52a8766f0f944b56a5d921667059f5f0", "tabbable": null, "tooltip": null, "value": 132.0}}, "a6f59904b7df49a995a168365681347b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db5fdd4ed934443ab656f3c14121c7b0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ec6db31e784b475fa717ffd8c9fe0325": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6f59904b7df49a995a168365681347b", "placeholder": "\u200b", "style": "IPY_MODEL_db5fdd4ed934443ab656f3c14121c7b0", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "b73a8c2d109c4292b26a72fee83e0a6b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6554bcd2006345bfb25a7690345fc270": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "649e73fb63fe4025a6d85c2718cbe706": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b73a8c2d109c4292b26a72fee83e0a6b", "placeholder": "\u200b", "style": "IPY_MODEL_6554bcd2006345bfb25a7690345fc270", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200710818.09\u2007examples/s]"}}, "a49fcfa2862e4f2ea4441f7937cc8e66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8dbb9d6997d434cb54fb2bf4963dca2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ec6db31e784b475fa717ffd8c9fe0325", "IPY_MODEL_70521cb5d3d24101a3af3fdab24add52", "IPY_MODEL_649e73fb63fe4025a6d85c2718cbe706"], "layout": "IPY_MODEL_a49fcfa2862e4f2ea4441f7937cc8e66", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 175c480da..9190aad9b 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:41.056251Z", - "iopub.status.busy": "2024-08-12T18:54:41.056072Z", - "iopub.status.idle": "2024-08-12T18:54:42.472255Z", - "shell.execute_reply": "2024-08-12T18:54:42.471637Z" + "iopub.execute_input": "2024-08-15T19:28:24.865330Z", + "iopub.status.busy": "2024-08-15T19:28:24.864975Z", + "iopub.status.idle": "2024-08-15T19:28:26.252774Z", + "shell.execute_reply": "2024-08-15T19:28:26.252216Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:42.474736Z", - "iopub.status.busy": "2024-08-12T18:54:42.474444Z", - "iopub.status.idle": "2024-08-12T18:54:42.477548Z", - "shell.execute_reply": "2024-08-12T18:54:42.477075Z" + "iopub.execute_input": "2024-08-15T19:28:26.255353Z", + "iopub.status.busy": "2024-08-15T19:28:26.254870Z", + "iopub.status.idle": "2024-08-15T19:28:26.257822Z", + "shell.execute_reply": "2024-08-15T19:28:26.257367Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:42.479701Z", - "iopub.status.busy": "2024-08-12T18:54:42.479369Z", - "iopub.status.idle": "2024-08-12T18:54:42.487756Z", - "shell.execute_reply": "2024-08-12T18:54:42.487291Z" + "iopub.execute_input": "2024-08-15T19:28:26.260094Z", + "iopub.status.busy": "2024-08-15T19:28:26.259738Z", + "iopub.status.idle": "2024-08-15T19:28:26.268148Z", + "shell.execute_reply": "2024-08-15T19:28:26.267709Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:42.489795Z", - "iopub.status.busy": "2024-08-12T18:54:42.489482Z", - "iopub.status.idle": "2024-08-12T18:54:42.494587Z", - "shell.execute_reply": "2024-08-12T18:54:42.494140Z" + "iopub.execute_input": "2024-08-15T19:28:26.270149Z", + "iopub.status.busy": "2024-08-15T19:28:26.269814Z", + "iopub.status.idle": "2024-08-15T19:28:26.274713Z", + "shell.execute_reply": "2024-08-15T19:28:26.274284Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:42.496778Z", - "iopub.status.busy": "2024-08-12T18:54:42.496435Z", - "iopub.status.idle": "2024-08-12T18:54:42.504078Z", - "shell.execute_reply": "2024-08-12T18:54:42.503573Z" + "iopub.execute_input": "2024-08-15T19:28:26.276904Z", + "iopub.status.busy": "2024-08-15T19:28:26.276575Z", + "iopub.status.idle": "2024-08-15T19:28:26.284425Z", + "shell.execute_reply": "2024-08-15T19:28:26.283988Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:42.506139Z", - "iopub.status.busy": "2024-08-12T18:54:42.505804Z", - "iopub.status.idle": "2024-08-12T18:54:42.830541Z", - "shell.execute_reply": "2024-08-12T18:54:42.829968Z" + "iopub.execute_input": "2024-08-15T19:28:26.286480Z", + "iopub.status.busy": "2024-08-15T19:28:26.286036Z", + "iopub.status.idle": "2024-08-15T19:28:26.657555Z", + "shell.execute_reply": "2024-08-15T19:28:26.656997Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:42.832992Z", - "iopub.status.busy": "2024-08-12T18:54:42.832627Z", - "iopub.status.idle": "2024-08-12T18:54:42.856185Z", - "shell.execute_reply": "2024-08-12T18:54:42.855743Z" + "iopub.execute_input": "2024-08-15T19:28:26.659899Z", + "iopub.status.busy": "2024-08-15T19:28:26.659463Z", + "iopub.status.idle": "2024-08-15T19:28:26.682335Z", + "shell.execute_reply": "2024-08-15T19:28:26.681769Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:42.858335Z", - "iopub.status.busy": "2024-08-12T18:54:42.857997Z", - "iopub.status.idle": "2024-08-12T18:54:42.947501Z", - "shell.execute_reply": "2024-08-12T18:54:42.946870Z" + "iopub.execute_input": "2024-08-15T19:28:26.684562Z", + "iopub.status.busy": "2024-08-15T19:28:26.684242Z", + "iopub.status.idle": "2024-08-15T19:28:26.765390Z", + "shell.execute_reply": "2024-08-15T19:28:26.764777Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:42.950217Z", - "iopub.status.busy": "2024-08-12T18:54:42.949881Z", - "iopub.status.idle": "2024-08-12T18:54:44.975217Z", - "shell.execute_reply": "2024-08-12T18:54:44.974523Z" + "iopub.execute_input": "2024-08-15T19:28:26.768181Z", + "iopub.status.busy": "2024-08-15T19:28:26.767658Z", + "iopub.status.idle": "2024-08-15T19:28:28.761402Z", + "shell.execute_reply": "2024-08-15T19:28:28.760763Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:44.978079Z", - "iopub.status.busy": "2024-08-12T18:54:44.977462Z", - "iopub.status.idle": "2024-08-12T18:54:44.999916Z", - "shell.execute_reply": "2024-08-12T18:54:44.999471Z" + "iopub.execute_input": "2024-08-15T19:28:28.763987Z", + "iopub.status.busy": "2024-08-15T19:28:28.763505Z", + "iopub.status.idle": "2024-08-15T19:28:28.785462Z", + "shell.execute_reply": "2024-08-15T19:28:28.785015Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:45.002071Z", - "iopub.status.busy": "2024-08-12T18:54:45.001773Z", - "iopub.status.idle": "2024-08-12T18:54:45.019241Z", - "shell.execute_reply": "2024-08-12T18:54:45.018687Z" + "iopub.execute_input": "2024-08-15T19:28:28.787562Z", + "iopub.status.busy": "2024-08-15T19:28:28.787220Z", + "iopub.status.idle": "2024-08-15T19:28:28.804519Z", + "shell.execute_reply": "2024-08-15T19:28:28.804069Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:45.021387Z", - "iopub.status.busy": "2024-08-12T18:54:45.020989Z", - "iopub.status.idle": "2024-08-12T18:54:45.034863Z", - "shell.execute_reply": "2024-08-12T18:54:45.034371Z" + "iopub.execute_input": "2024-08-15T19:28:28.806490Z", + "iopub.status.busy": "2024-08-15T19:28:28.806159Z", + "iopub.status.idle": "2024-08-15T19:28:28.819049Z", + "shell.execute_reply": "2024-08-15T19:28:28.818582Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:45.036969Z", - "iopub.status.busy": "2024-08-12T18:54:45.036650Z", - "iopub.status.idle": "2024-08-12T18:54:45.057198Z", - "shell.execute_reply": "2024-08-12T18:54:45.056594Z" + "iopub.execute_input": "2024-08-15T19:28:28.821047Z", + "iopub.status.busy": "2024-08-15T19:28:28.820711Z", + "iopub.status.idle": "2024-08-15T19:28:28.842645Z", + "shell.execute_reply": "2024-08-15T19:28:28.842052Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "494ddfe9435b45b79bfc08b9e766f1b5", + "model_id": "b8dbb9d6997d434cb54fb2bf4963dca2", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:45.059360Z", - "iopub.status.busy": "2024-08-12T18:54:45.059019Z", - "iopub.status.idle": "2024-08-12T18:54:45.073874Z", - "shell.execute_reply": "2024-08-12T18:54:45.073413Z" + "iopub.execute_input": "2024-08-15T19:28:28.844655Z", + "iopub.status.busy": "2024-08-15T19:28:28.844323Z", + "iopub.status.idle": "2024-08-15T19:28:28.858662Z", + "shell.execute_reply": "2024-08-15T19:28:28.858230Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:45.076063Z", - "iopub.status.busy": "2024-08-12T18:54:45.075717Z", - "iopub.status.idle": "2024-08-12T18:54:45.081565Z", - "shell.execute_reply": "2024-08-12T18:54:45.081118Z" + "iopub.execute_input": "2024-08-15T19:28:28.860762Z", + "iopub.status.busy": "2024-08-15T19:28:28.860435Z", + "iopub.status.idle": "2024-08-15T19:28:28.866026Z", + "shell.execute_reply": "2024-08-15T19:28:28.865578Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:45.083640Z", - "iopub.status.busy": "2024-08-12T18:54:45.083296Z", - "iopub.status.idle": "2024-08-12T18:54:45.100645Z", - "shell.execute_reply": "2024-08-12T18:54:45.100155Z" + "iopub.execute_input": "2024-08-15T19:28:28.868055Z", + "iopub.status.busy": "2024-08-15T19:28:28.867723Z", + "iopub.status.idle": "2024-08-15T19:28:28.884913Z", + "shell.execute_reply": "2024-08-15T19:28:28.884470Z" } }, "outputs": [ @@ -1447,33 +1447,60 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07fae94dc369441db55c36885f885497": { - "model_module": "@jupyter-widgets/controls", + "0b1f6ada33c04860b9b1a85bdc5ace5a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8d3040f7badd480cb4758b3ee6ea3615", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_175635551dce4d5b9d9815408f4ba772", - "tabbable": null, - "tooltip": null, - "value": 132.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "175635551dce4d5b9d9815408f4ba772": { + "52a8766f0f944b56a5d921667059f5f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1489,31 +1516,30 @@ "description_width": "" } }, - "494ddfe9435b45b79bfc08b9e766f1b5": { + "649e73fb63fe4025a6d85c2718cbe706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c597b0be955f4f83b9771e52a77f5227", - "IPY_MODEL_07fae94dc369441db55c36885f885497", - "IPY_MODEL_732c5e8ebc71468e8791a9689e134749" - ], - "layout": "IPY_MODEL_c4a1c8771e3d4954b668f01917df936c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b73a8c2d109c4292b26a72fee83e0a6b", + "placeholder": "​", + "style": "IPY_MODEL_6554bcd2006345bfb25a7690345fc270", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10818.09 examples/s]" } }, - "53ad7637ce9042aeac54dad41f926eab": { + "6554bcd2006345bfb25a7690345fc270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1531,48 +1557,33 @@ "text_color": null } }, - "732c5e8ebc71468e8791a9689e134749": { + "70521cb5d3d24101a3af3fdab24add52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2522c28b0f649deb2097d5ca5fb0d82", - "placeholder": "​", - "style": "IPY_MODEL_879875d9a76b42c7b40a46c9b73790be", + "layout": "IPY_MODEL_0b1f6ada33c04860b9b1a85bdc5ace5a", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_52a8766f0f944b56a5d921667059f5f0", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 12720.23 examples/s]" - } - }, - "879875d9a76b42c7b40a46c9b73790be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 132.0 } }, - "8d3040f7badd480cb4758b3ee6ea3615": { + "a49fcfa2862e4f2ea4441f7937cc8e66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1625,7 +1636,7 @@ "width": null } }, - "9d9eac6aa2924c35b65ba9e37e8f5ba6": { + "a6f59904b7df49a995a168365681347b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1678,7 +1689,7 @@ "width": null } }, - "b2522c28b0f649deb2097d5ca5fb0d82": { + "b73a8c2d109c4292b26a72fee83e0a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1731,60 +1742,49 @@ "width": null } }, - "c4a1c8771e3d4954b668f01917df936c": { - "model_module": "@jupyter-widgets/base", + "b8dbb9d6997d434cb54fb2bf4963dca2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ec6db31e784b475fa717ffd8c9fe0325", + "IPY_MODEL_70521cb5d3d24101a3af3fdab24add52", + "IPY_MODEL_649e73fb63fe4025a6d85c2718cbe706" + ], + "layout": "IPY_MODEL_a49fcfa2862e4f2ea4441f7937cc8e66", + "tabbable": null, + "tooltip": null + } + }, + "db5fdd4ed934443ab656f3c14121c7b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c597b0be955f4f83b9771e52a77f5227": { + "ec6db31e784b475fa717ffd8c9fe0325": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1799,9 +1799,9 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9d9eac6aa2924c35b65ba9e37e8f5ba6", + "layout": "IPY_MODEL_a6f59904b7df49a995a168365681347b", "placeholder": "​", - "style": "IPY_MODEL_53ad7637ce9042aeac54dad41f926eab", + "style": "IPY_MODEL_db5fdd4ed934443ab656f3c14121c7b0", "tabbable": null, "tooltip": null, "value": "Saving the dataset (1/1 shards): 100%" diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index d00b92717..96fdfda7f 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -1134,7 +1134,7 @@

    5. Learn more about the issues in your dataset\n", " 6\n", " underperforming_group\n", - " 0.901562\n", + " 0.926818\n", " 0\n", " \n", " \n", @@ -909,7 +909,7 @@ "3 near_duplicate 0.616034 4\n", "4 non_iid 0.821750 0\n", "5 class_imbalance 0.022727 3\n", - "6 underperforming_group 0.901562 0" + "6 underperforming_group 0.926818 0" ] }, "execution_count": 11, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:52.193149Z", - "iopub.status.busy": "2024-08-12T18:54:52.192969Z", - "iopub.status.idle": "2024-08-12T18:54:52.198891Z", - "shell.execute_reply": "2024-08-12T18:54:52.198307Z" + "iopub.execute_input": "2024-08-15T19:28:35.528353Z", + "iopub.status.busy": "2024-08-15T19:28:35.528017Z", + "iopub.status.idle": "2024-08-15T19:28:35.533582Z", + "shell.execute_reply": "2024-08-15T19:28:35.533032Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:52.200895Z", - "iopub.status.busy": "2024-08-12T18:54:52.200588Z", - "iopub.status.idle": "2024-08-12T18:54:52.211009Z", - "shell.execute_reply": "2024-08-12T18:54:52.210546Z" + "iopub.execute_input": "2024-08-15T19:28:35.535555Z", + "iopub.status.busy": "2024-08-15T19:28:35.535248Z", + "iopub.status.idle": "2024-08-15T19:28:35.545314Z", + "shell.execute_reply": "2024-08-15T19:28:35.544777Z" } }, "outputs": [ @@ -1065,7 +1065,7 @@ " False\n", " 1.0\n", " False\n", - " 1.0\n", + " 1.000000\n", " \n", " \n", " 1\n", @@ -1082,7 +1082,7 @@ " False\n", " 1.0\n", " False\n", - " 1.0\n", + " 0.910232\n", " \n", " \n", " 2\n", @@ -1099,7 +1099,7 @@ " False\n", " 1.0\n", " False\n", - " 1.0\n", + " 0.910232\n", " \n", " \n", " 3\n", @@ -1116,7 +1116,7 @@ " False\n", " 1.0\n", " False\n", - " 1.0\n", + " 0.890169\n", " \n", " \n", " 4\n", @@ -1133,7 +1133,7 @@ " False\n", " 1.0\n", " False\n", - " 1.0\n", + " 1.000000\n", " \n", " \n", "\n", @@ -1169,11 +1169,11 @@ "4 1.0 False \n", "\n", " underperforming_group_score \n", - "0 1.0 \n", - "1 1.0 \n", - "2 1.0 \n", - "3 1.0 \n", - "4 1.0 " + "0 1.000000 \n", + "1 0.910232 \n", + "2 0.910232 \n", + "3 0.890169 \n", + "4 1.000000 " ] }, "execution_count": 13, @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:52.213158Z", - "iopub.status.busy": "2024-08-12T18:54:52.212840Z", - "iopub.status.idle": "2024-08-12T18:54:52.221951Z", - "shell.execute_reply": "2024-08-12T18:54:52.221377Z" + "iopub.execute_input": "2024-08-15T19:28:35.547399Z", + "iopub.status.busy": "2024-08-15T19:28:35.547066Z", + "iopub.status.idle": "2024-08-15T19:28:35.555526Z", + "shell.execute_reply": "2024-08-15T19:28:35.555046Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:52.224128Z", - "iopub.status.busy": "2024-08-12T18:54:52.223855Z", - "iopub.status.idle": "2024-08-12T18:54:52.230669Z", - "shell.execute_reply": "2024-08-12T18:54:52.230101Z" + "iopub.execute_input": "2024-08-15T19:28:35.557574Z", + "iopub.status.busy": "2024-08-15T19:28:35.557301Z", + "iopub.status.idle": "2024-08-15T19:28:35.564027Z", + "shell.execute_reply": "2024-08-15T19:28:35.563510Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:52.232850Z", - "iopub.status.busy": "2024-08-12T18:54:52.232463Z", - "iopub.status.idle": "2024-08-12T18:54:52.241829Z", - "shell.execute_reply": "2024-08-12T18:54:52.241257Z" + "iopub.execute_input": "2024-08-15T19:28:35.566026Z", + "iopub.status.busy": "2024-08-15T19:28:35.565847Z", + "iopub.status.idle": "2024-08-15T19:28:35.575518Z", + "shell.execute_reply": "2024-08-15T19:28:35.574981Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:52.243956Z", - "iopub.status.busy": "2024-08-12T18:54:52.243626Z", - "iopub.status.idle": "2024-08-12T18:54:52.259258Z", - "shell.execute_reply": "2024-08-12T18:54:52.258809Z" + "iopub.execute_input": "2024-08-15T19:28:35.577501Z", + "iopub.status.busy": "2024-08-15T19:28:35.577333Z", + "iopub.status.idle": "2024-08-15T19:28:35.593402Z", + "shell.execute_reply": "2024-08-15T19:28:35.592979Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index e0ac45805..fa5552985 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,31 +727,31 @@

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1064,7 +1064,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1096,7 +1096,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1128,7 +1128,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1919,35 +1919,35 @@

    Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2097,7 +2097,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 255960716..e82b22811 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:55.167990Z", - "iopub.status.busy": "2024-08-12T18:54:55.167498Z", - "iopub.status.idle": "2024-08-12T18:54:58.200814Z", - "shell.execute_reply": "2024-08-12T18:54:58.200214Z" + "iopub.execute_input": "2024-08-15T19:28:38.248143Z", + "iopub.status.busy": "2024-08-15T19:28:38.247971Z", + "iopub.status.idle": "2024-08-15T19:28:41.190910Z", + "shell.execute_reply": "2024-08-15T19:28:41.190239Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:58.203267Z", - "iopub.status.busy": "2024-08-12T18:54:58.202968Z", - "iopub.status.idle": "2024-08-12T18:54:58.206608Z", - "shell.execute_reply": "2024-08-12T18:54:58.206150Z" + "iopub.execute_input": "2024-08-15T19:28:41.193639Z", + "iopub.status.busy": "2024-08-15T19:28:41.193292Z", + "iopub.status.idle": "2024-08-15T19:28:41.197110Z", + "shell.execute_reply": "2024-08-15T19:28:41.196645Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:54:58.208613Z", - "iopub.status.busy": "2024-08-12T18:54:58.208300Z", - "iopub.status.idle": "2024-08-12T18:55:03.426332Z", - "shell.execute_reply": "2024-08-12T18:55:03.425846Z" + "iopub.execute_input": "2024-08-15T19:28:41.199057Z", + "iopub.status.busy": "2024-08-15T19:28:41.198879Z", + "iopub.status.idle": "2024-08-15T19:28:44.013146Z", + "shell.execute_reply": "2024-08-15T19:28:44.012589Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5536055315cc48758ef861d7a11a8759", + "model_id": "aad0d6d230c3476281fffa76aaeb8a86", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94289cd6e6de468db051fd838ba56323", + "model_id": "bfadf7bb6c884091b46cca6d7bd10362", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5530f4d814dc4873935b56a3bc07d13e", + "model_id": "fa273908c1d1415f807e8c16c9563328", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d7183df8c95b49f89720bff1674cd315", + "model_id": "a87f9cbbaa6945b59df6017587ac3e80", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e31ea71bbfe34e54bde0f8eba6e3e41b", + "model_id": "5bd2f6a19cfa45caa5bcf973b4fa5824", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:55:03.428583Z", - "iopub.status.busy": "2024-08-12T18:55:03.428213Z", - "iopub.status.idle": "2024-08-12T18:55:03.432037Z", - "shell.execute_reply": "2024-08-12T18:55:03.431490Z" + "iopub.execute_input": "2024-08-15T19:28:44.015432Z", + "iopub.status.busy": "2024-08-15T19:28:44.015149Z", + "iopub.status.idle": "2024-08-15T19:28:44.018967Z", + "shell.execute_reply": "2024-08-15T19:28:44.018422Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:55:03.433996Z", - "iopub.status.busy": "2024-08-12T18:55:03.433690Z", - "iopub.status.idle": "2024-08-12T18:55:15.156554Z", - "shell.execute_reply": "2024-08-12T18:55:15.155860Z" + "iopub.execute_input": "2024-08-15T19:28:44.020907Z", + "iopub.status.busy": "2024-08-15T19:28:44.020644Z", + "iopub.status.idle": "2024-08-15T19:28:55.663076Z", + "shell.execute_reply": "2024-08-15T19:28:55.662510Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e98a483d8634a7c9c26dc079f884fe5", + "model_id": "5d84638f6b0e44abb8f0e126007e3846", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:55:15.159276Z", - "iopub.status.busy": "2024-08-12T18:55:15.158914Z", - "iopub.status.idle": "2024-08-12T18:55:34.063937Z", - "shell.execute_reply": "2024-08-12T18:55:34.063396Z" + "iopub.execute_input": "2024-08-15T19:28:55.665690Z", + "iopub.status.busy": "2024-08-15T19:28:55.665342Z", + "iopub.status.idle": "2024-08-15T19:29:13.831286Z", + "shell.execute_reply": "2024-08-15T19:29:13.830608Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:55:34.066694Z", - "iopub.status.busy": "2024-08-12T18:55:34.066291Z", - "iopub.status.idle": "2024-08-12T18:55:34.072237Z", - "shell.execute_reply": "2024-08-12T18:55:34.071765Z" + "iopub.execute_input": "2024-08-15T19:29:13.834154Z", + "iopub.status.busy": "2024-08-15T19:29:13.833810Z", + "iopub.status.idle": "2024-08-15T19:29:13.838676Z", + "shell.execute_reply": "2024-08-15T19:29:13.838144Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:55:34.074339Z", - "iopub.status.busy": "2024-08-12T18:55:34.073991Z", - "iopub.status.idle": "2024-08-12T18:55:34.078224Z", - "shell.execute_reply": "2024-08-12T18:55:34.077811Z" + "iopub.execute_input": "2024-08-15T19:29:13.840801Z", + "iopub.status.busy": "2024-08-15T19:29:13.840408Z", + "iopub.status.idle": "2024-08-15T19:29:13.844547Z", + "shell.execute_reply": "2024-08-15T19:29:13.844013Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:55:34.080424Z", - "iopub.status.busy": "2024-08-12T18:55:34.080076Z", - "iopub.status.idle": "2024-08-12T18:55:34.089197Z", - "shell.execute_reply": "2024-08-12T18:55:34.088740Z" + "iopub.execute_input": "2024-08-15T19:29:13.846686Z", + "iopub.status.busy": "2024-08-15T19:29:13.846388Z", + "iopub.status.idle": "2024-08-15T19:29:13.855304Z", + "shell.execute_reply": "2024-08-15T19:29:13.854742Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:55:34.091312Z", - "iopub.status.busy": "2024-08-12T18:55:34.090965Z", - "iopub.status.idle": "2024-08-12T18:55:34.119087Z", - "shell.execute_reply": "2024-08-12T18:55:34.118609Z" + "iopub.execute_input": "2024-08-15T19:29:13.857458Z", + "iopub.status.busy": "2024-08-15T19:29:13.857145Z", + "iopub.status.idle": "2024-08-15T19:29:13.883926Z", + "shell.execute_reply": "2024-08-15T19:29:13.883349Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:55:34.121415Z", - "iopub.status.busy": "2024-08-12T18:55:34.121048Z", - "iopub.status.idle": "2024-08-12T18:56:08.107752Z", - "shell.execute_reply": "2024-08-12T18:56:08.107079Z" + "iopub.execute_input": "2024-08-15T19:29:13.886198Z", + "iopub.status.busy": "2024-08-15T19:29:13.885860Z", + "iopub.status.idle": "2024-08-15T19:29:46.678339Z", + "shell.execute_reply": "2024-08-15T19:29:46.677742Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.009\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.813\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.734\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.540\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ee42831ebd04c1abdb02a45dd8b1c41", + "model_id": "e279996356a24deebea207d022fd1d5e", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1f9027ac4265465c93cb18dc1bd30292", + "model_id": "3de6fc3bd9854ce995e1fd55ec0833b9", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.225\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.906\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.711\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.579\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "092583d713a644899085990919e92801", + "model_id": "0c14c28ca7da4659bca98b0567100829", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "52340a16943f47a2bf680589345a1330", + "model_id": "8e816f1d1c4144d49509bc39b029e3b9", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.971\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.730\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.749\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.565\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f89d806ff8c4eb8979271cf81ddabb4", + "model_id": "34987bd0e89c441f960165e5191fd3af", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1788966d26a6427ca2e657ccbccc5011", + "model_id": "12a8d998f6b448a38a6fd776c62a4354", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:56:08.110568Z", - "iopub.status.busy": "2024-08-12T18:56:08.110135Z", - "iopub.status.idle": "2024-08-12T18:56:08.128279Z", - "shell.execute_reply": "2024-08-12T18:56:08.127694Z" + "iopub.execute_input": "2024-08-15T19:29:46.681020Z", + "iopub.status.busy": "2024-08-15T19:29:46.680601Z", + "iopub.status.idle": "2024-08-15T19:29:46.697530Z", + "shell.execute_reply": "2024-08-15T19:29:46.697037Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:56:08.130938Z", - "iopub.status.busy": "2024-08-12T18:56:08.130451Z", - "iopub.status.idle": "2024-08-12T18:56:08.620894Z", - "shell.execute_reply": "2024-08-12T18:56:08.620328Z" + "iopub.execute_input": "2024-08-15T19:29:46.699814Z", + "iopub.status.busy": "2024-08-15T19:29:46.699447Z", + "iopub.status.idle": "2024-08-15T19:29:47.160250Z", + "shell.execute_reply": "2024-08-15T19:29:47.159697Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:56:08.623509Z", - "iopub.status.busy": "2024-08-12T18:56:08.623124Z", - "iopub.status.idle": "2024-08-12T18:58:01.771753Z", - "shell.execute_reply": "2024-08-12T18:58:01.771037Z" + "iopub.execute_input": "2024-08-15T19:29:47.162748Z", + "iopub.status.busy": "2024-08-15T19:29:47.162389Z", + "iopub.status.idle": "2024-08-15T19:31:37.365010Z", + "shell.execute_reply": "2024-08-15T19:31:37.364325Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a781e7b0a1eb4996a753d8f47a0d6cd0", + "model_id": "d0301a352bcd48278129fd4b79c1849b", "version_major": 2, "version_minor": 0 }, @@ -1108,10 +1108,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:01.774355Z", - "iopub.status.busy": "2024-08-12T18:58:01.773772Z", - "iopub.status.idle": "2024-08-12T18:58:02.253989Z", - "shell.execute_reply": "2024-08-12T18:58:02.253342Z" + "iopub.execute_input": "2024-08-15T19:31:37.367625Z", + "iopub.status.busy": "2024-08-15T19:31:37.367250Z", + "iopub.status.idle": "2024-08-15T19:31:37.819935Z", + "shell.execute_reply": "2024-08-15T19:31:37.819319Z" } }, "outputs": [ @@ -1257,10 +1257,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:02.256482Z", - "iopub.status.busy": "2024-08-12T18:58:02.256118Z", - "iopub.status.idle": "2024-08-12T18:58:02.318086Z", - "shell.execute_reply": "2024-08-12T18:58:02.317530Z" + "iopub.execute_input": "2024-08-15T19:31:37.822900Z", + "iopub.status.busy": "2024-08-15T19:31:37.822418Z", + "iopub.status.idle": "2024-08-15T19:31:37.884525Z", + "shell.execute_reply": "2024-08-15T19:31:37.884026Z" } }, "outputs": [ @@ -1364,10 +1364,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:02.320656Z", - "iopub.status.busy": "2024-08-12T18:58:02.320122Z", - "iopub.status.idle": "2024-08-12T18:58:02.329554Z", - "shell.execute_reply": "2024-08-12T18:58:02.329055Z" + "iopub.execute_input": "2024-08-15T19:31:37.886714Z", + "iopub.status.busy": "2024-08-15T19:31:37.886369Z", + "iopub.status.idle": "2024-08-15T19:31:37.894651Z", + "shell.execute_reply": "2024-08-15T19:31:37.894231Z" } }, "outputs": [ @@ -1497,10 +1497,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:02.331983Z", - "iopub.status.busy": "2024-08-12T18:58:02.331537Z", - "iopub.status.idle": "2024-08-12T18:58:02.336399Z", - "shell.execute_reply": "2024-08-12T18:58:02.335919Z" + "iopub.execute_input": "2024-08-15T19:31:37.896787Z", + "iopub.status.busy": "2024-08-15T19:31:37.896463Z", + "iopub.status.idle": "2024-08-15T19:31:37.900951Z", + "shell.execute_reply": "2024-08-15T19:31:37.900508Z" }, "nbsphinx": "hidden" }, @@ -1546,10 +1546,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:02.338459Z", - "iopub.status.busy": "2024-08-12T18:58:02.338116Z", - "iopub.status.idle": "2024-08-12T18:58:02.833078Z", - "shell.execute_reply": "2024-08-12T18:58:02.832432Z" + "iopub.execute_input": "2024-08-15T19:31:37.903002Z", + "iopub.status.busy": "2024-08-15T19:31:37.902663Z", + "iopub.status.idle": "2024-08-15T19:31:38.407084Z", + "shell.execute_reply": "2024-08-15T19:31:38.406456Z" } }, "outputs": [ @@ -1584,10 +1584,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:02.835684Z", - "iopub.status.busy": "2024-08-12T18:58:02.835299Z", - "iopub.status.idle": "2024-08-12T18:58:02.844200Z", - "shell.execute_reply": "2024-08-12T18:58:02.843719Z" + "iopub.execute_input": "2024-08-15T19:31:38.409178Z", + "iopub.status.busy": "2024-08-15T19:31:38.408999Z", + "iopub.status.idle": "2024-08-15T19:31:38.417344Z", + "shell.execute_reply": "2024-08-15T19:31:38.416780Z" } }, "outputs": [ @@ -1754,10 +1754,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:02.846427Z", - "iopub.status.busy": "2024-08-12T18:58:02.846066Z", - "iopub.status.idle": "2024-08-12T18:58:02.853397Z", - "shell.execute_reply": "2024-08-12T18:58:02.852926Z" + "iopub.execute_input": "2024-08-15T19:31:38.419449Z", + "iopub.status.busy": "2024-08-15T19:31:38.419145Z", + "iopub.status.idle": "2024-08-15T19:31:38.426440Z", + "shell.execute_reply": "2024-08-15T19:31:38.425969Z" }, "nbsphinx": "hidden" }, @@ -1833,10 +1833,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:02.855444Z", - "iopub.status.busy": "2024-08-12T18:58:02.855103Z", - "iopub.status.idle": "2024-08-12T18:58:03.646581Z", - "shell.execute_reply": "2024-08-12T18:58:03.645923Z" + "iopub.execute_input": "2024-08-15T19:31:38.428508Z", + "iopub.status.busy": "2024-08-15T19:31:38.428205Z", + "iopub.status.idle": "2024-08-15T19:31:39.174364Z", + "shell.execute_reply": "2024-08-15T19:31:39.173880Z" } }, "outputs": [ @@ -1873,10 +1873,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:03.649104Z", - "iopub.status.busy": "2024-08-12T18:58:03.648717Z", - "iopub.status.idle": "2024-08-12T18:58:03.665682Z", - "shell.execute_reply": "2024-08-12T18:58:03.665186Z" + "iopub.execute_input": "2024-08-15T19:31:39.176443Z", + "iopub.status.busy": "2024-08-15T19:31:39.176268Z", + "iopub.status.idle": "2024-08-15T19:31:39.191628Z", + "shell.execute_reply": "2024-08-15T19:31:39.191035Z" } }, "outputs": [ @@ -2033,10 +2033,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:03.668086Z", - "iopub.status.busy": "2024-08-12T18:58:03.667726Z", - "iopub.status.idle": "2024-08-12T18:58:03.673416Z", - "shell.execute_reply": "2024-08-12T18:58:03.672968Z" + "iopub.execute_input": "2024-08-15T19:31:39.193839Z", + "iopub.status.busy": "2024-08-15T19:31:39.193559Z", + "iopub.status.idle": "2024-08-15T19:31:39.199867Z", + "shell.execute_reply": "2024-08-15T19:31:39.199306Z" }, "nbsphinx": "hidden" }, @@ -2081,10 +2081,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:03.675575Z", - "iopub.status.busy": "2024-08-12T18:58:03.675237Z", - "iopub.status.idle": "2024-08-12T18:58:04.071158Z", - "shell.execute_reply": "2024-08-12T18:58:04.070413Z" + "iopub.execute_input": "2024-08-15T19:31:39.202046Z", + "iopub.status.busy": "2024-08-15T19:31:39.201622Z", + "iopub.status.idle": "2024-08-15T19:31:39.668179Z", + "shell.execute_reply": "2024-08-15T19:31:39.667642Z" } }, "outputs": [ @@ -2166,10 +2166,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:04.074551Z", - "iopub.status.busy": "2024-08-12T18:58:04.073757Z", - "iopub.status.idle": "2024-08-12T18:58:04.083617Z", - "shell.execute_reply": "2024-08-12T18:58:04.083182Z" + "iopub.execute_input": "2024-08-15T19:31:39.670821Z", + "iopub.status.busy": "2024-08-15T19:31:39.670436Z", + "iopub.status.idle": "2024-08-15T19:31:39.679833Z", + "shell.execute_reply": "2024-08-15T19:31:39.679348Z" } }, "outputs": [ @@ -2194,47 +2194,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2297,10 +2297,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:04.085975Z", - "iopub.status.busy": "2024-08-12T18:58:04.085795Z", - "iopub.status.idle": "2024-08-12T18:58:04.090563Z", - "shell.execute_reply": "2024-08-12T18:58:04.089872Z" + "iopub.execute_input": "2024-08-15T19:31:39.682244Z", + "iopub.status.busy": "2024-08-15T19:31:39.681876Z", + "iopub.status.idle": "2024-08-15T19:31:39.687591Z", + "shell.execute_reply": "2024-08-15T19:31:39.687095Z" }, "nbsphinx": "hidden" }, @@ -2337,10 +2337,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:04.092832Z", - "iopub.status.busy": "2024-08-12T18:58:04.092657Z", - "iopub.status.idle": "2024-08-12T18:58:04.277820Z", - "shell.execute_reply": "2024-08-12T18:58:04.277192Z" + "iopub.execute_input": "2024-08-15T19:31:39.689907Z", + "iopub.status.busy": "2024-08-15T19:31:39.689539Z", + "iopub.status.idle": "2024-08-15T19:31:39.892262Z", + "shell.execute_reply": "2024-08-15T19:31:39.891696Z" } }, "outputs": [ @@ -2382,10 +2382,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:04.280489Z", - "iopub.status.busy": "2024-08-12T18:58:04.280004Z", - "iopub.status.idle": "2024-08-12T18:58:04.288229Z", - "shell.execute_reply": "2024-08-12T18:58:04.287768Z" + "iopub.execute_input": "2024-08-15T19:31:39.894230Z", + "iopub.status.busy": "2024-08-15T19:31:39.894057Z", + "iopub.status.idle": "2024-08-15T19:31:39.901441Z", + "shell.execute_reply": "2024-08-15T19:31:39.900989Z" } }, "outputs": [ @@ -2471,10 +2471,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:04.290241Z", - "iopub.status.busy": "2024-08-12T18:58:04.289960Z", - "iopub.status.idle": "2024-08-12T18:58:04.490578Z", - "shell.execute_reply": "2024-08-12T18:58:04.489977Z" + "iopub.execute_input": "2024-08-15T19:31:39.903354Z", + "iopub.status.busy": "2024-08-15T19:31:39.903171Z", + "iopub.status.idle": "2024-08-15T19:31:40.102065Z", + "shell.execute_reply": "2024-08-15T19:31:40.101544Z" } }, "outputs": [ @@ -2514,10 +2514,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:04.492976Z", - "iopub.status.busy": "2024-08-12T18:58:04.492644Z", - "iopub.status.idle": "2024-08-12T18:58:04.497183Z", - "shell.execute_reply": "2024-08-12T18:58:04.496596Z" + "iopub.execute_input": "2024-08-15T19:31:40.104465Z", + "iopub.status.busy": "2024-08-15T19:31:40.104010Z", + "iopub.status.idle": "2024-08-15T19:31:40.108552Z", + "shell.execute_reply": "2024-08-15T19:31:40.108098Z" }, "nbsphinx": "hidden" }, @@ -2554,7 +2554,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03e1af4ff1e84901b1a6204851b2a18a": { + "00ecbe21636f4536b18446e1d1a1ff40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2607,23 +2607,30 @@ "width": null } }, - "05bc08c6e3e4413385afb573c9bcbf24": { + "019ef14ed4c54c3ca8c55c96fa299afd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d33dbc3971334ce9bcbe4c6c1e5eb114", + "placeholder": "​", + "style": "IPY_MODEL_cfb5e2ec19ee48a08e7a7487c4bbcffc", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.28it/s]" } }, - "0850e4eeafff46e2b2f8a41bb99ae35c": { + "01c637e6a2c0466483abb42dc1413908": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2641,105 +2648,7 @@ "text_color": null } }, - "092583d713a644899085990919e92801": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a54630e7f25e4f7c898e29c4a7652252", - "IPY_MODEL_e6ca8e901e904830a7d69136598543ad", - "IPY_MODEL_d2c8ee83c4df4ca3b0bd2caaeeed106f" - ], - "layout": "IPY_MODEL_d4e2e8bbb9764cba8af70f10d847218d", - "tabbable": null, - "tooltip": null - } - }, - "0b0f923eb2ec4f5a98793e7a0cbaa33b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e9da4ae20e34b23a754e1c5b7dd6158", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d242722a70fc416293e276b0f8401bff", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "0b6c4ed7790c4cdf90d4f247f1c02888": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_13382556965142d7a98cfc708848a163", - "IPY_MODEL_8cff9cca7e004cfb8c91929a84823c80", - "IPY_MODEL_a2d81fde3fec467b9ea8d8892f574b29" - ], - "layout": "IPY_MODEL_c1749dc1d02a4dcb92d90af0d098640c", - "tabbable": null, - "tooltip": null - } - }, - "0e98a483d8634a7c9c26dc079f884fe5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e72c046ab76b45fdb76f44fc35dda60c", - "IPY_MODEL_19baf9a900de4030ae859000713b5ff6", - "IPY_MODEL_e479f7639c9949bca96c2de235717132" - ], - "layout": "IPY_MODEL_82f10478222b43c1a6faa54b3900df75", - "tabbable": null, - "tooltip": null - } - }, - "0e9da4ae20e34b23a754e1c5b7dd6158": { + "0235031e280d4c7ca136b001fc1b1707": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2792,7 +2701,7 @@ "width": null } }, - "0eb5595e457b4ef19f5c2a46b683aa7b": { + "044b9052285c43aaa6a6ef6754bdb867": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2845,7 +2754,30 @@ "width": null } }, - "0f249386ded0418c87d07bd42105db23": { + "069b9ec25fa247cea899e0ab82b6b034": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b1ccc31b69244376a474d236abe52b55", + "placeholder": "​", + "style": "IPY_MODEL_a6a1a5d94ef142c5898d4075496c19d2", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "0bceb010376644b78c008d139761e116": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2898,71 +2830,7 @@ "width": null } }, - "1081f9bbd7184bd68161f881b9c1c2e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "13382556965142d7a98cfc708848a163": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6d79271a2f4f4993b957f27f962d1cf8", - "placeholder": "​", - "style": "IPY_MODEL_e0401f9ed4cb45529a0175d5441fdc87", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "1561d0507e524fcfab27baffd1993d1c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8dc4e546ecdb4bc4bde15a14419d53ce", - "placeholder": "​", - "style": "IPY_MODEL_614594c7c757441d8a1b3df076dd46ca", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 28.6MB/s]" - } - }, - "1788966d26a6427ca2e657ccbccc5011": { + "0c14c28ca7da4659bca98b0567100829": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2977,16 +2845,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_aac056f3f9bb467c85037cb9bd254db3", - "IPY_MODEL_dd9cf14362e74cbeb505d58baafe4cb5", - "IPY_MODEL_cee8c00669dd42ac97578336d38e5dbc" + "IPY_MODEL_77fa611c7fbb421ca6ed6a9777306494", + "IPY_MODEL_5df8205c68ae4aacb246c95d73f86d74", + "IPY_MODEL_5d0d6de5c49a4963ba065d6a0dab8270" ], - "layout": "IPY_MODEL_e3858df4be1243fca435f20a3e321386", + "layout": "IPY_MODEL_cbd7aa5a9dd94b19a7aa8dea10c8ba93", "tabbable": null, "tooltip": null } }, - "180ebdcc0ed942e39af0cd94c26cb378": { + "0dca1f50d1ce417dbaa75a540fe66c7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3039,7 +2907,7 @@ "width": null } }, - "195ca67d0cc54ba5975093e841165e8f": { + "0e94e3f2ce7c4c48adda4b5a54e927c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3092,129 +2960,110 @@ "width": null } }, - "19baf9a900de4030ae859000713b5ff6": { + "12a8d998f6b448a38a6fd776c62a4354": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03e1af4ff1e84901b1a6204851b2a18a", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b80d5f025b154036ad476b78a3460637", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f678de56a71748a0805e711e2cd02590", + "IPY_MODEL_163c25aabb664f0aaf8d01c2b8e492c5", + "IPY_MODEL_8cbe10c3a99347f39d0c27c467fad6fa" + ], + "layout": "IPY_MODEL_2edbe77d37df431e984ced9cf6a62580", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null } }, - "1b23bb3df60a4375be60c234c43b900a": { - "model_module": "@jupyter-widgets/controls", + "1473bf4a82fa4e75962494e9e215ec7f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1b463e1dc5ed4f379eb905f713f718ab": { + "163c25aabb664f0aaf8d01c2b8e492c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1b6e8ffcd2bb4a5b8e2dca0ea6b86dcc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1f9027ac4265465c93cb18dc1bd30292": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_448dfde1395042b89712b1309cd3882d", - "IPY_MODEL_52c2a38c4cb743949e5a8b4a6cd9555e", - "IPY_MODEL_626a0dbcb7154d44b9a71cfc189fce06" - ], - "layout": "IPY_MODEL_dd7d1f5460674bb8be0751ade513c041", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b65d5788dc04400bfbecc59211016f9", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_505c430e88b64a4c9dc2193b5256104a", "tabbable": null, - "tooltip": null - } - }, - "226bc1f5af2545f4b6adb4bb205bd6fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 40.0 } }, - "229a9b576bca4951ad662091eaa4d6d5": { + "176e35fa54ed46cc880819b998fa1cf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3267,33 +3116,30 @@ "width": null } }, - "23fb51adebf34db494ea75cef3b24adf": { + "1b4a2224d17a46d2aa08d646c0378a85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7938edc743fe424583a3551229629138", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_68056f0d9e7a4ab39f82b9b6689a9858", + "layout": "IPY_MODEL_bd91453b1ac44a6ab57889bf60135b9b", + "placeholder": "​", + "style": "IPY_MODEL_544926db5e63419db0ac6981e0aa1e44", "tabbable": null, "tooltip": null, - "value": 30931277.0 + "value": "Downloading readme: 100%" } }, - "258f0101c44a49e9ba654fc1977d21be": { + "1c938373b630438882437ace535a5911": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3346,7 +3192,7 @@ "width": null } }, - "26642ec4e55f43469352c6e25a75ab63": { + "21fc90f806b94e55af158803b892724f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3399,43 +3245,7 @@ "width": null } }, - "27b8f80c76864c9b8698b6d171d3ee92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b1a54f4f88c479b8d18057635b324a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b9f7515600a4c61819b0947e75c75e0": { + "24c15b2706504848ad138804cfe2d329": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3451,7 +3261,7 @@ "description_width": "" } }, - "2e1e47bdc3bc4e65b0f63284588760ae": { + "2697f467b9f04292984cdba42c745114": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3466,68 +3276,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_64c88ebcf9774ef695b3e8f8bacc4670", + "layout": "IPY_MODEL_ee1a84eaf6a544de8a8c2d4415d32738", "placeholder": "​", - "style": "IPY_MODEL_7ae7ca33d5f6482097a76827159e68f5", + "style": "IPY_MODEL_6d283203a1b5433ebfa789a41b2f725d", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 249954.05 examples/s]" + "value": " 40/40 [00:00<00:00, 61.83it/s]" } }, - "2e858bbdd1f34b60ba4792a9b6e37a32": { - "model_module": "@jupyter-widgets/base", + "28f1b83eaa8a4cf281bb6b997c8a8ea7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_efd2bf5c31a64134a8e4c68a84923e78", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_40400854c95c48dc86a86c5dd877ff13", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "31267b316272490e9b90f40383912e0f": { + "2edbe77d37df431e984ced9cf6a62580": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3580,60 +3363,30 @@ "width": null } }, - "334ec88ca68249d6a17f1c98353f4760": { - "model_module": "@jupyter-widgets/base", + "30c1c4204d5f40fb8f60b1aec9251240": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8e1f130d016f4aadbb854e7e1729117b", + "placeholder": "​", + "style": "IPY_MODEL_e6282cfff5c3422fb9efb1f42dbe0f85", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 235579.47 examples/s]" } }, - "34b1ee147a6a418db24a148515371d8a": { + "3175797b6c1647b2b807677d11bf50fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3651,7 +3404,7 @@ "text_color": null } }, - "3c6b207f678349e08f3e154f0eb49502": { + "31c62aff74ad43279b69b6914258228c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3704,7 +3457,7 @@ "width": null } }, - "3ddb2dfef68a4994959067567c333650": { + "31e6b48b783b4a418111f2f63c1f5c3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3757,7 +3510,7 @@ "width": null } }, - "429769e0a6c049ce8281d26731a8e999": { + "32c963b8e1474f638c791506a83826cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3772,141 +3525,105 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a0afbd97e6574163a30df65c8507d62a", + "layout": "IPY_MODEL_31e6b48b783b4a418111f2f63c1f5c3e", "placeholder": "​", - "style": "IPY_MODEL_4b7bd7d44dc24c47b493f5a1eb6e9c84", + "style": "IPY_MODEL_a07ecfb1e2e94fadb7813339e73aa626", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 51.1MB/s]" } }, - "43ed240044d24550b447c68e5d5344e7": { + "34987bd0e89c441f960165e5191fd3af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_63d167d94d694beeb447346ccf85486c", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7108294ecfd7448aa6bac320dec74f2f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6199d1857f0049618768e8637d6175f7", + "IPY_MODEL_6c32015dc29f471a80f5f771e1144a58", + "IPY_MODEL_da35a909cb4743f2a6ae220f5e8ad323" + ], + "layout": "IPY_MODEL_9803c99481a646cd98af4b4283ec9df7", "tabbable": null, - "tooltip": null, - "value": 10000.0 + "tooltip": null } }, - "448dfde1395042b89712b1309cd3882d": { + "3c6d1c5617994c2f96c0ee23fab783d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_73c0ebaad59a47219241654ae01d5399", - "placeholder": "​", - "style": "IPY_MODEL_2b1a54f4f88c479b8d18057635b324a6", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "4a6750b71c2a44989a8f33a24ac2c66a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c7003b67bae54d6493d405d5825e6c2f", - "placeholder": "​", - "style": "IPY_MODEL_ab4c62e317e8407e8310c4ca779a8ccb", + "layout": "IPY_MODEL_87acf722fadb4dffb023c9379574bfd8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3cb4262ff44e464e9ee9b28fe07cbc14", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:52<00:00, 1210.85it/s]" - } - }, - "4b7bd7d44dc24c47b493f5a1eb6e9c84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 40.0 } }, - "4c96354ab4bf4a0e8e3b32e7110caa88": { + "3cb4262ff44e464e9ee9b28fe07cbc14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "4e678dda95bc4173a6e214a04a4823db": { + "3de6fc3bd9854ce995e1fd55ec0833b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aa1f72fbac674b3898b26f4183899eda", + "IPY_MODEL_657f6d5c22ca4eb8abd3c00e7682a2cf", + "IPY_MODEL_2697f467b9f04292984cdba42c745114" + ], + "layout": "IPY_MODEL_5d0333e96cae42aaa94069a92f7e0f5d", + "tabbable": null, + "tooltip": null } }, - "4f35b74971a946cc84bd8f03d3bfbcc0": { + "3ee14465e18249059ece26a087d31b57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3959,55 +3676,41 @@ "width": null } }, - "4f89d806ff8c4eb8979271cf81ddabb4": { + "40400854c95c48dc86a86c5dd877ff13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b028fe5886ed407daffa2e8e1d1b33e4", - "IPY_MODEL_f76fd1f88dbf476396c45b3dee352fb6", - "IPY_MODEL_9bc5531d8f484e09b9742164abaaf083" - ], - "layout": "IPY_MODEL_334ec88ca68249d6a17f1c98353f4760", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "52340a16943f47a2bf680589345a1330": { + "405114ac776b476a8af7515a42ffa96e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c78acbd1ac704666909b934f2f48e3da", - "IPY_MODEL_8b6ae31d5ed140e5a2dd85b34a8b3ed6", - "IPY_MODEL_80fa794bca154ef0b97df52f7c6dfa57" - ], - "layout": "IPY_MODEL_f5a3f6f1d4394ab2b30d593e3d4a3ca4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "52c2a38c4cb743949e5a8b4a6cd9555e": { + "419d70bc4b4c49ca95236bea52f5e45a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4023,101 +3726,138 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_841829cb249d4a5eb047c2e75c6fe580", + "layout": "IPY_MODEL_0bceb010376644b78c008d139761e116", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c89134e7296d447eaf08610ff1a6a232", + "style": "IPY_MODEL_b945c082479c4f3f8a022b1e5708e005", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "5530f4d814dc4873935b56a3bc07d13e": { - "model_module": "@jupyter-widgets/controls", + "41ee667de16540aba90a51418e899c67": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dd39e801b334434797f4c134d3921fd0", - "IPY_MODEL_84e4cccf169243eeb4127b5e748abd0f", - "IPY_MODEL_7f47461a7087419da7540f4f6890cc1e" - ], - "layout": "IPY_MODEL_180ebdcc0ed942e39af0cd94c26cb378", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5536055315cc48758ef861d7a11a8759": { + "43e40f84ab654a34b5d26b09f1e0c5e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b47bea41f8f84e6a8070d5f0653a56e5", - "IPY_MODEL_7c3ce334f53e4d86b0bb0364340f2c02", - "IPY_MODEL_8a0e283ca7244e77909f679a4372400b" - ], - "layout": "IPY_MODEL_258f0101c44a49e9ba654fc1977d21be", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "55ba43c5200241d696b3e8b411715ea8": { + "46871684dde241199ab17eb3c83d7d73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eecc6eee03d140f381a766a4c8aa4d6a", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f8e8099ee52142e1af5f289f8f3bd921", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "585f22a74bcb41f38fa6559cedba7370": { + "4caf78c220324897aa159faa801b12bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ec89d4815978457887809b73e8ee562c", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0ffc3721daf4d618c907002e8ac4104", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 } }, - "5b16cac5ec7e491ca8aa0e70572e0512": { + "4e2c418241764c43990978e16519320a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4170,33 +3910,7 @@ "width": null } }, - "5db2d3571069404f85b68e19dd59d0a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6306875f3fb34ae6996e52b23bdd9fc0", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ac1426c20e3841248403ef6ab4ec4818", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "5f0b04d90b864e218b0b1111518df0cd": { + "4fae2e7d29c240c696c5498248c6f36a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4249,172 +3963,23 @@ "width": null } }, - "602fa811c1884012bb0e46f5225ddab1": { + "505c430e88b64a4c9dc2193b5256104a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "614594c7c757441d8a1b3df076dd46ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "626a0dbcb7154d44b9a71cfc189fce06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bcbf9e2a1ee3447da04d8e96fb0f841a", - "placeholder": "​", - "style": "IPY_MODEL_585f22a74bcb41f38fa6559cedba7370", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.60it/s]" - } - }, - "6306875f3fb34ae6996e52b23bdd9fc0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "63d167d94d694beeb447346ccf85486c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "bar_color": null, + "description_width": "" } }, - "64c88ebcf9774ef695b3e8f8bacc4670": { + "506858eff5374fe68f9f862d2bf1bd98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4467,7 +4032,7 @@ "width": null } }, - "65aecf93ea5146a6a0f4b1d515383344": { + "50eaab38b412463cbd87dd31d0ad3f70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4520,92 +4085,67 @@ "width": null } }, - "666a6e9fe010472c9ebe67d1aa30da02": { - "model_module": "@jupyter-widgets/base", + "544926db5e63419db0ac6981e0aa1e44": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "66e078e86f8045e986016510e65afbed": { + "547dbb7c8ccc466d9df09709b26885f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68056f0d9e7a4ab39f82b9b6689a9858": { + "5bd2f6a19cfa45caa5bcf973b4fa5824": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_990f069912bc484b93db77f1ad5f7056", + "IPY_MODEL_614a5d65230249659add86b570a4775b", + "IPY_MODEL_30c1c4204d5f40fb8f60b1aec9251240" + ], + "layout": "IPY_MODEL_506858eff5374fe68f9f862d2bf1bd98", + "tabbable": null, + "tooltip": null } }, - "699541396fda4fbcb0e28d14b6be4019": { + "5ca83985623044998f13cb404e5ea0a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4658,7 +4198,7 @@ "width": null } }, - "6d79271a2f4f4993b957f27f962d1cf8": { + "5d0333e96cae42aaa94069a92f7e0f5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4711,56 +4251,180 @@ "width": null } }, - "6ee42831ebd04c1abdb02a45dd8b1c41": { + "5d0d6de5c49a4963ba065d6a0dab8270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f30a6d09323d42b6919e65f28b0ed1c1", - "IPY_MODEL_5db2d3571069404f85b68e19dd59d0a2", - "IPY_MODEL_8c5e89b9ed794036ad43810fcc0f7fbd" - ], - "layout": "IPY_MODEL_eabb1d09e93a493ca119964fca81426e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b75d4e28ca7f48baa6832420082c38c2", + "placeholder": "​", + "style": "IPY_MODEL_be7480ee941f4f0398e4e9269d596c09", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.90it/s]" } }, - "71003c4f5c414facb488663db0febcb6": { + "5d84638f6b0e44abb8f0e126007e3846": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9613e74eb5ce46ba99e577e56f0aca1b", + "IPY_MODEL_28f1b83eaa8a4cf281bb6b997c8a8ea7", + "IPY_MODEL_a58302064e7843929904b78258942936" + ], + "layout": "IPY_MODEL_eaee6c3681da41389e274c86631bf478", + "tabbable": null, + "tooltip": null } }, - "7108294ecfd7448aa6bac320dec74f2f": { + "5df8205c68ae4aacb246c95d73f86d74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_779a636e134d4512b1d11b5fb796a316", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f027f46b6b034a86a9e4f4f4187f7c40", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "60eed8ef85e142568496b76cf695c530": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "614a5d65230249659add86b570a4775b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_41ee667de16540aba90a51418e899c67", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_43e40f84ab654a34b5d26b09f1e0c5e3", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "6199d1857f0049618768e8637d6175f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc4ffb15792b43229c54a65068e2dab1", + "placeholder": "​", + "style": "IPY_MODEL_a03e66f47ffb4482954119f6c376be60", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "62c5cfc9ac904d1281f1eaba46486d2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a9e2f39d8649456fbc9634787773dafc", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24c15b2706504848ad138804cfe2d329", + "tabbable": null, + "tooltip": null, + "value": 9015.0 + } + }, + "63ad0e80f4a64bb79c85e966dde1c1d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -4769,7 +4433,95 @@ "description_width": "" } }, - "7156eac180cd40748551472472a5e725": { + "6430222041b9497eaeff9721d3e3da41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "657f6d5c22ca4eb8abd3c00e7682a2cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd66f4e8c0284d1f834738db13556c32", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_63ad0e80f4a64bb79c85e966dde1c1d9", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "6c32015dc29f471a80f5f771e1144a58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd83748df78b4b2e8bddc6dcbebbbd50", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b04aad18c85428c8d44d47adb008334", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "6d283203a1b5433ebfa789a41b2f725d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6f5b238cfed74f3197eefa225da04e6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4785,7 +4537,43 @@ "description_width": "" } }, - "72363f554e3e4f1a9080a1a4a2688a29": { + "6f6566e84aaa4a0bb936161db07761bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71c5aa62598841068a4b1c8475c1efb4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "733f6b4185e5451d86785c293b535ac2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4800,15 +4588,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_774c78a418fa44b69cd0e129fbbf47dc", + "layout": "IPY_MODEL_c8e0b31dd5c5402fa052afb531de4bc9", "placeholder": "​", - "style": "IPY_MODEL_1b6e8ffcd2bb4a5b8e2dca0ea6b86dcc", + "style": "IPY_MODEL_df59feede37240cba369fb2d42faa7b1", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": "100%" } }, - "73c0ebaad59a47219241654ae01d5399": { + "75533a1ade0244b3b5b327a60964e30d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4861,7 +4649,7 @@ "width": null } }, - "774c78a418fa44b69cd0e129fbbf47dc": { + "779a636e134d4512b1d11b5fb796a316": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4914,7 +4702,30 @@ "width": null } }, - "77bdd0f98ea841d4984e184120b9742f": { + "77fa611c7fbb421ca6ed6a9777306494": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_176e35fa54ed46cc880819b998fa1cf4", + "placeholder": "​", + "style": "IPY_MODEL_01c637e6a2c0466483abb42dc1413908", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7b65d5788dc04400bfbecc59211016f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4967,7 +4778,7 @@ "width": null } }, - "7938edc743fe424583a3551229629138": { + "7eff194700ce431e99350d264ed829b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5020,173 +4831,14 @@ "width": null } }, - "7ae7ca33d5f6482097a76827159e68f5": { - "model_module": "@jupyter-widgets/controls", + "7f780f2765b54cc993a6a838c9bec1bc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c3ce334f53e4d86b0bb0364340f2c02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6dea26ce53b4010a864c89a949b7af0", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e7265ed3c944a49950cd1493a53cbb3", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "7cd4460109d24347ba8a171664a55ce3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7e7265ed3c944a49950cd1493a53cbb3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7f47461a7087419da7540f4f6890cc1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd8021f04cc44f8eac42379b0b15ece1", - "placeholder": "​", - "style": "IPY_MODEL_4c96354ab4bf4a0e8e3b32e7110caa88", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 24.9MB/s]" - } - }, - "80fa794bca154ef0b97df52f7c6dfa57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a408fb1963845d0bf3a3f7513b65c0c", - "placeholder": "​", - "style": "IPY_MODEL_602fa811c1884012bb0e46f5225ddab1", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.36it/s]" - } - }, - "82f10478222b43c1a6faa54b3900df75": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -5232,7 +4884,7 @@ "width": null } }, - "841829cb249d4a5eb047c2e75c6fe580": { + "83899206bda649fda69295db63cff671": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5285,7 +4937,7 @@ "width": null } }, - "8492737842204d3e82ec36044e509919": { + "87acf722fadb4dffb023c9379574bfd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5338,33 +4990,23 @@ "width": null } }, - "84e4cccf169243eeb4127b5e748abd0f": { + "8b04aad18c85428c8d44d47adb008334": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8cbe714862274296ac0dcf011a3eaa2b", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2b9f7515600a4c61819b0947e75c75e0", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8a0e283ca7244e77909f679a4372400b": { + "8cbe10c3a99347f39d0c27c467fad6fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5379,15 +5021,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f35b74971a946cc84bd8f03d3bfbcc0", + "layout": "IPY_MODEL_75533a1ade0244b3b5b327a60964e30d", "placeholder": "​", - "style": "IPY_MODEL_71003c4f5c414facb488663db0febcb6", + "style": "IPY_MODEL_9b8e965aac1c49e59bc9ee6ddc9bf13a", "tabbable": null, "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.13MB/s]" + "value": " 40/40 [00:00<00:00, 64.48it/s]" } }, - "8a408fb1963845d0bf3a3f7513b65c0c": { + "8e1f130d016f4aadbb854e7e1729117b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5440,56 +5082,49 @@ "width": null } }, - "8b6ae31d5ed140e5a2dd85b34a8b3ed6": { + "8e3623ba0b1e44a18876531857f0f0e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77bdd0f98ea841d4984e184120b9742f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_66e078e86f8045e986016510e65afbed", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8c5e89b9ed794036ad43810fcc0f7fbd": { + "8e816f1d1c4144d49509bc39b029e3b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ddb2dfef68a4994959067567c333650", - "placeholder": "​", - "style": "IPY_MODEL_55ba43c5200241d696b3e8b411715ea8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f06a9c2cc6b04929a132cc3f3a2d26c4", + "IPY_MODEL_3c6d1c5617994c2f96c0ee23fab783d6", + "IPY_MODEL_8fda311f2b5d4c54a5a37a6c855a65e0" + ], + "layout": "IPY_MODEL_21fc90f806b94e55af158803b892724f", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.86it/s]" + "tooltip": null } }, - "8cbe714862274296ac0dcf011a3eaa2b": { + "8f79c998402f451caf7aeac529e77c83": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5542,33 +5177,30 @@ "width": null } }, - "8cff9cca7e004cfb8c91929a84823c80": { + "8fda311f2b5d4c54a5a37a6c855a65e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0f249386ded0418c87d07bd42105db23", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_05bc08c6e3e4413385afb573c9bcbf24", + "layout": "IPY_MODEL_50eaab38b412463cbd87dd31d0ad3f70", + "placeholder": "​", + "style": "IPY_MODEL_cc86c05994874f5295916b3d9f8d5208", "tabbable": null, "tooltip": null, - "value": 2.0 + "value": " 40/40 [00:00<00:00, 54.90it/s]" } }, - "8dc4e546ecdb4bc4bde15a14419d53ce": { + "902b5e840c924bb2a281f05c8330a3d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5621,25 +5253,53 @@ "width": null } }, - "8ee04981fe4a453c8a3446c3e17f53df": { + "93df2bef2ba54b6ca7bce5e60991b8f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83899206bda649fda69295db63cff671", + "placeholder": "​", + "style": "IPY_MODEL_f86522dab4dd43b192da5f41e9d6dda9", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 636.75it/s]" + } + }, + "9613e74eb5ce46ba99e577e56f0aca1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8ca04c46f4d45bab79b0dd1be447a6c", + "placeholder": "​", + "style": "IPY_MODEL_db03bb0c8772403c8f80613e31222380", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "911d5b0e02934260a9bda52a7fa9fded": { + "96b42edc930d4a189868a8f53909b4aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5692,7 +5352,7 @@ "width": null } }, - "934ce542ebfd4cb9b3b8e5084ed6b700": { + "9803c99481a646cd98af4b4283ec9df7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5745,31 +5405,449 @@ "width": null } }, - "94289cd6e6de468db051fd838ba56323": { + "990f069912bc484b93db77f1ad5f7056": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ec75feea5ef34cf68bd79ee7ff893b84", - "IPY_MODEL_23fb51adebf34db494ea75cef3b24adf", - "IPY_MODEL_1561d0507e524fcfab27baffd1993d1c" - ], - "layout": "IPY_MODEL_fab5e3871a7541b89cf8e8f2b9523a48", - "tabbable": null, - "tooltip": null - } + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fdc44c9b7d6e41209f597b3c9dbc7f81", + "placeholder": "​", + "style": "IPY_MODEL_9c767210a22b4cbab60f36a8fd461987", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "9b8e965aac1c49e59bc9ee6ddc9bf13a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9c767210a22b4cbab60f36a8fd461987": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e5fc3db26014886a69e8de01c759acf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a03e66f47ffb4482954119f6c376be60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a0696d60f310465b9631de8e0efa6e0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a07ecfb1e2e94fadb7813339e73aa626": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a083ff9e5fea46c1b0488bc3af1815b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4fae2e7d29c240c696c5498248c6f36a", + "placeholder": "​", + "style": "IPY_MODEL_6430222041b9497eaeff9721d3e3da41", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:50<00:00, 1139.08it/s]" + } + }, + "a1a61f042d4e4e688cb93b6a8f756eb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_96b42edc930d4a189868a8f53909b4aa", + "placeholder": "​", + "style": "IPY_MODEL_71c5aa62598841068a4b1c8475c1efb4", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.20MB/s]" + } + }, + "a58302064e7843929904b78258942936": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5ca83985623044998f13cb404e5ea0a7", + "placeholder": "​", + "style": "IPY_MODEL_c53c6fce16b3499889f70e33ff36fe52", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 5537.28 examples/s]" + } + }, + "a6a1a5d94ef142c5898d4075496c19d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a80a0c318ee2441194a17cd65bc81f4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c938373b630438882437ace535a5911", + "placeholder": "​", + "style": "IPY_MODEL_547dbb7c8ccc466d9df09709b26885f1", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "a87f9cbbaa6945b59df6017587ac3e80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a80a0c318ee2441194a17cd65bc81f4a", + "IPY_MODEL_ad1594efde414c93b1d80081d449f87e", + "IPY_MODEL_e54e0cbcf5674056b2455b58c467fd58" + ], + "layout": "IPY_MODEL_31c62aff74ad43279b69b6914258228c", + "tabbable": null, + "tooltip": null + } + }, + "a9e2f39d8649456fbc9634787773dafc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aa1f72fbac674b3898b26f4183899eda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1473bf4a82fa4e75962494e9e215ec7f", + "placeholder": "​", + "style": "IPY_MODEL_3175797b6c1647b2b807677d11bf50fc", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "aad0d6d230c3476281fffa76aaeb8a86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1b4a2224d17a46d2aa08d646c0378a85", + "IPY_MODEL_62c5cfc9ac904d1281f1eaba46486d2e", + "IPY_MODEL_a1a61f042d4e4e688cb93b6a8f756eb8" + ], + "layout": "IPY_MODEL_f5d638d0971c438596d416c1dd1201e6", + "tabbable": null, + "tooltip": null + } + }, + "ad1594efde414c93b1d80081d449f87e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ee14465e18249059ece26a087d31b57", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f5b238cfed74f3197eefa225da04e6b", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "b1ccc31b69244376a474d236abe52b55": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - "96b3e1cc1f194054b3ca13068dec8e68": { + "b2734b54035e4a57b006c465f107268a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5787,7 +5865,7 @@ "text_color": null } }, - "970f63679c1b4c0182d836bbc0afbc78": { + "b75d4e28ca7f48baa6832420082c38c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5840,7 +5918,7 @@ "width": null } }, - "9916d3954dc14b88a11a89a058031385": { + "b79a83b4e0a84ec8bfc20bd14d8a376d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5893,97 +5971,229 @@ "width": null } }, - "9a731289e7d34d82bba07cc4ecc69a27": { + "b945c082479c4f3f8a022b1e5708e005": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ba28574af58c44a8a1053ede852a59d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0eb5595e457b4ef19f5c2a46b683aa7b", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ebda6c1b5b5147489c608dffb1d7ce5b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_efd3bcf761284f56ab06f0cb47ee9d1c", + "IPY_MODEL_f52159a123cf4610a04e6a6c3f41f658", + "IPY_MODEL_93df2bef2ba54b6ca7bce5e60991b8f2" + ], + "layout": "IPY_MODEL_8f79c998402f451caf7aeac529e77c83", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "bc4ffb15792b43229c54a65068e2dab1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bd91453b1ac44a6ab57889bf60135b9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9bc5531d8f484e09b9742164abaaf083": { + "be7480ee941f4f0398e4e9269d596c09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bfadf7bb6c884091b46cca6d7bd10362": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_65aecf93ea5146a6a0f4b1d515383344", - "placeholder": "​", - "style": "IPY_MODEL_d27bb8a222ab4802b4c042c66e4783a2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d4991667ba1a4364806e4ec583d5c7e8", + "IPY_MODEL_da485b9fd9b6447592d203acc33fb193", + "IPY_MODEL_32c963b8e1474f638c791506a83826cc" + ], + "layout": "IPY_MODEL_c33f1c1932b9476d9bd6611f7b21245f", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.32it/s]" + "tooltip": null } }, - "9d7fd4fc98a34015b59f0cd80d108780": { + "c0ffc3721daf4d618c907002e8ac4104": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "9d82a9defa064ff29f9a30db26021dbb": { + "c2d4b4ab899f4cd6b4658711e1272224": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b02bac34046843f3afd6f73cd396473a", - "placeholder": "​", - "style": "IPY_MODEL_1b463e1dc5ed4f379eb905f713f718ab", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 282530.96 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a0afbd97e6574163a30df65c8507d62a": { + "c33f1c1932b9476d9bd6611f7b21245f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6036,30 +6246,7 @@ "width": null } }, - "a2d81fde3fec467b9ea8d8892f574b29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4b373482e154bc2ba7e856d744aaa90", - "placeholder": "​", - "style": "IPY_MODEL_e2883ad09bcb4ea99d6e9d1c292571c6", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 527.32it/s]" - } - }, - "a4b373482e154bc2ba7e856d744aaa90": { + "c404d2755b384cb3b850737dfe2e7bb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6112,7 +6299,25 @@ "width": null } }, - "a54630e7f25e4f7c898e29c4a7652252": { + "c53c6fce16b3499889f70e33ff36fe52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c8b794dd73de460cb7c3c908a01580f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6127,15 +6332,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f74157c274094c55a3fe2d8510370182", + "layout": "IPY_MODEL_4e2c418241764c43990978e16519320a", "placeholder": "​", - "style": "IPY_MODEL_b1d37178cd8c458d964d95d85b1fd159", + "style": "IPY_MODEL_9e5fc3db26014886a69e8de01c759acf", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 5.18M/5.18M [00:00<00:00, 37.7MB/s]" } }, - "a54f9ca235274d8bba826add2ea968de": { + "c8e0b31dd5c5402fa052afb531de4bc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6188,47 +6393,7 @@ "width": null } }, - "a70884dc615e4fab8e12e07eb3556179": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a781e7b0a1eb4996a753d8f47a0d6cd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dcdadeb295c745e591ee8b73f40c7778", - "IPY_MODEL_0b0f923eb2ec4f5a98793e7a0cbaa33b", - "IPY_MODEL_4a6750b71c2a44989a8f33a24ac2c66a" - ], - "layout": "IPY_MODEL_195ca67d0cc54ba5975093e841165e8f", - "tabbable": null, - "tooltip": null - } - }, - "aa84004d90c24929adbb06c6fcd8f347": { + "cbd7aa5a9dd94b19a7aa8dea10c8ba93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6281,30 +6446,7 @@ "width": null } }, - "aac056f3f9bb467c85037cb9bd254db3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_970f63679c1b4c0182d836bbc0afbc78", - "placeholder": "​", - "style": "IPY_MODEL_27b8f80c76864c9b8698b6d171d3ee92", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "ab4c62e317e8407e8310c4ca779a8ccb": { + "cc86c05994874f5295916b3d9f8d5208": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6322,46 +6464,7 @@ "text_color": null } }, - "ac1426c20e3841248403ef6ab4ec4818": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b028fe5886ed407daffa2e8e1d1b33e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8492737842204d3e82ec36044e509919", - "placeholder": "​", - "style": "IPY_MODEL_c3058f8b4c5a42a0a98a47c7f540cdcc", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b02bac34046843f3afd6f73cd396473a": { + "cd83748df78b4b2e8bddc6dcbebbbd50": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6414,7 +6517,7 @@ "width": null } }, - "b1d37178cd8c458d964d95d85b1fd159": { + "cfb5e2ec19ee48a08e7a7487c4bbcffc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6432,46 +6535,31 @@ "text_color": null } }, - "b47bea41f8f84e6a8070d5f0653a56e5": { + "d0301a352bcd48278129fd4b79c1849b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_666a6e9fe010472c9ebe67d1aa30da02", - "placeholder": "​", - "style": "IPY_MODEL_1081f9bbd7184bd68161f881b9c1c2e8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_733f6b4185e5451d86785c293b535ac2", + "IPY_MODEL_46871684dde241199ab17eb3c83d7d73", + "IPY_MODEL_a083ff9e5fea46c1b0488bc3af1815b5" + ], + "layout": "IPY_MODEL_0235031e280d4c7ca136b001fc1b1707", "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "b80d5f025b154036ad476b78a3460637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "bcbf9e2a1ee3447da04d8e96fb0f841a": { + "d33dbc3971334ce9bcbe4c6c1e5eb114": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6524,7 +6612,113 @@ "width": null } }, - "c1749dc1d02a4dcb92d90af0d098640c": { + "d4991667ba1a4364806e4ec583d5c7e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_902b5e840c924bb2a281f05c8330a3d8", + "placeholder": "​", + "style": "IPY_MODEL_f1938a536ef54dfaab6c39899d1537e2", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "d877a21752af414794a8644709dcf1ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "da35a909cb4743f2a6ae220f5e8ad323": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e94e3f2ce7c4c48adda4b5a54e927c0", + "placeholder": "​", + "style": "IPY_MODEL_6f6566e84aaa4a0bb936161db07761bb", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.72it/s]" + } + }, + "da485b9fd9b6447592d203acc33fb193": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debc1698821945b49f315e1be7110568", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d877a21752af414794a8644709dcf1ad", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "db03bb0c8772403c8f80613e31222380": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd66f4e8c0284d1f834738db13556c32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6577,25 +6771,7 @@ "width": null } }, - "c3058f8b4c5a42a0a98a47c7f540cdcc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c7003b67bae54d6493d405d5825e6c2f": { + "debc1698821945b49f315e1be7110568": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6648,62 +6824,49 @@ "width": null } }, - "c78acbd1ac704666909b934f2f48e3da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_229a9b576bca4951ad662091eaa4d6d5", - "placeholder": "​", - "style": "IPY_MODEL_96b3e1cc1f194054b3ca13068dec8e68", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "c82f6087dbba4a5ea3ff8f6892bb1965": { + "df59feede37240cba369fb2d42faa7b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c89134e7296d447eaf08610ff1a6a232": { + "e279996356a24deebea207d022fd1d5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_faf64d52b42e47898fc28fe2fda0d7d8", + "IPY_MODEL_419d70bc4b4c49ca95236bea52f5e45a", + "IPY_MODEL_019ef14ed4c54c3ca8c55c96fa299afd" + ], + "layout": "IPY_MODEL_7f780f2765b54cc993a6a838c9bec1bc", + "tabbable": null, + "tooltip": null } }, - "cee8c00669dd42ac97578336d38e5dbc": { + "e54e0cbcf5674056b2455b58c467fd58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6718,31 +6881,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_26642ec4e55f43469352c6e25a75ab63", + "layout": "IPY_MODEL_b79a83b4e0a84ec8bfc20bd14d8a376d", "placeholder": "​", - "style": "IPY_MODEL_0850e4eeafff46e2b2f8a41bb99ae35c", + "style": "IPY_MODEL_8e3623ba0b1e44a18876531857f0f0e8", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.21it/s]" - } - }, - "d242722a70fc416293e276b0f8401bff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 60000/60000 [00:00<00:00, 281955.05 examples/s]" } }, - "d27bb8a222ab4802b4c042c66e4783a2": { + "e6282cfff5c3422fb9efb1f42dbe0f85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6760,30 +6907,7 @@ "text_color": null } }, - "d2c8ee83c4df4ca3b0bd2caaeeed106f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a54f9ca235274d8bba826add2ea968de", - "placeholder": "​", - "style": "IPY_MODEL_f2ffcd7fafda4b93ab30e7f1b11019ae", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.79it/s]" - } - }, - "d4e2e8bbb9764cba8af70f10d847218d": { + "eaee6c3681da41389e274c86631bf478": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6836,77 +6960,113 @@ "width": null } }, - "d7183df8c95b49f89720bff1674cd315": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72363f554e3e4f1a9080a1a4a2688a29", - "IPY_MODEL_9a731289e7d34d82bba07cc4ecc69a27", - "IPY_MODEL_9d82a9defa064ff29f9a30db26021dbb" - ], - "layout": "IPY_MODEL_3c6b207f678349e08f3e154f0eb49502", - "tabbable": null, - "tooltip": null - } - }, - "dcdadeb295c745e591ee8b73f40c7778": { - "model_module": "@jupyter-widgets/controls", + "ec89d4815978457887809b73e8ee562c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5b16cac5ec7e491ca8aa0e70572e0512", - "placeholder": "​", - "style": "IPY_MODEL_4e678dda95bc4173a6e214a04a4823db", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dd39e801b334434797f4c134d3921fd0": { - "model_module": "@jupyter-widgets/controls", + "ee1a84eaf6a544de8a8c2d4415d32738": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7cd4460109d24347ba8a171664a55ce3", - "placeholder": "​", - "style": "IPY_MODEL_8ee04981fe4a453c8a3446c3e17f53df", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dd7d1f5460674bb8be0751ade513c041": { + "eecc6eee03d140f381a766a4c8aa4d6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6959,7 +7119,7 @@ "width": null } }, - "dd8021f04cc44f8eac42379b0b15ece1": { + "efd2bf5c31a64134a8e4c68a84923e78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7012,169 +7172,87 @@ "width": null } }, - "dd9cf14362e74cbeb505d58baafe4cb5": { + "efd3bcf761284f56ab06f0cb47ee9d1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_699541396fda4fbcb0e28d14b6be4019", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a70884dc615e4fab8e12e07eb3556179", + "layout": "IPY_MODEL_044b9052285c43aaa6a6ef6754bdb867", + "placeholder": "​", + "style": "IPY_MODEL_60eed8ef85e142568496b76cf695c530", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "e0401f9ed4cb45529a0175d5441fdc87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Computing checksums: 100%" } }, - "e2883ad09bcb4ea99d6e9d1c292571c6": { + "f027f46b6b034a86a9e4f4f4187f7c40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "e31ea71bbfe34e54bde0f8eba6e3e41b": { + "f06a9c2cc6b04929a132cc3f3a2d26c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_429769e0a6c049ce8281d26731a8e999", - "IPY_MODEL_43ed240044d24550b447c68e5d5344e7", - "IPY_MODEL_2e1e47bdc3bc4e65b0f63284588760ae" - ], - "layout": "IPY_MODEL_9916d3954dc14b88a11a89a058031385", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0dca1f50d1ce417dbaa75a540fe66c7a", + "placeholder": "​", + "style": "IPY_MODEL_c2d4b4ab899f4cd6b4658711e1272224", "tabbable": null, - "tooltip": null - } - }, - "e3858df4be1243fca435f20a3e321386": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null, + "value": "100%" } }, - "e479f7639c9949bca96c2de235717132": { + "f1938a536ef54dfaab6c39899d1537e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_934ce542ebfd4cb9b3b8e5084ed6b700", - "placeholder": "​", - "style": "IPY_MODEL_9d7fd4fc98a34015b59f0cd80d108780", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7029.47 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e6ca8e901e904830a7d69136598543ad": { + "f52159a123cf4610a04e6a6c3f41f658": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7190,17 +7268,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aa84004d90c24929adbb06c6fcd8f347", - "max": 40.0, + "layout": "IPY_MODEL_00ecbe21636f4536b18446e1d1a1ff40", + "max": 2.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c82f6087dbba4a5ea3ff8f6892bb1965", + "style": "IPY_MODEL_a0696d60f310465b9631de8e0efa6e0f", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 2.0 } }, - "e6dea26ce53b4010a864c89a949b7af0": { + "f5d638d0971c438596d416c1dd1201e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7253,7 +7331,7 @@ "width": null } }, - "e72c046ab76b45fdb76f44fc35dda60c": { + "f678de56a71748a0805e711e2cd02590": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7268,15 +7346,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31267b316272490e9b90f40383912e0f", + "layout": "IPY_MODEL_c404d2755b384cb3b850737dfe2e7bb3", "placeholder": "​", - "style": "IPY_MODEL_226bc1f5af2545f4b6adb4bb205bd6fe", + "style": "IPY_MODEL_405114ac776b476a8af7515a42ffa96e", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": "100%" + } + }, + "f86522dab4dd43b192da5f41e9d6dda9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "eabb1d09e93a493ca119964fca81426e": { + "f8ca04c46f4d45bab79b0dd1be447a6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7329,7 +7425,7 @@ "width": null } }, - "ebda6c1b5b5147489c608dffb1d7ce5b": { + "f8e8099ee52142e1af5f289f8f3bd921": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7345,48 +7441,31 @@ "description_width": "" } }, - "ec75feea5ef34cf68bd79ee7ff893b84": { + "fa273908c1d1415f807e8c16c9563328": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f0b04d90b864e218b0b1111518df0cd", - "placeholder": "​", - "style": "IPY_MODEL_1b23bb3df60a4375be60c234c43b900a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_069b9ec25fa247cea899e0ab82b6b034", + "IPY_MODEL_4caf78c220324897aa159faa801b12bc", + "IPY_MODEL_c8b794dd73de460cb7c3c908a01580f4" + ], + "layout": "IPY_MODEL_7eff194700ce431e99350d264ed829b3", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "f2ffcd7fafda4b93ab30e7f1b11019ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "f30a6d09323d42b6919e65f28b0ed1c1": { + "faf64d52b42e47898fc28fe2fda0d7d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7401,68 +7480,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e858bbdd1f34b60ba4792a9b6e37a32", + "layout": "IPY_MODEL_fdf2f14ae93c4dc58e36eafe192f80f9", "placeholder": "​", - "style": "IPY_MODEL_34b1ee147a6a418db24a148515371d8a", + "style": "IPY_MODEL_b2734b54035e4a57b006c465f107268a", "tabbable": null, "tooltip": null, "value": "100%" } }, - "f5a3f6f1d4394ab2b30d593e3d4a3ca4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f74157c274094c55a3fe2d8510370182": { + "fdc44c9b7d6e41209f597b3c9dbc7f81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7515,33 +7541,7 @@ "width": null } }, - "f76fd1f88dbf476396c45b3dee352fb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_911d5b0e02934260a9bda52a7fa9fded", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7156eac180cd40748551472472a5e725", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "fab5e3871a7541b89cf8e8f2b9523a48": { + "fdf2f14ae93c4dc58e36eafe192f80f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 7615eeea3..198584046 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:08.421396Z", - "iopub.status.busy": "2024-08-12T18:58:08.421222Z", - "iopub.status.idle": "2024-08-12T18:58:09.859247Z", - "shell.execute_reply": "2024-08-12T18:58:09.858687Z" + "iopub.execute_input": "2024-08-15T19:31:43.610518Z", + "iopub.status.busy": "2024-08-15T19:31:43.610345Z", + "iopub.status.idle": "2024-08-15T19:31:45.001434Z", + "shell.execute_reply": "2024-08-15T19:31:45.000871Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:09.861826Z", - "iopub.status.busy": "2024-08-12T18:58:09.861509Z", - "iopub.status.idle": "2024-08-12T18:58:09.881647Z", - "shell.execute_reply": "2024-08-12T18:58:09.881161Z" + "iopub.execute_input": "2024-08-15T19:31:45.004017Z", + "iopub.status.busy": "2024-08-15T19:31:45.003571Z", + "iopub.status.idle": "2024-08-15T19:31:45.022197Z", + "shell.execute_reply": "2024-08-15T19:31:45.021643Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:09.884197Z", - "iopub.status.busy": "2024-08-12T18:58:09.883893Z", - "iopub.status.idle": "2024-08-12T18:58:09.930793Z", - "shell.execute_reply": "2024-08-12T18:58:09.930292Z" + "iopub.execute_input": "2024-08-15T19:31:45.024730Z", + "iopub.status.busy": "2024-08-15T19:31:45.024330Z", + "iopub.status.idle": "2024-08-15T19:31:45.049718Z", + "shell.execute_reply": "2024-08-15T19:31:45.049182Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:09.933083Z", - "iopub.status.busy": "2024-08-12T18:58:09.932674Z", - "iopub.status.idle": "2024-08-12T18:58:09.936196Z", - "shell.execute_reply": "2024-08-12T18:58:09.935752Z" + "iopub.execute_input": "2024-08-15T19:31:45.051739Z", + "iopub.status.busy": "2024-08-15T19:31:45.051438Z", + "iopub.status.idle": "2024-08-15T19:31:45.054831Z", + "shell.execute_reply": "2024-08-15T19:31:45.054299Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:09.938163Z", - "iopub.status.busy": "2024-08-12T18:58:09.937983Z", - "iopub.status.idle": "2024-08-12T18:58:09.945592Z", - "shell.execute_reply": "2024-08-12T18:58:09.945114Z" + "iopub.execute_input": "2024-08-15T19:31:45.056918Z", + "iopub.status.busy": "2024-08-15T19:31:45.056511Z", + "iopub.status.idle": "2024-08-15T19:31:45.063959Z", + "shell.execute_reply": "2024-08-15T19:31:45.063414Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:09.947753Z", - "iopub.status.busy": "2024-08-12T18:58:09.947411Z", - "iopub.status.idle": "2024-08-12T18:58:09.950143Z", - "shell.execute_reply": "2024-08-12T18:58:09.949695Z" + "iopub.execute_input": "2024-08-15T19:31:45.066089Z", + "iopub.status.busy": "2024-08-15T19:31:45.065912Z", + "iopub.status.idle": "2024-08-15T19:31:45.068593Z", + "shell.execute_reply": "2024-08-15T19:31:45.068048Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:09.951984Z", - "iopub.status.busy": "2024-08-12T18:58:09.951813Z", - "iopub.status.idle": "2024-08-12T18:58:13.120769Z", - "shell.execute_reply": "2024-08-12T18:58:13.120089Z" + "iopub.execute_input": "2024-08-15T19:31:45.070633Z", + "iopub.status.busy": "2024-08-15T19:31:45.070312Z", + "iopub.status.idle": "2024-08-15T19:31:48.169080Z", + "shell.execute_reply": "2024-08-15T19:31:48.168527Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:13.123683Z", - "iopub.status.busy": "2024-08-12T18:58:13.123230Z", - "iopub.status.idle": "2024-08-12T18:58:13.133515Z", - "shell.execute_reply": "2024-08-12T18:58:13.133012Z" + "iopub.execute_input": "2024-08-15T19:31:48.171707Z", + "iopub.status.busy": "2024-08-15T19:31:48.171310Z", + "iopub.status.idle": "2024-08-15T19:31:48.181132Z", + "shell.execute_reply": "2024-08-15T19:31:48.180688Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:13.135799Z", - "iopub.status.busy": "2024-08-12T18:58:13.135466Z", - "iopub.status.idle": "2024-08-12T18:58:15.356714Z", - "shell.execute_reply": "2024-08-12T18:58:15.355987Z" + "iopub.execute_input": "2024-08-15T19:31:48.183209Z", + "iopub.status.busy": "2024-08-15T19:31:48.182879Z", + "iopub.status.idle": "2024-08-15T19:31:50.284568Z", + "shell.execute_reply": "2024-08-15T19:31:50.283979Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:15.359491Z", - "iopub.status.busy": "2024-08-12T18:58:15.358912Z", - "iopub.status.idle": "2024-08-12T18:58:15.378894Z", - "shell.execute_reply": "2024-08-12T18:58:15.378329Z" + "iopub.execute_input": "2024-08-15T19:31:50.287040Z", + "iopub.status.busy": "2024-08-15T19:31:50.286625Z", + "iopub.status.idle": "2024-08-15T19:31:50.305480Z", + "shell.execute_reply": "2024-08-15T19:31:50.305017Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:15.381408Z", - "iopub.status.busy": "2024-08-12T18:58:15.381025Z", - "iopub.status.idle": "2024-08-12T18:58:15.389610Z", - "shell.execute_reply": "2024-08-12T18:58:15.389010Z" + "iopub.execute_input": "2024-08-15T19:31:50.307596Z", + "iopub.status.busy": "2024-08-15T19:31:50.307260Z", + "iopub.status.idle": "2024-08-15T19:31:50.314962Z", + "shell.execute_reply": "2024-08-15T19:31:50.314451Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:15.391998Z", - "iopub.status.busy": "2024-08-12T18:58:15.391635Z", - "iopub.status.idle": "2024-08-12T18:58:15.401546Z", - "shell.execute_reply": "2024-08-12T18:58:15.400962Z" + "iopub.execute_input": "2024-08-15T19:31:50.316919Z", + "iopub.status.busy": "2024-08-15T19:31:50.316609Z", + "iopub.status.idle": "2024-08-15T19:31:50.325724Z", + "shell.execute_reply": "2024-08-15T19:31:50.325161Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:15.403711Z", - "iopub.status.busy": "2024-08-12T18:58:15.403525Z", - "iopub.status.idle": "2024-08-12T18:58:15.412500Z", - "shell.execute_reply": "2024-08-12T18:58:15.411891Z" + "iopub.execute_input": "2024-08-15T19:31:50.327823Z", + "iopub.status.busy": "2024-08-15T19:31:50.327427Z", + "iopub.status.idle": "2024-08-15T19:31:50.335069Z", + "shell.execute_reply": "2024-08-15T19:31:50.334607Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:15.415177Z", - "iopub.status.busy": "2024-08-12T18:58:15.414739Z", - "iopub.status.idle": "2024-08-12T18:58:15.424092Z", - "shell.execute_reply": "2024-08-12T18:58:15.423595Z" + "iopub.execute_input": "2024-08-15T19:31:50.336997Z", + "iopub.status.busy": "2024-08-15T19:31:50.336823Z", + "iopub.status.idle": "2024-08-15T19:31:50.345688Z", + "shell.execute_reply": "2024-08-15T19:31:50.345229Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:15.426173Z", - "iopub.status.busy": "2024-08-12T18:58:15.425991Z", - "iopub.status.idle": "2024-08-12T18:58:15.433609Z", - "shell.execute_reply": "2024-08-12T18:58:15.433049Z" + "iopub.execute_input": "2024-08-15T19:31:50.347811Z", + "iopub.status.busy": "2024-08-15T19:31:50.347482Z", + "iopub.status.idle": "2024-08-15T19:31:50.354794Z", + "shell.execute_reply": "2024-08-15T19:31:50.354246Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:15.435695Z", - "iopub.status.busy": "2024-08-12T18:58:15.435412Z", - "iopub.status.idle": "2024-08-12T18:58:15.442825Z", - "shell.execute_reply": "2024-08-12T18:58:15.442358Z" + "iopub.execute_input": "2024-08-15T19:31:50.356892Z", + "iopub.status.busy": "2024-08-15T19:31:50.356619Z", + "iopub.status.idle": "2024-08-15T19:31:50.364182Z", + "shell.execute_reply": "2024-08-15T19:31:50.363733Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:15.444907Z", - "iopub.status.busy": "2024-08-12T18:58:15.444586Z", - "iopub.status.idle": "2024-08-12T18:58:15.453151Z", - "shell.execute_reply": "2024-08-12T18:58:15.452574Z" + "iopub.execute_input": "2024-08-15T19:31:50.366316Z", + "iopub.status.busy": "2024-08-15T19:31:50.365980Z", + "iopub.status.idle": "2024-08-15T19:31:50.373820Z", + "shell.execute_reply": "2024-08-15T19:31:50.373370Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 025272312..909c6edb9 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged'}
    +Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'card_about_to_expire', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'visa_or_mastercard', 'supported_cards_and_currencies', 'getting_spare_card'}
     

    Let’s view the i-th example in the dataset:

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 277e568e0..642c596b2 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:18.401024Z", - "iopub.status.busy": "2024-08-12T18:58:18.400844Z", - "iopub.status.idle": "2024-08-12T18:58:21.652442Z", - "shell.execute_reply": "2024-08-12T18:58:21.651832Z" + "iopub.execute_input": "2024-08-15T19:31:53.291629Z", + "iopub.status.busy": "2024-08-15T19:31:53.291118Z", + "iopub.status.idle": "2024-08-15T19:31:56.426128Z", + "shell.execute_reply": "2024-08-15T19:31:56.425611Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:21.654920Z", - "iopub.status.busy": "2024-08-12T18:58:21.654607Z", - "iopub.status.idle": "2024-08-12T18:58:21.658637Z", - "shell.execute_reply": "2024-08-12T18:58:21.658062Z" + "iopub.execute_input": "2024-08-15T19:31:56.428534Z", + "iopub.status.busy": "2024-08-15T19:31:56.428226Z", + "iopub.status.idle": "2024-08-15T19:31:56.431603Z", + "shell.execute_reply": "2024-08-15T19:31:56.431144Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:21.660786Z", - "iopub.status.busy": "2024-08-12T18:58:21.660446Z", - "iopub.status.idle": "2024-08-12T18:58:21.663725Z", - "shell.execute_reply": "2024-08-12T18:58:21.663156Z" + "iopub.execute_input": "2024-08-15T19:31:56.433510Z", + "iopub.status.busy": "2024-08-15T19:31:56.433174Z", + "iopub.status.idle": "2024-08-15T19:31:56.436301Z", + "shell.execute_reply": "2024-08-15T19:31:56.435826Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:21.665708Z", - "iopub.status.busy": "2024-08-12T18:58:21.665531Z", - "iopub.status.idle": "2024-08-12T18:58:21.717461Z", - "shell.execute_reply": "2024-08-12T18:58:21.716912Z" + "iopub.execute_input": "2024-08-15T19:31:56.438277Z", + "iopub.status.busy": "2024-08-15T19:31:56.437938Z", + "iopub.status.idle": "2024-08-15T19:31:56.463233Z", + "shell.execute_reply": "2024-08-15T19:31:56.462763Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:21.719763Z", - "iopub.status.busy": "2024-08-12T18:58:21.719394Z", - "iopub.status.idle": "2024-08-12T18:58:21.723483Z", - "shell.execute_reply": "2024-08-12T18:58:21.723002Z" + "iopub.execute_input": "2024-08-15T19:31:56.465244Z", + "iopub.status.busy": "2024-08-15T19:31:56.464906Z", + "iopub.status.idle": "2024-08-15T19:31:56.468662Z", + "shell.execute_reply": "2024-08-15T19:31:56.468108Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged'}\n" + "Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'card_about_to_expire', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'visa_or_mastercard', 'supported_cards_and_currencies', 'getting_spare_card'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:21.725660Z", - "iopub.status.busy": "2024-08-12T18:58:21.725307Z", - "iopub.status.idle": "2024-08-12T18:58:21.728467Z", - "shell.execute_reply": "2024-08-12T18:58:21.727871Z" + "iopub.execute_input": "2024-08-15T19:31:56.470853Z", + "iopub.status.busy": "2024-08-15T19:31:56.470459Z", + "iopub.status.idle": "2024-08-15T19:31:56.473643Z", + "shell.execute_reply": "2024-08-15T19:31:56.473126Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:21.730586Z", - "iopub.status.busy": "2024-08-12T18:58:21.730242Z", - "iopub.status.idle": "2024-08-12T18:58:25.865055Z", - "shell.execute_reply": "2024-08-12T18:58:25.864467Z" + "iopub.execute_input": "2024-08-15T19:31:56.475663Z", + "iopub.status.busy": "2024-08-15T19:31:56.475357Z", + "iopub.status.idle": "2024-08-15T19:32:00.152853Z", + "shell.execute_reply": "2024-08-15T19:32:00.152235Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:25.867863Z", - "iopub.status.busy": "2024-08-12T18:58:25.867442Z", - "iopub.status.idle": "2024-08-12T18:58:26.763555Z", - "shell.execute_reply": "2024-08-12T18:58:26.762971Z" + "iopub.execute_input": "2024-08-15T19:32:00.155721Z", + "iopub.status.busy": "2024-08-15T19:32:00.155322Z", + "iopub.status.idle": "2024-08-15T19:32:01.052440Z", + "shell.execute_reply": "2024-08-15T19:32:01.051858Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:26.767516Z", - "iopub.status.busy": "2024-08-12T18:58:26.766565Z", - "iopub.status.idle": "2024-08-12T18:58:26.770630Z", - "shell.execute_reply": "2024-08-12T18:58:26.770132Z" + "iopub.execute_input": "2024-08-15T19:32:01.055229Z", + "iopub.status.busy": "2024-08-15T19:32:01.054791Z", + "iopub.status.idle": "2024-08-15T19:32:01.057916Z", + "shell.execute_reply": "2024-08-15T19:32:01.057407Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:26.773537Z", - "iopub.status.busy": "2024-08-12T18:58:26.773116Z", - "iopub.status.idle": "2024-08-12T18:58:28.849723Z", - "shell.execute_reply": "2024-08-12T18:58:28.849027Z" + "iopub.execute_input": "2024-08-15T19:32:01.061079Z", + "iopub.status.busy": "2024-08-15T19:32:01.060146Z", + "iopub.status.idle": "2024-08-15T19:32:03.017778Z", + "shell.execute_reply": "2024-08-15T19:32:03.017129Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.854134Z", - "iopub.status.busy": "2024-08-12T18:58:28.852936Z", - "iopub.status.idle": "2024-08-12T18:58:28.879769Z", - "shell.execute_reply": "2024-08-12T18:58:28.879212Z" + "iopub.execute_input": "2024-08-15T19:32:03.020919Z", + "iopub.status.busy": "2024-08-15T19:32:03.020370Z", + "iopub.status.idle": "2024-08-15T19:32:03.043484Z", + "shell.execute_reply": "2024-08-15T19:32:03.042975Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.883584Z", - "iopub.status.busy": "2024-08-12T18:58:28.882631Z", - "iopub.status.idle": "2024-08-12T18:58:28.891499Z", - "shell.execute_reply": "2024-08-12T18:58:28.890948Z" + "iopub.execute_input": "2024-08-15T19:32:03.046327Z", + "iopub.status.busy": "2024-08-15T19:32:03.046003Z", + "iopub.status.idle": "2024-08-15T19:32:03.055179Z", + "shell.execute_reply": "2024-08-15T19:32:03.054677Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.893482Z", - "iopub.status.busy": "2024-08-12T18:58:28.893306Z", - "iopub.status.idle": "2024-08-12T18:58:28.897763Z", - "shell.execute_reply": "2024-08-12T18:58:28.897181Z" + "iopub.execute_input": "2024-08-15T19:32:03.057402Z", + "iopub.status.busy": "2024-08-15T19:32:03.057090Z", + "iopub.status.idle": "2024-08-15T19:32:03.061065Z", + "shell.execute_reply": "2024-08-15T19:32:03.060602Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.899997Z", - "iopub.status.busy": "2024-08-12T18:58:28.899647Z", - "iopub.status.idle": "2024-08-12T18:58:28.906101Z", - "shell.execute_reply": "2024-08-12T18:58:28.905560Z" + "iopub.execute_input": "2024-08-15T19:32:03.062929Z", + "iopub.status.busy": "2024-08-15T19:32:03.062734Z", + "iopub.status.idle": "2024-08-15T19:32:03.069884Z", + "shell.execute_reply": "2024-08-15T19:32:03.069438Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.908389Z", - "iopub.status.busy": "2024-08-12T18:58:28.907947Z", - "iopub.status.idle": "2024-08-12T18:58:28.914961Z", - "shell.execute_reply": "2024-08-12T18:58:28.914528Z" + "iopub.execute_input": "2024-08-15T19:32:03.072112Z", + "iopub.status.busy": "2024-08-15T19:32:03.071664Z", + "iopub.status.idle": "2024-08-15T19:32:03.078249Z", + "shell.execute_reply": "2024-08-15T19:32:03.077794Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.917187Z", - "iopub.status.busy": "2024-08-12T18:58:28.916621Z", - "iopub.status.idle": "2024-08-12T18:58:28.922611Z", - "shell.execute_reply": "2024-08-12T18:58:28.922057Z" + "iopub.execute_input": "2024-08-15T19:32:03.080256Z", + "iopub.status.busy": "2024-08-15T19:32:03.079945Z", + "iopub.status.idle": "2024-08-15T19:32:03.085647Z", + "shell.execute_reply": "2024-08-15T19:32:03.085108Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.924669Z", - "iopub.status.busy": "2024-08-12T18:58:28.924332Z", - "iopub.status.idle": "2024-08-12T18:58:28.932890Z", - "shell.execute_reply": "2024-08-12T18:58:28.932312Z" + "iopub.execute_input": "2024-08-15T19:32:03.087737Z", + "iopub.status.busy": "2024-08-15T19:32:03.087410Z", + "iopub.status.idle": "2024-08-15T19:32:03.095505Z", + "shell.execute_reply": "2024-08-15T19:32:03.094954Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.935108Z", - "iopub.status.busy": "2024-08-12T18:58:28.934598Z", - "iopub.status.idle": "2024-08-12T18:58:28.939954Z", - "shell.execute_reply": "2024-08-12T18:58:28.939509Z" + "iopub.execute_input": "2024-08-15T19:32:03.097391Z", + "iopub.status.busy": "2024-08-15T19:32:03.097120Z", + "iopub.status.idle": "2024-08-15T19:32:03.102354Z", + "shell.execute_reply": "2024-08-15T19:32:03.101837Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.941972Z", - "iopub.status.busy": "2024-08-12T18:58:28.941648Z", - "iopub.status.idle": "2024-08-12T18:58:28.946967Z", - "shell.execute_reply": "2024-08-12T18:58:28.946427Z" + "iopub.execute_input": "2024-08-15T19:32:03.104472Z", + "iopub.status.busy": "2024-08-15T19:32:03.103996Z", + "iopub.status.idle": "2024-08-15T19:32:03.109400Z", + "shell.execute_reply": "2024-08-15T19:32:03.108853Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.948895Z", - "iopub.status.busy": "2024-08-12T18:58:28.948718Z", - "iopub.status.idle": "2024-08-12T18:58:28.952461Z", - "shell.execute_reply": "2024-08-12T18:58:28.951982Z" + "iopub.execute_input": "2024-08-15T19:32:03.111465Z", + "iopub.status.busy": "2024-08-15T19:32:03.111165Z", + "iopub.status.idle": "2024-08-15T19:32:03.114499Z", + "shell.execute_reply": "2024-08-15T19:32:03.114003Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:28.954958Z", - "iopub.status.busy": "2024-08-12T18:58:28.954419Z", - "iopub.status.idle": "2024-08-12T18:58:28.960190Z", - "shell.execute_reply": "2024-08-12T18:58:28.959744Z" + "iopub.execute_input": "2024-08-15T19:32:03.116556Z", + "iopub.status.busy": "2024-08-15T19:32:03.116226Z", + "iopub.status.idle": "2024-08-15T19:32:03.121395Z", + "shell.execute_reply": "2024-08-15T19:32:03.120973Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 2b9558ba5..6435f3a60 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -833,7 +833,7 @@

    4. Identify Data Issues Using Datalab @@ -879,13 +879,13 @@

    4. Identify Data Issues Using Datalab - +
    - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    @@ -3503,16 +3503,16 @@

    1. Load the Dataset
    ---2024-08-12 18:58:49--  https://s.cleanlab.ai/CIFAR-10-subset.zip
    -Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.111.153, ...
    -Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.109.153|:443... connected.
    +--2024-08-15 19:32:23--  https://s.cleanlab.ai/CIFAR-10-subset.zip
    +Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...
    +Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
     HTTP request sent, awaiting response... 200 OK
     Length: 986707 (964K) [application/zip]
     Saving to: ‘CIFAR-10-subset.zip’
     
    -CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.04s
    +CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.01s
     
    -2024-08-12 18:58:49 (22.6 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
    +2024-08-15 19:32:23 (96.4 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
     
     
    @@ -3582,7 +3582,7 @@

    2. Run Datalab Analysis
    -
    +
    @@ -3986,35 +3986,35 @@

    4. (Optional) Compare with a Dataset Without Spurious Correlations - dark_score is_dark_issue + dark_score 0 - 0.797509 False + 0.797509 1 - 0.663760 False + 0.663760 2 - 0.849826 False + 0.849826 3 - 0.773951 False + 0.773951 4 - 0.699518 False + 0.699518 ... @@ -4023,28 +4023,28 @@

    4. (Optional) Compare with a Dataset Without Spurious Correlations

    You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by Datalab.

    diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index c19ab5d3e..02938d887 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:32.453144Z", - "iopub.status.busy": "2024-08-12T18:58:32.452963Z", - "iopub.status.idle": "2024-08-12T18:58:32.893566Z", - "shell.execute_reply": "2024-08-12T18:58:32.892923Z" + "iopub.execute_input": "2024-08-15T19:32:07.448103Z", + "iopub.status.busy": "2024-08-15T19:32:07.447640Z", + "iopub.status.idle": "2024-08-15T19:32:07.871349Z", + "shell.execute_reply": "2024-08-15T19:32:07.870828Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:32.896058Z", - "iopub.status.busy": "2024-08-12T18:58:32.895665Z", - "iopub.status.idle": "2024-08-12T18:58:33.028619Z", - "shell.execute_reply": "2024-08-12T18:58:33.028000Z" + "iopub.execute_input": "2024-08-15T19:32:07.873882Z", + "iopub.status.busy": "2024-08-15T19:32:07.873646Z", + "iopub.status.idle": "2024-08-15T19:32:08.002168Z", + "shell.execute_reply": "2024-08-15T19:32:08.001592Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:33.030997Z", - "iopub.status.busy": "2024-08-12T18:58:33.030616Z", - "iopub.status.idle": "2024-08-12T18:58:33.053876Z", - "shell.execute_reply": "2024-08-12T18:58:33.053329Z" + "iopub.execute_input": "2024-08-15T19:32:08.004540Z", + "iopub.status.busy": "2024-08-15T19:32:08.004056Z", + "iopub.status.idle": "2024-08-15T19:32:08.026894Z", + "shell.execute_reply": "2024-08-15T19:32:08.026278Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:33.056613Z", - "iopub.status.busy": "2024-08-12T18:58:33.056072Z", - "iopub.status.idle": "2024-08-12T18:58:36.368353Z", - "shell.execute_reply": "2024-08-12T18:58:36.367660Z" + "iopub.execute_input": "2024-08-15T19:32:08.029510Z", + "iopub.status.busy": "2024-08-15T19:32:08.029040Z", + "iopub.status.idle": "2024-08-15T19:32:11.204836Z", + "shell.execute_reply": "2024-08-15T19:32:11.204136Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 523 issues found in the dataset.\n" + "Audit complete. 524 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", - " 362\n", + " 0.356925\n", + " 363\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619565\n", + " 0.619581\n", " 108\n", " \n", " \n", @@ -304,7 +304,7 @@ " \n", " 6\n", " underperforming_group\n", - " 0.651929\n", + " 0.651838\n", " 0\n", " \n", " \n", @@ -315,11 +315,11 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", - "3 near_duplicate 0.619565 108\n", + "2 outlier 0.356925 363\n", + "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", - "6 underperforming_group 0.651929 0" + "6 underperforming_group 0.651838 0" ] }, "metadata": {}, @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:36.371024Z", - "iopub.status.busy": "2024-08-12T18:58:36.370494Z", - "iopub.status.idle": "2024-08-12T18:58:46.129472Z", - "shell.execute_reply": "2024-08-12T18:58:46.128923Z" + "iopub.execute_input": "2024-08-15T19:32:11.207672Z", + "iopub.status.busy": "2024-08-15T19:32:11.207175Z", + "iopub.status.idle": "2024-08-15T19:32:20.088677Z", + "shell.execute_reply": "2024-08-15T19:32:20.088072Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:46.131756Z", - "iopub.status.busy": "2024-08-12T18:58:46.131373Z", - "iopub.status.idle": "2024-08-12T18:58:46.324220Z", - "shell.execute_reply": "2024-08-12T18:58:46.323687Z" + "iopub.execute_input": "2024-08-15T19:32:20.091002Z", + "iopub.status.busy": "2024-08-15T19:32:20.090656Z", + "iopub.status.idle": "2024-08-15T19:32:20.248704Z", + "shell.execute_reply": "2024-08-15T19:32:20.248045Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:46.326841Z", - "iopub.status.busy": "2024-08-12T18:58:46.326478Z", - "iopub.status.idle": "2024-08-12T18:58:47.671516Z", - "shell.execute_reply": "2024-08-12T18:58:47.670901Z" + "iopub.execute_input": "2024-08-15T19:32:20.251411Z", + "iopub.status.busy": "2024-08-15T19:32:20.251052Z", + "iopub.status.idle": "2024-08-15T19:32:21.792486Z", + "shell.execute_reply": "2024-08-15T19:32:21.791991Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:47.673692Z", - "iopub.status.busy": "2024-08-12T18:58:47.673500Z", - "iopub.status.idle": "2024-08-12T18:58:48.008455Z", - "shell.execute_reply": "2024-08-12T18:58:48.007859Z" + "iopub.execute_input": "2024-08-15T19:32:21.794774Z", + "iopub.status.busy": "2024-08-15T19:32:21.794323Z", + "iopub.status.idle": "2024-08-15T19:32:22.022639Z", + "shell.execute_reply": "2024-08-15T19:32:22.022068Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.010951Z", - "iopub.status.busy": "2024-08-12T18:58:48.010444Z", - "iopub.status.idle": "2024-08-12T18:58:48.023807Z", - "shell.execute_reply": "2024-08-12T18:58:48.023327Z" + "iopub.execute_input": "2024-08-15T19:32:22.025206Z", + "iopub.status.busy": "2024-08-15T19:32:22.024772Z", + "iopub.status.idle": "2024-08-15T19:32:22.037394Z", + "shell.execute_reply": "2024-08-15T19:32:22.036948Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.025787Z", - "iopub.status.busy": "2024-08-12T18:58:48.025610Z", - "iopub.status.idle": "2024-08-12T18:58:48.044448Z", - "shell.execute_reply": "2024-08-12T18:58:48.043957Z" + "iopub.execute_input": "2024-08-15T19:32:22.039465Z", + "iopub.status.busy": "2024-08-15T19:32:22.039034Z", + "iopub.status.idle": "2024-08-15T19:32:22.057890Z", + "shell.execute_reply": "2024-08-15T19:32:22.057315Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.046497Z", - "iopub.status.busy": "2024-08-12T18:58:48.046158Z", - "iopub.status.idle": "2024-08-12T18:58:48.285984Z", - "shell.execute_reply": "2024-08-12T18:58:48.285450Z" + "iopub.execute_input": "2024-08-15T19:32:22.060271Z", + "iopub.status.busy": "2024-08-15T19:32:22.059831Z", + "iopub.status.idle": "2024-08-15T19:32:22.272307Z", + "shell.execute_reply": "2024-08-15T19:32:22.271782Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.288600Z", - "iopub.status.busy": "2024-08-12T18:58:48.288414Z", - "iopub.status.idle": "2024-08-12T18:58:48.307909Z", - "shell.execute_reply": "2024-08-12T18:58:48.307390Z" + "iopub.execute_input": "2024-08-15T19:32:22.274914Z", + "iopub.status.busy": "2024-08-15T19:32:22.274506Z", + "iopub.status.idle": "2024-08-15T19:32:22.294460Z", + "shell.execute_reply": "2024-08-15T19:32:22.293989Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.310085Z", - "iopub.status.busy": "2024-08-12T18:58:48.309902Z", - "iopub.status.idle": "2024-08-12T18:58:48.479863Z", - "shell.execute_reply": "2024-08-12T18:58:48.479263Z" + "iopub.execute_input": "2024-08-15T19:32:22.296540Z", + "iopub.status.busy": "2024-08-15T19:32:22.296201Z", + "iopub.status.idle": "2024-08-15T19:32:22.462255Z", + "shell.execute_reply": "2024-08-15T19:32:22.461728Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.482094Z", - "iopub.status.busy": "2024-08-12T18:58:48.481913Z", - "iopub.status.idle": "2024-08-12T18:58:48.492262Z", - "shell.execute_reply": "2024-08-12T18:58:48.491815Z" + "iopub.execute_input": "2024-08-15T19:32:22.464546Z", + "iopub.status.busy": "2024-08-15T19:32:22.464363Z", + "iopub.status.idle": "2024-08-15T19:32:22.474373Z", + "shell.execute_reply": "2024-08-15T19:32:22.473823Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.494349Z", - "iopub.status.busy": "2024-08-12T18:58:48.494005Z", - "iopub.status.idle": "2024-08-12T18:58:48.503362Z", - "shell.execute_reply": "2024-08-12T18:58:48.502898Z" + "iopub.execute_input": "2024-08-15T19:32:22.476496Z", + "iopub.status.busy": "2024-08-15T19:32:22.476158Z", + "iopub.status.idle": "2024-08-15T19:32:22.485421Z", + "shell.execute_reply": "2024-08-15T19:32:22.484953Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.505548Z", - "iopub.status.busy": "2024-08-12T18:58:48.505209Z", - "iopub.status.idle": "2024-08-12T18:58:48.530999Z", - "shell.execute_reply": "2024-08-12T18:58:48.530573Z" + "iopub.execute_input": "2024-08-15T19:32:22.487349Z", + "iopub.status.busy": "2024-08-15T19:32:22.487074Z", + "iopub.status.idle": "2024-08-15T19:32:22.513874Z", + "shell.execute_reply": "2024-08-15T19:32:22.513299Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.533100Z", - "iopub.status.busy": "2024-08-12T18:58:48.532754Z", - "iopub.status.idle": "2024-08-12T18:58:48.535405Z", - "shell.execute_reply": "2024-08-12T18:58:48.534950Z" + "iopub.execute_input": "2024-08-15T19:32:22.516166Z", + "iopub.status.busy": "2024-08-15T19:32:22.515857Z", + "iopub.status.idle": "2024-08-15T19:32:22.518726Z", + "shell.execute_reply": "2024-08-15T19:32:22.518159Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.537559Z", - "iopub.status.busy": "2024-08-12T18:58:48.537229Z", - "iopub.status.idle": "2024-08-12T18:58:48.557131Z", - "shell.execute_reply": "2024-08-12T18:58:48.556530Z" + "iopub.execute_input": "2024-08-15T19:32:22.520685Z", + "iopub.status.busy": "2024-08-15T19:32:22.520510Z", + "iopub.status.idle": "2024-08-15T19:32:22.540384Z", + "shell.execute_reply": "2024-08-15T19:32:22.539835Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.559284Z", - "iopub.status.busy": "2024-08-12T18:58:48.559093Z", - "iopub.status.idle": "2024-08-12T18:58:48.563631Z", - "shell.execute_reply": "2024-08-12T18:58:48.563160Z" + "iopub.execute_input": "2024-08-15T19:32:22.542488Z", + "iopub.status.busy": "2024-08-15T19:32:22.542086Z", + "iopub.status.idle": "2024-08-15T19:32:22.546531Z", + "shell.execute_reply": "2024-08-15T19:32:22.546068Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.565611Z", - "iopub.status.busy": "2024-08-12T18:58:48.565430Z", - "iopub.status.idle": "2024-08-12T18:58:48.594740Z", - "shell.execute_reply": "2024-08-12T18:58:48.594193Z" + "iopub.execute_input": "2024-08-15T19:32:22.548504Z", + "iopub.status.busy": "2024-08-15T19:32:22.548199Z", + "iopub.status.idle": "2024-08-15T19:32:22.575378Z", + "shell.execute_reply": "2024-08-15T19:32:22.574805Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.596930Z", - "iopub.status.busy": "2024-08-12T18:58:48.596743Z", - "iopub.status.idle": "2024-08-12T18:58:48.915286Z", - "shell.execute_reply": "2024-08-12T18:58:48.914655Z" + "iopub.execute_input": "2024-08-15T19:32:22.577490Z", + "iopub.status.busy": "2024-08-15T19:32:22.577100Z", + "iopub.status.idle": "2024-08-15T19:32:22.944617Z", + "shell.execute_reply": "2024-08-15T19:32:22.944050Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.917554Z", - "iopub.status.busy": "2024-08-12T18:58:48.917331Z", - "iopub.status.idle": "2024-08-12T18:58:48.920951Z", - "shell.execute_reply": "2024-08-12T18:58:48.920337Z" + "iopub.execute_input": "2024-08-15T19:32:22.946769Z", + "iopub.status.busy": "2024-08-15T19:32:22.946457Z", + "iopub.status.idle": "2024-08-15T19:32:22.949952Z", + "shell.execute_reply": "2024-08-15T19:32:22.949480Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.923307Z", - "iopub.status.busy": "2024-08-12T18:58:48.922856Z", - "iopub.status.idle": "2024-08-12T18:58:48.936475Z", - "shell.execute_reply": "2024-08-12T18:58:48.935867Z" + "iopub.execute_input": "2024-08-15T19:32:22.952098Z", + "iopub.status.busy": "2024-08-15T19:32:22.951804Z", + "iopub.status.idle": "2024-08-15T19:32:22.965735Z", + "shell.execute_reply": "2024-08-15T19:32:22.965243Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.939768Z", - "iopub.status.busy": "2024-08-12T18:58:48.939280Z", - "iopub.status.idle": "2024-08-12T18:58:48.953750Z", - "shell.execute_reply": "2024-08-12T18:58:48.953140Z" + "iopub.execute_input": "2024-08-15T19:32:22.968006Z", + "iopub.status.busy": "2024-08-15T19:32:22.967638Z", + "iopub.status.idle": "2024-08-15T19:32:22.986177Z", + "shell.execute_reply": "2024-08-15T19:32:22.985680Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.955892Z", - "iopub.status.busy": "2024-08-12T18:58:48.955606Z", - "iopub.status.idle": "2024-08-12T18:58:48.966964Z", - "shell.execute_reply": "2024-08-12T18:58:48.966339Z" + "iopub.execute_input": "2024-08-15T19:32:22.988339Z", + "iopub.status.busy": "2024-08-15T19:32:22.988017Z", + "iopub.status.idle": "2024-08-15T19:32:22.998153Z", + "shell.execute_reply": "2024-08-15T19:32:22.997710Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.969417Z", - "iopub.status.busy": "2024-08-12T18:58:48.969078Z", - "iopub.status.idle": "2024-08-12T18:58:48.978995Z", - "shell.execute_reply": "2024-08-12T18:58:48.978417Z" + "iopub.execute_input": "2024-08-15T19:32:23.000127Z", + "iopub.status.busy": "2024-08-15T19:32:22.999821Z", + "iopub.status.idle": "2024-08-15T19:32:23.008900Z", + "shell.execute_reply": "2024-08-15T19:32:23.008362Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.981220Z", - "iopub.status.busy": "2024-08-12T18:58:48.980883Z", - "iopub.status.idle": "2024-08-12T18:58:48.984861Z", - "shell.execute_reply": "2024-08-12T18:58:48.984275Z" + "iopub.execute_input": "2024-08-15T19:32:23.011136Z", + "iopub.status.busy": "2024-08-15T19:32:23.010689Z", + "iopub.status.idle": "2024-08-15T19:32:23.014343Z", + "shell.execute_reply": "2024-08-15T19:32:23.013789Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:48.986942Z", - "iopub.status.busy": "2024-08-12T18:58:48.986600Z", - "iopub.status.idle": "2024-08-12T18:58:49.039015Z", - "shell.execute_reply": "2024-08-12T18:58:49.038408Z" + "iopub.execute_input": "2024-08-15T19:32:23.016304Z", + "iopub.status.busy": "2024-08-15T19:32:23.016009Z", + "iopub.status.idle": "2024-08-15T19:32:23.066545Z", + "shell.execute_reply": "2024-08-15T19:32:23.066076Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
    \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    \n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:49.041588Z", - "iopub.status.busy": "2024-08-12T18:58:49.041136Z", - "iopub.status.idle": "2024-08-12T18:58:49.048316Z", - "shell.execute_reply": "2024-08-12T18:58:49.047854Z" + "iopub.execute_input": "2024-08-15T19:32:23.068763Z", + "iopub.status.busy": "2024-08-15T19:32:23.068340Z", + "iopub.status.idle": "2024-08-15T19:32:23.074789Z", + "shell.execute_reply": "2024-08-15T19:32:23.074339Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:49.050457Z", - "iopub.status.busy": "2024-08-12T18:58:49.050118Z", - "iopub.status.idle": "2024-08-12T18:58:49.061463Z", - "shell.execute_reply": "2024-08-12T18:58:49.060888Z" + "iopub.execute_input": "2024-08-15T19:32:23.076818Z", + "iopub.status.busy": "2024-08-15T19:32:23.076478Z", + "iopub.status.idle": "2024-08-15T19:32:23.087561Z", + "shell.execute_reply": "2024-08-15T19:32:23.087094Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:49.063774Z", - "iopub.status.busy": "2024-08-12T18:58:49.063445Z", - "iopub.status.idle": "2024-08-12T18:58:49.282520Z", - "shell.execute_reply": "2024-08-12T18:58:49.281931Z" + "iopub.execute_input": "2024-08-15T19:32:23.089553Z", + "iopub.status.busy": "2024-08-15T19:32:23.089220Z", + "iopub.status.idle": "2024-08-15T19:32:23.301895Z", + "shell.execute_reply": "2024-08-15T19:32:23.301343Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:49.284947Z", - "iopub.status.busy": "2024-08-12T18:58:49.284525Z", - "iopub.status.idle": "2024-08-12T18:58:49.292566Z", - "shell.execute_reply": "2024-08-12T18:58:49.292062Z" + "iopub.execute_input": "2024-08-15T19:32:23.303959Z", + "iopub.status.busy": "2024-08-15T19:32:23.303642Z", + "iopub.status.idle": "2024-08-15T19:32:23.311114Z", + "shell.execute_reply": "2024-08-15T19:32:23.310546Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:49.294849Z", - "iopub.status.busy": "2024-08-12T18:58:49.294514Z", - "iopub.status.idle": "2024-08-12T18:58:49.928407Z", - "shell.execute_reply": "2024-08-12T18:58:49.927648Z" + "iopub.execute_input": "2024-08-15T19:32:23.313166Z", + "iopub.status.busy": "2024-08-15T19:32:23.312837Z", + "iopub.status.idle": "2024-08-15T19:32:23.678819Z", + "shell.execute_reply": "2024-08-15T19:32:23.678171Z" } }, "outputs": [ @@ -3767,9 +3767,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 18:58:49-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.109.153, 185.199.110.153, 185.199.111.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.109.153|:443... connected.\r\n", + "--2024-08-15 19:32:23-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -3783,9 +3783,9 @@ "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.04s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.01s \r\n", "\r\n", - "2024-08-12 18:58:49 (22.6 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-15 19:32:23 (96.4 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:49.931184Z", - "iopub.status.busy": "2024-08-12T18:58:49.930775Z", - "iopub.status.idle": "2024-08-12T18:58:51.929317Z", - "shell.execute_reply": "2024-08-12T18:58:51.928757Z" + "iopub.execute_input": "2024-08-15T19:32:23.681484Z", + "iopub.status.busy": "2024-08-15T19:32:23.681045Z", + "iopub.status.idle": "2024-08-15T19:32:25.595990Z", + "shell.execute_reply": "2024-08-15T19:32:25.595452Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:51.932133Z", - "iopub.status.busy": "2024-08-12T18:58:51.931579Z", - "iopub.status.idle": "2024-08-12T18:58:52.415840Z", - "shell.execute_reply": "2024-08-12T18:58:52.415213Z" + "iopub.execute_input": "2024-08-15T19:32:25.598644Z", + "iopub.status.busy": "2024-08-15T19:32:25.598216Z", + "iopub.status.idle": "2024-08-15T19:32:26.054920Z", + "shell.execute_reply": "2024-08-15T19:32:26.054323Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c0b69f70cccc4c2cb212d2804eaaa895", + "model_id": "bf66a8ee7a6b493592553e18b6727869", "version_major": 2, "version_minor": 0 }, @@ -3950,10 +3950,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:52.419360Z", - "iopub.status.busy": "2024-08-12T18:58:52.418978Z", - "iopub.status.idle": "2024-08-12T18:58:52.433093Z", - "shell.execute_reply": "2024-08-12T18:58:52.432477Z" + "iopub.execute_input": "2024-08-15T19:32:26.057885Z", + "iopub.status.busy": "2024-08-15T19:32:26.057548Z", + "iopub.status.idle": "2024-08-15T19:32:26.074641Z", + "shell.execute_reply": "2024-08-15T19:32:26.074093Z" } }, "outputs": [ @@ -4072,35 +4072,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4109,28 +4109,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4138,18 +4138,18 @@ "

    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4211,10 +4211,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:52.437120Z", - "iopub.status.busy": "2024-08-12T18:58:52.436115Z", - "iopub.status.idle": "2024-08-12T18:58:52.963139Z", - "shell.execute_reply": "2024-08-12T18:58:52.962468Z" + "iopub.execute_input": "2024-08-15T19:32:26.077248Z", + "iopub.status.busy": "2024-08-15T19:32:26.077017Z", + "iopub.status.idle": "2024-08-15T19:32:26.597578Z", + "shell.execute_reply": "2024-08-15T19:32:26.596945Z" } }, "outputs": [ @@ -4229,7 +4229,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a0ec50ba0624a1dbbe73cc4ad48d5c2", + "model_id": "255052bead304fb0ab2591ff3ea88019", "version_major": 2, "version_minor": 0 }, @@ -4357,35 +4357,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4394,28 +4394,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4423,18 +4423,18 @@ "
    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4497,7 +4497,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a1d4a795cea4368bfe801319f6bfa56": { + "05a6d45db56d47d29f94784604013728": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4550,7 +4550,25 @@ "width": null } }, - "15abb84193a243528666ebc7929e204b": { + "06621f1db310446cb2967f1a1074f27c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "13b0bfd383ce4cad97bd56824d09289d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4565,33 +4583,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_629b3803f80f47f78a312e9773869e99", + "layout": "IPY_MODEL_05a6d45db56d47d29f94784604013728", "placeholder": "​", - "style": "IPY_MODEL_d50b005bb100446d8effbbe10def949d", + "style": "IPY_MODEL_ffec4e0efbda45eca9a987d98c20b036", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 788.92it/s]" } }, - "24c54c690ba349a98a6611f44fc4e1cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "31387dc410ba4ac08097c6cdf1214b46": { + "19e32957e3b0467c93b11b121a2f32a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4644,23 +4644,80 @@ "width": null } }, - "340abbf345c247009cab505ac17bf88e": { + "1bc991368aa94536ac5f73196f240f41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_85a8ce84979047249ed675214d45cb45", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_af0c3b605ee94973a004299d20b3d773", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "255052bead304fb0ab2591ff3ea88019": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7a1c1b09f8e44588b0480a7e9c2b697", + "IPY_MODEL_edad3d2c1723480a85c96a2d4901ffe6", + "IPY_MODEL_37b93ae7044c4f53a34ccca35dd15b27" + ], + "layout": "IPY_MODEL_a93695644d494b22b591abca14b9f82d", + "tabbable": null, + "tooltip": null } }, - "419e162125f94925b4776a8268ab2f13": { + "37b93ae7044c4f53a34ccca35dd15b27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8631e98746a14e118b2e81625c6b6d34", + "placeholder": "​", + "style": "IPY_MODEL_b8e13ff8c74b4a3e959202212e20b339", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 735.41it/s]" + } + }, + "5b563799a8f44b1bae3d7100d5c5416a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4713,67 +4770,7 @@ "width": null } }, - "47ca085961074718b132ce70262f23f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "48c731e8cf064b9784b5dd2b4d6be5de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4a0ec50ba0624a1dbbe73cc4ad48d5c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8bdbf2497dd4a7aaec510ff6b6969d7", - "IPY_MODEL_a44d53c425b44681bf2a4266b2562f52", - "IPY_MODEL_71f08b6d9e454988a5ff0d3a3109bfba" - ], - "layout": "IPY_MODEL_830f77b51c5d45ac8f6ceacb5c21f500", - "tabbable": null, - "tooltip": null - } - }, - "629b3803f80f47f78a312e9773869e99": { + "6453d2d2a05242f1a9af375e08d6f1ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4826,30 +4823,25 @@ "width": null } }, - "71f08b6d9e454988a5ff0d3a3109bfba": { + "7d9cbc24b6ba4fca98ca8bb3463d3724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e451cadbebfe41029d5d3cb34c96f9d0", - "placeholder": "​", - "style": "IPY_MODEL_47ca085961074718b132ce70262f23f9", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 721.87it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "830f77b51c5d45ac8f6ceacb5c21f500": { + "85a8ce84979047249ed675214d45cb45": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4902,7 +4894,7 @@ "width": null } }, - "865e16ee50ec4a31ac0e00b475bd9ede": { + "8631e98746a14e118b2e81625c6b6d34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4955,49 +4947,7 @@ "width": null } }, - "a44d53c425b44681bf2a4266b2562f52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b639f4a5d7434b0fb852ee16636dc5ce", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_340abbf345c247009cab505ac17bf88e", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "b11b3fa000794406af4de521bf6381e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b639f4a5d7434b0fb852ee16636dc5ce": { + "a93695644d494b22b591abca14b9f82d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5050,7 +5000,57 @@ "width": null } }, - "c0b69f70cccc4c2cb212d2804eaaa895": { + "af0c3b605ee94973a004299d20b3d773": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b8e13ff8c74b4a3e959202212e20b339": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9e85b1062cd478682a6a82691d20546": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bf66a8ee7a6b493592553e18b6727869": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5065,34 +5065,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_15abb84193a243528666ebc7929e204b", - "IPY_MODEL_fc333b4698444611a9ef2c362a197831", - "IPY_MODEL_e7cff525d0ed4da79ea4db12e670ea42" + "IPY_MODEL_df4f1364e119421b9c615bcb06aacea9", + "IPY_MODEL_1bc991368aa94536ac5f73196f240f41", + "IPY_MODEL_13b0bfd383ce4cad97bd56824d09289d" ], - "layout": "IPY_MODEL_865e16ee50ec4a31ac0e00b475bd9ede", + "layout": "IPY_MODEL_5b563799a8f44b1bae3d7100d5c5416a", "tabbable": null, "tooltip": null } }, - "d50b005bb100446d8effbbe10def949d": { + "c7a1c1b09f8e44588b0480a7e9c2b697": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_19e32957e3b0467c93b11b121a2f32a9", + "placeholder": "​", + "style": "IPY_MODEL_7d9cbc24b6ba4fca98ca8bb3463d3724", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "d8bdbf2497dd4a7aaec510ff6b6969d7": { + "df4f1364e119421b9c615bcb06aacea9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5107,15 +5112,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a1d4a795cea4368bfe801319f6bfa56", + "layout": "IPY_MODEL_6453d2d2a05242f1a9af375e08d6f1ee", "placeholder": "​", - "style": "IPY_MODEL_48c731e8cf064b9784b5dd2b4d6be5de", + "style": "IPY_MODEL_06621f1db310446cb2967f1a1074f27c", "tabbable": null, "tooltip": null, "value": "100%" } }, - "e451cadbebfe41029d5d3cb34c96f9d0": { + "edad3d2c1723480a85c96a2d4901ffe6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1f1660f3de7459cae99a7f31370d99a", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b9e85b1062cd478682a6a82691d20546", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "f1f1660f3de7459cae99a7f31370d99a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5168,53 +5199,22 @@ "width": null } }, - "e7cff525d0ed4da79ea4db12e670ea42": { + "ffec4e0efbda45eca9a987d98c20b036": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31387dc410ba4ac08097c6cdf1214b46", - "placeholder": "​", - "style": "IPY_MODEL_24c54c690ba349a98a6611f44fc4e1cd", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 753.06it/s]" - } - }, - "fc333b4698444611a9ef2c362a197831": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_419e162125f94925b4776a8268ab2f13", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b11b3fa000794406af4de521bf6381e4", - "tabbable": null, - "tooltip": null, - "value": 200.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index a972cd809..a30bdf687 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:57.416743Z", - "iopub.status.busy": "2024-08-12T18:58:57.416562Z", - "iopub.status.idle": "2024-08-12T18:58:58.889432Z", - "shell.execute_reply": "2024-08-12T18:58:58.888841Z" + "iopub.execute_input": "2024-08-15T19:32:30.764696Z", + "iopub.status.busy": "2024-08-15T19:32:30.764524Z", + "iopub.status.idle": "2024-08-15T19:32:32.148355Z", + "shell.execute_reply": "2024-08-15T19:32:32.147808Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:58.892133Z", - "iopub.status.busy": "2024-08-12T18:58:58.891633Z", - "iopub.status.idle": "2024-08-12T18:58:58.894507Z", - "shell.execute_reply": "2024-08-12T18:58:58.894046Z" + "iopub.execute_input": "2024-08-15T19:32:32.151057Z", + "iopub.status.busy": "2024-08-15T19:32:32.150540Z", + "iopub.status.idle": "2024-08-15T19:32:32.153292Z", + "shell.execute_reply": "2024-08-15T19:32:32.152850Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:58.896557Z", - "iopub.status.busy": "2024-08-12T18:58:58.896376Z", - "iopub.status.idle": "2024-08-12T18:58:58.908772Z", - "shell.execute_reply": "2024-08-12T18:58:58.908263Z" + "iopub.execute_input": "2024-08-15T19:32:32.155557Z", + "iopub.status.busy": "2024-08-15T19:32:32.155159Z", + "iopub.status.idle": "2024-08-15T19:32:32.167629Z", + "shell.execute_reply": "2024-08-15T19:32:32.167128Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:58:58.910826Z", - "iopub.status.busy": "2024-08-12T18:58:58.910636Z", - "iopub.status.idle": "2024-08-12T18:59:06.267643Z", - "shell.execute_reply": "2024-08-12T18:59:06.267042Z" + "iopub.execute_input": "2024-08-15T19:32:32.169845Z", + "iopub.status.busy": "2024-08-15T19:32:32.169477Z", + "iopub.status.idle": "2024-08-15T19:32:38.766430Z", + "shell.execute_reply": "2024-08-15T19:32:38.765838Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 800d8f271..378e1602e 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

    How can I find label issues in big datasets with limited memory?
    -
    +
    -
    +
    @@ -1702,7 +1702,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 82cd5d47d..2e179180f 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:09.036162Z", - "iopub.status.busy": "2024-08-12T18:59:09.035980Z", - "iopub.status.idle": "2024-08-12T18:59:10.530018Z", - "shell.execute_reply": "2024-08-12T18:59:10.529347Z" + "iopub.execute_input": "2024-08-15T19:32:41.083193Z", + "iopub.status.busy": "2024-08-15T19:32:41.083028Z", + "iopub.status.idle": "2024-08-15T19:32:42.450599Z", + "shell.execute_reply": "2024-08-15T19:32:42.449954Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:10.532800Z", - "iopub.status.busy": "2024-08-12T18:59:10.532485Z", - "iopub.status.idle": "2024-08-12T18:59:10.536043Z", - "shell.execute_reply": "2024-08-12T18:59:10.535464Z" + "iopub.execute_input": "2024-08-15T19:32:42.453193Z", + "iopub.status.busy": "2024-08-15T19:32:42.452895Z", + "iopub.status.idle": "2024-08-15T19:32:42.456316Z", + "shell.execute_reply": "2024-08-15T19:32:42.455755Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:10.538323Z", - "iopub.status.busy": "2024-08-12T18:59:10.537990Z", - "iopub.status.idle": "2024-08-12T18:59:14.370319Z", - "shell.execute_reply": "2024-08-12T18:59:14.369463Z" + "iopub.execute_input": "2024-08-15T19:32:42.458321Z", + "iopub.status.busy": "2024-08-15T19:32:42.458000Z", + "iopub.status.idle": "2024-08-15T19:32:45.975200Z", + "shell.execute_reply": "2024-08-15T19:32:45.974500Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.374238Z", - "iopub.status.busy": "2024-08-12T18:59:14.373122Z", - "iopub.status.idle": "2024-08-12T18:59:14.430561Z", - "shell.execute_reply": "2024-08-12T18:59:14.429766Z" + "iopub.execute_input": "2024-08-15T19:32:45.978244Z", + "iopub.status.busy": "2024-08-15T19:32:45.977554Z", + "iopub.status.idle": "2024-08-15T19:32:46.018915Z", + "shell.execute_reply": "2024-08-15T19:32:46.018260Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.433816Z", - "iopub.status.busy": "2024-08-12T18:59:14.433400Z", - "iopub.status.idle": "2024-08-12T18:59:14.483159Z", - "shell.execute_reply": "2024-08-12T18:59:14.482495Z" + "iopub.execute_input": "2024-08-15T19:32:46.021645Z", + "iopub.status.busy": "2024-08-15T19:32:46.021328Z", + "iopub.status.idle": "2024-08-15T19:32:46.062898Z", + "shell.execute_reply": "2024-08-15T19:32:46.062144Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.485853Z", - "iopub.status.busy": "2024-08-12T18:59:14.485594Z", - "iopub.status.idle": "2024-08-12T18:59:14.488767Z", - "shell.execute_reply": "2024-08-12T18:59:14.488266Z" + "iopub.execute_input": "2024-08-15T19:32:46.065862Z", + "iopub.status.busy": "2024-08-15T19:32:46.065352Z", + "iopub.status.idle": "2024-08-15T19:32:46.068668Z", + "shell.execute_reply": "2024-08-15T19:32:46.068103Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.490990Z", - "iopub.status.busy": "2024-08-12T18:59:14.490655Z", - "iopub.status.idle": "2024-08-12T18:59:14.493275Z", - "shell.execute_reply": "2024-08-12T18:59:14.492800Z" + "iopub.execute_input": "2024-08-15T19:32:46.070916Z", + "iopub.status.busy": "2024-08-15T19:32:46.070471Z", + "iopub.status.idle": "2024-08-15T19:32:46.073248Z", + "shell.execute_reply": "2024-08-15T19:32:46.072705Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.495455Z", - "iopub.status.busy": "2024-08-12T18:59:14.495115Z", - "iopub.status.idle": "2024-08-12T18:59:14.521134Z", - "shell.execute_reply": "2024-08-12T18:59:14.520510Z" + "iopub.execute_input": "2024-08-15T19:32:46.075413Z", + "iopub.status.busy": "2024-08-15T19:32:46.075107Z", + "iopub.status.idle": "2024-08-15T19:32:46.099170Z", + "shell.execute_reply": "2024-08-15T19:32:46.098621Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "af1e5c81ccc74ab0acfdc1b6416375f5", + "model_id": "4edf0c984cce45e2bc685c9c9804fe49", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "db2f5b228c3e48cd86e8e39d81d5b986", + "model_id": "619e019b2ee746e1a0b4bfd8a4835eab", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.527676Z", - "iopub.status.busy": "2024-08-12T18:59:14.527289Z", - "iopub.status.idle": "2024-08-12T18:59:14.534069Z", - "shell.execute_reply": "2024-08-12T18:59:14.533601Z" + "iopub.execute_input": "2024-08-15T19:32:46.105203Z", + "iopub.status.busy": "2024-08-15T19:32:46.104726Z", + "iopub.status.idle": "2024-08-15T19:32:46.111542Z", + "shell.execute_reply": "2024-08-15T19:32:46.111096Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.536214Z", - "iopub.status.busy": "2024-08-12T18:59:14.535837Z", - "iopub.status.idle": "2024-08-12T18:59:14.539527Z", - "shell.execute_reply": "2024-08-12T18:59:14.538942Z" + "iopub.execute_input": "2024-08-15T19:32:46.113654Z", + "iopub.status.busy": "2024-08-15T19:32:46.113324Z", + "iopub.status.idle": "2024-08-15T19:32:46.116648Z", + "shell.execute_reply": "2024-08-15T19:32:46.116220Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.541766Z", - "iopub.status.busy": "2024-08-12T18:59:14.541486Z", - "iopub.status.idle": "2024-08-12T18:59:14.548179Z", - "shell.execute_reply": "2024-08-12T18:59:14.547598Z" + "iopub.execute_input": "2024-08-15T19:32:46.118582Z", + "iopub.status.busy": "2024-08-15T19:32:46.118405Z", + "iopub.status.idle": "2024-08-15T19:32:46.124700Z", + "shell.execute_reply": "2024-08-15T19:32:46.124260Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.550302Z", - "iopub.status.busy": "2024-08-12T18:59:14.549985Z", - "iopub.status.idle": "2024-08-12T18:59:14.600720Z", - "shell.execute_reply": "2024-08-12T18:59:14.599885Z" + "iopub.execute_input": "2024-08-15T19:32:46.126747Z", + "iopub.status.busy": "2024-08-15T19:32:46.126425Z", + "iopub.status.idle": "2024-08-15T19:32:46.167322Z", + "shell.execute_reply": "2024-08-15T19:32:46.166687Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.603468Z", - "iopub.status.busy": "2024-08-12T18:59:14.603189Z", - "iopub.status.idle": "2024-08-12T18:59:14.655777Z", - "shell.execute_reply": "2024-08-12T18:59:14.654974Z" + "iopub.execute_input": "2024-08-15T19:32:46.170041Z", + "iopub.status.busy": "2024-08-15T19:32:46.169651Z", + "iopub.status.idle": "2024-08-15T19:32:46.213041Z", + "shell.execute_reply": "2024-08-15T19:32:46.212328Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.658937Z", - "iopub.status.busy": "2024-08-12T18:59:14.658494Z", - "iopub.status.idle": "2024-08-12T18:59:14.805784Z", - "shell.execute_reply": "2024-08-12T18:59:14.805105Z" + "iopub.execute_input": "2024-08-15T19:32:46.215921Z", + "iopub.status.busy": "2024-08-15T19:32:46.215565Z", + "iopub.status.idle": "2024-08-15T19:32:46.344168Z", + "shell.execute_reply": "2024-08-15T19:32:46.343510Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:14.808869Z", - "iopub.status.busy": "2024-08-12T18:59:14.808057Z", - "iopub.status.idle": "2024-08-12T18:59:17.892504Z", - "shell.execute_reply": "2024-08-12T18:59:17.891775Z" + "iopub.execute_input": "2024-08-15T19:32:46.347014Z", + "iopub.status.busy": "2024-08-15T19:32:46.346238Z", + "iopub.status.idle": "2024-08-15T19:32:49.329483Z", + "shell.execute_reply": "2024-08-15T19:32:49.328816Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:17.894854Z", - "iopub.status.busy": "2024-08-12T18:59:17.894644Z", - "iopub.status.idle": "2024-08-12T18:59:17.957007Z", - "shell.execute_reply": "2024-08-12T18:59:17.956422Z" + "iopub.execute_input": "2024-08-15T19:32:49.331799Z", + "iopub.status.busy": "2024-08-15T19:32:49.331596Z", + "iopub.status.idle": "2024-08-15T19:32:49.390108Z", + "shell.execute_reply": "2024-08-15T19:32:49.389533Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:17.959404Z", - "iopub.status.busy": "2024-08-12T18:59:17.959048Z", - "iopub.status.idle": "2024-08-12T18:59:18.001668Z", - "shell.execute_reply": "2024-08-12T18:59:18.001055Z" + "iopub.execute_input": "2024-08-15T19:32:49.392126Z", + "iopub.status.busy": "2024-08-15T19:32:49.391958Z", + "iopub.status.idle": "2024-08-15T19:32:49.432645Z", + "shell.execute_reply": "2024-08-15T19:32:49.432174Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "7596b65c", + "id": "7a8509f0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "8cd71820", + "id": "3dff8396", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "74548889", + "id": "6a113536", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "06b1a332", + "id": "604600db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:18.004021Z", - "iopub.status.busy": "2024-08-12T18:59:18.003656Z", - "iopub.status.idle": "2024-08-12T18:59:18.011463Z", - "shell.execute_reply": "2024-08-12T18:59:18.010982Z" + "iopub.execute_input": "2024-08-15T19:32:49.434815Z", + "iopub.status.busy": "2024-08-15T19:32:49.434559Z", + "iopub.status.idle": "2024-08-15T19:32:49.442077Z", + "shell.execute_reply": "2024-08-15T19:32:49.441625Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "df33427d", + "id": "1e8f346c", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "442bf65a", + "id": "db1ab507", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:18.013746Z", - "iopub.status.busy": "2024-08-12T18:59:18.013327Z", - "iopub.status.idle": "2024-08-12T18:59:18.033961Z", - "shell.execute_reply": "2024-08-12T18:59:18.033341Z" + "iopub.execute_input": "2024-08-15T19:32:49.444206Z", + "iopub.status.busy": "2024-08-15T19:32:49.443885Z", + "iopub.status.idle": "2024-08-15T19:32:49.466030Z", + "shell.execute_reply": "2024-08-15T19:32:49.465456Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "8c4cf9b9", + "id": "497c6e0e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:18.036179Z", - "iopub.status.busy": "2024-08-12T18:59:18.035977Z", - "iopub.status.idle": "2024-08-12T18:59:18.039688Z", - "shell.execute_reply": "2024-08-12T18:59:18.039180Z" + "iopub.execute_input": "2024-08-15T19:32:49.468364Z", + "iopub.status.busy": "2024-08-15T19:32:49.468163Z", + "iopub.status.idle": "2024-08-15T19:32:49.471663Z", + "shell.execute_reply": "2024-08-15T19:32:49.471107Z" } }, "outputs": [ @@ -1622,23 +1622,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08c5c77d9ca9420b853ae917da3e18e7": { + "06dd2ddf3b704bb495775f9a5a6dc45c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0744e93c2462456688a628fbe04668f2", + "placeholder": "​", + "style": "IPY_MODEL_7acf73f63aeb4a878cb6d707f5802d55", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1049599.36it/s]" } }, - "181815186c96459ca3638cab03324592": { + "0744e93c2462456688a628fbe04668f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,7 +1698,7 @@ "width": null } }, - "27ac5ec495b64f1ea58b7acd0885d40f": { + "0a19094b0ca4436589b87361dbe275a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1744,7 +1751,53 @@ "width": null } }, - "32fc56c95a28457bb4e908274994cc68": { + "1822d9bc53db4ab6a64e71f0afb79799": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a8923b2904d48a2ad7c55519081117e", + "placeholder": "​", + "style": "IPY_MODEL_1da3a36de9f1408084b2ac9bb53220aa", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "19b83ea8cbd24d4f82eb69d6ecc27e1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a19094b0ca4436589b87361dbe275a1", + "placeholder": "​", + "style": "IPY_MODEL_c3c533cd794f4cb4aa1623792b17a05b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "1da3a36de9f1408084b2ac9bb53220aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1762,7 +1815,33 @@ "text_color": null } }, - "44b8216644ca4116ac75b89bf104debf": { + "230f011a97cf40e0bcc3ba3547ff845b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a9c9defedaa4dacaa80e1def4015745", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a360c82bb57417bb00d7ea5b5bd3629", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "2a8923b2904d48a2ad7c55519081117e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1815,48 +1894,55 @@ "width": null } }, - "6e6b25a5ab8248cabe2a958063d58241": { + "4edf0c984cce45e2bc685c9c9804fe49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1822d9bc53db4ab6a64e71f0afb79799", + "IPY_MODEL_b991b61708654fd7b6f00e02e740c37f", + "IPY_MODEL_06dd2ddf3b704bb495775f9a5a6dc45c" + ], + "layout": "IPY_MODEL_a35f09461da04bcbbf44c3e1057bdb7d", + "tabbable": null, + "tooltip": null } }, - "6e717fbc461a45f9b6c3fc0b31b2318a": { + "619e019b2ee746e1a0b4bfd8a4835eab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d987f42307724a30bd2f60b2878d6da7", - "placeholder": "​", - "style": "IPY_MODEL_71f49736aa664c71abf733c244d17002", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_19b83ea8cbd24d4f82eb69d6ecc27e1e", + "IPY_MODEL_230f011a97cf40e0bcc3ba3547ff845b", + "IPY_MODEL_a5437f20c4754c43a38e1dbdbba2654f" + ], + "layout": "IPY_MODEL_efe13e0054964266b54c54f6355cee88", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 974354.54it/s]" + "tooltip": null } }, - "71f49736aa664c71abf733c244d17002": { + "7acf73f63aeb4a878cb6d707f5802d55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1874,33 +1960,60 @@ "text_color": null } }, - "7c21cda8c98e4c9ca010c13c650e8203": { - "model_module": "@jupyter-widgets/controls", + "828ee56ddd784b07836ba4cf62e4297e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a636304a2f7f46d09012b254244a0ae0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e85d95d4044f43a99f60efa7544c1111", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "99f87daccefd4060b6e950c8ae96836f": { + "8a9c9defedaa4dacaa80e1def4015745": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,7 +2066,23 @@ "width": null } }, - "a288125de45149a393ab10bde84ce6cf": { + "9a360c82bb57417bb00d7ea5b5bd3629": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a35f09461da04bcbbf44c3e1057bdb7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,7 +2135,7 @@ "width": null } }, - "a636304a2f7f46d09012b254244a0ae0": { + "a42611c84c9d4ef6961fdc69ae084abd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2059,80 +2188,56 @@ "width": null } }, - "ac14e637c7f04acc97796172112d3529": { + "a5437f20c4754c43a38e1dbdbba2654f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_99f87daccefd4060b6e950c8ae96836f", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_08c5c77d9ca9420b853ae917da3e18e7", + "layout": "IPY_MODEL_a42611c84c9d4ef6961fdc69ae084abd", + "placeholder": "​", + "style": "IPY_MODEL_f011b857e3434cd193dd5e0ca7f334f1", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1558293.95it/s]" } }, - "af1e5c81ccc74ab0acfdc1b6416375f5": { + "b991b61708654fd7b6f00e02e740c37f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc575d7b0b79495c9606ca1325cec69d", - "IPY_MODEL_7c21cda8c98e4c9ca010c13c650e8203", - "IPY_MODEL_6e717fbc461a45f9b6c3fc0b31b2318a" - ], - "layout": "IPY_MODEL_c83458446be04ba48fb6bdfc9201ce68", - "tabbable": null, - "tooltip": null - } - }, - "b104473fbfd5417bb0b76e11bfc6b8df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_27ac5ec495b64f1ea58b7acd0885d40f", - "placeholder": "​", - "style": "IPY_MODEL_6e6b25a5ab8248cabe2a958063d58241", + "layout": "IPY_MODEL_828ee56ddd784b07836ba4cf62e4297e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e510d899ea6341049ff53ecd4a5953cb", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1472408.90it/s]" + "value": 50.0 } }, - "b85dd87608eb48debd3fc09f4d4794ce": { + "c3c533cd794f4cb4aa1623792b17a05b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2150,83 +2255,23 @@ "text_color": null } }, - "bc575d7b0b79495c9606ca1325cec69d": { + "e510d899ea6341049ff53ecd4a5953cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a288125de45149a393ab10bde84ce6cf", - "placeholder": "​", - "style": "IPY_MODEL_32fc56c95a28457bb4e908274994cc68", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "c83458446be04ba48fb6bdfc9201ce68": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d987f42307724a30bd2f60b2878d6da7": { + "efe13e0054964266b54c54f6355cee88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2279,67 +2324,22 @@ "width": null } }, - "db2f5b228c3e48cd86e8e39d81d5b986": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f58762774d224c0b8327cb6a1d62ea0c", - "IPY_MODEL_ac14e637c7f04acc97796172112d3529", - "IPY_MODEL_b104473fbfd5417bb0b76e11bfc6b8df" - ], - "layout": "IPY_MODEL_181815186c96459ca3638cab03324592", - "tabbable": null, - "tooltip": null - } - }, - "e85d95d4044f43a99f60efa7544c1111": { + "f011b857e3434cd193dd5e0ca7f334f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f58762774d224c0b8327cb6a1d62ea0c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44b8216644ca4116ac75b89bf104debf", - "placeholder": "​", - "style": "IPY_MODEL_b85dd87608eb48debd3fc09f4d4794ce", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/improving_ml_performance.html b/master/tutorials/improving_ml_performance.html index a46b99bf6..5baed454c 100644 --- a/master/tutorials/improving_ml_performance.html +++ b/master/tutorials/improving_ml_performance.html @@ -2358,7 +2358,7 @@

    6. Check for issues in training data and algorithmically correct them6. Check for issues in training data and algorithmically correct them

    Now instead of manually inspecting the detected issues in our training data, we will automatically filter all data points out of the training set that cleanlab has flagged as being likely mislabeled, outliers, or near duplicates. Unlike the test data which cannot be blindly auto-curated because we must ensure reliable model evaluation, the training data can be more aggressively modified as long as we’re able to faithfully evaluate the resulting fitted model.

    diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 5a4b84c49..0ab6a96ae 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:21.826268Z", - "iopub.status.busy": "2024-08-12T18:59:21.826079Z", - "iopub.status.idle": "2024-08-12T18:59:23.362509Z", - "shell.execute_reply": "2024-08-12T18:59:23.361803Z" + "iopub.execute_input": "2024-08-15T19:32:52.987835Z", + "iopub.status.busy": "2024-08-15T19:32:52.987664Z", + "iopub.status.idle": "2024-08-15T19:32:54.376429Z", + "shell.execute_reply": "2024-08-15T19:32:54.375879Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:23.365369Z", - "iopub.status.busy": "2024-08-12T18:59:23.365034Z", - "iopub.status.idle": "2024-08-12T18:59:23.369094Z", - "shell.execute_reply": "2024-08-12T18:59:23.368592Z" + "iopub.execute_input": "2024-08-15T19:32:54.378936Z", + "iopub.status.busy": "2024-08-15T19:32:54.378500Z", + "iopub.status.idle": "2024-08-15T19:32:54.382201Z", + "shell.execute_reply": "2024-08-15T19:32:54.381641Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:23.371289Z", - "iopub.status.busy": "2024-08-12T18:59:23.370919Z", - "iopub.status.idle": "2024-08-12T18:59:23.992532Z", - "shell.execute_reply": "2024-08-12T18:59:23.992005Z" + "iopub.execute_input": "2024-08-15T19:32:54.384231Z", + "iopub.status.busy": "2024-08-15T19:32:54.383929Z", + "iopub.status.idle": "2024-08-15T19:32:54.768880Z", + "shell.execute_reply": "2024-08-15T19:32:54.768326Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:23.994795Z", - "iopub.status.busy": "2024-08-12T18:59:23.994427Z", - "iopub.status.idle": "2024-08-12T18:59:24.000752Z", - "shell.execute_reply": "2024-08-12T18:59:24.000271Z" + "iopub.execute_input": "2024-08-15T19:32:54.771064Z", + "iopub.status.busy": "2024-08-15T19:32:54.770725Z", + "iopub.status.idle": "2024-08-15T19:32:54.776732Z", + "shell.execute_reply": "2024-08-15T19:32:54.776185Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.002858Z", - "iopub.status.busy": "2024-08-12T18:59:24.002508Z", - "iopub.status.idle": "2024-08-12T18:59:24.009343Z", - "shell.execute_reply": "2024-08-12T18:59:24.008818Z" + "iopub.execute_input": "2024-08-15T19:32:54.778914Z", + "iopub.status.busy": "2024-08-15T19:32:54.778434Z", + "iopub.status.idle": "2024-08-15T19:32:54.785354Z", + "shell.execute_reply": "2024-08-15T19:32:54.784795Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.011516Z", - "iopub.status.busy": "2024-08-12T18:59:24.011159Z", - "iopub.status.idle": "2024-08-12T18:59:24.015977Z", - "shell.execute_reply": "2024-08-12T18:59:24.015484Z" + "iopub.execute_input": "2024-08-15T19:32:54.787398Z", + "iopub.status.busy": "2024-08-15T19:32:54.787088Z", + "iopub.status.idle": "2024-08-15T19:32:54.791904Z", + "shell.execute_reply": "2024-08-15T19:32:54.791314Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.018166Z", - "iopub.status.busy": "2024-08-12T18:59:24.017823Z", - "iopub.status.idle": "2024-08-12T18:59:24.023580Z", - "shell.execute_reply": "2024-08-12T18:59:24.023107Z" + "iopub.execute_input": "2024-08-15T19:32:54.793915Z", + "iopub.status.busy": "2024-08-15T19:32:54.793578Z", + "iopub.status.idle": "2024-08-15T19:32:54.799184Z", + "shell.execute_reply": "2024-08-15T19:32:54.798512Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.025655Z", - "iopub.status.busy": "2024-08-12T18:59:24.025309Z", - "iopub.status.idle": "2024-08-12T18:59:24.029614Z", - "shell.execute_reply": "2024-08-12T18:59:24.028928Z" + "iopub.execute_input": "2024-08-15T19:32:54.801571Z", + "iopub.status.busy": "2024-08-15T19:32:54.801171Z", + "iopub.status.idle": "2024-08-15T19:32:54.805430Z", + "shell.execute_reply": "2024-08-15T19:32:54.804946Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.031973Z", - "iopub.status.busy": "2024-08-12T18:59:24.031689Z", - "iopub.status.idle": "2024-08-12T18:59:24.101331Z", - "shell.execute_reply": "2024-08-12T18:59:24.100635Z" + "iopub.execute_input": "2024-08-15T19:32:54.807369Z", + "iopub.status.busy": "2024-08-15T19:32:54.807038Z", + "iopub.status.idle": "2024-08-15T19:32:54.872265Z", + "shell.execute_reply": "2024-08-15T19:32:54.871648Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.104215Z", - "iopub.status.busy": "2024-08-12T18:59:24.103661Z", - "iopub.status.idle": "2024-08-12T18:59:24.114955Z", - "shell.execute_reply": "2024-08-12T18:59:24.114435Z" + "iopub.execute_input": "2024-08-15T19:32:54.874790Z", + "iopub.status.busy": "2024-08-15T19:32:54.874416Z", + "iopub.status.idle": "2024-08-15T19:32:54.885116Z", + "shell.execute_reply": "2024-08-15T19:32:54.884622Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.117518Z", - "iopub.status.busy": "2024-08-12T18:59:24.117223Z", - "iopub.status.idle": "2024-08-12T18:59:24.138341Z", - "shell.execute_reply": "2024-08-12T18:59:24.137783Z" + "iopub.execute_input": "2024-08-15T19:32:54.887504Z", + "iopub.status.busy": "2024-08-15T19:32:54.887130Z", + "iopub.status.idle": "2024-08-15T19:32:54.906419Z", + "shell.execute_reply": "2024-08-15T19:32:54.905933Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.141061Z", - "iopub.status.busy": "2024-08-12T18:59:24.140659Z", - "iopub.status.idle": "2024-08-12T18:59:24.144913Z", - "shell.execute_reply": "2024-08-12T18:59:24.144417Z" + "iopub.execute_input": "2024-08-15T19:32:54.908724Z", + "iopub.status.busy": "2024-08-15T19:32:54.908352Z", + "iopub.status.idle": "2024-08-15T19:32:54.912259Z", + "shell.execute_reply": "2024-08-15T19:32:54.911781Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.147445Z", - "iopub.status.busy": "2024-08-12T18:59:24.147051Z", - "iopub.status.idle": "2024-08-12T18:59:24.151429Z", - "shell.execute_reply": "2024-08-12T18:59:24.150931Z" + "iopub.execute_input": "2024-08-15T19:32:54.914556Z", + "iopub.status.busy": "2024-08-15T19:32:54.914186Z", + "iopub.status.idle": "2024-08-15T19:32:54.918310Z", + "shell.execute_reply": "2024-08-15T19:32:54.917830Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.154790Z", - "iopub.status.busy": "2024-08-12T18:59:24.153828Z", - "iopub.status.idle": "2024-08-12T18:59:24.165935Z", - "shell.execute_reply": "2024-08-12T18:59:24.165486Z" + "iopub.execute_input": "2024-08-15T19:32:54.920638Z", + "iopub.status.busy": "2024-08-15T19:32:54.920272Z", + "iopub.status.idle": "2024-08-15T19:32:54.931529Z", + "shell.execute_reply": "2024-08-15T19:32:54.931041Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.168518Z", - "iopub.status.busy": "2024-08-12T18:59:24.168008Z", - "iopub.status.idle": "2024-08-12T18:59:24.173279Z", - "shell.execute_reply": "2024-08-12T18:59:24.172745Z" + "iopub.execute_input": "2024-08-15T19:32:54.933722Z", + "iopub.status.busy": "2024-08-15T19:32:54.933424Z", + "iopub.status.idle": "2024-08-15T19:32:54.937226Z", + "shell.execute_reply": "2024-08-15T19:32:54.936834Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.175732Z", - "iopub.status.busy": "2024-08-12T18:59:24.175539Z", - "iopub.status.idle": "2024-08-12T18:59:24.290251Z", - "shell.execute_reply": "2024-08-12T18:59:24.289739Z" + "iopub.execute_input": "2024-08-15T19:32:54.939161Z", + "iopub.status.busy": "2024-08-15T19:32:54.938844Z", + "iopub.status.idle": "2024-08-15T19:32:55.050645Z", + "shell.execute_reply": "2024-08-15T19:32:55.050174Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.292625Z", - "iopub.status.busy": "2024-08-12T18:59:24.292246Z", - "iopub.status.idle": "2024-08-12T18:59:24.298593Z", - "shell.execute_reply": "2024-08-12T18:59:24.298095Z" + "iopub.execute_input": "2024-08-15T19:32:55.052707Z", + "iopub.status.busy": "2024-08-15T19:32:55.052405Z", + "iopub.status.idle": "2024-08-15T19:32:55.057811Z", + "shell.execute_reply": "2024-08-15T19:32:55.057330Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:24.301176Z", - "iopub.status.busy": "2024-08-12T18:59:24.300603Z", - "iopub.status.idle": "2024-08-12T18:59:26.626151Z", - "shell.execute_reply": "2024-08-12T18:59:26.625494Z" + "iopub.execute_input": "2024-08-15T19:32:55.060815Z", + "iopub.status.busy": "2024-08-15T19:32:55.059932Z", + "iopub.status.idle": "2024-08-15T19:32:57.154389Z", + "shell.execute_reply": "2024-08-15T19:32:57.153766Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:26.629258Z", - "iopub.status.busy": "2024-08-12T18:59:26.628623Z", - "iopub.status.idle": "2024-08-12T18:59:26.642060Z", - "shell.execute_reply": "2024-08-12T18:59:26.641543Z" + "iopub.execute_input": "2024-08-15T19:32:57.158451Z", + "iopub.status.busy": "2024-08-15T19:32:57.157400Z", + "iopub.status.idle": "2024-08-15T19:32:57.172150Z", + "shell.execute_reply": "2024-08-15T19:32:57.171639Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:26.644567Z", - "iopub.status.busy": "2024-08-12T18:59:26.644161Z", - "iopub.status.idle": "2024-08-12T18:59:26.647095Z", - "shell.execute_reply": "2024-08-12T18:59:26.646603Z" + "iopub.execute_input": "2024-08-15T19:32:57.175587Z", + "iopub.status.busy": "2024-08-15T19:32:57.174664Z", + "iopub.status.idle": "2024-08-15T19:32:57.178626Z", + "shell.execute_reply": "2024-08-15T19:32:57.178120Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:26.650162Z", - "iopub.status.busy": "2024-08-12T18:59:26.649219Z", - "iopub.status.idle": "2024-08-12T18:59:26.654885Z", - "shell.execute_reply": "2024-08-12T18:59:26.654380Z" + "iopub.execute_input": "2024-08-15T19:32:57.182037Z", + "iopub.status.busy": "2024-08-15T19:32:57.181135Z", + "iopub.status.idle": "2024-08-15T19:32:57.186622Z", + "shell.execute_reply": "2024-08-15T19:32:57.186123Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:26.658482Z", - "iopub.status.busy": "2024-08-12T18:59:26.657542Z", - "iopub.status.idle": "2024-08-12T18:59:26.694816Z", - "shell.execute_reply": "2024-08-12T18:59:26.694252Z" + "iopub.execute_input": "2024-08-15T19:32:57.190032Z", + "iopub.status.busy": "2024-08-15T19:32:57.189130Z", + "iopub.status.idle": "2024-08-15T19:32:57.221753Z", + "shell.execute_reply": "2024-08-15T19:32:57.221244Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:26.697458Z", - "iopub.status.busy": "2024-08-12T18:59:26.697065Z", - "iopub.status.idle": "2024-08-12T18:59:27.254855Z", - "shell.execute_reply": "2024-08-12T18:59:27.254284Z" + "iopub.execute_input": "2024-08-15T19:32:57.224656Z", + "iopub.status.busy": "2024-08-15T19:32:57.223974Z", + "iopub.status.idle": "2024-08-15T19:32:57.753860Z", + "shell.execute_reply": "2024-08-15T19:32:57.753315Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.257761Z", - "iopub.status.busy": "2024-08-12T18:59:27.257381Z", - "iopub.status.idle": "2024-08-12T18:59:27.403783Z", - "shell.execute_reply": "2024-08-12T18:59:27.403129Z" + "iopub.execute_input": "2024-08-15T19:32:57.757597Z", + "iopub.status.busy": "2024-08-15T19:32:57.756664Z", + "iopub.status.idle": "2024-08-15T19:32:57.893127Z", + "shell.execute_reply": "2024-08-15T19:32:57.892444Z" } }, "outputs": [ @@ -2231,7 +2231,7 @@ " null 1.000000 0\n", " non_iid 0.437267 0\n", " class_imbalance 0.146423 0\n", - "underperforming_group 0.978605 0\n", + "underperforming_group 0.977223 0\n", "\n", "(Note: A lower score indicates a more severe issue across all examples in the dataset.)\n", "\n", @@ -2374,15 +2374,15 @@ " \n", "\n", "Number of examples with this issue: 0\n", - "Overall dataset quality in terms of this issue: 0.9786\n", + "Overall dataset quality in terms of this issue: 0.9772\n", "\n", "Examples representing most severe instances of this issue:\n", " is_underperforming_group_issue underperforming_group_score\n", - "0 False 1.0\n", - "396 False 1.0\n", - "397 False 1.0\n", - "398 False 1.0\n", - "399 False 1.0\n" + "0 False 0.977223\n", + "402 False 0.977223\n", + "401 False 0.977223\n", + "400 False 0.977223\n", + "399 False 0.977223\n" ] } ], @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.407718Z", - "iopub.status.busy": "2024-08-12T18:59:27.406705Z", - "iopub.status.idle": "2024-08-12T18:59:27.416124Z", - "shell.execute_reply": "2024-08-12T18:59:27.415579Z" + "iopub.execute_input": "2024-08-15T19:32:57.895972Z", + "iopub.status.busy": "2024-08-15T19:32:57.895536Z", + "iopub.status.idle": "2024-08-15T19:32:57.902656Z", + "shell.execute_reply": "2024-08-15T19:32:57.902135Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.419912Z", - "iopub.status.busy": "2024-08-12T18:59:27.418954Z", - "iopub.status.idle": "2024-08-12T18:59:27.427553Z", - "shell.execute_reply": "2024-08-12T18:59:27.427031Z" + "iopub.execute_input": "2024-08-15T19:32:57.904923Z", + "iopub.status.busy": "2024-08-15T19:32:57.904570Z", + "iopub.status.idle": "2024-08-15T19:32:57.910759Z", + "shell.execute_reply": "2024-08-15T19:32:57.910246Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.431276Z", - "iopub.status.busy": "2024-08-12T18:59:27.430306Z", - "iopub.status.idle": "2024-08-12T18:59:27.438426Z", - "shell.execute_reply": "2024-08-12T18:59:27.437887Z" + "iopub.execute_input": "2024-08-15T19:32:57.912949Z", + "iopub.status.busy": "2024-08-15T19:32:57.912608Z", + "iopub.status.idle": "2024-08-15T19:32:57.918113Z", + "shell.execute_reply": "2024-08-15T19:32:57.917588Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.442229Z", - "iopub.status.busy": "2024-08-12T18:59:27.441274Z", - "iopub.status.idle": "2024-08-12T18:59:27.446605Z", - "shell.execute_reply": "2024-08-12T18:59:27.445954Z" + "iopub.execute_input": "2024-08-15T19:32:57.920897Z", + "iopub.status.busy": "2024-08-15T19:32:57.920430Z", + "iopub.status.idle": "2024-08-15T19:32:57.924900Z", + "shell.execute_reply": "2024-08-15T19:32:57.924385Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.448859Z", - "iopub.status.busy": "2024-08-12T18:59:27.448667Z", - "iopub.status.idle": "2024-08-12T18:59:27.454140Z", - "shell.execute_reply": "2024-08-12T18:59:27.453686Z" + "iopub.execute_input": "2024-08-15T19:32:57.927679Z", + "iopub.status.busy": "2024-08-15T19:32:57.927202Z", + "iopub.status.idle": "2024-08-15T19:32:57.932198Z", + "shell.execute_reply": "2024-08-15T19:32:57.931697Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.456194Z", - "iopub.status.busy": "2024-08-12T18:59:27.456000Z", - "iopub.status.idle": "2024-08-12T18:59:27.537799Z", - "shell.execute_reply": "2024-08-12T18:59:27.537248Z" + "iopub.execute_input": "2024-08-15T19:32:57.934623Z", + "iopub.status.busy": "2024-08-15T19:32:57.934275Z", + "iopub.status.idle": "2024-08-15T19:32:58.013729Z", + "shell.execute_reply": "2024-08-15T19:32:58.013188Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.540099Z", - "iopub.status.busy": "2024-08-12T18:59:27.539886Z", - "iopub.status.idle": "2024-08-12T18:59:27.554683Z", - "shell.execute_reply": "2024-08-12T18:59:27.553987Z" + "iopub.execute_input": "2024-08-15T19:32:58.017160Z", + "iopub.status.busy": "2024-08-15T19:32:58.016821Z", + "iopub.status.idle": "2024-08-15T19:32:58.028876Z", + "shell.execute_reply": "2024-08-15T19:32:58.028390Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.557753Z", - "iopub.status.busy": "2024-08-12T18:59:27.557171Z", - "iopub.status.idle": "2024-08-12T18:59:27.560724Z", - "shell.execute_reply": "2024-08-12T18:59:27.560114Z" + "iopub.execute_input": "2024-08-15T19:32:58.031728Z", + "iopub.status.busy": "2024-08-15T19:32:58.031238Z", + "iopub.status.idle": "2024-08-15T19:32:58.034186Z", + "shell.execute_reply": "2024-08-15T19:32:58.033784Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.562976Z", - "iopub.status.busy": "2024-08-12T18:59:27.562789Z", - "iopub.status.idle": "2024-08-12T18:59:27.573678Z", - "shell.execute_reply": "2024-08-12T18:59:27.573001Z" + "iopub.execute_input": "2024-08-15T19:32:58.036237Z", + "iopub.status.busy": "2024-08-15T19:32:58.035919Z", + "iopub.status.idle": "2024-08-15T19:32:58.044828Z", + "shell.execute_reply": "2024-08-15T19:32:58.044388Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.576419Z", - "iopub.status.busy": "2024-08-12T18:59:27.576012Z", - "iopub.status.idle": "2024-08-12T18:59:27.582946Z", - "shell.execute_reply": "2024-08-12T18:59:27.582421Z" + "iopub.execute_input": "2024-08-15T19:32:58.046882Z", + "iopub.status.busy": "2024-08-15T19:32:58.046533Z", + "iopub.status.idle": "2024-08-15T19:32:58.052921Z", + "shell.execute_reply": "2024-08-15T19:32:58.052471Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.585144Z", - "iopub.status.busy": "2024-08-12T18:59:27.584831Z", - "iopub.status.idle": "2024-08-12T18:59:27.588435Z", - "shell.execute_reply": "2024-08-12T18:59:27.587844Z" + "iopub.execute_input": "2024-08-15T19:32:58.054841Z", + "iopub.status.busy": "2024-08-15T19:32:58.054509Z", + "iopub.status.idle": "2024-08-15T19:32:58.057614Z", + "shell.execute_reply": "2024-08-15T19:32:58.057181Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:27.590688Z", - "iopub.status.busy": "2024-08-12T18:59:27.590349Z", - "iopub.status.idle": "2024-08-12T18:59:31.669748Z", - "shell.execute_reply": "2024-08-12T18:59:31.669230Z" + "iopub.execute_input": "2024-08-15T19:32:58.059553Z", + "iopub.status.busy": "2024-08-15T19:32:58.059224Z", + "iopub.status.idle": "2024-08-15T19:33:02.036453Z", + "shell.execute_reply": "2024-08-15T19:33:02.035935Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:31.672207Z", - "iopub.status.busy": "2024-08-12T18:59:31.671838Z", - "iopub.status.idle": "2024-08-12T18:59:31.675032Z", - "shell.execute_reply": "2024-08-12T18:59:31.674603Z" + "iopub.execute_input": "2024-08-15T19:33:02.038836Z", + "iopub.status.busy": "2024-08-15T19:33:02.038499Z", + "iopub.status.idle": "2024-08-15T19:33:02.041550Z", + "shell.execute_reply": "2024-08-15T19:33:02.041156Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:31.677196Z", - "iopub.status.busy": "2024-08-12T18:59:31.676887Z", - "iopub.status.idle": "2024-08-12T18:59:31.679964Z", - "shell.execute_reply": "2024-08-12T18:59:31.679566Z" + "iopub.execute_input": "2024-08-15T19:33:02.043874Z", + "iopub.status.busy": "2024-08-15T19:33:02.043364Z", + "iopub.status.idle": "2024-08-15T19:33:02.046983Z", + "shell.execute_reply": "2024-08-15T19:33:02.046525Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 9eab66f97..45a1e424f 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:35.304974Z", - "iopub.status.busy": "2024-08-12T18:59:35.304798Z", - "iopub.status.idle": "2024-08-12T18:59:36.757045Z", - "shell.execute_reply": "2024-08-12T18:59:36.756394Z" + "iopub.execute_input": "2024-08-15T19:33:05.249152Z", + "iopub.status.busy": "2024-08-15T19:33:05.248732Z", + "iopub.status.idle": "2024-08-15T19:33:06.624950Z", + "shell.execute_reply": "2024-08-15T19:33:06.624404Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:36.759809Z", - "iopub.status.busy": "2024-08-12T18:59:36.759444Z", - "iopub.status.idle": "2024-08-12T18:59:36.763080Z", - "shell.execute_reply": "2024-08-12T18:59:36.762530Z" + "iopub.execute_input": "2024-08-15T19:33:06.627498Z", + "iopub.status.busy": "2024-08-15T19:33:06.627050Z", + "iopub.status.idle": "2024-08-15T19:33:06.630342Z", + "shell.execute_reply": "2024-08-15T19:33:06.629890Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:36.765342Z", - "iopub.status.busy": "2024-08-12T18:59:36.764890Z", - "iopub.status.idle": "2024-08-12T18:59:36.776716Z", - "shell.execute_reply": "2024-08-12T18:59:36.776099Z" + "iopub.execute_input": "2024-08-15T19:33:06.632428Z", + "iopub.status.busy": "2024-08-15T19:33:06.632092Z", + "iopub.status.idle": "2024-08-15T19:33:06.643402Z", + "shell.execute_reply": "2024-08-15T19:33:06.642989Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:36.779257Z", - "iopub.status.busy": "2024-08-12T18:59:36.778841Z", - "iopub.status.idle": "2024-08-12T18:59:36.993253Z", - "shell.execute_reply": "2024-08-12T18:59:36.992612Z" + "iopub.execute_input": "2024-08-15T19:33:06.645477Z", + "iopub.status.busy": "2024-08-15T19:33:06.645146Z", + "iopub.status.idle": "2024-08-15T19:33:06.857292Z", + "shell.execute_reply": "2024-08-15T19:33:06.856683Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:36.995645Z", - "iopub.status.busy": "2024-08-12T18:59:36.995301Z", - "iopub.status.idle": "2024-08-12T18:59:37.022394Z", - "shell.execute_reply": "2024-08-12T18:59:37.021879Z" + "iopub.execute_input": "2024-08-15T19:33:06.859623Z", + "iopub.status.busy": "2024-08-15T19:33:06.859348Z", + "iopub.status.idle": "2024-08-15T19:33:06.885754Z", + "shell.execute_reply": "2024-08-15T19:33:06.885315Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:37.025051Z", - "iopub.status.busy": "2024-08-12T18:59:37.024560Z", - "iopub.status.idle": "2024-08-12T18:59:39.262272Z", - "shell.execute_reply": "2024-08-12T18:59:39.261549Z" + "iopub.execute_input": "2024-08-15T19:33:06.887779Z", + "iopub.status.busy": "2024-08-15T19:33:06.887439Z", + "iopub.status.idle": "2024-08-15T19:33:08.964603Z", + "shell.execute_reply": "2024-08-15T19:33:08.963955Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:39.265033Z", - "iopub.status.busy": "2024-08-12T18:59:39.264285Z", - "iopub.status.idle": "2024-08-12T18:59:39.282778Z", - "shell.execute_reply": "2024-08-12T18:59:39.282196Z" + "iopub.execute_input": "2024-08-15T19:33:08.966928Z", + "iopub.status.busy": "2024-08-15T19:33:08.966590Z", + "iopub.status.idle": "2024-08-15T19:33:08.984980Z", + "shell.execute_reply": "2024-08-15T19:33:08.984412Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:39.285167Z", - "iopub.status.busy": "2024-08-12T18:59:39.284691Z", - "iopub.status.idle": "2024-08-12T18:59:40.937315Z", - "shell.execute_reply": "2024-08-12T18:59:40.936613Z" + "iopub.execute_input": "2024-08-15T19:33:08.987063Z", + "iopub.status.busy": "2024-08-15T19:33:08.986722Z", + "iopub.status.idle": "2024-08-15T19:33:10.546083Z", + "shell.execute_reply": "2024-08-15T19:33:10.545493Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:40.940438Z", - "iopub.status.busy": "2024-08-12T18:59:40.939654Z", - "iopub.status.idle": "2024-08-12T18:59:40.954542Z", - "shell.execute_reply": "2024-08-12T18:59:40.953980Z" + "iopub.execute_input": "2024-08-15T19:33:10.548990Z", + "iopub.status.busy": "2024-08-15T19:33:10.548171Z", + "iopub.status.idle": "2024-08-15T19:33:10.561779Z", + "shell.execute_reply": "2024-08-15T19:33:10.561238Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:40.956770Z", - "iopub.status.busy": "2024-08-12T18:59:40.956575Z", - "iopub.status.idle": "2024-08-12T18:59:41.043940Z", - "shell.execute_reply": "2024-08-12T18:59:41.043268Z" + "iopub.execute_input": "2024-08-15T19:33:10.563997Z", + "iopub.status.busy": "2024-08-15T19:33:10.563694Z", + "iopub.status.idle": "2024-08-15T19:33:10.642956Z", + "shell.execute_reply": "2024-08-15T19:33:10.642292Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.046625Z", - "iopub.status.busy": "2024-08-12T18:59:41.046255Z", - "iopub.status.idle": "2024-08-12T18:59:41.261565Z", - "shell.execute_reply": "2024-08-12T18:59:41.260957Z" + "iopub.execute_input": "2024-08-15T19:33:10.645297Z", + "iopub.status.busy": "2024-08-15T19:33:10.644936Z", + "iopub.status.idle": "2024-08-15T19:33:10.858056Z", + "shell.execute_reply": "2024-08-15T19:33:10.857455Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.264074Z", - "iopub.status.busy": "2024-08-12T18:59:41.263645Z", - "iopub.status.idle": "2024-08-12T18:59:41.282286Z", - "shell.execute_reply": "2024-08-12T18:59:41.281805Z" + "iopub.execute_input": "2024-08-15T19:33:10.860261Z", + "iopub.status.busy": "2024-08-15T19:33:10.859901Z", + "iopub.status.idle": "2024-08-15T19:33:10.876572Z", + "shell.execute_reply": "2024-08-15T19:33:10.876119Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.284554Z", - "iopub.status.busy": "2024-08-12T18:59:41.284169Z", - "iopub.status.idle": "2024-08-12T18:59:41.293947Z", - "shell.execute_reply": "2024-08-12T18:59:41.293461Z" + "iopub.execute_input": "2024-08-15T19:33:10.878719Z", + "iopub.status.busy": "2024-08-15T19:33:10.878387Z", + "iopub.status.idle": "2024-08-15T19:33:10.887970Z", + "shell.execute_reply": "2024-08-15T19:33:10.887477Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.296255Z", - "iopub.status.busy": "2024-08-12T18:59:41.295902Z", - "iopub.status.idle": "2024-08-12T18:59:41.393592Z", - "shell.execute_reply": "2024-08-12T18:59:41.392998Z" + "iopub.execute_input": "2024-08-15T19:33:10.890117Z", + "iopub.status.busy": "2024-08-15T19:33:10.889908Z", + "iopub.status.idle": "2024-08-15T19:33:10.981069Z", + "shell.execute_reply": "2024-08-15T19:33:10.980447Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.396125Z", - "iopub.status.busy": "2024-08-12T18:59:41.395728Z", - "iopub.status.idle": "2024-08-12T18:59:41.553831Z", - "shell.execute_reply": "2024-08-12T18:59:41.553173Z" + "iopub.execute_input": "2024-08-15T19:33:10.983654Z", + "iopub.status.busy": "2024-08-15T19:33:10.983271Z", + "iopub.status.idle": "2024-08-15T19:33:11.121095Z", + "shell.execute_reply": "2024-08-15T19:33:11.120451Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.556448Z", - "iopub.status.busy": "2024-08-12T18:59:41.556095Z", - "iopub.status.idle": "2024-08-12T18:59:41.560097Z", - "shell.execute_reply": "2024-08-12T18:59:41.559551Z" + "iopub.execute_input": "2024-08-15T19:33:11.123539Z", + "iopub.status.busy": "2024-08-15T19:33:11.123211Z", + "iopub.status.idle": "2024-08-15T19:33:11.127033Z", + "shell.execute_reply": "2024-08-15T19:33:11.126475Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.562409Z", - "iopub.status.busy": "2024-08-12T18:59:41.562052Z", - "iopub.status.idle": "2024-08-12T18:59:41.565967Z", - "shell.execute_reply": "2024-08-12T18:59:41.565404Z" + "iopub.execute_input": "2024-08-15T19:33:11.129102Z", + "iopub.status.busy": "2024-08-15T19:33:11.128770Z", + "iopub.status.idle": "2024-08-15T19:33:11.132416Z", + "shell.execute_reply": "2024-08-15T19:33:11.131874Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.568132Z", - "iopub.status.busy": "2024-08-12T18:59:41.567785Z", - "iopub.status.idle": "2024-08-12T18:59:41.606435Z", - "shell.execute_reply": "2024-08-12T18:59:41.605862Z" + "iopub.execute_input": "2024-08-15T19:33:11.134323Z", + "iopub.status.busy": "2024-08-15T19:33:11.134052Z", + "iopub.status.idle": "2024-08-15T19:33:11.170810Z", + "shell.execute_reply": "2024-08-15T19:33:11.170234Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.608980Z", - "iopub.status.busy": "2024-08-12T18:59:41.608519Z", - "iopub.status.idle": "2024-08-12T18:59:41.650825Z", - "shell.execute_reply": "2024-08-12T18:59:41.650241Z" + "iopub.execute_input": "2024-08-15T19:33:11.173277Z", + "iopub.status.busy": "2024-08-15T19:33:11.172705Z", + "iopub.status.idle": "2024-08-15T19:33:11.213291Z", + "shell.execute_reply": "2024-08-15T19:33:11.212850Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.653201Z", - "iopub.status.busy": "2024-08-12T18:59:41.652768Z", - "iopub.status.idle": "2024-08-12T18:59:41.758338Z", - "shell.execute_reply": "2024-08-12T18:59:41.757712Z" + "iopub.execute_input": "2024-08-15T19:33:11.215152Z", + "iopub.status.busy": "2024-08-15T19:33:11.214976Z", + "iopub.status.idle": "2024-08-15T19:33:11.316926Z", + "shell.execute_reply": "2024-08-15T19:33:11.316332Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.761298Z", - "iopub.status.busy": "2024-08-12T18:59:41.760816Z", - "iopub.status.idle": "2024-08-12T18:59:41.886836Z", - "shell.execute_reply": "2024-08-12T18:59:41.886199Z" + "iopub.execute_input": "2024-08-15T19:33:11.319579Z", + "iopub.status.busy": "2024-08-15T19:33:11.319191Z", + "iopub.status.idle": "2024-08-15T19:33:11.422280Z", + "shell.execute_reply": "2024-08-15T19:33:11.421643Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:41.889204Z", - "iopub.status.busy": "2024-08-12T18:59:41.888953Z", - "iopub.status.idle": "2024-08-12T18:59:42.106786Z", - "shell.execute_reply": "2024-08-12T18:59:42.106237Z" + "iopub.execute_input": "2024-08-15T19:33:11.424721Z", + "iopub.status.busy": "2024-08-15T19:33:11.424339Z", + "iopub.status.idle": "2024-08-15T19:33:11.633366Z", + "shell.execute_reply": "2024-08-15T19:33:11.632876Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:42.109159Z", - "iopub.status.busy": "2024-08-12T18:59:42.108706Z", - "iopub.status.idle": "2024-08-12T18:59:42.343381Z", - "shell.execute_reply": "2024-08-12T18:59:42.342735Z" + "iopub.execute_input": "2024-08-15T19:33:11.635533Z", + "iopub.status.busy": "2024-08-15T19:33:11.635197Z", + "iopub.status.idle": "2024-08-15T19:33:11.849731Z", + "shell.execute_reply": "2024-08-15T19:33:11.849063Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:42.345991Z", - "iopub.status.busy": "2024-08-12T18:59:42.345741Z", - "iopub.status.idle": "2024-08-12T18:59:42.352404Z", - "shell.execute_reply": "2024-08-12T18:59:42.351909Z" + "iopub.execute_input": "2024-08-15T19:33:11.852026Z", + "iopub.status.busy": "2024-08-15T19:33:11.851822Z", + "iopub.status.idle": "2024-08-15T19:33:11.858036Z", + "shell.execute_reply": "2024-08-15T19:33:11.857595Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:42.354511Z", - "iopub.status.busy": "2024-08-12T18:59:42.354162Z", - "iopub.status.idle": "2024-08-12T18:59:42.575035Z", - "shell.execute_reply": "2024-08-12T18:59:42.574431Z" + "iopub.execute_input": "2024-08-15T19:33:11.860119Z", + "iopub.status.busy": "2024-08-15T19:33:11.859783Z", + "iopub.status.idle": "2024-08-15T19:33:12.079969Z", + "shell.execute_reply": "2024-08-15T19:33:12.079382Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:42.577426Z", - "iopub.status.busy": "2024-08-12T18:59:42.577078Z", - "iopub.status.idle": "2024-08-12T18:59:43.656887Z", - "shell.execute_reply": "2024-08-12T18:59:43.656289Z" + "iopub.execute_input": "2024-08-15T19:33:12.082273Z", + "iopub.status.busy": "2024-08-15T19:33:12.081911Z", + "iopub.status.idle": "2024-08-15T19:33:13.147784Z", + "shell.execute_reply": "2024-08-15T19:33:13.147235Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 1b995e101..70a488552 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:47.417596Z", - "iopub.status.busy": "2024-08-12T18:59:47.417079Z", - "iopub.status.idle": "2024-08-12T18:59:48.878644Z", - "shell.execute_reply": "2024-08-12T18:59:48.878070Z" + "iopub.execute_input": "2024-08-15T19:33:17.597518Z", + "iopub.status.busy": "2024-08-15T19:33:17.597351Z", + "iopub.status.idle": "2024-08-15T19:33:19.041154Z", + "shell.execute_reply": "2024-08-15T19:33:19.040602Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:48.881128Z", - "iopub.status.busy": "2024-08-12T18:59:48.880825Z", - "iopub.status.idle": "2024-08-12T18:59:48.883983Z", - "shell.execute_reply": "2024-08-12T18:59:48.883519Z" + "iopub.execute_input": "2024-08-15T19:33:19.043853Z", + "iopub.status.busy": "2024-08-15T19:33:19.043472Z", + "iopub.status.idle": "2024-08-15T19:33:19.046747Z", + "shell.execute_reply": "2024-08-15T19:33:19.046283Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:48.886113Z", - "iopub.status.busy": "2024-08-12T18:59:48.885774Z", - "iopub.status.idle": "2024-08-12T18:59:48.893491Z", - "shell.execute_reply": "2024-08-12T18:59:48.893014Z" + "iopub.execute_input": "2024-08-15T19:33:19.048737Z", + "iopub.status.busy": "2024-08-15T19:33:19.048563Z", + "iopub.status.idle": "2024-08-15T19:33:19.056920Z", + "shell.execute_reply": "2024-08-15T19:33:19.056373Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:48.895624Z", - "iopub.status.busy": "2024-08-12T18:59:48.895212Z", - "iopub.status.idle": "2024-08-12T18:59:48.944247Z", - "shell.execute_reply": "2024-08-12T18:59:48.943678Z" + "iopub.execute_input": "2024-08-15T19:33:19.058751Z", + "iopub.status.busy": "2024-08-15T19:33:19.058576Z", + "iopub.status.idle": "2024-08-15T19:33:19.107012Z", + "shell.execute_reply": "2024-08-15T19:33:19.106508Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:48.946974Z", - "iopub.status.busy": "2024-08-12T18:59:48.946526Z", - "iopub.status.idle": "2024-08-12T18:59:48.963914Z", - "shell.execute_reply": "2024-08-12T18:59:48.963313Z" + "iopub.execute_input": "2024-08-15T19:33:19.109507Z", + "iopub.status.busy": "2024-08-15T19:33:19.109153Z", + "iopub.status.idle": "2024-08-15T19:33:19.125576Z", + "shell.execute_reply": "2024-08-15T19:33:19.125139Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:48.966276Z", - "iopub.status.busy": "2024-08-12T18:59:48.965835Z", - "iopub.status.idle": "2024-08-12T18:59:48.969991Z", - "shell.execute_reply": "2024-08-12T18:59:48.969454Z" + "iopub.execute_input": "2024-08-15T19:33:19.127677Z", + "iopub.status.busy": "2024-08-15T19:33:19.127253Z", + "iopub.status.idle": "2024-08-15T19:33:19.130978Z", + "shell.execute_reply": "2024-08-15T19:33:19.130525Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:48.972099Z", - "iopub.status.busy": "2024-08-12T18:59:48.971921Z", - "iopub.status.idle": "2024-08-12T18:59:48.989790Z", - "shell.execute_reply": "2024-08-12T18:59:48.989320Z" + "iopub.execute_input": "2024-08-15T19:33:19.133034Z", + "iopub.status.busy": "2024-08-15T19:33:19.132859Z", + "iopub.status.idle": "2024-08-15T19:33:19.146529Z", + "shell.execute_reply": "2024-08-15T19:33:19.146084Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:48.992099Z", - "iopub.status.busy": "2024-08-12T18:59:48.991748Z", - "iopub.status.idle": "2024-08-12T18:59:49.018554Z", - "shell.execute_reply": "2024-08-12T18:59:49.018031Z" + "iopub.execute_input": "2024-08-15T19:33:19.148616Z", + "iopub.status.busy": "2024-08-15T19:33:19.148301Z", + "iopub.status.idle": "2024-08-15T19:33:19.174266Z", + "shell.execute_reply": "2024-08-15T19:33:19.173701Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:49.021208Z", - "iopub.status.busy": "2024-08-12T18:59:49.020835Z", - "iopub.status.idle": "2024-08-12T18:59:51.271455Z", - "shell.execute_reply": "2024-08-12T18:59:51.270767Z" + "iopub.execute_input": "2024-08-15T19:33:19.176552Z", + "iopub.status.busy": "2024-08-15T19:33:19.176156Z", + "iopub.status.idle": "2024-08-15T19:33:21.295171Z", + "shell.execute_reply": "2024-08-15T19:33:21.294603Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.274510Z", - "iopub.status.busy": "2024-08-12T18:59:51.273875Z", - "iopub.status.idle": "2024-08-12T18:59:51.281259Z", - "shell.execute_reply": "2024-08-12T18:59:51.280795Z" + "iopub.execute_input": "2024-08-15T19:33:21.297819Z", + "iopub.status.busy": "2024-08-15T19:33:21.297423Z", + "iopub.status.idle": "2024-08-15T19:33:21.304249Z", + "shell.execute_reply": "2024-08-15T19:33:21.303702Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.283421Z", - "iopub.status.busy": "2024-08-12T18:59:51.283094Z", - "iopub.status.idle": "2024-08-12T18:59:51.295523Z", - "shell.execute_reply": "2024-08-12T18:59:51.294970Z" + "iopub.execute_input": "2024-08-15T19:33:21.306192Z", + "iopub.status.busy": "2024-08-15T19:33:21.305896Z", + "iopub.status.idle": "2024-08-15T19:33:21.318068Z", + "shell.execute_reply": "2024-08-15T19:33:21.317511Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.297742Z", - "iopub.status.busy": "2024-08-12T18:59:51.297424Z", - "iopub.status.idle": "2024-08-12T18:59:51.304426Z", - "shell.execute_reply": "2024-08-12T18:59:51.303921Z" + "iopub.execute_input": "2024-08-15T19:33:21.320287Z", + "iopub.status.busy": "2024-08-15T19:33:21.319892Z", + "iopub.status.idle": "2024-08-15T19:33:21.326183Z", + "shell.execute_reply": "2024-08-15T19:33:21.325636Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.306560Z", - "iopub.status.busy": "2024-08-12T18:59:51.306375Z", - "iopub.status.idle": "2024-08-12T18:59:51.308977Z", - "shell.execute_reply": "2024-08-12T18:59:51.308522Z" + "iopub.execute_input": "2024-08-15T19:33:21.328261Z", + "iopub.status.busy": "2024-08-15T19:33:21.327939Z", + "iopub.status.idle": "2024-08-15T19:33:21.330491Z", + "shell.execute_reply": "2024-08-15T19:33:21.330042Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.310933Z", - "iopub.status.busy": "2024-08-12T18:59:51.310756Z", - "iopub.status.idle": "2024-08-12T18:59:51.314521Z", - "shell.execute_reply": "2024-08-12T18:59:51.314048Z" + "iopub.execute_input": "2024-08-15T19:33:21.332464Z", + "iopub.status.busy": "2024-08-15T19:33:21.332132Z", + "iopub.status.idle": "2024-08-15T19:33:21.335695Z", + "shell.execute_reply": "2024-08-15T19:33:21.335126Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.316522Z", - "iopub.status.busy": "2024-08-12T18:59:51.316329Z", - "iopub.status.idle": "2024-08-12T18:59:51.319058Z", - "shell.execute_reply": "2024-08-12T18:59:51.318594Z" + "iopub.execute_input": "2024-08-15T19:33:21.337813Z", + "iopub.status.busy": "2024-08-15T19:33:21.337495Z", + "iopub.status.idle": "2024-08-15T19:33:21.340157Z", + "shell.execute_reply": "2024-08-15T19:33:21.339711Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.321120Z", - "iopub.status.busy": "2024-08-12T18:59:51.320800Z", - "iopub.status.idle": "2024-08-12T18:59:51.325200Z", - "shell.execute_reply": "2024-08-12T18:59:51.324719Z" + "iopub.execute_input": "2024-08-15T19:33:21.341984Z", + "iopub.status.busy": "2024-08-15T19:33:21.341812Z", + "iopub.status.idle": "2024-08-15T19:33:21.346052Z", + "shell.execute_reply": "2024-08-15T19:33:21.345579Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.327285Z", - "iopub.status.busy": "2024-08-12T18:59:51.326972Z", - "iopub.status.idle": "2024-08-12T18:59:51.355218Z", - "shell.execute_reply": "2024-08-12T18:59:51.354758Z" + "iopub.execute_input": "2024-08-15T19:33:21.347925Z", + "iopub.status.busy": "2024-08-15T19:33:21.347755Z", + "iopub.status.idle": "2024-08-15T19:33:21.376149Z", + "shell.execute_reply": "2024-08-15T19:33:21.375710Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:51.357340Z", - "iopub.status.busy": "2024-08-12T18:59:51.357164Z", - "iopub.status.idle": "2024-08-12T18:59:51.362121Z", - "shell.execute_reply": "2024-08-12T18:59:51.361539Z" + "iopub.execute_input": "2024-08-15T19:33:21.378033Z", + "iopub.status.busy": "2024-08-15T19:33:21.377852Z", + "iopub.status.idle": "2024-08-15T19:33:21.382432Z", + "shell.execute_reply": "2024-08-15T19:33:21.381970Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index a251e1b8c..47eee13d5 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:54.476742Z", - "iopub.status.busy": "2024-08-12T18:59:54.476563Z", - "iopub.status.idle": "2024-08-12T18:59:55.941034Z", - "shell.execute_reply": "2024-08-12T18:59:55.940368Z" + "iopub.execute_input": "2024-08-15T19:33:24.408754Z", + "iopub.status.busy": "2024-08-15T19:33:24.408281Z", + "iopub.status.idle": "2024-08-15T19:33:25.784807Z", + "shell.execute_reply": "2024-08-15T19:33:25.784261Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:55.943675Z", - "iopub.status.busy": "2024-08-12T18:59:55.943355Z", - "iopub.status.idle": "2024-08-12T18:59:55.964343Z", - "shell.execute_reply": "2024-08-12T18:59:55.963737Z" + "iopub.execute_input": "2024-08-15T19:33:25.787291Z", + "iopub.status.busy": "2024-08-15T19:33:25.786884Z", + "iopub.status.idle": "2024-08-15T19:33:25.806389Z", + "shell.execute_reply": "2024-08-15T19:33:25.805835Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:55.967190Z", - "iopub.status.busy": "2024-08-12T18:59:55.966718Z", - "iopub.status.idle": "2024-08-12T18:59:55.980296Z", - "shell.execute_reply": "2024-08-12T18:59:55.979692Z" + "iopub.execute_input": "2024-08-15T19:33:25.808855Z", + "iopub.status.busy": "2024-08-15T19:33:25.808457Z", + "iopub.status.idle": "2024-08-15T19:33:25.821393Z", + "shell.execute_reply": "2024-08-15T19:33:25.820926Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:55.982590Z", - "iopub.status.busy": "2024-08-12T18:59:55.982109Z", - "iopub.status.idle": "2024-08-12T18:59:58.712481Z", - "shell.execute_reply": "2024-08-12T18:59:58.711874Z" + "iopub.execute_input": "2024-08-15T19:33:25.823364Z", + "iopub.status.busy": "2024-08-15T19:33:25.823058Z", + "iopub.status.idle": "2024-08-15T19:33:28.447593Z", + "shell.execute_reply": "2024-08-15T19:33:28.447075Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T18:59:58.714680Z", - "iopub.status.busy": "2024-08-12T18:59:58.714484Z", - "iopub.status.idle": "2024-08-12T19:00:00.087689Z", - "shell.execute_reply": "2024-08-12T19:00:00.087120Z" + "iopub.execute_input": "2024-08-15T19:33:28.449922Z", + "iopub.status.busy": "2024-08-15T19:33:28.449570Z", + "iopub.status.idle": "2024-08-15T19:33:29.787510Z", + "shell.execute_reply": "2024-08-15T19:33:29.786948Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:00.090114Z", - "iopub.status.busy": "2024-08-12T19:00:00.089917Z", - "iopub.status.idle": "2024-08-12T19:00:00.094093Z", - "shell.execute_reply": "2024-08-12T19:00:00.093606Z" + "iopub.execute_input": "2024-08-15T19:33:29.789829Z", + "iopub.status.busy": "2024-08-15T19:33:29.789481Z", + "iopub.status.idle": "2024-08-15T19:33:29.793115Z", + "shell.execute_reply": "2024-08-15T19:33:29.792575Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:00.096133Z", - "iopub.status.busy": "2024-08-12T19:00:00.095947Z", - "iopub.status.idle": "2024-08-12T19:00:02.393180Z", - "shell.execute_reply": "2024-08-12T19:00:02.392409Z" + "iopub.execute_input": "2024-08-15T19:33:29.795208Z", + "iopub.status.busy": "2024-08-15T19:33:29.794902Z", + "iopub.status.idle": "2024-08-15T19:33:31.847436Z", + "shell.execute_reply": "2024-08-15T19:33:31.846807Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:02.395957Z", - "iopub.status.busy": "2024-08-12T19:00:02.395557Z", - "iopub.status.idle": "2024-08-12T19:00:02.404909Z", - "shell.execute_reply": "2024-08-12T19:00:02.404317Z" + "iopub.execute_input": "2024-08-15T19:33:31.849932Z", + "iopub.status.busy": "2024-08-15T19:33:31.849463Z", + "iopub.status.idle": "2024-08-15T19:33:31.857663Z", + "shell.execute_reply": "2024-08-15T19:33:31.857099Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:02.407237Z", - "iopub.status.busy": "2024-08-12T19:00:02.406886Z", - "iopub.status.idle": "2024-08-12T19:00:05.052633Z", - "shell.execute_reply": "2024-08-12T19:00:05.051949Z" + "iopub.execute_input": "2024-08-15T19:33:31.859866Z", + "iopub.status.busy": "2024-08-15T19:33:31.859532Z", + "iopub.status.idle": "2024-08-15T19:33:34.428636Z", + "shell.execute_reply": "2024-08-15T19:33:34.428080Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:05.055108Z", - "iopub.status.busy": "2024-08-12T19:00:05.054701Z", - "iopub.status.idle": "2024-08-12T19:00:05.058341Z", - "shell.execute_reply": "2024-08-12T19:00:05.057777Z" + "iopub.execute_input": "2024-08-15T19:33:34.431112Z", + "iopub.status.busy": "2024-08-15T19:33:34.430687Z", + "iopub.status.idle": "2024-08-15T19:33:34.434117Z", + "shell.execute_reply": "2024-08-15T19:33:34.433576Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:05.060592Z", - "iopub.status.busy": "2024-08-12T19:00:05.060231Z", - "iopub.status.idle": "2024-08-12T19:00:05.064081Z", - "shell.execute_reply": "2024-08-12T19:00:05.063515Z" + "iopub.execute_input": "2024-08-15T19:33:34.436313Z", + "iopub.status.busy": "2024-08-15T19:33:34.435988Z", + "iopub.status.idle": "2024-08-15T19:33:34.439420Z", + "shell.execute_reply": "2024-08-15T19:33:34.438961Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:05.066213Z", - "iopub.status.busy": "2024-08-12T19:00:05.066030Z", - "iopub.status.idle": "2024-08-12T19:00:05.069385Z", - "shell.execute_reply": "2024-08-12T19:00:05.068796Z" + "iopub.execute_input": "2024-08-15T19:33:34.441508Z", + "iopub.status.busy": "2024-08-15T19:33:34.441183Z", + "iopub.status.idle": "2024-08-15T19:33:34.444382Z", + "shell.execute_reply": "2024-08-15T19:33:34.443828Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 825856313..0ddc47a57 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:07.744973Z", - "iopub.status.busy": "2024-08-12T19:00:07.744802Z", - "iopub.status.idle": "2024-08-12T19:00:09.232129Z", - "shell.execute_reply": "2024-08-12T19:00:09.231463Z" + "iopub.execute_input": "2024-08-15T19:33:37.019527Z", + "iopub.status.busy": "2024-08-15T19:33:37.019170Z", + "iopub.status.idle": "2024-08-15T19:33:38.388227Z", + "shell.execute_reply": "2024-08-15T19:33:38.387596Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:09.234897Z", - "iopub.status.busy": "2024-08-12T19:00:09.234541Z", - "iopub.status.idle": "2024-08-12T19:00:11.915101Z", - "shell.execute_reply": "2024-08-12T19:00:11.914359Z" + "iopub.execute_input": "2024-08-15T19:33:38.390795Z", + "iopub.status.busy": "2024-08-15T19:33:38.390519Z", + "iopub.status.idle": "2024-08-15T19:33:39.912137Z", + "shell.execute_reply": "2024-08-15T19:33:39.911322Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:11.917833Z", - "iopub.status.busy": "2024-08-12T19:00:11.917612Z", - "iopub.status.idle": "2024-08-12T19:00:11.921571Z", - "shell.execute_reply": "2024-08-12T19:00:11.921101Z" + "iopub.execute_input": "2024-08-15T19:33:39.914956Z", + "iopub.status.busy": "2024-08-15T19:33:39.914717Z", + "iopub.status.idle": "2024-08-15T19:33:39.918337Z", + "shell.execute_reply": "2024-08-15T19:33:39.917863Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:11.923756Z", - "iopub.status.busy": "2024-08-12T19:00:11.923398Z", - "iopub.status.idle": "2024-08-12T19:00:11.931022Z", - "shell.execute_reply": "2024-08-12T19:00:11.930496Z" + "iopub.execute_input": "2024-08-15T19:33:39.920645Z", + "iopub.status.busy": "2024-08-15T19:33:39.920144Z", + "iopub.status.idle": "2024-08-15T19:33:39.927984Z", + "shell.execute_reply": "2024-08-15T19:33:39.927424Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:11.933415Z", - "iopub.status.busy": "2024-08-12T19:00:11.933040Z", - "iopub.status.idle": "2024-08-12T19:00:12.256254Z", - "shell.execute_reply": "2024-08-12T19:00:12.255623Z" + "iopub.execute_input": "2024-08-15T19:33:39.930288Z", + "iopub.status.busy": "2024-08-15T19:33:39.929871Z", + "iopub.status.idle": "2024-08-15T19:33:40.245021Z", + "shell.execute_reply": "2024-08-15T19:33:40.244466Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:12.259525Z", - "iopub.status.busy": "2024-08-12T19:00:12.259155Z", - "iopub.status.idle": "2024-08-12T19:00:12.265184Z", - "shell.execute_reply": "2024-08-12T19:00:12.264699Z" + "iopub.execute_input": "2024-08-15T19:33:40.247559Z", + "iopub.status.busy": "2024-08-15T19:33:40.247387Z", + "iopub.status.idle": "2024-08-15T19:33:40.252844Z", + "shell.execute_reply": "2024-08-15T19:33:40.252371Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:12.267306Z", - "iopub.status.busy": "2024-08-12T19:00:12.266962Z", - "iopub.status.idle": "2024-08-12T19:00:12.270759Z", - "shell.execute_reply": "2024-08-12T19:00:12.270274Z" + "iopub.execute_input": "2024-08-15T19:33:40.254902Z", + "iopub.status.busy": "2024-08-15T19:33:40.254449Z", + "iopub.status.idle": "2024-08-15T19:33:40.258381Z", + "shell.execute_reply": "2024-08-15T19:33:40.257857Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:12.272845Z", - "iopub.status.busy": "2024-08-12T19:00:12.272501Z", - "iopub.status.idle": "2024-08-12T19:00:13.251328Z", - "shell.execute_reply": "2024-08-12T19:00:13.250639Z" + "iopub.execute_input": "2024-08-15T19:33:40.260446Z", + "iopub.status.busy": "2024-08-15T19:33:40.260109Z", + "iopub.status.idle": "2024-08-15T19:33:41.265411Z", + "shell.execute_reply": "2024-08-15T19:33:41.264860Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:13.253843Z", - "iopub.status.busy": "2024-08-12T19:00:13.253432Z", - "iopub.status.idle": "2024-08-12T19:00:13.457386Z", - "shell.execute_reply": "2024-08-12T19:00:13.456904Z" + "iopub.execute_input": "2024-08-15T19:33:41.267651Z", + "iopub.status.busy": "2024-08-15T19:33:41.267464Z", + "iopub.status.idle": "2024-08-15T19:33:41.466081Z", + "shell.execute_reply": "2024-08-15T19:33:41.465642Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:13.459660Z", - "iopub.status.busy": "2024-08-12T19:00:13.459285Z", - "iopub.status.idle": "2024-08-12T19:00:13.463485Z", - "shell.execute_reply": "2024-08-12T19:00:13.462963Z" + "iopub.execute_input": "2024-08-15T19:33:41.468250Z", + "iopub.status.busy": "2024-08-15T19:33:41.467912Z", + "iopub.status.idle": "2024-08-15T19:33:41.471774Z", + "shell.execute_reply": "2024-08-15T19:33:41.471263Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:13.465606Z", - "iopub.status.busy": "2024-08-12T19:00:13.465247Z", - "iopub.status.idle": "2024-08-12T19:00:13.843786Z", - "shell.execute_reply": "2024-08-12T19:00:13.843149Z" + "iopub.execute_input": "2024-08-15T19:33:41.473778Z", + "iopub.status.busy": "2024-08-15T19:33:41.473449Z", + "iopub.status.idle": "2024-08-15T19:33:41.842101Z", + "shell.execute_reply": "2024-08-15T19:33:41.841613Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:13.846938Z", - "iopub.status.busy": "2024-08-12T19:00:13.846715Z", - "iopub.status.idle": "2024-08-12T19:00:14.186146Z", - "shell.execute_reply": "2024-08-12T19:00:14.185542Z" + "iopub.execute_input": "2024-08-15T19:33:41.845280Z", + "iopub.status.busy": "2024-08-15T19:33:41.844906Z", + "iopub.status.idle": "2024-08-15T19:33:42.175876Z", + "shell.execute_reply": "2024-08-15T19:33:42.175343Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:14.189289Z", - "iopub.status.busy": "2024-08-12T19:00:14.188801Z", - "iopub.status.idle": "2024-08-12T19:00:14.531251Z", - "shell.execute_reply": "2024-08-12T19:00:14.530600Z" + "iopub.execute_input": "2024-08-15T19:33:42.178463Z", + "iopub.status.busy": "2024-08-15T19:33:42.178100Z", + "iopub.status.idle": "2024-08-15T19:33:42.540455Z", + "shell.execute_reply": "2024-08-15T19:33:42.539894Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:14.534669Z", - "iopub.status.busy": "2024-08-12T19:00:14.534462Z", - "iopub.status.idle": "2024-08-12T19:00:14.981300Z", - "shell.execute_reply": "2024-08-12T19:00:14.980718Z" + "iopub.execute_input": "2024-08-15T19:33:42.543382Z", + "iopub.status.busy": "2024-08-15T19:33:42.543022Z", + "iopub.status.idle": "2024-08-15T19:33:42.954896Z", + "shell.execute_reply": "2024-08-15T19:33:42.954295Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:14.986021Z", - "iopub.status.busy": "2024-08-12T19:00:14.985784Z", - "iopub.status.idle": "2024-08-12T19:00:15.419680Z", - "shell.execute_reply": "2024-08-12T19:00:15.419087Z" + "iopub.execute_input": "2024-08-15T19:33:42.959199Z", + "iopub.status.busy": "2024-08-15T19:33:42.958898Z", + "iopub.status.idle": "2024-08-15T19:33:43.382799Z", + "shell.execute_reply": "2024-08-15T19:33:43.382192Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:15.423219Z", - "iopub.status.busy": "2024-08-12T19:00:15.422852Z", - "iopub.status.idle": "2024-08-12T19:00:15.641955Z", - "shell.execute_reply": "2024-08-12T19:00:15.641306Z" + "iopub.execute_input": "2024-08-15T19:33:43.385956Z", + "iopub.status.busy": "2024-08-15T19:33:43.385755Z", + "iopub.status.idle": "2024-08-15T19:33:43.602082Z", + "shell.execute_reply": "2024-08-15T19:33:43.601513Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:15.644256Z", - "iopub.status.busy": "2024-08-12T19:00:15.643880Z", - "iopub.status.idle": "2024-08-12T19:00:15.829580Z", - "shell.execute_reply": "2024-08-12T19:00:15.828972Z" + "iopub.execute_input": "2024-08-15T19:33:43.604528Z", + "iopub.status.busy": "2024-08-15T19:33:43.604168Z", + "iopub.status.idle": "2024-08-15T19:33:43.806270Z", + "shell.execute_reply": "2024-08-15T19:33:43.805784Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:15.831912Z", - "iopub.status.busy": "2024-08-12T19:00:15.831726Z", - "iopub.status.idle": "2024-08-12T19:00:15.834898Z", - "shell.execute_reply": "2024-08-12T19:00:15.834335Z" + "iopub.execute_input": "2024-08-15T19:33:43.808569Z", + "iopub.status.busy": "2024-08-15T19:33:43.808203Z", + "iopub.status.idle": "2024-08-15T19:33:43.811161Z", + "shell.execute_reply": "2024-08-15T19:33:43.810678Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:15.837304Z", - "iopub.status.busy": "2024-08-12T19:00:15.837106Z", - "iopub.status.idle": "2024-08-12T19:00:16.840169Z", - "shell.execute_reply": "2024-08-12T19:00:16.839611Z" + "iopub.execute_input": "2024-08-15T19:33:43.813139Z", + "iopub.status.busy": "2024-08-15T19:33:43.812803Z", + "iopub.status.idle": "2024-08-15T19:33:44.706006Z", + "shell.execute_reply": "2024-08-15T19:33:44.705477Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:16.842986Z", - "iopub.status.busy": "2024-08-12T19:00:16.842795Z", - "iopub.status.idle": "2024-08-12T19:00:17.013055Z", - "shell.execute_reply": "2024-08-12T19:00:17.012447Z" + "iopub.execute_input": "2024-08-15T19:33:44.708884Z", + "iopub.status.busy": "2024-08-15T19:33:44.708480Z", + "iopub.status.idle": "2024-08-15T19:33:44.825603Z", + "shell.execute_reply": "2024-08-15T19:33:44.825038Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:17.015418Z", - "iopub.status.busy": "2024-08-12T19:00:17.014952Z", - "iopub.status.idle": "2024-08-12T19:00:17.154380Z", - "shell.execute_reply": "2024-08-12T19:00:17.153704Z" + "iopub.execute_input": "2024-08-15T19:33:44.827802Z", + "iopub.status.busy": "2024-08-15T19:33:44.827471Z", + "iopub.status.idle": "2024-08-15T19:33:44.952068Z", + "shell.execute_reply": "2024-08-15T19:33:44.951643Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:17.157210Z", - "iopub.status.busy": "2024-08-12T19:00:17.156832Z", - "iopub.status.idle": "2024-08-12T19:00:17.940088Z", - "shell.execute_reply": "2024-08-12T19:00:17.939515Z" + "iopub.execute_input": "2024-08-15T19:33:44.954099Z", + "iopub.status.busy": "2024-08-15T19:33:44.953765Z", + "iopub.status.idle": "2024-08-15T19:33:45.616770Z", + "shell.execute_reply": "2024-08-15T19:33:45.616095Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:17.942465Z", - "iopub.status.busy": "2024-08-12T19:00:17.942094Z", - "iopub.status.idle": "2024-08-12T19:00:17.945988Z", - "shell.execute_reply": "2024-08-12T19:00:17.945408Z" + "iopub.execute_input": "2024-08-15T19:33:45.619455Z", + "iopub.status.busy": "2024-08-15T19:33:45.619011Z", + "iopub.status.idle": "2024-08-15T19:33:45.623830Z", + "shell.execute_reply": "2024-08-15T19:33:45.623366Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 9b9466013..96d9f7fe4 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

    2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:04<00:00, 40165594.79it/s]
    +100%|██████████| 170498071/170498071 [00:01<00:00, 104640519.71it/s]
     
    -
    +
    @@ -1130,7 +1130,7 @@

    Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    The modern AI pipeline automated with Cleanlab Studio

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 29b2c9f91..f4aab066c 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:20.285190Z", - "iopub.status.busy": "2024-08-12T19:00:20.285019Z", - "iopub.status.idle": "2024-08-12T19:00:23.633953Z", - "shell.execute_reply": "2024-08-12T19:00:23.633344Z" + "iopub.execute_input": "2024-08-15T19:33:47.753920Z", + "iopub.status.busy": "2024-08-15T19:33:47.753743Z", + "iopub.status.idle": "2024-08-15T19:33:50.873837Z", + "shell.execute_reply": "2024-08-15T19:33:50.873200Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:23.636656Z", - "iopub.status.busy": "2024-08-12T19:00:23.636296Z", - "iopub.status.idle": "2024-08-12T19:00:23.656607Z", - "shell.execute_reply": "2024-08-12T19:00:23.656031Z" + "iopub.execute_input": "2024-08-15T19:33:50.876385Z", + "iopub.status.busy": "2024-08-15T19:33:50.876125Z", + "iopub.status.idle": "2024-08-15T19:33:50.894998Z", + "shell.execute_reply": "2024-08-15T19:33:50.894410Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:23.659450Z", - "iopub.status.busy": "2024-08-12T19:00:23.658866Z", - "iopub.status.idle": "2024-08-12T19:00:23.663050Z", - "shell.execute_reply": "2024-08-12T19:00:23.662569Z" + "iopub.execute_input": "2024-08-15T19:33:50.897311Z", + "iopub.status.busy": "2024-08-15T19:33:50.896794Z", + "iopub.status.idle": "2024-08-15T19:33:50.900895Z", + "shell.execute_reply": "2024-08-15T19:33:50.900340Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:23.665359Z", - "iopub.status.busy": "2024-08-12T19:00:23.665006Z", - "iopub.status.idle": "2024-08-12T19:00:31.351770Z", - "shell.execute_reply": "2024-08-12T19:00:31.351225Z" + "iopub.execute_input": "2024-08-15T19:33:50.903083Z", + "iopub.status.busy": "2024-08-15T19:33:50.902737Z", + "iopub.status.idle": "2024-08-15T19:33:55.313541Z", + "shell.execute_reply": "2024-08-15T19:33:55.313007Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<11:24, 249157.84it/s]" + " 1%|▏ | 2162688/170498071 [00:00<00:07, 21623910.41it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 196608/170498071 [00:00<03:25, 827471.69it/s]" + " 8%|▊ | 13107200/170498071 [00:00<00:02, 73070189.60it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 819200/170498071 [00:00<01:05, 2583423.64it/s]" + " 14%|█▍ | 24215552/170498071 [00:00<00:01, 90380625.90it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3244032/170498071 [00:00<00:17, 9350135.25it/s]" + " 21%|██ | 35127296/170498071 [00:00<00:01, 97738490.02it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 7012352/170498071 [00:00<00:08, 18172606.14it/s]" + " 27%|██▋ | 46071808/170498071 [00:00<00:01, 101908233.38it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 12484608/170498071 [00:00<00:05, 29413436.51it/s]" + " 33%|███▎ | 56983552/170498071 [00:00<00:01, 104246746.74it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15728640/170498071 [00:00<00:05, 30170949.62it/s]" + " 40%|███▉ | 67960832/170498071 [00:00<00:00, 105952429.18it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 21823488/170498071 [00:00<00:03, 39459011.05it/s]" + " 46%|████▌ | 78577664/170498071 [00:00<00:00, 105721194.50it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 25952256/170498071 [00:01<00:03, 37968019.50it/s]" + " 53%|█████▎ | 89522176/170498071 [00:00<00:00, 106863386.19it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 31195136/170498071 [00:01<00:03, 38943792.14it/s]" + " 59%|█████▉ | 100499456/170498071 [00:01<00:00, 107679214.42it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 36962304/170498071 [00:01<00:03, 44109490.91it/s]" + " 65%|██████▌ | 111509504/170498071 [00:01<00:00, 108348150.98it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41484288/170498071 [00:01<00:03, 41905861.00it/s]" + " 72%|███████▏ | 122716160/170498071 [00:01<00:00, 109444440.60it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 46694400/170498071 [00:01<00:02, 43598155.05it/s]" + " 78%|███████▊ | 133693440/170498071 [00:01<00:00, 109228943.59it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 51150848/170498071 [00:01<00:02, 43328013.65it/s]" + " 85%|████████▌ | 145063936/170498071 [00:01<00:00, 110518487.62it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 56098816/170498071 [00:01<00:02, 44719966.49it/s]" + " 92%|█████████▏| 156336128/170498071 [00:01<00:00, 111059622.59it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 60620800/170498071 [00:01<00:02, 43523232.99it/s]" + " 98%|█████████▊| 167641088/170498071 [00:01<00:00, 111606158.84it/s]" ] }, { @@ -380,191 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 65503232/170498071 [00:01<00:02, 44488462.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 41%|████ | 69992448/170498071 [00:02<00:02, 43753129.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 44%|████▍ | 75137024/170498071 [00:02<00:02, 45892131.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 47%|████▋ | 79757312/170498071 [00:02<00:02, 44212549.56it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 84672512/170498071 [00:02<00:01, 45080581.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 89227264/170498071 [00:02<00:01, 44302853.83it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 94339072/170498071 [00:02<00:01, 46248373.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 98992128/170498071 [00:02<00:01, 44516846.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 103841792/170498071 [00:02<00:01, 45315879.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▎ | 108396544/170498071 [00:02<00:01, 44103142.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▋ | 113377280/170498071 [00:02<00:01, 45293527.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 117932032/170498071 [00:03<00:01, 44445448.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 122781696/170498071 [00:03<00:01, 45121971.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 127303680/170498071 [00:03<00:00, 44118259.88it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 132349952/170498071 [00:03<00:00, 45803527.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 136970240/170498071 [00:03<00:00, 44328264.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 141688832/170498071 [00:03<00:00, 44772479.87it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 146178048/170498071 [00:03<00:00, 44025135.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 151158784/170498071 [00:03<00:00, 45306429.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████▏| 155713536/170498071 [00:03<00:00, 44169697.14it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 160759808/170498071 [00:04<00:00, 45207366.04it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165314560/170498071 [00:04<00:00, 44337622.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 170295296/170498071 [00:04<00:00, 45868708.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 40165594.79it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 104640519.71it/s]" ] }, { @@ -682,10 +498,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:31.354406Z", - "iopub.status.busy": "2024-08-12T19:00:31.353939Z", - "iopub.status.idle": "2024-08-12T19:00:31.358764Z", - "shell.execute_reply": "2024-08-12T19:00:31.358312Z" + "iopub.execute_input": "2024-08-15T19:33:55.315768Z", + "iopub.status.busy": "2024-08-15T19:33:55.315488Z", + "iopub.status.idle": "2024-08-15T19:33:55.320319Z", + "shell.execute_reply": "2024-08-15T19:33:55.319873Z" }, "nbsphinx": "hidden" }, @@ -736,10 +552,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:31.360792Z", - "iopub.status.busy": "2024-08-12T19:00:31.360605Z", - "iopub.status.idle": "2024-08-12T19:00:31.923812Z", - "shell.execute_reply": "2024-08-12T19:00:31.923180Z" + "iopub.execute_input": "2024-08-15T19:33:55.322345Z", + "iopub.status.busy": "2024-08-15T19:33:55.322005Z", + "iopub.status.idle": "2024-08-15T19:33:55.863016Z", + "shell.execute_reply": "2024-08-15T19:33:55.862471Z" } }, "outputs": [ @@ -772,10 +588,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:31.926228Z", - "iopub.status.busy": "2024-08-12T19:00:31.925847Z", - "iopub.status.idle": "2024-08-12T19:00:32.452460Z", - "shell.execute_reply": "2024-08-12T19:00:32.451834Z" + "iopub.execute_input": "2024-08-15T19:33:55.865045Z", + "iopub.status.busy": "2024-08-15T19:33:55.864865Z", + "iopub.status.idle": "2024-08-15T19:33:56.372326Z", + "shell.execute_reply": "2024-08-15T19:33:56.371835Z" } }, "outputs": [ @@ -813,10 +629,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:32.454955Z", - "iopub.status.busy": "2024-08-12T19:00:32.454540Z", - "iopub.status.idle": "2024-08-12T19:00:32.457996Z", - "shell.execute_reply": "2024-08-12T19:00:32.457535Z" + "iopub.execute_input": "2024-08-15T19:33:56.374382Z", + "iopub.status.busy": "2024-08-15T19:33:56.374193Z", + "iopub.status.idle": "2024-08-15T19:33:56.377844Z", + "shell.execute_reply": "2024-08-15T19:33:56.377394Z" } }, "outputs": [], @@ -839,17 +655,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:32.459913Z", - "iopub.status.busy": "2024-08-12T19:00:32.459734Z", - "iopub.status.idle": "2024-08-12T19:00:45.325277Z", - "shell.execute_reply": "2024-08-12T19:00:45.324697Z" + "iopub.execute_input": "2024-08-15T19:33:56.379645Z", + "iopub.status.busy": "2024-08-15T19:33:56.379475Z", + "iopub.status.idle": "2024-08-15T19:34:08.626829Z", + "shell.execute_reply": "2024-08-15T19:34:08.626231Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e4fc5c79f684873aca29643ab5213d6", + "model_id": "f7926ed22a844edd98f972b00aa940cf", "version_major": 2, "version_minor": 0 }, @@ -908,10 +724,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:45.327911Z", - "iopub.status.busy": "2024-08-12T19:00:45.327546Z", - "iopub.status.idle": "2024-08-12T19:00:47.473285Z", - "shell.execute_reply": "2024-08-12T19:00:47.472582Z" + "iopub.execute_input": "2024-08-15T19:34:08.629376Z", + "iopub.status.busy": "2024-08-15T19:34:08.629024Z", + "iopub.status.idle": "2024-08-15T19:34:10.730658Z", + "shell.execute_reply": "2024-08-15T19:34:10.730020Z" } }, "outputs": [ @@ -955,10 +771,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:47.476197Z", - "iopub.status.busy": "2024-08-12T19:00:47.475653Z", - "iopub.status.idle": "2024-08-12T19:00:47.741842Z", - "shell.execute_reply": "2024-08-12T19:00:47.741157Z" + "iopub.execute_input": "2024-08-15T19:34:10.733233Z", + "iopub.status.busy": "2024-08-15T19:34:10.732753Z", + "iopub.status.idle": "2024-08-15T19:34:10.984048Z", + "shell.execute_reply": "2024-08-15T19:34:10.983415Z" } }, "outputs": [ @@ -994,10 +810,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:47.744874Z", - "iopub.status.busy": "2024-08-12T19:00:47.744331Z", - "iopub.status.idle": "2024-08-12T19:00:48.420941Z", - "shell.execute_reply": "2024-08-12T19:00:48.420354Z" + "iopub.execute_input": "2024-08-15T19:34:10.986867Z", + "iopub.status.busy": "2024-08-15T19:34:10.986378Z", + "iopub.status.idle": "2024-08-15T19:34:11.674841Z", + "shell.execute_reply": "2024-08-15T19:34:11.674279Z" } }, "outputs": [ @@ -1047,10 +863,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:48.423834Z", - "iopub.status.busy": "2024-08-12T19:00:48.423300Z", - "iopub.status.idle": "2024-08-12T19:00:48.777069Z", - "shell.execute_reply": "2024-08-12T19:00:48.776492Z" + "iopub.execute_input": "2024-08-15T19:34:11.677813Z", + "iopub.status.busy": "2024-08-15T19:34:11.677368Z", + "iopub.status.idle": "2024-08-15T19:34:12.014922Z", + "shell.execute_reply": "2024-08-15T19:34:12.014402Z" } }, "outputs": [ @@ -1098,10 +914,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:48.779436Z", - "iopub.status.busy": "2024-08-12T19:00:48.779092Z", - "iopub.status.idle": "2024-08-12T19:00:49.030804Z", - "shell.execute_reply": "2024-08-12T19:00:49.030162Z" + "iopub.execute_input": "2024-08-15T19:34:12.017074Z", + "iopub.status.busy": "2024-08-15T19:34:12.016728Z", + "iopub.status.idle": "2024-08-15T19:34:12.256278Z", + "shell.execute_reply": "2024-08-15T19:34:12.255674Z" } }, "outputs": [ @@ -1157,10 +973,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:49.033695Z", - "iopub.status.busy": "2024-08-12T19:00:49.033452Z", - "iopub.status.idle": "2024-08-12T19:00:49.129989Z", - "shell.execute_reply": "2024-08-12T19:00:49.129464Z" + "iopub.execute_input": "2024-08-15T19:34:12.259413Z", + "iopub.status.busy": "2024-08-15T19:34:12.258693Z", + "iopub.status.idle": "2024-08-15T19:34:12.349564Z", + "shell.execute_reply": "2024-08-15T19:34:12.349074Z" } }, "outputs": [], @@ -1181,10 +997,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:49.132284Z", - "iopub.status.busy": "2024-08-12T19:00:49.132107Z", - "iopub.status.idle": "2024-08-12T19:00:59.836874Z", - "shell.execute_reply": "2024-08-12T19:00:59.836169Z" + "iopub.execute_input": "2024-08-15T19:34:12.352057Z", + "iopub.status.busy": "2024-08-15T19:34:12.351708Z", + "iopub.status.idle": "2024-08-15T19:34:22.676851Z", + "shell.execute_reply": "2024-08-15T19:34:22.676176Z" } }, "outputs": [ @@ -1221,10 +1037,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:00:59.839766Z", - "iopub.status.busy": "2024-08-12T19:00:59.839249Z", - "iopub.status.idle": "2024-08-12T19:01:02.226449Z", - "shell.execute_reply": "2024-08-12T19:01:02.225800Z" + "iopub.execute_input": "2024-08-15T19:34:22.679548Z", + "iopub.status.busy": "2024-08-15T19:34:22.679129Z", + "iopub.status.idle": "2024-08-15T19:34:24.906719Z", + "shell.execute_reply": "2024-08-15T19:34:24.906166Z" } }, "outputs": [ @@ -1255,10 +1071,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:02.229141Z", - "iopub.status.busy": "2024-08-12T19:01:02.228744Z", - "iopub.status.idle": "2024-08-12T19:01:02.433344Z", - "shell.execute_reply": "2024-08-12T19:01:02.432819Z" + "iopub.execute_input": "2024-08-15T19:34:24.909342Z", + "iopub.status.busy": "2024-08-15T19:34:24.908815Z", + "iopub.status.idle": "2024-08-15T19:34:25.121717Z", + "shell.execute_reply": "2024-08-15T19:34:25.121210Z" } }, "outputs": [], @@ -1272,10 +1088,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:02.435897Z", - "iopub.status.busy": "2024-08-12T19:01:02.435430Z", - "iopub.status.idle": "2024-08-12T19:01:02.438731Z", - "shell.execute_reply": "2024-08-12T19:01:02.438202Z" + "iopub.execute_input": "2024-08-15T19:34:25.124151Z", + "iopub.status.busy": "2024-08-15T19:34:25.123797Z", + "iopub.status.idle": "2024-08-15T19:34:25.126846Z", + "shell.execute_reply": "2024-08-15T19:34:25.126423Z" } }, "outputs": [], @@ -1313,10 +1129,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:02.440833Z", - "iopub.status.busy": "2024-08-12T19:01:02.440515Z", - "iopub.status.idle": "2024-08-12T19:01:02.448965Z", - "shell.execute_reply": "2024-08-12T19:01:02.448383Z" + "iopub.execute_input": "2024-08-15T19:34:25.128796Z", + "iopub.status.busy": "2024-08-15T19:34:25.128505Z", + "iopub.status.idle": "2024-08-15T19:34:25.137369Z", + "shell.execute_reply": "2024-08-15T19:34:25.136809Z" }, "nbsphinx": "hidden" }, @@ -1361,7 +1177,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "281d904d63634ba2bc515e56e280b18a": { + "1a1b0d232b024e53a1e81344e527587a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1414,7 +1230,69 @@ "width": null } }, - "370d465ea34c4da9906a0a85d82d056b": { + "3a035619b39f4f869c0ca82a4fc4ed45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ebce44de0fe949b1acf4ec52d4316286", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6fda1da75ad2420e94892355d33a0eb1", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "3a0e9da941fd43f2b03275bc58fc0705": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "400120aefdbb480a822fed3d676395fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "406132a528264560a11c9e77f4f2e58c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1467,7 +1345,23 @@ "width": null } }, - "691cb5820f224f97a76ae4bde2e746e6": { + "6fda1da75ad2420e94892355d33a0eb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "989e4c77eb4b4c188be3b9f9626ed64f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1520,31 +1414,30 @@ "width": null } }, - "7e4fc5c79f684873aca29643ab5213d6": { + "9b899db2f69d44398458f3843f327db9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc42d1facc844e459afc09ef7c687042", - "IPY_MODEL_f86698037fa647aca0a9fa209c430b2b", - "IPY_MODEL_90831226eb3e4b068e5309c838071a8c" - ], - "layout": "IPY_MODEL_691cb5820f224f97a76ae4bde2e746e6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1a1b0d232b024e53a1e81344e527587a", + "placeholder": "​", + "style": "IPY_MODEL_3a0e9da941fd43f2b03275bc58fc0705", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "90831226eb3e4b068e5309c838071a8c": { + "e9b1a1c680a24a3e9b0aee604b559e7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1559,15 +1452,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_281d904d63634ba2bc515e56e280b18a", + "layout": "IPY_MODEL_406132a528264560a11c9e77f4f2e58c", "placeholder": "​", - "style": "IPY_MODEL_9f62f6674a964c1aa565f872301096e5", + "style": "IPY_MODEL_400120aefdbb480a822fed3d676395fc", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 205MB/s]" + "value": " 102M/102M [00:00<00:00, 303MB/s]" } }, - "924131cdce89473fb5ed8528e97a50f1": { + "ebce44de0fe949b1acf4ec52d4316286": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1620,105 +1513,28 @@ "width": null } }, - "9f62f6674a964c1aa565f872301096e5": { + "f7926ed22a844edd98f972b00aa940cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a4817168f39c4d4591bf97329c9379f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b47804059351482a8c58b8dda5743345": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f86698037fa647aca0a9fa209c430b2b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_924131cdce89473fb5ed8528e97a50f1", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a4817168f39c4d4591bf97329c9379f2", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "fc42d1facc844e459afc09ef7c687042": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_370d465ea34c4da9906a0a85d82d056b", - "placeholder": "​", - "style": "IPY_MODEL_b47804059351482a8c58b8dda5743345", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9b899db2f69d44398458f3843f327db9", + "IPY_MODEL_3a035619b39f4f869c0ca82a4fc4ed45", + "IPY_MODEL_e9b1a1c680a24a3e9b0aee604b559e7f" + ], + "layout": "IPY_MODEL_989e4c77eb4b4c188be3b9f9626ed64f", "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "tooltip": null } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 76fbdefa7..4f47e7f81 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:06.712529Z", - "iopub.status.busy": "2024-08-12T19:01:06.712319Z", - "iopub.status.idle": "2024-08-12T19:01:08.153165Z", - "shell.execute_reply": "2024-08-12T19:01:08.152492Z" + "iopub.execute_input": "2024-08-15T19:34:29.375142Z", + "iopub.status.busy": "2024-08-15T19:34:29.374663Z", + "iopub.status.idle": "2024-08-15T19:34:30.757000Z", + "shell.execute_reply": "2024-08-15T19:34:30.756364Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.155797Z", - "iopub.status.busy": "2024-08-12T19:01:08.155495Z", - "iopub.status.idle": "2024-08-12T19:01:08.174435Z", - "shell.execute_reply": "2024-08-12T19:01:08.173861Z" + "iopub.execute_input": "2024-08-15T19:34:30.759704Z", + "iopub.status.busy": "2024-08-15T19:34:30.759397Z", + "iopub.status.idle": "2024-08-15T19:34:30.777754Z", + "shell.execute_reply": "2024-08-15T19:34:30.777305Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.177045Z", - "iopub.status.busy": "2024-08-12T19:01:08.176495Z", - "iopub.status.idle": "2024-08-12T19:01:08.179648Z", - "shell.execute_reply": "2024-08-12T19:01:08.179143Z" + "iopub.execute_input": "2024-08-15T19:34:30.779717Z", + "iopub.status.busy": "2024-08-15T19:34:30.779446Z", + "iopub.status.idle": "2024-08-15T19:34:30.782513Z", + "shell.execute_reply": "2024-08-15T19:34:30.782070Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.181771Z", - "iopub.status.busy": "2024-08-12T19:01:08.181384Z", - "iopub.status.idle": "2024-08-12T19:01:08.453781Z", - "shell.execute_reply": "2024-08-12T19:01:08.453196Z" + "iopub.execute_input": "2024-08-15T19:34:30.784432Z", + "iopub.status.busy": "2024-08-15T19:34:30.784259Z", + "iopub.status.idle": "2024-08-15T19:34:30.889118Z", + "shell.execute_reply": "2024-08-15T19:34:30.888654Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.456263Z", - "iopub.status.busy": "2024-08-12T19:01:08.455844Z", - "iopub.status.idle": "2024-08-12T19:01:08.460424Z", - "shell.execute_reply": "2024-08-12T19:01:08.459864Z" + "iopub.execute_input": "2024-08-15T19:34:30.891037Z", + "iopub.status.busy": "2024-08-15T19:34:30.890849Z", + "iopub.status.idle": "2024-08-15T19:34:30.895162Z", + "shell.execute_reply": "2024-08-15T19:34:30.894690Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.462528Z", - "iopub.status.busy": "2024-08-12T19:01:08.462216Z", - "iopub.status.idle": "2024-08-12T19:01:08.707993Z", - "shell.execute_reply": "2024-08-12T19:01:08.707383Z" + "iopub.execute_input": "2024-08-15T19:34:30.896992Z", + "iopub.status.busy": "2024-08-15T19:34:30.896820Z", + "iopub.status.idle": "2024-08-15T19:34:31.103439Z", + "shell.execute_reply": "2024-08-15T19:34:31.102838Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.710301Z", - "iopub.status.busy": "2024-08-12T19:01:08.709890Z", - "iopub.status.idle": "2024-08-12T19:01:08.714510Z", - "shell.execute_reply": "2024-08-12T19:01:08.713939Z" + "iopub.execute_input": "2024-08-15T19:34:31.105761Z", + "iopub.status.busy": "2024-08-15T19:34:31.105405Z", + "iopub.status.idle": "2024-08-15T19:34:31.109654Z", + "shell.execute_reply": "2024-08-15T19:34:31.109211Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.716693Z", - "iopub.status.busy": "2024-08-12T19:01:08.716512Z", - "iopub.status.idle": "2024-08-12T19:01:08.722640Z", - "shell.execute_reply": "2024-08-12T19:01:08.722141Z" + "iopub.execute_input": "2024-08-15T19:34:31.111680Z", + "iopub.status.busy": "2024-08-15T19:34:31.111346Z", + "iopub.status.idle": "2024-08-15T19:34:31.117049Z", + "shell.execute_reply": "2024-08-15T19:34:31.116575Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.724891Z", - "iopub.status.busy": "2024-08-12T19:01:08.724714Z", - "iopub.status.idle": "2024-08-12T19:01:08.727505Z", - "shell.execute_reply": "2024-08-12T19:01:08.726971Z" + "iopub.execute_input": "2024-08-15T19:34:31.119084Z", + "iopub.status.busy": "2024-08-15T19:34:31.118908Z", + "iopub.status.idle": "2024-08-15T19:34:31.121735Z", + "shell.execute_reply": "2024-08-15T19:34:31.121157Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:08.729639Z", - "iopub.status.busy": "2024-08-12T19:01:08.729330Z", - "iopub.status.idle": "2024-08-12T19:01:17.979569Z", - "shell.execute_reply": "2024-08-12T19:01:17.978818Z" + "iopub.execute_input": "2024-08-15T19:34:31.123820Z", + "iopub.status.busy": "2024-08-15T19:34:31.123507Z", + "iopub.status.idle": "2024-08-15T19:34:39.956092Z", + "shell.execute_reply": "2024-08-15T19:34:39.955453Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:17.983017Z", - "iopub.status.busy": "2024-08-12T19:01:17.982303Z", - "iopub.status.idle": "2024-08-12T19:01:17.990196Z", - "shell.execute_reply": "2024-08-12T19:01:17.989677Z" + "iopub.execute_input": "2024-08-15T19:34:39.958974Z", + "iopub.status.busy": "2024-08-15T19:34:39.958342Z", + "iopub.status.idle": "2024-08-15T19:34:39.965529Z", + "shell.execute_reply": "2024-08-15T19:34:39.965069Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:17.992517Z", - "iopub.status.busy": "2024-08-12T19:01:17.992064Z", - "iopub.status.idle": "2024-08-12T19:01:17.996208Z", - "shell.execute_reply": "2024-08-12T19:01:17.995603Z" + "iopub.execute_input": "2024-08-15T19:34:39.967484Z", + "iopub.status.busy": "2024-08-15T19:34:39.967308Z", + "iopub.status.idle": "2024-08-15T19:34:39.971426Z", + "shell.execute_reply": "2024-08-15T19:34:39.970996Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:17.998537Z", - "iopub.status.busy": "2024-08-12T19:01:17.998176Z", - "iopub.status.idle": "2024-08-12T19:01:18.001616Z", - "shell.execute_reply": "2024-08-12T19:01:18.001073Z" + "iopub.execute_input": "2024-08-15T19:34:39.973295Z", + "iopub.status.busy": "2024-08-15T19:34:39.973123Z", + "iopub.status.idle": "2024-08-15T19:34:39.976540Z", + "shell.execute_reply": "2024-08-15T19:34:39.976080Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.003807Z", - "iopub.status.busy": "2024-08-12T19:01:18.003450Z", - "iopub.status.idle": "2024-08-12T19:01:18.006493Z", - "shell.execute_reply": "2024-08-12T19:01:18.006035Z" + "iopub.execute_input": "2024-08-15T19:34:39.978376Z", + "iopub.status.busy": "2024-08-15T19:34:39.978203Z", + "iopub.status.idle": "2024-08-15T19:34:39.981324Z", + "shell.execute_reply": "2024-08-15T19:34:39.980848Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.008664Z", - "iopub.status.busy": "2024-08-12T19:01:18.008301Z", - "iopub.status.idle": "2024-08-12T19:01:18.017065Z", - "shell.execute_reply": "2024-08-12T19:01:18.016561Z" + "iopub.execute_input": "2024-08-15T19:34:39.983100Z", + "iopub.status.busy": "2024-08-15T19:34:39.982931Z", + "iopub.status.idle": "2024-08-15T19:34:39.990877Z", + "shell.execute_reply": "2024-08-15T19:34:39.990423Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.019389Z", - "iopub.status.busy": "2024-08-12T19:01:18.019019Z", - "iopub.status.idle": "2024-08-12T19:01:18.021739Z", - "shell.execute_reply": "2024-08-12T19:01:18.021283Z" + "iopub.execute_input": "2024-08-15T19:34:39.992709Z", + "iopub.status.busy": "2024-08-15T19:34:39.992515Z", + "iopub.status.idle": "2024-08-15T19:34:39.995300Z", + "shell.execute_reply": "2024-08-15T19:34:39.994703Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.023854Z", - "iopub.status.busy": "2024-08-12T19:01:18.023506Z", - "iopub.status.idle": "2024-08-12T19:01:18.152059Z", - "shell.execute_reply": "2024-08-12T19:01:18.151421Z" + "iopub.execute_input": "2024-08-15T19:34:39.997465Z", + "iopub.status.busy": "2024-08-15T19:34:39.997200Z", + "iopub.status.idle": "2024-08-15T19:34:40.123305Z", + "shell.execute_reply": "2024-08-15T19:34:40.122756Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.154862Z", - "iopub.status.busy": "2024-08-12T19:01:18.154342Z", - "iopub.status.idle": "2024-08-12T19:01:18.265817Z", - "shell.execute_reply": "2024-08-12T19:01:18.265229Z" + "iopub.execute_input": "2024-08-15T19:34:40.125497Z", + "iopub.status.busy": "2024-08-15T19:34:40.125173Z", + "iopub.status.idle": "2024-08-15T19:34:40.230473Z", + "shell.execute_reply": "2024-08-15T19:34:40.229923Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.268452Z", - "iopub.status.busy": "2024-08-12T19:01:18.268024Z", - "iopub.status.idle": "2024-08-12T19:01:18.780926Z", - "shell.execute_reply": "2024-08-12T19:01:18.780306Z" + "iopub.execute_input": "2024-08-15T19:34:40.232860Z", + "iopub.status.busy": "2024-08-15T19:34:40.232464Z", + "iopub.status.idle": "2024-08-15T19:34:40.731091Z", + "shell.execute_reply": "2024-08-15T19:34:40.730451Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.783826Z", - "iopub.status.busy": "2024-08-12T19:01:18.783373Z", - "iopub.status.idle": "2024-08-12T19:01:18.883252Z", - "shell.execute_reply": "2024-08-12T19:01:18.882631Z" + "iopub.execute_input": "2024-08-15T19:34:40.733907Z", + "iopub.status.busy": "2024-08-15T19:34:40.733416Z", + "iopub.status.idle": "2024-08-15T19:34:40.829426Z", + "shell.execute_reply": "2024-08-15T19:34:40.828865Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.885599Z", - "iopub.status.busy": "2024-08-12T19:01:18.885409Z", - "iopub.status.idle": "2024-08-12T19:01:18.894332Z", - "shell.execute_reply": "2024-08-12T19:01:18.893863Z" + "iopub.execute_input": "2024-08-15T19:34:40.831838Z", + "iopub.status.busy": "2024-08-15T19:34:40.831453Z", + "iopub.status.idle": "2024-08-15T19:34:40.840096Z", + "shell.execute_reply": "2024-08-15T19:34:40.839648Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.896338Z", - "iopub.status.busy": "2024-08-12T19:01:18.896157Z", - "iopub.status.idle": "2024-08-12T19:01:18.898954Z", - "shell.execute_reply": "2024-08-12T19:01:18.898495Z" + "iopub.execute_input": "2024-08-15T19:34:40.842334Z", + "iopub.status.busy": "2024-08-15T19:34:40.841993Z", + "iopub.status.idle": "2024-08-15T19:34:40.844503Z", + "shell.execute_reply": "2024-08-15T19:34:40.844067Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:18.901071Z", - "iopub.status.busy": "2024-08-12T19:01:18.900755Z", - "iopub.status.idle": "2024-08-12T19:01:24.618254Z", - "shell.execute_reply": "2024-08-12T19:01:24.617650Z" + "iopub.execute_input": "2024-08-15T19:34:40.846497Z", + "iopub.status.busy": "2024-08-15T19:34:40.846164Z", + "iopub.status.idle": "2024-08-15T19:34:46.426405Z", + "shell.execute_reply": "2024-08-15T19:34:46.425820Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:24.620810Z", - "iopub.status.busy": "2024-08-12T19:01:24.620418Z", - "iopub.status.idle": "2024-08-12T19:01:24.629086Z", - "shell.execute_reply": "2024-08-12T19:01:24.628626Z" + "iopub.execute_input": "2024-08-15T19:34:46.428585Z", + "iopub.status.busy": "2024-08-15T19:34:46.428405Z", + "iopub.status.idle": "2024-08-15T19:34:46.437450Z", + "shell.execute_reply": "2024-08-15T19:34:46.437028Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:24.631181Z", - "iopub.status.busy": "2024-08-12T19:01:24.630841Z", - "iopub.status.idle": "2024-08-12T19:01:24.698102Z", - "shell.execute_reply": "2024-08-12T19:01:24.697571Z" + "iopub.execute_input": "2024-08-15T19:34:46.439572Z", + "iopub.status.busy": "2024-08-15T19:34:46.439243Z", + "iopub.status.idle": "2024-08-15T19:34:46.505134Z", + "shell.execute_reply": "2024-08-15T19:34:46.504588Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 59ac62019..aa0418a3e 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1196,7 +1196,7 @@

    Get label quality scores -{"state": {"0fc3bef3f9844f6fb287502b87a6863b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f424c67480447b880ec906f4c5cbec6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6aad1688a3b94f17bd18eb231ee1e939": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0fc3bef3f9844f6fb287502b87a6863b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2f424c67480447b880ec906f4c5cbec6", "tabbable": null, "tooltip": null, "value": 30.0}}, "08061431cab04a78be2ba6bab4e6de4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "132557767ab84f1f9d47f3c8e6dcc619": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d4b495caf9f445d8864cd1f7838be76d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_08061431cab04a78be2ba6bab4e6de4d", "placeholder": "\u200b", "style": "IPY_MODEL_132557767ab84f1f9d47f3c8e6dcc619", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "dd3b9502f5e642efbc90fb3650ca6206": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4993227e9ac34382a676edb57effd656": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a56889a6273745c5a6f3820dd94e34fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dd3b9502f5e642efbc90fb3650ca6206", "placeholder": "\u200b", "style": "IPY_MODEL_4993227e9ac34382a676edb57effd656", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007766.94it/s]"}}, "d6e60ce442ec4e32a669a893f502825f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "39affc08e5f34107aecde4923e369b00": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d4b495caf9f445d8864cd1f7838be76d", "IPY_MODEL_6aad1688a3b94f17bd18eb231ee1e939", "IPY_MODEL_a56889a6273745c5a6f3820dd94e34fe"], "layout": "IPY_MODEL_d6e60ce442ec4e32a669a893f502825f", "tabbable": null, "tooltip": null}}, "0740c4207b7347a3a772f9c9c182619b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a08ec44416b248198693b50d8eb4d2c6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "539944518ea34bc880950aa71098cb31": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0740c4207b7347a3a772f9c9c182619b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a08ec44416b248198693b50d8eb4d2c6", "tabbable": null, "tooltip": null, "value": 30.0}}, "17870847fdb04d1aa4e039e0ceb41614": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4d4c32f40e742a7bd248fa6c41e7d02": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5354d093ec9644d8970a2004c3ce6c79": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_17870847fdb04d1aa4e039e0ceb41614", "placeholder": "\u200b", "style": "IPY_MODEL_a4d4c32f40e742a7bd248fa6c41e7d02", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "3904af1e4bcd4a0d8afd75787da68a5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb75fa4c780f4017826a2de1efeb2336": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8b4473063bb2450988c38350dc734e4b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3904af1e4bcd4a0d8afd75787da68a5b", "placeholder": "\u200b", "style": "IPY_MODEL_bb75fa4c780f4017826a2de1efeb2336", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.17it/s]"}}, "f3617f1439aa40c5863d02dd79e69b9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17e6f9789f2940c89eb85d25b9f2b5ff": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5354d093ec9644d8970a2004c3ce6c79", "IPY_MODEL_539944518ea34bc880950aa71098cb31", "IPY_MODEL_8b4473063bb2450988c38350dc734e4b"], "layout": "IPY_MODEL_f3617f1439aa40c5863d02dd79e69b9d", "tabbable": null, "tooltip": null}}, "9e72e0c3fd934d74b9ecb9406799ccec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e975cb09b5fb4dad8b6215988f884e0f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "63e2d47f92464a259f0c641b4527bfb0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9e72e0c3fd934d74b9ecb9406799ccec", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e975cb09b5fb4dad8b6215988f884e0f", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "f0d024ffb40d4323925031a610b5c544": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4a6b2c531f14092a8e8353af9d1999b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5cd5e5d59df7465b935d61b09af11030": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f0d024ffb40d4323925031a610b5c544", "placeholder": "\u200b", "style": "IPY_MODEL_b4a6b2c531f14092a8e8353af9d1999b", "tabbable": null, "tooltip": null, "value": "100%"}}, "7f56285a494e483c8b8f3ac96242d9f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ec66ba58fe54932af6cbb1ab91dcb6b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc38a91ac3804731920245901af1acf2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f56285a494e483c8b8f3ac96242d9f8", "placeholder": "\u200b", "style": "IPY_MODEL_4ec66ba58fe54932af6cbb1ab91dcb6b", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007152729.22it/s]"}}, "1d9b0615d1744575b62340adfff3203e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5cea57f4c054406789022773eb73c17b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5cd5e5d59df7465b935d61b09af11030", "IPY_MODEL_63e2d47f92464a259f0c641b4527bfb0", "IPY_MODEL_dc38a91ac3804731920245901af1acf2"], "layout": "IPY_MODEL_1d9b0615d1744575b62340adfff3203e", "tabbable": null, "tooltip": null}}, "c7a1d863ef2c4625925ecf896cc0a86d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2353559e79724ee8a0926d64c719898b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fbf99f5d7afe4e95b559f8c15e690d0c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c7a1d863ef2c4625925ecf896cc0a86d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2353559e79724ee8a0926d64c719898b", "tabbable": null, "tooltip": null, "value": 30.0}}, "3728e4ededeb4e1ca18c79b9a5e42de1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7dc882ee12ca44a58baf920edc940b24": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bcf28ccdedf4419ea3b468271ce48c56": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3728e4ededeb4e1ca18c79b9a5e42de1", "placeholder": "\u200b", "style": "IPY_MODEL_7dc882ee12ca44a58baf920edc940b24", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "3957584db666432db36b60f87f0ad803": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79d5a2fe01344bd39bab7add605e078e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b0af2604040640acb87032e779ec2f65": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3957584db666432db36b60f87f0ad803", "placeholder": "\u200b", "style": "IPY_MODEL_79d5a2fe01344bd39bab7add605e078e", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200719.59it/s]"}}, "64b02d2363df447ba1be3901c9030594": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea1f518daf634c3588642d3f767b31eb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bcf28ccdedf4419ea3b468271ce48c56", "IPY_MODEL_fbf99f5d7afe4e95b559f8c15e690d0c", "IPY_MODEL_b0af2604040640acb87032e779ec2f65"], "layout": "IPY_MODEL_64b02d2363df447ba1be3901c9030594", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"7c105b8943eb4c498bb622282599e219": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ddae79e961d746a8830a7a49f15121ba": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5c90169f4fd245ec99741557ca10e5ab": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7c105b8943eb4c498bb622282599e219", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ddae79e961d746a8830a7a49f15121ba", "tabbable": null, "tooltip": null, "value": 30.0}}, "cdb2ac22c35a4212a872008ea4bb5388": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c81d060473b4bd79a506fd988c91f02": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d95862e17f724f7b95708353bb27b28a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cdb2ac22c35a4212a872008ea4bb5388", "placeholder": "\u200b", "style": "IPY_MODEL_9c81d060473b4bd79a506fd988c91f02", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "b12485d060f941dd8480d2373fbe3d01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a5283e3f41b4bd09abdf6d418c269a1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d32a660167f341839ca6c2c4246c2d13": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b12485d060f941dd8480d2373fbe3d01", "placeholder": "\u200b", "style": "IPY_MODEL_1a5283e3f41b4bd09abdf6d418c269a1", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007776.82it/s]"}}, "971a1c7bec984d22ae8ccfe331a5fbb8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09611a74db304abaaccbb482d8c4d5d8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d95862e17f724f7b95708353bb27b28a", "IPY_MODEL_5c90169f4fd245ec99741557ca10e5ab", "IPY_MODEL_d32a660167f341839ca6c2c4246c2d13"], "layout": "IPY_MODEL_971a1c7bec984d22ae8ccfe331a5fbb8", "tabbable": null, "tooltip": null}}, "6680e1ccda384d768f583fc1354c5a90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3fb974e0e8141bca94b785aaeacc78c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "237fbc9db12342009f42b5d7c2c3f322": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6680e1ccda384d768f583fc1354c5a90", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c3fb974e0e8141bca94b785aaeacc78c", "tabbable": null, "tooltip": null, "value": 30.0}}, "ab2888ec575a45bbb230bb16502c4691": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b5dca376b684b779cb5bf2e4ef61188": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0aaaab26e7f44ad59a6b31f062fe2ff4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab2888ec575a45bbb230bb16502c4691", "placeholder": "\u200b", "style": "IPY_MODEL_1b5dca376b684b779cb5bf2e4ef61188", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "32226c69de6d42cea13978b80d060fe9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "211f569c0a1240308b7b7c73e120cd9e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f775ff2e01784f32b80ec3234a7976f2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32226c69de6d42cea13978b80d060fe9", "placeholder": "\u200b", "style": "IPY_MODEL_211f569c0a1240308b7b7c73e120cd9e", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.18it/s]"}}, "e0dbce538968479bb776db9b5733d4f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4fd2b743a1234921975c3fb49e129d95": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0aaaab26e7f44ad59a6b31f062fe2ff4", "IPY_MODEL_237fbc9db12342009f42b5d7c2c3f322", "IPY_MODEL_f775ff2e01784f32b80ec3234a7976f2"], "layout": "IPY_MODEL_e0dbce538968479bb776db9b5733d4f5", "tabbable": null, "tooltip": null}}, "19d88f571dd54258964ca28a5897b03a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4eaefd3218d14902bbe62f338452e176": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "79c0133bc2d5455fb9b6e4f92db08e59": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19d88f571dd54258964ca28a5897b03a", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4eaefd3218d14902bbe62f338452e176", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "72b14937fe4241cd93e77aadf46e270c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "31994d4601624a9ba427bc62b59a06b6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e9975c5804694ddf9476efb1064b1b60": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72b14937fe4241cd93e77aadf46e270c", "placeholder": "\u200b", "style": "IPY_MODEL_31994d4601624a9ba427bc62b59a06b6", "tabbable": null, "tooltip": null, "value": "100%"}}, "7d10e309d8d54c6ca3b501177b281009": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff9c29ec73c041e587a586da8e80b6cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4ab04a7596b146d2a9d76a9bcbc73370": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7d10e309d8d54c6ca3b501177b281009", "placeholder": "\u200b", "style": "IPY_MODEL_ff9c29ec73c041e587a586da8e80b6cf", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007157001.36it/s]"}}, "6f31047fa6c846758ebaba741da353d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "856a7f7aacd2497c841f1e37eaa4eeee": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e9975c5804694ddf9476efb1064b1b60", "IPY_MODEL_79c0133bc2d5455fb9b6e4f92db08e59", "IPY_MODEL_4ab04a7596b146d2a9d76a9bcbc73370"], "layout": "IPY_MODEL_6f31047fa6c846758ebaba741da353d6", "tabbable": null, "tooltip": null}}, "599c04c845014c1980d987f231a34b99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3af7a800fb894469a173bf9ee49a490f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e3130f51769f41aeaacf4b89ce0de35a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_599c04c845014c1980d987f231a34b99", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3af7a800fb894469a173bf9ee49a490f", "tabbable": null, "tooltip": null, "value": 30.0}}, "c9f0695c3b504893acf67ce20e5c90ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71fa0899acee4932b587e633f909a8a0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8d95333f0a624da484ac02c370790707": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9f0695c3b504893acf67ce20e5c90ff", "placeholder": "\u200b", "style": "IPY_MODEL_71fa0899acee4932b587e633f909a8a0", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "df55ed3c55654989bfe23944505dd159": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "05810f02eb3d443b82675917499eea7d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6abca54af4b7420db94b7d9ede1fde82": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_df55ed3c55654989bfe23944505dd159", "placeholder": "\u200b", "style": "IPY_MODEL_05810f02eb3d443b82675917499eea7d", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.98it/s]"}}, "848c0500f13d4d97b49da3ab38ed470a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a452aa09560240e88e49516c85e08e2a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8d95333f0a624da484ac02c370790707", "IPY_MODEL_e3130f51769f41aeaacf4b89ce0de35a", "IPY_MODEL_6abca54af4b7420db94b7d9ede1fde82"], "layout": "IPY_MODEL_848c0500f13d4d97b49da3ab38ed470a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 3569da24c..2dbb97c98 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:29.035588Z", - "iopub.status.busy": "2024-08-12T19:01:29.035417Z", - "iopub.status.idle": "2024-08-12T19:01:31.382670Z", - "shell.execute_reply": "2024-08-12T19:01:31.381948Z" + "iopub.execute_input": "2024-08-15T19:34:49.673313Z", + "iopub.status.busy": "2024-08-15T19:34:49.672897Z", + "iopub.status.idle": "2024-08-15T19:34:52.071821Z", + "shell.execute_reply": "2024-08-15T19:34:52.071128Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:01:31.385281Z", - "iopub.status.busy": "2024-08-12T19:01:31.385088Z", - "iopub.status.idle": "2024-08-12T19:02:51.389352Z", - "shell.execute_reply": "2024-08-12T19:02:51.388576Z" + "iopub.execute_input": "2024-08-15T19:34:52.074238Z", + "iopub.status.busy": "2024-08-15T19:34:52.074048Z", + "iopub.status.idle": "2024-08-15T19:35:55.656911Z", + "shell.execute_reply": "2024-08-15T19:35:55.656253Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:02:51.392413Z", - "iopub.status.busy": "2024-08-12T19:02:51.391923Z", - "iopub.status.idle": "2024-08-12T19:02:52.823997Z", - "shell.execute_reply": "2024-08-12T19:02:52.823349Z" + "iopub.execute_input": "2024-08-15T19:35:55.659501Z", + "iopub.status.busy": "2024-08-15T19:35:55.659124Z", + "iopub.status.idle": "2024-08-15T19:35:57.039279Z", + "shell.execute_reply": "2024-08-15T19:35:57.038726Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:02:52.826500Z", - "iopub.status.busy": "2024-08-12T19:02:52.826198Z", - "iopub.status.idle": "2024-08-12T19:02:52.829390Z", - "shell.execute_reply": "2024-08-12T19:02:52.828941Z" + "iopub.execute_input": "2024-08-15T19:35:57.041670Z", + "iopub.status.busy": "2024-08-15T19:35:57.041307Z", + "iopub.status.idle": "2024-08-15T19:35:57.044385Z", + "shell.execute_reply": "2024-08-15T19:35:57.043906Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:02:52.831431Z", - "iopub.status.busy": "2024-08-12T19:02:52.831252Z", - "iopub.status.idle": "2024-08-12T19:02:52.835175Z", - "shell.execute_reply": "2024-08-12T19:02:52.834636Z" + "iopub.execute_input": "2024-08-15T19:35:57.046467Z", + "iopub.status.busy": "2024-08-15T19:35:57.046137Z", + "iopub.status.idle": "2024-08-15T19:35:57.049837Z", + "shell.execute_reply": "2024-08-15T19:35:57.049398Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:02:52.837164Z", - "iopub.status.busy": "2024-08-12T19:02:52.836866Z", - "iopub.status.idle": "2024-08-12T19:02:52.840479Z", - "shell.execute_reply": "2024-08-12T19:02:52.839931Z" + "iopub.execute_input": "2024-08-15T19:35:57.052038Z", + "iopub.status.busy": "2024-08-15T19:35:57.051633Z", + "iopub.status.idle": "2024-08-15T19:35:57.055264Z", + "shell.execute_reply": "2024-08-15T19:35:57.054722Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:02:52.842525Z", - "iopub.status.busy": "2024-08-12T19:02:52.842229Z", - "iopub.status.idle": "2024-08-12T19:02:52.845060Z", - "shell.execute_reply": "2024-08-12T19:02:52.844585Z" + "iopub.execute_input": "2024-08-15T19:35:57.057168Z", + "iopub.status.busy": "2024-08-15T19:35:57.056847Z", + "iopub.status.idle": "2024-08-15T19:35:57.059727Z", + "shell.execute_reply": "2024-08-15T19:35:57.059173Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:02:52.847164Z", - "iopub.status.busy": "2024-08-12T19:02:52.846766Z", - "iopub.status.idle": "2024-08-12T19:03:30.979394Z", - "shell.execute_reply": "2024-08-12T19:03:30.978678Z" + "iopub.execute_input": "2024-08-15T19:35:57.061621Z", + "iopub.status.busy": "2024-08-15T19:35:57.061444Z", + "iopub.status.idle": "2024-08-15T19:36:34.714746Z", + "shell.execute_reply": "2024-08-15T19:36:34.714106Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "39affc08e5f34107aecde4923e369b00", + "model_id": "09611a74db304abaaccbb482d8c4d5d8", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "17e6f9789f2940c89eb85d25b9f2b5ff", + "model_id": "4fd2b743a1234921975c3fb49e129d95", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:03:30.982173Z", - "iopub.status.busy": "2024-08-12T19:03:30.981956Z", - "iopub.status.idle": "2024-08-12T19:03:31.426214Z", - "shell.execute_reply": "2024-08-12T19:03:31.425623Z" + "iopub.execute_input": "2024-08-15T19:36:34.717479Z", + "iopub.status.busy": "2024-08-15T19:36:34.717143Z", + "iopub.status.idle": "2024-08-15T19:36:35.165510Z", + "shell.execute_reply": "2024-08-15T19:36:35.165009Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:03:31.428570Z", - "iopub.status.busy": "2024-08-12T19:03:31.428224Z", - "iopub.status.idle": "2024-08-12T19:03:34.405754Z", - "shell.execute_reply": "2024-08-12T19:03:34.405232Z" + "iopub.execute_input": "2024-08-15T19:36:35.167769Z", + "iopub.status.busy": "2024-08-15T19:36:35.167422Z", + "iopub.status.idle": "2024-08-15T19:36:38.130756Z", + "shell.execute_reply": "2024-08-15T19:36:38.130157Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:03:34.408101Z", - "iopub.status.busy": "2024-08-12T19:03:34.407750Z", - "iopub.status.idle": "2024-08-12T19:04:07.024847Z", - "shell.execute_reply": "2024-08-12T19:04:07.024240Z" + "iopub.execute_input": "2024-08-15T19:36:38.133036Z", + "iopub.status.busy": "2024-08-15T19:36:38.132680Z", + "iopub.status.idle": "2024-08-15T19:37:10.430962Z", + "shell.execute_reply": "2024-08-15T19:37:10.430366Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5cea57f4c054406789022773eb73c17b", + "model_id": "856a7f7aacd2497c841f1e37eaa4eeee", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:07.027236Z", - "iopub.status.busy": "2024-08-12T19:04:07.026840Z", - "iopub.status.idle": "2024-08-12T19:04:22.516785Z", - "shell.execute_reply": "2024-08-12T19:04:22.516124Z" + "iopub.execute_input": "2024-08-15T19:37:10.433171Z", + "iopub.status.busy": "2024-08-15T19:37:10.432869Z", + "iopub.status.idle": "2024-08-15T19:37:25.635896Z", + "shell.execute_reply": "2024-08-15T19:37:25.635339Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:22.519248Z", - "iopub.status.busy": "2024-08-12T19:04:22.519000Z", - "iopub.status.idle": "2024-08-12T19:04:26.398885Z", - "shell.execute_reply": "2024-08-12T19:04:26.398352Z" + "iopub.execute_input": "2024-08-15T19:37:25.638431Z", + "iopub.status.busy": "2024-08-15T19:37:25.637963Z", + "iopub.status.idle": "2024-08-15T19:37:29.473121Z", + "shell.execute_reply": "2024-08-15T19:37:29.472542Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:26.401114Z", - "iopub.status.busy": "2024-08-12T19:04:26.400928Z", - "iopub.status.idle": "2024-08-12T19:04:27.971203Z", - "shell.execute_reply": "2024-08-12T19:04:27.970622Z" + "iopub.execute_input": "2024-08-15T19:37:29.475480Z", + "iopub.status.busy": "2024-08-15T19:37:29.475158Z", + "iopub.status.idle": "2024-08-15T19:37:30.923337Z", + "shell.execute_reply": "2024-08-15T19:37:30.922690Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ea1f518daf634c3588642d3f767b31eb", + "model_id": "a452aa09560240e88e49516c85e08e2a", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:27.973318Z", - "iopub.status.busy": "2024-08-12T19:04:27.973133Z", - "iopub.status.idle": "2024-08-12T19:04:28.006396Z", - "shell.execute_reply": "2024-08-12T19:04:28.005739Z" + "iopub.execute_input": "2024-08-15T19:37:30.926032Z", + "iopub.status.busy": "2024-08-15T19:37:30.925676Z", + "iopub.status.idle": "2024-08-15T19:37:30.954373Z", + "shell.execute_reply": "2024-08-15T19:37:30.953871Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:28.008962Z", - "iopub.status.busy": "2024-08-12T19:04:28.008758Z", - "iopub.status.idle": "2024-08-12T19:04:34.283402Z", - "shell.execute_reply": "2024-08-12T19:04:34.282787Z" + "iopub.execute_input": "2024-08-15T19:37:30.956717Z", + "iopub.status.busy": "2024-08-15T19:37:30.956493Z", + "iopub.status.idle": "2024-08-15T19:37:37.121615Z", + "shell.execute_reply": "2024-08-15T19:37:37.121041Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:34.285573Z", - "iopub.status.busy": "2024-08-12T19:04:34.285381Z", - "iopub.status.idle": "2024-08-12T19:04:34.341558Z", - "shell.execute_reply": "2024-08-12T19:04:34.340978Z" + "iopub.execute_input": "2024-08-15T19:37:37.123702Z", + "iopub.status.busy": "2024-08-15T19:37:37.123522Z", + "iopub.status.idle": "2024-08-15T19:37:37.179533Z", + "shell.execute_reply": "2024-08-15T19:37:37.178994Z" }, "nbsphinx": "hidden" }, @@ -1038,166 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0740c4207b7347a3a772f9c9c182619b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "08061431cab04a78be2ba6bab4e6de4d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0fc3bef3f9844f6fb287502b87a6863b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "132557767ab84f1f9d47f3c8e6dcc619": { + "05810f02eb3d443b82675917499eea7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1215,60 +1056,7 @@ "text_color": null } }, - "17870847fdb04d1aa4e039e0ceb41614": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "17e6f9789f2940c89eb85d25b9f2b5ff": { + "09611a74db304abaaccbb482d8c4d5d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1283,16 +1071,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5354d093ec9644d8970a2004c3ce6c79", - "IPY_MODEL_539944518ea34bc880950aa71098cb31", - "IPY_MODEL_8b4473063bb2450988c38350dc734e4b" + "IPY_MODEL_d95862e17f724f7b95708353bb27b28a", + "IPY_MODEL_5c90169f4fd245ec99741557ca10e5ab", + "IPY_MODEL_d32a660167f341839ca6c2c4246c2d13" ], - "layout": "IPY_MODEL_f3617f1439aa40c5863d02dd79e69b9d", + "layout": "IPY_MODEL_971a1c7bec984d22ae8ccfe331a5fbb8", "tabbable": null, "tooltip": null } }, - "1d9b0615d1744575b62340adfff3203e": { + "0aaaab26e7f44ad59a6b31f062fe2ff4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab2888ec575a45bbb230bb16502c4691", + "placeholder": "​", + "style": "IPY_MODEL_1b5dca376b684b779cb5bf2e4ef61188", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "19d88f571dd54258964ca28a5897b03a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1345,145 +1156,105 @@ "width": null } }, - "2353559e79724ee8a0926d64c719898b": { + "1a5283e3f41b4bd09abdf6d418c269a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2f424c67480447b880ec906f4c5cbec6": { + "1b5dca376b684b779cb5bf2e4ef61188": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3728e4ededeb4e1ca18c79b9a5e42de1": { - "model_module": "@jupyter-widgets/base", + "211f569c0a1240308b7b7c73e120cd9e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3904af1e4bcd4a0d8afd75787da68a5b": { - "model_module": "@jupyter-widgets/base", + "237fbc9db12342009f42b5d7c2c3f322": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6680e1ccda384d768f583fc1354c5a90", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c3fb974e0e8141bca94b785aaeacc78c", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "31994d4601624a9ba427bc62b59a06b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3957584db666432db36b60f87f0ad803": { + "32226c69de6d42cea13978b80d060fe9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1536,67 +1307,23 @@ "width": null } }, - "39affc08e5f34107aecde4923e369b00": { + "3af7a800fb894469a173bf9ee49a490f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d4b495caf9f445d8864cd1f7838be76d", - "IPY_MODEL_6aad1688a3b94f17bd18eb231ee1e939", - "IPY_MODEL_a56889a6273745c5a6f3820dd94e34fe" - ], - "layout": "IPY_MODEL_d6e60ce442ec4e32a669a893f502825f", - "tabbable": null, - "tooltip": null - } - }, - "4993227e9ac34382a676edb57effd656": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4ec66ba58fe54932af6cbb1ab91dcb6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5354d093ec9644d8970a2004c3ce6c79": { + "4ab04a7596b146d2a9d76a9bcbc73370": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1611,64 +1338,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_17870847fdb04d1aa4e039e0ceb41614", + "layout": "IPY_MODEL_7d10e309d8d54c6ca3b501177b281009", "placeholder": "​", - "style": "IPY_MODEL_a4d4c32f40e742a7bd248fa6c41e7d02", + "style": "IPY_MODEL_ff9c29ec73c041e587a586da8e80b6cf", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 4997683/4997683 [00:31<00:00, 157001.36it/s]" } }, - "539944518ea34bc880950aa71098cb31": { + "4eaefd3218d14902bbe62f338452e176": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0740c4207b7347a3a772f9c9c182619b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a08ec44416b248198693b50d8eb4d2c6", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "5cd5e5d59df7465b935d61b09af11030": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f0d024ffb40d4323925031a610b5c544", - "placeholder": "​", - "style": "IPY_MODEL_b4a6b2c531f14092a8e8353af9d1999b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5cea57f4c054406789022773eb73c17b": { + "4fd2b743a1234921975c3fb49e129d95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1683,16 +1377,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5cd5e5d59df7465b935d61b09af11030", - "IPY_MODEL_63e2d47f92464a259f0c641b4527bfb0", - "IPY_MODEL_dc38a91ac3804731920245901af1acf2" + "IPY_MODEL_0aaaab26e7f44ad59a6b31f062fe2ff4", + "IPY_MODEL_237fbc9db12342009f42b5d7c2c3f322", + "IPY_MODEL_f775ff2e01784f32b80ec3234a7976f2" ], - "layout": "IPY_MODEL_1d9b0615d1744575b62340adfff3203e", + "layout": "IPY_MODEL_e0dbce538968479bb776db9b5733d4f5", "tabbable": null, "tooltip": null } }, - "63e2d47f92464a259f0c641b4527bfb0": { + "599c04c845014c1980d987f231a34b99": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c90169f4fd245ec99741557ca10e5ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1708,17 +1455,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9e72e0c3fd934d74b9ecb9406799ccec", - "max": 4997683.0, + "layout": "IPY_MODEL_7c105b8943eb4c498bb622282599e219", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e975cb09b5fb4dad8b6215988f884e0f", + "style": "IPY_MODEL_ddae79e961d746a8830a7a49f15121ba", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } }, - "64b02d2363df447ba1be3901c9030594": { + "6680e1ccda384d768f583fc1354c5a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1771,51 +1518,83 @@ "width": null } }, - "6aad1688a3b94f17bd18eb231ee1e939": { + "6abca54af4b7420db94b7d9ede1fde82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0fc3bef3f9844f6fb287502b87a6863b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2f424c67480447b880ec906f4c5cbec6", + "layout": "IPY_MODEL_df55ed3c55654989bfe23944505dd159", + "placeholder": "​", + "style": "IPY_MODEL_05810f02eb3d443b82675917499eea7d", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:01<00:00, 20.98it/s]" } }, - "79d5a2fe01344bd39bab7add605e078e": { - "model_module": "@jupyter-widgets/controls", + "6f31047fa6c846758ebaba741da353d6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7dc882ee12ca44a58baf920edc940b24": { + "71fa0899acee4932b587e633f909a8a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1833,7 +1612,7 @@ "text_color": null } }, - "7f56285a494e483c8b8f3ac96242d9f8": { + "72b14937fe4241cd93e77aadf46e270c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1886,30 +1665,33 @@ "width": null } }, - "8b4473063bb2450988c38350dc734e4b": { + "79c0133bc2d5455fb9b6e4f92db08e59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3904af1e4bcd4a0d8afd75787da68a5b", - "placeholder": "​", - "style": "IPY_MODEL_bb75fa4c780f4017826a2de1efeb2336", + "layout": "IPY_MODEL_19d88f571dd54258964ca28a5897b03a", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4eaefd3218d14902bbe62f338452e176", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.17it/s]" + "value": 4997683.0 } }, - "9e72e0c3fd934d74b9ecb9406799ccec": { + "7c105b8943eb4c498bb622282599e219": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1962,64 +1744,137 @@ "width": null } }, - "a08ec44416b248198693b50d8eb4d2c6": { - "model_module": "@jupyter-widgets/controls", + "7d10e309d8d54c6ca3b501177b281009": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a4d4c32f40e742a7bd248fa6c41e7d02": { - "model_module": "@jupyter-widgets/controls", + "848c0500f13d4d97b49da3ab38ed470a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a56889a6273745c5a6f3820dd94e34fe": { + "856a7f7aacd2497c841f1e37eaa4eeee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd3b9502f5e642efbc90fb3650ca6206", - "placeholder": "​", - "style": "IPY_MODEL_4993227e9ac34382a676edb57effd656", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e9975c5804694ddf9476efb1064b1b60", + "IPY_MODEL_79c0133bc2d5455fb9b6e4f92db08e59", + "IPY_MODEL_4ab04a7596b146d2a9d76a9bcbc73370" + ], + "layout": "IPY_MODEL_6f31047fa6c846758ebaba741da353d6", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 766.94it/s]" + "tooltip": null } }, - "b0af2604040640acb87032e779ec2f65": { + "8d95333f0a624da484ac02c370790707": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2034,33 +1889,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3957584db666432db36b60f87f0ad803", + "layout": "IPY_MODEL_c9f0695c3b504893acf67ce20e5c90ff", "placeholder": "​", - "style": "IPY_MODEL_79d5a2fe01344bd39bab7add605e078e", + "style": "IPY_MODEL_71fa0899acee4932b587e633f909a8a0", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 19.59it/s]" + "value": "images processed using softmin: 100%" } }, - "b4a6b2c531f14092a8e8353af9d1999b": { - "model_module": "@jupyter-widgets/controls", + "971a1c7bec984d22ae8ccfe331a5fbb8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bb75fa4c780f4017826a2de1efeb2336": { + "9c81d060473b4bd79a506fd988c91f02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2078,30 +1968,31 @@ "text_color": null } }, - "bcf28ccdedf4419ea3b468271ce48c56": { + "a452aa09560240e88e49516c85e08e2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3728e4ededeb4e1ca18c79b9a5e42de1", - "placeholder": "​", - "style": "IPY_MODEL_7dc882ee12ca44a58baf920edc940b24", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8d95333f0a624da484ac02c370790707", + "IPY_MODEL_e3130f51769f41aeaacf4b89ce0de35a", + "IPY_MODEL_6abca54af4b7420db94b7d9ede1fde82" + ], + "layout": "IPY_MODEL_848c0500f13d4d97b49da3ab38ed470a", "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "tooltip": null } }, - "c7a1d863ef2c4625925ecf896cc0a86d": { + "ab2888ec575a45bbb230bb16502c4691": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2154,30 +2045,7 @@ "width": null } }, - "d4b495caf9f445d8864cd1f7838be76d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_08061431cab04a78be2ba6bab4e6de4d", - "placeholder": "​", - "style": "IPY_MODEL_132557767ab84f1f9d47f3c8e6dcc619", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "d6e60ce442ec4e32a669a893f502825f": { + "b12485d060f941dd8480d2373fbe3d01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2230,30 +2098,76 @@ "width": null } }, - "dc38a91ac3804731920245901af1acf2": { + "c3fb974e0e8141bca94b785aaeacc78c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7f56285a494e483c8b8f3ac96242d9f8", - "placeholder": "​", - "style": "IPY_MODEL_4ec66ba58fe54932af6cbb1ab91dcb6b", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 152729.22it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c9f0695c3b504893acf67ce20e5c90ff": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "dd3b9502f5e642efbc90fb3650ca6206": { + "cdb2ac22c35a4212a872008ea4bb5388": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2306,47 +2220,69 @@ "width": null } }, - "e975cb09b5fb4dad8b6215988f884e0f": { + "d32a660167f341839ca6c2c4246c2d13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b12485d060f941dd8480d2373fbe3d01", + "placeholder": "​", + "style": "IPY_MODEL_1a5283e3f41b4bd09abdf6d418c269a1", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 776.82it/s]" } }, - "ea1f518daf634c3588642d3f767b31eb": { + "d95862e17f724f7b95708353bb27b28a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bcf28ccdedf4419ea3b468271ce48c56", - "IPY_MODEL_fbf99f5d7afe4e95b559f8c15e690d0c", - "IPY_MODEL_b0af2604040640acb87032e779ec2f65" - ], - "layout": "IPY_MODEL_64b02d2363df447ba1be3901c9030594", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cdb2ac22c35a4212a872008ea4bb5388", + "placeholder": "​", + "style": "IPY_MODEL_9c81d060473b4bd79a506fd988c91f02", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "ddae79e961d746a8830a7a49f15121ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f0d024ffb40d4323925031a610b5c544": { + "df55ed3c55654989bfe23944505dd159": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2399,7 +2335,7 @@ "width": null } }, - "f3617f1439aa40c5863d02dd79e69b9d": { + "e0dbce538968479bb776db9b5733d4f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2452,7 +2388,7 @@ "width": null } }, - "fbf99f5d7afe4e95b559f8c15e690d0c": { + "e3130f51769f41aeaacf4b89ce0de35a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2468,15 +2404,79 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c7a1d863ef2c4625925ecf896cc0a86d", + "layout": "IPY_MODEL_599c04c845014c1980d987f231a34b99", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2353559e79724ee8a0926d64c719898b", + "style": "IPY_MODEL_3af7a800fb894469a173bf9ee49a490f", "tabbable": null, "tooltip": null, "value": 30.0 } + }, + "e9975c5804694ddf9476efb1064b1b60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72b14937fe4241cd93e77aadf46e270c", + "placeholder": "​", + "style": "IPY_MODEL_31994d4601624a9ba427bc62b59a06b6", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f775ff2e01784f32b80ec3234a7976f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_32226c69de6d42cea13978b80d060fe9", + "placeholder": "​", + "style": "IPY_MODEL_211f569c0a1240308b7b7c73e120cd9e", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.18it/s]" + } + }, + "ff9c29ec73c041e587a586da8e80b6cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 4eb4b23fb..9de103cd0 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

    1. Install required dependencies and download data

    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index b937d8f5c..e5bbfa445 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:36.973694Z", - "iopub.status.busy": "2024-08-12T19:04:36.973533Z", - "iopub.status.idle": "2024-08-12T19:04:38.928223Z", - "shell.execute_reply": "2024-08-12T19:04:38.927569Z" + "iopub.execute_input": "2024-08-15T19:37:39.451838Z", + "iopub.status.busy": "2024-08-15T19:37:39.451267Z", + "iopub.status.idle": "2024-08-15T19:37:40.711098Z", + "shell.execute_reply": "2024-08-15T19:37:40.710482Z" } }, "outputs": [ @@ -86,16 +86,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 19:04:36-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "169.150.249.167, 2400:52e0:1a01::1108:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.167|:443... connected.\r\n" + "--2024-08-15 19:37:39-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... 169.150.236.98, 2400:52e0:1a00::1070:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.98|:443... connected.\r\n" ] }, { @@ -115,16 +108,10 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "\r\n", + "2024-08-15 19:37:39 (7.14 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", - "2024-08-12 19:04:37 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", - "\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ "mkdir: cannot create directory ‘data’: File exists\r\n" ] }, @@ -135,14 +122,7 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", + " inflating: data/train.txt \r\n", " inflating: data/valid.txt \r\n" ] }, @@ -150,16 +130,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-12 19:04:37-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.136.129, 16.182.36.201, 3.5.10.169, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.136.129|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "--2024-08-15 19:37:39-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.75.76, 3.5.6.127, 52.217.139.217, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.75.76|:443... connected.\r\n" ] }, { @@ -186,15 +159,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 295.53K 1.20MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 30%[=====> ] 4.92M 10.2MB/s " + "pred_probs.npz 50%[=========> ] 8.18M 37.6MB/s " ] }, { @@ -202,9 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 24.1MB/s in 0.7s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 47.6MB/s in 0.3s \r\n", "\r\n", - "2024-08-12 19:04:38 (24.1 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-15 19:37:40 (47.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -221,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:38.931095Z", - "iopub.status.busy": "2024-08-12T19:04:38.930692Z", - "iopub.status.idle": "2024-08-12T19:04:40.560281Z", - "shell.execute_reply": "2024-08-12T19:04:40.559629Z" + "iopub.execute_input": "2024-08-15T19:37:40.713604Z", + "iopub.status.busy": "2024-08-15T19:37:40.713237Z", + "iopub.status.idle": "2024-08-15T19:37:42.244060Z", + "shell.execute_reply": "2024-08-15T19:37:42.243504Z" }, "nbsphinx": "hidden" }, @@ -235,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@280db6acac455fd07347f9bd9bb8efec2c960500\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -261,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:40.563056Z", - "iopub.status.busy": "2024-08-12T19:04:40.562726Z", - "iopub.status.idle": "2024-08-12T19:04:40.566447Z", - "shell.execute_reply": "2024-08-12T19:04:40.565965Z" + "iopub.execute_input": "2024-08-15T19:37:42.246581Z", + "iopub.status.busy": "2024-08-15T19:37:42.246114Z", + "iopub.status.idle": "2024-08-15T19:37:42.249536Z", + "shell.execute_reply": "2024-08-15T19:37:42.249089Z" } }, "outputs": [], @@ -314,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:40.568406Z", - "iopub.status.busy": "2024-08-12T19:04:40.568215Z", - "iopub.status.idle": "2024-08-12T19:04:40.571337Z", - "shell.execute_reply": "2024-08-12T19:04:40.570894Z" + "iopub.execute_input": "2024-08-15T19:37:42.251693Z", + "iopub.status.busy": "2024-08-15T19:37:42.251363Z", + "iopub.status.idle": "2024-08-15T19:37:42.254787Z", + "shell.execute_reply": "2024-08-15T19:37:42.254367Z" }, "nbsphinx": "hidden" }, @@ -335,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:40.573600Z", - "iopub.status.busy": "2024-08-12T19:04:40.573107Z", - "iopub.status.idle": "2024-08-12T19:04:49.797790Z", - "shell.execute_reply": "2024-08-12T19:04:49.797189Z" + "iopub.execute_input": "2024-08-15T19:37:42.256850Z", + "iopub.status.busy": "2024-08-15T19:37:42.256520Z", + "iopub.status.idle": "2024-08-15T19:37:51.322045Z", + "shell.execute_reply": "2024-08-15T19:37:51.321484Z" } }, "outputs": [], @@ -412,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:49.800253Z", - "iopub.status.busy": "2024-08-12T19:04:49.800047Z", - "iopub.status.idle": "2024-08-12T19:04:49.805958Z", - "shell.execute_reply": "2024-08-12T19:04:49.805478Z" + "iopub.execute_input": "2024-08-15T19:37:51.324581Z", + "iopub.status.busy": "2024-08-15T19:37:51.324201Z", + "iopub.status.idle": "2024-08-15T19:37:51.329797Z", + "shell.execute_reply": "2024-08-15T19:37:51.329328Z" }, "nbsphinx": "hidden" }, @@ -455,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:49.808179Z", - "iopub.status.busy": "2024-08-12T19:04:49.807741Z", - "iopub.status.idle": "2024-08-12T19:04:50.206957Z", - "shell.execute_reply": "2024-08-12T19:04:50.206380Z" + "iopub.execute_input": "2024-08-15T19:37:51.331779Z", + "iopub.status.busy": "2024-08-15T19:37:51.331449Z", + "iopub.status.idle": "2024-08-15T19:37:51.694028Z", + "shell.execute_reply": "2024-08-15T19:37:51.693526Z" } }, "outputs": [], @@ -495,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:50.209465Z", - "iopub.status.busy": "2024-08-12T19:04:50.209239Z", - "iopub.status.idle": "2024-08-12T19:04:50.214098Z", - "shell.execute_reply": "2024-08-12T19:04:50.213547Z" + "iopub.execute_input": "2024-08-15T19:37:51.696563Z", + "iopub.status.busy": "2024-08-15T19:37:51.696109Z", + "iopub.status.idle": "2024-08-15T19:37:51.700624Z", + "shell.execute_reply": "2024-08-15T19:37:51.700057Z" } }, "outputs": [ @@ -570,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:50.216424Z", - "iopub.status.busy": "2024-08-12T19:04:50.216093Z", - "iopub.status.idle": "2024-08-12T19:04:53.028488Z", - "shell.execute_reply": "2024-08-12T19:04:53.027771Z" + "iopub.execute_input": "2024-08-15T19:37:51.702646Z", + "iopub.status.busy": "2024-08-15T19:37:51.702321Z", + "iopub.status.idle": "2024-08-15T19:37:54.357930Z", + "shell.execute_reply": "2024-08-15T19:37:54.357225Z" } }, "outputs": [], @@ -595,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:53.031980Z", - "iopub.status.busy": "2024-08-12T19:04:53.030986Z", - "iopub.status.idle": "2024-08-12T19:04:53.035538Z", - "shell.execute_reply": "2024-08-12T19:04:53.035049Z" + "iopub.execute_input": "2024-08-15T19:37:54.361315Z", + "iopub.status.busy": "2024-08-15T19:37:54.360477Z", + "iopub.status.idle": "2024-08-15T19:37:54.364594Z", + "shell.execute_reply": "2024-08-15T19:37:54.364081Z" } }, "outputs": [ @@ -634,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:53.037496Z", - "iopub.status.busy": "2024-08-12T19:04:53.037328Z", - "iopub.status.idle": "2024-08-12T19:04:53.042801Z", - "shell.execute_reply": "2024-08-12T19:04:53.042346Z" + "iopub.execute_input": "2024-08-15T19:37:54.366654Z", + "iopub.status.busy": "2024-08-15T19:37:54.366321Z", + "iopub.status.idle": "2024-08-15T19:37:54.371850Z", + "shell.execute_reply": "2024-08-15T19:37:54.371414Z" } }, "outputs": [ @@ -815,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:53.044863Z", - "iopub.status.busy": "2024-08-12T19:04:53.044545Z", - "iopub.status.idle": "2024-08-12T19:04:53.071401Z", - "shell.execute_reply": "2024-08-12T19:04:53.070922Z" + "iopub.execute_input": "2024-08-15T19:37:54.373914Z", + "iopub.status.busy": "2024-08-15T19:37:54.373583Z", + "iopub.status.idle": "2024-08-15T19:37:54.399608Z", + "shell.execute_reply": "2024-08-15T19:37:54.399157Z" } }, "outputs": [ @@ -920,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:53.073476Z", - "iopub.status.busy": "2024-08-12T19:04:53.073299Z", - "iopub.status.idle": "2024-08-12T19:04:53.077762Z", - "shell.execute_reply": "2024-08-12T19:04:53.077215Z" + "iopub.execute_input": "2024-08-15T19:37:54.401718Z", + "iopub.status.busy": "2024-08-15T19:37:54.401393Z", + "iopub.status.idle": "2024-08-15T19:37:54.405238Z", + "shell.execute_reply": "2024-08-15T19:37:54.404714Z" } }, "outputs": [ @@ -997,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:53.079859Z", - "iopub.status.busy": "2024-08-12T19:04:53.079550Z", - "iopub.status.idle": "2024-08-12T19:04:54.603315Z", - "shell.execute_reply": "2024-08-12T19:04:54.602668Z" + "iopub.execute_input": "2024-08-15T19:37:54.407260Z", + "iopub.status.busy": "2024-08-15T19:37:54.406920Z", + "iopub.status.idle": "2024-08-15T19:37:55.884011Z", + "shell.execute_reply": "2024-08-15T19:37:55.883471Z" } }, "outputs": [ @@ -1172,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-12T19:04:54.605501Z", - "iopub.status.busy": "2024-08-12T19:04:54.605297Z", - "iopub.status.idle": "2024-08-12T19:04:54.609527Z", - "shell.execute_reply": "2024-08-12T19:04:54.609049Z" + "iopub.execute_input": "2024-08-15T19:37:55.886211Z", + "iopub.status.busy": "2024-08-15T19:37:55.885873Z", + "iopub.status.idle": "2024-08-15T19:37:55.890341Z", + "shell.execute_reply": "2024-08-15T19:37:55.889924Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index bc6dead51..6bba319c6 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "5f4d3cc7dcef17f6e59ac5fd18eec27d6e37134b", + commit_hash: "280db6acac455fd07347f9bd9bb8efec2c960500", }; \ No newline at end of file

    NFhIy>K#1ejK&@tgNZ8gI$NMe@fq1A+JXbIL zS>SD4=JIz6XbN3l7--1x!Uyql^)w9#TCgavoUivm{K76WX;FqxeelgsTe zd-Ohw+itWNoL0n5n^&G!K_e?7_Bk4a3Y$S6Bw#P3s!k`U=e?Y8fr|Lc8ox%Qt@pdKlRS7B@u}dmtUk2>Fpb8%ZN!j;V1)~Z&?YknAQr+Fra!)f!GY;K#=Y1X?ecDDm>7P5PM@Q1^yr-8J> zR>V;AKa9IhT39Hv)(lfcy}wh*z5@K05pA75FO{*>njeNOmB>{GbpKDL+9M*?1g5%T z2Yi}REwBMpV62_K%8&mrzKITy5sjsQrVyBDHpiEJ7(b3atN}q|w}5#r07=54XH4_- zMj%-8gsY~*qJ%HCd>BY&mLvwK<$1qGp0{tO#Swwtik+4uwo{nTs>ObcN>3F}^UMyf z)#h@+b~cN}?6A6=Mz7avbnCrVkJF=fx~QF2*oxTcw+ZZYoXpx+m?~wI;y#avm$lSm zYRSH%k?d^``lBL(O<<{br+(IH?I@Ifnt()%RrhM(ZQgJ?zOhb`akZj=CUnCwuPvIt zC-4j38G4VmNEg(C{ry^C9pCSCe1n}4fnW`m&p)k=r|D4g=J;&5X`c9fZ6J*G``fqE zCnDm!6+4}i&`$YTQ6ev=l8YFs;i;FzT)V@mx49iAk6mweI2?AT!DsVYEheMhXEV6% z=)_Yml~>q^nCTjjX}obC$(+3i3WjTB$g7XT$5#}@? zG;%gh^O`9tPx>fITpv(zMJ#moy!9FA;E}+3{-*?H`l8I~6$&ly;VwKCsD}2x8Muep z$Q>^0&)-a7zw5O9mA@5O$=CcSzWr{AK&b5Z+bH|}AR=mFzb7=ZzJ2>$B4fU_#C2z4 z`@Q!gZOG{UQFKC(>vWiXPOshMbQ(=&gV*A+dkjvm#p*M;Y;Knawci;i&#R!3lP0b% z5NbRF-Y2s*^drT9$;4{#M_LQ+{*fvybOEZ_uyETZygMS*3WDr&Q4*U&B^EK^mL~$o z`3=BAyrlK0jB6bQG=-*~44657AM_kAz`m~mK`lNAZ03(8FwoNx2$g}Z0lBFY);VfP z&eBNo_6_t%e4=|1*K4YllG;Nv~|T z#KeC{B;BvdDQJ^yPPfpM_?hD8?_ZP}>DP zQ;641lb{vqw5MVHsOIRxm4H>~9IO4Qj!Sy0+G|!?>&v{e#3y(uy5YybqS*V&(SV-< zzX_w&G|=sN=_8d=X3=x+&+r~6W>u)|)xf(+LYV?a_TDpVuu#Ueupz*^)MUO)QY4a-U>tx&X+~_A=`igYMR)6ha$_+!b-sn{BkuvOVqHkxlT*WkobSW z(BLY;pM^Iude%OP!M)Fv68n7f49ct)+^lM@v5`?RYy`i_3KgXU|4b6TV!Fg}6?GVs zWfXp7N(rK`&YuH~cEs|(3_0zZ}Sp%vfCW(f0 zIn;$Okbz~BY@r60RhR*#32d^)r*ujnzl@4WJAMBfvnmp7rX~S#k)>;LGJlAgw?S(1 zSnGU{@)n-{hceTHE32Zd1D~(TPx>@|W;spPz!RS;nI*a7=kZVJmeHZOU+o<~4+2@* zZAJYtZL;~{Eu*(R6OtHXh!VsmwIJ5V7sOgBh;Z5o_X!5uC!xk^!2}ybPs*s@qOc}( zV)o8up6NTbfKC#9if_Numy-qV1;XA=wvk(6Qh&cPg~!KD21f0u>)#oMXTUqPRKc{VAJdp z`#sW)(u5>LF+Bn`GmrpH?p?SWtuh27`|j-+N9+N|0#(?%Lr!CG0>|~IaI#|;tKnqF zZU?0aL~1$ve=yigvk+d$9SQz0FPBg3>z1M>iFM|uWmd@j)S){cIW&#q7OVI{YG9e4 zU}AorK6{ISDz=(Y-8O`ks5!|SXSH+X!(j&Sj#Hfp&c`;VUkAJc-Ml;a3hFsyeRY)7 zHn@#DkJ*a4H9>hBTvz_o%~{%`DP(UKJj-!E5ou_zNKn8UYQbi72oB)5zbV+E*AC{! z-~E;!fmQk8Cm=ob3dUjCKG>b}j6u`+3R4gxcQ&E1W1mY4{n9!3Cnw~eQ@lgtKz5lX zrZ;-Nb7HsPPQei$uuTlW1fEx~N7!2P7q;Kin1A4$YH+;|BZ}>QMNmZsS90uS@;$+P zo_|b+EEcZ4hS*sf`f`K4;MUQkoUy5hnxTk{Ho z^Y~p6hRFRS+tqL~N6Qm)wD8<5dSPQm*)dFKP%=A8k_?^j_LZ8q&($=tyj`TcMRJDX z;^43pjzgzhEQFcxMkV8Cam}|iR1x!)Pnp~~G*|*RHWwvI8(x;t_o1++P!(UWaTU%*1&FV2 zX&pKJU!ugOS2bWvbPSys6U<5qy)`CSki?CPD1rv7SVw*e-wSt!uJs8j3tC(+)L<}< ztKUAKn`Z<161Z4v0;;ULjMX2=PXQ2CHMgHRtcd7_WDc2ej2YGZaC5y-QO~6_IN@am zDVbPonUQ`c%Im!}SJ=!{k=ez|pP{`IgL_pln%TwY5egJu$eH+eS07p*+W1tk1}D75 z^s5QEU&a8(kuxqQ$44&8Mn@+HPsdry**Yb-UHFzk2#m;UIbSKIil?KKQ-h<@V^)QV z#UR|0eNzF`uH{^psb|3HJfA6GP#yON{}M9JGlEiY8?9W49!X%J6Lq&Is07?ChqpB5 zP3KkPh#q5#J&qJWl`@XhEek%x^SxzgIhngx4Q)h4n`WitL16+TFF3D?x(pwT6!4D0 z*aAm+<*{?0C(dhgpU1-t$fs@YnGu}N&p97|-8)Z~?JNptLYM!Bci&5A1`qKoq4#(* zj;30$)3bt4@LM6FiZ{V%9f43KHsv51bz<{4$Xh$VVo{6TXgFhF9g@9 zS}R067~T4b#la_4tu@Sch`}sL|6*(Jvn9mJw@rS&FF*By%4MI%$YZvdhj_L(@ztPlD0}K06UzUI9}-d0izo#R*(?|H{}dd-#IZWe`rA|8niZX2sIN6UM z>bS{Yh1dBMNO>zhxw37vQjE9acSGd1HfT(5Yg0ifx3vWsC_*^CStkh^(<|H5$PRD! z`-BAy1i?eDYr}ZRb!`kDa%WLvC4KZq^95o7|C6t4+j@~K_c7PCDX_t4STc=l*l@DX zZZ(=cHiJ#?b(pPAi`{3@n@vuu$6&F0VKb(DTidCN^tLvo&u8U64>26Un;!YLHl^LP zXxw4C$!%?)Qo3WN%;oW5ufB~Md^@*JZUxjMu2$%cx%@Ke6D?G&b)y|j(6 z=uZ>A!xeJG8@(@BP$81y;mfm{Dwnn?tcOL!nj((EjhO<)wDB+Eh0j$YTJ`S_4y^BS z+g%2|OYii$O=gqX=<;}NPPfzQb+`>4xOl8IBP1O~gOhXIde|kSce}iHi`nP#IE)Un z#b))m;B*4igo-~cU%};g3~qx{@9_9Qvu2aYYxg*vu(QVJau}^nduZN`@}IceL>TQR z11f$i*e6Gy5FfhSW}yN7^j0t>*X;GV^cJ_t0^1_Y77O6B`CMkV+v0IqtWIC3Q;XS; zCFfX8KD$frHkhEu?DTn@7Nf;ybbB1I3&>|gW3SIh57l~f#s)6eWO6$Vu(Qo*v%1VS zr_TZBE<9GJ!)kZAJytUUM$4)_xILOr^4BAA!!bs7yG zJ#Yb+_?fLngUe?$8SEyD&+BkH?bgt>nhPIG&b7gQJ7{EwEqHdb%i)8)%x0(CYxcta zP^;A)O1-i0AeXDxTRj%1&t^0`p~`4<*kFeqFmJKgEjFi$iwe-{k@G}QUlCfg%CitI zV)}f39dz|fuwg5UzLj-k=hlx8X*gv{%e;nqCv0W$x%CDwQ0mhgTt=JT26kcuf{Z@c zN!6z`EmX95KG<2}GcTx9FO(iS^lN!JCsv>-S3^L2Z_&V^g?+nr>pe8FX-CUE+ zW_S4z(+RQ8?sLEa zEdx5$YerV6V`sFM%Y`o7Cbz-p(!>5j4>WYy%r=k7Wq<=*UatYo%g3t3K_n+J0cdM! zsVS!d#GTG9xC`l%XVyl8uLqkJnCuqD^*m;LJF3&;vzTpWkKOC=Sq(M^FzGVEPIK8* zWCklZ&O;n^qh-xsota#s@!>o5&3|2QCBEb7* zarNDLv&#S@hua26@$_J{Mi}j!Fccc}CReD|^cg>Ld5N)tHyeb~KDjW;B)~}q2Ln1G zlvb+`O!$0o@2%VEu$z6b70{}8!FX)40W(&Vw{v60?u>(jlj}RcBCQUm*=I1C9Y(tg z4hwj|`W!G|7)+>BO_UL;Whw=`GkbwY7{ZOfgV}6{fyV5!7`-N+!R>T=LaA349OUv6 zVg;v0*IKPMKr~8#(_=#O(n@>hINV@#PP-kP23!ad2nZNXW}MDVjM|G1ADCgN5OwNPGi>Ns{nESgO^kQB%_g7M2~WGhY&IE8PM6)`GXf!dS5Q!PlOS1 zkC(!6uU4fsb1mRb76U|YNMg+%s}%-ih?FL;*9J#xttNR;_PF3g4$uR3XvFED%Wbg$ zod(!I?smgQTo~)ZqnO2HaT~k_lMx35uUGGI>tR2+$7D2^?7%K8oI{ei^5ftuFg_&4 zjZ!OLGUQf-I<;e|0oiP&4e{{pal>`k4u{EThVj^Cg5yILi^&bip3M~M*kU&Lme&LS zfLj=v^k%Ec>wx6KXS8{|RtMOpo{~5BG~~ebVY@NV5AnqVUg$Ns%z99t(*#G6EM9%+ zaBIjg^Ah8HtTD2Ql(LEhYn-;(*RmfzFkR93}t+#`Jo834ZK-ji8Z5~MR z-98{9X*D=j1xKN15TGMg1=?||U8Mq(^r~A!CYL~9K3inO0@F{#m6?oKxh|*0AK74@;Bvw=+z9g-x6kH=(eDtyAUz~qoqvYQs{pGT)h{Y7&aD6|N5Pi#SmunMu*kp@ZyOk%=>H>RMd5LI!&u8#J;Vx)R3DP zuN!SW5j3D3150yr9X7q&V}uhT7Vrd{(dV+^ECo0+oAi*ZqSWa#(#Qau10xnpjrAry zjJ<9+u5W{*d_Jey?1lu);R(U~1*T_^xquJ4?GO@SpfEe^FmS;UY8VV{K7+$fvran6 ztN^o(4#A1BTCkhh(CeE65FRwGu~AoHxoEoUPELpUXYfTm@&wOaB`Sy zwRt_TilH}K9B{>gLGN(7Y%Zf0Qe_upN1hPOxggBAyk@%*Ru*7Yzy)(|FD!!Cy>L_$ z8p4u-lbxBFT`U_3 z)ZR)@=Gow2cAM7)*&L)JKDWaK0~cQ6aOq)9#BQSV?5iCvLbB^K8DY-jf?*261LnvH zM@@_#n6f#%p^m-KAuh+~g}z`WY_QlM=XAL2z^~U137G-LYX>^{BaCO%NGrf=LEHX> z6w8qaryUx>LIY|vxwJ_xFaYNZ?LMak7GYpU4AyA?KY}O%T5>pX1cc-Q7D~(}ixV6W zCyNf3(+at`2XqB%Pmp_oMS`pO+%U|8@0#2&?0F!i_rg&cn0xz7FaSbcPe$dUyB0u7 zoERw`lp)JYgcQwN7@mvS%S!KRWp8D7FzF%$FT2O+hH(`b@tI8!BVi@LX|Ou=W(e`2 zZF3fYxm9rRjOHA4R723PRQn9k-8hH46BbKh+&9CV!)}GeEt|~-u>sG|U^mfR3d>{u8Z7EGzh}R1eVnz*?mm2aaKhG_y1YmmtQITv%LS$^8P=|`~NKO$9$*o&+@+NrNuwX z`~NKO|FgW$yngy;c|Xxxg@2a!6RouWv%C)%g#EL;|IhM%)O&@0miPbvU*7M;SGyGd zIL4yrV+}}JRTl3uu!0xMmS)EMXg7Qr2Y;cxGC6Y4EM!Ov-NV(w=LiXG z98ROoDnw&D{?wQ6dJ(lcHIzFtNT5NAH6l;U6H)C%sD>$t35 z=+hl#Z*jVrOcVU=^hW6TuCk!;yi$z&YlmtURIdvAP|AjLGf}lr**gLQi2QGs^{EdX z(-SJa1bQl%#g3fLr_;%2$N8<7(53VKUcz=YimnKsj^Z|>ZNHS!Q$kFS)noLys*BVr zbaqeKd|r1<>FN^w0Q{1DWpjknN-@L4Q~S$C@y9NqZ}*q=i~%|HK$!>i*-@6l6)`}g zzka441{!{_thvCTBdpg}Sg%P5eVcM|b+;}x^G$^c{41ga@XoD;(L7?gZ*4 zqT=uU4+#&eIbhALA*Jadr3Hi+Y;JYlF8f#*r4%D959a&f9?x6 z3uS@ym{x}tT_~F%EW$+6As9zi`C^R)N~vOI=;@1PBhzD6g|1&L>&*#U6fkN|xyxT{ zA%vLHNEG3>e2)IOT;^B7V0&V8Ifv?!!ALA4lPOTBgHbzs_oBPt2z}(^*!+cvHpv}_ z=P)6$)p-W06m`D!Wf^?w?sv61e`TPFIxj&%0(G8=q0ZQp6LrQB?7QET?T0(!zEHG8 zV)V}M%IrcDrW6ZyVGoypx_@7`FuHxUD`lMpd#v_ru9R(2wbv+NU2G-f#%2Y`#Ak4O zZB~D&{F&vA_@Q5fU5hAVFeWCpG6q5wQ3kmaYvoU6%aZtsGPLYl6BuZs3?~#MP{zP7 z*n3PeViTW059r%}DUsqNW@n9>ofjE`G@)Wem>v0!q~hPodh-0?FUS=Mjg+g7lyTty zvG?BbQ5D_eu=gfF$ld@6Dby4Qz3pbRn+-hz7BC3d9#G1ri4hcRSb>0KNjAwA${@Wd zMNp8kiXvcFM8NhaHV{!j=?V&>zcVwp%$>b=1CQVL^Zw%>;$~*f%$YN%&D@!D-lsHw zodViJslS60Cw_dG1V%7~*v~<9xHRLUAbx+C4~(FVaX^7kgPI)nbrE2Qfz!HYtcpy{ zB`|kB&eSWb>G~xgWD~yF-dB9ie6alHa>_gg zmbwE>fwrEZ_=NK71j`PF2t++T-MIWF%ezdeM$R2SpiYV9cj#dBeoTJ*tHJ?IOe$AW zq|@ZgCx6gsx}Px~#+vRZR1r-_Lcr`xE`Lf8>p|Kg?1IReF8YWDO*GwUfQg{#jsm;j z1UxkS%m1M1es4;q6Be%0c7%`r(iKo6*vs)>(wmn*Ee<@whknr*qmNA3>nWfe?LRwn z1e(^OJSg4?z3ZdCXkY_)u&S2jrQ*Fu_>fH+#7!!Ms@?LYcNY5};X^icg%T!R5yNCe ziDfbc8rR`pB+|st$aydqhf!<+owyo0uvJERr!8U#W}?rrqRnKuJd@2pRwYRgi8Q?N z2%lqR0Wc1)mFHpZk=?tAKhKODUYMMsP)1d!c#AwfCIqat8fQ6-J&uM=_6WxwjeeRr zR}_9UXOFS+Sbr((ad2qGSux>9bI!PrhuHDp%n4$vAI&-AVHHBh8JEI1Y0aHci+yYecF`$uhYiGssh#H3MLsm8LQM-P@C z5~TZ?I(iON{(X6|Ws+9R9O?8pTs}m&A5|SLf6KxEQqTUWAIke%s`POE5k55mkmg6q zA21jTpBz~h>tW=BGkkmmfV+My@2DG#)6COl@-cIyTLPv)n>1_*CS0D^R@oAe0 zsMF1FV{D9d^BYiwwOc6uSh-yk56OUC(8SK)4vJ;qh*tgp3L74o;KzHi{C!I@14*oA*{SlbmQ<#cFxAxD zdKOgwba|-`fLoYl;X{#yNsBy@Rbfezg#l>j(Q-9#^|crqgYtd@XxVZaV@{SQ)3{Dqo=rNlK)0i3*S8jGbW`&(*l|0C znRIH3nOL>tLU}!5ErI3(%xbIsn!E(7e&Q^}%Abf+pX|rI@&RUN;yJhA!k*2*sQnYG zv4vp=)@o?9_*O@Yugq!j1*L@=n7)qa5u?z$^W|ZI=`~WEl83)QVeKJr9naDz(Q?$> zk|?Q~Rge|+Jx4{c`BBpyRK6tVCb~dKNYeL_>}S7HdZ!wbEK;1L&C$*1^<>X1QQXYVXrN^yKcz*H zr!?p4rc{fD?1=&e3mS*gntNslmai}>+F>1Y#-E=jGb6LySE7KgS2AXitS-N+WFtp3 zzcDlC=yn#WROO3)P4&D8!J>C{_NcnI!7+`C2qRpKOtrH|b=wwZ8jL-s2Q-FtXmAGM z0oE@)^U}0V!ZCi=;sVSF>hf{SBdt7D(UA85un!BUuc?$fWcm)J(DqPyJ5TpI0z_Bo z>|wL4X%MA6gsY3^foS1j4ABGmM@&m$;)H8plT|RqL3Q7-unSCs3pVRIMkR-h49-x7 zp208$8X3_-yJx4#nefDH&q2$2ymlI!$!EfAwNj?99S+a9B*UsuU#I6ll;tfAjC{J& zzQg1zX+atAkiWZUf*AL)1_VyrP?y*W4H>kcv*mzRPEV_cJP{om1+CE+gBDa<7%&7! zB%>_9@a@Uz$j8S}Odrn!y5^ievr=9K7PZrTJl;A|^l_Cq@~70*13arNl2**P&`YlK zR0+|j^YxxF76y>I(Bykrh8_-F=&fBW;_-Uuz8#w~=cI2dKs!r=4RpX9s?UX^N>5A} z+?fUY=tipfaSosxj_Wl40E~;Vvvn<0X_~*=AkXwD(Je#E-qt7vns{3Sp&)|lzZR9< z>`ATLdj|~K2jOt5$%YuqUptKJ0G8~;cVIP{7%Cg$`9`qJ#F!{X6o1hql=d^F>T!@T z6E(lZlN%0lJpTFXEXz$mGH&%ujAKTjJerPn-0JCW*~|lB9wn`TfaFth4Vp02<3lHJ z^Tg=}<`(v?t6SLPx08j%*D5}P!AR#t z`iVJmt3RnUW)yqw6D_N>4tWD0$oY+!-Vhjos6wz(DBOgnkS}RTRGmO;{_K>Y3iYO#0&V5d-H&?Sv@FGo!)ab4M6p!gKqfAOg?5|I0t*Ioo7Io)Z&J@T$Mz2_3(MhEMUlQD5wI z!kpo5l8M@$LfS)1Dm<=Ou_ttGruOgWL2jPySy*4Z>4Z7Q%~C-Wj>{{3t&4DiSNjc5 z)Xs4!hRY4!#-aNcw+LNY;%OmR9)sB^oCiF{p8vfX&PDS1-->0P%N7p@p3A@zM*jc`A~5t&p_Wqa8OM4j>fJvyImo!4S^@JE@PKY}xA(WFs)aN#Ti%_?hJr4-z#)9c_=)mp% zIQ;iy0nJ?FiEw)9WzDIkq60p-6KVbi(wV?X=SvHzEcHJ z6a{e*C($*?D1^ZyFyNgAtMMO98)h}G{_wDgj8iqZ!cR^wG&VP(7vA*zDOx^eM#GAS z+1OvFcB3Jb{;ua^%RzIP8w_Buzh#UAI`p2V3`nY^%X&V!h(|J31{a`8RR*DJKk&qf zV)7}SuhsaJ22Iq#-vAR~H7=aIQgvW5or`;n?Oxwgyxr>ss1fXCKWo{*b;-!J*YmMB z{FJ%v8zWQqb_#6|)$H>O5yVpH-i)R1=0MQxAA3F$A3tTz(f6wmI*z{O6mR=_0kwHm z!l+5Qq#UrjVsuq$jS9y$*g()`Mj9 zc}wPvcto7|T?}t#wy5lH4^6v+Z!HL|@!vgC z8sZLl15*$1;khCjBgLq+h`A1pKDbvg>&_Y&puiA8Pk<5T1h|6|Krt<$caM8o)kU8l zh-5_$$Rj^OVeO&uXFOlj6)R7hi`;1*Wc%-)n7ZP8AhekksVBdMdV~^BsDrQ-5#ZGk z&^co?j2(fy?l7SEt(Xc7#joCoe4>(^7?D~w%q?-wq(szTnEA2gBW7&Qq_mRf$!G=o zeS;}5P!sKG@2#U|mRpW6y^{-cPfnVdX*t1^5`UK*5g$2?Zi}ATB^>6(Xn^_K3?}c( z$C~M2IFGlB$t+B)LQdV8_$%F^xQ(6A{efATV%sx1k!^j(RAkekN;7iv>dmwZVjme= zK2Ye%Koecm9tt9GOZu5B)kU=|c`uY#cV;R~jQvhuhrX|L%mQBL#IHQs38;4Qt^DwG?Lg%gS36{pseEcr)6imcyPoQL0 z`vs_~yJvRn41dq;6JR4=Pw#^PS*>x^dRoZ}hba?rvgv1e7HN4_W_6iG$UU>%v*z3} zUS2dO1+*h_&uk!cY{nfA@(|>n*@&~|jPbY%p)dyV?(JuJ&S-fyoSMx5F_xNFuY>QF zhmYvUqv}UyzG10h2Gi8yT&7f2i*SSG;-s0~bs(IEo1qS@P2mcTO}&arAiD1KJzF!y z?LZi2cfSoIWbDv~pi0$s2z1>jH0p?_E;{=7%)R30ayPQl`-JI+D7_s}5JBmMV8O1; z0jovn%~56;Ccf94<2m}WG9g~+LHAGgyiM0&V)i~nnU(K!Rc@<2@O=UnIy}xy@OtJq>9+ZS}=s><1YVdjC`#9v`1 zX8u-GUHaMV43JglZ=L*=S2te(^YH%GXE5MDQa6`X!5~~~?p(I{jpvb8zsZcw`dht! zGiQ$kd9FPupzLqm3>}-XM-v``sF~4d>8~cXC`|>>F^20mo-tbe7Ea7Gz>6j3)vFmv z9zL?W)#UaHbvtL>yEIdL29RM~oVgeeV;5(ZO!LstJ1XuF#Fu11S)aVf01|z&016`L zlUYEPD|2d0zd$V<>&F-CS&c$=a9@Y9%a=0hC`_gN7J+A+GDXi)XxWjeivqV-v_uCt zZ*UqqGCg@HRjmlg6m;jd9cgH3|7pffKtB~;$3~~Z*yu}{g8!R-xuI^vEzXVSd6B#B zJP|onzdYrxINM(+P^aWDbZLgjvl)G!(=m6QCpyM*T>W}~9ojXjBDF4inXn&>$x6jl zdo%;(;cNA1W`)hyPv@)mXx8EBM(}+{%j2z~z*Nl$+iPK&Vjha9nmsCMDYqCNa*k6# z3Gw8kH}SdiMCVwv%LV>$;#PCSy?T{1T&3=ncs389jK}9EZhf)hbHO59&=!_EWt*gS zsx`s8w{FaVg~2J?Q<$Ia5Imzp+3crgw=ca09U4^$=^t|-)g4JF2T7HSAybgu3Q6T4 zmyN>;`7(-VqOa6q2PAbXDk{!$LJF@UNbhEI6+_}jt3B5adBV`HZ`VN@9+DQeu&@}i zJwgseNI9Af`8sl41rT7+;ViP}6hgK{nx}|n`>JK=LiF6-l{cqF9vbrY_I=vg0a97n zl>9@5knki260_vOYyf9BB+`V;aX8(h!|p^GKSBCNnoinYl7lmnLNekKNZ*2!!)9ke zO6C%W6Y#guG+C*T^aoPGWapIF?e=U)hXQ$+Anz)q;VLSD%sCKP zDDrr6?jhI2%8WF~Gzs}5A=eP(UCYiYf%KG+$rZ%)g~{By96hqb3p1zNStXe z$%aJC#qJWw=IerGanjsKG@-N&(qTdFWrxdF2-)1SAa@Gnopw75vYalQ7EDc4`Mi)C zd1R7+D7BV>ZRh8>&<&4QcId?B9fG7(jv@zS$%F)7kbE6yUdOorUD+;3e+yY&GKPEy zd55wfgAJsPgS>;ekX8;dpt|gKtJMbi5wnUR|20l!cOAv#eG~Eez>7A)yW=eRSGwkekg03AZ7G z60jT2a+3xry&!Lm6*Bi`XG6+ETY=4KbLT(`La4A7mdM$&u%x9H+lq4_CnRLdu@+`$ z6=p+HA4n=yRBUsAthvxZoD5ACw8%r3pq7=Dx1`rHv;(=Lc39EQ%E|_*kf{A$gxf`DM9u&7o_yE7eg~(Vn~k%+?NZ9nv0#lw7E2)5KW}& zgyiOs`puRFLX{1P?Q(NUtdP6d35kk|TrNnYnp&wOJdZpyS)IET9(SD7o^BMTFfONs)cSO0TIb~UfaY-#`9uOayGlQ z2r|7wUeXdskOk>T3+%AEkmt|=*bI5~L2SxuSj;L4 z?LSe8)5GS1nzBMhU3UTGUMzu3eYWBvNQMk~6LTE7Hr1*@vh&EJ7NVu=DsN7&Wz<|G zy!;*Hh+SV93v2JT7J}$QAle)-s5VgKz+MhpAy}e9NT-LhBW}3824_diF0?v|3LJoW zwzVkB1r`rh5|+HcX@dmKM2M(8fRx8puqcqC4>B(1Ko)99TMS9KfM>y)ShG}n06C5$ z4{t*xi6zh>;?ST4t*Bf5%JykFkWU#*6r}$K5|_Ba(z+pSEF|^=pCT)}P__a&1&|LA zD}kayd$t=gui9;(IJ1h2vLL&BF-%3vcx!`X*)DKk3Y<uxM8wNX1#(sNiYjpc{5nw(n$P^DjfL-kc)HzM2cUQb85F3T!2Apr*CJ zVRvV{LVbHyLRz_8$nOr>T&qsI(}hbE;R1ny zgnQX;$XlEZdGT_yateSIAzw8lp@$r!koZtZrdL=5d4hB8IgroI3d{sqFtZB_V6lsG zY=v2NJ7q~~&T1JOvc&EMbLNaZcA;#}_Et7XgRF31bFv}p92jUfWQvFMayF3uY{*j& z8S3R!dXV@LxYcTR<^VTly9#oPvTa2+$W{&vXtmoAq=;71FvHT96cpJY>nxaNuqoKl zvgSHq@!g<3k^;~jkQx_M8Q2B46VypzF=WVgL0V=InY>mjcM55cz_|#d z5Ii)<(OF`1x*Xt$TJh!}rzpz}xpUL389h4euPn;>BiRhJ3wX zY$4+{U<|nd-Jsv>jx3uMQrbciz|bKN&e{mBYzgGW&4Eum7Sasoskz0rk`ma-KuSyC z3h>NwL299q9rByn3(%Pr*wGmX?13S%Zj%&StN0Bs8Q0>V8RL@KWmO1G$h{l*g#+)3ozuMhMefuqGAV{ zcmXzV;4;EK1?RUd0jp2~dG2$-sd9qL?1VvbA%Siom~E`~(`y+yho*OQ*D@-kceJ5y zgDYF5WkC+wY*%iPtq`ZIg`H)I6H;Xs7G@V0XSrN%nyNR|3O=wC_RCJlQVV*|>MF+h zdUHS-fCLqwya1$jqyO9FL;V#4lFB&LkJe zngd=4c<=BJWXE{11(8 zkufm_zk-D8IP;M^!J7)Xyrw32KaUaJ7sy>yCYRTJ{};Kuran9`1~qEtZGi3`ys1IL zD2!JUpi+u|0TvMwdgkJ) zkZ(^}X_8@G=+9K|biuM*gG2F~y~8YPnF8UKs=?y&3n(YUyEwe%YX&W=TX8M-xAzWi z0TYum48cHU~i!ayJnhh#$>lF`r(-U$${?u`!KiI%#*t4oPHrrF0t@ppWcFbAcJ zLTpQIQcc1-1a|8;wHs>Q$(tplqQRZKIhJ(3N8Cwct&?W7lNP_DUF#poOKGY#$8(g| zvmU}}!BAmm?~Q^3t?%p|Y{}6YQcSsio6~;nwBIDdeo@12-j?V<7q1gy1I2gs_OuMH zrPmg;*MYV5y2esmOHVCnPj1>%vLSvz&buD#NpgmT5sYJ{Wb~KSyVf#=8I`cLhbh2p zElfe9v%H-orr`w|6FijVEwDVpG>7%?g-*SCPkmHs_x1pVX7Yt-pjqLd zG>ci^Sv5gHZ1jhgJc|)LrvVg~%FKY~VX4g8QpA{4W*TDs=nzad2(P8FPDK-Xd!Myj z`-i4Gux?K4qZJse`%oHFE^?zgXxg&$zTTHCBem`jVddedbDsAR%W$Tg@Gl3--TdEGxF0Yr(O12QHfZgP*WIM0-J|>8-%Ftcle(Hunv3lSv)ab7n^)psN zX@vIz3!w}A0)>s$$xxD6QW{Urunrv`=v`*QHA@G1XIM^P)Tr}7EPC2;t$-N<8l`}3 zA2f|}P2@&13D<$W3wPp$o@R&v9o1_wIev!yGlS)Vv zqj_PSLtg}xq!Q{xK@BBvVHhap-5RNfHlGV9+XB9AwTrNi;yAi z7pMps)`gzG&pSl4e2x*21x4j!%_!uj$RXgFJ_xZgnF5Vi_*V)DRDMgGw!n@EC!e5e z(N){3seF^)D!hB>Lu2L35!SJ7I4sq}3<1($TM$c&jQ0ym?Y z8Zx7>H)PLW;@>~5rZb@LpHQRZ*^SU!KJV{wyEMFESCl8sYOTD&dHoXqjB+(hnSVyf z;EZ+!yb~guocwZD>mk8WW_7W7JsZ?Vwhm(FgxZ!M5ggbmq~Tg0#qu-lF2xYK^z0V7aLEr|t3?-g{qOD5gtl zS$41WUbIM;HT1}iAqJ(b^KQ1pFy&;IoXQm7hGNWRM4~#eEjb?9Z9H_+D(eeg(c)x! zBt!IO3J60&3pDuD*j5tLRNjiaHhL#nhA;rY?{dnlzc+e^M`6&sS6a0+0Dbl)ug6l% zgWh~%aeegEChs@`y7+RaSvZ1^GeCq`PPBcq_q47dM}j>jBnY{-dUp$!Ak!nE!F;BG z3=u@zUiN;YYsd|;*I)=NiM24%XSx(qBnQ~8%Q~5S9phpwldnRRDwF8QtKN`!Kn9jY z^1pguStQ?t(g-5?D)hmKr2EsCJ0)rC&4>%No(xNCbtwOJZ@Gy?9(~=r)6(cKjpd1# zhy$C&Nl*$iY6wDD)eH^IKiM30*y)Y4;BrNN^LE0Py}nkU4T^uIVEO%t%5UUGCuo|o zYj=5PS!`N&*ubf*(zf5`#D=v-OWyMi z2=AL5E&0M*FM8jbu4~OrDY{D!}D-l8GevIR1%L-&7V>@EKB7w;{eS7tyX4usHN zuQgUo_?wSVp?UwYawfXdqS|Hw$f;8Hh#uKA9HJM5R9ubmv`GhB(A!O=1c(1_<4M#@j}) zjDh(mQcd*kSf+q*^%ykhoOimeA;)>s zspxA^***TgOri$inix74SvqdI?0u(+*zy`A?5i5ZMAgvvcD_vPW)#vMnwwlTp{dyQ z8sx4U9A*ge3lB2cTD7!^*!vn3u=|HH(JHi2`pBWcn_YwQS_E1u8@Uwt^T6_(7^x6w z16{BRhIA360yP>`wbI09zCWnyUCZMzLq%Rxn<+ekj^9+(!}17Q2_`cAL9M`m*H9GN z_43k!)QF81p}du4X`x<&tImj)1zJ;TBRAYSHq)|#Da8UMF1Q9A7+ST1Z$8Yj#h~TT zTdF4UEnA_%eb+*MY=h>@mRC2^HRt4Rxx7fs)XAAe8dG3Ei#1GElul^p-_tV1lfXTb zYFa31Dt^Yu7z^J~sM3V5?j2Qci}eHwEDK+>paZ7DC!W3r?N9VIW;o~QHE3dPwVE5- z7-uSP#&wDw*`&-TOx|n)FK=A|IfA|{Z;MA%d7Fp>1#@|OMJDp~6w)4A|6o;mQ}Iri zw3)oc$}x9UkO9?IcQq036^OhUTBExZ5ETDhm12#={sIvOXhB)-tgefps z{q?{i5aM^^s;cvrd3dSheIhXfBvHyzrj+pbJOPbdQ{~q+=UDM28GmMMdVIzdXvmOW*izMtiDY!g4t8xA4%$jJJ!@U(S!xYhBfN@t~gZzR?5AjQ74k7>}XhE=)sB z(Hmk&ou66+X%`AOrW=ONjTL#ut0(Fi@2MB7rlkw5=kBW-ZK$)~l?j?o;q0O5`>L8{ zh}oh!+jW$qh^Zh+XRGc?7yFCmY*(XzphF4OD%-V$0A!%$8InPg6R7_uYzI+sA+mI+ zEU`LSuuOzWDSSsXyZ#ejz7koES(+ynOr^F#IEG0RKIOO{OEWuCd@+P znpEdnX0esnuK2YAje+s66zs!@b?Jw%$gN_~p(zQ8p_iIg_Yf>EYaP!w7f)*< z{)bS+*xza+uhMN%Xj$|5*xx$z*y=6A0j%AwA3F;%r=?_PPOsXM{R zjUM~Z_;Iu4nEoUy7;U4iv&z6qtUgRkn7w)E!I@zMn?VVt#s%AZUmzLnZdd)OxGc)t zo?7LZE~e0S^!P(ddxl1Ls7`=LdN5xzqpHN9Q{j$vto}fJBg))|?WK;S^I;c6@jmPf zJyEA|MD0n5T4$X5q2focjH(?}p+kYHn!+SQRz;SsMApLGmOsKseV!$?qzmpfwOe&A zdL`|dIP`S4>O3(a+MM(^$XGRuCTnd+H(IMNimju~i9VQzc-2<@sA!KiC;DwFgpTM^ zG*9&Nune%X(AgA*Ow^TO3JiGnP7+5A^~(lbIR@sWNCMqlGX-SpI|fa4RFBX#7)lj~XF zFO_fcQEyV7R-mywYF1f2&bTVHptAZ#!7^S0qqnf`LA|T0@3P#(l#?T&DNF&8i+j+> z>gt8MhMZhHER&i+jUGD9sHr|@K}?54@|G|K#GgTRkkt>q71y#Al9pF@w`??M-YHN$ zm~TGJ@}@ycTd=wp-;#EW=2un63Zn=$L_mS;rdbrYSxz#ZWeWQ5ELh7E%-E{SnyMX` zJQfZu-@1*NQ~fBMl9bJ*xm)|=+8Xccgon@)dRFQQN(Ia!Khv`5t#);aP zPsn5bRR@)!d3h<9G#oY7fseHtzg*KSv9NKkXD z`boi$)-J8S)e>a-AjIjk3=n>XDJAS2tcwOeSKTSRIbrALx#sY8Vd?Vf=DOA#8K=s) z)#z~xO<7T$B3kw^9WHwoIN~#=fFQI-Mu=@m@FxiU#5EW8P=wgl971I>Lhow`9Xh+k ziZ+aG+MJ=OvM#XvP@QLC_zy2(FVdd*Dy;A;uSY^X)`0c2q}0=dLlrRwe7cMk3r@^4 zQ=suZy5V_Z;&AF;Asg*_9?WGtI`gb&Kr9}|*gkiKDzcAR_T1w3p*8EOFUJb`6jrv+ z1NFf2KE_#(Ki%pIpMtS_Bj3_IG`ONulA(CguZqS~xZ{=TPc08IWYJdjNv4!Y>qF?5 zZPj_RY03mmGaJK!{2V)>lOxK7#1?m@fiFETu5>KMbjYwcoW^ksLg``gvS zT8jN*%y$K!$aL*XA?=|?hpW%G6mNw|o9@M8sPCnMOcrW7w-k$F%-yy5Du~Wq>lMTA z3)(>mvoFAc6RQah*%o9*CfDT{SU)>@KD}mmnybie&9;{06u2SMlFM2MG3*?!0*Igm zAxG^_B{Jshbr6y&#{p3@9S&PjAw@I{zjafK`A{(VmrhuErDM&H0h8RX5SUv!tO50apGvF5I`);4Nwqe*A0Q} zAo8UX9csKj1&7yyu#bff2=0f2FghG1*(DI`H5cOYLMUdKatXxoqA|Np-&zSxYa4yn z>y@@Nh=piAa4|%2-T^VTEcTiKsaeo{VV0}FieqaP6&GY#b90Iug>FYl0R)4k^j>;) z`km2f5Es&w1CeCiIS`H(LcKxEPIoqhe=Nwc=j2);@VXX|526(oI*K6>S78pswuazm zIK(T&6NX2Zb_mghAj+p4U^cCw76iuZoo-97W$0qGY%6l2-aTtF>t*F+S-WQ0QQiY6 zB@Lnh+6p1yF@y~)g5atUBg_fm^&kpx4n)4SJ8{^=3DK#M50}_TTeU1xjy@V|Lk&@2~6+A6v{CnYWNoC;CKK?t?gb@)mLN>5xFhmQ8E8ThXN{wsk03ZULX{C_Wi z*9ydA8ESaBKB_)7-mDR&kGr3}yQaqE!^sU}YhFk(dk0J&cav?Y^0=G)F&{pV3@%*& z|CV+}dBOSH$>VPEg&5?yx5ggz(;slEQuaz0!1d>QYtqDT{zTHanmhqEGvjJ9gb8TE zxSDQ4HCj5Z#t8>q{~cG8Ej|~6;>OqXnDPSnDix*B1N<8Um-Q-2zajtDh08`2r4!&A zbwz14oM=~+_6FafqVzf3{^8PQfD3*Qz6<^=CD*&(z`w`~sWp=a)^c_&8v zhAs^A@_WMn(aY}ywD*>iF{s<4HB!O>j1D>S$G^ZE;$MEJ4|oln%S601`nJ@sJpoug zv9dJTr0&oYD?6fDkJY>_)vK=!gvu`a^HZXk5~w3?@`;!j0wKs%%h>dXAG&AUJ&zYZ zm_B>PY?>v5&_Xx3u-|{ZG?4449~$yRbSylgK03ALJN@8p$Nc=3Fje|xaFG18oTUdE zy2_V?#%!5-V^mRn_$K&G*+8j8H^BN?`H)D)w!FrMc0QdH&vchUS4-C&oVlzJCZhpQ z*E}XoW&6oM^YRlkRGL!QCuzs0w@UHJk1@@)WkO{$YMzUp19hnPlTT(yh-sxQ#$vV< zFNTQfqi9df6Z-a;9t;xlgYsEdghcbu$eA?_1ZgKb6gMmRCHZT$ceuZB@lb}8GC6dl z#48ipSXomlNC)^a8BqCkxDNEtU(1VHF)$iA6;@~sj7OhROTRJ=5uOm!d1tyzXV@kL zugldnRzVVDp+8xu(V?yL?~r2I5+W5MI_|5vpKA(2gz!yQsf9uNgh0(SeS5ratu^M6 zA9u4@5lNC?QD?{Ez41`yO_c^JKfq=|(V+!3Nuf8pdjo>lpMYACbyG77S~|eng`q{Z z0WDx#*suL0RdKP4Ak#eTDfNg5*yR~W6kf|DhW^@GqEmBg)*`>JCRRKEn{H5b$qzE* zWEy_(+`Lk=x`C_awLtjQv=m@~5m~!xwBebWN2F@Dg3~D@D9Y@>RHxvF)6yCilH)D; z#Wf2Vf~BY{ilGRrAV0Ncp~&~l6t+a0dJG!(<%~AUQ%~|*`g78|an0^pg zq1NdARW+GXU$z)HhMJ-%XpP+GqMI3j1y=*uFhelGg&M7?N!0@#TH?<@cdn^vFBKUA zi7pHIilT?&c+^XIl$|HxnbvGcIC%oF^zw7p85W{an1|b%N|_tpyR41K!|gc~)KDAE z4+o{fGi6=PqtdhNjL%rt)92gLdbYR>%(M8c1s`_Ppeu};TpZrJj2L>mo8%(nF#eos8fZSJm7|`$plyy>12rkCL%3LyhvZPgp0HZszjuX>q6Z> zsJU5``r-i7zj+X10WCR?H*48O2!=Qr0LYYTVa=?!DvYHQu68+6Zb zuW&a3Wj1XZXr=)uI;xEzNkWr&&b&YPtW z0`^S`k+<5y3Jhw~j65@HSMyOZ4-1>jM=dn~jmX2}epGoFKiC#N#(k?SyqD!d?u!10 zP^Ymley}b4Oo3$vQSbSZ%7m32*T|9 z>|sCGT$DONxhkh;mTu0(x6FEP?;^zUx6BgabZ79`hDt2TDE@<4_eZvO`A;*?v!&bd z&?Z7xVYHNFr-UDiN@H12>?lPQ#l@hEb>Kt653N^qulP7yiUGu;IBK?Z?XlTnL|=Iz zuA3&lyH(3H1G*QDJC=J}i_3tX^xEXE&94lwV028h;{vGDSS#VTn(^W`8Cd465DSfY z3*;%|SWO~xkA8u?SZq8Pb{5R=5%?=)yHL|Yln$}PQ%QP^EhTFJ?dU669l)|nH5mxM zl9ev85bj6k_ec1JtavC6#Yb&T)ei$utEEN_n6)GTPj2###{g&U4mQ^VsCczufmFP9 zZ1$ei18{4-)PUncd4Jb@CrG{69@TLMu%%=iXop^V+543qfE!17fzPf6QBt+=)M~Wf zxi%5)it;T?Gj>6NRX5_^>3vLz#sxBL{tNWgXyitlu@onUhSc>v zCrC4y{$|GTScBiUuvKz4&qn+j`1 z15K>b7*EACkbQMO zri7Wp{uJN6X~uQXiuhq)QJZsL6JJ9?8p(8{acePKO1O0-%5LVHVbXk(LGuaCeG~M} zIZikza{`MjW$tk;e3M1V$977X`<|CK^^_1>Oi=To^=ZBj!`qWH(KQCmtr@-^;mzsk z&#U3>Lz%67>4F}Bo6Gk`b0Kz-ot?H!%2FKD*+u;7S@@pvr@U+U4x?kj-CskU%H3$l z8=D%Vsm-6sMN3N;)JH$H@jWeE(((H5Y+uAm{($x+`dBOZbwiy4W{f;>z-r;KbIQcR zJh3*7cu%ZVBY7V5G6qV!Z^7Sa!*$!z(9}*o2-P}hofMkT(U&QRy&LftG&JY@4|xfC z(B9w+^Xs0*A!*`*T!D7B^rm&KLgf!E=q>-fbN8lJ;?0ft`x{!1_2dVkYL8DnwBQfi zS7$V3&!(U8uXHrwK-0R&|Iwzp;^;>Fy$-FbWVI`zN|cA9u15U5j#f~@-0L7dCA$j5 zr%Yx`82;F8_x&kV!TeQCLBwW^@@iR{&DIgwseRQ7^_E6g%D!eK zY~G#V9>%qQg>mgA1!K&$y2l2gyn()-8=xBtrpJW_4D_9AAg08d^KEaLyovEd3hbfR zhWqBHitXdg8FLvA^3kKd9~y|C2%*g$Je(`uoD=KF4>c3xb(|Ovf9jtsU-~DUIDejR zjoG>2@MnA*r3o-wl}m{|8_$$5eDc_Q-@VDkb)k#%eJ)Y*Fo1~o)}t5s=14xaI51-! z1YCN4TQa(Hv9DP0pk0f7&GnER*FPrHi5;3+r?E?XNR-yH-IGx}FZX$+m)K(Bpx0aB zD;3wqqX$>`G7X^KTH#wHy&DF#aiwo+93BG{Joy@DLmQU*Z0P=HeGT-z5D~|ZqfzX9 zA3b)*9v_T2^f_OJzAZP$Ck*Bof<0xWApOc>M23i21D@rdY%%dHe~m}aukp>)190O^ zHW-I`_$+m`MTcL+QF&TCpoQyv zSz=GQA9(|r%l1Q*OPd5(w{Xb35|&T($}d zg?tRd7}M%Cl~!aE@Ja+?ZKcFg9^i!zz2=)D)WO8cLd#xQ^emcs$k!O1e8=~tR+xwy z?(|70_C;SyWF1h}k9mBo(d&qeAg%y7IuCJ;1M}oQPzeav6{TW>|#R>VCuCMrd7{_ll zSlmtg;`ShmYxeBVXm!6;SNBSk0G!*@Uzivw`oK3^kh(NxSZm_twV7z=<){vlgDob0 zO&7HHBj1hasXTu@JrMbNGkDN~x~S_OUwi3#4w7zvVRyJ;kFS7(d^DJeuKmbomxgmd z`OqGQyBYqMw%6BRx|ge0JKet5H&WjzrzsQUC1Mo_3heW}DotnmVl4MT1P(z6F`zxowAoiTI+)XJ?tzVj`;} z1&E;Zp07vB&$v%sMILUfQ;|4wng!$ak2GW(X32Rf2)Seu%7-UsqWOy2p^mJmy!HCF z5*{Zn_|BJ)MojigDBl~1!G8`%w$CGJ!aHPahSBcqp+^t;dI~}bCFa4+8=Qs;bQA}M zI)Crm3ZZM1B}hX{`%gvZL>JugFB-{^-k*USf-hiv@?A6Mpjb)&med_SH|IZQkMl>&j1({gaXH7Mv>$!3F~CIm{2j&y7ZU%EluwyX`QShh z!gUlI`Q)Y_iw&oH`a&I0nd+Vd_Mtj>SN}OvKV(aoKS~JIT=I2}LSyzUN#X)eQVKZG-mP(4bYh97sjIGKYU+d*fwZP z)9H=H|LaZ<+7>3jB|J=jb8T5EbH?Z-R$Gd9B~g#^222KCUG_~17t~&umaL#&wMRLf z;Zas!l7*YATew*f7S2x>PW2@>*7KLvMb@h1I%vX)MbT(#i^a|9FW-ol<5Aywt1al@ z!^;xTh5<_?Tu}#&>%6!bZPMWT7we(!Z)}%Bn;Q7<`e)tzed$F>cnQy=g}KApP>y5s zBAtaj)G672?0+8jr{oQ-La(;;ANVIdB%uj+Op}B+DI=L$3MY^GrZ)bf|7G0n$;pjE zt2_H||6hO|$CDZfpQt<^!90yp@zt59b(HbNc}cu^@*8k{HP7`|Z=PagJjTO`khwn? zI^*y^EK2o~87U+7g;(Ayu@CT@wx&EF~1_zQa)I+J={jIq6 z_#zb32$ZaP8?3q1`?G<$@lD zvu>3t2^s3(5AUIGdiw_m(*115ni-$O7LzT>{pfIC|1y1hpmJ-pDbL?ts^Hr9LsscE z3vyfwRMQQ?p;v8$UWBzqmp2CS_cR=jL)?(8^ZnOj989e5TBswQV*H%4_Muh%{apm{ zeHpw93KTCNWMQF+`F$ywXY;km|3~I`c^y`Zlga#{pUim{9nSuqqm!ZbSATXpG2cHT z8uh)cEH3nLzP}(^NJ8;9_^FL!V$x|lg6HK0fJ2jE{uWW~OCihv9GeIY@!vgCF5#hg z8+R@_+{T^8`2Hgsw~}E6o;t#fWE#qz;JOs^mF@?1WToY|v3+jyw~a!LFcD0TLVlHp zE}*b>WZUMsHgtM~e})i(Ly-Lfc=d#grW*clz6bbxlN@R|(tlnQ%GD)^pmHs8aFl`+ zR^EbJOwy~aJEF2a>;2$E@Ro~H}^=cR4z;M@+sxjZ@6 zp^l`{QE8FCLi&{LkzBsr&y;8!0Kdq2YdeBXXiBlauONNTG$kK~(Jv+bfzoldm~2nJ zPoejQbO4-|QX)OE<5T?E5)C7?V5}c&DIAtSjBldTQVp6g?Kr`A?5|_ga}v9&DoXwXK!cT(2CBn-_zC~-(MTL0Ng2(O$9|K-+C!tu{FCd5|AkS_j$K!9ASlp(Y2(nB z75+QK(2ffKQ=<4&6Z3=B%__8_dTif++eM&M7uSXH*GdDDFXKsm^{S^zrFkUL3N5bj zPY|W%O_?PoZcFcgKSyfK78AFnIoccWzoBnWzIVMI^zW7&Y&sdGSy9kC5=tLV z*Mo6N;e8cf1{HFGxTfT^Tv_}Bj?W}vzwQ`$)@*gB$%7c@mHm-uZQ z)Dr(7X$#l3A6j}~j0LWldzSj=bM3K{eQ-@-G}`-dVk(-j4BXRqIq-ZDhB~**--ZLl z{`P?7;BSA)0jT4BzT7`l55!S=zf5VCEQF!c*%FOV3X%T{VR&L^wxm{rL^BbuX{NIr zmoZKz{_RDm(=5lNXZ=5kO=W1=awIonpo!%WoAH+8VpE;vFh-buBQ&m4CUcOt9CSiA z>L+v^ixOu&`avB`NVOi-Yy4F)VlnB!*m@k33184mXFWy(2(})BaEHA0=+`XVdi2Fu z{Uht~J;MT=^`LZkMo)*i5$G_B(m}N#Wn28?qS5@-kt|3jIoQif6xJS^xXoX;j`$9Y zYGy%t@F1sl_=iP{pEol%8#k#SirJW$H@&m?BBi&uAdI_a84%mg6Z`7zMy8BMWm6(% zX^}beF64d%wBF8l{FkNJ=FCbHqcGvp!bhb9wit}U^I~js>Lcm^IJtMLXfT};bFk}u z{~%H7!uCpDZ{&XH&ypN$F?qewr8&Jm9S#t`$KO}Fo(F)>cF*teXX*#gu5=7%+pAYP z;&AVZ5lKN)Kk%nC(?65e4Uf$cxsP}s+Z(Z7T~Nn;U`ch&1^lXdD%Vu~jJSNi|1o`g zj+BL_q+Io}-!Dk>*q+Hui$3))m6o!_WTv-%<}VlLHAi26=D)=N>aNfIuXxF)bKoCX_z7WcE0z5nHTWP8x>e zQ5^L5)&mhvKeeIEDz#yO2&c!i2yK`#zlWfQpn^DQ*8nMpg&+&M-ZS4J#$&EjvTk!nU&>o7urHYx0J0E#0OiTU2E1PGK5xw?G><7Dns+=6GH}bC43$` zx{Ue34vVtICn)CKv^1d_=1&={CV@Tu9?CfCZ=7Bm`pEX`^f#l&0*+|n#%-?D(uwf1 zD(c|}?wMWsAjUkmi2$)RN_)WnN*_cMkNK05y||oXy|Q|+|Xok}6?N$RA;0PP#9_ z^Tv~Zuyiea_Ihe|?X#U-ih&+PWj8re#Fty3b0__Sqng9hUK}B%?!9o^zp5KLeQ!+@ zl$#+MgkQ+Z??RJ>Vx+lzvNo10WkOavN-6y3p;9suj^Lq*4~Kujun}UT=-X00{2kE3u~AIwAU28q;s3RYIl>S-ePXwMJ=}e<-bdm z(wTZ1I^uUc6}$}_WT6tlc0pf<;$S0!71@NqO;Q%y0oJlYSG3<2kVB1Voy8e+M#8%m zi-9+#o7i56LcT33aJ_UZTMP<$06GyBa0oY{*3p5sdLXQj6SUzP(&28PxRB^11DMV< zQsC$$%|q?#1VV!J7}J6V!zg1*i2LyvT2L>L%{9e4KoSgNmO=ZOF@f&-_8hM96xWBZ z2-jwzCG`XAMQIB=5_xH~oh>2T+bu1rXQywgBDl!gZ9rS1(tK|aR`<{d{Z$E zu5qlXY00%!`yR;y2x;h0O5iqqd%O^>HF{=-&zP*f9E0WIRN}HQQ4ciGw&9>O2Fu~5 zfiDGd1_6~L45YuE+^MAo+R*@%i@{>Bo?$Uq7DT``bVD;{Yx*8Zdof;@jHmRGC7I;Sbh=HSLQH@s5YcGAy7GuVVf`(}5Co}HQ zL*V6N2sebziXD)?h+miy_)-*4vNR`gZ#0?@GXTYslg4(Y%?y4K{XbecAQCDMc0?rd zN?e-mgeW#mgW~U#*Mm9`y;MY^9)H|6&^StLD}&2NM6FqHazxZHjXxr)mqt%a*oVl* zXw!FA#&yb+9;G4oy(?-e(;{=j0Ll#&odc7l|6n{7y+L+Dw=pFe36xPLqm4QB8lyU0 z10~2>_(aUyu7O9T5(b1loah;naf1S&9O&hhzSc!Z=bu(JOs6a+Q&9qpbX4pf@k+fB85b&KBvMujV{VB^ z>GCj2Pp1^qGiGjfmMgcg$XVIj9iql}?}Vl?jhKoT1A!nD@NdR?Ge{38OJe#F6NUmti*sE^_Y1X`ed zLsqAgThxZc{Y-&W_?3wL_hAhCp`N<$^VGe1hTWx*_evP{KtzV^m%*!sz8PfE^b89+ z(pr*Ta=f$P7(A1ymgA;s=4-Sg{-x3ZB-b}Dk#lZuI-I34hu+V@{m9xYLpv@LtFX>x~XO9 z!n2qPqYX9Z35v&Z+NnJREZtEMwo-wlC9YhEsa{Z0VsqwX7Z!o5fLXbs)<#72Hf=>zFZ0GiHJJJJ9}6Lg7uKY42*qGv{@!bQ+-_ zAf?j?k-zR4(bA&QlCWoHM5i@B6US&Xw|3jZ=)H}SjpfhD>BV+iu{+0BP*75AhXeoY zf}&z;38WivJB#hb*|q|zYin&qIP~)f9NJl)+b4Ps-5188+w^1&@npSf4sEMawH6Mo z+nSf?sMdN8?Q?hFfSA_WoI`Wuv06|-duY+vKyN{`wl?R`UK|Lzr8KZj?AzMZbK}5bRi!22(6q=LdZQ9qglyu;9`SLY z1Pvud9s^IpD9QT_p7;-O#D{F0$Hlo3h(AO|Zk9s)UK0W?L0lDq_`^96bYfy)gBXfH z{6YnSBR*UXFN;~!LugG75tuc2h%}68Uz!MsOiTM9@|=yO8;w23mS{AAU*uNOI1&d4 zHEPZ%5%c&ua@g=+bWRtoz zj|J4YRAdU*vr`ygVR7IND)OKX)U0Zw5}pVQ6bm!WHNZ@n&|@f|9UXik@RIlt3W1Yg#uzYcAF~riazqC055jQGCB*$?zQv*MX;yxK%=7T*f_^x{w^Z+i~pXh7M z2+~H3y_QJX1W$6+*SJm*rWZ^NXI|&+onT;&2QE_d^>))*oa=IDgKy_@+Oyp`g}H@U z&LY^KfRE?OE-9AtDA(GG>`{_YpeE20?c6(qeL<@U?-qHT8@JJUca7Q*@6Muyc(@q8 zz!xxK*>j((wx1j1(J@gKkE0!`lG@jo#=1%c_*yp-GEj&p?A+|SHasQ!wb4rxykXu4 z*ZyJl^eG(krC*!<4te~$C@}j36YZ}Gcu{)q>2c_@s=zEru>oE6Kto!VH(_2eYhAs~ zb%hRA!v~hB7;2cIU;Uv9pmPR?x8a?^eo(>(gX#+i>qvj~9-$Id@U}E!Z%q_j=#)Q@ zAxN9q@i_heUuF?ioXGVZV_BIyOBHt#U3NdFks4k0BRrCc+1^c;Nq+k~YIb0+aGV0m zqW%*LOf=OeZTOS--7-1ZlXqi8=?zWeIz`}r!U9je!*xJQlgdU&iEWvc;V5-lrc^xJ zhCCws69t@t)QTzNX5y+T7523{1T|1g#Grj#Zo(Q?o#wgbw4Y>Cz-I=xus7DOV(KHOI4BRqfyGvSx} zp^jKsVjKo94Ya8%*2v&8$9P$A!ZDND@*H!2TPlD`ddh=~IwdhvWX2~J!gwOkinv={ zM8HT6-oAz4GL(sbtr05AfKX&Mc0{7LzfED8Fw+{W(*TxUaoD*g@TBw^gFMm#V1L6F zlZ$1awPgZeYu$G@=w3#R#BV4l6zYzg`5-VZ&oJ1~N4x;wB#8p$>#xA{(g74%oN>}1A)WR$1H8h zI__mkv?+)7e-)?`EgfVkc|~_vCN|pvA$A&DqIIdDdJGBU7vTJ*YD6#`9D^bKMV5G+ zJ9z=>G}5>IJ`iUSliO2$Dbv1jdu>eW%>Nxm`wN)%nmcTaFx?iJ)O~l7a88)t*0(+H zxAg*i2+HyYya_v>O+izVf(fYG>42+_qpQ^lfo#qM98o#;Y_zdgFcl5z8ML5o$-#CJ zo1}=t+nevDGUez~x6|S6=*OPHo6#fZ0==~%JE8B+1}w_B6%lKDk_ZN3DG=N2ys#@j z(6FG$nq6pf7r^JlEO)k}sK`}dE6ldh^TJwN zk@LcL2-mYOTr@p6P^QY8?Ug+bd8h{v`UCB?dZMhtlA|d3S_9e{9m4jP2gbw%o;N>W zJs(D}bDWq|+z^~6Htb-|;J3+RNgc>oc68{kz@P9DdQ9EmEruJIJ9&VngMtr<)(+-p z1O*BNa>oRj!@~LN|fr|N(jj?*1Wp|uaJr;!PH}!xSNB1 zacTrg-zTH;luYSR#*m;W2my0aKg2lsN>7-Rb-u1z>DQP9S)~pw*xHdl z^KXV*sJxW|IO!;P^-^4=l9KwNEW1MIii4S#NP?Aw32#jpfxR4o6>nl7SoN$d2X-VH zqpnSZP0;Jf!PuxAn@#UhjIO<1inuDmf~}Khv{G3x;#YjpB#8YA7K7Hx;1wuRt?XC4 z9AU+`@tPbkyX^C zFrN6GE`_S1mTj6gIo+C@<$x2`9Gl(k%+7Y@=2~42_$SwvTb!HavdX?jt*yuzYa$9X z57IMMqkACvAIp@9N6T6<0wy%Te`lc$GXwFAy82y5o!@vNyXrI659QHob2^0n7@fQX zVTY3KHm_5-wh~4nAtgB4(1Z9!9%%%HlU^6k4{2D=v=vP2D1IGA=`T4-D=tX_y18$#dsJ?Y4SOYtXldVIhM1F$+|A)s zU~tbMq$kHm9FZF(ioZozvuv53XO%SrXT+x)F(vM<(GR)rExxaNdUjVjcp7T-Yao?= z`MTIEIQ5F!cNFWw`H~qY^ycvZ59Kahzsk&8;}ee&hE?6fWFWiUZ@e40Q5{0ZI;X-| z=Sw~7T&-dnW~!LT^558n*G$)S3D-<%*>GF0$Yphw!0o;4;sUt3mz$MiD=cx@ii+F? z1!!Vnpd!7NM%jocrUIb5*%oPpOq9`G6vagEn*oS^iv%%iZ_*t5et_~nQ%twY1J|mU zf?@RXQF`eW)AL=-6;rW1)@lkUE2h^Xu;aZv1W`;MQtmSJ;FQ?Lt1+FJla6P*@LMFG zj*?Y8C9hsFDbca7OfgL|RZLM`dCt71tKPjM2OTZCnp1kROt+>K5bpEhgATDvS98gK znggLH9lg4m??$}}1S%UAR4<++cjXCv4X%eXYWV`%)ylCyvK&tcqtSw(1GFi6`XMi}6Bb$8NkBx9g@C`3AdtMcbXgw@8SW*6a)tgMHrw5@{gF7VtBpfJrzo4kb8CGeYti}!e4I* zljdZ$1h`s0844{c3T_jm08B+?bQ1E7yjp*TEhaC=;o$;Fsj3ISZAQn1 z^nKHKLt}$$rR}=*>t_u{z3vJ2*0(0_srTv{;+#x?gq$d|0PQRdHqZlc-)uio`G%Py zxm;sR5%l`K%zG)mr7#5ZUIlLV;8gi&P8vhW;ZQE;O z8-#U`fx0~&%$C;ky}+T*_Q!(@!rPNrRyz!uH+(W!tZ&Zo^+_W_lS{)a>9w^}nBq4@ zGvbi_;*TesR>%CzHOST>4xJG(}ZBK5i zET0(+3T=_20_4MRzS(F|gFdm6mxaWWj)K-SoTv_rW2|U7@-jx*XcOfj{_?2&d7zf+j9QGnuBAEHdZ+$KIR3M^$9|dBUXcJo1V>a5!XkozKsTwRldy>^f}p|`R0PLu z+!=M$aRHoBpBswf`rQ8Cs(ZU{-J9FpGBcmw=l?z*{JfWGs_veM->&N;P7^04UU zo3d~j2Ov5SdXUdFAKcvt<|bIQ7Wyh+$up^@?t?1{t8*W+9Y*)z81YeNgCRB3 znDHyNns9THJ#JIZT&8kn5#Ft9AMc2_s)qa?FBTleY~yr?F55U2bSF*AzqNbeVihrE zXxiNiyX!ISUWIANpgz1~^H$;M)B-m_MRiOSID$xXK;>1NTM^r|O*v%V+dJDU391%% zZoW}?GlLvXF}5b`+I*AnQIgNfVNz3O`;(wLF+5UF4DZ!*`z|B5&pu)plVrD&kxVbg zk(B!10UJhVZ5+(4>$H_r)1~VF&-ZMeDu^yAb>u%srNyB@O7gq+ZGKh|M@Xq7|Aj`7 zwhwF`Du`D~sdIQsk{~)}_r)X5`t)yGlo&$>o;^(Q^Y{`?@kz;pn`c{ZMMsj_AS`~k zB$q4TKJKw^^GDVgS7&q>6Ay2!;J;!1IbXuHs6M>GZb07;{&6SP_R=;|OgFnxr%gBP zW#kuBXymQFy>*m@2WGR)!;*2f*)8d2n-mn%*(NVV-M|CpEAijf6S6Z2f>j|4AKd(G zJF%HFwUFJZ4u4apI?FtGeDjR8lC9hu5T9&Z<&Yn?>NN(3V; ztiFOP(b|>ww2zjG)(BT=w31({L&7(}4kXBH^P?jL>p~suM>P|zi}?~3@+>5q3ZqZx zKQ;LNUzwp%P9ky5X_S+JotePXt=5$T4;6`bg5jJ&-cF%X800$CX$E;~m*^((aTQwi z{}1ud%p%|AGFs$1m(C*d{NYeji(F)0hp*V6{%(F#{1?d%b?UuixP_<4;1qnU^e5rh z%2#)fdYj-X;vM~?{mJ0hmYHYyvem0{8@dzDD0}rtBs1*M{;f~bHjQ`1e{3Sc|Dc2= zMD5>lP6d?^$|c@8O$@Ctfc7Mr3-h@-_8K_hMjabjb>{j_ie8yTW_OF$d-+J)Qe2uq zufR(3+n(t2S;8!e)O@?`R3k*20nq_j!i@^UXH2f5AY>a z&zsS2zhT+l z$D(AnI1U{f5j|r)!MBG;Qo566RV$p(q@z|iEjlub%p9A} zpuMLO@K*&^l26ZwKAt6h46Lb~@lOmO_LO%v-dX%%V38-?EbL^bx^VX4GPSUiaoa6aoc9e6Z*Yqf-#iV&=2P8s|a^mf7 z+9^}YnwfwqCpp{9i{>=OQ-1(8KgpS60;*zVCpm9TjkUK4sFL2*GdJnBeR@N5w{@qE zA9!u4a2r>m8AbeJ-c-MAQa zo!uKzje1GN5(Tnxp8)kq3YIk{ZiEy|sl*_fI(NESaW)r~v#nG|C8Op_^$8(wj zr0``wM;)Y5T^spyNi-@nCBhN_tERuPj{|0=|6g9C>HplTGyOcp9572Rq^Rq$%ryKI zojzkYWd}VVm=C8;RUn*tw-aLJkvy?ntSnyQGlo-kUwz}v6Q>0Fe2LZ-{9>{)0q+j1 z$!$r#SrJ`ZXfA|_Pa#(9(+5{ZN2dzCa#lslt+&xGBqk6RdadG0G#cbHtD=7qtd(4) zG4z_MN)X?GY`-m9BUpFwU~jL9USoZLFJUgtE}vYpHrmASu|Z0&Ho>9zhCEh{>;ykT z#J&tptVm8Z+uw`K+Y~LryUI-N)CHK=C_O2J_GQ#1g;xG{eKaTtU+ARvQy!X0?VCQM z)V}OXNbQ+HkMzpr`p;pu4}PSqi)mG&C-bsFO7c8kvO8jjehL4Jxhrk^ajhEMl|0lX zWm=HrTQ^60G#0(A0dsd{k;-;gKb^bc00?zg@@a!ccO|c1eTi>LsY*!OzZHFza{^$_ zh&f3{oOyP`a7!9KL=-+Gy_LMWXd974H>LAd4kYj^u#)`Hw&*%htOn9l-pWxU$ibb_ z-vsf#eyLrQmy#el7iGD^Z}HlGM&XK>Fgs{u_SyR=dlPi{n35HySF*S8tVzkzVlw8Q z=s4?19y>EE?{g)ZaLU$uquT`QX|B>}SWc)^@C_(F6JMe=iC;?kiK>d?Gm(Kik-MbH z1yi@_GZPF`C{fYb?tBJG<{>z zvPu`b|6)jgs`UJ;NLr%cTN7BtYijslbjbx`DTC$S7~n3z_|XJb#Y^2L(Vqryzb4A{ zr2N<@(!-b3AFZKH5|^zQ6Gh@OhNnZ~73n3EZz+uQO{l|gtDeQqr=vAuwF<4e z7L`0SGt$fPLLVZL!M}KirdsekuM1DSy18C3)zD=*&EG zO(%U{jLt1IU+zk@GDWol?D5go15lhW_{<8l;z~3U-BYMrTy}G?fTs}bO4lJc;Q)td&)Fm}XzWeRy zaY3w6!By3%;=!5ftQ=reoy7xms$)*Fa?zD}U7|Y+n$(-vS(jeacjY?8_| zmre59Z_#S&9XvW}%?j6XCE6(97c;10Q*!3@W&Wb{Uu8GN2&wmU-OYy9{GP66O_hmN z-x`CZxgGJK0&D7`%+@xwHv zwKjoO{FGlC#O5{?zhSWEeoA{2SQRhxQ^bL({iDGqu!;!i8JskmJ#%7o&6;^9dtX0T zBz9u0C%u#Wftmyu=lb@jV|vJTJ+HkWc0lZ>LaQd$!$UI_=rYi#0__LtOl%4|S>hu_ z-RG@XAB^knVrZa|V!uMM=AHbF9E`yyxrwKf_epL*fAl_yUnN)F*T9pcxFdXt#=C^} zOd%E5?lawJcyB#w?=n(LNJ+ccAmYpi$w$mc{>L4~xQy38@m(1x&NHW&_&S)g^^1Ch zep;Wd6eW>zfEi-R;S5T3Wc*Q4~)f0NRa1@$Q1)Ne&EQc)P=59Akv63DAI`XoC2 z@kV4;8@Q&I1;Nu1=A`0~U13bQXn=bxrFf7cx2Xgn6`3F;}FrTp6aLHJFZQ{_yplu|=uoIe)L%&6ynhCQ6upVegpJ z`YqoB=HQ>U+caz#Jz5&I-U)48uRIs+-VX;qqvb7Cg!hHJ{ zq=6%Lv;I@W0!8FOM@+KztpB|{K#I8xZ5!AfHKU8Ijq;RgT_t{(Hc|Zk>i#0Jbg<50 zE1_hhaK=ZWE;&)i$K0`EK`c|j)tO=@56)(a%Lf~0icy1gGertQ*=`T>I#9@5m|fI4 z(We_(m*V;^5uPT4GaggAlyt^B_K(dL$dkM8Y(-{#b4L?$`+!(0GUxh@eaI&RV!7G2 zJ`S7Yb2!MjTlRWL|BGU|By>^i0y5>6y~X5?i}0i-jLEuO9FDjsBPF%L2JsB-l1U|oo@4V4pmB;|Yhfv3pr zRX$hB7!I$^=S(yq;oPj34BoM~H91sJ-Hgnz9mb{g|Cb2wLVEU#rP(X=nL5r{Lzq#K z$a9y(Ml7XcGIjcb;JoX?g@v;gOl5;K_5ax@Nlo>`^oK@i!^3;Kl6_M)HX~;)jd}jB zcEK*T9>RiXr`Zz<-x)^h@y6#}SP@%-Yw6F!_4MnW`9CC^dmrE1LHz#-#Y6vyfGH+| z{iSvywkk$Buf*HkhosJ82h>?y@~msCI`#Q z=94<9DT!^dUJYxIoIjY$b`@8`xhC7j#%33p*CpJ8HWthuYVP8CbQ+5hrVA_`RX*uk zW3ViDu}Xn8&0TadflY2qDJ1Wf#_qLl;d;O&FzWbXmcZCD#594?)dYuXGucAR{xtM; zH-S|W7%L~l<~0_NF|rvWiqzD zvZF}+nxRQ%GQOm2OW~k?hB}O!y3W#adh8Cd$xy|;RsGXOLpf-w2EsSQJ|@N=Z2fGA z&OJ4!S6OCBQCH%x7ss+|aipQfM1~FIfM6|@-9onC@>Moz5kzeG&*u?#U&a&6hutI4 zG5x(4Hc~z#*1_-&5>Fxv4Dox@%%1ty_6IshudO;Yze_C1_Ycj$4*J0(~T^RR3s=cl=`f!3$^VjAr=qaR{u*#_R}q=h5amgLWg zjUc~V8*6UTif3MIwDk>RE8^jy@(1%`ml^OHg1{ThXr@762Bs|0Dckm|b{2_0tLmce zJo%9lltS6QQ#z<9n|#B9SX2;OU98i#oQpYdHtGC2ltqKw?(FZV)F$7a;@Qr@vS84> zE-}JuskPS!gRDoxRFc#l4dF>L1cL)nm()h=J@GAy6*d-Uum;S-rl`vKX&39lrYQiS zVbciOpfPM3h+9dF$M*VDsuF7VZ-q_kI2kZ!L`=_!O=%dhL19E9Y?6;Hk9{DL5jUv* zyy+uCuc-v=QDFH;gydIO$EpP8BFnF@j%^pjW1t1=HN|GG=DWIvwj6DD9{aCMlD}OO zds-BaU!29yF-~M8ay;s zv<%bbVX}vD;%|`ChN#0BtJB;~8)I9S zX7hQjWSDWD8>LXJ&T}WDvA>a>Z7{oqcslvn&5!=*6ZWHq)mIyyE@g7#OE?C;V%gu3 ztg4JXV!eZ6OlX>6f@@+`oNB(2wBvVSRcuMB9gL4x#b#Rf^VrxlwU;Z=2*fWoRpyfN z%2-QzZ*^==1M8FAr-bEYPi~9Nu|CHaZ(8-haI$gt;ql^=!^os>lq%5U0m_lCrd|AWT(D4;30*g(3E>xrM1dHzLSiBMSMy9Zs%Je&Jx+R zD>k`+zM<}SxPxJr6mZ(?How>H40?TjpVJrc_#^U}^DE~yDDZ?mxK=$Jl7c>`(~rvr zT()4y?(|817p_?k$fsVvbDL1$2};4RBsn84ytImUb_JA*F4?5(N!?zq23Ia|~ zAnbRdBI0$1-F~mlV+*+=Hn$6Xc86vAjH)9-K_;X#UR`0&x2MHN_V*?Z(&Cp`4tc-2 zvNdjL#N*%|CvND(7`TH$N}@MnlR{D;f-Bw<17f$?q#!tr7b=_)e=y+mdfjdbZ&yUZ zfnb1C^xxG=ey!-_146#v7RLJ)LBGf0bcQ`1TsIwYdwhPUgaRA*^3Ix8^4AmA-Y?{* zM@=^Mt90OH=k$o}&s2Iy$D^?ed)uWkL;Eh6)|rhC?!As+VDO*@6`!yV&+)pPk)Yk@ z@q`@qfL#9eoe(p;fbO>8kKGld@1(oD;fU954|)7{yC44~$G=?LO5Xm!%C*AM4CCYK z43W5O+~nzF#ts`kdU^)Qbm+hKre|58^R(W?S-K^!Fhj4xq|?b27v_6>k~bU*dT=2y zo*F?mQ}RnLm)+s;xg9>cJov>eZLYlUY4VPcpBAe`9(|~C zLIJ&+I33zem0P-!aSvCvD}d++Y|fC+7Jz{WJM3O4w;lhv@Ww*K2C zpA_)Q$HXm1gu)DH@$ST{D{L9j<_unGrz+O101raYN1@%}Ab1xD($}HwxR=@KwEIFZ zWvU#y?M|1^8T5ce52`|5znyl<=5dEY&`G`VCvip2e z$WA&<#ej_Kx&`W$9yK}jbfvu@6K3?pL#}zIvU?wgw~w1sFd%k?B`>Uo$Awp}y*}LQ z8umsYM7WUJ@09o7u?6Gf!&5iDV8~5vu+!~@xp3JdA+O{Oz^F+M0z2MH-q?G~?ZVRZ z!{gLzj6+H%m7$3K>kK>#Lca=$t8`0lL55xt$Y;+2Z!i${*qvUt!{Kp4sr*4(Cmcv_-5t!g0zTTVX`As*_GJ7 zS!*FD-mGknNi^hix?wAQA)v=B~6Qy?}DByL$v*y6<5J#gu^zc50hCKMitWQ z^-BN^N@2SPQ!up!ZRNp3$vr|rC?xs9cwiua*_k%#^F;905ex`c*B}5S=hw?K)-+GN=JTLylCyFwW_+|5hWWC;9(^geh4Ieo<;J2@d3Ll91PkUf*$$>Go+k$?-SBCL>65a)FHgdWl-!`v@sw)+ATf_;=;j;yUcCxA0 z%EUyL9xXXKXr&_)QYu;)mIk+9KtBJZvU{<^*~iDJo84=}gHgetEgXVQg(aUKMi4*o zXl^hd$vG3r{08}$$v|MpYj;BRy&kMtxdJY?Ukcz^U6_XB@5FM|*(}5O*!237K|&4M zmVs~K#B7$IzE5Oh<(A(05eJ+;FRTY1%d&feUQfv8351*uyUi8CwN=c1EPIZ?$#S8W z-k>`SSI~)j@4YTROoRsxB;1n-DLqYc6@AP11|tz)5dKNn204iYyg|H&;qdvfMCg!$ zBKFpFix2;8R2CJ3^sV6|@dA5uzNRQP;a-LjkBh9^A ztOXtq+$g*&Zuds~PG`Uk=ff7ZJA9Dx#YLrq*Y@FCa69>HyLsrXC)~@xBs3!||BfARpa;I}AhZLKXaVkHZ#-z+nQ%Lz0~g83p6Mab^{?E&XWu^xBp| zL_LPD(=(4oY0Qhv>zKA<9%!>~yMX!;>tPu3dJGNFniEMzw=W#<0U|-;62E$$l9*S_dVMYAj zu#e=lJ_*x8^9F?(uqv`ym;o!BnVG8D@@Wdni#$dI=>eENH{?u$fk2c3gXNaLKED!b z=JAJd`Mo3|E91ueXY+ad9=8`0y2}@Kdm}QW5MCqZ#V~pp3c~9`9>;|Q2?8B2-BaX2 zkji7?eav`eE`J zR4jv78dNL;^O)<{YABLc={x3P^I1O3i65?3#2)rKk+=)k{cddT^16^T@Y}trYzDk6 z&E{|+LU1B^=npwP?f|9`D5A|R5lmC?@@b&f0RfyJ1`~M&1hY2D=7-~hf7oDX10*N7 zvNdxXGoU3y=2n&#WWox6OP$a#hr%n8>~06rXFeM;Sw8sqHpwgb?2fQaMsx@bb2!|A zpdC6Dak!kW2qr#1%{Rclx{z>;C{m~9L6ED&bm9-7oA@+@|BWD43QBl^*6+3{bKmyA zt+-Dp%z!(h%mJBj??XUo7{Y6}b6Jn;$OTy*n}a+!mb5SMIwCX!>~%OC0jGo)ecchi zA1WkKL5X-&Eu%3?ei(gnVk+~xC8ysL^dWi+AvVL5=554?$`mfWoPI9n$%)R$SUVes-6`owt6LXl&jZ|p_2^sV$?8d#o$V}0+Tqxv=B+|!z z7$8Kd4jWQNNN->}rcHvKMFbA7-)mRWjY>L%#&sb&j5bV)HU#l5IG|y~-yxSTWb@Oc z{+B|2daPtqkIIsQOh{S8z46x*R`Tk$E!p`FsIwPY`j8z7!hqWr@I%JnE@6_AJboD> zg-HN4_HY=kuis6bOwj5?HV-z%C3%pyQ!;hiEtT-KU?ALx8YG8=com)~9$j?1A`T=n z!-#}PX+AY9bUwqJkq)y&XjVTXW|nh2dheE|1yYEzFarKU+NgTKO1V8QHLjC+E}SGj`jNZ7?P7P69|!%7;mY*;+=x#4bk!U$Zkpkc!t2zhm=W|3tb zT@D0y5+3FXV(~|Ukc3@+j6R&Nkk93E$;fVfL35MoFnbj}OOI3{XO5n*kyo~DX_Ak~ z1>U{i4^@V8IgoaN(}+YI*3jUl%5d?ZVh&8y2m_$`pboh^ZwQGZ7i>M8GP>lzmYS5g z4DN6UxdS_V92;~Dfq@;+*q)8B!0UA=(pi`us}J|((42lIwEjjX`xnq$k}nMRAq+nW z@uVM16mU-65x9Ba74<0)BzvLe4nNWtNPfVWAQW{Y$PI==NR~(*8OcvLif+88gwPA@ zhvR|43LqLm7AR=>=-dcYuHj|ruVF|=$R`Y{dUb7VQGf32^sV&y*P&TUuWQ*o9Y)` zFhd?XUB?gt%tbDo#bU_&(&!1v9>gd#9T>t|vKtBp&ja&;;s-J%D+pr7N7loGFOUa- zt(35aMAO2^CfE_(GPhcp%))M1s4$#Q{68jsn;%gTG}P_F8k-YAG*+?Tfqxx)8$nHa z0z72gE;6Pt18!W&dmWSw^BI)QX~#2NSfaqHL(t^{mB?~nrm{&M8x9|^^=VuFO1LHV z5GF5=7d;IkP6@%V!Uo{e01|U{brtlrrhE1Z9WdKt#ms>uQN#naN8ZF2geT*6;RR+H z_o!ltI+6h|CNoDtdW=3L3&JKdY6^UKb4)^}4!Q=Gd!aa?kONsoEGVf9Xb}g^=6E8= zk048kNg}`qh0l*QV4oUwDK;bI2x1)r3)IdK)+CS|w*^q-_lLunmThiQ{=*Ttj+bx1 z0$O_1Yyqt>17<9@93+$aIQn>eyuM*Y6LW1KfQT0c7%MIjj}2aA$V;uFS6$r9@Gi6B zK`22PxRh>a4AWBvsWhl&28KnbvJHP@4U{c?ugH*hxAg7^|H>AD;6U2#AuJ|2!`KvI zM?S}gwKO%Fal2uEu$t(OcySm9PBWILkm$C-e?qz;tZ0q8c!o$PEMfM*;5luW!yH(P z!9?N2WQL50Vnwk&{dXZhE#?SSuaf)>h|vR>i-gCBs0+~`78wwG!7HH#(~Stzhfo@+ zV>i~NXnZ~6A;i}msdHt=su9wvP8$sl;KEQJ7D*g$m~8rWO|Cru_dE9p9lh9FflVaH z>)JTEDz5;pA~JB)e!)X`g^*uE zGKVf;N&)0^5_xar2_ta1?3krsE-~4{nRU7&RQ>6jo{C5++dym)KU_v|2Gd&@i}^lJ z2;aeMxI+;?QnoCvX4^p0qb4mHopcmrLJUK0Bd;AK7xuCBk$BG$F|ibJM<8o(aXm&Zx2>JCBl{dY38X_}qdY*X_(^_GM zPC3~=5F|;U7Z@O$10sYJFJv|3cfm1<_hV@0KY6mlj#V)u?PZP3&9z}$f}!wl-Vo;?vOH@Wx%b?X4&~j;W*$td7TdA za6*Vw9N{1~?;y45vcZKb&!LVzU8ODvN=R@acZW&O?{pwnNP}){t$=@nE(ZDJK9byC zc+l9&gv>cIme@yu*DVokhUm(5SXTCgq(_b06@{M(;e1F|SV0yHq(^fc<>9LYcU#;;H1ZbW5y6yUPGY}3_<_-Fh5=EHe z#vTGJhWWgbi#|*4R)fwAul>sV%eQRBUaR!OV%Q6kK`IS8mVsfCs$;G5)AxtE(>*&P z+kwq5&;#mrV7DBU&4F+Q*@HmXN#^J5%9C5 zRX;I1-v`&jEn$lumh~WG2>7r;#~r|OIwsqovbCT9!U&zR1(ETF$AX~D?SpL#Ay)uh z4EyBcb7@u%J7KWBOQM?{v6f3$0VEI2^M#O=#PZT9y4y!dd89{*o2lulbOxj}u(T7V zQVwiafkA*VK=KorTkL#*s)QXbY})V#)b(&>p8$voJFyQe5{Y127BW>4mezb3(&1rr0CldP_OhI!?sQ}Fhj~4%H0k@0>;E_0BM5@j)fhz%Asui zNRQLYR;6Jp(;=-~fGrbjO&W0&!a$^if}XI`XGcWn$6B)oISm*A7Zz9OPT?5~x6lMJ z7DM4kVf_i+@JLvGaoDj#3EQo(HwEq=-8;*|7;Nqf(M_2SA9j<$M|Q#ML`30%v4xT% z={%9{cVXGZOz2s55ldBRF=HWDRW*2~Hu!|tCx%ph$c=0qrcP?75EUZBOI>)32P_H9 zm}JN15KOEHx3IMe(H1sL_`N~Mda@%0NI7}1T#4KVHX9%yzy}dY@*~p|q_Z9G@@7D- zu18?HOp80QCY?9b(QVGc{x(}bo2~cM>yZaV_Q-DQ<8^TgXa|2mU3D9l{<+Qid_Mo&W_`0`0_QgC*E{KOZnOTm&HCpy z>z~`Ke{QqB;h?~|&H8jh-nq^C=Qit~+pM4RY{0qA`X+}E&TZB|w^^SaPCd6-|J-K% zbDQzkbvIJa3}xwSFFzV>sQ^)qakKet)G z@Z4to#1VmWoAnci56*4YKet)`+-7|oAvw2MKg9`wbDQkE9_a`sUu6j7{qYkEZ zwl;f)H2RU&^^onYsYfZkMSJk#re;Z1MkuyJiT1=WvKi#%b zpW!HIPxjw)G?&buUzOcsybA@EKg|l?P<&l@{=DlJ#>$raP-LCs4}|9wvxgxU#L8|W z+vis~TIUQvRr7h*FPt+gd|k4#3Hfw>RiSu#5IGWyw{QG0o|j$M`A_7u^Rv$F%c}4| z&N>Ty(Xe>dT>s248rw*V3jaj>Gh>BWWxI!w_2pF^mUg40H3|C{+*mw!UML*9zU(1% zpFXbVM$MWsbQ*t$b)$d#qNi)hXn)s~(LSyzqaDLH=*=3|fi-0}p&M(;D8*~any|m8 zLD-ryO5Peq)*4318c=|erDc?WHP@H5Q?Xu#f0nTk9Z7#Zl8-;5=&vh4NZDxm>k<%C zHirIkfRwTl`s-EtYb^aW5QLSDqrX;2_)|)MT>%2i#?xQhy!dlD{j~~&mQA>r{(Qe5 z{#-$Su}AK&q`%ms#uMo;_G;85`ing^HJScmuXIeIzwo#ODecf{X*QKKyd?28DPK^v z+FDNQ*i#>~hZFkvM#;5Y3F_#>M(g~27tWne|9|$4i*72rNm|esXKq8di34ZsUASl$ z*DksuF5F;^>wqOsAcBMKHje`*&Tt%T+zc$i8QTnHn{;8&aYU!VC^v_QG39GLN^`~mV z-eX!ytLU2{qZ%lWmMlXbXKn029{gcxuRN2EmMtAljt954BQq9NO>8}zf~&m2uSAoi z)1Z!nv(UC|?~*-CpudRy&eBhMK19EN5Pue^vROt;)+|tEhEDqVCkqyWFJF>Z*fQafF75$yV#% zb*K}~Ws{9BSIkOT`CI<&?d9igtJ<4oZOgZKYTL$6Wage_PHQK=7!QkGOvc^ZpsCPS zwym$aQ80n3d2pG{Dy4uTGw!H5tp}oSiFN!RN<5RMRtj_Y-YD-G&N#5_vaB&9vdO9U zD@Iz!>JaRSjuA$YWu(f>UWDPAYi-ipjujjF$`dzNJt10W@y*cJcrMT=X{&&SX}d%7 z0^FCNl?g0Ht76rL_VPDds=5f)3hoQ`svFl*Ub72I3W;)Z6Ha%@xkt{VmVpj#KdL}No@@VY?a7g347 z%6goqm2#GAy|+TqEBq&=_uP>yzfoI-_r_1~<);qDCt5$@OIXKGj3Cc#t(su?7K|d> zd$n*{e=-AjYg^SeJpkoY7j4A*)TfInu|!&I-mp{5xrDhc-ILa%Oarym2PLO!Hss1( zc2=zx#7+!Uedcoe@Y{Xu-q$p(oi=^|7=k`Ih|jY24kH7#~Z!^AhFtv4Kxw`WQrZtgh&piskghw1O19 zQjP2_%7d7%ybxcQmqG+Sf2eAm^;_Kt!GmdihAYwfpG}sWST!qU<*z4JwI>JuvFv`U z4%gKHMfor5@{i292HmDze`BhmLA+OV5*;h3HaN78WN zF@+1scOy^#xa|Hcvf*%*@(z3#Gd}#P;QzYW>C&MRHi7?!TTqw{GzZ|$C=$cG~*1Z$C*3MiZexg$F%Xn zFZR&mZ~>#lT(t|y_S}jo*0|j1vYzIPnbY?1 zW#sCQt6U}kgIhcMSkD{D4HxqV&@%br^aq{v5Y!*Y*G6)j8Fkcw%F`Suo*88S&3Dbu zHJ!)E(f_GhlWIns{%O^ZR)>y8`tEaIuB1MnXOJ_CHUu(!6d~nRxh>`3=T&0`>t$Sf z%Hz;lS7)nT<#95h&48esocW(a`Kn4+7FBc+BO`TlWso9GF;~t&9aU+vY0QcXiTkUn z?&NgW-OY&Wt173sRBcDq@Wp&POpdP^X`D4@jI8g<@EzhPVUNF>*U9bARLv5tck|q0 zQR{sdRyeJD`C^EY619qVk0gV?t*X*Pow4odL0P`^q(B2`=> zhz=E86_LI?I1`cfql_Zba@1LgNCxSTljH9DTah>16>q1~?c-wgoz@VgEHPcM$8!B# ziPmZSVm5TUqTA^|x|`~DE4iXU^=Z+1GuNI`w|A@K#5bor{Qh&}>dAt24G+t#Z2x`b zL#>Oup6K`8c^A!9d_Fx{%DAV&*z#=*>ro-sF6I+og?iXb3Zx zl)tjNmoVD+xcGeu(uaJy%z@ZzPkwc0QG8}J5nfw&HTPD%HjjU~ z)VJ!N>0BKU#J_Q6Wg7zvSIsjC_9V?SbVz#i?VAgFiVzu{!u-adlO`c>NeQ z_@?1wXLSIsQy?Wde{}W51>&vfXR2Yo-3ao|?CR_C#mX_MhxxlCh;EqYjWG`MWR!H+ z)bZaN=7H;~=UShoL!z^of96WG!Is;tuWln+-{2}qr;lnTTHoVKs8!3tH$*7AzEJlBxaQ)C3DcR;g%BaTZ3T!3KBKJ^lz@- zB6d)LRl#h_Lo>l_SYi~+U-g2SicBPoip=XkAhWf9$^tRTjFHx%(OQQlt{!H+jHk)a zqYBgu?W*UIXx+2S>wg%Qc5QLmlV&9jJOOSO_TGS%VdRRRtuu#)`5UDeC7 z#J>P*Djj~^2y)=Q>TgByos!f#d?E>w(BU1ySh1k+TijYtyejp~E?s!E7n5n8*Zt2n zXEf$mlG*8$OSU{%-BYkO8_SLDkbTvYt+{*&b6J{^Z}(Nt(tm1D?XQwJx#n2L;bg~J z2WkIM^>}MB->@OObH)sw`M2hJg{g*_hEwm~F;*NoHfa^85?w;^r0`mXp)P3_1f zepe8KD!6JFX7J!tQQ$!A*i+q#n`wuQ)y-EaNTgnE2D8wx0j~|LGf{nKHuBUMEW&!F zGf9i^+@b2JO+`E*MmOx3T7>56+W!M%br#`1fKZFDg*Irk2CV*6XQ z%Q}@WX7*zOdGc@7*XzG$0r9Kv>>F&o*5v!2->UAd|K4D4)+Wj3X`oBe55HYKQn232 zH)^mo>&#%&*_to^UOg+7<2mQu>T>J7JT{t$$h(Ux0fnkHl1IN+?G&vCxk|;MI>MJw zo{0y?k%1?wH|oDNFd?pXgh!^Be7;0OPmY{aoczyWG(Uo%bBk{uQVLQS%@e58jAs6a z)fWrmZz{NIG=Jv7nKSjtIHNOlVw}!url65oP4hZX$fWQAoz*O*z3Ee`>rJoH)V=9} zI`k%KH8*}-{r7BfBx}IjY93Jed`YR!Y7PSkwVF2CpwVjfDAifb9C?2)3nl75GMan2 z0q2b-W5F$Y7TlbM1&b6GC`Qw&i)LT@w)!)HtZT5@D!=}1^}hsC_fa}4`kP7-QCgJb zkv~+=XdvzeEvfvfCJmJ+APLg>m+F_Y#K%fg+sfP|h|X5VlmQTyk(__(=I2Fv=Cj4P z>y6w$dt3QKlKttlOdco3_lVZ7czgy6)K%>dFXri*Bwsd+&rM~4<~NEjwdRcHWQ$p# z=3I%U4D!{Dr0=09h4V0??$Pf+Z2EHB-K1uSx{`Ah_mNYClrLZ93yvbGh@qrCV zaZWrJuz~ zCt)0rB^irFdkj!=C&OlnFNJNm19i+cusvK|eeo4pShQ!*s%_ZKLo+9ZTyAty?zsHF zWE?)#83)#v4|IKbm#4;H8{Ss>lC%wP4T`&)2>(mr$D3^q8uN|H>>tSX_VIk7A*pcG z_7lIoT(Jx%X>&%)@b=~PEyJ6XrvJz?e9nzJZy6{9#6A;rmcG}7)T7x0b!;@%H0|}H zES;Owci!xq`IkJfF|rBsf(vnvee@Gww9f>85xq`MOE*=7Mz_kKLfPfn>8B zg)BHS*IF`vO8j%{!89$-J=+#XO^wr~OPVCD9C)Zmd|fX!uTfknY{1K?(`>-*Y4P(L zh+nASsuB2<2WKPpX1x)6dBT6m2&`yi&;g}K9j?&nLE9@*_b3l_Xd`I}J`Kf>HWaz9Hm8>Qws(%5I6@X_a_NSO{g~N;D0X7cY&^6RbnH zO5t$JWM*|_`g_$+))aZ^SfHtQT7tb!h`87n`yDn3Ba11JN0!?EGkTX+Br@G!Dxb=)P6y|S`fU6CG$4swyU z4*ru#$C!PR$c}Dx=MMoSCV7*-PelSOW3fny7tX?se)8_*tsH(^50FctCXL-u+Awy zrBH6V`Y)(R_~B%*Uq4Se{m;ghg_+1F_QzKIxxs^=k(BR0>@6&N6hGHxU4PxISlMAp zxv!0Y*KvM;~BCxw{?%Np06LrB>2R4K`|4235V~i z4e@OS=0^?i6^r7(BRj?)YDJFS5q~k&`8RfCmx(~)$S(Uwy(7E*KBj%89bQm&KlU;# ziLJ}n*;p9`T0kmByIPCCUr9=%@v)6gW1Hx@j-;aObU{{cY`NR;WJP|~)uXb>gHKjW z5PuzoeS`6yS;b)Sj6o;6_1cNFrSbeO4Or_R-0e!9h{Zc({Q$^Kcdv3T{T;a1lu>kR z%76%efdzkmWq*MHziI1h%4mCQ%DS==fb-{OTTVo;8IxPlU&E`0iPM$SD&t48McYKC zt;3Rm@4CQ$<8w0kd*aUu77miwFRv}>0JMtMj8e}_a_GsaOKWn;^aIOA zW>tbZdR)>{#o=HbT6U&oQz1qwUXA0`#Fe=@9kmwKBa>W<6A3#qxng%bELa{gHdQDJ zO)t>E)uV%ZmA1b=XwAvpt%1;A3gbx5zIX@u**)lAl^!_^x%q59*j@2 z*ti1P`DXMBXwdmUyKWpgS@X;lbE&OPE%^2>S;_2t`O}mdsCt@G2WmJ?X)*@& zPE#&ZsOy%rWn~(Qp^A^dHN(a>mn+c5mfUe9zQt0jXP;tF3aYhI4In8D7?szT`7?ZU zCE4$3+>&g+_2d%k!(4OPF-yy1S}~LREPTgKSz0&%Cit8YxJv0GPoXjbgPw{v6vfw# zBfv@Kw0fY7JsCPOi&Qkdtz+WU5j$}C4MUPR&u96H_CvKD_6KW+T)@tiv8{?&X5W z;+s;=6hjW5^pROP%R7;Ft?y_?j=mUoST3TJ@rq98n%sU`sU{j^#!KQ@{byj!B6fMVmJ!I_f6t5^{7+#1f|@s-ucYePG&Sk<1@S zxDzTPq6!_9TjnhJmyRW0Q+(#i@ukv4GS5+dBL007GUB+J=im-SYFv0r!ET+xuuJl1 zpT=)#Di%&*X%16}PYn=v^jrQ$6VW!snC8%M{E~ps+NjbGsU>G`ThjKO3IuZYg99w z3~O9dNJf<|?@6XzzPyOkUcTH;W;Cg3OfJl>X-&Qzzq~v7rF3~)(yMfNA!*vArX#sz zJht(lJ=n8NYI4PAVZ^Y9o?C%SiqDu%>elx^D`ZM!defR~$WvD?Z%s=hw6)|D3eEB^f>m zbU#S{*>Upnvx8`{B(^G65kn4u&5xfbYRD}~YJ9XM$xG;={lgE6g(=2;;`gJ(uut5= z*>ZBMdENXJGB@agnwX{4RhmU)Aqe&HHIHM=0F@5DP3kfia0MnhIh5B)cC^ucl};u5 zP`u`ru@|b6GoRckx29MSN2<`ON?yW2GnJICGNxa95r0li2eE7*IaP~W8O+I5Tn5uR z@>6Sbm0Wn0Q6_`BgTcE>1`)c} zM1+nP)>LMlzABsS*wUdRS>36|ZuytKnUZE-E6icB&>(Vtr<%d!>drOIEVMjvcMY)P1XDUOH zXNrOao*uI8iaUFyP`-BEYUUJ~3SM$vyTNc6+;SO5m6@(4j=YZGzGGR3N4wX2Wtqs8 zCZY2+-X%_?a?lg0ZMisCJFv|WoX)cRd|}NOmW5{cILorhL@YpUp1hz}O_69_u7M-b zL6Z5${Y?B(QYTg?p?4wE6? z8WT04@ef$PYTo)0c3St@sXFubXG)8?`8$d#&HQzdYAk|yLWNe%-+LT1%-;ZEs?i}i zI`uzvNZxUoTfZjLjMlHwG?iY}`U#$zNzc{6SN2Q%>UWQT+7OgL6kl+u!$gX5mO&`l& zwPK|~dXJs>!Zh;MsG1FWpyZ7JmVX+7Xx@|pT{xy@k%hx#WbM24$)kDMJh`|8zJlc! zu3eU&YjAaPP}%5-zf2=@pM1FMmcqjUa<*9g zAN{P{;ZZTUrbe)=*V;1`-t*MMnOu`f*8ZNWYQDGDXwY2x`cAD>k&v3J$raOT9LV*!NX=14zWpxarSa944HcQ89T}Sf?hRr`iy%8Z)D;y;pN zB0TlVsHR*4OiEs=CnZmtNQpV!igRsRC$A3F3>2+Rrzh1*wVAUXeRzQ70VMBx5Q+?+H>1s>ugq~=QhDUzCFF~lHO(y?Hsgr2PB9{_O{vH7&C>8;ddnF* zNIh!0PERkT*+52?)%+xe6yV0iIN&hob>NLOe1f@^E86vca{r=I1DRi5rrASE*7$m*7| zwH%!mA4RWI1v>o=aPpFcH3LNP`RQz`Hw~6YCP5OxGK+L}OgBc$x1+=uEpuE`d|IwR z(?YU)QOz^f@93B)p^hrBbvI%X`&BDu0-J^J$f+Aw7g{&~qs&c9A#(+$_>*Qcn6LtL z=NvmPO&TtQS;!&BtkuJt&PXYI`KZz?06WBg(F{d$)j6Uc2h1d{+YF<`<91m&viZChHiwLn}pBem>Zr}B1*0x8MIw$)r$C~iW3Q;FTXMv&b{ zYZeuVJ7%O7yW#3_)+IA^Vs{h%slT%!qXFg%Ji5-_M z^e0U0saJLkZ|YAegqZ@9Z}Uc{{&O$W6&pe4rxpI*`X) zlxKDK0kEFTO7^4zr;hajPV0w}YBw@5dz0;ZyElG?FVvj01=C95|So0}m@4NG_3# z_}`j?S>l`i)Oz1WJ-hW+1yYii{Z=!yf%q{{rqcT^Mv#74wY6E|_x{v+-!}=O)B9Kb zr1YcR{e^n+^sot!_ZfJcekZ6IlXFxmUV(+eH9)zhq9}Ws)czt`dIq!+P3C^MP-RfE zE$utzk(xG|G)lvjgTjNG)!rmnhGf7oG6jy-DR7XN+nr!O7CrfSbs%8?nA%)LahdyA zlTgJh06QSkG^h5sDBhq#t0rI}2hB{tjDXPuObYx_6Ht(XeANWNYjLfhPJ6w1Zb!g4 z&uvYRuFi9N^J*`}cE~_#c@L{Rl@&-yzNt;^K0$mD{Y@qBbB!Q7+tv0F#CHR!<^4}d z5S_d~5-`qlTTxLwc`gILZeb!taG%6VOLkC`Ml-2hVIom9-zk5UU%N@LH(oL92gC?a!dEJjswK9XPSTzj8@izXPbDvXzLz)Toj zL8CAh2mh!rW|)tN?npK3$zokkZsdqDOhr2rBO4xrgB~^2S%}+^;2`}lG@R!s~cvfLTaz>is zs@>X<9OzbC?Nd2#>RDUF1mD9(CE88xu)j9?{0YgaZDn}ky9X|{SQ z>m!AMi3Ohz6=sXC)Dx^{O*s8$1EGokus?KCCqKQU{AxB=(Q8XZsp&lR8- zVj0_PHoR##<#-N36&p{*@wn%;V68~jOiE|fR;Y+)D4>!&AyT_g6c#Fs8+WwEW4h}i zal|GG4Uh?I9fc$O&yL*2OS-ntsB7$~qtKXix=!AL-avNwzB< zg{h7uJ&Iy-YUu^7$gSkp-gF1b8hB!ppJP1m%yTc~KARC6^?45!d zm5fg!ic?@JvU16vYi9{o`!&fySJ#y2MJ^VfR;(<7+R4^uYOl9&pBp2d#NliXo3ehr z_1W6>mQsC#!<0AqG*f>vNpq5(boQd%^P0VQ@YsVz;k6kbMYFo=>_;5>K;$7-Y2~LJHwO8XXg1!4*?Hmyg08>(_E1AZt8I*+8S&5Fbn7tO8%reeS z!mRqn`ZojL&)!NDsAQzI66D@fOwsl)j*b;>(GA4SsRv?FVj!Sm^8})Rsd^RTz?fbw ztJmK}v;Ir7@r1^_M6o_Rr|ZMh95Du!I;Qj?sZvWnu3g(u_(yVpU8bS=G?l3*XX(`H zePwK0|AjVc)T?7A!+V4h_MfQLmC4a%I+2VO7!z8P(tl_g)v7F|M&+Q2*QoNZYG1(3 zjUT1csM}S{HU(CapFC4LfT{+?$ux?)0707oq6RQrly)IKtk9$EJTmsX+ULoL?`q!{ zCMd0>SFqY-Q#u7JE>je&ZJANQa?0u}SaZr1ZUoL=!B!@RK#3d7CkS9+p5rd!KeWE3 zyyM5(ouc(N4Y|7gnBJOV*{BsO+m8#LIMjsreyNR!x0SK$Q!E^$ae}@tNsrbuw&Gw) z7`gw~+Qqr1+X6`c-)h%cp5%yOVa?HbTP^uoAvXyo`glO;iyz@#QiiWYyi54(1aRm_UQNH!U0LgT|K#73xYG)beYth< zEbE&Z4!D=cH(p|SUn`;dGK@XPExtLM{Mfc`poRP1r~v;;K~7=%F8|b6c`Nqf_H|_$ zmMIRXpPp=Aw=vIrOD-ws{Gf+C(V=dRC1;L-eJokgTr1W1FO!aS^94(RR;P5`aQsKe zR!+NdZ76%Lm0OaEHE`9?(p!=&F0D9u&Lf-H_ElV-1qkJ)Bpqn-rX~^m^9P$MN{&3jli%1@ydSg=6 z9Cl+8x1r;Fwb9jFuVBiQTSYj+o76|1Ae>#8v|S(FewxD%7sbmL85wL zQYC(>7baCv!ubo6P{1xs%H2n66w6L!kxkv_lTBSN>eP8%VMdhn?xgP8-AURICOF26 zDVv+Q0!{Ww)8e}ADNbEHSzNa-)nzv9sw9Rqaa9ugNBygko~FH|UDd8i%G9@583j_V zN^0~zey;0FKAm^k-pGUF(~0YnwoSv%)Vo%7Z8RTSz1QJ|i@~QmlYQl<`{HJX=8igt zFq;f<)U|B$Ph^nl-;Z>tj2wx@+Y4FbHb-4y)|(g;c25$;wx*2YSyKiK_)D9|tw^kV zHdeXTl+hN~lpVrEzosmUl>?l=C+Q6SS;h?1H}n^~$l+h~7dv(KE&aug9DGNAF}LV@ z`U}gsJGeOHVfZi$ zO_APJD>_-ZHs>m5_vDM~##yf80fyHNCliO&4d_8X1~b@heW9;KX8!>Bm+jHz3w`_jM<^(G{)OXT>ZJM+i`C3R;kS=S~d zRq2I=D_}B_MJ9}^>rwy1j)o7L(WVlkYa{!oZOyH`&e@Rk99!3#%rC8Lrfb4Lqk6wo zJsPve*S%tKahOhxuj9vBy&j5(qhnpb6;O^P#!r=yE~Na8Wp?uW<#kgmW4Xqe294GV zG*J1u33V+6%QUTy7%1tbNF4{QNF7(8HAkMmvQB-?bBuV?wYqTT28u%=nD|$3BOpmW-9?=LRC));^*FDq2z=TNCANq2sIFPv#EeU5EP^%igZ$i&=QIuJ)tEKAVA2_vOSPp z0co-*O0j{BqMr>!ilU+@U`GV*v^_KD?Agu7=XdY@-}~V67|zbjJM+H3dCSb4nK@Iy zqKt}t5=R77%0;hI;+iB~!zC~tKy;S7YuW*P3sS&TcmL%3z1k~qs@Lwh2N`7DvoO12 zSv@g=64UN!!cpVysX0~MJ@=;Y3v!{_OyZu=&f5K)ivPYc|9C@fZ;l0(e)WP`SOB`F z+jw@xV}khXR6Nz>E}db%)=9KJix3*XhKBpPfQxe~ia=D?#dSbV$i5EfXPGz~G65%^ znw9KPR^s|$Zbf}TESicZo=xQ-oy(einNon@1#I4#4x2#p&i({a?%hEzT#lc22JzV8 z?`V1f`uc*3=R-BU37EgI;w|YYLX$*#5`bT02~4S6yBAdi2+~QGr*<=Mf#JYAWP0YOJO| zdSH5mV9GlYOypWfg(|cTNv3v*^K<4Hdt@=japr^x~;J^{SO@)BS7HGt}>s$_%d60N&DpD0{uq z&DC^MMR)qcKyLiG2mw(pWwE-#Rds=oEfu#BL%WUbK&P!0Kf-7I&UNj?8+qy%%&d}D zawUqD?RWCjd*Sy{phLi5Q(?Ox9!>08V)zuf(~+v+8La_b{vp3J@PNBTz8dbRe5@Yw z+mZ$5ij!i)#FQ=_XJmB^jKcqQfsY0dEFNnKqM{0e!Jw*&7$FIqxmeZE^?|LTqadUL z;e*PCuKJY~fBdJ!020T7-RIT>iCy5$GRlt>G9cX-3#H~O-qR#OlBBggr0?Yq9!G(- z2hmb10a9uP<#gNor5@(4KKDpS%=Bbr6KM}3{C#3P*#qNTg0Z|M;?k>Y)`Q(UD-3lL zQwYNFuOTTO+}v3aEhZ&`xvq*8eyQ=Pz_P32vwx>h2&i`y0=F#RyGg91{4XZV7=Y>M znnRjgY&o_j%0D#`@^O1l#VX9l;C1`qbbmx?9kAf_H9PKuDh_TE_HJ4m)jSC=RUEBW z-h~G$-mA9I`^VQb7PsfC*PEFlZF9Gc^h927UX+gwl8g7bvK|#=J7NP>YUKOnl9nDV zk@X0_T&l*N_xiTyOCGxRCFx$-o?kvxajk{;mk*12g);Pq(xQI#u&6IFQvAqAI;Vo; zzO8D%j7Bw96+2Dsx!O#lfsF==w=Y*jG!uJH^KJr_^sH_gp)|ZS-uQcj_|!D-3VKaN z;rb-f=-*6)cg?Lel=AyCm|i8&)0An`6rR2-{HZ+M+lCZy;~5M;0vHGxK zY=E%{o$k|&79gdYaf-B+YYa`JA~&%F4gXgF@@Fp(0rB09iQC4F-mA$YvEafqLE-aEl^ zO7J<<7I=}D_{lVIbFeYgHKw2OVL#~>M~K)Jf1Bp|XrOV5ApOSWpn)34Lou!Lrd*{9 zRyodJYBHVcEG6G7DNXova?S2XPa8W3LR%m_V|Ed+=MIU z77C&Ov(ti(F=i)&{HZTRgOcIKbfG`^X}B>*8t9#^^|ZadaIqJn6UJ8rWuXfjpkV3h zCN9HB3*g@AjzRveVH1qGg4CFm zCzGUTE&=y-W7q77#@fn~sIxg_swgsC<7Bz9&Sc{yDV3`c^&m&+)F8x=ay2nA!1*c0 zGU-XKI=rkjh$XPHt_xF*twbrE<>A>k*Y-i$Hb;)9c9C2Hs}DWlk^5m#kiVQ=(}S*~ zT`fL26j0rD$(*9I4ikjuFx10Zq&DO%nyzfcZv4 zP4O#Si*_77N4w$T48=s@JS0JztKUJ@dTi*L;kljYFk+1^6#PdMhktSUz)u`xFobY$ zbB<9y7929uYc~hOEZog>$n))TW1%0o0g2V8KbT)~-)*2Hv2)%FkBz_?ag&+&m>Vkt||u;=dN zM0(*yW2IzaC6P014u)8sC@NvMdsm^jrcCN^Lqr>Qr zcus9gL!MK(aBcQ5@Y-2hUcj7ttRZcAPCXObNI3<>ErB<77_SNY5x>yTm8a5}e{f%; zu!j)C^|Y1FF5pJL9dJGRMdP#OHNWg6|C%nmg{AlIu2#`rk!zE78$T32CRDy1Rk=*c zJ1TM4bLt7(MhYlhn&VL;OLKgR+^t9#aDcB++@jzCYpq#oSOaEZ1&||O?fu4wB_SFF zpEPy`-A^wH=Qc7kTq~(K5wjF=ugNU+0$BjKxyPtJ6(GVkd1rgy6M7S89(=U(kaviO zyaS26?qxDp&)1Ek0^r6H%W>ma?t~%}^&xt`Z#*G1xMEHiuLTJ65JFFCQZ!Uk6rD8o z2oOpLrllha!@0eQtfAI!G7K3$NQ!TY%bulPEgGl=YCjdI_aDLjl2IiQOjFZ9n@@~J zFRt?3C&t~g6CETyK- zw+%;)oo~o&wet;{t#H2DTw>>|omKp;w)1^zw%SV!A^Z|A0qTd9)dxquGrkM9?l89w zn#eev3~rkD$G9)|7!M_a>*Yagy?n@QkFjqM&l`EM$*0H=x;p(}gkKIWM~#tz8r_;Q z^O|v;WMs)8|EPI1nEIn}oLD}aydvX>@T+!iBIQ0J&$US+EtkOc`PrY0JG^NBmg~kT zUbgH++%RsFKIT}&L%R=I0&4+1VNYI!F5n0OgKirCkiKFi$&lg)E&-3~zM2j0{cJQU zN~*>bE2v#?%@T`h`>V0LAk}-fP0sH1rA(>0K0*$J6BdME%4_|-TUWd06U zflvvzA6GS2qSe?3mh2G5IFlJ1`~yynW4YR}<7mSYSXtLAe;V5hQYy<+dk**A3miF_ z8gmJ(J{fPb`=jq<%JegQ|M~Ru3VVJMwW&Rf8U(YLJtzEaTq}xGDRl=R7>@Q0iF*mXVR@OC8 zG>s9Y7g?Sf^H*qhbL7N|xCB-o*y?XWGX{J^?fXiQ-{EjlP14_nSq$Vm0j55pctr*| zxZXZbkWYGm{I&+j+Du}{sh#ylZPV*sU_BXV+9ZX~VTOTCJ%lAN7|;_obvS~ArtbPh zGSwBOmaM26X?TD* zl2X(7^bALh6}smfwL*89Hh~^V<=Vl$5XB|1hUHGK3GeVHpR2<+O}?w_i{pq9 z?Y?*uX0g5i%}jnl;#YEC;G3~IV%!z)dvwK{a}+}bO;)j6sYZ%+vJ~pEwonIL>S2lp zH_8g?ao^bsoJ+Z<)3(X&O@E55=6ZjBrl;_>AcO|j)efdff|xwl`wO&G6$$vDqv=cW z@wwjLpY@O_`01Dsg+%BAPJdJw%q>#}&L!Bany}3x z(#zAbPYtH-b;b1%1h{8GbNVotid2f~NEjlpKk^%#RmGhlP>Nd6zKKlY`q zBPgJ6`4>h@@CfPdNG^nZ)zmfcM7C+S7bjUS z$7GWpnaBDUJIPKgf%z&|)U&20g4CDg5ij{9mw>%w-+5$Q&6iYpN%zTlt|1buxCGWR z_)$H8+jx=%CcphPH9k*oM~4SKH8v z`3f7-W)Rs>jAoXs2xk>{GI*HOC-c=N^$}rT4wN6;O(%oJ>sSEocXpR4s@LW#)-JC? z5~Xo{G~dIxq|*or?mf|cFI~D%AR`!j1xhh$fm+mN3usT#7jtjEYN;E7`uWdJjDe5bjABL>) zfZqSI<+HT;jQM2QQd7ZPrKe5L3DP>QHMBWLSPjN~Xj&t!=F;)Iv!)-Jx=MB~6~#S2 zSPVq39uyJ8m8Yvv!oN%#r2{+xJs?#mu3kW*B}b%on>%C~7#hgSL~05nTgzUcU$h>* z&WCfnf#OBjt=xxY&m(5EZT>9GVmANjr>3@k;w?%|ZT@$T8r%Hk1!|i=3-7~DUDcG{ za1^S^DtUdcnI%i{RxMwKAhZJc*FEPIEf!)CWV`?2yy?~YLN_3sGvOO{_)j&nHTDlE z&RtNQ+#op>{pJVBEf#vJY7}geSJnHr{o`CO`xF^&&(;umG7(vRb#daRNmoNCMk4!o z1@=sBatL4&r|jj1u1TUPO^|+PMb#00Gi8&jjYN1ZfmIK5L1wgWCg14U5DdO&lJ|7fU*y%` z>%c5#@N4Us{}6@tgqYfUTaFmpd*~vyz1LYpY=U2()aDZpmbJ4|8$ie#z*(X%$SWI| zi>1+sBN}S)C~5>tV3@eJHZ)%rq=_s~jqxFhF-K1JcLj!--;kc?3DK^Jaowl;gS%no zc&UKPLhfI99;^sA_g0XoW<9TIw1r2DT;q&)aIBHspZEqup-R!Am52dt4{n87xI^(h zG0h(~&lQd-`tvYHi~G~*(Vtdje;!MIIW~le%(02PQ(J-oP0b6u*v+M;=KazytU`R+ zEb<0RU@f30yb}5mwi^%?VLl)U1+4$^;qTg90`3n1tco;mP!v@4$H%lkxK@dMaS4nK z5FE|=1K+WyD^P^g4u}Ko4rvFon1yAvF<%J)B`r*KT=4N`fY^stM6K;Ht|Ht!@davY zYX|p2bJ10sVcavCS>-w`ipL0gdVzXandj!5uF$p7n|~Ke3cQah{R2rvDJFylmo?s; zD~J_PL~qBNf>b16NrL$cac6<|L1m~+!N(ABS%G>`nMZM=t8+XUWOa^Dk-JaUxTb-= zBC&YU1FrK#YI)#Ml4Ab4mUs*Iul9r^hKllgfnvh(3nWoaIL<@i)Z^o`NK^jFgd>8s zj$rU9YP&+UX0$G(I!z}WYkQi%^cNll>4|1C;NY%aVbOmQZLm9`HgH$9xpwz6J4AfO z$F;wod5;Kp`N7IOzBIuqTcE1Ub$+1vO@9Gip`U0TqPY&b)=dF|pEAowZXPLAZ=z_8 z^A(!_V<5*o*7rZ`$dSP&a}iD51NWYWF)#%#qWFq|6Nj14cv>;ZWJ&KRmw=b_4i*CYDDxFXNtH8wfeObp1ft)tW{0r4Si@lU7;~BQ zHOnH0jW4kTR@OCVtT{uFer9><82&PCnj-JqsFy^L|d4}g2a|=^GBlCn^M!r(2JwS zkwL#$9U0m#_8f<4bBV))c2;Drc}6JLlbmc-xn_qnhl3ES*DRL6l|3@iJSkK=tNSDj z5xYeWC~+#|BvrlXT??}qPL|2$DpB06#Azo-jd9xKfzw(z;ou^uHkSyZNX;xHB_5RA z0tHicYknr{>|(Xc{M5}k4W`|mT^k0vCLXH=%+t+JfYQWcP0`cS;xCK62iS+`g)lcr zW$?>cGvMe`@CU*yU%s-IiVSpr&U{n|K~zIDckuGP5yC)3eD6`DGwTe{XXfIJd!^DFrTNU5`CoO_soUx*g@_ z>rx|@MdD}_mw@AFqoriAk1weTHM^)7TsveV)~$`^hXpBxt5S91Xtx(iVA^c{M0$)T z#J6Q}2{;Ts2HI~m4^VoK>`%HT67h?X&x>}Ygrx%vYWUBY;J48#<$HsDhjI1tpgR6Yllo2 zgHMDVEqbYRw%`WAUaH>o#5!X2;v zliPr%a^31v)QujZZgBS#UAptXWqvG3+*9P;k+!cx9O*7XX>gqkuzV6Ez79q8wyHZ+ zP13ZXrG1e2VUc%NI$tK?U8(p2gikqx*q{OEIu)SzKZ9sRn?DP^J-oRj%C~}5)*+7X z&1lPrC{3%Db+L00$OFa%Fs-@eX(_mvbv&~2sJbkHsklu0LLHDlqh3ST&=!_=;g#jA zEb@Nz5{uScDt3X9;M10t)}EyYba(cXQawwbX=VAsv-G&vJNbhJn^z@BeLYDgwXwJq zBq|5ElY+@fM||vyZ7tWNOs+!JH0DJOLhL!Ynix)CMXZH>j$oj;s952t=A%Zm2S0OQ z7V}g;w6|=iA#S47bo5isQDawCSgdwcbBf)r>eAMNcA?q~Vqc}1CHL{Cb$lA|+r?^M z^#);I_Ei&;EPES?7q9@@zUl%+^^0PKulgL4D1Fr%#h$+ED1zdj_^QvjKJ_MQ+OTc0 z!V0ydbym=hqOPjz5KB&7c#lni!Qx|ELwQ}|u38algR4!t#jl>w36c4@ap16;%$8^A zS66s~koi8t`>jl?@LerdsC`!*n4*4<6A1a_0lt6VRZ5$$TTE6zG!+i?FR-i#)$~>1 zT7hMeRLt>#M`FuZ0%vn)3oUO*fMt<^n2Afk!z8c*Jhj9!Nl{YeCBo~Gj^f%OV-qfc zYk2okx3R~9T^}8Y5#GjKBhWi2-#{E_8~jn2g$*9fc3i>BEvbTVfe=%B|AHgN_I_f8 z+TM@SuH*MOXfukZJla{ei!JlK^g+oA*ayKYnJ(ZysLK*KDCVrR9F`(k7U_f5Tmp>* z*Gnwj6$MpYV4z*VHAA|9OW@j#Sk1cN-l;t?;((P3r`s2Cpxp<(VHWFyg=;KF;BCB= zns!1KM~ypS&`NbD^j@iSx=dn@ON_s^09V&x0X*J)uU)D3J*(aP(&=V!ndM)ibEWrD z(f|tOc0y=yP1s<8Hx3_yGI|>&J*^@Et%2ng@x7Ja2T5aP3WcMwuT(pl)f6bY62zlH z*5&yWxziAcczTgj&zq;#XB4&*?|Q&>n@BAOr8-+IpVbk=OOSeK2c;=gl#midPzr`5 z%Aj-`3a9p&f3l8;2QL1D>omvH))5RoMeSXp){I^y%BWOhhvhMUF}=jQYFwg?jUki< z*XiAs{r=)KD5^Kr_(M(d_e+-c{$gPX)(y?q+jZ*`cRB_P-e^Iuw+qtNb%1vZpy4yO zwAl-1E8cGRfPDS42y{+{6Gxy(-`W)e_N4Y~2yCxf#(Hsv;jdXXOUF32uroZ&5}3KW zA`e?y3eqW-M+V0iyZHNqFPnvhfYW#U0>J7cmd4VjTp{Ek{U8-s6B|Ul!F+M<1?Y<- zRw;aO6V#HnFKz_0urG#JyR>mFeADuXC?->C>WdRNYV3=nR;hh)qgBK%`GBa+Dt5@) zS(8s#%Dw17qjxM@r3r`+I{L&DrW}?qSr!mIVZYU{KG>67v!Sc|yB0~1X0fs)LN4SI z@F->0DzY@jmsIuV0NO2F!=yhQ?_2gtfU8k8ml>o%i2IYP2{BIl=!ui8KaD3XG2(t@ zf9^poY4_(Yn8o_@g;SP~Yls+( z8fl4q+QO-`^coH0G)2Lwv*I<%;WSk_gGM==rYe_!%1NBWplh%-E&vM;@`J7YRoJBP zd{efQHPTe&FpH{kI89X!v#2NsvB8O|f|zeb!Kt%wnyOqPl226*r>V*%X_Uih3snV^ zH45T1Rk;+6ayU&@E>)u(PNU@(x>Zw;byFn@NmNy-$BLsai4)Z&wfaS`=$M7nGW4EZ z1G`_VYxG)uLlV`^YxRzvbWhY=cprO4dM2p&(h~31$03VDK)agOAW#}&btlGNu=J++ zvoBcs(#I1QEdA-@!xt?>>0`Yx>qz=IHOxAUK6bohd5k{JxnvnaAJ1H}%%YF|FIyf9 zWc~mIx3Y$TfsL%q`NU&&U}CqgEdk)K%a&%8vgucrN9f}i_Go603mRM91&%hhcA{nP zHMVx;>(2kyLhF9}YfB<2RDOkLN)PmpSi`}^rdEG2@rvC3swx!Kj7Q~O)X!+cI!7n0M0);Z~0%Tx66 z?QdnIgTIrJx!%m$wYCf|&<8;JZdW0Y2fnjJvYO)w%Q)w+?_`#bMp!wP;{jwDVui?8 zUX^j!dDY^^_S#iTH_DFgdzrHp-&-DMO~L#BQ5V<$5!Uki_q^Z+_#sYrPRb9K2#)V# zr~@#`+#f8FvmR@|lX@9_;G)G%oyIHso zQG3@Ri-&%c1wH?xr7NvE>L+(4Nxn-VIs00j;dvxYjI>!q!YTA@gB3`8pFxC*zzE zH|0)_YHjVoQD3U-rvBlkr2}oO+0SwxkNVjyIxzn%_wipp%i4FTjrCDVw(1wT>>2jB zr>zXx*k5^@NFoY0?ia}V+rL^mu+B{adIMAqoYUwx9>OF7ABoo$fg|q*ZSsM^1vv%iCiyOpCan|mPmlS|`8FveE>AWS|!pU2_Eu;W! z3%F3qUoyjE|B@Z|p10OJPEpvj^ zZG(O9S$a}tb&0asT!g8L8ju^_@R&Q~ZJ2NELWnjTwx&^XbCMj-#tBw;MBFJ@IrpOn zYp+-uf!)bgx4-Wy$`wSV$nBpNt$h1>r1Ig2EC6)&v%2kVvY(p`u**-brZiRNW01eh zM}@z&7bj6XQsZ!7?qqcbiS_|jHxR*{Wk!y{R0SDk1d;`S_BCWi#?+7*G1ZV6Dd-|I zl2+5&hr+a`rh*ad&cnf}TCm33HLX#!R8%c%8dGOI=oSsRjp%BPrTGK8%G}!ryo zbxV_3x+cjibq|tRDhN{5fLU79LuTnn51FO>IdYz(?_ZMK22f$!@!abwW+TwzVnrH?hXmOC9x?PF~$j7CuT*dmx0 zOtwmlAgvj|z$FD;z`IXa+pq?};JFpyp!5lAhBB>%Fokr4*9(%KQ`cVJ*P6mO{G_in zwUL`&UDvXuWd&vP%Lqg8W;fc$J}yz3FW1j+0uqMFJ+0@is7+h#xqGH76r1nl``>Yx zOIgTSMRrU3ekHs(7{8SV)&bTJgZ8q<>8TaVKx>io3QH!}O0FGbeOlbRn!KOqh}1_{ ziey%pQ0O&#q;H-eEV~>bp#Bi+954G1Ohc@zqkMj{u77M0$p8CN9GLs0b%J!0lK^j3 z_=zQ;x8vm9z5JfMEST)=&Kqhi6Qz5stojH?ITetr4)4*6&c)ROiVhpsS-ZE@H+%KBCV{7o16>jfSSCE!tji|xzSkdMb z?Q@9K%#!=>I8mUqXRSj*HG2Y7J!`c}YdG}qCZ-aWz(I3xymeBjc2?>Hj9Re&-htu{ zC14ItWYuw;Z7>T1hWET~&b6Kw#J7}yz0Of%z;<~620yHrV`b-HwHZWUMQLWqU|oir zbjcOx9$PQ3uTgIZx#nh_ZoND;1>Te}ZmRXXSgX|gCcE#bE(Vlh!40lsdDbz4*tpdD zCc7Id5&))IPm66!z3;!gB~$ROR}@RtyX@d+F_5Nlp*4s{h#YCS5U5sx7HOJg204`4k3dc#(CNm+n1V1bbdH z;(%4f)&o-LT2;?CUi?~b04P_3|dP*4cwm< zWr9t{p9TiAORX`&1W-|GZ7WS=<*<-kmAz?|&;A=#R<5<`ghk+!wbn$b(0i4AXq5}9 zuhRAXI_q;n&?Z(H9qg71oY@4*!&IFh2o~Q=wrdjAW9ShIT@ay4Q?O} zhHAp1{t~boOLgzMngeT;Aic?0QtL%O+8j@bcPw%VtUG{ylXaf-C08BxM(0=pE9+{q z8HN$*8p~6+J%YB)k&{slm%!>nPk6WCIG}H}uOWD}!uq1*w~mgrRotOR$4DCJFDSU7m;zQd9 zcZFGUXb0a|tUrpQDY1Jf#1WIB&^phd(9I3jX6_q$H8~|0Txe%4u#*t-O;PU}!AIcy zaWa4>17d}BYOlM*%`6S(+bXRwf$>rLlun5$of1;PxV_d4QI`rPR#~G&y&kNpvUWqi zPgYqkH%piv7#OdMPw1da>7ZvsQElSmqDCNWw>3h=l(#-T2G;DbMpQ5JQ~%}qQo*SG)*$iN zI`8KvD%@fLXc^=NX#ADM&Fj>IyCt|ptv0#*@Q$|=694%WX3QfFu))`^18@@btJ3gq za<;1))BohQB|P{#b!&e`L6wXCl=dyx44J5M30%9I-(Y?8(;Kjl=2Db{0sa*FY{Y@K zbDjyaWasR<{igL}K`fK|D7}Bd6Vh6a8h6tC_38og%=L-^vNo5vd$hCWp3rj7?Zm_D z)&BXAn_udmcZF>YbDhh##S7x6>%Duy-zlK~BIE|w+Ud5Fg7_Vj)SKJ5qbB)urY%ko z|6K2Vx)son3{?NMUNPM|1Ai*-1UN+T3IUfotc#Tpz(l(ylhbaRD9QRMHH1Cp^}|GB zY?&IgHf6Yz6_t3v8POcnsxjv^?$YGtCjSy%mJm07`1wx|ENEpT8XUnYA5= z>bkfNFu!!PgF7inFcRpzuFl4&Yt$9ko)dP-fcsc@jg?7xbrhC^?q{w2xi!~(CFoOB zpx^&;Yq*R$IpD3S&ftr4+D3oHqbn{eyTavv-uik?;chj3kxaR`P5Z+2#1(7PT4KEo z-fe!En&itLt;=ePksG|*{A`&-0rH<}kT1(1Ynr^5h%)F8ZHxwPP}_LF4V;a0%LR3B z!R3ORRq*S!*{}qS0`htRHp2{vh;qT8-v-YG1HKc!MK201L`*TbD^& z5F30f-N+KSn6~0?>pscBvdAgP3y-g_0rKux6Qn&{7M>?LHh_C~tP>S9s<2u``-*Fk zgjFtqV`2C`7FKuOgJJbE2oza&O53`=S0Lg*JF0#Nvv5>JBcGREv0V|xo0OJLd4A%E zaZo+GK^;^-+@J`m+C1W*s-5*jfDJ8Q^DCGI&)Z^!a<%F-DyQ7im|FkaqA>7&4Vw2-`cZ zfsJjQ1n~zSN)j7F21wtzmE^)^+X8T-sqHG6E1ebKc0m@d z3t|xPu0D^+bPDyk;-NmLlxV-NLi_#$VhnA0BMcAw!k7T6A!Hj16 z6@^PsTGIrWHs)d#U-$ybsM!%_%>5nKytQOk6L4d{tpzwd;~@M{M@QSJ|F7igD82*L z)0-20jw;*RK;cB+fF#g~a@Wo71V|hCmt2w)s>DBXqV_eP(u`E(-sri;FiT>r<1+FZ_4tG?=Y-XX{gw0ZXMHiQvtWQkRD2{p5#ib<0#~V0l-PBk@L~TekQ0@^| zI2){e#MT(BIb^E|2HmWv18%)+tM>p|8TkJOvJJ(C8@xp|{ z6jSa|Si47!{XeDNoui_l@%$(19Tx{KjfV;zwZIV=otlXB?0<@y=RH96e}nUg1Er1E z)e$y&9}|78*6_IQwnh(p%zwql41N@P?+?;!VGr>9Z{gWeOxWmsV)Uo1%!-LoosH`8 z`X8Pns9#khsQaHBy(bT$$ZDbH#R(yHB{Pn$oI9;i^J4t5WZ?aW~IFh85TK;%HltAk9&= z#;JUSr{pgESesptN;x9@73vbuG2K=!m2l};A=tXDmCM3fQL>5bndWJbR&e4*Q3i^T zxG8Fjbm#Jdp>06btg^HUC3j-`W!bX4tXI#=vYnOw#W9RGBcEXjT*pCO$2)x5hmtGZ zE@#``7NpCpta=Ag92JVIjx0uV39Nnq#*@`t|Glx`hw-);@!lr)Vl;lo`!{Mydo}tN z%#v55U4Krn-Sih5Z6?%oIXZMRqsGh8@UzNiLe@0o-V)u~q*#vD<`OPPHwVdiw!xv= z`4xE{Ytrb3PN4@lHp}Mm>6UJgE6lj(%ifXjv(KkX#%O*}YA8ka8A9%U**gh}?CoXm zNHqz0**kBu_n?_6lkh=PcnV3vzg_FLS+N$)<3iS=`4qVqP|st1nh@%3k*nbNi?N!p z?I3cy*SP?G-J6iE%g#*HWu)tp;uF&KSs5AG$p-l5H$5vMB`YyA9>4C5tfmyGZ!Byq zp1`^@SaanspQ7>>;*9M|5ne~XyQq)!>`-7MIgl38S402Nvi3yUI)c<2Y*^p^)CBG~ zmA;`@zGCne@0vD`wpVuxo#$5fx>szz#k&#~s%t~9dd2uH-gU58rr>o@l(wi}i2SAm z`ezl;_djTxDI-k=ZJJ69?k?6ecX7fN^)hx2K~R3%-fF4scd^h1^cyGx3*FGe{qtR1 zUo5jV7sT~GK(0{JJy&EqE82X3yiKNXgFLusZ3n>vl*vlv_)@4rTYYQhI<&a&3!ZrSvK!QNC{aNFj=J8n*P0?D9q0aCLSmM!{o16H2>t zC+wPSRm1=neBCrc6jH(9Vw;bB7w6L&(gYl6F~|6A{w_PyxsJ=6b3vUU{1E4+Ku-c&C` zDij_y7?LPG>TRg0sv|hkpDG`4-=AvjL0hlZt@f@^yVYJ53bzW-%cr*g#>=PV)Z|3C z-Th`zX?QJNTvC!DIY|dBweYW$gw&LHxX+#B!E0wz6ZIgvNojZ^STYs<;9fhC*Es(V zyf=CPiu+|+LovO=`%u_Mb#V+)Eb_{yJ<_P^U-|q;O7*ZerTU-zw&npK=;axEOB)CB zh7|^h)1bffHZ?z>RxI?U<$+boFG(Ii0ikFq7FKwlCci7IkbCrqzco^!9;5eyDe55I z1NyUnHc+pSqqMJqdYiXx)1(7@W6IBMT$XEL{J_@-72-P;;Kk#%nbLbI+90;_{B;;u z_$FL9y>TEYIP6VUjx8_Jb!WeKY`;sFSpmFe$-Nu7LYepyjwiszv{22u*z$Z7Km3Ml zljTWyX$!J7_|}jR*OTwr4hquWe6#4=#QsJmDPAf58xFFps~%RAL@UMIQuVhQD516B z7~h=yh=%vX#0)Pw|GQhH88R(4{%J|ic|kfP59$HWaGt{a&vRtimXG7SbpMnY0* zNA=yDR0bCOfi4f^=(R5&zCNlMLj1&3eE^N-AetAaXRVn&8ur-R&O zrDW&iz|}#$E-M=$0M7JX(a2RQ?5q+Z64Ns>QXrFt^!NlrVth(cQc`wCW^!tLYIeLX z0Sx}U7)m^Jg;R)1^4W4~Do8)ISXXV+Y3DYy1f|0_hD8|khLq&2%mh7L!AwZc)TQWB zlQWYtvvTzD`h*OysIwjRN@dv?|E7rvnMtXzlp!HCJvAjg3BsL|kdTv^kgd-ovg8FH zfwClL=Hw*CCuZrgvl6n>lT)+P6S6WOI!Vbo_~;U9fx|*|%^p3xB0e%cA=77@SO}f} z$_8LoM|(`iL_?e|X~K+-(?>U-Kfirc^OU4SsBhWXiEw>30rn3RE?cLAT9=rSm71O9 z%KywZ)jzVD(>frnF9>xFdSS;3VWIC%%4iPT>@#Ti*!}~1_Ubp*mu4oX81%~0*}g%G zZ$7$x6iC{2A*`8Cp+NM{i(7%xk|hC=8A*oJoP_kmtmFhkLWV9UBPB6D8{&~kO^B+d*=%fRk<~T38|pB!v%p9lTv1PeN|cxhb;ppD zl97|0qSG7nsX0j*IqC5Jvd;Dp*SHxQpw~#rOg8AVQ!;aONeLOL$tejLiCJ0k83|cQ z8QFFIC*U$4u7RVJk-rDlQPq7~HKs%`(+;T8Ib z1fNZ#PKgIct2P8iW+x=-Gt;v&vY{Bz;^I@Y60;1M8HR++)TEr$EZ5C?W9 z2B_@1)Qp@AFu3Pxx8JCyX&v?(QNEkbfp@TXw2$Z*ua8Sf<}J;j%SleofU+fKB|zm# z$w`9Um6-vRN}rRcBVtwi3S{udWudNd@0LSL^W8tmO53SMG2@k`tAQ*XTUz4a4WW@K zzNG?|tn$_%Zn!-WM1|OgJqT|P!rO!Jh6i2`!do>_^+9-h5Z=5GKmLb>w=}V(5wFv? ziGLN|@1mM&{^B_=oQ&Sbg@C)m?Js-T{`39_``$>+`>o_DY#N9zvW9>?Bkl9TB$P^z z@w3S;&^6kbRs+w)+qm>0uE&L7{9|*?haMV`y9NHuZ4c7cZGH`uKHt03QSJa&>tyBM}^( z{Zq1dXF9NqwYLfVZ8}VovS;T_N}rNGW5U!aWx1zjgD=P0lZ8+aHqIVVe+L<=xx z?oTbn`mZT)MK;k{TDs~mlBF|17@JV2-D(Rgk~{@t~mD&1gkg~K~@Y=LVvSy`OxRkGXknO z_c%^Zo{yflJdgfP#ATMxLC=%%b4Q$OFGMLnE<%6jLsW`${TD7p{~(BpAv*XO6Ci|& za}hSh5C`-(a~1lFKq$_w2XCJ$&PC!E=Z=JTy%p!y#3?;6Et0l4_axltQk>ffrOeEI z7%J2JvNpM+;m=&Gw`0)L3zIv;zhlv3KPY?dIP~;7dP+x6uR$boGtiR(DpGDHdfGG% z{>eg5wZNWidyC$KAauDoD4}#F{PQe&Y6RiQ9gm()K!|cDpr;QZOu4z}sSN}Pb)>#5 z*9aeTC!xd;&@{(xShxa$mOBL{beaeMOvO(SyxfZm;hzlj^c2J|_X_%%hjK@tpPM1F zxi`>LK1$n;e&#QRe=eb?X((+L`Z*mv)r6Sm&OlG-8}cRfCrwSy>M&zG(jag$$6j;c zS(u#r94dgnKR*jS;jf_2#%bt_&CjDJ{2|ym=n3D@Iu||R3pD4UCw%GVeDs8GM_hoO z@I`tH(Gxxfp9Jro$i>&vEJA7c)O>-lK77PG77I}#T%H1hn??@>W?@kcaQIpKm(oU* z?%oVFq@oYFF-QmyHyGjB&;xouh!n6GYBd)kz<>$%h)@ig+WEK&CfMO-=Y5(r?WQ$B zq;XAMky|S9pEO}gc3J<8wP)tWAm4OyA^a19o^WTVTaX{VlL{ydB+Y2e$?jYy|s>!TxeXyD1M=p?#y!`+4@bTFB+Yl|y(VQiGKd zg25G?Z-2d(7;VCVsHYr=O0qi6n4E|HpZNUjIk|HT(>v5}8K;8Fq@T)HS64`@D~d2CBOQ!=Y}@M!Gpt`c>I7-_213)0?b>31Fd8O6(VcL^G@n zTW|!FnA=%?lJJ)I(vnbr3MyR zePlXIMLk6A#@)s6a+!}7rB_p^H@Q%~w9NjBG?!I}jf;b&KjE2g5CiJ^c!M3@OIGYg zRDUE4EZWj5fFm8OL5dVKl&?(Y9+Ygfw}yA42rDkO0}J=R+(O)j>uxI08`ErvNg^pS zPd!-l?dtm6u0%7;hy4%%&~??|`%U%@;t^T{-BJIlx(0L6{y?$Htlm~{Hj{Ub^m@C& zdoRX@FoYQ3V9yqNt`})^TkV@dwfptUt#+GqlT}Cz2K8&`Pb`&d=6Z#FVhhbIR0zA} z8CU}?;MY-3?p)pBNE;MoE-`(vk9cNcs5U~aJ|DY&$2b*SrktG!{R zI24m|cF(oC+>?~HDtz`@cQMOHtA{;Fi9IXvbt`S3K9wdfDsiVzR*{8aYX8HbCL+lw+JhM z_cPBKP&rC`#{xbZP&rO|Pg(tdhRijeCKVjFko%e6WF;BvCUQS>*r3WA(q&cvamrV9 zhE(;X@2XUBnzpYH0Ee`GLn?oj96R_M~9Sy#GspN<;PNARsh4u)$|Fe>2aSmK@^k8!9E^2*%iAwjHqlc1ZA^UsDR5x zR*sY=vt%S7JZ3klvWJijW{j#FB5^coW&2D6R6MrPIPZ?BycA?rBwiNg#J^Fp!(Ml2=+Zl6$aPL zyvpDG#iyaj$~|$id+Q&qCi!Y+Wsbj?V^i;eVkAj2iF*$eKB&;mrrreA*2W)H2;z|; zJLvfoxhLIb(Z7!X`_B92q?3Rnw zQEs{}SBN65hb_@@132T{-qq)RYdkqtj&=L@r41tld`kJ1hm;pp`tj<9O1SUwZ=xUE zDMlvc_q4HFZnb#bS~;K&{6JRl?#d@MDFQ{JNHRsy?#l5&Ff81BwUR%*!rF+HDHKZa zyN6O-R3dp^g=D7)_)V^ofJx~yvS*jkl_LRNvrb28o@(-y8%i+v>1|ozUUUj{9ra}^ z4FeR0g5dR)O@ZobT!ZaOBg{Kmxls_{ow~bWS=F7b41~cHgj_;x*j{(UHW98ac*S{y ziomrtcl#VcSnVC>ESbWM^UW`obs#dpPo41}z#44-N9H$4^re`>F-_bK6Uk*0biPx0 zwt;XK$5D5eXQIg%JtsovhsgcbaVZABAGgRA(5$}T}-Vx4-|Tlde_CYl##9x#F?Be|!AP4JNinZ)5#{ZR#6EaX6gk0r2xGfNR&>7E(jp z-~-_CRP=RjfGu^l&8Z=7^8s+7nq+;*wu=Gc0UrQY$RrAY*LVQ@yaM3+j)DjLe3_wm z)dR3^h}g0Tnwo9f(LfZp;pw$z6g)yjxmT%(f`3E6lu_^-g(%WjDqXqnD0q-IT&>+1 zwyEt-w@qnxIfiW|fnvXH-tDfRKe4+$gwo)8uIsi2k~kUy<85#>UPW@?iEYyY#mU>e zo83~GLZKCp!Ow{)?`_v@QArP%De4MPuK+@v`SwR-?;Q2~r2p!k{( zfVWc)UZDWv=qH}^f$we=1qpxRmp%Y~MJ7=I?D7EEq5$~5&F*!7UuFjv_tG|P^SEWA z?slw{vgx%?-_|!-Xa|Hb+k8a7_ozs%QJv(X19W$<5QBa{%6+!9?skRFNU$|tXYSkl z-lPrtG(Xe6SWQ`@lBIWN>}) z`nG1B9IujtqXj@7P+&>E(`uh|LjC_BORe#rK)8p4%okbj8+a@mc1 zPLu8PY6!nqgZwEq*@))bF9(PK=Gv%P_>=|aBD33ST^-Z5TLZQj`2PYrcSlmHFhfJ5r?Q$cQmf>9?>jox zR@xZl!|xQ+i|_g2#lN%0Iw;7enHGECwTwtDo9U`9RjooqD-_N%$Z#EnFN<*FBMh|(Nv0fH-$nezVT3s(@G>iP$7B$R`g2%lkJzfwuf_%^=5vGe7Uq9HCCy zp*F(_1Tc9pVmww=w}!aX2h>w3D}`>TbtkH3)DX*kKwYdRX?m*aY=F4U2h?_%L;>|e z52z>X_(xXwT3w%3__+sQpAfN$6$TmL4!gDmWoV!LLoVahs`0^~`%?vVT-K{qdBNh( z5EE}9@og&L^&JYkyaq{>BiBz90!kmj_WzMx9-$3aYnLr{s+A>br_yJ4xLain6T9s6 zZkH~)Ej5);8eC6?I@*Mb{dan|%Wu^rzqEH0g^8ngdbi6)^~rE7b*DmElHgC}ifhzP zURk7OkSiX``?t&8lv!ezQT)&gR;_yB`*?k?Ut%irzzKl6a^>6nykGZ z_5t-U6$PC-p7a5Ax=f;gdbcGWW3~A|zLTyO9$z%!* z8M8}mjJm3IL;p1v>&Z6Rf=*Bsq z+|g7NzVVLpR5it>jgB$_F2(xBd9F;R!1=IG@eZRA$RyIwYa-ref3 zNpUZ-PLoe|gvPQ|wl&IC&*;b#q%JHEZ|aL+v+C7UBAy(i-Gh5!%~h||5QCmzq;#j= zMN`=%X$VUuJN0zC3!e0Yg+XvFR~ID}-rswDcY#iNmZQR)FGBl!pLo%=d+FxRf|3ev zd(4}4te5mWM}>CNgz=6VTekae^hSH*1c?5wv|&_r z+ynig#c%jKA&Ve?&nqcWx%=Q_iQmj=6UuU5LX4+265tud+|KYHlmMcG);E+sKsj_r z;DQ~F4%Ii4wjwmV&Gi%RgT4%UH%bbPM7ud7`4qW1dE1%=r0sHq0P{{qp%?2(-sPwY z(>yX|B4>Ot6Yev<_=m?C-%gj1q)6Q9xlVWjWPVvmwX&AwBBJS_pkHFR_}7cTzQ>{W z`@vib%&)()txyQWy^i)m8_;pDqle$m5Ye^UmL?4Q3zERIrf`RUac&{ptyY}d2B*LR z{7KQeyCFOH;6Od}gwIOUM^AWDc`$my1EdD%2?B`DC@!ppK!CCSi2KxAH;YKuzOqWatStt3K-%#m>4Z%My)Bf^5yT=Z1O7yENCH1m+xe z#7Ki!LqPb-NsqksXQ}83D=DlJA9-tg#Bn@m3|D~cwr+ORFK=1+ zl(^#H*qe?4&5}?-{m^U2rrDB$h8tMf;m^dy7B){p% z6boQEbYB`riQ8<-+N3jnu1!$z%L`eNTmq_}itXmKAy_+LVFz&TEyomTH`l%lTjWlb zszKivTspWaBf@8yNRU6HUPIT=LC3kGMD|rJRue5b=@{b&TL7z1Eo>}tO{u|(A#)Z^HVjrMmw@UfV1a9=9F}TuY)o+c z{Ip|<)Nl_ZC3?=(FSI^O<*I(~jANpgtiB&Q7E5uAiqwT7rC+-}wZO6P`i&*{AUCDb z!7fBZzF88_Pk!WhLX;lkC~;?_*u$xCR}FG>Zo~E3Cyq&iG*(TH_!35f#h*EHrIB1F z;;JFj((a_%VSC7}gF{(K4wSVj|(Bq_7_>Ty9SZ0gEp0Xx{-4vzuO`I*kvI`D_biuQ9+GWR+L7Z&VOB}oG*bT;>cLWM8 zh>;xo%25hg8S=G5uc%xFdJh8nd;)ryCg{5XKKJ6$QwsgTXQSS^;z+F}Hrk6~1a~%y z)196gx`U3)xVHY}I4MYN_OecsRgd#zBRt5lafb7(z#81147~Q~(k5W$O~+K}QFYDO zTDt9})&d`7ZBbcEwnv-0iM4$Fvty&5G?JsldUj{a<)@`gE*0sSIC3ut_B#;aS=?OX zLT_oNsyH;4$Nz*%0C*vasd}e>tK&YwjMN5GTFh zS-R_O$6(LWuikdVORssB?)|qT*0c1{ty9{8d%t7tL}XT5dxM8Wxm zAVu$EN`kc$JB4Pz;^$l?HRCd|9*p#NPLd2g8FwQw`@@ zMQOw`XA!v`EW5hbbVdtOy0R|n!A65awVYOIG?%HWaFR!bB>rid80Z`5l#c1UQqT>9t`=i}n{`@pskXQ9Lq zsYfvDNe^;OlHnegz}S-|-{f8d#mA*hR~EGpo9;)BTt3p(c)#z?41@W&Gx2fh8R5=* zVj``9c4oY?hR$Nde)VClu>E9JgzrsF#sTh4%`90aJ2{b__OSDcGzzs%hhE4tNLgG0 zHqBAst0vAkMM0HqIJA+~?p<)NDYFfHL~f-L&mtun9>%d0=F51xMn^!a7VSzvEy^l7 zi>o{UU3y=DdJ&~#v~!d6o)WO0cuj(HMMt#J3HQ=RVBnQSE#1fSPcJjJ5WiF6b44kf z2R@g1d_YKybCW2%L^PJ_+g)W1oyG4x;JN(YfM-lA=WVIYOH9GAPe8+F4xWE$!xQNR z9_o6-L)wdnDI{e4}Xze+Q6O}8 zMoEuynQ(a562!H#^pS>hsW^r_3V!YG?4mB+9E?tL_K+remcEtd9I7adA`T~VeJz&J z^)s%|dpH}5;^G6UxfVy;K#LZOyQ-Jd0>*ZBqS+!EtCsIvsgt&-xmypeJm&1+E~jFw znO5caUL51&&I#f^AACh>k*9TrM7G;|bK~ zTq^1aRNU3q`B)HFoSIF$e$Hjm4_tY)pjO`BITF!~?hm~ZM}rNfB~!r`8oXowTCpFj z8sHq(X6t_Uay27rsX;`hkkJF3LxiCEF4<6a1NbT=2G|BUTT6{tGF#vf>VufU&Vx!C z{34|G5NPY|I2ycAh~2@-AC|3#>l~qBWq<*_@e6 z#X7ms1->8aOji`gi#>D4IStZYjpDV_of8zrvBsOy;qdiMjp9QxoTEI8Jv2G0IQYqIhD%^w?*ndr_cGdRg=aH^2JCMk8V)LEGrEIJceJLa z9bi72nx;)~=GPGW(JJWhvX8Qg&SK(0^}wkED9D4;;jZA))`Hj&h7@BN51F*J3yjWp zYQ7YI?x1>`#dJ5f=w=GV_9t*@nzJ`}IdW4SaAlfvkhtccdRx%{V(&emqo~?|VP_Ho zWQGzU0VzpjnvKqP+wMFwJG1Efe&2u2f6jY62RHZLr`+d0<=$s*Q5{t#7xrw1&7!P-JEx`~ zX5(&a50t1NBXuC?l`%Ps#DaDD?b9m6J1z(!8gQOu#yYwa0W9qC=P)8XzJD4HINLuB zOWcF$R)GoL@2EKEA;UAQ*RHK9>_z3|jEMB;)VPS$)YRChdD@ z{-R4?R1SS?tAOS2*A(wl^?}!2s8X56rE+JTYsU*c6#f?m(Qd^)1BD`;Br3>Pwe>#A z@qXI{{W|8#jq+n{lQ>->ORVnZcX~8kuh+Ro>$!#Shr8dseKHy4P06W<&P>c%F21nd zT+!xos_hvH3%b;7MQf$)jdSdZ?JOUcV(x z74zqA1e)C$&#l+*f@!o~vkT^F%qWzz_m^Ca1pSd)(DX*HFz?E{(!26zdkn@hCP}Eg zlY{Y7M$svek#VV(bo?wxT3k$eT)HJbEiNK0Iwd|13Df7#2u<_eCDRnx&h;AAwPO(NmdRyWnJ&@E)azy~BayCli}W$Nd&xsw7nrzQ`)kp`89Dbwaf7+W z7IRvU7@$Q-nw2w95UXu4SJn+W5Y()~sh&hxr;80Xn5$^18%(33_dQhff>xa8bmIK? zDr$4flc;F_=AVuU=9d}Ki!8ls>^4`#)!(CpA671#mXiSPReXJe)^W_4pHm{f?M3)| zIAbFjpamtqF}*dayddYQIL*rd9MXfmwJ>LmxX_F2kGUbB?D6F?rE_u;!P%+TH?S;a zb$laE=5q+=oSR4>xU-A14CSTxqn!4FREm4z@+WjoH-2%>Ytl|oN@t9v8&KoVayoc6 zU;0^2JL!Z$^Oz+$k)F-zjPW;v<}WYJ>85F}Tju@ZRtY!11&Cfo*Y@+A_XU4c`gu-m zAODRN(5Seqc&W-pcQcla7`!ZJf+%lPC-~J>zj1-%u0X330?VnuV0whV`2H+3V|1Ef zI&*go?kYv9O&Ogg**P1;7RGdb<#d`nj!qpVZ)MJO!RJ*>reF2R9i`XwWDc#)*(i25 zCUcRK>B7ha8Fq($OJ%p;g&69Gd-`$#-5fV3t9-F*IcPlclM`5GqDKzX}nk;|b*<$l}*l{|VsOgykrGmqa(c<_?{ z+{Jo@J$><+MoPnioIcgWOB@BC$6wH*XeA!nsQ)anYa=sw^|QpkpUsDVPiOOGC+Bt* zgEqN35zuS>3;vtD_n|7TSJxu*x8)ob#TFa`??Y29idJIHP5M4m-SjW|@EFC5M)jN< zsw2zpoMMyjWcPRHtd)`pSNi=fp>L?As-e3Tzm>=?8}{BR0nJZYT3spJo8uIvaVkQ# z{?7It<%<>{$Z0BNfhwZq!Z;LsFsHE$KzLqg%)y+V(kGxf&7a&~Ji0Qfm^C>T0}ect z6K?>x?NCl{=_@VZi)iHGoEI^SayTbf!ymQ1O`tXBD&$9u1#qQL&b-L)Zh~T=JIB8A zJ(43xKWH(sk24@a^NJBTcI3^`fP#JHl)RsEei5Zh00}j9nmV`%N(r;#rA_GN6F6>o zG^eRJpKml{PMZ(@8KoQf63^!( z`A7)RpnRVBY-($11t=v_t3;Z)0>NcedOqhedi^qv1Q1-uNmtIvg2!-DN9k|{rxc`8 zKvR|2PEblYAN6rmZq zAK&|5?^aG@sgY4z(qzpooKpmSp`HV1Ne@0Yzdlwh7k&LI^#G;R z3v}Ad^buPGM0aFB2Ww^qqIrMg^zA!ZZam!G>zpz~ zNan50mBY7ltfDj?MM++ikFm8IM-Y8Y-g!kd<}rUu2JM^f$%=|e5=Yy*4fRJBwcHMiXi;xj7mt%kE1 z)en_&?+Vf~6(O5Z-K&z@QTh^;QXjBv3sZNG=2xob_K_5W=Gg(cbv?0P4#<5`+G)^y z)|0toJexPGmiwA?!l3!7YPs_?&B-u=uL*DQVFZ$3-;_XsDnQgfFqh=t=l`1575{H# zgIs)@M*yCkI$!W7#J#LK?&ErO#=bcycTh#4Hpjqc>@`a?C|ZfWCHfir{VgmBNk1Pn z4m4(x?1M6?I#7@Dug}PcFO=wWx$QAClwY39yB|xIjWh^|cNavNp_}BTQyc2fD2dMcEzR4+6(T zRnS5=s4HEwa*wT#IC63ajQEp2?Qph-ZtZ|Cf zQdObc7P*;Qr1w@^nMF=(l6y&z_NfS&MN$(x0!pbx?khoEo9B-7Y<{(QZa3+oL37k1 z_p+wB&SrLUAp>5S&42>6i)ds7)j7Og?5{54|ysn{psos3Lx;W<-!=Fyb zEfK|`r8J*xXh09SR0lIiXh2HAi@DcBy%qxtbf!WjpkPQ+lc1c)H>ez41WFQR4}LCGJsn%d##i%UE7rc|I|> zreJJLXk?e%5@{JhUB)F@<1tNb`4_|w1&)hH zw^v9&Q$|fE9+o6`7qwj~j7 zrA5(7^!rX9FCKoYi5G?}(@h#-hE?v~^wiu2?(R~eyGu!39FOhNOPF6g;I7ZON~Q6+ z#nHlk<=ed6tVkSVnNHGt^_fA?ej8uvw?bwm(a@d zxxs#}uUKi0CRF7A&3=N{fhypRxc3vd<+02y4>~7Uq8%WQJ-LVp#Py+8x%O*rWdYS1 zms?l=)`L1Ne8ewLb~0Ftl65I}f*|g~lyMY&T0Il5g7}qV5^;fSDvzqx@~Mq}Ta)`b zx_BiwOFaIa`IeT-E@&!G{H`+%rFJHIaRpO3u(1Vc<&ICRNDGM^fZ+fA*W25?*QGe< zlQ;1UwH58WmOD*)a;r*=+A}>2S9vQx42OTXc_H2fIEq@lrw}=dfn9FoB0*{lK&dZ$ zbLEyaDH4=YU)UHOxRu*V)0z+hE~SnqAvWuTlvVd|_jlKwqf-s0b`kG?5+~ss5H~h{H^-w=V!P? zKmCL{z}9ZC#68lV-n4ECHA$)P?N1GS*oO7Hg7vIa`FmCGsaeoHp^{pv#xT^;$2u&~ zuu9qOV_lBFP^e&ro6$4403Z&0^9p|cu8N;^k`RaH_*vIUZ2*>}^43ja%kNp%wI!$^ zrUO2v4Ca_)zGoj(ENWBG0s1keLPhJ-qLiUFU{m5rl6AS5!YQSIS{mFYzUv0`Jy*Iv{72yvGi3e*&TDfLsxzGK6nw_?hZaRE@yz#n zKX>$dW|Hd1@Wz3LoU^^HhE+jTk zREFI~wc1%pO0jUlg0AB5ZJNQ$B*eW8-XL7B#;EratUdh14><}xcvH0~T8SgJ=?8Dn zHcgN+=91}b6x?%ZY`l!Ewk4BHr>1tssx zYmIJnwhm|6#2Wkanvp-pi^p-V&0Nbi8`PwyHT-~RVu_2l=%z7@Ii2)x7B@6y4H5JsnJrW2Ck=LPtMjVVt4C%f)K+n zG(&~lyEwGP$-(QDgI9G~1& z^4pynf#?Y*%3fmtk$n(6f`P zEAJ1reku5j*}?8W3)Hl5JA3MF4Xc!c!>tv}GN#wwwB|{(0FUnJPT)sssj4f;e z8duF4X`L>9u>(~fWo<64QK1p;_ls!3C~JziYKOXu6RZf|=beXm>ESk%UB0KUGU6@k zFM?D8Fskz3v_r`oZT(P?Hi2pqUIF@PM(F9mvXZgZ66q*_q@n-xkb&h;;~CaA(iu=i zL;ukosN*>6Yz>Sqn1AR=jZMs8@7$i6h?d+MkvN+f_PO!a*^fDb_6|zkv7tHI^saT7 zB=6MO3|Vf3R8&jVp>tFEgc)%0d)AKxxfW>340y;y>kO&BTFeZ1!(^*J>O9Fhzz0LH z{V1NGe@?QFkzx%%d*a(#t7cj28;~22W$lNqzhiaZIwVc8J}=hV$(AU922G`dCBQ;1 zXV6*Y%oOV&K^~-Xz|*6nr&`~WMySP1CEHE24#c_KmD8+!4PXdk(liJ|E={A{4dUDZ zLi$AiB2VrLXp#e!d}#ecUZLXUES62T_K?0(i<#J`ePn%3T(J{<|B=-q0U)-jP!)9( z0HlhFVcc#82yL+^TU0rtfD{c>X1O1pIKb~qSYvzrj0z4|UkOQ$vBX%y@%5A$u^CY@ zY2oqV5s@j8(NU36QOV)S>B`M2i$?f{q{l_4#Yd+_g-1nYL|KyK<1=Ey(=(D|qobly zBO)S{q~Mt=gpke!jXL3S}`O!GA=G6GCD0iDmo%6KG}jV*-VKDPf1IUi%Lz8 zNmUYB&m7?!Y>CWBjgCo;kH*cTqGMB1qSE8T<050D;^U)IQ_=hfGXj;W!)N9SAt|ZR zvC(O3 zLsYN@JK1*2tj~m`#mC{1h_r;q#zsaZTW}{Lv9MDj<6`5|V$zaPz(+HyE7`ZE_Vo>k zjmU_KkF~@kC&$D@rN%}ir)0!hEU9?t(jsER!vs|vHX$I#9o_Llfq+QJ9ZxWPq5rNl)>V6}_F*V{%!#3ZN2MyJHZr({HgN2R5w zu)fsA%%|bYZezmZ(o>@1aCsWhy!ec$w5Zs4G`GpLASGK`WEFy=aihrC*r>F~$SACu zahAx~)RdUyh_sl<^yF|#BZ3AjY>rY`=>^rhi9!VQPp2g z*KWvEGcqNTRT45iM1~|IxYnlrG>{~Y*FFdg~X)CVDFe5os7GW57Z^6q(>&l zN5_T7Skj{7B2ihbFSrW{#{MTND%O&bl93i26@i@%_9Zdt5fLdFsWB;WN?DbeTZGWZ z5Y0eIP81RBm1Y!kg9n_bJnC}Q8fJ;Yej_}td3-pqyNEdaUvxwqc78EY(O9*x(5KydMTcQ(Aq2TUw{h6eeeQAGK7iDLqD6h7~Ts%%m@m3 zT+eQnoNkEb=ADj3TV~7)68;zU{ulNB7xnZrv;RdsZxQ!@QSX0I@Bg<^Z@2V`EFRlQ zJ~JeNM-0@|)fb*?$^w!lu8x}4uuXYPGUF4L_Bd0+)-urW=5^GfrmejnrRKUapZ?)- zWj>lWzJA?+zwknMwogX#sD+u8@Xg1wpF!_^e(f3Gg_(Qp=zJ|(oKOt~*S2*O-a|ub z+uGo}VZW+vdr`=8kY98s=9Aje2l6OKXT7fo)}Aiqc^ zVNB+?m_O93PQ7tHcvMkV#^`!J&t~FXG*8Z|9tpCwGuOgQ<4^B7*<1<pB<|R?5>uQU-a8tD`h}a+aez+Rjoq-jqLT&y_ao~(oj&Ew4kVqkc#rcZLyxM zpNz0ImL__%Ru)Cr8Va7xFGkujrMVu>k=0_$l>saG*}-w2)T8>pu%Um%^I}{+OT2 z(Y7Q{0<)uSoh3T}A>50pyV&^-K!J63QjBe&^u4Y*MjjVyo1{Tr8f)uPrxj@kpFaSC zMF9zUfv8=a?WS}R;KLkusjI^A$I$>B=8PQY`Z3 zZPcNyZI4hB1w4nb*4pjXRwgAn$n`)eRf$^Y!*;e%O=}$w{DGDrbg+%By%+Mel&J}} zqk@ot`aN$;lb#2Zs7n6!ylsip5tLH;&nsmeY&`@`a~%UuvfXgcJ)VJpmuz8zkcnbm zwk?*10aB_>ybVez1H;htS8ShaTI=XnWAw4R_AY?hiqOes6{JrA2}*dthC+W-qm!)) z8vDX?m64EWYalHHji`2ix*JVSw5`=Z>lmrd7@6;t5qv#9yVAkLVI+68trDeDKt3QE zJB;w|wr8cCpp;rEJ#1RK8`-2Cl><@5V)H10LqIO%s#K{>B_Onh3ZxJT7?m2(WU{B>Kj28J*ZtXf!24<>e1 zKtdaQGvBygwtiBW9xweYQco=fHt2FIwNYWn#Oi2ZZ`%PWMs10xx<#UyeXv`I1m!xh z)MXq28bmBXNHyHadZbTA}r zT#Ik{tTYzDa1wXZY_ZzrI;KMmn10ii76^KwN(zMxvQ3qi05X)d8_T|ys;h-+d!_1N zTYW*Ys&yG}K1z~7;bqCJH5wIEf!6>9DmrZ20gh7lMc?#d`Jr59{0i&AKxR6L zr{gMh-^<{4ZB;~ZnpWad05p~O@V$D8r|;G5d@vwa7T9zJX##~_e%0q)7RYntOyw6W@-8%ja&MTL`WWJ41@y0H(# z85_|rj!RVf@|#Oq?Ln7BoGdV%eXuMj~gqBF$>F@{jT z=%6Mpwnh2k$r9lcm2B7&LQj?&iv4dFsAgMGt$kGNqTfEfhCMWp`8}P?TQQlJ8Y$@Q;e8iWw7o{(B%`x&SYizR(xWb!w{E_cUTMP=#URVQ# zd}RxioB*0KS*2N}3W)4G!g!8;Wpiqn)JBd(*R9?_IMf{lf&$eYp^0DH$OcSmz2sE} z;fzaf=|O>$gcW1OJ&voWFQSi?{G4O^xSVi@0XJjL|1SVcUC~(&MLE9D)A<`SN}RuO zACy`}c-Ak4?stzk_0VcGO^oEXYyr&PWKvcPWI|qIXtSRMHSVBW5=zEGiN#e^C}n3q zZ-mmFwji`203ZEMbJ`k+uW>Y7JUsv!DxT-|>+L9Z|3CE9VW4a3=(;?0VuI%WOg7l0 zV;^ceHWhHBbJba_V{TVnyx#U&1#uOHhesORPAah@7y63*8ejc61|h!sBZ5%xtF!id z`s#^#zHhqI$cnCM8OB$+-ZZmH&uw`dWgZhY&il>_+bc-?VBoCjvGwlr>`=Ri$^{5>wtm0 z_v+-``d|C$#My3vQ%4=*T{#`(*1l?J-ab4rd+C5?u)&l#(RF_)K<34W7aefhFnJ~f zKRk^^N5b)^2W*K_G9hDZ!EfLy)vXOaX!~9iCNf}dx9R{Eyjw^bwA0MDh~= zrXu;yLnIsjZ-`{xDchtF!xf#&)phF2PB8U3ZJQ^_2UW??^%p(CR8cKeU8U0NjO`O2 zxfZBXbBFcSQnp;6xx-q@%3o|wK>{$kWnALle24%^wv;}1!4@ydEmgdH#rVo4JOgg8 z76WoE(alS?a08ew?Q%LxubRO8aoKjy045}Gex#IP1S7UQ$d6QkTHPGuu2HwJ=7oTM zs-krbP2v--DG~(oxN71p)sha}!h!v;wigEgA39UotLeqhzuO)O;#F-gE&*uTiyu9D zvG<^6T42m2nK0Ebtio&1hY2NQ)en!Y(8CKshxCURsvY8T=XZJJ-L{Pk6k8n9A6!wR z5WW?N9;a@~AT7$O%6YYd#CC`Dr&LssR6R&k!@Q1xVz)#3V=5|0t{X%X>lz)>A62M^ zOLRvSBp?@r18AzDTMp^%OgZ!qH8jkScel%^sJTUebVcw(D?8@7PYU@Q zHtoq1xC-~gJ!M_cDNn8_)TiKNy&DZKQBw8lNq%BKgw!KnOj|h0u)&!8Kn+i-VV>Dw)0VPWYm1j6r{E zfGUT+ocsuez=HaOEm@%?Cg;5@Dg^`cZi>QGCP|WSFr4-d*JH?Oyre&&-9kh$&6f1z zKf{OQRT37sM}=h}42LGmjZkCq!w$1FM6bhoE$pTpnB*bZP5gB!}Iz``_*C=;cslLCJBd8!#DGGNdQLgHjtaN+6y}6GvooC z8bLh(xom=77A^dxQJdch7sg)T2CkxBfG+Nz8$l_uf549}=*HtJ=m@Tl%R62T@0TFmF?R$GF6&-DXdFS$ zAK3aefgsg;g7_aiJwXg%3~1cH_XK%h)S)L(B{A0}2|AUZZ7zx#OcXA6phV2eiwr>b z-|^-NI`f+})-qU&^6SdHqXEJuCO=d2AE^h6EzYYMAnb9A-HWAv>W0-=`j<@h;`|@< zmOjHk@E_^~{~wt83!ION2fdg&D%eiVjNWAK_oF7z`uwO`iB2n@z*W@5==-n%JM#*~ z5Dv^utPTLCCRX7`+HY`m$`fe*E^L$hMnq#TKr?5?Rl|3yoOjl8{t6(jVixt}18$0W4}m(}=lKnH@N59FN_XZ)zYc1DHx$pt}V z0$x%|!BlX@N$lbwy%%ZA3eRS`uKXca&j3kzn;TX-oL5zloJ2~hal_f#S-0+}O}zMO z`A0TeyMnL7Kdc>!1Li}q*EJM$RW$ra9)1+}Du?D;bO}JS^@N8U_WpNT6n{)*{i!1w z{SP`~s{hq+71e)!D*DUgc{{}DBj!qUhYK{40a}!sC-U$ENiSlGW=iC``p5->K0BG0 zC%$&Xd|Bbg?=OfvqVYT}FcG3dwU6jMPc_!ieQVS|S0U8;Ox{n@R3ag+LG-J6yRy7+ zX%;A@nG3QH0?)X1mF0Et1fg3emYINjb2cwb1EO2Z2k;(4z4xN02hP#KCYQj9TeX8- zN;oi{Pi)3js zJ5nB3VQBZFV$8%ZhvLgAZ)TNSbn&y!D0EthADS@5R!3>~XP&(RYS(j0C1u*gFZ-Fb z*-}AhL}{B(L>ln{dip2LM5Mt_Y$8&HaHOAzl>fU`bLRsEUUO`)fql z$6SQ3GZDJyAcKVbIpxtAEPwOW$bL?FEQ7Tu<16Ni74QWJWZ38@PjIcM8WPUwz&4eC zq7l0q@(HCdFh9pfSsR$Y#RuPuK=HUgf*LMAZo83bT*KQxp_`Kyv=V;OdxqBy#^6=m z82krwk{#|r@HQveQ9GY3{_zyCtMG$nWDc5-%s$u1&{=<@y7@yz;Wq}%t@JVgrdE2y zqucvfsuQgx#a zM)lrZQe8=FkiSWgnyF36f(*v-P`)P|U}ISqP@tkmRi1VUp5Eaobi~S%?@m{|MCcg1 z$PT#5?IM+t&*Z-?;2oqCmTq%n&`?qP;iZsA0bQ_}8~16gR0 z3n}q39d>3O;72z_{FrsdC^lszGz3@^h#(zyP`UeYa8n;J`E@nH zd?xATf8{nUK!Xg$dQKzOGv;DF$;9e*otHn)f6Y&LM8G|+l2N_jZ{=A+_CABgkM&I{ z`pXZ$fSj-zgXwM}SHT|W!M1!<)YMN1Wne~Ek*lzkE4WBffx7O1yu*Yqp7&7PlLnGM zu9N(K;4CljKGZqNoTZ`Gqb>G)r-^%+S)4!5WFKn_M}9d$8gxvf9{dG@G__Rq4Q}fS ztAGk)%j0XQo%xFdX^h%d?|Yu+Vg%@@?+F0~2Kbwzh^z(fo6*PxkisW))X07PG(|9% z&@}c#vvHN%51}<1@}~&79GLr|wE&p%aqYic!$(d6_-+VbACTjI;Ym@#o3mN6M!>U4hmF!sBfv;m9y*Ro;a>q z+&mzZjD>g?S5YC-NV@6U{MDlP6o=+g3_7ktQz?qa^-{chOykXsxunZ`<0}8{v;+FD zJi_xRDWkySZrOI2A<8pf)<^EhKV}j89XDT*y~gF)n?YKXx%cybi4uq7j+(8=%2#BL z!3}aHq9Dg2PCRbDBwOzWfxbj|jdTLOLfP&((>b`92XbMHc~GE^v@(5AL5v{fkP%Tm zJ)8uL@MmlTaP}ehl_3Rp1$mtcxeFakULA%`U6>mym8iu`dC7OO( z;1#rf@~FyMBnbtd^_C79!HesTqi2Q}Bujv(K2JQ#h+VQZ0PwGNAHDNtf%_J|J6aw8 zi?Cp<`4&4K%Y8FreNPyz`NQ`l7s=3#T$s}`$j zDy}|(N{)OsS_?#uQ=$FG3ff8Em;fo6#|!Y0EkH`IoO5}9A?x(iQ>~v1evy6zcnxf76>#@4d;F*qMWN*9z7K8qQ>t2iFQjAru@lG8ke!C!F79ax>KVM!_CwKk0!Q ziTI>)k6LPgz=8QVoRu7C*b0@uMcpLTpSn+d6DD4DOT1pwl`r@Mk?90}0asD=p(*CU zzZaYr#BwJ!ZeBd8Djya2HNC(u5P{>3A^byyF^_a6V_bFnFJmv?;-ucoH^saFFONcR z7hDiuK56dc_i>YafdN|3oCEkZ?W);DPob>41zp%>t8EWXZ{{xRBlgDqH;Vv2=<$8N zvZxV36@v=z6$}@LoHP#wC)}`_P|*IQJ`^;?CHjRbkQ@sIpg`3ZrRu|izCQ9IGGwk$ zpk61rTrDP{pbc_wJr@_9L|==AuSx)tdbbdD)pvojuOZCNvaR+hTq|wTVrOa{v|cS$ z+1!P?>z`_nR9r5Z%f3WeJR;RzH`xzPP>`~d)_)1FHw^;7#YK7i1n8nVn*NXAurrNaBt zGpF1msTWQ~nawN!G+Xb00#!I@U8O=Y4a7d8tI&aUh%Xlt2n}Otw8d3a8q^;@Ri*H2 zQRuIcMjrr7rSak^Dh&`_+M@YSV)1eBV9Xu$4#ri(t5L>vbHFCTDZO);=3M&YxA$}Ot9yc~LNY@v+4dAKYJ^&eYU3EgkC zJPJ)9zih$y*QAE{*MqkUC6x7KK`oT^%=;1=`P(vIRQYUvdDQaTZ)BxOi^5(1Z^=Bm zmoE$1MC@MjK=rvgEMrozD6t(2oB7c0Bi#LsN^z0wPV|G%Udh(^BtzAO|{g{0pJ47VyB)=Q==tMHIIV)X>&OxxKRg7WaG z!k*P!Qu%L{q-9W0RV8g{;nx4xgrYA8R>ix$iH9QTQuA|Oi62yA4r3XyNAL-K$tfCu zfW=OuEp(sGfpxM71PW9?qwH1+2Z_=(;uiQE$8|`(qx2Ujr4#*Yrxf3fg;NDhd)?H% z6~7MwkozY=AORh`Rp_2o=N)#2p&?ngfIGcfr%jz+4P2#$fS)!O_7}vM)2=xYy?`75 zQ>PblS|0*xoYt&-0rRS?ym|lAr7m~f1QF)NRL%kCe;{B%H>d0G;-CA$PTv)NB8Zbu zo6nMZa1l>nka!2j_l185;yg^!Y$DW853+ZA;b1|`K5ah#$#8?f`47G;{pQZXR${t` z2>YM*oCX0odQn2uc(*FONBaxI#KT(Y9Wa;PUYGRfjCj_b!ZCQ$g?serx#vp&nhyVu z9=z}UFNZ&OzqSLyQ%Kl{gD4;Upfjf0TMbu%DY8=IU}3h85KX|nM2{(aY$6%7MQQb8 z;cXw`MM~A&wSKGz%RN>&)(2R|pO- z`mv4=)4*s2HX{##*|k0_T>FJW{VIq{$iM57kxxmq0b5a-Uv zt3{x(jJMxX1-X3R$}sV{GFR4x?l~1SB9Pdn7W9BGJS-I zFZ+iP;xSr{pSlNuj&|e&cSq>=p!WeYx>zyU)f27~ZEqKL7FU*;hl*=_c$PCj3#xpl zuvjd@1kEDFA9{$EcMBuMZT%{^3 zTlKzBv^i9>PIoQv+)Xb@EF<-?STsy(NBGodqypQhrK&SUgM5mHnN(f$DI!bE0NsL@0Pe#K_^ow-nrb4@1)`Y(Bo_tY#0xrn77h!&-t= zzlS0Ftf!_gBaEq|_aAKiYREYu67rD3Um7X=PKX&N3vMuI?fwO1tx)7;>(^<11zDAI zlrrDFAT~H>?oY1kLFmo}(Q?jw=J^D_WULC=i!r~hYpx+#3<426SBz`2+ zu*&U6qOi;J|EMnUgBLz}*)M=xG&3C0^Otw=&<&Z_?n!$23_V5pw~KWiesMm#1!}XT zC=%^nUi1OJ5+G?s(E!7wMoT{4RexcILlfHyPHa~fgfIf;W$#ZrJuFUQ?-8OHl=rPa zFS$WAmQ?8%eGdC?W@?)0IuIONynzB$OO!re6gBsel5xjeim%(W*PSx~z?rUt0)X$G zwMDfA={+qzmYxnArI)uXcBn6)pF`s|;*l5Ya$xQYY5{2K3;fROeZfPl&g26OoRk?d zP1k9U>Ce;vx*rVH+gy|*bs)smSPjMXk%71pwiK26ynem{x|vm{E~;Nr^qkaBi=hLe z*A?_e8%v5NO1(iP8OG}B=bM=veb4jsrPQGAYEv)>?4r*a-xe+OnZU@_LOZ@KYAH=o zo2%Ohgh{C1cSX~rNuW|kb`~f5?&HZSTecRxCQ4rcWK>Z}2gTLr(a7yZ4W!kemL?WU zwqx$rgHmF7l}IzJ2Xq_GMs#y)(MJ5D{D{gLa2=2D1{xh#dF-?S6%siX~MDf3%{!RWFn2q*vsBRo`Rx7WT~6^5Ugn{tX; z4NcJ0_|?>Gs^covY*HQ-o$wJX449iuH~^+*QwL{+u-Sm`In_~V6?+~0J?EbVG-JC# z*L>}KdEW%t9^p<5)O4ah;6t}Q?xX2MS3mpe3OMagCBQo|768*uq1Sl)s%2Ff_xefs>R(;jQ-|2#-rckqJH$dx!C1PvI}+X4~1cbUoV3{k`Koa z25eCVhu8-T_^KETW_$_USRDjt;f;xSRl6B-90=fn$gHDk076?+a47 zOKL~xOp@MCT?v$u*oAXN-CEd7HLZ2T=9myumWA8j^N|~>7I6>#$gRTPfAE^`=<+PuiZS+sej(=DKxk!%J)(3;Uy!-aI4ek*OybJ5{C7 z@s@Uz6q3@nmEBhe@xBqW9!kjjx;px#wSAM>LmA;UZ3%vKlHq#Ch5ljuj*FOg37vk< z-cd+KjoaB93N2B$cJ|u%8lz$D?6v%!!e^Xj$Dn!z*P0-uoxM`I-uUFmY_zZ7T5a@8 zJA0ttPQ3kcb}w}E&ZTCkX@b3(So$;Sn_zDvEsh+8hA1MThUlb7R>nC+iB;?2}yW8NMz;!S+{ z+8yK<-H*GI{GuN)c9CE7tH*Bgi)J(TkY6;{vzPp$j%*+P<(r9h1|`+0H@O0TLZt{L zKRGK{uqY=x*tb;>&t4*FgrpAc+41a*|MKOQzT2(^p+Q~jm7hFKSfPHA{KBT`<@pwE zTee`jg?S^-x0uw?=Ua|-wXc=s%PJu><-xqfpo*Xb*U|OYtxL*{ZgvSjoD3>i@~Ljg z*S+QXusC_#k`Acm3zJ{M^U|k!*b}rs$)s;WBl($5d`~7MidIgY(*ix}VV@c|bRMw@KzdF(eG*^4Tk`Z@$+ItASQQ~X%UUFa14(ZVH zkA|=RL$p(0w|A*DlHe0?ulg^{tb!)LZf}Y5S5K-WzvYDv|5ozmKcusNLzX|P)Z0Ep zn2z4*Z67Dk@PeCvANb&(;a2wcvCkIdY%d7;GUxNhBcyo^k3rIma>66Lv|7>Mp5!BM zfHY|+sGDpbDSr!#saBm#w!bEBxQwDx?5nj<^M~3Spz^8q3Gz=KP=`}75ln+V;9Ut4 z!>?!TncN&rNV7MRuj=61psHIYS44lO*?ZxGtliS>&!FS`n@VWcIzN9Ml6u2@0#RPN zJy6RN?a7UF`&hZ$6|5QDoDuDbGsE7E^kn6#k85e6bOyp7bkT^8zT$2hWZxr)LBvyR z3lcG_hX>oAkwamH4kdrf!~>=B!4Ufkg4|96N{qSIP`qYojrI<+*Fcko+RMwWVG}I+ zC2~(#LVNh$FnbaMs#}h-A_^%Zqx4}1iF_C&+){MmC- zLtu$&==c|PEx~9?>h$I)bio(t^2d-MadROvL5U}97(F2Im`06RDt6w&FE+?u0Cd!s z0RCIBFSC#$DkCp+)ZMz}iXawUA#nu1&=IjE2xTpOp&S6U7=V(l2SH>i`^e*oj{Ow5 z>xm9|4`GwLbp2XoC$3YI1C__x&xzti4$jtA@_7hOzjhwHqR*=ByyB5nGvijcHg`x3 z{>7)1eU0%UG{U4T}Lo=mHll&4kxr-##gptUOm*{3wwPz4i- zLJI1=*8YYTh+5z;Ywd02$qFXO+|F~Y1pkI1zML2E&=I?5>6X3sRKQ~=hfe*Cg;h@6^m2rN;_;a~J4t&DD7Tu*k_yPuoDcL@b7b0-Al%Y>+jDgTP= z)Uef{$UeYF^uv!3s!vPFKGy&^4O`cL(}%5JfAb7m##|#}(2wa+Fng$=n_|BzHzU;D zRzgli4_Rk#El0y*Y$b_evukWRr~x3_1Vr4xK*Y-Y^>(X|oCp!R9UOGfC1vtndksO9uIu+(s~CE_ z7$c%}r<8xWrcWvFqxCSQEJI_Xk;rU7W*o3@mE*4KjcVEWrOoAbu$XAO4{nIc#!nB` zLggrym9q>@toa=gp{mR8L|A6)GPxiuK@w@Bh+BtEQ!9Ye$)a6ip7@3J0bR8aBz!QwAW)xf@PRn=bQSKOCer;Zy>dy*fVY$o8pv{zw# z#p=E5S`A|{RX`7(URMYC#1?0p1>yCv#k=Lu8$cWB#Gnp36<3@n*MSvk^nD5xg8^F- zUpzF(q^@?$Vzzq3*}KFjS70jajV zazn3e2{$y_X2KxRwlL#5%o~mKCq&GLdsnpkX%Ar@=t>9qW5|+ji{nhz7x&)ii1x(? zDhgH#uiqQ3s>&~1RldHV*&Ds)21=N?v{ewnsoxqs6W8fZ&CAmXW3E6RadK{(cHW)> zq^VavBrXA*G*ADA;kWu*<}$ zO{hXcS+}CHHhTilNZ3s|8&BP!^N~>Ry4ll*?Luxkpm>`6>P;}xG%KD2O2C+e48#^| zQkOkYwOIQ0%P1^nbrZ7uCP8U3xI=Lr4HI;K)5GNA7Ujg59GqM3bO=r@_wAc{%N=@C zW4R`b(l}vKcWf~2gg#CP#b{LL;yP&FlXDw_9ms_)wppxLlUXc?dvBUYigA31b}={$ zy3}k%Yo%mpF}|$%lozF(tcM#sy!e86&5KS>cSAs(6t=T&gulBf0<7x`Z+aR(lnkn z&1)9$UPD${P6d{z%%i4biWRd6bZ1QQUb86p^Vs4asY|H-35kOAVUvaE<}g

    T2iAD9IEAk8z?tndXm6O=>XX6xzEkL9DLZt{Q5n)T zM^Ow}FW(=#%bD>632C-wc&cWJcTsRRk&6uM{b04h4ed=zqXjk11d@$A$yW0=9(ef#y&OBK?=wLkFnz z=)3B)PhVSG9&%YvIYP~hDb!=6dX|l~Z!qsmH>Yxmat1}!f!p-cwXjC2F4#2fdD&63 zX)1m>;IFj;};2iX;uBS z(MTW;8%Ys|jif-($Xz~wRjLBUM#4vlQ|kEptWpr^i;sZMDqu9sVV_|z0={w733t2} zD*S}gcBmtrwgbhWVb*z#G)Aa_y!@0im7km!pC*U4+v@~+uDJMC z>n}?76q3*;iX^m&0>L`f`vi_RDPYqki>WH;xJtpyR< zEl`|WL&BOcN+%zdf~80r|KM|H&ydf7maIpd1E(Ova*b+MLkM^y{UE< ziFJ8d=rMl13Fj4QSu!Bo+W$2bc)7!*XdDf6U)6&scDZ|8?dDmkCj?PE44;eN*Spiui?tBZU(qIvN@*n z1wS}PGDRMq>8}cvwx8CDd*t);_e{jcb@}B3V*E6$WJYyJnOvE z25HUZ=bcU1$CTFRZ2A#WFUwa@{{Tl5EB3g+ie*VZQzZK@*bO60rlR4wfGg}Wh2VSU zrU2tWC?ztkT~GblxwC@(?5w4+xVpqo^M{Nt(WC3~1;0QV%ErP@n^!lNA=l0A%JZgpFw~!gzw{7C#vg zmz`tbf#@lho&DIIlwJtY=JDh!aJ+FIMfhdJR#6=K<~&~gs~DD)Y8Kllv=$%#m$M^#mGVcWwy(M7?98@PxIg<`*{fbM+2hg00E<)Skw+IN8X;w{ z8B*}H3ypy?(N9x|-bBAhTZ%;gHK80P`mc*$nCQP=_eP2S!;Npy350A)FX|G z`TTeS@#ga%t$aTJl*RQyVi2CTdi7)uwoj<5p*IIh%gG#UbUptZYzLtq=3u+klR4Nk z9m7ge>j^N;!N!t$h$AGq6^FxI^EFmN;TQz*zQ|iB7>|&Y)Z=kg;asUgfL$5ScaNh4 zqATk_kQnKDQYFAJ2=`Eh@*g8%Cv8@}a2~xeq&=HM$$f!P^YGXjF5?*9LSD{X&8^); zN#lG49F-nki5rrj5hn8aUq*xp9r5!;vC7FW;OMrKqtB1MP|FxwBwOOwavD z@nV>S?;(9w)PJidhknA|o1FszVj) z)Hmh|eJNfTK`*IKCO|{#%PBLl0vB_IRI}BMbh0Ao+ZwJ3Oo50guHL-9+*5{mcpWf9 z-nhtE9jcF^jCzd>Wwa-HLz(FPB9z@P)W%TufcS->?1B2hL)k0*&z`PazB~;s_UzEh zl@u(f9ZhjP&t9Omz@YXlfp~-3(>E2=1`0hMWp5J3a%*xA*hU<=-dUe)O@1Cw>^LbV zHrUpUoiv>N5>V_yeYwG=WfP~u{ksdiu(qo`i>3&%3#I|04up`r)>^E#Q~d6i7^M2P z*XqmoyQ0(;Cv7?;%N6O3#FRot;wPa#>TXy|AsQob$7~si=k;-g@_Kb$gHvAsKH3t?%Tmm5MrGH%@_AlN6t5O`kh_5QBC z%t;H1^*nzm&sASMG>I$KjIe5xxh>z7FCe0qajmJ#IAB%U)Ya13QP3N~TI@0K15I61 zL}9V~`*f*34^?$D=)&CaP6fIk(0qh4f#talOPxw{z9= zRcu~6skz9pa_>K|VtBU|+CA37^$9Cg_=u!J zQ3JV@Dxw%{Dm;+{4+G*G7~?4#>MAp<`j`f0h4twTfSPyF` z#~fAU%8KVT^i>=OQyR+TU`petcQ6&9Tnwgbh0-{ft`om-FkRO$_+WYm-_q0d zRInlRkzTH~>{VKS9710qkpHhC6z=F=$&L`latM77tRaTbw;PHfG?DM`?TY2EJq@>o zz^}&a`v8Lfngr&-k01)$4mR`+dd<8;9W5t^x-B4A9qOv(fIV@jOU&^Nbt6&_3Qg!J z_YzeNN4bV&uBIAG6ZA#^yqQrB4CWo>k_k&=lxs#na+J#x5bP#Ub90m{r3G=6xH6cI z5-`f?x97;PHjb9Xo-jIx^n__SvXdu@Vr1acM!@EuYqD>IXf%QhecpfghCa5MO2HAL zh(fT>;`rw!#S!A}5imk@1$D%3@TY@ZhuCYB3iI*XbL0rIonm~0x&EP1&5tP>t9gW0 z^Q#+G^F2|`o;pauSglCGSgk;?9`6lv*_Z;xW$4=5#)t6lBnA~0lLk)-L;=R z?pM$V`43aD8S)h{j^TLt^ChUDme#P2l~Q5-w$S?R4qiVv``Jj;7$br4UZW!D&hf6H zOo3oyaii|{n03dfPrJ5^`ZTV1qrQk`5cLy&6FOtm|6TmTsQ)`ZYID^K@*%5jqH9U1 za-Xei@1<)hzZ$|X7*BSE`-{g72z!{tGzKlalRX?d7=d_)j{g^VHEs=?m>7h+Ev>PP z^CPFYvb=GgmXmQltg(NbZy_|rINzbMjPnIkU4^M>0!-t4RZ=67TuSA6r$b^Z-ka(w zu&{0vDbmU*5&ra@%_97i8(!v|Zx4-3q+GqNENUXg_Mw6TTX~rHg{?fSF^=tt^m}E% zVgHQ){l!(rpE_J?gN^d=VwY@_FyM1R|dI9>8PWuHL273E10$&sE-I;O*HF z{D<9+W>A$>pALH_8g@X>tV~&jg2pmD<}%j*FG&O z(HYVdO|0--2;BZ`+>m<%QDE;BeUkJIxI=3FY*(Is+;E4}vt4~s?-vrNJ4~S>#jwvu zj14PeCn*@mI($~)dkPj~oqiG?F%i!ys08Ae=Y=0?R_2%|8u;Poi_+PbRG7F!qvEsY zi)w07S}xSV=%rz6UMT9qsuGB3iVQxri6w-uSm4ToE>!+uQoIF-_|6yL!hA~2&6=fB z7NTZI@#>}`R}hL}n~Qq0CjJzY=bc6pZRYL4IjU*o7bzCu8-7tlXbM?~yALsHzA*^&(^Sm# zOOH&V1-%^~D$94iTr`(0p){~X(UtdkIjO3)kZ-xyl^C)Zu)OfAZ<9i7@RPs&N>MlV zD5Zesh&!yQ3ZKpG)vARiiQ*0$?0Z$Qm1n^pyyf7bT=D#1K|C?A@s{sGcw}jUBf(Mw zSjRfTvRE9@m)jm50i-|iLPuD9s@W(84Xq3xxzyD&k#-Mn^`J}R=(Shqig9h9_=Rz8 zAJ4ci=;-z6j-uM~a|O#X*Db-q+S+BVyV+-glQIH*LLlDw^}@U(rOD{7UZ z9|bRg6@&%8dF5p@!}9e%bLDWdbfxQ-)bE8hG=6+U)WgqR@cFv? zmiQP^jCN4q%hP`gZ?6gv`)TR6fWlNa*lV2^HiPw|a>Xpr+Fd|!g!`Va;I0qZaK9qP z{BJM?oAW;fjPt({NyDo0zuqirpiSqc54m!gol@c)a4N0q+$M64`=_v^F~^IevlhN$qxodUPUE85k&IxM_on#B>Bj}qIRleoP7># zf-`TeJ74*ttFzt(|7n~?p-mxYpwvaZeOP)se0?wU#y zy6%c~uBq%7Y66@*ULX)}*IiusuABLc>oz`VVo@B=3oozE)5FV$@DZEk+7v%L3Coii z_ZoRn6>kv14^IFCAD$%g`2%C>vU(JaU!MS4e0>6M&hL93HbvxD^MT6SG$n0X;v8WlBLu#oQ%1DF2yvxPi^@a@u*&eL62i>L zDBMm!GNUj`K(PNoJ>)^0XCd)6lNQ8vH(aT)??rbqb5acUxR|SOx7e~gJfpaRVnt`u zmJ0J3&kjDEC;M6tQOf9Ra6~aZ&Nf^?&_G6KbMpBcT`5si8a(vTS}$c=s0iHRck;e3 zzzy`Ytn7?iDvImsZ{_hzTj8+j0ZNC5P2V7@9myl-OsRgEx$ca(K=txuen63l`2huj zfodLy$ftlsf7ND4zrsDoQQ)NF2-yhGRqQ!h^1&QlXT{ZW6#-G&>ChI}0#?JXpb;(O zDcFpb3K-iiuTDXIy-_~bK8ERPE~Uaq*)X4s3a#@4TMsU`Oiv@NXUvooLHBNRb!Q3$ z<5g_F%oJ1s=|CoMUwkgCI95ECyEI~|r|sxF%4f`2W!uFsz2%D6 zzL88XQzBSu_Se5bjasmXro@{;S3?Xb(9WX54=W4~WC<3+E@_AV4KWNdK5-D1A zS1|rs3{bE>EwXr-7G9l=qFAZQt1(44P({=mX4xrxOFU~NZ8MwFqgK#b+DrBp>|Tn& zjbNjV9;66C0*x1Y&{fJdPy~)tzze^V^g2kJw_Wr3ki%pU+}V`)#$n39*Bm;O+4`NU z1^Zk2^95@{sHpPKTfvRa(rgLi?Tqqph3_@ zR#FT`1aDKVr5G=b_)M4Y`3myRnU*FqG0`X znV?|3x}dMPDC(bl1w@vA@9GIHg63ICX|ciIX)c{)EydulV~}j32rr50BReTt_y~x~ z|IyXkH#u4KXV_irV_FI$%8?c%qI~0rHX;g?!H9BEK?`FXX+b?jZ%G>cpFBmsW^hfU zR9G>#pXO9-#4p zAB*!@FG>kZ!e)H$9}#(aw^ru5(9&O2udHoTt0oE?%lg>+-MR4%1t3XWFKQ(CK|g-+ zTyec1axpj@L@%D7=GUig?hx#GQA#nm)bgOi!5X1+Uiee7d};7VQEQys%#J0zXnrwVMKsZ2&4TjB8r&m)J5d zYjO82BrY28jO^k({odB1=jQVj5fK?l_mDEC`@q?d^~Gb;a2GmJ>@1n$j1O!<954T_ zeSAesk~>;wFA_E~@wP0dxP#?YsKNU=#dXb&A) zihH@nBH9q=#C&K-8<`Icp_of)?jC$}mOGXgY;jj-X%r_a&VS2t8!sYew+XCu*;aRY zoM~<2gG!KucStCbFjixJv!IR4Z+51_Fu&Om>gP5-KIzRD)NwacLNsPJZy?QhJ`O}r z>*sD~8Pf)?h3*+%n~e<+GKvV9ibA4DL&APpVR?8uX-Z$EpxeJzoXP@g6;r=jU40Qq z7FPt^8zAr=B5+k;t>9jOjNsx{b}1gNio?ukK}C3s3dTIHq8Ap-m>Qm?7R0USpX#~$ zvF%h%(SOx~NFOsO+^@PAb>IFMqnlME^UpMBv>KgPYacb`B*zn)kd4;7o zSAEv-*0U6Y-a0wY>#dfy#K(oVuE{r?m6znZqj~8$dws=${M@y+?4%$H-Bl4~x@+CG z(p~FQY3QzX`1&@6yXyIENjjeR6ZdmkMW*4jpa42;ueOHM76*vx;S*I|Ba;5!bA7T5 z&kd{~dhR4(C_HycfYgaTsj)hoSuyXmpcVAxdP5)KE=)ar(1u6QkLW=%-I>3J`TrJ$yH1?swQ#kPZZDqK9pJLE~J?#w# z=8v^^d#}qK!>t{>&U;&jf8o5w6Ez?PomUZKI&Wk<>Ab8R=_=^F5&Tpauk$9hyFuIf zIjhHbRC(Q8Pz#5|W_5+5(dj|xFEhA!w6R}E2 z@bg|G6unmwYI?5%M(|6h=z_bR05z3+xG&KuX>aNdOWe*Hv`ZEvm|_4M{;NBMj2^+_|l zH?WGrdtvcD6&|={Z34u$pkliav47{iL@0W%BGmL=1&rRSKuqsd!05fH8%I~=tk|8; zZl@}v3oE5f7goUN!mfWoiY}~>;%&7MNK^-Ya83AS_Nc;8IPin*r2{`mG2p;Gg}r0s zWcMYC!^y68i`R=wZ}}HqY}`2jve1haS*90%++K#@PpCNI#rlV|jZfaFjs4tM5h~qS zdyr4<=WcKLpVx~o2Z;KeiVErQZ@t(j%<$sCDq;*y0fr(5r*-h}J+(TJ-jhw_{+$~W zsp!UvRMU+WFuJht|ZaGZo9J5Ij?{R6yi150Zf53Bb)Gizl$B{0bUp zD%Mdj)&@U1Q^4q^N6L#ESax)PHl8rG4ttG~;o^5YZN#@a;4;uJ`b{0sAC6U+Yct~l z3`JJvZg*3rK*Xq|Kh{AWt616rk5$08^Jp2of10j><`A&s+bXYmZB~1S?->~5;_uh#-kLm1mZnPadT(Ey7S3zhgX*e z!oD8m9>*FH5qO-!lHCzE6B5=`FK@uwQZ(*VWOu|gwFZ|1*&#UMv9BO{+Uh_#aqNqA z^yZJ@*jEic@AV&9IDT<3xT8D(_RQ_>!qhrKPLjxk8ZV+$qk=J=+~i>Rcs81VZ}I>b znxY09NjPGbvtsi&_h^kxr*QOJOxnx_>tNDmF2xJK)n*Ed80myXyc{w#*1@8X_ro9n zRG%gQSWhG4JDq=Tb9YsxVaymb5thx5Qz0T|SU{~chr@^Y5n$FUfH$q0almaCWr&^p zRRO_H4lRbA{K6#nG$6sKy$~;qAaF>aRPcsx+tC?dll3Zr>M4fl+iA$6I44vWbYvT zhla=$5XBHbPIo(48^3}^v}-}ZX0%hlXq=0yhF9fLds!pBq!TZ*yYpBdN{SJ$xDy$+ z26d8&FX}sU9q!yz(?mu_SrPV*1HzpG!Eo2KlMHv6oqYAjQ)JXPWT>M(&Kv4vCoV}` zAymdtw^IDVP`9$vjY8c*xBH=BQEr^a{W*J{)*hqW1_JR$x&My?WBkykaO`#F7vYQ9 zJ|aRM8hah=A`Xqc+DRT76Z^9K@&dWWz(98lFuwC*XD9*s81K*L-1xa%>&9#N8(qR8z;+C#k#Q*n0k4_+%DcNW2tpWZV0f zr2$K#U>t*>pxm!jC}5l6=JsnD5oGMw<`EFtuWe1iLM1(~Q0~_%1Q>sDzqU7MjQh2v zloDdEv0qzMXa-=*ZK8T&zcx%1ru(%`1b~j-AWrVr2Fk_#+NprY{o3hNF7DS(CL;CO zh4O=vpaO8iRuLd}bkb}Ag{c9_hV6q?Hg4FOlo2vBLMg*4_Wd3X7l&=7WZ3STpf*!i z7I$Ls!yG(KPkEDqeH1JI3?HOY$PFn|31h^6u261XZXj&D15uMgxoP|LL+(V4oh2o3 z(^mVA_j$x!&c34vQ?V-)jQ;Xnq5P~(A@JAB7-moXtzO2)ZDwa;60Cb_XISBgja&F( zTFYOCv2k0o^FP;JZrt{u+^{ZPI?IjQE)?T0$Jn^-^!IZ7Hf{r&i28}#xSgm7^={m< z85F!=Y! z+^!vYYiMNJJH{$WF_bZTg|33zwm(xfafW+AKyZe;1LihjJwG%$;wlU8Li`h_`j#$o zs&Anf%*PIX#hZ_v`wGd&o_occ$!fFRo5`Z}$DJ^<{>C0Bh`~&jA_jvtZrpb2A~RWq zR13^xb?9P-YrVLOnO;&tHfFMJAk;|6f(Dq79o@x9$le|xtDMT3LS#je3VOG3gGe({ zS%G!LRMtXZC{kIA1LWRK>zQ+%<$CTX$`ZZ(M*&g19kW-K zuEg7+ps}92PU+3{oB~GI#Ozg4S0j5>lXAmYkkFO*W}U7wd!@RH%wCzTmMI5eMHXhS z6bM%Ts!{zPyZEY)%Q+edlQ`bTbApfOgaDqC;bOVg<1#GSwxxXKKKE_%E(c>B?&Ul0 zFTUW8@rByFio!SC-8CKlU0!?o30_t=B7C0sY`=VlZ8I$0=d7}A!T)93rVE)<#Gn6) z$LvpuKc}z3pKryVTd%{P{^E~Y{Bejs&x$`!i$7;9f=v8*S$yLP-+sd<<1Z1$i;?Lf zWH@dSa$AI)79p2K$YBvuFLKyw8I-8aWS=&li(jbCmqI1fro^Ys6rVP0#jmA*@qI%l zR2Rcp=D{yV5L-#NlnC0+UA$L!VSp&~vzJ4V^=5e>RT{3#Mu@9HzcSK?PI z27lU%Kl`Bz*$#<6Kh%If_}+1PD*VC+#G=Jjp?Hn$lj6cdyhd@0xD*O+nFugHr? z=IIBcqATjWjyqv-r*}haChZLjz>k7zGp(kFA=Afj;j1uaz{tlGx^ES-J!g! z=1-yg1#;$ny^_fLDy? zKM=xax1TsxpS(Ux*2)bEBx+{ z+)IN9f4omgwZ7BUKNnEqL@j9+xP1G>NyF1~NV{?$?d)IpH3p>foooQ8Yk(eq?Aww&fl$&%S2CLt7#*d&m;E zX5iE?zPj7=x;(A6EsC%D(*0k3Q#ZaKX7*TZQ^l#T+@m!8qi($Hu&1T<7_o!t$VX`# zeT{9@)B?@J`{vt{e14p^rmP^A?>^PKZWP*O3%?ZbQ58^IFU9bNWp2`(_mI{#nY>&-AjYE z?5dk<*$N158Je|}R0~?EAwP1ZYTMEx6Y7iCHz`j9(;ocd9Rou7#k20=)?uay(S;lG zb*0g56N3o04ec)Phq~~Cdx>=hAzOdWJwTfxte(#^o?^-RM7Zr@n>~Ry8EhM5UE*JI zVUUvI%~n^xETaWuA zM}}HD3sTIug66)A>y3;6kD3nUeLU6T_>sHeIyM;pLio~4?#Sp7ztZ5(JuM_<)%XG9Tif!ZU~@bj5^)^>$TcSH5M29?3=tDE5EQ?^OQmX%+wb)19nY z=lhjjGe?WmXZMhai`gd97&r@7gjVH!_J?FyR)MuHw2i87U1JuKLuQ`M(o(;_2bou_ z>w)Vx3p75@=*=1uD;SeNkciuqibQR)ry=u)B=VR3a(A&3@S1DxQtNJ_MPKGAO(X?q z)4YDoy;q%%JQi>X=R;cF;qc}O4#Q9u{o^n3ditvIEd%NDOr`g(;!k%P4M?5x4_8o;ce)gk4 z%;xyQYz{ngzAwV_i`7O%`;DK1PNcBs{z}?X*L$IN>Y>mj9JAW%7klE3tV!ogQsO+}d}aNn-Sx9Q zrH-HW^yw(Bo3S?OWx62f*p5Hf=5%$w>uM*fRbZ%|71nsqQZ1wi;Cy{%VV<=&p*3~w z*~|1h{Z>=gy@{R{B*?@|&+FQYw=JI8*xJ?Pg|Xuf^WV}#py1gg58SwIBILx5c(cK? zfEK~w=j|Gv4c7mdV2t~O(8!i6gyrpL7U~^(NwYQTsS7BAQo zlWTommDUxn2TTl3SFtPEGgRZ>SckObdzad+6)`EE2#rrp^Dun}m~*2CZWO8L*CIVQ zIVgYwb_UP7G7`9|)~5J$6L=!t~gYUYH(Bd`Fayht;|br>Neh zhtVzt4%A&s_uQIAovx@i^xS=p@VncNdX#wYM+hLLo# z3CQ9ZzC@D1NohX-&A$1y8tOklHp4Qz4WClSb2ICKY+N_hP$%1vzUV6EDn;FSY?fz! zgs2X{4#`)IEy7hZUpHrHWm;aSXBvko@^QsXA>KB; znU`ZqJwtiHt-a-9xnh4K&tgrVRD|ne%Ot2~{>iA3eEyn-k-TPE?-YLV(#-n&$h&Y4 z>)NZmJ8^i#5$>bPi4K+6lgDQjXbj zTkPr2uRn2}@n??x4x6^co|$}eTTi48y-2$T&-CJ(dGAxs`+l2Uq8)&@s)3ReH6F`5 z>0eYo0GvuaCBCw#+3o(Cy(u-*7Z!;Dx={a55w6HZ!@$4u__~c*wR9WW(pZ;|Et2c< zAnswi9hy_D%VXMj?(yqxv5hm^@-N$XjXT$G2a=^*lK1;uhT{bqa57B-M5#A833*KEOu$w+(cel;2FZ!(qbs@kz#p>X%odD1HizAjP2M?KTI~q zl{27m%7j;QtN9Ab-Fh|BHSYgFm1Z{xKhp?$4_BChdy+Lwig8 zlPCuH1ID~ivaTOm3V~;M7Oe3Y$qQK#2pump?#ep)mG5t9+Z!go6`37bZ;BE+z&DEu z7c-G?gZ9Tn!o}2)aXj^{Sy2zfyd1{A+&?Zdx(iss%p)9-c?8Ns<`Eiz;Y1!`WW|U` zZqsMR@rUM4u+|XNGI`(;8j643v&z;yisyHEz6QToS`wRDAd1itAx8kbLu=pv&TLWv zQ6pJn^JpE-V6l*bMX=E4_2&64V1oWbzmoO=R7Tu*$e&7^x2DtsFH=%DgpS^P@8y`t z%Ee1t)NH~H#lHq&%+opXB~lVf z;G}D7Z<(!FJ#<#bsP{zy4dxrL6%@@^4xQDIKR;wv6gxr){Y4mgi1$!LLQoNWYJX2E z|9#l3eEqxLyut8UE!mmB;b7RI@FO z<7dMuEiTkHj`V!Y4pA@~Pb~Riu5hB<<7Nja){n1|ol*Frk9;x8^NsdjzGt+j4?9g6 zU~Srs@i^Ie3Pu+>UBag>oRzH-9F3lp$L zLMb+LzUM_PlOLV$sn67XYAK)l(POj+P& zdfxbY4fJk(c=?a^OxA;<(e=9AKtkU>KG!=MIAKG7UXL2Qm;b3DCOu-P2CsEOGeBJ*0|nCoe%vBxQA zUvoTcG{?gfi_NiJHpdQ%*tdD^m>Zbt4gbd2Vl>7U%D`-l&y2?Sf}*i8KD~j2(|(Ns z0gce9b?+Lvds+15z z?+|(jEp&2QLhqeq1q4D96cO-=vHTFQVWn7}?IGZ^U_rr(qVUbm?!7zb+^*dmc_m>xA$@14OPPiJK}`?quB^`03aw)%rJ{GOY9$kj~mmVuF99eAK> zEId#(c1SEcnm04nw1RIhkc(#*l@UiwD_txaP z;B9M4+NT`HLm3c1m@qirgdb{eaHOHL9$P=|c)8-p^|@Dd^BG!*<7>J3#Wl^-6pZuf zGi>*!-04<)?1ddSLoa-X;@?R2rnA>K=N4G8p)Gx))jFk`T&v4=JpuoRlU5AVegRmP zHemF4tI~%*Tc8ajGjrySuyDO=9}!#b)JJ^FtzuuI3$7}WEv&%7zO|!2Z=g5pE2iES zv=;AjdP?6AZggK?zZ+o!p;2G)Nw<2G1TgMVcp^JY>nkGQ75e(6#CPha+K{D`lkHL# zzq&ma?lml==setKdME^Y9bT%ofN^Aj{AMFZL0^%+Ga0Rh?c5xyox4RlaVp_yJhA|- zAq;C_)?im|idCwpck>e2olf`FH;XCP5aKs3ve(B!XH5}I(XY|^IOtedWAodWPK~wl zM_E-3Rfg zfjn1B_xr?kF%OZ@4lc!;8LZ=M~1px>j_-DWz+ z@&zq;pI}AHCWYz!fXfpRG3?Jra+~QR`mv22R<~uDwNFNc_2v~~S)*3DE!hLTbLuq! ziG1H_I-3W{70j>%3pQ5i#Uc*n?tz`$(L=eN^|}3c_l0;-VzugyI?$|yUYRMSxfUR0 zaY>{s&O8QZuL}JlZeTZ_%ax}vH!CPg#4{EX?mqko8H*aMNtN#mcD-D7CHBqX+;zr& z#X>Mn(6#XReH=<79aIu_tROFj9j%;LkySa8JNoY8FLCU^f~+JqdV+==J*u+mPvkbJVBsi-<$Y}Q6SeVVa{}54Nf} zx0czYKU79PuGgRBwHgvIAaG&VjK4Q8DID!A!8}jrzLXw}c;4L;A5-uX@y8frEv%iK2ljoI%;HpnT{GwNnko^cz>Rb>U9?`Y7sQj zw6MlZ6ovS-eh=5eef%1*%WLmc^dI1iDIWBE?z5VoP3?QI?-X`^-PrQ1 z=vMzI*74Qc@}kbs3w_%aKHDOk4ZF~{27zz*eS8(|QOFYHwlW{1DuS7}8B4v=H(5gu zY#V*Xo|k&6zsO64y_mb;9+apWRn4&vnsD^pzD-Q{p}d)|*~-6WH~4Or`bKVN$4;n% z8LFJ>WleVND(nj`(#kNTr?HGb=HE>yI8g7^w2zRjzO%nbKW*>N5;NxZV3|+ND9MiY zsu#|d?{!z?3a-sApUK_fC^4WEOHR&iVulSMO+xLSujXh1pP)+lh;RK$XyJh>E;oRy zxT$^yxa7F{uxqd7{$1_3%^rR|w~2Y1>IxN|#O0(t>y}XTO`oE>Wx_ha@n-H>vn6d3 zF6C~&nVX@f4!|?RW@lQgTHNukTAYS0PGA|OwDKj+fN<<+o#a@y{%mghXt&)3S`J{J zoXzbMM2>Qo93@%aZ09_E`~bFos;i4RkqQF=idHPu<7lXjRl>vscz6!j?!t>@Q2%{P zxE=^90S4?Wnm{!M2-^%f6?Tt~(r+r~!EHlE*Q#))9Dy={xez;@NMLFnmhnz*T7@8k zO17IFdnfmY2ul&e%;neb=6+$mLK_VhkeSOD2-r6~J$Ucqwy!5=4+v97gPG^wu=9mE z3E5*JGYI?acL#_>W>Gx!p6_>Lm0@uo0`r zZ%FDtU@MlHN5H|%BXClg(=3YHw~l)NY#QjQ0ybG5~n*T zF1BH-q<@H(Ablu7`p?)(Bz-8h(8t8-+Y}e+pOy44(-NT18>aH6-`Pqf52#Fd$ed}Z zLBz6LQio%Z%$Zi8MabSU$WH+%$xjA{a5K!8ULNIaT=so%E|noYBQm74mdKEv03YEQ z(mGdjYe(@qA}`vROY!~yJX9V3E(g;=^CWd#o(pAae(FKx$NA~jXBGdBah-R()W=dw zo82e}yp-eo8djy|UY$n5+R-t!b9Io2QeLH{nA#~ZSj3mY1_QkcoSqo0$LsoF5nl?J7t0M6 z@ukj#!~xaYgG87Tm|&RF!UV&Vc1SGyzbmeBrWMSO5vjamb1DzUDlOQ3=ey$A@1MGI ztVD1XQuJHyB)!LA7L^PuoL-cUf8y7>i^c^``U3{bNgrCrC;fP3BDqnt$dU4$tFcuC znEvJ2_RobY=${S}4|uQm!u5ygq4Gc<6sfn|!NNYdv=r@AAnn6w2~4Kr_06H|v)g8$ z^`MH8^Y7Pz3EIcP1npyo$i$lktP*c8Q&G?~7DNno9a*0?-n4*~X+D&u`IypCrg=Y< zX+95a8krTfGUTSQK+rVjGiQfspwtU+q8luelICt)+`Oc7on}T3Azi?4n(!gQG~u)q zBX<)@IWx@!3g*htp#q$BuWFJ4n7R1(O`8&s*relGcc_48-2*widNr%L*_GDvaX>>_ zD?oBTf7|+=0UjyxUS8elKS^^pvr(YF~58M|1GDM_MVF@BqsGk9Vr%*qm zG*HQyLX8|MQmF8*g=L7JpbZT%!dD*ZAK@{D3Jfr7XJLR@J7^fXqNQOtrr05|?4yd# zV$%Y~HEm zJdT#4E%Js6TP&m{XbVp$O|2ekwS|_;W>$B`o4J&PGR0nLiv6@0NAumGI2^IrB6p~; zg@psRg*J}esN<|+TH1xCutQ>5e3EmQ6%lh8m_U7>%7&&0td9v)3s_BinV>~ExZ)im zOrHKhiTcOZo6;0FX{kz{#tg$RPsa|k`t5kFJiF1t87gX$FwF0~Jd3JDa%4PuqTLi4 zvamx9*&#BIY6bhUEo^!-C+=x+?z7_fQ>YfOQqIpxIXLt5uJ630nUiS?ecEwM7$&o) z@WbD6iy?bD*fR%YMv;Sqr3U!TLd z_CBo}vb@HzC5s28IA7MxgR~M(d_9^0t)mpoH31*QdbOEzx)mRLIHqS`u;BCKR0r9O z=FS2uK4_{>`G8jJ=O*l|FC8XsWfkr2Vnp$kY#gjtd&`zC;yA6@^~_4)4llI&NXzye zSpM<>hBgeRqXP|EIW_Z7Dg_P+HoesrbJ=e`y*<|2S>H5)o6q%(xMDSLE6^VmMf6zxZf( zXFW%WHUMEW^T6-g(JH8yRwF`azS{`Yi-RvMs_N4klI2r9(J`8hzzcn5GfEVEypK7Y zLeRYdw@R9Gixrpm@IbOnMuZ1Y+7xlvyr)vf^nqtuvHn({-y=r z)-FjJ?hxT*2<-~iDWy{DQVx)nYR@)28WE;J^LYo18KF8LTu!uxcYv+T$J3aT-x&tr zy}$}zaR!)=|C;~8d^|j&-yg>DdOWNi!#Dm7A)`}e{v?(?z_}z?Ou5BC=P}bU63|JU zK*p5skQM*}_rx`u?mecw%`6|l4}-`-_+>|p6hY+Q2Rrwhb!k0}64o3kg1!kO#U+!m zL!D#I)Bv>hBSkDWot9v%6iP5wI>J^WHO-B-V#x$>d`wiRGlVi!s51tL1%x_jEfMPceS`{imgjXusPiQM1%I;CbJ@x9 zQT#8Qc;!oue-P6%y!X*9(^*|JU*?EDPr>CSq=!;j>JPI^vJI=9UCg&ALZ^+MbZsPi zDBaV?S`){4mC(5|QY3W#Lo2HtKh3*QEfF20oIyx*ZW8^!8Qb*?g7Q0h3y8ACjc%=Q$Fqj!r@EPI->j}2+%wUsr}M}@G)h*5rPT-obPk5$Q$|y0! zHXg-;IWfftbDX_2EuZ~3(>cyuLQ7*#q;PrD7~jAx7tPcACoJYPHfL`uj35GUG z?5KaDr9676m17H+!5mY5G;wsCtRqKEmmfrEL@p|j~2nppP*4MLwB?Az`dIt z5?knTR_`~45~zw$bJ2dO_M&)M1>|3B1^ z$#+%_Qr|Xu&ifxI;Y*~J27+7lV3&8n;zIVC@4#*OdGq#*oJ}-yJ0;590ka2eG`DY6 zgBId0ef^@c+w^~q7EzPqv=|ro$3hwTRZ(bSyh0mOVXTULDf{R;xrKllV9vK&^;CF_yiu z5?1im`uw`l1FOI@;w|<0B?1c~)<@5AeP5uW;=ouDD=o$DX&lWH!58(J*qyAcF zN4PUYsrp?bBU5z!3|fl5v5Pes?wFbhyT3D9k~y80qv^6ULyQ0mGQ}Q*J4dHQjhg8b zGsO@9ywFk>UT7&hB$mzG=-gmhz-sV+h{}RvfCUjX{qZK4JS1 zeS>3eCpaGju+IAX(5v`f`5a}1!)v)8CL8D~zR^`3_5K>@j`P$qzonH>S64&n>KCCa zKDFRz`I%6ad6|*`zH(1_5j4nm6mMpV9R-MqhrMfzA-;=Z;+8&vgMD%y>+Wn(d~mDt zg2T~q3>-v!y>bmRmDWQ^+m8uh)m~%JswKdx|6s|hVrr3jD^Bb`T9098cRG{J)|9F` zqn$~?c!Uos9Npz?Wvzhm7Cclvi&nrT4OH0vuB$^p1$jSWNw5m5c00Y+3f46cd{gf5 z9%pBB8?CIC1%*N(fhmlAphUSK|XeJGrE8wN6_ikgSaXlL605_5Zv;{@L#y) zjTtMBpj-C5AY($wy4k(pfZN%jlRL&?q1?Clh<1QNJc!<*zdVS}A@~SRJf~h6{_&si z6$ zJ0tKp90xRveNt{ncXs}ps4!MmOKxcP<+5R0dqWtIXGriloOA*P1l-L}y8GQc9xgu@ z4~NTdA9cQx9*p|ZyQdBh!^AP5UYhOtKW8IWu7o>`bv)*YDPHh|GgUKZkhWmrGJZOT z&>bulh#Vfy8w=*@*Qu^SDe!>@j^vGbfiJ&Xc8+4J+l;y!8wN@pXAO&RQ(tS?4b8O?K*82!)-c zs(=B%8M~a?JDF>v9n0B2Buf8atT+|?@pH~Ocd^H|2sjL`g#Z43&gSMTlq(-n%70@w z;frVye!S9g3Yw63f4#=ceBSx7d56{o4^LzFopj#KX)Bv(fA|^dr^brIz$ajI;fH|} z-Wp=EbEllw_1fdu>CN3t3GFo$tN(b(xzij%>;8>;9O!4LR~~28W6||m z;Vl1*^UD%>z?|JV;c8$mq+%#ddhD89Ei|cr1vbfX)nXfFz|47h^S9+#x8oJ>`ZZ#k z59G3yuRGhDxl|@p>kbZ~YMtkArDL{Ft$W^Zy3J#>E~vGSu~WG=bH3wjjYo!OE7hnY z!_a5_ZysrTxj)9^Q^fGvEe=n~<11H*4Kjjc?}X0IpFMi?taDL>1wkAho_)@F+5C-4 z2AYydXz!S}ou|xdv>t|8D~}h^ z-q`UX+KVq6wWMemb8TuvyIuresa!d+r9c~ zHbE#lnU-+EI+S1pzN4)~Q0B!L92Yj1Cy58!aQi#@Pk_;tzrHkq79s2Yf`S&yWo*YX z9x*Fc2y}Svdl*~~f60~N2p?aHy;U$I!K7X)0_xYtiGcd^FS+VP0iFz~Z{mEz$Ftl2 z@idAr#ldu}_<=AihIqQ6nGaGyaq#U>-MqI+47yuamVdEym{~xH<31tx3+LX7r#TomlAt;MF3wY5!79r9mmM3UO>a*SA%(YTDV~M= zZi3h#U#BH7G>zB3Wr;T}GwJUWL>O_?1o0xyRgNIu9|8IpMzGN5VT1?@k*DW8*PJKJ z$`e6+-zwR^A!WCIhGQVGZpOW6<%wc1YQa@|(dLu{?nR*j?nUht}L z!>1c!7C2EUqXH67|m28Tm_OTNu;>I4=DULZ4<=%A@+xU|+ zBU*Wej8l)A$gch9i4VdsIkRI)R^}tu9DU71miLjXv$-xf!&Q{wgOZ^R_JsL7Jt#*^ z7+9KU(~cC*q8+~d)Xs75=&Zj9&ccs_ZocU}u9;`3T+jhTEcC^R!aHB2r79SDX`%>* zUZKSp482I&qkl6|1VA_Op@_eN@*x0t0Q5sz&mREQ9g~FTmz+dAk$b+bO;UEz%TBU* zJ*SFMPYYE%EA}EwxdUg#EUmy$njI3$_T6!2+YqfswOdi4F!C8dq~NNnhm{6K9`GHc zo|fu7@EK5@mC#)URxs)YPkN7>B+ihIrgW6!4krq7OrB(M+-k~k*ij{mU}ikdeStsEaBO^XeoO3iKecR zEa8{#JE z>^8fAE>B%rbcEf8LS(n8T*KAY zVK$?zZHuoeB8W=siaGvLZI`Z@o$OV~ASXZ9N2`Kw^M@{`)^#l~AD~q)yuYXe+c2zJ z3$nbZ8H6=Xpbv39;{=LFew)>I9WiH7YW|^c`eflS(`hL<%n^OnWHAb^p(Qv9t{`gH z3n$xLV+jDbYb>GlgloV9V%p>EN+Va2d6br-F&`sTwP(?oe0hNf-hn2Lffkx*OpqUq zX^|giPCF!)RZ4bcnHDfkANjA32-BdkvX7z0`lPttGJmEr`Zab#YU~Cr^>wl1dPKHR zTiI;lt*AC5TY0NqDch#DQUKs;D@E(69+i?UdQ>x7jCyNA$#%%L^d~`7_9yrQ`copy zKQb&{ADAsJAq)Vg+xPionz?P@;LT`v=lhTvT5H=Z)IA*IMtPH?`mc~L9ualWI@FGC)&H} zS?l}cE2$TNeWj;>yDB7fTkfa5Kh(llpCH78B6A&K39aVeGt+>T0h4o{ec)^A{V#9xQWz zw=fNiKNFTmpJprZ_~Av%o)KCp4=>V9FA)?oIo+lJ1T#6^`7g}mbe|$JIlXzbEQX(6 zOozxbKfU4~ZG-jDYT~)->-c1I3 zyPDGpGjc6Hhz!}&rid8Vq5ECWnoDRsj8^1N!5Ek3X1mi}vF!5htX}3r0ay=Ou~ILm z4lm5;H)7 zjNd>#9={RonQT^~SV*|SR6)27EkVJc1S3N&Y$cL16f4THEawyF{bo8vMe@BQ`4O}P z$wLW}&$g9F@=&bE$FZW{n)fpoQ&c3MC&_Q5B}g7hfP5^=A6%}Mxyx28c>oRux7?^C zdC5J5)2QH7&J-D(qL?B$HE0S6P63__PQAt1=S*R%rg)piPvc-3oEkz+iWl24JMa#b z83vs+w%*h1-U3vR%)_peXr8CUF+jCvsO!4PCRQwO zvE;e%r2EQg;&9PypzFx3V$jNbH4#A>(V*aS6jKES8_y6EDFy|fn!>hYY^3$KpwIB(ZbKB94VSbId~)`M|i(J4V;G`kbGsP3r@jhQL*^y3PaZ8rwgYXPfO7$ z^QQ}^TtrLIDZQj6`kLt$r*uviP6>1`oSj$2s(o-u)4~Xskocg26>N>t9iSm@%w zKp|paD1JT96|R{bC?gf~>PErb03|pgXm;{cYZayVp&$fT{BT-TDSj}K-!Wl^wfn`W z-XO2U13MAOvIuDF4-%I)PR6g6QXy3QYAprh!Lg-m#&X!t1ma`(YL^{fUpj+f_{vg& zi$z8d8T42PUx?01|uXNbQ0CN1@CuWb=5 z{VMnpkJNrmk#V#A1+j(p6T7k2)!YF~DG}ZObcWb#e@d&Vy|$Sn_S%s-b`K5DAs$*W z2R)RJuVY%e+UkO;+-$=i7`#f(5y7jb0kj%ZTI~fb6p=@-I5FI4TSUZ-HYf;tfJH&P z2bgw9EPHbk#Q7~?bd;Rq-uC8rDiI#LwIJdsc5^d)UBv>%`j{t}_dnE+D1hNUuzvmz zQfT`*5lqJEcr zE=RcJbF|dwlE?YM$ZZft{g9TT557k&{GS{V@bNq01pw@x8*k8R$_H;rAN-RR<0$zX zrCMsH)dvMp>4Wfx3iwo?DFQx;Gwn_tKa)6h14WQW-n0uWWfw$IFHkYi4M8dBh8Cru z8`>eUETIUZnHI3J!_zrdJB;5Ad+Ui*NNxvqv|f^-%@lSROG`0U>76OYfqYtmHgMC% zt(s}G!2$sApxXjkPZ)uJ>|l@7**;o~Mku0WAGhjE2dWsYv`|H*jh!i!W@!N`%?^oW z0}r@nn-;KA+GuDmbzXea;VUYo-+4cmO8cCaqVwW|_}VOd)4?&z?iF`v3nOOvCgUcD zAk=hgrkIR@Hu`{tHa5o&kqc-DO%KN7ijpTDcI3?}#g3JZs%~cWU`jJ@wpKs3LPNtq1JnQfk&Lalm>E>-!7@>OnX>`2VyGy9+CtwZJf_Z2a6m zJN4F-62*$a43OZC8OnCHL&K*&+b>#`CW2<~V{NUgI3iE}wR#>BB(_ry&4&s$BJ+ zrYitzKE)bsZVo_LuMqfW3J(P!9PlGR2n@cVyJA7b5Ynp1*8{U<aon~;V%dvtx>}nSu)i~F z@HoxKJbBN*TU26>*c6_5%asN%=upx8?V2FlHG!7mrf}gLu_;_kOR!0Kq)BU4llb*2 z&83qtslnmDN6AiJ!YNq7{32JN(8R5l9MT zrvgdU=ZZj5;#}hKetvrVTs50I8c2pZ_%0qV3&s(TmsvR4bR&hc=mxXn@X9oGTMQ?O z*E)w$;rwnpXs+mvgJ>zb?X0=NZRgMuoPBdhdvxzye^ujF3$}Wp(*j1Pz^KwwAQTU7JWc5+13gI^WAx;ZeS>XP8!U8=h9c6)Tq%DsA^DKRm zSU|qLY30E!V1XzLe5NemUp;G@=pyBM){4@v&lW4_YqP})dKDFqTSsKHmve9|PyNCS zr*6^im$o@TYoTrSlJ@AwY_{12x`0Pg&F!=rFq7-&2j_{^{qlK!*>C~lK$g7k&CcbkkiL~_6pjM z%(w*y+AR3CAySI|J(U?VdN*%D_<1lT2~DZVj{M=OWsas`%&QEZ&zk({>SwKBV= zP={YJ)uyrxhx?xIj^TC6$cC0XLi~p5b$&+y?>h|Q31Lhwx8RF}wzKiBX=&arz&j+q zV{~fNq7W zI4k@1#HuVO%6(Z|$oiIdCmV~20xmRmHy4MX@<99W0CDso``2&QE)e%zXGFWFmML)f z9{at}Xj-MaxUcCGJQ;QvM`PTr4HuDyn=`tI1E_l~0IR%_+sQE(nuQ<0XV?9wYGOR~47rZr}HmEAuYf0Bl3@$UNU{H-!=(|=P?-W_oq z`MbD>vy9o3GYm7=-+>u0Zo`tR4Qp5-kZ-n;D?%smNs||hBvMP*rM1>Tua+zBC|1tp zUo)9vv<-^YQepYOX=3!VqbBSCg6THY_KEJzMz$UGGUq)p7mrdI3+$yx2ukrOx@iw* zr5ekuC{whF?8+!Ne7SC)Sw#og@e?Ym$~#6FyR4Y?7_!tBZ0blP45tXIK&`C_yC-w{|F;9|8B_in8D%9RnJ|! zBCjW2)GOusDke8vO}pZ7x*{`iRlG{N#?hQ+a+JKSAjvXv0>{8fsR)lGJfGYD%jzXf0t zaSK!2ZeubL23vWmVt6fMB8TF7>*wOjDekqJvBZv-v2=PZcs}kz2X|F7Ulqc#j(^p+ zTyytO$3r0X!W9vT#!gkvTil$TYOJT|+eEViXN`kSu^}w$WI0KmW_qDh?920=Vnb+Q zhruKYk-;Q)OZWT6tAz2G*6t*h-^$(8I8UJ1<_!lNaP)K$yr%LhGh4fR+3R&RKK-jI zcUrsaSgPRCLaAOxJcy8DsdKE2`;_s!oig{)cvV>*OCpu$i|6(|PTZnvPL`bJZo=}@ zN|q?z)z1BaW>j(6+@9M?k8_D|Nt`OB#%ku0#%iI;iLp{#A*T5ITvlT>atUJrJKVin z*rBl~L>g;Zs{5cZnlMIVjqK)bYfK_gtFiRaE_S_>yQWDh&S$t+OZdp$*vJj2`EAEq zywdBP-HCQ?U5(WN=svIDbqcz`dV?^scQ1J{jhrPNbnXJzY)?(DVp2nyQ**g#$M~?o@%Mb`H{XNk4_POvaiIrWM3(UzVfnWG_-TU z9#YpWdPrSWD*fq!+Ov-u9Tiya%(y>6CH^LM1g!+~D}2br$go#PecQwe_#G2kL3r); za8Flbti93($pw3pwGxk`Q;6(M|LW`BVJxuIvCVxl#z3kIhrQj;{eR{%Ras79$;tU8 z*|+`O6H07=GIry|4sq=Hxn(M`9A|oju}R^JDQz8mbB}+LBw$K=$StNcy{xlvxVv+C zHPHFKNWwlG=pJnl39zdXD@#NoxwLXEw+LD~VPfHD5yuX8M`^|zL^kYZ+}4gWAP0VP z9e()M2w-d;3yd75eUo&s8e@P|6pa~Ph! z`esg|am30%E_@CN2IT`f$1`l^GAj6?{M`B=jjdNhAYy_v0y8`u};(O`VeR_xAFZRzm0jY*NF7m92ISBaH!A5_)6kW zligeO67>MiW`0<&MmVXa7KwGdA&k+&i|dXOe3O7LCB~?sq?+hhHN2%**w(bE%r(m$ zuAi4y?IX{~(Nw&_xeU7b|N?Z}RY(heHS2^0r~avwKrXsjntwT8G{d7Qy{ z{k|h@jHRNDp}goCz_4|J=T-B7A}xDR(Y})t z$YMA=BJ3780h|E2@N==yi#+q(1Buz>CrW@Z8@VSf%^(uk=KzUHB$snQRj+VL!|QiS z9=47n`yPuY-^i(5nWY{s*Vwp0nxIsfIiz}cg`ky-^K#uqx_$>5dI-Lwc(k}*i;!IY z{bgyD+lg3ziY#u-`RvyQHVXQnZ4`b!A=eguDJRXh#CSPZQ z8zxm9H|B%uPR;5Zhe%@2>u>01P>4bE&*saZIfsnd7In2}0_PIX|EbBPN`!yrW zuuRak@c6MD8V8Je%eUsK3_MC5!;V%?tjJm{bx*pxAZYc?JB}Od&u7!)SbiyY4Ez3D zJu-rFfj~o-%wcTwF=u&ZxZE+0E!p$fsb%iUHmpy^&Y1<54X=MTFphl`>8`@oEO%!{ zFy4Tz{GaW4rP!qt={=)Wn`9z+RURLftFr1(^ihs;0RHjkaX5tJad=raGM&eN&CKIYk;Rf*G;PHe zuW=92&w+G@a^cYtloCR4iPfsZb;+4)-OWmKS-^E3W}2g354Nf}x0Z2@Q$g4HQrNMm z>uRHq0`gzzIaB`z&&kxk3um8H$sWyCBo9RMRA32{(n_$r_3p0eUkBm3{;s(eM{RKL z)C?ov*1qdu6OAeyh;Aw~F@!Zs{I@R?Q%Tj$Bbk^)1?DP)ClKa6Us|MMD&+@F#iZnm zR16ejDuxhd7q&nuCfqNOjI0F+bbdtXx{luYG8fawDgr#y1!)+qCp&$ZFXXl~4QHcU zkGPvb2$VL0HC&NZ+9VR>iBt@Q_`KrjyS5JlR)dPKGxs!IpOr5XFteb2GY_{I!-{ry z4rjwI^sT|JZ-FNys?d_V&T7JRz@r2s*rEE z6wUBNY5Q2p4)?QnG3IbF8Hm|r^Yx!gJ2ruYN8jz+#DE|Ee#1>zzSwU<=~L^u2%Q~k zpay1No_)!^lMO0z?=;>Zb#b^xi}l%kSJQ??K8WFQrurHPPELj!|0}`q_%Pq9^%ddnEzmPgCZgarhN;7M6G%;quQM`)ziR@B(mdU21d780=Q?tvk2ZjzP zr#D_G93)v`Gk-(%h6`EBOiypU?Lzfzf#W#vA))4MyGd&a%kDqlfGzJqa)u#TE_ylX|038Zc!f!SyMGjDE z;jrk0+iR>LSjZvaNLoYqj*j-koEFA5YvBNWg=Ao!bk{Wwl2T*!Y_axh(zJg$5x zPkb{ACXkMr5yflK1sh*@S3PX69!bz}MYH%7_b{V6f#S?#t1MR^_R7UsXWR`nqfxNh z@rt!f$dTH4c&p#&WUq+dj_AmtxE?+XJ%oRszTfNaSj`w=#ZK3UEEcipA*uj&h5l6A zoW(MGGf$QCzC8gBEgX9b2EEI9G1VAf1?c&UMZ(5djM+5}t|hCNh;@w&wCD(YKj_ITU(4r z=4nRlM=RNM{d;MS?^OXchp|MOBVvj2RBjHv%n~u@#x1c}K`*&Pq|JaZnt>1&W*`8c z88Br3zxe*&ukK4!@XK2ug3N6>xb zF+oPrZDx}jN74*#w(krVq2-gmwXv8$IR`lLbN(V^#3(k(gBh^`8@BFR!rtl*NxlGd zbh-mU&@l%VfR5Ck34)H9FN$t!ZKR0P(AK70aX)2TAhc9#KO|7p=LJxIFZUD+I_E$< zIVymI^yF_Xo{Wi*j-R<(Xhw;p$`_$;r0f4!D#nz5r~>K4)t?&Bnk6)cPee3{_V(4Q zF2#GC?8vw7aP3R6g50pUY_eW?sqp5yOT`UN7|z92?pOfu8=SF}G%izf#)sE;q%M{H zqq8c<;Y#l)DW)y8_75P)FK-%zAfIC3zDTQ94Yj4B(~yRUPD22`PV@BFu=~g%Y+>vg zU@Ra2^tT*V_FH#f3!?J>RW@urXDNgBi$)@$;2-&`scAzVbhcKp!9; z03d2qmd6jZfFiy1=0xb{|Q0%nF@?XZ~z|L_;gHyK`Mx0`pw&LP+&2^_tC%q zjypXF{TBdi6cBtg!tiAUQ#|zpspGJCfMENm-=}%TSkR$!B?*;269he7hsUpp?6R?` zZCjUM59z@94N^%;#1b8zq!2tV5_F$P+)D$|+mwJL(Dy;mUnt?}XF<0aROW04D}%xZ zi+huCSz4U>nK-X=cB$-##V{u4YDVql%4@I-CM{6vfLA{6{xkSxoq zi_So*i!m@F!n4!NSCwTzrPy-@l#Jy}as>GUb)eJ}K*IWe}zqT_ARph(uU9o>pJ(vtv}0XNzXM zOk_bjo?b4d)zhj#POEUWzZ^?lG$4!>#a8d4Uj$0;&P_5dDMY>xj$`RYwaV=L%OyJK zAB!gGUoFS!(7{`DrS|Bi`uoepdJ&kRkq9$kBm(dm>B$P7twxy@#O-+RbjEsm8Bqj^ zJ*UhHRz1$s!Gdm^(&RI@gb}+C=XuenM`&UHKV8vNXrvG*a;Ue0JyFRs)`D)E(`pNc zAsnO)p7+^+M|WDW%Qf!{*B%h-9y~9Uxg#uG@3>f`0NX7VXAiQ81n8dlN%%<|Dt2J3 zsH*2>mNy+f>7)(|EL|ZF3oIwqF@}aKpv5c13TWdBaW(*URd_Za5B}y0pgdJex^;%D zPILW{6?iqyIHZcj`saY8cYK9^{eyQCfgYX(2&9J#s<%K&JZgE)PVfy$@Iyrq4^;v| zTu>2$xS+zkze`c^g`TpZ4~e}0f)yggI%$PpznJ$AUr9U*GjN}W8wLmZHn^Dfzgg4M z)uA_B$vW2cG%^~KO1MF)zfvf)^-8}2GV6Jg$(&kGct!1%tZi@j*j8;t0msWeM!JIF zP#M8de6x3ZcI6wfdpj#}it zZbQ_)EBPYVhiID@rF>4QszuE_ImV}i0uBV#n|m4>UlS+_@G0Bh+|$n_*s@_YTfij! z2SLYa>C=@Wfkg1_c55P(1;S7pFqo-ZvXi@;S0KZ@bfzkbOCG<+)1IA*NeM%j;Rkpss&kYV_eB@K-P-e^L+`#y9V_@R^}4Xc zUuxV}fd1lI-dA{677%4YcaY)lIST3 zAUv~|u~VHr7mOXGf7_jw8klHM9h@r0ro67j8UsnCLBwo&1I)E2oRQuz){c9T4 zNGWoFQXdBu5)P^;KwLU^1mhuL=sBf&!#bVd@lKkgPltvCM1+kf-Yg6Vr*ZZxSCwL^ z=dzRImvK0a2+vgQ7ZG6w>9C<}XPV~|qaTqRhZ{>qERr>Ocap)p*`8Em7{SD~NWazW zp>$6llaP?JH72#Dua-%z99oelT5;Vub+uS`IspxjHl?j*S28?isN$5Dv=|& zmFelC8GWtT>3W|vV&l|VpQ&bGg^;7k z6&n%#%o@?lDNmaV$mlJRRqkwhfu;Dv8~3jfXV^zh^>ox&-fRyKyn;`p>!sHUE01d7hJ zfOVbY>0!ZEtJ+OAY<y(7en`G>lNGQFjB)9a!K)2fecbspne~X6LXcyq*k8Wl*r3+j{>xSwKZZ_kPKaw-)(RcW@_}#Be;;v=B%SLlu|SiMiv7o!mu9?i)Y3V_&&CfbFr%6Kei0AGcP~PzHp>9^NNdwNC7| za@YCwigAUi>y_Iny;kB-pI$Mrux6EKqr=f^eJPgkdgU5M8&VAvJ3();UJQF(*5e>m zf-g1k=0G(yHOmK-Q=qOdU@()F+nQF7J-^D+gMGK&6UodiWb=);35F6@d`;wl`r;x1 z$Ay6##-Fan6oSQv2R&uIxI3VbWLDf`!$f*`aX_NlMkpzDBT_ADvu6*xwp~mcJj{pJ z1$Gb&94iah#4VoteTX))@;(A3i%U_w9&lWdlHM0=xpxwD&6j(p6*l)px!gM;EaG?r z)a6@L;hg|wkOZ+e1#aR_0AXuiIZIT#xCfeU^=QVIL;xIIz9#@w1z2gDXNLt*4J6tI z<%1IY{)aq6E!eg}Szb{f;>ba{{(9l(mDcp6DkBnXJdB5nzfIeJ|2xx#%L^zK`5~E`#crcs6C#i_2K`WiFdE( zqA~fuFliRRq!^eCbm;R5gE%6CWhBvF@ZGe?pHnhCmhKmQI$gF(T(wxo1;MDudj1Qe zBI`GZs}{kcB7F7DuUeFb6Ow0#PVN|oNb(G(kN7QEvGA)F+AVpkodfWu#ecONkF-?qqk z(o>qP@fu6$j7&1mVrbRPn|# zJe2 z>WC?hc*;{&*Aq921L=tyOEFD@&mgUQ#?zf8JnM{L>j$T`Wf_|)lw?IwElcu((fa)x z+39DU4UL`~m1iVA>lvqa+lV*#${({o4%DCBc-7OCZCG8|U}c~4bdY(aqZ0_2 zH!Q8K0YCgsd8|oZ&&|nSmyDjsfz*N>H;N~L+Ceouls@8w=TpN;>Vn}0-=#46d_i4r zw~@!5JL#=Aiqq%(Ii=#}r#zab?*>hscBUA62}{(}u27mf%r(`_F&-pN?hJQzelPeo zgb~lUF#aIi zQL{INW}^dqFl-Y)`rcF@zmXs9Z&WxUtu&kQowppD@|vgeUHSlg*CO?GPm1vqk;1Ro zikocictf;M`;JwA1Cpl=dAS@|`3MwUiBqBeTW^y%@BW=q32sgBygPJS_#>GW9jaMb zuZFFbZ&Ov?DBh+DGHPU3g09ZrrkZ}%vnlB4y6>Kbl_{*rV`*WFdb+tQG^+?D@rfhHZ};m?8Te>UlA+450gzq|D zIqmALZ`veY^DY|d?P)w=$Hb%Yk1JGl=>2s&YC?~hlqh0eFX~vTaOK3F#;11dqbJ*O zY&<=F-Cnq1PH$d_nS$H)!pxG6&iW^tL@*zuzcJD~(}>%w+zp#}KC)RuZL^?X%U*~t zQAKa&4BCg=3JX7Uc7ckRDgf$H6TB0RG#ie%G0;PjA7(G*5K@RSN&(X;XF?*mOm4Y5rr22$u}pB7$4M2g8?y58J)h+aQ7fU|EO<=5ObEH<-&6OK2!Rd(DFf z%={TP>8~)YL0)3w{=uRkrt&$ji`#nd}pG8X1@u!EP?+!{| zK6e7l@IzW#3h+Z(MxmYTrch*y1X%}+Lij~^9Z2B|Bvft~$Oh=3FYIANU)aM83OK#S z+uj0z-jc-5-SIRvUL`W|E>nTj^Q|(nrxnbA*RMzkcA}4LRbvT)s=A3?TIX#@D>Lw% zbiGl5-zD&id~V&lUSpncFYoAnceo|p;g;fs?qEH9uf?&2(cU`joPo8mi(wY0LSYEM zs8J}=I$Xhh2hZrBM*#rRI!08Xa!Pazj2E{nltW?%QjDI_CKQMJ3;mvl5oBP1F<;66 zEeK6S3z8;^F_Hk}7+IWA#@k3UrVt^}lK5iZYy!o>Z%U!KRYcIyZcBq8);GP`7P`LP zO-4WYd>au78xC_HiQPhAG100Z`I{MJnfmd3`Nl8gp8M=1`&KdE9-!dm!SwgI$IV&^by8uPy~?=2pEVU&L*F! zBdy@h_MMSW=qd465GZoVXY9g7cZwZdzSy@d2s++{BGgg($83o3nCHoA-XS5#J|BpE zs=BwE1v^Mn&8Dry2DgRDHrf?ALlw^x#^m z5PI-c_Ie|)cQ~!AVT{T07Xj!D=G^$gp^Q<%8mZv(<7c&ByfG?XJmeh~fsUHeK{h0vjxT2ucaYO;#0A9{KDw}=FV~Xr2d*V2ZWU|E zEIZlpp~%h>WYt;{NTKDa+-P~wAzGg3P|PI+;G0VZKk5C}C?rCl?fKVPjhzI_ZC`?; zvFn>%Jp(J?D&eTD0=&u+)zMpk=Xl5v>e!&op*d*rW_Sq!zh&P`w$rL^+cuP&^d(Nx>dtMrK5tw^bnZj(5_q3sl8 z)difj+mzt^4L%y_Q4-Sx_m_&kNGoE3J9s^w;I3NyTOaRshyL?6lHd-C&i?4@?HNmh zTRsUO?u#$)ncD$^>EHaVaJdoZMbj&}CiGlR-K~XamstTmL?Wh>qU0_4?N7A?0 z(NTyE+eN5*kG&L$K`F-4kJ?KyP7I|OCx!-KEd4b*7IJu5a(LffiX5O6Iecy}MGjEv zxPi!Lk5-Yg~$M^`WT=MhRvPb)o5l%MJ`Pq5}N8{ zFU591DZVO`Jg-Hf@qir#c>#)#7bXX?>{#dDtk+PJT;|yelW#QUg~$YR154}}$Yi`? zf}T?D?Q#8$9d=Y~&{oOnki8Te1f`%iIB++(TrJ}nI|}jw6kmhj|MIPz5S_sv!fy>G z3<%+qN+N_G4^|5d;YabxB82}Xm#Fo2wrYyEX?zO~j)OtL_fe$;dD|fsV9T`Wp@xS<-vWE18_vG4t(I4{`dX%d9b)&ihS0}l4qO@yO1f|d zu5jQa;e`d>X1oo!dkSa+?w%f()Q{S!KNf=evjNm`4Na-z8XA<3D;=VIv4$o9-x?Y- z9-k-)NXEnXLV-ovgX4*`2dN>_9ybXtU##k%>=0=Wf{6?0@SV!9BqF9g2%d_?C_j~H z57Gjf_DCW`VUc>+(Qv0sdo(5`=o)wvsQymeU8#^253p*Rp zm)KTN046^u0C#zq{HVUm+8<&Gns1SqU445&4n)I95%#5&|E;dbevrx{`>|xFh=qYq zVD{tv_1yVX4}JPB5zxp{Xe6L9bytXhhI5w)XmCAa4kQZz zJfM+9=%9aK4rJ3V8O7d0iqSzfgyOJsm)`*~2LcQ*icJ}yA)%pYNYYR-Y7&5N)Ld5R z{mpoR$bk05K*H+;ijfD7#)dbDtZJz+^9}D~#=mX2`U}u{9!#L5eOgqBJLIe}R zgwosKdo4c^qDrhk2o!?}Ke6H4y=yJlK2Gt9lf0`%ILScj17L4{W5wq@<#%{@YwY5F ztMk+-63$bj$nWIAoaeqG;XIub8gZTuMIoH0cahC`+5mt%Pa8rfTNOXrayQ`TgGN7DV)# z!!|^HGc=of4JGNbCGi@0myJjyyk^S*?-}D|LR5LpTLj8wasV3Z^h{E`1s}z~WJA?n zW>+8aZnYr#gdz?m6Awfv>0k-q6U4!2@HKq5-6J131YByW2^`Vkyenn>nDUL zwqYcXyM95S*bzTrSDt~mE5#1t$rS@QNl$iwyGc*RnCp(`yj~+}kJX3qNL0ig;lmNC z5Pi7lQjNiSy**+x(m)l8wO5@zAsn{F9&{?-ZluN@aUd#UPeCVVm2g6aABQpsQ-)#C zswcgjEKq24x*opA(wgFWr{MOTF_lpBFD0{NbFx$+H0LUN?~L388p~7(wuNQAiaWvm zuacdhcaP|1UV@C>Or_Bd?vXpeM+uI9C#XLhN<&WqX}T2@tYo)?Kh#$6O{x8}gaP)w z*F(|%z^Z+qhI_$)R^VRnx+MRDo&0y9$o~;Q9y>NAj~yF~fE}9{L99IsJT~pEAJB32pU+mE!KNT+dojy17FH`pdvBkY_0VMVMlS;vEj~#dz=o zUq#6i4?Aw`g|DfVj;d|^NGfpe*S`NNo&70vhOU?PKfz4PS%0pH#rk+GSsep|bBj-%z>t zqPJ$WS^y`BQT@Js?4ye?E!{^bqVaGNn?#`8cn&}l%Or}A%cNWzst%ObUGg>!q>OH{ zItcpI%iabiAuK~SFI|Sk{|Il1 zXs@V~JX8>#+3og=JXFRHaJZ)*sRl+BZ!T%+@Gz}6P45Nj+UdyKDTulR(*kb(Ty6olcZ`3eW%s99@22J%_e-@UoUXA}>+ z(%CWwB$V+O<7HKd6X~fhn+(?f*e~`Yw^gB-Nq^^R4KN?86H_S#;8a@pC#=*dl&=u9i;^)vwe!(_@iNPUx4o@3r>!#BQdYNzzhU!Pc2904mfs++u0c>l(xS`(II z$=2|^WLg_{q*eaM%FB(s?zA$`VjXrgIUo}hDTItlP&7J#9ub(JXb1H$L2(4S3f#*e zBY;ei&^Cxv1%WV3RrEg~QWXP(^6ndo_h`bKrz-vnZ`__!-nfWw{jk_S%I+zyVXPp6 z_!sd@4v5~lL>1!LgPDk;0~lSYy+;-LES4@dA#=x$DRBHl`v?DzZQK{xU*9Pj7Pz>7 z?0{JP$qv2kfauWM6m5}uyc{*9nI;$;uaH9QX)lDLem)p=*@=M_hIXzV5JTzLcB)^5 zqWY7d>K{gRAcY-{N{t;3^oSjf=uvby3V;sR-k<OosCA!t6GLodM$1u4Q# z()fR?D>4+MvdB;@JmB{gwV`=mjPbakd1XH?7_}GKjoNw1EcKa^&5bdHCC+!FIKVgG zsjn8_UsDe9EW2hNzwp7W$Udrx!&zJ{HNMX~DBNKlA#5Apiw?^1eGkD=keXIMudzu0bQT&#@NgEQ zcuHo=EJRSmEcE}_d++!tivDrj-2?*JqXZH{OQ9$ot`};MCMAIgic*BDKmZAdq6qHZ zT>^w21SSF+P%QM$(Fr1tND)w)NJs1qeSGW>zxT}U-OldqCGdQ{|NZ3kVqce;dC$AQ z=RLDCv-wmfWE7%WP%;xoA*zlzSl}Lk2esk5aTG8{EnPOW_#V3$(Ux~cckx|Yz9sjT zs*Ac5CW-}+16kRjYDGsktq~2O@fvXgco=dwyc3bmW+`z}7xD18(dm*6k3w!MpS`~{E57g%u#^#xX3CvJuO0$|8} zG+)4cB5s-k=^gz4ddEp?<=q5u70prFph7j-Vf-)+ophFOgbF(Iuj@wB#jCbY z&Bp!t+fVJ9))m)~>0E-ik{Ak?%wU!75Qb>kRFa%CMM9u@ZBlTu%z`jf<&2jrm|-#9uonuaUMc3GN0 zy4kAlZ1vHDJ^2^X+h}(r@riQZUep%xy9J}}J*uIs*E)x&Vi^OP(~F;?J4e+?C$1kg z8Fg3a;zPeo%Vy856<0P-U#OOt@ex%m_Xxj;&HLFm{8In-dkI?3F#I{Jw7BeEd>pDl%K8ZM)wWQkew{I zmku-O*Cn7;<3=_@Z3dYV(HjH#+UVLi_zE=n^Tiy#7L%*SB;7X$m>_*hUOK9-4n5SL zH^xv^Vqp?m*PnMXP24&`%nzs7Y4Ros&rC)`BUn8@tDE&9Vs1Z$u?;b z<$VR6eTsir1827peB1bTfC{b3-QQMch(dZgJ+2+wCKlEX5?1}cYo(*tM)D78pbniI z$=76*xEs}+o|A_CoP+?0NQG)p@z!d|p?nwLfMo~6M$1lfdZN>BBxX`E+a~fxgCWEF z{*<>L^zw1KQ8X*qQz^(U8j#o?(WcS-j93w{?->59PEhqKS=Dr^n6j$*d3;=)Za!5h zYP#lU%_=P!nNk^bXkR4*10X~5EN7?HlzkY)j`yjz$OTAR^XrlGk7rw|xKwvZb5rakAfdX(0sU{O5Q(#Y>Ke z>@?c*9KS+$nidWjk%LqCLAu}QVlpDz53tpd<$2!5o(7~#_!J~25L5VCXx;OCE?Z>- zNg$ZhsNM^FH)Y4Pv!(mVDV@U3}=L7x~!?+h+qx(!bD7 z*N>){*wG^*#nE>3IB*%UBWe^JAj-b`29&__hjrcQ9+iYiEu#nvJtpv9F}g`KBuF%P?h~0=XjmcN8SWnb;XS@td3fSy@MlCkwb55I_-3(?^_|HZ zbw^_%J2R8F-vhG!d-?Wg!z{R_WfFR_h}SETDdqlXv@3@07D1lD{Dx}HfrRJ}nwUHD z<~4Gn8}hW5-n{&{74;x}*2<2%MT zgZ8N9(LI^E7BnP8fwpMCfJ#>O!HvXwqHWQ%F#&D4nrcKD4~}|>vc<ULxs;$|-u>{CiGbmbEa=<3TN2ujO{vlTP7)>)_Dr@=3q3no_B&O+{ zbTtWV!$odtM@8td8|7Gl0~^KAV3C@~HlqHEA!AVBB$4gdV*W9mpT277I`i z)E2Sx|H*Z!YC0=-yCu(gS%BKUC@jA|v7#Gut9P6_xM?B{@U{{nO(z z;@$`COiYi<)O|pANm3M&EgXp@h>tglISR=ZvOi_(Xi6e`8Gl!aT50Z*%oJgUj8_+y z^M_gXhmD%a!jsW@C&@N4mGWC-4f%hT@*8!DnZsIzJZD6@YZrXSMsGn(KMJCenfH`D`Upr9n&N(FP^XI9qMtKi2J{NdXZ(g!CKv zA5L;;S-r)p>I;8(B@ZAK66rlI zLj0R-^UY-0iBiGyB4tfCllLce8c|p%2D`rcd;>IKH}o)KGx~KmKTYSP8j2A`CUrDj zN0X|Rde9xok>l}7+0cm-U0)61r&ST(hIK}f{(?yQ@QO(fwb;*3Vs)?3bdkaB=t2Hf z-72~m$nAl4mhnaKA+W4N{26x3W^sw{l_>mEMf^+3#}A9P@Co8)Gt*GnjI{dH6i|{p zZ4;u?4L=N7?irdW*%am-OsS>&gs!9Id+0sBjoK9GjwJa$aRkQfGw91Byh(|N$mEfK z@x63+RVcc{v31_Tp4p5C{7kg>ZNCl)&#$kH`n}KhXKQRBGKvFSOSkT=r|eW2YNkhf zg6NXNkMi?lxg_%eKTc=dqISuZH%qt_s+2O=%OCL9by-v$@kmPg0g;Y&bQ7}3*6TR9 ze-2$tq|)>Rzex8uT?~Tnjw+u7!^+tr&g~YQmh%eQ(_sji%erLb9l6N`%*GRIRbP!*qKhyphwE4P=odyvd~4lpx?3U%SQ+Ecl?yOGqG3cPKNzvTz3x{U zL}W5_tuwUax z==#x6L=pMR7x!c`5p#>LgQnd?3!-HqhOQ@WzzTIf-9JHF z<0d~`_dH!p(C)j*cW3f3+7fn_ge+e~My*j4MXfFI-qu$&9NEcUQsE6yPsqKvICw5p@6E2RIPAJ3c&oxaU?i+lK8Oz{!?IEo*~ z@#91MID;Q&@#6x1T*8kl_;DRSZsEu0`0*8b>?^+4V~6nX_weI={5XamC-LJnete7{ z=kenc{J4xC*YM*ee%!{7FX7>xn>fii#qG?WJZ1vq-`}D;U-8M*Kwcs;x&0oQtbwz$ zyq+Mf;ftH+%&qfs*O9eD@!#;3*um^JKpBr8mGPqrek9_D4nL~nM@{^wg&)cIQ3pTj z;zxb_Xow%__>qYpjq#)DHn!(V>B6+1`Ch4qsJBpnAZ*jy z&mT)ZNEIJ3$JF>z>in(V<~U74KQFr7N?Xw8od=Vjf79qHZ5Ic(yI*SlVeJY0Nh`eki zIvO0&(Q^EY=!jSd(Ghu9MRY{oMGzg4NjVQ;A)- z4Sx~Azy#3zzxbwL{mAhr-!N|Y<^))b?$kzv{XiS`UlQyt1uU}!o%xG@C=Of=JvF^n zKh*PYKEQny>EaeDju&!rK9>vdFR~TkssDW|!i4|wTUp(2RHx$box=z-xCgd}c_+v_ zp@q*KsEQtBg;DHp5Mc02hBsJYEn9QDIDA7P-e0Ng4&G;Gr~ir(kknB6%B+G7#B@q& zi(1AD!?;#TlsT!*<$^H3dC(hbG@)(-lvGLB&N<{3SVY|s{_s>28Kbm)O4$*t)J#WR zD+~1)KN?zDSj*+8dm$g+>9bv2XY3=_ZWA{Hyqy53N6N*>*;vS7`k*Z-LZ^0H!EyRZ zyBK=OZD~>$P5>tYLgxm z8l%%$ot<&Zw!=E~uFe*21yz0KLBYe8Y$q#XXu$DWNpWvMGuZ2EK$$m_s-f1+Idg4U z)Y55g5m9Y4^1_h9vRmR@j`DJV167 zqcaOfJ;J8$5G^*9YA0GON*2nvHgd7Zb1K^0SY@%va+@#;ip*5mV!O%>V_0nYUDYLB zovkBW<_4;}A{N_UWQOZc)e?)%pF6S=8eCTx!j9U3w$&9Z+!(3}v0CpA%4(n4L0j!f z{Uj4*wbEV|5t(GQfKjyCq4kBiToKhdvD*GbYK>^C)npZwHW0epgRL(7v33JgzoBr4 zdxJtnSiQb8w-VClWHm-3(uCIN?Zyr2G8@o_G_c4`R9nLHI-2L*3ZCI*Od{%&)TJS+ zmLb%tC7YeJALk8Z$PfnVDD>O#R+Q|fQ7xkkwCWDTWD41uMx9oXQ7_39mT;d_jF1pc zw0~1F<(qP?Cr_R811m-*QoZy5(}MWQ^-u3yZleaxpPR7TROUD#q^;xsir7 zHj}OKh}8YNks#V!f>uyNOm`3h|m^`OA%2uc|@a4LYEfu zCQ+pUs7+_nqJ?#Fft#pG7n4A?A$3^w6O z9fd_QkdRGym>WoSPdJA5gY3ea%Jw+orpbbox~6#)m#~8l;h9uL4lPaF0Tyj~wyp)e z`N3BysBgSb4gYF@_;?|Kdyb+3PbM;+kqa~ovK?XuXCxy_2O$N$aQ?As$lO6_!WGCc zqHW@In@aEvqVg48i!Y%5>LB!sLm@aSEi_C+qdN*+xD`}qWMF*-<^n<{_X<@`R8{(- ztr8mFTWA}<8LCkJpH)-QQ|Z|WXn${^8n=~d?#~n4>_$p=%symzSm=V*bru>^qrUX1 z*jGa0dn#GzQpJ*x_?~K!+&3j7MBY=q)kSzL?y|^HeN;C~c$~W-Hy1~xt0G5NsdB>6 z!rKp3LiM`}ZQ_4{Dzv}yK}grlD+j^dbIkgGqE)(Pc5EHt8c zGK;dm8pV@Tap@j-%IhYKi)#c3Kuh(}&_@Ivy4y{7gnMY0%4M7ELe7_j46X@PK{)%q zyU>SizYFD5pI#507{aE%{O7G|Tt})I;mE#A_OG~}VUGU#Xmlb0LQ{UT)})6wY3C%M z#cRYA*HT5st_l?vn$t^Y3Kzprq!3>my$dDw77W~IszPOU0#vEZE~kq6PD1STL|zusNm2_98XV zyGk%p#UV*B2jt#mk3=JLg=ukBc1w2qdoGx4wcRR{P24S-Y$8=b^!&}^LT&Wtqk@5L zv>O=)3vf6$-%=fw4d|4JMht`q(}aQ`9A)gLthWuICH@FAi$pYhOQ*W1XpoRZ@zz1) z4G2*2CRJ31uTa2!Om#GQgRM&Vt@tyK37)v@Fo$iP76x#SQe+X;^p`m7PgR6D?9TcK zbDg=-R4w7gLvu4p!A;wO0d>*bCluUt6uALpDsH5TzW2aQiF>yWoqbYhg*H4Xyu+1H zBoR&)OPnmGDhMZk4H4SMuZL39^^K9KsCwh!)zOHdpregcOTyJ!nyX!5u0{ zE4u4;dqnpuhoMmFXrV0&3%)(`1U*+kAtQnoXh!CT8JRd%Xqqgi7Si_fX;4irEQB8s zb>RTYyoK6~gQdWCsB+T#YP$EW;ofolq|_Mh9W5O%6i>d4Qe4%d)PdJ$`Jj4A;5lB4Y-*N%v2^%L0OWEps zQO`+2JFezlS&k%l==S1|rf1RVLtoK|s_Z42POT(^$h|`H?4Ph>05!f!P&5r98-G6| z42+q9H(W5^f>ulx^11dh8k{ZXq}b#F884dptZnqOhZ$r3J-EfZZ0Oui$ww#%jMfpWCJ(1MlKFFKmVfe zs7}#bMWD3*d11u_zFm2`z;LJ3IF5@X9hb``SNd?eP!+x3Ke;A)?U@dhQQLX7E2Eyf zw$|ou$W28ukE1TUkfl>}p(0b-zx}>QW{Rd9)$S$9p0))s?>iz0r@2b|WPga{eUw#8 z+lm#?WSGhb2s2|i=iY#@HI=M6r{FLjS$)O}P~utOU$;rGfN_a)S<;t$CZ;0|KkDPf z^HluE$1|Jp_;CY|9#`?>4tDYH@xzSeXTXoTga>#$8+nn6yDK7H%_7|tkuHh|co6|D zB49<&=GDjVUVFmJSAv}kyaam^CV^lllWKyUjMfA@iB<%==)e9XJq^SJr5@Q57q#wC$s-lQt8=RUM$o*-1g zJ%a2mi6^aB_GA)5!{!U;tFSAf!TW`|-Cx7K5pj+Czl*CSw;Xpzcv+58N`xhiw%`J? zWJy(papr9Xrt+B z4jHQZbJBnaNq2QcN^i?8U- zA^XwLv;I$&?N!oj9W602DBoSRtaseB{Rt?esH6|~64f`61zD1vx}T&h8Q2;nLueb_ zA6%I5pMI~gX%@l#rws)wpeb7dne8f8pG4d(9EquOGdYuY9Y$u z>NcS}w@WT2a)^U=$l0q;rV@aRXfk%Ah<&|?Jw+3HXygvzNk(@`MnKE|rd&+$GMCV_ zkkCZgT!mFy1AIM9rffuIy6 z9TZ+?oBub&DIU~)xJ>BJGBYrw0gcSB!J*6}by`tQFJ)pD_Dj4P0EMDQq^%c<(l=;o{bB}`N{S4nD!hO6TtQ3On5MDEH;!w&?f?cy(0&pzLRO1kOm63p9N7C3L5Fn=8HCHU;8~ z%8{id({%=_r5FeGb&H#G4!KzLM#Dig@|5s|vOQL6x@`W^Ms5XxqH4OG7S=Fq?m>K( zXfzd$=7`dvAh2{&sJ~?v(KjCnFR_yjqOP6%4bjYxh2Go*Or;pyA@S>~8;}1cqj=uI zQ1i3G?l^Y7)c)=T7;xvv?Gcmi@4!wzh|Vnb*VYwLfQV@e{hzxiw2wi@_3J`j1zOm+ zr0dGssO%GAa*Uj)_a$K-cNk-p(l(;nGPywJ8~-9XE^JHsWxuPAb{o{H-r5Fe+WHds zlBwK+q*|1`4~o*E@L+kTQh(EU(E7H5 zS@d_H23%t{25XKkTotacHOoX;_~2~oU>~kpSp-&8!|zdQxC13)o^1$ofGvX$v`Usa zlIcTO4^3i_E{W_E5b`uS^hm%MW+O`?MPj3qOp3~a+LxhsZVHburJ*}Fh3$##Qve95 zdzzM$UlheUvW{py@Vd@6J_Yo@qnXl-ot=G+Cu+0#zyQDddFr~ZElsPT@#+2 zod4|P#d&Z;Os|pc>c zTvN(hfQiM*BQh%u)xRUGjbpczVW)elsRr-aZ5R>lMiH_!RCc7KVLbb887l4=fFmcr z3w1T&>}t5nzY7cF*pCQYZn_q#?hz0yyfnBh{!HqsHjF6fxI9#*cIE{{%4wAa%&#Qg zx%f9F-i~>*p=55Qan8x!=NC(gDp%0i4@q>C9Yo9(!JVRMgXrX4p}A;vEth2ao3Oe= z3J0os2gEV;NR-pz4RztXDonWK?-Ab{&!R7<7_wrpZFs zva*Mui6tq?p__4jf#v#PXD zKkSv1eY(T4DZcPp^U&rhep4J9hzRFUkDYxfSWz}(qh#a0FWEHJq&^~>7Z}i$lpUY0 z*RnSHFn#%x+i^XYx%F~zM)!@ zY=WTvSuVx%_0IK|oRjW^6;BpTs{%_(BrJY|8YlZ(M|Xo(PKKQVDN_SET%~s-wk2jJ z-+=mID~)1HZTS?>M0XaaTB%Jnv?`!?X}So%@VJ{j113?AHbiB`#Sc;I1PZG_#X}EF z&>p2u)bY=bkpzrQ_5aQ}D1LAfP{%44P|`+w=Fb@$tFFU>ISoVk_52eVZh#D}T4%|A zT{0gE0r5`iZy6yv-GF%K#Ft;oX2-v)2wiy?hi2#+1vPT$YM17JjGZCDN}($#!xHyo zCZHQ_{K=f0fsI<))}OA3TiOKTxRs(=73!Sf&ttg_lqg_PrYYL+O^K1)L6w5MrIi_I zi#mK;f^-znKJj29z8{5qUk!!VFkoNm!6yFal`zVjI6D+AbZK?#a8v)KINde5V`&O@ zthv8C_k~<6dh0bbx`p4YY>rXMGr{cL(WuJN@0^xm^t~dqL<1fVG-0bBRw$V}981Yn zpeCZ^(ATZ}y%@Hc1T1N}sSGRz;hKlZ07a>}3ObW@&w9?#)N>>TpGLX4Ym=9@^IweN zY2UT;zs5a@iIPYDoRr7q0?P1z*Zaq5SB0h;{Ex&B-^iXmjBY$UGm9FrPlibqGfMPkNB=VBYn0W=KSDDv{8JL) z7b09K@-JJ|5#8shkyT(UO({NP zV~_Z1V-_fh%*hBFuSM7(Q_JN_K5ENT%My`~!7$HS8PLPjZ22Sp^;OwD03Ty&mfcDc zZU`j}^f!!ao;MM7ee~t_%y#^Dht!q0M==YLCub$^iMcbSZEguBN)8^Kx{A|=_|cQc zkGr>7LsLr4Q6l(WDS~g5BB0#qOHl-o3EGCo{Khyo@ks0m+EfW|!VzKwr6~0GjP9ZQ zq5hc+Dsu*_p#^tmSn%I3Gi-w+vWICcXJr?vI)gV!XZpg8pijU5N?nwH`Cy$;*>L~I zEZd57q&DN6{|bNl@aHv$A2HVKtWuZnaXX;O|$7kT~5Vhmh%pMNXorx4*3G36z> zK=v^7#3&fJw5vWD1{R}G=!iNBZ91Zu*5brB$vt1tcnaze;{YIb?JEB z2C|yU)A8!bCumDape3^vJ zF;6)v0+)tfoaTos9WN86QT~a|>15rkoz@~)Wfd$?-a@=}?E#eglHZOVdC8y6d>iS? zqPdh-Ez%1egW-F@z+*PG9KK1iF=;5o{-%>12S03U9dl6MU58AerCcbG=q*FYOtS$&J_52Fid|DOtPweG8nNc#*R)eR!l|p z=*BX6j#7TGiRoYs9$5#baCvup=&PCj)^Xf(u?5mrTObvftQoC(Vmmfj2tlpTwfJRC znU@vvStv8A^16AFe8jbS?>zqqxP+RBR+7;g8B~OMfE7)d9~Hv+PUcW0oUdu&gzhf#H)7bTN5$bz5>Mr$ z5z72O3&rALL*nUT2Cx$~L zG4>V#OVM!s{*GuuiT_J>_)$3z)Qn&w)v%{t@xRWFCt%uH->3)#9dX#6N6A!+3OV|t z;;>e3$f>}R#>4HJkgPq`b1oN}yTacno?C`Br9HS!x-WBDvC6+OMzS{Ib^mH^ABBh{ zYrEwFS>>ULZ}{^W?wDLhk`QW{*e_8A7E&fZY+>j6zq0&257|7raXXNVKHlbEA9G(~v8N=9*&MpC-9MCJHY3wc|1tYS zOdICwnLIeB4J^;Ckg3Ia0EF~&mepfsqy8a(x61n=&zqZua=-sRt?J@D6D+>Ytv3$U ztXEbqA#WfoM9uAw^oH+qnHQ0Mm%n-Co!~2TTcL%<@7u%$psPbEp;qX0%U7%Nvw@JJ zJltIo>86N)7v;SONmEfChAYYghzG)3c45cvO3VP+53&mXB6}ZR$G^xMhBxppvii9i z{~~kLH}NkrlDvg~VTnJB*W@3Vj_NmkVM-OetrJFq+hqGGEP0fou0QRn9eU3pS|ZF&3z^#K*i4lx|0tYrQVQB@h{>5xKq4qwMmRh zX$t|qv4-CK)_1wkhx@PGAI6f?5IU3EOS@VBq*^4s6RZ>J`M&=@45vF5;U6WP@i#_e zKJd@xlBv=&YlA&dw`2aXtnL`u%c_7WKJKTHN&8u8WFvp_cc)%cDVP(pbwyEF7@<#2 z_}j#DoheFyzGAK?RX|7^UJ7Bk^RZC(kNg7}MSFkcU}JGN=}-!YC_&$fNdzFWrBnf< z;z!!SN>PYFcq!<=tCsbNd-j;Lp>&G6d-5{o8MNiR|6xiK()LuUvrvr-{C2b=vlwoT+ycq`Z=p&F|H6(hIdt{1f2{%lGf&}` z_GZEdeJjH4yXp@>hD>3Raeqpc%Ci6X7`duS0i!}MZDKuDE_&siyOgjc!BN6S{uhFt z3Y^QXaxSv7lshi_h|0OTiu2|wR10Dsu3P>uxq4J7k;j1dC%5JrQKhmx>cJF!-INB= zFl2A3DHaUgU>XHO-f{Pc1%fx3Mu8wg+F&i1YM2cWOAUzUa~qA8+|#ygI+9 zdUQu*_x2dAj#%K4eEyY|i^|`+Y0EQY{K{XQ;rvv$vVj#*r4fO`wPJDK_$Nezlz!uH z%Po%q((GHmB^spPp0f7bh8Q4e-}zf8Krly5WCxbE;8GR>o(tj>Hb8NLafGW_s4JBr?NL$JL4mivZ+k>&d{RT_~m`wbZE5y2e| zlU37f|2)Ba1BsuA1>SGge)#f zKTZuWQ9pPmE!#=NNNvKEF^(@EG+P9vUR%hZ6Qe*$bV^Y&F69O2>Yx54+!(b;@%Qdh zd~&HgBA^?8`Nzhna{ldK#tAZ%I7*N`wzH^GqUfwqZ8_!y*=MT&!AeV)nVBszqaa0; z{QSHA9~gEek^E@NM(0LBi0mu62xkIl8XIT^t4WOx9?WJBf>7bhoZ%JieVAl1dqOuJ z570Zac0(2T*=$61W?hO4{K~QyC1`22$lc^R5jSUDu`Tqp0u)mC=%s)6NP;z^bN5M?LGrIfM_iGi^x+ErT;iR578tGMN_ z*-3@;n&SSnrPm0mi1f&&*&4dQDK<+2mW0Q)l^d8FK?$`Gu1zQwTocWz zh~N$ZIg!`2VUAGOW`Q&oE|4NGd&VnC>Po$-%@g^N-_$174BU>7Tk_2V=!S1)?a*Jz zft&H{Twqc8;#RhD>1N*|_+07h0le1}zqVy(oRoIePQnP(FK*%6rg&qhV!!7oOr$vD zK)DS9ox70jo-y9rlKDk=b|6{MVbOW8w6sLRmMN9IALG+j@*c5^$h+II7nc2}Dtq~) zdWkL~gzN-qGsGt%WNGL~v%pJ<%y(#E$3O@5-dY)~o*HbgF>tmj^EU>2lzJZ^L$r=S z5DA7iLYx=H9hdiRl%4I-kaY<2PRY7Mxm#;Bgq{6>L`MSjj+5b0EBPl(8ZI zqhKGBNt!>5DSZP}MO-Y@KP&JG!we9CB^S$90!#79fzI?)#3#dt(eX)}PV8neSa_uy zVF7Qi1KMd8rYfnRW9$?K3%_*_v|yN}3Km{g0!u9LY8Iw^c#lCM2K6U;i3(7?BV)@x zRIf_!50fmdO7H#evL5KIyUWti-*=Z~E_rKtOVo#1o{4t#4Wy&Cec|%aYJCC^qHBEu z?a_0`yl!@Zuyh{8*E*4z3EIH zY=;7B%kgKon%c|(xOwH}b%R^Nq@iCEmM5VN zxq<3vBd)EPu>5}jt1(^ru#*@F|G>m*N0G4+Iu%jm;}6wq{QD&rqITF+Q@9XWsYq26 zg`+Ag+k7)Ur2$$nD8O^gPRS7ma;Tg%S;bQ#p+s(ir=&4V`tQd?laB0%?0!lycz4B^ zwBvebsER}uG;DC-8arG9mLkg#C9pJj_dKN@ygNh5Jq_L&F+?MdS=qDDs;l$0-eR*e zPpLh$AWXgJp`q$S1JxmkJQaIXnlDNARS~i@v~pNrD#LC$CBHPHUR}!?S)zi2Wy;8_ z>zX41c_?8-fM*YpZs?atau2UYdI%fXo%OG`VNR*-tKgIvqRY3h7?$w7GjNRi9&1b* z%CKQ&$V9A(Hmna4mc}KwMPIrC0T#YES~EvTN3-35PF&^Fif+22{6RL3JuTgb6GzpO z3E+57pfgvODkbv*3K+ax6nZCduEw*iWXrXAbDx2 zw84|DV(6wrX2p$r? zN;aNWhmyBWi!MOVqO|G7SxQsQs_xIbPD ze9ethBBtg4g@lWO#!K*ZLiy9-i~u*4f+X)R%J@J57obYXOM=Bhz{^ZUe+U7;0)+VD zJO02E9HKxXDg%%qfxvSL5S1@}r9odgqx!)h@kO%D_`sR48#eN-=#hvC(DuSzP({4Z zFl0}QP)1=OpJ6XZz>*i9RYFT%SawG3g}b2So(A*^9Pm%64k;zdbui;6NTYShS4 zT$fGzDCYb5=A7S;zfa$+mv#+JV{5l=LHV1zK>#OL)9fl-6CLVsM&%*V}_mbk(>=tTWI9r zI#~sW4lNA4#?B;Q+SyNo2m}f3(j=W3iTUV=GJhyeqE^xRD8EkU91$#W*Vta3i0-^2c{ydU z2_H+*N}6H2UJ2}CnxI3g%A5b1B%GNdaB1kZWr2naW5!_ROhg?jFl1a2C}Fx|sE+9L zNPiv8#igtWl)`S)Fgx^S(}a%|ksuyu`@flN>xg8@YElIz+oODwg_||P(x+nVi=qHk zG1lca*!5tcc7wraw&?XvtHon>`^-MO&to^ZT{yB_c zm^8{{i}Bx}kU4<_D$u^D6z}sY@!q%H_KHZi0=s=*mK*Q|eA$eH*NpLCh9#8NGdH2Ff}fNYylD zZv<3f%9k*Qv?;%*l=UH%tnWYi=0=2lFQ%Lq)0FSjo7oB_l|?5D_On{af=BPLo9s5P z!DsiFT|Sq~Xmq=W+?K4eqR$2QpaB~;1h393>w z|L?sWv6)syKO7DGz&1Z$fvuiYckuYJz(&?iz_e}kYy?7Kt4YZJ5sbUA>7fcLdo@7c zI`*ehzQ3vDd;eBj77_5hgxXKawOVEpCY*k|KS7kG%4mHSx5w^t`Mf5x%j~we?GB66 zWQRZXUYp5kbc?w{g{_Fy&N&}@W#NXz8=MjRh)xj-Df#|*I#890xD(DRqQW?!pNl7Tc8Q{k*l)teft~Exa_sk83Dp_NenVZ)2I@2H?TXCyClws} z_*`Hq`%5`y`+EdJVYVMqVpW;#E~Qv^sKk2zW_vp#S7Np?UIHAtsQvc2^#%3t*5ZO< zcnkg6cKK3QZ%bVqrVIsi{tLdU}V!j zwL))}xS+trH$+qcg{ska#DMVudZs!``c2-y!d(Q7)WK>$rruyz1*%{@b2jR_dTt98 z{5~*_X(qx-Ytl`Xu+o}z&5PW5Eph8Q!AOFe>}$ts!~*qAAq)-+|5ySD@|}@3BOC zegWeb=qlw4zrGrs5~I|XMai#3o#Y09bqaO9gK=o9^G&EC>cl(#LcjkOXv8q@DfD?r z2`uSzLzF(>{C}a(<9`w!$eH~+3Ld^!l0olB`iABKwf;M>j!8thx?mb3nPkEz3jQS) zevV?{oBtOq%(@F&HDHXiNfPsNP^H8qv!0p2>7WoaK;927L1lLXOHs`M+o~zLP+8kJ z4Z|RB$ELHv-{ZJk3Jv(fAnr-3Kz4=PPmn$#n5$^6LiDr-qH-)Sze*5qh-2{CctO;F zv>|Rfra;>Qr;7Yb7q#~9P}U99Mr&`W5*FSswO*A7TdVMnQ|fM{smT9eP(I?U?IYwR zvu0H|aA&_12ik~CUNJAIxM5JohqB^B^tA}`g3L@w>^DCNPvOa~(`%oQU8kve$1xuDuG7Pq|8#m(=E^Xsk`?|> zFR=tl|7xi)_0SD77PzG1I+tRqxHeRgAS1mS=+w7tQfPPsFqY7F^@FP!#)7-jUYt5D zkzf@2C`EU3%3j65jTp2#6AopO%Y&{BD4Q=AHez}b+VCo>_PW)l>Rx}Cy?tD$Qxn|l zw7J{!@Xt03^LV5iaUn}{t?-L*U+7HhV0w7ZYP(BBS#fy{E~zcGHfgBPR81^AN>lfr zvwjd!m6)??8hPmWL&0SXH=Du+@qm8u{%fQgnIP=(8Jhh?oaXQ7%OBoWn#XF4Q#%5z z5>+ckfYAD3W!VherYjnk6v6i^p`{4ECQ7ucMA6<`PEi3*RZwmh&?kffe4z!ov*Ei4 zPq}Nh^+;3_MGr||C|Kg0WiuJJ@~7g9e~G2IPZa`@So$G~r7ti`_Y&7CU?(}uj`}Sq ztN&CzVQB-jQ4Sk=+7z6`u)RNxJz=RYefp-S2w58PSb~=rcF3m{OjsJL;da`BPrwCw z1WtRx(kcQHp0JPw&TgNox8Jq-G#`ieI+EN{G0D;12H1*nsUd0LvLudvzgW>Z+m3`m^s!79>U7gBXdnOYIZYARU8wCo9;BWj|Hg z-$f;~WPk5{s?O8*Nm9HwpGu|VAx|}6v+RkL+aCg7@-JD@pRIB^yak3F;HY#tCLb(R z5kn*gQf~JMj$s=~z>*uKD}g085-+RSV4;NC0;5SLx`*^&NIX3d5_WQx?BpmZq7#I^ zB0F+|FuiwhWFk8rI)DQxn#=ia$z1X-D{_HRm&x!_H*X;BQk@I*y&Prv+#{GQYKXb- z)uv&T;YP_|l~M+;sboMcJuMey5MFu;^%xw?tIY1d96PqWB_ZA;LY9V1PX(JMupeHo zAhzsM!=3U52UKRS5;$#XACG`2VoOMrc3j>YQFgUlL)0ZIQQ!Y)UK){gd84`TbntD4 zt93r~>xM;< z3?!?@`lf8@6-DS=fpKaN0k1$637zC5WY6irp)9*gf|g?E4kff0JDF7|R|wK4Az!(o z2%VZVlhCOxZPd>%4q>Y8g6z#J>b&Dxm}Y6BFgXxh%>H>Lc4)|y1pAu^Sc(kGgB?+q zf?y|cBZg3AQ5*bcZ$^jwi-T$Mt#+EPvzw{9TUr==j%gTy)Sj)iivTHN#xGaY`N*{^ zQBk>?LYQJcq9}@Jcl6BQX|DHG*&XGTu3V~A_VV6W(Offk=?O2 zdhNrq;uxc7y*Goaxt&VH(kQx3E|tfkP^-6sa6{aCa-DjpQutmu)I9z4@cL0bzixN;knZyiQVet(!ZtgVC^LO4wv><7sxQ$z(HF z?N&G5PGR>s-A0RB?=b4Eu#3%Q3f~0R2?&qA2~H+&o`j+`#UR{(AYBC~x0@MFN|+6D z6HE6=puYl4wflOZUTd0K%pF;V`d?`{AHK zydUl{TqA|MW!r;oGAoiEQr!rwrK!Nd%s!DWTr4^D^P=P+C0PC~cI>oeN* zZoSiBv%oR)wo8G^{%BZyy2MyJ7SGnk!Lv%&7r8=V%f-eR(bR=s@f08=5>q`~tI>8^4SqAjOq8&S2R!Hjf| z+3T{pOeTxlVKJNRCKu2Lu4J;ijG&QFejdt?&oEl`Hj@WPad>QIht=V78%#!<)#ETa z%&5@|1t}rnOc0FHY6hN3Ty6qO1(Q1R;f>yJ|XK{c}I?Yyt!Qn8ujGj>O?V~t6$5DZ*KmkkDGqt9dtIop*0 zLlqq2!4Wd-U==9GrgWL|4btpVwyr>8ChTD6-YTe*Q2|#d(^b$Cv~IS!>>i)d<8y+L zolcL#XLI4P$>X!@ogwBetV^rK0lVbjP#!4S>;S{G;2m^sn+&zr7fu40d=S*V5G+gNf#6{R~Li8udQC&5aKYLM~bI z8;qr))0x*+GU*lv9B^?!-UQj8*$TU_A*HgLAW4HAta>vl-VT;4=7kj?b)pX*EEre; zQsm57VnAabDyWfRFdA*37_ZR;u4Fg3?6BS2am-B z9;aRJ)jN%Px5*r8^uz2jCe3OwfaW2v!r113;nt$JyP%oJ<}`Y(p^0ag;?%JMoH!}W zfT6HFba3l&fdRSO6*SJULnaN$D8wY2*KBheoO&2K%@%{lVsiVeUTL_px_vO>m|#BU zg@eZio6F*JLEZ&ff(J%6ZzyRqkd_Wn!3im#1qLigX&r6|Y(6-%Ve!~pkX52aXJ)5_ zPB&W$5u{w42IRb2WXLEVr4x@=Ry5gO(5#KoYR#4tLaWW?Gn#BRmluX!i^b*g=&e>a zXvGKvu-zTH^8)s#3eG(te}71x#DvgMu39{LrJIy*jBc;8b@?K5+QUwjQ2|$o;g>eU zT|2Q3oGz=?2NN&52b=)1d4thzv3h(ay)Sg;XGrtYd|o#s6L31g4f7DU1ttRyfbn=> z6t@{r@oz;b(wqyXGIpa2PK-HWB4fAuToCGgZkyNVvFO1(QBtoZ;W<|Yn9Zp7BL%sc zmU2-WOz6(;C3^JrBL%t)kHz71x?E1Z4aQ6uT;W8f*$uN=4;+2BSS^xiIwgRspG`JvGQu{Pwt zf*q`UtOj&w#u7tXxkzz@FrsU@1sR!610>T1d~gX8QINOO=QP56#pJVC9cGiw6UuG0 z6vkdX48B&#bl_05*=K?&vKdl53#5c_vdL``-7CZD)VqByy$LdT8yqO{Ij~_H-7p4n5huer#eMqaEMvuWO&QsD29_)1vhuHl%FTA4-fav`bS_=VWVoGh zBpzlj1`o_sVXU|7!5O`fX1hHmn+Z-`$lg@}RyR77SCE}iK2{%&`+78dEaZe9NK+v~ z`(Q-_XoBbh^Jb?71{YXTFB%EK0Iv#er-UY$L?|4jqn$QSFk*rIFHKuZT31Q z!wR!8$o|}JNW9EeNVMR%lMgtCpbKj>Rx-!jxnlh~CcS*j;(9;@h;2Cf>rwy71rKF- zy7mgXmRo7)KKEG!>cU{rvN(2JLI;G7F^X1Dn$ zPSSngWJZVG;&GEu10%c}au6Tn_a>vk8EWK5FxHiib?MJR6Rd%ihmo*gMV{#e54JVv z+tM>G@OzlKdK_*D2xb_*957*k|G*8TsAjX25ms=}3`@DkO zj0&)#8}GutUVd>0i zaDb~>943hW5D^R((IllAm)!;-&kd^?Mzh^+bHQP5w+*}%77k1ntJo4UD{#Z|5u3%p zZz&(MdYkHwihaRS0Fda3(C<1;3vuv1+dW|kmD9Ku| zpFzUov*R1YMr}rS`YttOl#kVjBc2UiC@pxXE%+EUf_Xq6UY`$EF@Q{q1tz-=8@4#O z`vFvBfrX@|kS3;=e=ZJB5yL)afLUZYI#R7_ly902m5+HVkeD=prKXq96w3WM2b1Z>i}d9$ zm;bX!U+()8)oAq3BE9O(z(0%h|18prSD5{?NH1=Ts$eygUPk<9kv{xp;GaeMe-`P> zUoQV=kv`_@fqxe18&|NL{m&wOMa$*?EYin#JMhmUeRyy0|IZic|BjoZW1kgI9W>WE zbx@*l>Hr@{N=9kh{J|KfS)N>0xFR*y*SPU#+AEWj0E&o$P>#6kZ_PE7)XA$>WVY7rB zIF>j!+k@`(|GE)cc>Al?33;30I7|4W?X#he$Vc0Ki-3ZnJls!F-dVWht0)hH7ZHe} zJZMXQuKg`cGr586ZTyRTeexari`-zg2LB=lZr9>pJsl|zZ^3*n^VuW~!I@Y0ON=(i1ph1^}L)VZUu2Rga2 za1`?^vTQ2+KmoGlQejR*pk4ZeBPSjLrjVmmpU9gYLHzE>3hQDU! zu=Q`CuKQld%E*&@sutA~wxs_gv{K6w?)SGBF5t4LQlNVaYrlb#cNX@E zZa!ycp@(}+*}Mnp5-NNY!+d{rMhgWD=Cig;T@8^s^9_`H=DDtQ401nM6y#jbsq5nB z%a`pcEMd5*atoAeoJseUB=+^(J@i#`Z{d>+w}|S?IdNuVbUipv&n=@$&+IGAVHTmx z{e=NVYZVu@Ma=Wd$1Hy?s%%DDeM;Gq5NKulyUz49p$aHzgiWL#c*JMuPNNN}Xu#mq zT8Mm!{1`<%77vA`u}I|mR10EKUCIj2a~G*nA`0@k@9R`45yeGx^iW~X=+@+u&Ob%B zKK^cDzM?f2ToYOSO`~W6M#*uiq=Uj6%uRBDjv51G$cHo_#ZL-<`Cefu!`8nkf6O^e z25T7&hMYh7yEVVH59CU2+|rPG4ms(SLkJ@ueb$SVQD1JBQ8=QyL0Fq98vW*-LaUAz zzQOgoDf=-FIvKs?0u9agLeBAiX9bP2(H2`mZ8Wm9WIE@TyF)~~8^HmCxXOLtBE`=i3K4EvD;E!~Q6 zih{nAG_wP{_on)!^tPMg;a~br9BuB4&lTpSXjj!dUs#%*3q5$L z(64B&GN1*b3Mqn!cVtinG=&m#OTsD)f7Y4pb4#JdUYHbZHFk$8S&ctkE`%@Cxh3dV z(3Xv_^i8CIi5C0aQfsmMt!OQ3l8mqxE8yl0G;wl`+UVfbwUt73uNN+dTh=H^iX+jD zLOZvJDkb4}Hkx#^aA|aF%dNtPxz*9F&)h29q-d>D#yi@|NYUo(>Dz_)E9`BeOR{5XXF}!Ch{aj9tJ)TW!q8&EDiPf5wb0| z^Jnrk1e#!HRA7(&T=)mW<`A&lhFXX&Nf5~Y-$MEGBW$zJ$gNLtd9^s8T|_x9I9&-_*BNXmzn=x3?99xr|?qxT>FZAfuYBR`J+QVN|W`Y~trca@6-v5eeH#2i)&YU@O=FHrg^ZC!b*9F5DN>O|a z9wz=<#C<*7(Cw)qhzGOlxEX-MM|_}-%OpOz5ghOIL}skVNna^Fmt5qaF5H*~`C(ZvZdJmw>E3wfjx>@1uZ{{@@ z4AVK8;XN+5WYy`2187es%7^^O5(|7ZF8mhTeGFFwyc6463s66Zbah5?SG4-CL(`6O62Pyg>(D$8N_aX zu5MOjiaf6}^0+I=^2ahe^ z_N|T*r@USH1zf8(6ze&rV4PcSID*Q0vcVt7e6&p=T;LMq~;G%9V+j?|$t z2(KK|I)o)T`TWH>4l>RqS2HqA@T7)6G<$9plLji3aPT|QA$CT$**v`rS1RcU z9Ec%k#LPy`Nokm)1Zn0zbWi7sjwsRYxzoVag5boWGrIW0lKzHUxH|B$g^GL(+B`g= z9qKc9`QXJTmn5mG(0C@R*;qw&!R+wd*Vr(HYlirr{~q93W0=9E5(jtBKu?V@1>JJF zXM&1^IJo3Xm5(FAPE!KZjK1)-T&OCqVeV-i=7`(Gamx+m?}cPOVNe)x>-Q?#xEVLE z?>0RLS&D7E?F!E$3F7;Vn%Ty8Icj1HUi@BrknkKb-Qej22YkGB*JqPhcipV8|7y>9 z!Ela~l_J3lTqpXo8S?cms zCxvrpPLbysRTG*adLzaVW$Jb?;vK$=TuJLAv9k{~T9zwbbzC)KLoh@7BUT7mWW>nH z&jTYo#|3c$qh=#^J4a1M?3&}+)vORwIP0y;FWpw?XC>XJZ@sIJYpu6O=9eA(*lzOd z6rVgE+jt*jLS01(>(G1E>-wV?Mtgn`w;opvxUK{EwU)O1EuN>vHwc-&x&A&vp)%Ji zk891f=Qv&ed2_9j4K>%Qq{tX%@L6aNNy?g;8O9F60?6myNf;V zM;G5w;^}Ybr&D~i+cQyBTr-;zqFJK8562_l`%8>r z%R4;B#F>nkO`#baF_}W{AGAhqEULKAlP;`7^@r!?=???_IH${g#2B=Z;fbO=p{IV( z&ZQ@0zS&&bQ||dh-2OxCxzwJC^i@h&hi08ye-{c&@*G49r+G4TL(VI%OtzMKz|ZUZ zV(JVu;>#8-(6Gs#(c+;W@SGf}d#0KvSAdf5@kGv4U;2T}E$&S936jt6h>}!7qo0RV zN%GJ}%(#@>#tY{{_ zMCkNQ`GN?E%9ICBXifRd6VawzB^heURY~&rg_|w$^c4)>;8D@v!o8}aHss>d2TMJF z7|wEp#JWxpm)Q;Hxm2Q`Pz>!oxV%?%`F+z$dl`~WD$NrI=PW8;;pwd^t9B>} z$xPjDMyA#4vUwtKLe`Tiy*6Ps^z}L)vJ}0(?#S|>Sj33g0Vqd{^;&?~MXz{xY>)ht ze^IS-<9FeG6>1{x2l{NYM>&jph~q?a8213}MdUCpyygkd>O^rV^h6Dcq!`Uln4A}% zRGq{vIEl5;*{*yJu2Opv_rS?0jWkThY;k8oaY2#vz7c%DjW`TN8t z?%oj@5IjAo-bW@%JI2Lt$n`4RzSC97@aM03E{KMKry><;H`Q0lwI~iBy@*@9!?VqB zU2MXubqL9BQI`>vv`cZGFnEtJ5z7~UdETGAbZB$jj{dwZfvm{94o`l~lOzh2ly)iF zHT1<{JS|zT?mDGiuSy{0FRfP%*rr=!!Uk?QrCqt!%6v1|>H4=kM}^&(@i^zn6PQq6 zqr|WkL0kGG^p58a3gPqck}bXQpVNd-a83PUe`LHvTT|t`p1s1im`Y!%?}-qolzPW0 z?P9j}RFvtsbm!@QGi?BiWJW+mp&kxg^^-J<7w4$ z(HqySuU2`G6;Ug6_dd@U@ft?VJn}0!Vxm{((^`)_54nEvDEApShL!nB{GbLFjA|8* z9_|TBImRs*_j9ah7K~}MAIgI9(?_1g25}MeCDwwmfQ@wMv}(cdpC$`NTKP;|rFOxX zhP$dp)SZI4`aA1I4Pyk$jbAUwP`;xc$~QG4;MR-RsR-otB7F8MPv<7$H>YDS6`!+) zzoL|N;ibns|7jxre7b?9;QvK4ju!x29C%OmtI^d{oLYGo%3Mn~?P&woX~{6{kOiXDEh+5Csbinskp?69tFkO8@F!FAD#tr*%| zxC#GFfXNck>3x;Wq|rM;<;c^G%YTeodky`e<-cWyWjryh8Rk2keO0h0=`v?`t7w;H zyQ|!r5}*1pw(Y%}jo=fMnqHg|UnFDRH?}`BO-qI^O^I*DQI&@x6uhbkb)0l}uB_zm zzf|c+cb-PNmu`ITV0^^$)6vV5=f7t7ooh=mkK$Qne94vB-%-~o^ZTkwYs}qaa+91> zAICQzK6O6%NI$Q>C%SleQ?AehnZ8miURTV3zQxOdtcb-6gT=E5Ff|AIIgs*~ES>%y2i4w3*yq)C^ODLuanf0>eVZt=8)e@f!%WAqZ!4HYD`^ePzAeU7 zaqQa@S}JVc09*v9^qugv5dvOk#W`oS=4~RA+5c+Zo{MYV#LuYcxLZP>(2gti?WKq3 zmy8#F#C_?HPVbnTs%x)bWF0znR^@B{a8`RM^pmsEmhB^~JAcQ)+{9XsXW6i-z}?ou zE2}z%4y2;22P#@}HZJQNQ*fp+k-MQ{|8ucz+-}yclTtGqS9Goc_i~SxjM%u_37P(R z_lGhCI`bV{LNNY29BtwLpb4Rk83-FW?&v#<6ji^CFr)*cyreJP%I%Ov9p^Lx)&5s8 zH2zl?+)|rO>mM; z+{9{TX6RY2W@3hxp3`pTf>8sYyGKEI9;OIS;YJEy2_`lku^D%8w@}zA&QT7d0yu&r* zCym4P%c=RF-y}}>DYnCv(1dzXx8u5~!?o+-RsHZ^oV#UE+^r!fcykrLX25-eH55X_ z{9L)@W70q5siN8TY8NmeNczlKqgvW$9gl0>PqD30Yu4>Gl$u$iR~u59c3LuGjrPP* znM|32hz-IiOhv>Rt>z@Gu|~Ce6835&eCgImVw_N)tAPz~7gX5Qhi^v&D`2FeIgZxAT%UU}RUFr+zm|%)K9!hC-}Sj7LLj?7o43^W z7Jk-xK0`r<*jxNxt<2R;;%)527pUYo&u0tmx8nJ%9aHt=5MeLwN*vE;1nbY9pH-gE z+dpePpDjN}dp;Yn=A_`TEZdOlf4LNWEo;3Y&qur%r70IQni6q&P_stf^w@Wy$Fn9= zej%F1%uJ788d#Z1wPeK1I0>2lXV*y)3RzQ#m4TOfCSPCT?r?7!F6c=2H;r^J-M);G z#T&=l3Ab2Nbq;{zK^*c>j#R&dctEa2vrTK@Xkr%D;JU@@s>T4UtJwk|6o9t|Fhqdd z1jw}}fbc1`TL6^I?qb2p0Li8p@VhYl8erxXm>^gr09gR+ni~)x-GC#B!Cz^}$zlL@ zaM@fo08%Oi>^!5xY_W%eKdl_+d$g|Xy2Bq;aLr|4KT42s{3YGU8a&! zXrUN4Yc9nQPXI&+P-B3)xC$_AOG_LsQyJjO0agm2{{h|xK!pH0Oo4S?Xn`!F*WXg!& zCI!)$es6V;o@NfX5J2hNCO1H?0KA*kRpxfs0KCcwaCUZpmMkG4CxD>gbeI5Gu8bgu z0QeDrp%mBwpsfTjqpW5Z+LsRy1Qcg2?uY<9nHtoo0S(mPf;!_1tSkZn)j+2(v}Rsr z0d&dY1Y9pOz`Fo|m=jQ0-A=$U0pvRXEDHl@H9*W+0L&GjU(JA24lqy_07wQzGp8BA zMgaQ+KxoMv*|+{sjgStAi2y?c@MOkP089e#LK`6S76UMu34lVvBZNm!0L*LrMoZB( zmDM+7HPC1=22SdOj#pN<%m9R1H-Md($}pr_834T)?QWRWfWlG$0Dg2bfugy~V2l9| z6wreKX9o}%0V1UYh66Cn07$pjY8bxJkFFCkVPs27VYUJA9zb&%%Ulk7F<>nJyA3o5uvh?2)j)%&K4pmm{j#tc;0w(T4w$AGbOZpm9H35CYbk(h z+c8wD%VaDAJVjtMx!WR`Rb~KS1yI)#0G6{_G5EH{S?mIU?$S~dKnkL{!yiozpEf*O zEzF5ODrWVhvd2|KrzYxu1JZKAq{>1+ovcd9YM@ia6cW^3W-Tr&23<7S0jAnzbQS}M z5TK8jm6VtPkep%{W)zqK4G@gJ9e|?TP{3gX*kmv|B?T6<(ZVfK8E%-IfVmE^oPhXc z2een48?deI0IgLF$miiH+a5UyY8$srD|&Br_3$iP{6-02QXf?QRJ8#>bxK^NuzEVI zFqd66SP%iB+vbJ^$?3o_))X!o7GOIdGM5785P;3Ptzf=g08C~s1Ir08!OY4VO8`l& ztgHlp{s7sm0HC=61It}fUna2MKBKdg!4Nnh3a1@IK>_YAU~2&go~^*)0?4ic zm|_lMwq%GWz+#Ly9vZyd_}XW8sApb$ak(Q4R8|AMa*?T&VR1Vxcxap^kiHY}x*ULU z2^bZC6zKxoT!3N)SHopDl>kB`pkcz;0pg?sP+Bq4Cul*b+f9I+Wq%KrPXJqU+e^#< z6AR###Q>~UYO@12ps^T$55wRZ0(y1)R$UHs&0EzsG}tUeU+97kzg68K1F%9t;#O0E z&1tfli~v&Va5$`1x5;D#?=C#`6n6IjFca|lOl5#>ZG^&Z3`_}Q2dIAFTe*wF07s2c zJ#EDRCJ&&z7z@r>0;*Z&1b{ujxVM&+xyyL)%=oPWq$ojzZ=hL3dO?7zzus4!l>w-q z0A&oC1$@EMRN^p|!0Kqjj<~~a4Nob@z8@GmlN&HuZ3O^X2Qb~m*zX23aR>0q`0+ zQvgWDrw1$o5Jl*ttJDVmJb;#g8}0(|JBzyn;8Dx$prr_WT(a1%0aV_24TE3Z6j0O} zYM20uAO5VmZ?6I#L=E67!Sx2bN&pSFmH{rE%T{6q@q?PdJabWC@l2-`It-~!6X2RU zVMTM6nQW#qhs{xdokbp~uz^w1Kw~tZl$zDb8DC_!hzr<2uMnUibwfMfIn*fK3Ak){ z=L0C!0PzYN4VW8d@TCDS(q%?~@tG1{)pzmjjXIT@T_pt&9~Jy~fJ}CRQv^F05P;Ea zD?_HqfPzZ5Rp7Az0JO8X)Cp*N04wSM6j38=dB9*pY*Y!;YdV9d-MTyU1%TwDTJhOkvJ0e~jBWnlWCQrJk_TrTjH z!^u;sw*!c4+-70d49;L?L(Q6AJ5+!sU#RZdyCC1hdxHgTlf?w+-*(syx&fQ8*a_Zx zi4lBMz_OMxkYVd!12Y0;!RG*=OMrI8wgYyTrLZCc2%-X0*wEmpSEUB@(V{Nhkia4{ z3@l%~USZqWZSnY88#+I_dcr@47yley=pLB-b9g~ddm_GJ=0ArQ{~TWYb9kYDiuTXp zMT`@Ze-1DHIlQnG{BwBm&*4Sn%;cZLi+>I;{yDt(=kVg6!wcoK=TZ+Z3dKi%Ay*9b zP&RMBPl5P)CK?IimHGT|BLCWpgjD0UwH>scq_i= zLJ%BYz`qF0!;APAi4+^gzer@Um+&tVwB}{}i(F7De~na9{s#OHW#v9NH4#e#Zn|P3`R+g7$ry)I9B+l8S$&f+Wgur7in}C&tY5 z_X&4IfvT2`!q=pEiv>fAUn9ID*Ag$o`$^?elNWoh7hC*_O4@rLk5Rn4PVtvJXo@H2 z`>yW<{4w~7w)A2x*9mmw32#dHNJnpb(J(|)W6~f<0Liw5PS#w5&UEx%gVttvTafgK z>~RRUEY#{Vv8!P;R{;?j4&f#a`ZZjd>GcT)Tpc4r8pcv}8B0a8vb|Fvgxbk$?^MIR z9Qnu!-}U0;Um3`h(!q97^}yHw$W%VMD#vRUs?kF^-U34nR}=7geH*2M4zz;#zfv5i z$CQ%Xa1$ITK4nTqXwTLoJ-UFh zMJZ>qJt0g&F0*$Ow<0Q(W*th3V|B{x4GO}; zsKV-r$V;S!WVL@Vsxrwq?=G6SWd zMmuG_lFAWmEb!hHBdd?Y`+?ydg$m)}O4$8dQ}ku9cDez6#4==KDbHMs*utiwgQ412 z3`aORY$Y<3zK)Bc1H%>ElGHZ*ct7tMK{!Rk&zbTGQ3O;tT+3WvYX^EUWKQ;u9YsP5 zG_}MVxjAq69r{9-F*NmZFONHw2w9*z40meElG+Cap&KP;H|KLXVz|}YPi*zO_SInG z@ATR<9|2OI$Ngu$<(ax!xFcz>2n~C9QQ@jK$a01E(HKhb-WA@*3}Y}?)HP66?v&9= zDkqp7LqG|1v%;4Tg}~H?DGC{}?A#Fe=n!z!WC(J&1f``&9~O}5h#_JihBO`t0@c95 z#3)L!B&q?Zg^**I7y&8dy7Om66gkz!f7Og?hB{s2y+>N3bnX|F{O>v0Xv9;sLkt_0 zWJFflHNT^Zz7G|0hGtb%-7;$!{zZ6QVU2@hQF``7G&x#z@v)R}^)Th6Q*iSFhqJmp2#EAvFKixyFy^p?q@UOKc?bNfv8 zwr?Xobsob#-pRFQ)S=)sR(v6j1SUn(QY)`JIH=hpUi{2x>Vn6M#D7Dz9K7IuPTw?U zelKJZJta>z?|js|Mm)iYnX-P*5ff$oBuZKLLJIddT%SLzr>VMGzo0*FswALp+9y(J z7swMS?x9cH3xr>I=yRlQ)gW}*4?>v5^lg$dO~XLE{(iYXdZ zQkA4s&h&a73N~NbHXNw-mJ5bkaO?Wh%Nt_^V~OGY)QWV})ECpsnd|fJF+8Mhk9j!{ zD5=VXMK9NSC#C3Sh5P!wZwQ8 z9OO!qZa}p-!1i3!XOXul+L`E2QW0r-v|6V}#0BNL$jN%iGBW>Q9_67Cqbqa7Mt`U# zq3}mUOSQh%pTKBj5{7?S?zISFI-_Q@umeX;W?_>*v`faHOtpDuOP^J;Wawvo@woTx zR9zqY7j&{uMFBcp=N)Ajj=52Ep6TFqN-8IpO{+i$b+f{zdM`xHEK|sclf^03J8TFz z@-TSRtpvjij)-W^bTn+WcdKDKm#*wPtGQHMTAcm|BH@Vm;+o;#6WumZ=rv=X_KJol zxEhsq)^Vvs%3zUFlFJ(oztT!PoAyy z820N@KC|9?H=(Rw;^?5FRCxTBqa>1h0v+4nJ*_IO5yks4L=kpB=iMV1{^V*@+G+Bq zq9df8Khd|Fya!dKHSK($(+-|-ncVm*nuUL*!N#EIV^sfTEq)tJ<{k!R5_+REZz$WG zJj{x|pVkesB2y0~Z}o(dC%>YWi6ZzUZBosXy`L zer`t<)hYSty0CY?;bBg?*h?2?p!}EMSY!s54$@^a^FAe2kssRk63k5ftdTE!HyKtc zRCIC3f5q!CJjJDwab1aaz5*u}QKd+2zer zmDY6PoK7dODyMP1QicK+xgAfh!&?mkaMk&uYURkh7*l;aL6)Mv1#fs?7W*+`roRr3 znCNfrMXmmJf)vhu)8&w=u71|?H|ff!_1;P^Y9F{4%k1I@?o!=04oT(Ed)~yxsQs>` zN#U>G^R{X%&c3LPmY_KC%~^c@nY6yT@B<%uH#Hai@KV2jWmJGFh0ds@t2^jz-dwCB zbo@hRg+xY;nR$_a$SlsdsD1NZObe*um8;}M<43EKWUCZje$3lNFuaGyiY=>(A^kU( zO0@bt^uTfNBdXFG?W<({727!F#~)16SexM}6ZA=ePvY!Vjp+Nv}y&&~?&# zqoK)Vi4g`_!Ir1IC8~lNRvy)1g?LdMZ^}eKuG2)9Fcy{A`!Y1Ohp&?i43>u*k730j zOPL1NAHAh$_SPK|vi#`1SG37R~(|`}*89#a7Y$sL$!*?zp$AJ+k>bQ)Fa~`EsO`+Kx zYo3wNPS+zz;mVFRnG>!Q6ho=#2Teucb=_-LwG-D}hFp0*{i$#{3mrZ0GPG-p zKV9BrJ#rZmjG^ne_xyL$0{_!gK>e?%S>3=w_#Iscdk?Ac8@|QE$>t1M2){z9Lu>jO zzT(nBCD}rFNJ-_CZpYA?Nh!Kn;Xzl{bVx8X6_iHE#2is}XRe_omx^bD*i=AGuC3V- zU7Re1**e8%4Xb$|y7=4&Ujd|Ho#GX@KG{K4Tr=68U?ar!g&rAj30%MT7uDb+1B{#o zAj1_;)H(12*g49aZCP2hSdW^{5al%7l5D z$@Y0lT^IiBu9~d&Xzr6W`iL0{WpftUH9|S{v6`{%0DBnA3Zre5wh1BAwK?<9RGlRfMGQ`lS2_?}f2*G#h{ zc7cgwj!rW!f$PZnR3A3;1O%=$L7ry8!JZ+8V%)m^JR1*Lik+9*`R0hT88Mq|GdW^1 z+3rZtdQ#&PRGySRf7p}C)y;~S_w<+np-dicPjse(j}JTd3}rnM4GIrVp(=Rc9k-AfWjllI#5WSqnaK{ZXPw+-q9YiQmK@^^%M^w%c7)_} zL~>m4x-;^iQ{=8Z^Gb>ZRJa2NqG)~59E-JomZh8l#d;aTB>qH4f!>Kg zqm8}?#I}v8J!K{_xv@e_OyVDnwEo9WSb&QEq01~iZPCw~VJ6l*%KsSHSgURQfEi-J zng6lM;v3jbycsx-wY$8ZiS$NFsoGtBaEosY+g*Nii_ayAcapB_dnLOy6@@pH`m)=J zGaAR>^)t z;a&38DN|W+9*m}uFOph)U_~dPXMLaplR0)kVqH*5tl>vijd@hA zofgex?Uf^8iEnV~9ZC(H7U65B9l{^_eQQJmQc7?K^L1P*X&E8M0$-M@G;X=A($j}o z%L|&IsW&~Ij#iyWZjH_@@P&kJ$g|KlBWb%*Cx~G4LybD4{6)Te!)_&=-m)SeVz;9g z7x|0^j)+|K<+?hXHTVkYsu*s9jvRd<1+8D~yI1%IWgy=JNUDpB2}d}G5q_;Eymg6h zrf>m$vcz|z;ZKeyqQOZ+UdcB!ZmQ@tk;R(ln*TKbs(;VtnPA;hW1? zgBv?Ad~%<{8Vgb%Dp}7zBPBw6=hevJz+PC0w9X5Wj3!_a(-5)0Ra@csEU0i#rh&*mpr9DWr1MRKg*5oJh zx;pe}yV^0C#$t$=>2kX)76{zxutQX`ViSbGgP?gf7sO-4VdWr3p4kOah9ImGgs8O^ zL)1x|8-h03AwH-LA`+FMsp)bk-3&-FLohI#+u}AukTa9Z;=-}aT*YQ91pA}Gmj-zs z{SU-_ir=yet;w#vKGW7f(-6K2!mCwQOWiEyeB-QHy|OyH>^Qs;gzYMT5R4Fd3c_7N zpgf5939&RS)^MwCiy%0eyVzFdhCojcSq{h5g$STFh^bftf!Tolf@0dGLBCdSfRKcC z2>u6wZXFP)u)qev(X5_1tEf2vDxM- zuseg@9cU#?@hiGA2h!acO}uT)*JZb|IrUZnNn0 z;qB%I8>J)jS#=w9m$f#hDa2oNkuB(dFQB{5~+{daaKLFqItIB_aGw!PL zb#NR~Ro)txS6(~!hCj=R5c2Ua^17%G{zYzg8}To43D$&vkz09Y{EOV_u)wc&<>cd( z6(^FjI2-;2!bT%IWzR{(LIcm_Ipz8D=Caz)6UA$qkrCtGJWu)iZ=PGBjl)j1Mz>9= zm0Dkk*&v5f_!qE1Uq5GUhWk`hA=D+PQ#_^_3NBezo*E-BdFiq|v}0=RZfP1l+9IJkJpKOKc7jgX z)zM|q6*Fpc)kUXvcrlwiM3!FU%a8ni9n_85K3IE5U4HZUKv6n$g5Dn(#vVuWok7CU z+7xuLe%UqRzGf(+YRNF^L%!;%Zv=|Oy)f7lHxzO;rO_c!)ubG*T$ouqUHBeNeYo~P z=?A{H&Gie4+9>?Ar?nhyMt1M1-*82h5kUKWOFE*rXVrQe3C$BPLx&d4%9aw~m#iH` z*l3%lwz+s^GdOpyEfN!&BjcRfnd)L#7+mA*9rVS98xL2_t!*Jlz4$gYJz-CvyEi92 zNz?C1B1(R8#t2S|tp6%0;_(O{tgI~;q${-za-{58vx*ddzsccK6d}qQkOLD*`~Fv& z5T~79bck-}ix3uj%&RpD(quk;Rs)|(6n`>GonL#8y0~jx=mu%NPSJr? zwUz3kc<6EzyQr0~W^UKYC3ZBwG(27UiWea^ zWtoS#lxQ6oPEP0>D0CCrT+p-)+83zZBK^TtN9Gr-WCwz^_e;O=85&!2EA0=@3bi%( zov@T*;N~x$OPs{n17j5>86xsdSj;hKhlsr_RuN#)HPFSo(3vrn>2PNNzZn(>L$&lC zW<}Gwp$5z!TLQFSocco^Oe6l$uy`AzrUxz3Ej;-y$=_ETV$hzn^f%CB1McK4mG1(_ zfNAo=iLvsQFRy(%Q(s4*hBR^RA=jIyGk4QWV}!%KtVLJ%ean2#%zVB1lv{t!FFAOY(wKt zI!$=$Yr9MPv=riM13A!E6KE9FOBIyw8TkU9!>2?GBnU&#UWJ}95Ie&?Y*y^d;^^9$ zi6Rf1;fmm!wWD+`)Us$wI&qXo&B+q*B}=Z)Q?;d1dp?D%*~t<<$TOl<%T292M?8SX zqbp}@kw?vNZ7ddB>^U?q98}RhNZvEor8Jwhkk&i^*I+^urnEGm5sPbkb5?tG%(j#9 zyXKJkZbIT;MwB#zi$dBC^R$4JL zNxN}XXv=kI~QpD&4_TRGh0F zg7CXj5y%RET9=_A+q}-ZMtWF7u{i{;8Sp4g>#EO^Z%kQsp;s;Orks+RHEc% zzSOp*T9>jBewr_J;*)VxNw^?P0}>E!5ehEwEx~p`3kUiE4FQkjx_Nv zRTGe%@s!SYSfoKb0d5f!2-hsHP@e0nNi`jPRj;FDpU8Ke8-af{^UJ;v!mozKJ6g&n z0bh=m+?b&l-jIt5gY9%W8vG_foXg0WQJBS(6QeM(rPe68TB?jfaNWk9Dcl%y?URj8 zjE?-7Ki+#`Q28SDr1Zz^JW%jwqeyD|MLyx#-l`f_hHAFa?gWzQcY^lx|b_ZNjdSX}+kpgomo8A?PWg)B8f zM&_;Timh&?y`);(D%us}#f69~#-}L5Dhn_d9l5)rEo$4#e@OZjkDRQ{pozI?-brsC z>9S-lnJD?MaBtdQt}d_9#vZH_eCxz_YG6S7AXn0Qd?Smz&h3`0GM2fRlNfrL4S9-Q z&YJGAiGvt5Q_KN8HBrnS$y&wCPX0eqOo!Z$D3826S*w_L$gDHPoNV#Kotj60d-XLO zMMVZO>CUB;b>X8U{mU}Mg`~s$H5`ScUQ6=(6#su)0Lp#gqifoR&(855ZXvEt*51ic z=o_=AiF1=xS~)9OtCe@q0{nd(Nu>pUK`ZY>N4}|Si@px{YvLcSL0k?JuVPABMI$&8 z_TMiZz@scHF*#xTj7w4U2YwL?G8vuuuCh2Yexd1Tzo(*Y_=*Moj$+bTzCP;gdKdW@ zN$0tARCwEl+mL6mzf?S%Om`YQ8Pd#_2bpkrF6i>J0Qr}QNvW-sPBH)bmSujgl)-|?tck;=ku?elwr}h5%Y64ATv-KJyYalOK zMG4UGC&?O!Unh(H)+%FDgE@#{Y^oqnF*X}l`-h3oFluIOp5m#Au?e;&#)iB5S%oTg z`XjG2Qe&`)SHWEUJXwc*3BXL`1s3iMy6Po=x>(NE^N)FEaCiXjIN(FtmB>4`aF1vF zGa5BA!_6=x)UWA;rp(!z4PjiCB!y3H@K4m_^cK&xCPy&3E7@W;9A{c1p~nLJn7?q; zg1#brW5yCm{Tw%4o{K;6kKQSNR{jtRMfLVa`T(=fru3r16$1uUL+P4EcTT^1(n3am z_YRTknLMth;dmGiTcWI;0YYla0$Roqf40X~A{y9QpEGkDh_@Y0^ek0Q} zE3?EQP;V^z{S9NNkXBe1-t&@weT4d|Rh?;sg>|p^S8%EM;!T8CeFOiaw$3x#{13|9 z-Lu{QsE|cC%~Jj|E_`fZ#X|Y)xU@}d>wg)0G+fw5W&H=jpD>a_9@_t&zbzM?p))O~ zS_Cq&WVvDNONO!WB-ixP8GmgYzm&%j-U9^O4cKfrgIl(>P1ygMe~}<9<=UnuEo;e) zUQ#`uOkA6#==_`hYf#p1e^WIP*>v8x+n+Bz&l8bv|4Y$<-Tq>Ad9vr6{HEU`?dHoX zjSO#$nVN>`123nbn|J$rN}uutS;fcR^53qmSYz^9vytH~1YSB)P?vZ7SE75qZ;^z5 z-5{OfYuB8!wbiSHe8c0bRVIc!u{xlUmp_8NHT=9D&f|}KrfedbwN=V%CsGs0Q|#y4 zd;DXBE|i#=&(1tCQLz?i(>E#=YtmNbs_8RI_7DwN&zwfQO&~qFN$$y+4lfNg@VscO z=WyB)#d?nTz`vvs7&?#yxcCoO=)3s6n7k*qRT;*++LGy%b~CP3YZ!+^CVco-O{wcJ zYuuE&WXsrv8~7+GJS9tkYzm*yih+C5TSvtZd2>4AQ~y3;7s~!mjGfiZtl909t`2?v z)0h3%9R81A5I)3>@~?Uo7j&GK>Xy&_FA85VS;yK=l|`sjrt4KIYhjI6uj+KzJgz^_v!DgQ@C zq(WsxaF0-ZQb2LRHfnpsxnLV;kC+i@&A*5R-{_X+&BL2NUNBAwKYq;LD*+u|T;Dx> z`e%Qh(A1a@$j4?2N}lnw4NZA><>e^wtN-&z@~(w1vgE_R`9E)B%m<8a6LNK5W5&htKXr!uH40DB&bwZQJm3O#-+5-HJZ5J>5pk zfX=8NZ7Zg?B@5@$F_la{UPZ&3QvzT94FhlOXcY!85%s?6=@#K9a|1X1-HOIv_jHnYd1`DQd|ZTm)k4-Tl}rh-QL6SZ z>w?aF_)Rk(E`23SWNdsEcO^UCJ8+*UO#^k2XCJ*|MAn&^d@^x#r=e_9z^X0}$LzOD zKE5b%o~NO9=0In4QL^Tds_Xdjtm^aTK#saRoHOL2>n(xa(q_IqtN&w5z@jcs>c4zh zpb6?{4H%`@c_P|Kc(*k$Pf$~7*2!vFaQr$+E^~fr4-6HgFZf!?NeEf?zvhz(hhLzB zjzGP-JmGM?Gmt0!#Fr<`eS!M)1&OKZ*YM`k<1OC7NnyVL{;m~?Zy|O{Q<=i{X|Y%E zRLG00;NklIf!=~>W8}>LH}m9p=@v86wCbIj_J6c?Khc;s>`IqP)m4MF^hFrshZFKX%upS>|4C5S(!#Wt!27DQw(6)XGL0^evN z!ytyEG;gEM7;Mmt!KEA46Y?O$HLR{%18oGUYddAck!CaBk#&jR5z|jEe2OwX;TJgx z&&DxH^3n3Kfl<;RzJBsCcL0~7(1yp}9=KhQuIDo8j^*2NforAFd@|XwT;Gl!hN}oP zwnz?%#J7lC8=iHia@8p;B%+E@RX8>hnYj23KYYgARUC+X&3p)x#n?$s!_O%Byg*nttKmLVwIsvm1iot|-q1d_!Py!iQF(E_+EXvCU3;x|wSpY2q?2&R zIZ4NlJ4Rk(u?ZlnT1`aMWNM{wL#N0zykuTriYR%w*68g1a#Cd?8c-E5OMX6&cqbn8 zPF3KwB%X+UvU;gHut%!r3CJg_kGz2e2~ZrluDUi$-I&HQyc1zs=|25T*47ueQl(b#lyCdD163J)M7~G@BAlw6Q zi>_Y~m>A>K2fe=_Fh}~0Z;x2qpScunOkQ0WXd_BZJ8&W(T%TVYxLRt-Clia?v;%q^ z1x#uJ;w^4W*p??{^90yi6oH^(Nnn|pfV9wJ&w^_u3r`@oaAIkoi<&_8nC;R~oP(#=N+`uw5)?_5s1MhSp@X+fJw3l99As?^$>&veYcrAN!r5m zqFDeo((Wh=fTuoClPK=*5c?b5F(&A}9aP4DPX}uJ!?;GR@!trUT9dQ^v&EUDOFoMJ ziW_m>_+tr(jXSD_RO}dgNH0iJ~yJYi`^a*0@nz_2?oNP1pNAS^{s?GEH7@eS~IDR%P&k-HQ? z)&DIppF9;_14l}q^X18cvJ~aM4J(|gD6xYWyBIz9VSv1lC0p{PXvI5$2h~M27O*6y zpjN#b2ntD!Iw=BV{TTONV3j0s>3D30qD}V~r=ha<1Czx@ozN%m2X4@#9lbX&Ny^sH z4neIy2wa27ZvP-qF7Zuj$F)?CU3`L&72n+5MMDJ4$XPfp*7|t${=l=buAUk`3_K~_ z!m~}*&YQRt#Z-jTKMLFfs^^pkmo*iWrgOAR>Z{gNOp+ev((&aV zBu?*y_IFr0K;kJ7QRvKB%ZyTxC%_6VOb?IvEYM%jYof*ailNezJOxqE>%R!ta64bl zS(dAA2kR2|jz$j4$oGocIy7hQvJv9;PO;z7$k7dXT6E?>AT7&MX0{vc?gEDyLJQd) z#m-Wv%~5P~TAdDy8!knJD=L<)7OaPW?`doe>DEq&ti>=cWWkf8$nE9(habFi9gu^< z@l3D|BsUFP#qVebiuLYO&e9oDLOb>y1seuFwAAd)&(C_ep-!P4n<`!x|J`Zv>b3nc z4g$+H3HRMQabY>`Ww{f&2iGb3;a(o+9PT^$7H5d3QP?r_=b!yR6I{%8l4!jvFY(v1kq_7D&xRN7ukUyd#bQBoU zp>5pXY31ucptBa%G}zaL<%V>$|Jy(ZF*hBZ_%?7oVAl5kF3<;%3nqORus7WR7q69o z9-p9ZzY7?}QJqk`qXAQsv*01ubU<0dPj(Wo?S$?=8t9nNDIMa0rG$H;eR(UJ&B+Ch zs>(g^(66feQ@HeARgNpHD*pt|V5`bU0jpKzxR$E&Ysqh*=A(N!aEFNeocI@cAKVxJ zA}>1n;a}vse1H6lTyh+Mf01*Rf$*zcIoa@EjuVL)9E5+t=+WpNEVRZsCA!C-b&usH zgtJZrRx}oGOed3)i}6wNH)DKknzW=Dy647|5}I>1AhjNenIWq?{so>-RE!UG3960m zbQS(msIHtiV?}ypk2VQ@ zq%Mnl)U~G2-Y;4PZ&KHb$0A3OYHoCIy4ys6a&7SS2hsK6pkGh;JXK-=M~p&KtgMbQ?t zKP9+M%E{zr4{>O-xD>AR_o>11)EIf?X~CsZUyhER-5J{jyGw)lWUM6#P!PF3n0vFD z0uK@=v=Ov3e1l<#LU2+PZ_T7(L6lJ$65fAP+)q%JXZ({g_+2 zT3{n&LWghkwBpWsr$IidOq(>Wk zSdbVD4GFd&4SUPow=x5hKo&VABhW2b zE|=Trw!6(1V~NFDU^hEVWn~cA)b4VX7CT%HJ4#Ln&2P9A!EU)eix`AX%63GV7fa}H z4a2N;QlML|#((!m`@EG+x!3mQEGj38+9LJA;$d$M4JnP?go_fg}Ac* zQIR#Lq^GFN)JmFJT;_6@6%-fSOB@cX(P=8S+Dl3xU~NG$#KX1N8NN{bLJVKXkWF+{ zSE&D@olDG?&xBoDD|?BJv$eq>PN}8(gGQ>Cte#;eRBC5*=k=NPo}NOs_CmQMn^`9M zwGR#HAAD21F*~+qzD-*iN$Kjsz5&5JK`aG|9zK1|+^eQQ`IiTu7Vpa@nyEX{KV}4I z|FB>L0quGaDF9h=uYeplA6@~mDQ*Lf_$hwrnz@S!@vms+=kYXC+(_ljY2^kgFSS-? zLD=E~i__>RF}WdHw5`lxEGUIP>?KZ{-C{92i0RC1pcFdtL1laK?KoQb746t=wN}1H zwbGzGA=(g;=;rB9_B3b&ddW(8fXOqCQf^*SnJ4}lrIkNXX+`WMXyriE>gwQpF}ZVW z)jUDlYtfmgbR7cKEJbs#3GNm<163^bJgcDs^>m;?!-A=ccT^^!s>_2t@L!!pbLZH$ z^mn-ql`S=(-V`t#wdzl# z@>HvCCPZ;BbCwhryIgiB#0j@K-DP&8sletaaFtj}9VoacRGk^WjFIBCJ=QsNtz|Bo!)&FlDIgTYFGXC_!8t@tbp_jtb?x#T z)wNC(+1R3yq5}$Q_*{=eL_JgW)e}u94YIH_MdG)l=Mf0>uQ3a8Hrt0a0tfiURCK5;_-|3njV<*NjIE2Z z)C=wmIs~x|ki?Su7!3*fZenngn3Ee@>Ln2hmDDff&`<0~bF{nt!;r&WWH9}@zNZ0H zP}XGG12cdGRVW$|QrOi0*7@oplU$hef_rs9mt z9gq*khDHlQi`z+-AuNs&409BArmK2FOUGT(- zC`VS8_{xzE`9wMJ2^l(k$Fq&XH8XvI)dKl&7wrOB)*okNhMge+~Lh7J9C>@>v+=1Zbdg#BXw_v-meH6 z;P6y?048ps^5fRajj|@NDFsh;Q_;yvSkLx=D#V&sJ6O|iQ|h{KuSbJ+K|DaTM}N`W ztsz05KL+Oehc2^9iH6mo7cYf zd2P_%jOAmbxpAa+nn`UIS0;SK9~>q~wOo=`*gxu!5gj65b5fNs@jSnASNDogaC4ge z0e&JH_W4{Jn!O-6PI{4NiX7uV&!s5R3J+Tt+$czIaGBaZG-3go_zI}P@F_}_==;SH ze}P6DJ)+i{FL7gWwB`%QkE{vdtCs}3G!cJStIaRkDu~*A9i=v3Xw(MVyVMwLlPj?L zdB8968+wbt7mM zOZB|m@I1+UoJ)!5DZZ;fG~gAKUHnR0wDZ8rjlw_g48A5v8@ck_g@Q1jOg?vSMEAWO zyfuk0&n|FWcs=;I^bSuzZqa@JM({ylBXaK!exPmzfBei)hIAW~5zjda=Dy%g<*MYm zf(~529e>dzk?hXGm{EVNe(kQI%`russd)nOm8tp2+rbB$ic)u41GDJOx@)Q+Q}d^8 zT2JjnH|mKngMQ?y4LwtI`6UKDmG4}nfpqlT{@@F-2Kd1bgI`MnF+1{9A%?IYm!i}Z z-t$qgaUmj=zh-jgE1-suPf@BwJO4urA-tCwE>2`pnuTy2iRM}%Y4#T-kgv!& z>+@ieL9C3(8OM-_s)304uI^efmvmP-#4$J}pNwPVefBLi=h{G)8@g*hcC3}TrY_v# zqd`|=Yd#=3qUXL3_CzO61e+(=tj5JHLL<=0qd`ZE%pPcjH6)37C#|^)pr*2wGB-v2z8Ffd^YOt z2xZ4FamW!$62I*p+u?LZT2(omJGyHf&b4fG**6+~1c?`s%cm%s3BQOn8?1`YrghSV z_NcH?s8i@bD#2&v4g*tr5cO2;b!KOknhTsxr`-aeqh_nSw6wU?Wi}SLjb?M1+vK*D z(#=kTrO0N-+#~j(^|eeoeK33S2P~l%VHQ77&OoR4RW{=euTy)_Il!dU2Dq0^LW5!3 z^iEobFb1%2VV1@`Miq)x0^~M34<%tNc&v=wYl4^046ySVIO=WJIt+d4Guvm(n)B;!gOTLE%e zLL=j4=27>gP0!dPwt+FK3tUY5}s$G#*RjLB;E*T;IqSG%C1tH(%FV#N18{a4r_rCkLF=gdiQ0qcLuK)uIWZ_r8Eq==5QQqNM+sjbvIadiG5Ywt~2 z=k+|4&*P}?*V+n*mHIx8>U|%fP^sSQxI?_^J*yV&I*n*A-8g*`k!@V#G&?KWIN=L9 z*}b$or;J|2P(-9nT#~-MVq2J>83zTFuny_DB*UPBSjOUlwgTdk+}11hL{DG==L&kM zq-|YnR0%tymr9Q>b)F}x;uWg4BvPm+c=?*oE?z1C%@lW(I!yL5xb;M^A8_mwrh$GTqDKf>^^deJS_hLdTCX>~@RNr0dduhMBc-2yw4_yDP+1;Eq+|cY6 zKaJA0e`|D&>^)A$(Y21OtrN1Y>CJ4RcWhnD)>c4fc5?67y4F2Hq0+VQHM;iih*V8e z;6j~7sFyyk<#5COy2qW@D^2?I`s&`=c|EkZYF-n+Y~Z%}vZ|5&but<`99%PerIb6_IIkA%uNu)_ zx}A{&MmJz*4iD9}Gr~Qn;>u7V=d4Ylf>XN>^W#W-HWS!mvc&b=hox~O{;0MB;y$d6 zBXMtpLM8D^U5QW1|64OW5O;_5N%i?g^ z%iIM8_7c0zJW=v^Iqm2t3vNgKfEdtf+??&X)E*<(Vt(8GqxF`)_K&NwpPrKtwpdTZ!WmyJ9dmeRBY2~a78^iwlbeL{EN5jvC^ z-hO|mUc8Idz|{CoZ4E?? zZ!~Gu_&SqHjp61{&lFC65jL0_>vtub{9q_cltR4Nh~V>I@j9esd@>oR5IQ|G6jGNb z#%+VPs2DO)c$n1VRX<%??df*G+giFnX6m+NV?gsyU%PNqqh6zRHtxLTjb3 zcmi@?WyRc32wLe=0SeDk(dYfp;{vp=BGg>^g{Q>bPJq%h$fk-+qehKb7-C-1WSgGJ zrzqnBzld3EjtZZJ&&2SR_Ls_@=uo3&xnhP{rBofw5h~qh{OurLQL3jO4f(|aRs&Ni ztF{KBR9R-NQnfQvUt=92_@erZ(+e*#@{Y`lavLhj*1!ShN_PCsZ41W9eAD|F;l%l& zEu#1kupa9;p#zig1C+8ZJkT3@C_(g+-s<0w=%ytx`r%u)xZE7uHM2!XcsD_qjyu7h z+m2(>Vn^b;=9v$KDHE!zA-x%p12CID-F<`ed+2EuXis z68@cg+*h#Hu~_5YYe+-MPe-d;TML^e><0JvrJ=_~qb0Vs-N@SOO$qD5unQFhu@FdN z?E`Mrkf8I+Ll21~EwPo&6`@cmTORHLuWW5C@-~2cpGpRvcwt`pKA&o~swT#0*)rH0iVtpJTPhxC5E(`hN`p}z#xFwE|r)x>ttPTwp#Mk0T zc~*o(CFSK>DL-bRtLj{gtGFKFRn@?)s?_n1A*rj^gzl1l@1d#AXRXd~c7u8T|C zpn=bX-jOb|Dr2g3_GF+5zBW2;e2P*(;(;beaQAfNN?ZW%j0(H@utyZNCbmG?$qVRbbk2`3*i?o+{CSfF^8~S*Ew*Lf&W0eDQr3n4 zo4DYl@c-ER?)a#x>~Y^qfWQnr1(9R|gbrbPp@$+hkbu(LRAgwO*;bY$pctgZndDAp zCIr@w4X``~fnZzLRe`m;DzLh)ii^hH{hfR7n|b%WyqS^j?)UfoCtLCv?tSOpbI(2f zHr@^(i8T8QN{}gCjB;AlnQg8_IKkxy-Q$Ob^>ks*Diro z+GjByu~3o3&L^1?3C9@cTtMeHcgYlc8{oyI#O^6$K z|Acnd_~)t-L0hPol=rmrk!r3#g%@>qA7ukXcXzfbb$45sf${oJoK{Xm1CvhXwBkvOmrtcy7? zB8~ee1_MujX+^ebTKk$f7_0O6t$B}06Ax{#Y9u;_3JC$veWJabPX&k1V#TF9`r`pi!F@bq10MfX;YEavX0!}%U z0>c~CFr-KGRiz)jHI`VXikj#Qeuqt#)u_T4Bym7*fqF@Y9jt$)4H`W@@DYEP*o>&j z{-kV%XtG^4r6#+@_FvLu+uN{Wj7Nq%a~VzcHzh&}O?HZoOVVUlO$sb-%Qx8)FR}+j zvR{N_rp$Zr7i?6Sy@^{?Dzj5isZ?e!VbuN;WwwKveGcKu>`Ly_L5*@YdSC)E zvvKKK?)CU|5G_}ruH~Q?;#U8P8JC_8g~z(SSRI(DdN?#KL%dK*CeZ{G9}ea2CZMWk zL))l;(zBtHJ%Jark23?N$3l;@C3wM#f8376wAryxjY`XeeHsux77DLl)m{aZ zo(k=3|Gyvke%{0zY@Gx$XgnLe41 zaY86*i>*!5O-^UecO7DLuM(|aV9=*it$X1k4G8E z^7|YlbHO;c^%Q;8$Skn%skZ3WTW@oqXs19w?c>ro;*ogMhxZTR9Lhkv-qBp`u;ZbT zC0i1waV|Rbhrm7A>Ku!9+!R=zD00(m3ar(Bjd5fnx9ldSMCwJjuqp5tPRkEtK3Cia zv`}OxwgIxvi8`IWzLhY(JW$DX@5D49wqC+d=fKmJuAs!X#j~I{V zW+g%jkEfE3N%DBgw+H&S;qM%l*yFigB>DbfGLL8PFzWGa$1N&7o=T`x+Stt)HO9tX z^4&3OnYmX|fqzRrx38{dXjAvOZO5Ui2=AlT|@LRsETZDxlQK(%%V#s%8g8?%t?lONf(I zJzUkv`ckE35h>ziJ(w7&uT?;)ll9x(flXbwV;IzcmX>wYp#0~u2Qk-ge6Ip3_DUSB zmlO9otSxm_*(srX!3^yKo@mBK*rc@H;{1Md0l{1Py z6^QVyMo{%G>Slg~q6MOxFAi7g=8wn>^x(vW_5|o+-JGvp2i*|eJhg4iXKLnS3>~5L zF$M#6fWNAbfufC&{T;UevcD6gLB#zFva5US2&IEDctmrZ%OXr247MarpIo%(>A;o* zZUGwbOkht>kCCTVjCb1hH(3z1J82W z1{RhiUbg%tFim?8TTGI{4QRlNfhSbHCoh0Lsq+2dzXm>(f3NVR7bn0iOX&4-ppes^ zVH;IAPD|BbiQmGGR3a4`bBc&Zbp`k>7e&SvmkTf8ev*jB$50;^4PoEuz!{EjGg2lS z=_3_Q5cm5F)bmxD`~C38RpPd&*Fi5tG}gBTgyL=s9u(^PG2^zFmG~&!76a5% zX))}p)N>8OzSjeHw&iDyOzgJYBvQO&q|9w89!cDmYzJ;p>9)W=uAc(<>M&`|d7!os zCQghvw_DW+!T2o|ln`;h<$-?$ZfwQh0gWW`Tb>hp-$x-EgaaQ3 zGF$VHl77__GH)tDte*##w&I^1NwP4i8U9aWAcTVPCn5NH=;n0waBd{gy38$Y6$(<9 zK7C-2MnUOI_gRj|Nlk5!I#;6azYWxBe`0#0Vg2_^NnAd1YrhYyC{VA8v3Ev0m{-x$ z=z8b?VyO4B*R*b=h;*oe5C zU@khhwsjxIW=1fnFQ;rHKbu_;FIk2i7w-|$}I~rH0fQr2mM+4Fhi6}8f z1(Zy7zMQP0hRlu4(WG`U>r7mZUpMV9;CA9};x5N_OtK_;bsN;fWQkdgt?h!3K?066 zAbK2kC>tOi$L>)|-rq)MBIaUFUpmBxqE%;7jaO6hRCOtEj~aG*UMf+gtv zMo4CSB;hZ2Ha-|doDJrEf|uzK#O)9)n$*o;OX5_`MLRkL)wV-$nTX2^HanBwc{Cw- zGn8RVL=KwXCFnpm<${ki5I&2|wrqvGA8wUhA@4kz+OtGxr(hv>LV9y^RR?f&;sJC< zpJxR}qitPa0IL%XV1;r3SEm?2b^^M;lcP@es4CiZ${&H90%JT%_V*@tV1hdOTXY#oc1QR z0pjm>${vx9$_50@+O2FIar$pUzYYlgK@LQAjNCUcXwud;|6Z^T3R)DsD7^lF8k)p& zXAzeOfffuQObb?K27hdfEaP|tW01tc2v8rlFv8Ko;1G^~Lu^8{F|R6{AU5X27-du| zz%@+xju0`bO@J$L-PP-26M851ZQ`yw9u*onIwM$tR&$V6){>@Gy-&A}{Ga@U@0^u0OQ39bBW-{r_+iIq*WK-q}1P*!CL zX43B(;$`nzf?Y{jy3t^>qMq;G+Xod|W8aOpQrHZk%o?oxKkFTpy>X&1SClwtc~E3F zU6Cwk=}|;;tr?h>%An;ks8r@!e_>ete{^r%-3-?&=bxWlB;)E?Y8=4CEG3i!VlfL^ zH8Pm1TfTmY$GL9BlI82yZ}jHpli%yzYu0(&nap-GEZY8jTh|WyLZjZ~FdExg^hO(; z9)mJ1E;C!~_I4%*>`R_hm!*LcgGukOx3ig0&tp5X+v5V8)oyKP*E?WCgy2>oHXjHJn{}~2r@2bq?*8vF=MQopnv|mH%29EgX;Fai$j|1s>m`n>}|c#r(=Tl|6?R_(7A$bT7C;*KlRY{8zt>FjSc4ff1c`*F=h+;Ie6c3 zQIM|jK9^7b^Z%FgbK=O{9K;8EX#^T5O1zfv!qJWCA zPGFKImmbQ05Z6F7x=U`Qv>H?zs4he=Um0AaeUa&$M)rSZO5)}!7u8J+t|(BiiKW3=2qRRktUZrwS|$?qRP+K6-s}@Lnx9Rw5{k@Y}K_ zWG#UktGbrZN2PgUlWB<0=Z+-?NfotzDzG%h|Kqganl}89v8p>Z2C0CFU6OmeM<(fV zk_s%%=E!Lq5BVOvI_7Wc;%yH&#o@&6uH;h$=^HGYmT5Q}A@e6`Q==IAXw0ulL zT^`aO9;;kGh>mUUN3dv;Xh+AE#OWGOvba#`-TN}psk&_$Lia^MBkbPB2*lO~6iM-A zmpaoUmISM_)fEA1YA58@E)7me6wNGM8m!Q^8^>TnuJ~@llt|+dN}R#AytW%tsSIB> zipaAK(3Of0-NAow+P*9-iCn(&21jWN*1;DT@I88f71weRfS#YwV z3q{y+of>*1Y+(_WMvOZ9<5Gkk{Q6JW7xg+ol!T(&vFc_cmqBD;sBRMzzC5VJO0n{AfR0NF zUrc4e{5IT6WN2tix?oY=dmRwT|CezxNB;S7)R8}oTU9#p2cS~v$lrs}W9;Z9Z<^S_ z@PR5h_{+x2)a5T~1Yx}SA1Og%-n?-1#^C!r-vb&+o)|A(a$fxsmCg%_C(j4gY(CtFzfL|a8-RGp)?~NGw=BTN0;f+=8WRQO^#uGEw=i;3L|faNh}xS6eN0rP=1Fr^=Qz z@1UcWJU23CPjG3z`gtpWp^K)(ryYX+y(g&G=1yQxA(pEajia=8y*`l+w3-*&E#?Vgr?D3*QDne&2EFm1(^k_MURsXPLIK4x9iPrpV#Oy zq0V1EkR_bH|LhJf&*-+eeQt--?a-S&2BY2JGkBdYxDwcGw|b1|nPg)z5neT&Oa z(X$(^zAHE*KY7n^ukikctwWLa?w}?QZb&znEhd-233mrNtxlK4X16=9ecA%zn#|`_YVEkK19=d(2LQ-C?&vr#=h3yzKzQ1Xxgmd9fMX7I@6qXmP*`@diD7Vs;ta zcC*dmHh6vL3tMfrP+~d@gE2U*2A|$+^q9S7uhnjMyBsE$6yddsmG(nEVty zJ5jX|H0CDj*M(wZ>4M%1*A5tL)EAE(x_(iwO`8Vi_wrdh@Oqy|?*Qb@CcDL9^_b!H zaDxZfMQ`v57531Y^d3&9NACfuoAhpAM=NF|pU-KtI-P*+n2)w}6B?J-RB@XP$!E#Z z3woSfGH*%ojPVnuEwLtNPp|xIXL6$1do3D_zP?zMtxGW^}rC)8) zqunnAJL(*IBZ!UNtam$%W|zz8#FL`8xZxE7z0>5O1JL;l4!G3MVzPRD7PH6abh@l? zN3h-D@E9y6n^!nfSbG9cGdmmxtJUTL8kt@>tw9FT;YYnM- zMMcwU4e0b6wSDtU1}}(~-DR`Gi^@*3!EP`ZeDIXA$!+ji+=%0AvV?uZY8R&G!E=&s zpr+U8b->fh9)K{IOeTldX2K$e_6N>(6UKPA-^1mZj96>B>|U5KGc;v)+Z+aq9>mLJ zH(F7nx#n`=T=eWcoGxkSCNC;&*s9k#Q}k?j`m6)(eJ9wb&|)YwFrtO0-{6J`FuEKd zG{7Ams}+W4a~TarvqfmSVf&hNoeKs7MKCX*H1rOTAgkN$w0hv;RfFDSMKD8IqI9L0 zCc9i-;O6&aTxpVjot$WHH&@@;S z;mvYbWH5uWcYyJ-fs|O`LSK_nPmP$);kCewcwF#;tHEryTb)*i*Y5G^4Q^0uPPfqW z^X;H9+#s?Jv&RE&iPvn^yInT738v2O)Eg{zy^k41eu{3L=;SRmhP>pxqLW!$ZAkY^ zuwS9cR%l~{%;xohjsuOXcYDpCO&kuBMei|M&0Y_@bKnx3L&1LOfYvs!)poFJ2D8E9 zvx7{-Kdf$t#cDFa)lYYUo}nfz#r&A%Vv~Y1-SV$fP|X}OVR^|%h4$ZC+ZQ!1tZkjA z_qttPqrqyj`oP(;y5OoNv(*cubb^I83u|-1U(9vFn5-VF9!#7bUW0Ifb~JcE4)tE2 z(<vee0{->(I zm<-&00LGELXLupy{VD?xH)+RQ>7CR?L=%6g9iRj2;&2%CR+q;K-n$R}I*bmB#|5^` z2ZIuNK8%%w&u)bQdz>y19y55y;43&SKx07A>hU;H)7q_~9n(2X9-qqBK4X-R?%g{|Ic`FEpEP2-kV#xASbWNOh8(PYvJU#GJq0O>tm9)XI12&u6PQ@(G1x|>?W_J24cI@=qo#0BDyufPUKUo~;V8+&L zQOdkYr^=v^n-t8cFnlTKX2eoiO}OOd^1D_xLQXMq0fCL6>WCOvrj;QfL* za{^bHEHFU^kw-0No5uwj-40gIYz4=~;{!_p*4qf7ip3|Kd1eck0Iv1kWMURv-%LbtwV7_Eya>KK; zTLzxU$4~dext^qb z!X+0tf#XfyDKb1&MPy8ij(KW&rJF49?%CRHHCN~$60}>upMdNQsA|Z*_(1JiA!K*? z43Ih!180lN17WDs;Bfn#W{cbD1hwXKfaZkY6J$_;%+y|PbMh&%SmknMP0ouh`PV7v zrH?s_sRo43oDUAn1A7Algb9KyirHWSaG)#Ju7oJ_+@#RL^jy6etP#9z z2;P<1?r}o|V7Iz0AT_{iK2-fZI8oG)8SOwYyU7c2m=ki3kbi(E*5z=3;eghi0y%Qs2hlXY&M8c zeUOTDf<^pz3s|w_om$;g?I-WmjwFZi`=zL_4!Ft=xflqB!5BjZ2FPgwXB8Z8i`S`l zQqLj}TwFK2I0^dD1uv~Y!pZ@{?u95E)P&EA&OC=Mr+E(@@FgfYJ%m0Gal`gAU{1Kc z)ea`ZVKzEU0;EV_C@Ffi(V-;o)k336$$~B1R@0@81q7FDOlt zQ`JFI$O4asLJ|O8*YTNr5IchnFaZ1MAvDvY&J$}ymoX2g#%<858BB!P0dM(%IkUps z!xp2@0$K9%8C!v!Ng6*z*H$zb)fA`f8g!=~d{g?o1HO znF*FIyg(>egMwKES%W-+1A-dxFx>`$+rNDur?WylV1-n-(dc%9DX=?T9uvr{7dGQU zUfnI6e=Z2gj})C6iEQOtlXmEV<)^ewIn?Mgb?M84fypUP5f_G~6f|i6;2)9kl z4V%E3w}I0Ld}=jA+SmnoE33`sF@O%W=tX|iK{nK91Fs8~&TM8Es9HM&YLHSO2??)< z24bmtM29xj81hqeNVri?B?`h~9C!iKKz0J&LI<1ghV?ASu6ZC}F^LN(ux4b3+@i?| zp|aUz@9U*M9$2R|x^0kcFfi#v zU5b9`0z`^#@iK}H9qm-xYp9{nZeoPW0vDVEnvk(|dd;xN=yaID<#vL$vw|jg0iHpJarN+9-rL^%TnNKf?067 zA-2X@S4bR#)9nFY-UgCNZC8rEMcb9CZ{lQ?pWgzPL|_93xo)osa_tbbKt$z+MHWc4 zKn5NxkJI3WTn176klnVza+no_9Wtb_0A>P51mYKXMis&SqtP+#Ae0{J`2C+T}6ogUW zIk-XDQ&mSSa4z_Pb?O*sp@Y4m~4iZkGp^aV$=U2Np~q z4eEq{!7>A63?Y@{bl`*{WN(r_V@x+X&;&<{sZnI@Q!r(-ualCD1Y%@qEcuXVIuYk) zK=Xmx_dp8R=Y!{3Athk4IUsN90^fnGJL_;9V6++`g%2A9z@Z0!1hQ}7DCupGr!vrG zv0MlY;Q3dJ)nIct;JIgbpV1A|Z#4NJD1w^@KR=!=jQMNr+ng?WpLXgLrs$KdiAjQ` z_ds|ARtPYF^aiBwoK71g5h1dN{0&$zvL!-?O#&?Jx*&Pu1Ck7IO*0CWig?&U|bI7v70UQYJNd6e$wOdnF?s zmNn`q>Qan~EJR~->GnXv8xk4dExXJvSXg#>JRmpV|GQi+k42nUcpM#Pw_yDlQXimf zVdWMKpbdl+6s-xo8L|!yt|e@Wv3T6@G>X{<{tvhWKAQ~(br8BjTX>O7m!e11bOV~M zOVOcH+937=U10!k5JD%D(dfWz1>3)@cG&XebcxACr``m@2dKff@SY=ZC(g_J0BswD zi&n~bH17e)Mc4yE65$|iu<#DPuGbFc2o~XO79Y(!(#5hAeTymlRDDay4-$~+!AyBg zKBL_wG=TNvlQBljFdS* zq96!^9S;y_Slu3n9d~+IBQrN7;55?Gh5}e70-1NZfenG_Ant|* zQH#L>5ew{#b65okt51L(u-d?+nN zmxos=7*Mg9F$JldSft4I#H7QqkSsCXL6r+KWc7NzdK0W_!m1Ex7Dy<9(AYs4dXV7} zP!%9l3-G1_$Z$aB8g?VW5+MZUV3v%KD7O1du%cl^uwWaLDzg>bFW5r?`489#1V+H= zGT6MZECqZ0Y#tlktC;Ui+O^e57M@dfOIB@9duwxGyO3A!0$&PpEZ`x6^9#E^oRDn8 z`%ug-@a=FKk&eX!%Va*-c;SUzVX(Q;qXkyb zLDC?9gEa}*0umL)wgac?`~1-=gDyp{%mOsFUU{$xgw=ru>@Y?Ww%5S89FWVkL#`fP z*}_vp(ocDy?7+{}L&C#hhD`xZSa)*Z?QXCZ0R}I&lny=yl*1kf|MV8xFya@7Qv5irF*D>5=En~-v~109*_z+7HJ_ZCP;3`&*_zKD2WZ)vj}LFA*d#CR6>iy@ z4`(=Aw&u5N&6kb^v~0~Mcbul!#NM(szh!HF%hvqFX8~Ha=97~KEnD+bY?5!;nxE`Y zK+D$rCI1Us^Lx2M+5Dyni64S0P`i~MUYN{8e|Ci?rg+I9i@teKAik;4 z{1X39)5+@ylUm)@4gKs6{V}^#^>ehx6Dn%$!F54lvvb!(t~2>Z7~Wf(?vKDB#$`KlJ*a8Mr#;ex zetUoP%CeB9^*wqh9*>%uJ{f|JF1x)O?+>GrYeK#HAGbh-=Gx`n>xQiJmaSR0A?Uy8 zfFkWmxW;(p5b~hm`k?bx1P}q^Za?N!^maq1$ zS+~l$VfmWX@sDoDwQar5^*0PzwZ`KOZuB1p3Tz7Y_rt(1tMVV$;lBs_;=g#bRWL~W z7Z0(@AEw{HsH(_7s{9|paH{;90OKk@#=B}WAdLTk(XAqAR{4L1hn=eY7_llpMxbh= zzq{D$WAINundisxuYBmoy1pgWiNcoTAU*uhkr|_@O zP4MTK6aPF382XRnUmC#Ae**t%!oM2vugSyV&q@4?ymb3C{zcyEeFpy`Z$>?ff06gA zp2NS$Gab+4U+}I3D(%s8a|UKMctqj^GR*8S5t-(E&=ozmA~Zzv9{!5(?3?K1=Fs%% z???ss7k(FMhjZwLRb}}9Yc}3^ec5WSb*LS#OM?pwy>KQM?m&U_?oK#S2$vf;@Wsk{ z*y?Z5yWwm!oF_hVUk*CBGW198gfMhfNW=H}5jXn_{&U%t@FxxbX^sE1#ecN;Psc0K zk~Jaw)F1FyKjS~Y;XgdCYlZ)0;6EDtrvv=)ith~#$HGA#a=L&&$1jacO{Y(pe1HD0vcTwT9@-ChNINLzhZ5no}+Weq(P&Cp?Ai3j=O+L)`dRln}-p& z0{*NQxzdkIs@99#LaO}lpe5@=6&bi?p#PVc{yozA!*f4vHiVwd;KyG{6w~M z3FN2y<32B{33Sb!7(XI8<1kuyXfM;R@kodFY`u?ad54THF2c zo+!FCWY+Fvi%UN}P|V#d47@pX1E&IT`j(Jh+t3^U&EFQfDE}TmEtU)DiQJM&DZ-9{ zzE=3#{_te(Nt9a^nx;LObgu46qjn^VHzqIB&tQt(F!mGf<6T+8E5Q&v znmv^*C$DUm^;%}q&SHxRC8kb9Cu>7j$pOfVc>4x*GHbnR0B2CBK@NaP*ISzV!sf`) z*Tqoh6Xk#6H%%lOqhDNO_$5$%b5L~Xa5ziI4TrXI{LYE^Ny}>(LYP$m@IzCmvAVi% z{}19iLWTa*iGrODq;EinUM#oscO*fqi1x!aLm$3mOQeZKC+kB&?Fp8A_+cpBQ%s5U zb&L&WAm^$IXNr%mCXcwIr46A?+BcZyFthhW`fkJpjfG7_+xP67)~U$tXPq|RbE)}W?&mANn(``;@s=7aLdsAkD|{;8c~n90}$ zb!0LCus?e9{qpzt2jg?mbMTfa+5;>!nT*?J#OT**B2RhSV{Lyy&50i*~%2m@(_fp7j zC&`|U{0cY=crNEGZczDjUMRRLg{NEJE#4Sp(W8idD83-6{m`Ajv7X`gyFy&-UyKgDBlPb z^V}2}r~b;0Qo*S|#b`uKz?*M|oIKxM1Q&^vGll7f5Gienl2d-VBq9~4k0C~+2^`3d z=(e4{d|+4fN?v51c05KSruDJg#!zdzNUb9F8|=5CHt&V*(#~XysTcOmk^=2~wwSnW zGpC@r?}sdMfYQG_Qh>^bn+IuEDgn}@As5LVEfNtSE7bp+?mRjoGF$pod6#+xKIz5fElrrp_M9Gmi8 zrlMh=g+g+GQ+FROK>MuQ9NNJw0FEHjpk;Kjcg3}G2nB-{4A*#_tX?qB~Fn$Ky!VPVOXmpoK9R{INEjCq9nM#$mo@)ZDz$$n6+ zGZMzI-AiN3Km&&z=_}fL)Un;}-h9Ed*lZK0v*$GFYo*JT2X)eP-`uLMBgc;v!C|^z zK0H;!LK79ycbd|U<)O~Hy1dq`u~$cy8hiCRK$574MpRmQAQQPW>M9dW{!bZo_1ZNU zv6%KC;p|GLL>h9e-RDuMztWYh{*iENySjOt_74lDUF8QYletA_5EutJ)L?v>dk)7+X%fmf$ zTQUE-oKyaW5lEmIPC=c-DUmL94vxPlaSD#KF0kN)Ro-mIDyJ~3^x*vm(EfAf0~5>! zjd&B_U!Fzq-*4PGsr4r8bia)bg(?Sf-4M5>&WQ4_tLVtYhgroU+G0#`Pj+1|o;MUL zAEB3g$O|Gt3n^rSP<(maYdk*|KnCno4=TP_g4Fe>%i#H$#mcwmrCwU|)S)jdCYq8) z6+`e4iW%FRMQdfT1WOj;?&#POX#!(>-xWFA-;aZVqBh%R@HdlT^x!tZZN*>-V2p_- zd~=L)#CzDZVVi~DD+0$10SiqGL2)xfP%I0q)iI@7LA@?EiXO31G@JJqROkJ<81~}4 z|6EWP%Hz)`nfG4ejJ!`F8-#A->&EH$FX_AwRS7?fZ&QFkes4fU5HF`)CUja~H=v`? zW_{f#P^qYCdtELnd+DGhPpzGA;_WcZFqr$hk{zD=J?xN3rtDkmR%wmXfuJ&_Ig}}p zm?1`X52`M&$P^4W*Zst4$1tBF;tP#_FJjV8VvDhcOM?%QbK;bIIfO!S`O>Haun15u zm@Sb|LOhd8UYiD}#PdUVB*;`>C*_A8V{uXBhYr($Nckb%uDZP$ z+-sD##-t1CytP>*^O@&nx33+Yo` zqra*Id3b-_*E~M~a^eGbma3+S&c;BH^Wi$YCbIu6T$qMQis9v=imlo@woOHLqDc)DJ2txH1Nsi_pZh4bcV}`Q zo54RWXRJqXhY2*rL8yys3PE_F?(ZCbN(2{m#Y-$W(G^cLo7IDOR&zPg!BNK*rB)TK z(pe$FV?n~xjH>vVMMa@1exM_fRK>|dbqm|^SCo)cvZ@K{Ag=6pE0L**tP;Y!*<6W= zn)pGDf4{|ei7fO#(i3e&Ofcn?B;aS1$n?ZCKr7L7PR1zXWg4m{(1TZ3ScGXO>y~h6 z-%SVGqv>-h`r?1D;P@5LY9i&~7SXweHrF5wf2QuvH2x-n$jrWK`ewBPSWdfT23LwsUc?cd=!;Fqs3g#^Q=v}Mu-)FN8^>{e z5nR-;%UE!tVP};pnSN@i%o|fjmIM_A>UA;FJ|NSvcr>W-BBNswi;P0Y2I*MhIu;%B z?aCDPzF+rz2He7pNrLqD$8~7TO%*w+8uu}g`j3>#H10v5Ctkga;`Wt}Sr96f;$DrB zWW@cF9kYiRHeeMlncYw2v->Y4MVL_gLrRgD!WCZnwC?LPzV*z+y7gDF=d_uGFB*jL zpVuu-=W_rgQK;Rv6^$C=AU(dWdnt|YH#4zP&5DD_l@7rZDBlx(9jf0-#82Qk99QKH_-T27Zs&4npUPM|4Hc?~0ZtiV^+4)@{~q zV*4gp)f<@-NxFr(zt#Pn*WSidGAb#+78BKf8~TC|KOp~Jp^;4D(AW+swb&8~1+*hQ zjFVXqNex10)58V)5yCq-zd<5H0b`Ls8$AkjaczV?YZd;De^rDQmC|IO!YHI-j5gx|9=a#$5q4c3w(`Q@%fol_kVOF6EK!XaYeYm=(l#2< z$*Uh~5Z=;-C-JD!xuv}@Nf-W*=gQ;MwW&69kFuH03m;k}?7TcYlo#}U!Xcj96K?@* z#a}CPROjbNtQoY{BF+zvExF}ne)y|rDML$0TET~k&~gf<6*D`RuETc4rze?I3Ihj* z>p1PROn1~V{9;gesrDtdm?(y4(SgC?yX4<16vLT#$I=jpdx!o$B>c7ZL$*zYclW9q zC`pj3%Og55RMII+N}>fkca<#Y_!W1SK&Si!b%f=}#sHlmyd{nAE`p0nCFd#zoG6vF ztCZ9C6P~_!44DAW-=R}JX|7Z7h|qwEqE5k^k|weUDZHHVPzU3Yl*$=f*xHu&U6nYJ z{8FU1`zo1Vv-B$J*G$7LD*c-AP^r`)e;gV}6gUoVO+A%IC}e~1;KXqMH2%+|PxY+Rl}eD}so{M*|K?SRotv3) z5SepxkW!nEQr2RY6oM+Gu2zux(iMYQMB~PpNfpD4lJFo-tGQa5S*3I1iZ{f3lT2Fu zGs73Oy^^%JDp89%b-99mi9KGAiu&#(o2V9qXKF@wtN%-G#g^7A@9&4Ppn_$L^xw=PqmceeIuuFz zKUf%UY{lJ4MuQTjoOg&6-+wiu0eYdU+~J=5-m9q^*p8c4s)0(VRH}i^7{C8S4cyGk zzmgQ(Te4|=T}cZ@0sM{9BBlV)nS)Pdqx*f~Rp`mO%J%3^U$~t68n@O1HSVe$r|Jzf zil{Wvwi<+cmxcex@vUYjj(1*AfS|q0!{72*vlDBCGjRx+Mz}}`&%e`*)&8bJ^-~I} zU%EzkGEVkn8Ual{8tox;Sp}X@`^mGVnTBIl<3{Eq|5wrLwWUlss`z@>c+^l9UdB(J zjVk8f(Ot`eA%)xUejEv@X@X7)+5Zrgu33~R3|$v)#cMaR{VSY{PyUA;e2z-b?8!ve z_YMw57r%)bQ{;~fG;|B4-?l0FX7A$XVR%`EXlTuSE42+Q;v~})WlAIs2ET~L`-YBs z_Z<~8IqieYr%EOLoj7W?Il3XH?1pd~zWq@KR-DOw_f)LZKEsrwq6H5i{^)FUrhENJ zEenB$-nFYI(rpUswQsQifl(DR#=3{G-_^W7|wTP(0f8 z{sTbHO~KT|3;JiyL1#YN)16;22Ti>#Jfrn|*s#AN7nNSTn41=a^UIC5h4Z-=(fQlL zvs*8RO*lIWP`>A4-?X~f8K~*-k-k|SAbX`ec6=S$zayN*SI;H~jMLn6V9R8dFbJI< zSl@Q@3c#?+kNc_ehhTSJmH$Q9%~s{dtylS>UHFR|t@2+7A%B&>nv_5r?CIXkc&uc< zZ8`o$POwzqUu4H_CH_S=FmA!W$fmHZ_!n#h>3^C3X8e=n-*3UcNV01i{zbgDTk$WL zLvk874USc!oj3OCNe+U(zv*O;G}K_K&p@O67uyN%)r1FgXv}dqQ$ZU!jEX4 zm)b=Y<09kH={MWA%X&sC#lMI&J%9{hXiK$9I1~;yrnP^M1*2xybf#jB=ATkI?qnp| zbM5iAXmJBL!|w?XHH4q%Gz=)(KRGhJ#{(D!+mfl`(NCsh)cMLt7W#F6cnZ(YMR`@B zshae;ar)44ls9#4$6p5CGCuw(H6|YaWEz`;q~o8P?g)E1O&-%$&smY_T_tew7-aXk z^z>(r^rb{6kT85|v+=HQ6{oREUm!(W;t5dW?`W&vz2OL_na;FzXmMnwW;R1mf|}DYVxt)e)fc_lIXPL=#6XBN`5*db1^QK8a79+Tl;lEey_> zAk0LIXFsKf=t&*y=!RtHL%C0hwpJn6}R3I`8|k8%7PbLkmR z=~MBHC-dnX;%F<+c&d=O*%{BzC`!!XQ>mY^)O4}U5Yv^zmN4^&N;aLdpvK3;i!~YZ z6mmuMLo2CN;(N410R5m|rF|kC*61WCbm)oj6iq+20A?@^z96SLWuGe4!2&uMrXK|K z%@!O-z{7^%y67+AT$GP`=b>|vP$9#`i<$w>Ayi0!^2lQ(cZZL3a*Ii;V#uypfYBCp z;+b=iA||w(3st}-;(^Y{@$eF!yN&|Wh+VUR0WSSVWH`Tco-$=O7xjESEZYN}07b5S z)Ssa0{-?v$>be@0J`;{;?qf(V>HWKo;WZOi`w;N_<+B^ta*`@Wt6HVDu4tNdd-eh2AsCUZVhg7`!Many+E z9Gy?H7piprIR+6+UYxJJeF#U%%sb~R(`55hXgpg%ZfB=$1)_W_%XbR<3AUnMP>6D15Kppt!BeMJ)g}ECXphYD(*3E zD!w9qP*k~_9#;OkM-1rPRogl-Jd?dZ)Bxh1s-wS#C!oO8%0B4ql*;Z%m|Cerzx);+ ziG06>$Dk=(B(LV~$UyYc?y5 zgSfOvKI&RrnTeh)26QaNmBY}T>5;+6lNRZQTr(aWBqzoc?F%AZ-8i@s|U>5RIRLg%-aRGQJgHjx47@z#-S9om4$of@)tGe}RrO~IRkco#Zl;#munsX_@~eH`DI zw2@WC!F2BP2i~qh`JY#JX42Bx3!3RPEz4r$Ktck3bhL{EHRUj2F$IV{$vg?05h6CS z_OQpAf{Dk*n3$Z8tS9pm+W?>m({&SyG_ z4y#r8ETc9pvk?8%E#ga?zc2&suj!GCDlU&0G)tIva2UcbT!`9tkIdC9WGb+;n<;fr zCU!6vNP@2$x?1{Fa?ohNiN;?M`BZbW^Z^ZuD$uPxBBh!Nrd-j-TCtB!w2v&+K5$5A zM-5lZ8%|B>_4T8`fZxXV}VCD}b7lJzzU*&t*Y zB0SGGkm0hc_7ccJCCF}5l6`}oXT#aKc*guial z@36Zmg!~v~{$94oIn8@`zQj0$u;Ea9WQ^vYOeto=H24ffKdhW4`(D9_PbXr;6zIG_ z&-s4y&&nHh2~rwjF0lfY2C9dkPlrXG)^uJhAuff$9i&o8!=mmZA}h00tAxmi$ct&3 z{t_6;^D!#mZE;i#I8^~nV!q6*OaRq=KIz0*muIjR7WR#lA#oR`g4nPp~?YB=M$N zB~;9hjN&!dGL$01a>BiBgyxS-DY4Dh3YCi@1)S`2Lg_utzC??bM3C%51)*~i5n88; zXk4svW5=P%p>9D=@<$n}DN=Zcph_b7cvs{H{&bw=3*C`fnwJ@1Lh>h@k^ImSnI%`n zl!%i$hodGBbw${mL(Snq+!Cev{w{{Cm~Qa*-2EFWTNTlvJp=Y-qG+$(P4u5%?5fY? zyDm*^)`y66?zEJQzd?AV@sVj90j^!Oua{8nk8I}9z3U@+_>^`Y+V?|wH)acuWbB74 z8bUAh+x>$8IE~|Y^U{QQt>P&$IAnM`62C;O{Zef3r!o5KJCU8)BcUvTsh7)^#KkMl z9COk6RTY_N?+cIIqjAE3SwmmDe@CHaIa5gVzjGi6U3vlpU9Z)Bg$+Hp-z)}*)eaHSTvc#mPqr~@tw$O z%}A%jT#_?3Oe&R3gmB><2%R)jr8*k^Eak&i%`B#r@Z(e`dilM`kmjGCUhf^O@v40O z(EE|;vd(U4ti6YD~fwT{ufv03W;Mc3?us{go>Gy*l&W0#%Z7opwG_ z&D}*|Mc(}r150>!ms4rZZgI+VD~qnwFScX_s#S3v@VxA%0djo!+ixQAn+7z0V^G01 zf>|9oMTa4+j%fcGd8sYegoiQ$eQ}~Zn>o)WX~t6`g)cf~OC%SZbcy6m+^TYk}T~ImPMF`LLb18XD2Q^Bn_rQc;sGfYoryAKii)ajUCYCF~z(s%N zHMLAx-O&qs=xkORVY@DcYMh(SW9|Ix<2y*eSY!<80`R zBRWgfaayGS6QW(Bg&bUH4iLl1$tP9jzBUdfWA1#n(s63%mN9kboXDVd(iEezo{_cc zs{X00=$|wjU@$TES7b4_H0K}^ZV8`cN2@tar2>*k(cRn}G6^rE<(HG$i=X`C8t_cS z4Nnwzq|SYHbSkLVB)r%?dLPF}mh{QOB5ozjj^_mIVTRVLXd5}NbKOwX^t68I?fr?^F>>G_A8U-13g znzI-yMhRZB>8WF8oHadhD)4rX%oVnH5>BcSs#yDT)sX1kR{T`}pD1_vf!KQ~g=`S6 zHAUyQ=Dnm#b>H$ECCH><(XFlcjh@80%M9^YRjEfNk<;Oy_@?t=9wlQL>4z~lllvhw zs2v_QL+DGlHt)tMoy0l}85_Na)7-~&M#B2|{S=x*Oci!K)8Je5aoLt5G9ZO3sS^pn z>fppkpix)Cejjxw`q-7xb(;4W9H|p?+f2!fP%_b&L=F6;n#m6c^C$ zDbZ@#*NTA*5eM>)1S)2E*b<3BJ5G}n6h1%4bw@qjl7hQK+XybSRQ~ zy0$d>S!-@H9!?VP_)3x1H+f|$>IN@WQC{4tQbjF-N~NDRA7jQy&Lyj;(afYbQ&D7A zACb-KK?Nz8-5?KAQp9!;-SgstD9@e3&`I2fEn@#KQQ!t)`r_yYo;!!Zh9}Ou#7-W^ z!G<}bA936l7;J&6Q3%I7lIf|xP>OSpDH-g+X4D?kPC@KT-bqw^Q;gcEvp4F=Qe{oF z-AmmzIGe{0^vUc)KVL$bDu60UrY`uRU-9EaU{R>XFu=s<5B4c_bAj)_BUJ}wQbkS~ zF29Kps4@l>g+Q&M`|+oSW-H0EW}q$+|-qc|2;4Cxj>wnUP+`*uZFCotWEcSp-L zvze}>{MRh0l(F62_e9V08jn=R*zT1~Dan6%mZ2vD(Sx$j6~=pvI2N`yGL~$%BtDio zD9`X1zAB}nCOU%)kV%hijoyR1SC1@qLKRjrLUnDlH^)6d;Y9s%9|K49OU*K+e%ZN9 zre9Q1BdOQ|)vCDFE|HyLCS!P4HiowuToelC4LSx%!F&*o`r2~eQ^r@EVwMTdejm50R5EWsrP5-*iZT07luYc1Kc*0?WH1%@!Pms>MbERxCbYXI;Y{|0 zDq=3gbQWBOGO86n3BVKSm_LaGm_Q-LD^R{W7!|KTL2w01webDH=q#R}N6=7LJdY~d zA$OqUKN|gWI=}py#DT`2<8Z9z;m2M>1C7FKl+4x_YLwLPjVZ!V|I#Ckh=|6lWmHwD zGO94?XmmNJsb_j4p$5M3L~|EYN?h}L6gn2&DEk^qH?yK2JGjhrM%Q>l$D=zn$Cw5c zD(+ky+xWPtPp@N|lGIXMz&?uIc0fYaF&!T$;NOX}7QRYJ^Cs?8T}!+MRfM;Qd%y8y zbRz$i2rR0KFBo8=D&B22d#_#d-%%Bx%Tz^tIOybQ#vjRFE*}h&{?3Ie7>uMYE<79k zxD`KodE)%T_af0pESISY$8y4{*?n+}N>!1I4!s%8iv`6b{m>mF#qjDS`}R%D{0X~tw=qnx}-a#Q7gb8P&-O~7dq)T&13}el_WBcTg0iLSHft@6$D^JX%i(t zT$EP)EBYeGHvoJhQMyg+I7%TKgeO0VjsUqJU8;*xKnb$yv*B6)%PUU0<_K#mgPw?%(mU@eAy~THgXnvN;<6Cbt z=sh7{`^h~a8U~c?pJNjB_r)=YkA)h|d{uFY8_kE?kT=MsTRc?LeDTjmp_5Ir_Tnb48>fh}2<`qcg>pNQx-`SCY;+Klbq%{EaJQ_U1a=y}A#v0jfYth&w-? z{Vi%m!f)W<2E-ObjkkwsfoQy&Rw%i2!wQ)rp^hZk45nUnh^xn|XaxU8IsV6(-m#Wr zg#1Vhe{ru;Zd&~`{#^i1B;%(Vg>L2C*O*&-nm6jrs*A)RbR$wZj1&`(h zIT*P)A_L)Tc=)=N=>5&%0u2L7CZ|B+^0elI1R8;A5U=6+U?uSz)XvNow`vYc!lvFk zdfnuN3wTT}quFUT7|nKr&*d>WY<91~Y;jl|2BVc;#A8ZdrFIdIgkDFni?5hLf+{ee z@{@dLW*BXoqY@hixr|4WAc~>_Bn-Mu^5IGqfxdb-W!$$auZc1I(h%YnJDj(ipm7S z^<oB2^dx`1>yTi#x9(9ai~EAbV8h?*qoB%8#3`!fmj(^(?}~AO|rP<6q>eh9&qH zIZw0{|028No%k1VbX@ostb+Ex%Rl;lsaR#>s6x8FnA_eo7iqZ}2a`h2G1PFWt){|AGp` z_Eo4l6!vE)sOwx8wxT|^dY|S_sd-fT#op;T`=tW>i-^{Cn8C*R2(?k}Y{eQ`OsS3@o~$hOsspPf%mo?d zk20MrnC(yub8*S0Ygzr39QP^)ryDGoJ69w{dw@#CX$stcc4{6Of!>I$5}{ECG2xxwig>1dM;(b@k6_2A9bhKWl(gAn})Q;QIPjoMxC* zr_?wv&>=C(eW z3B%4SQ!;F6+5cnjJ;0+V{`g^c6IwQb07)nU30?YK`T+u=N+*a?MBvht&_XX#5{eL7 z2qYOmay^hcT0meClw!k*U~ecWHl)RhDEdyjo!Py;%a1?5_j&)n_mSr@?#;}1<~yHn zo0*-N^>s1&Tw<-&&-!Fp>1jW(?$0f?N)8Sw?8vPwf#D!OpI2I4kSbUniOfg21RO6b za>z;@UsB^Qz99nO+Q9;7z$LJTVOSqzJKGw13@C#3#W8s;#V^%j_#CmIFNRNG78Aq8 zRi%FfiMJFn9O!mxa0o|?rEtkd3ZLYt+=ecf#K-Gqp|0Thkf@xZ)okq+T7W`VDIcMt zXHveY)7Z1VR1ko1vLhN)bURibe7T|YXYw2m%y_2`*I4!NLk^YZo*2R8O9 zt+)hUeJJ{I=;8}y@!#iumI5pS?hWF4f){&(xL|APSur9up?jA(89hQ`@W1ZxF)k6L z?zgl8lj<+83kseoZ3T?+w)*m`&y*SjF*yzh_FYXt&ay+z!MUSb!{pwjr6=#DnoeT* zOuXoz=dOo(uiq&{-QhM>IXGBvo?Bik^wCrBqTL91Iz4;68rFQ+Z#u0)LxCOv-(TWc z6fr$T%@e3#kvIZE{t1ShTYdddt@R-6aKRSPYgcJp?brl@H~bry7zgrpl{OcXjiC0< z(zQX!amk?YNI}_uR?=8r8YBJ`z+To-_HR&o0dF2HIIdgwd3R|G%0+V!daR%pi1w7G zV}6VSY%TB?W`O5d!JhvE>ds=&EdRE+Rm)@L^937pTk%0^#)*QhRhDc9F;xJMi7}|| zqN+d3zftd07*iSbRZjafM*X2$``*)NU*H!}dg`}QQ9t~8qYAHZFrZfuht9%hZaB9v zXcpFL<`$lPw)ARCF>99gJt*^Z$0$eXvsCXvC(Q!q8*c8+S>m8szGJ5Wu)TXS$3qGp zfz43_q_3Pk7LmRxuRKqETH36sSOFCiz7FATr(#_#qo-W=5=#DdD)~|k%al6gvrFI9 zu*|L_o(`blS2Y#M=Nedon~LWH=w3WMy11912sag^tSagReoD3&f!-}>MLK8~YS6xW z^|MmOt#BBGZaoVel%7JLl za_QQB)NFG1GLy>+iVat#oNBT>QeBEy*D$O;BU(j?3?SzbOEcNf%aR@>4b+s6VC7fS z^8IGx8?(gTv%#hB4@bzO`&#Y~k}}nVlvVR=`RxIg>4IeDve9snt2dw4`?#jwe+F8H z1WT(qLbSBN5w4?zD`tZO2e(JcZx6G;+u@35qsxH%gLBT17_RUJR@i9UU;w#`I@Lv8 zfIkLv#k`#~;2cscv=ifD8kkWFUL^B$s>Lik2fk0WWJ$+aE}n{TwQZq|%A{+Nd__bj>N_V(a zR5}b5gOMBGUDF#>K4R$&E{?I(R*`FDR6;rUn#$-RRKZCuBRKVR)5ctXy~WN3MsLbE z%MPi-9A*z1!EU9kwVi`CO&>O39_mcS3^Zjr>eXq^5b#=^Jbb(b-gMnh(+aI5*TN47qex(Agy9~WFohLOTap_N}iQ&siiK7q|RYdPBGycLTLUjm2s6J z*>N-;9U8pW$W_9)1s`QuilmcVb+~8GvjkRF{^SWu8&P_juQOqO4SXhuYAea$bg6(0J%Q)I+CQ(u2jIxn$jd&iwD2%c$|3^XeS! z%>VKn)tpnGKQ!rYrJIF1f#;m>s%{WK*W7~i6&8Gi6L0w9I6>=H+(4%j%!2)31D)uN z@GIN$riGR-MKY6_w|U!mobaP44xj6P{PP(_eaKwZ_-Ei;vJVWkaS(XQhR!FbjBf@-+_ey~s zgwiU1x59ETSggQJ^83ITiT5S}g`{r2<)I+))Lj2VZ|?;HI|y{%J(b(wPq+_ESOroy zSoouOOEeJUZD1OV10V6w8-0844|pD=Y_w!V>MAEVw$ZXFQs3Ms7FY_Ue>gU&mcp5YM!g&O6ZMW=`idjh#TuQkF99)V)tsR!B zs)8DEq*HNltzvOh!Nz3oXU)-SAsF%K@|NPuYU!Ltyy#2k1k7U6dC6jF8zf#(OXpLL z8cXL@AL*Q!r}Eug2N-N*y-+txL3F9o70r5~SYy8SDv03ulykaq?FEhWY-3SQ+igTF865Elttv5`J4* zTs>bqiJv)N9lDTToetZ(r`ToXj6oH0kM>CGAHAC)k%rd^3_)!4WxQ`ywd*7=X z%}!aaRujJupc?hHB+Fm5^sXk}3ZNTp6%v(hocGa<<2ryI)c|_;^Yq&aqGX;PSi`!K zPxtjaYsrhz4P1&YnuEzbr(y3{7D!18nB1`ojb{ludfW?`|Jha_grBoKBlTk?wWHYH z6gjRkx%qj^Z-Vr&f1+MOJJP=<31#VX62^PrQrOB zY~=hDYDnMvE`V9c`^xaO{DA7{hEYUEqhb+9hy8Bu0&P@Wut4Q^_1QxKF;-r3UsSFbrDmv%g5i{emWwR8*(z#ds6-R9i!Q^i&lSFYLd2h$j z_<`VGOaQH&-#}$i3RZ=q;Sxc>lYlv7+%d3`Nf;3xGr7%N& z;hF`$E}g+;XsTSVQzZtIYlC%00dq4*-L<(hxN^fXUIJY0*u5071Rc_?SWD#dH!XDp zsf-oX`WNq=3tVl);JE}=J$UCQZ1CvXSmDLu6ss~xK8c#pH}&UX78_`F{>4%#3ZG$G zYVIF%wAkEVUZ^$q=NA&Y;RnI`9O6N+epb#c%ckhSh;Jo`5B1<;R|Dv7pZ0)38*=JxMN`!gZuY8 zmVu&}N~yO2`@35Q<8~=A#=GkxE#9$=hu;?Sj=r6|ZB#DUJLW1Z;- z=38~FhonC^B-Ug?r&aGQsgL@hK^;5pXvWrM@?qv;fFl7KC0acZ)L25^uhQ-<$ zey7D$yXlso*axlIwZwso{cFlgw6Xq#(kjOcu>M_390y7KP4O>jNlH?!BWj7+i~TFd zee@Vs|HZs=h8h z$zVV~>&j$ZA1St5qMc>6S%UfX&a%pDr0a)fv_&#Ox(R{2aY@Vl|4|5Z62j zk6Z%d2TYi0-RehwrCC--wC-sPMQPTM@$Btc))L9h@lG_IC9nqNzh_$)2T3x^(~h^& zydB_*;Fo$kSpusMOkMzo3+GuD8S9;839PI=~#K@&&U_uS1-cm-04d(A9T7&s* ziOOK~`9p(>R=QcJ6L=c%sp=L7ZKM=?FV)&lPskhOoQ2AFc398W6(3vbf4%c7it3o9 zs`buC;A)O~(^Ai+zIN3eVR0{U(tFey;ovV$HXl&fK_Fe_UeD!|t}3tRP8_g~sVD9fZ;=8 zqTaOjkiwTSq2qTvx52(QtubL-Y43v6pKn^XN-enZ?92&1qV@Y**6HHyrNnP?^jg2U z$J-&!J7Bk?+cl7LmYF`fBvTx+%saP8nRKdO2x3Uz^!vjs7BJ7hV{I2CW>RAKwW2h* zkDMdM=09wi*8KY~`|p_lD>eO@!~u9uxUd=2{m$BC^XE|@W`15BZophXI>EfaHy>D^ z4;ObY^FLsIn*v;p>Qn~IWw-?}Y4iSOK(m>+V41HsSdXB&7jJNe6LY|>f3E5}=M_Hj z$`1{mLsi=nzqo3x83dkBEf15wx@rv%5`Tqq_2()uK&&5M( z-7S$*G$hz^VBf5{pqe{kCx6eLFF`gb17l!|!gA>81Eq1jveiHtx#Y;nsDMjg^?~-mHoVmbUHQ2TOH&y~FGh{%yM=`?i@Ak$ z)oj0u;#NvchXutPHTDa6x!5moms>3askLnCkIw5ei5Gx$vlP6aC3ueru{8}|3MZMs zSYTz!e*z%>?En_$IZwd45G*8)jiq<7>Q{)U!P$cA~^o((O57Ea|8`Z3L*DN4z7yWUbF6URu)6 zdMLuS)Q?0zi?AJ%CL%tlyTukXo+WTF+=;ZkCrx8nWb!(fOTh3?1FIX@id6+Q@P9zz z=b9mw#wBp=N{ul5>^8d{Y8h-p9O#={3Cv>VHnp+sYe_t;7Q#V}8VkYVBZQJXRT$Ri z663F*b-OKb6`Ca*;Y&D(Qynw@+{-Rq+KXA@i~@Vw*(QOU_4Y7O*3LFtyan0!7i@w< zNU-^p)MJ%*w6|poVy)#k*l^$HVEe{GH6&nZN89IOqvigiN~A)eiYh;$&gdV*`kdlN zSNS-Q$SNO~z{HN8@Z6^$qU1g6b$YO1YR zlv=So;ypWZ33%zR)e2x4W&1`|QsX{%)6Q`XVfPusC9swiJ30_T_La;*&t%%lMX?DbrU*6Ss4+s-R%#KtvqBYQ_4&g= zRzK_dWc?u9AJ}KAf@~ki3l=C1vW+{PZU(kbu?-?YwxHALI_T%4;zZa7e_r%HdauoR zQkfMDZ@vM34Qr~co*?GnzU!|8)zs2;H=J$=c2BqU0jC~o90nZIZDYjTmHwk|U8Mrv zu?k~RFZH8upOpmITwq-7=@7zHf&^b(G!>`OPzn@~gl93hT}p$V5d03Cmo`E7 z1bvA@#w(8)zDgUFZ|ea3y9VI9kIFL?gh^D^RXy;-dYi?Mm)o(ywnLf+@$w29dAaD> zEP;7BMT7T%)Sd97!7p#LotIX!k|g}D=Mr%EUAc-ZA@U_P0caoX1=lRu+4b`#TVp|T zaaC##GFAAY1lu;-K9mk}gg7`J;}URiJP6tp*+yv#wg6oojBEx>TsqeQKz88wa)zpm0oiEFD=Q9_?b93}L#ezfRD2{G|$?JOb=G6VS?eM*M= zG(!Y1sM66kbO_^6{q}I+(|D#Ju}c!-!1=>ygh3}g96Q+WR-v^QLF(8d?T*ss9jqM$ zA4cbU8ATgP-vpywww_?cB}?1TP5zkO;KMB3lYSU3C~;q(mb45XkdkFW|P38K>8mrx(bwsq1`macwzKU1t&O@aqUs(t?yP1)x;37~5okJ+~RiG`mW zvlYbzesAxlGrnWTZR4aH9N&1xcaE?KRp(J9&+-D>#I( zxR>d|3{Jj*`YHs2O9Sk&_|+=sT!nlpF5+C}zi-<5hl)+}{d?DrVZ^&OCX`nBwL7*C zL&eUJ#NXz;QCgBH$=)$k?2+%^zb;Woc>gLiK%M9gVr~@H<+g7M`M$vZtpWD#rwMH+ z3;oxSX@ah%0b3*cf=FGv2Avw)i=`zHCa-|89WP=D%d{cW{-_p4Yj}4K^d`rLC%>KD=>CVU2B}=kz>8u#LtSYVXZhI*%Tt|olbvL(P zmEPeh)C|G)>kwkM$koIkQEd2dnAa8I(Y_(+bSv>H);8r$=MSh+eSh>V%wqoNn^yMX z>SDFEs`0+KmQiDWbUk0|kG{=U`6FG1i9gcKQu^{ySRfk}W7lf^Q5VP?Bw_w2v$OqR zLviq0|NiJp3iCs2RsN{oTCG3o0+;KxH(qu`Slo+0`h*j5z`iafedT=7Lef{|B|`Eb zdsc0+7z)eZNUx+e@kN^nrB!Y*)*e(x+==C@Kh!&+B`JN_4o>zGd9F_FY2;4x9qIxu{(eX6RY#%naFLqx?jOJ25e35*ZmSz<@q z8nDIxy~N&1hy{gD+m#bqT@VNQ2Hz28VS`7L8(CUrHwnUELQKaW4{^lU-s9J4?Y-kV zVjBGWZhc14BtKd=OELNmAa$WV0@Pn_pWsJAPcMfOTEd}fs1Z;c6%f}d5fGQa*Z>Wm_6lgYa7-l|8MUo1n?o>*$!6hd z`$>GEFcK`4%{h)3%jS6>*&JG@_QkBL9D7JCF}j>901l|*jVnGIQSYqNPC{>cIj56Q zX}$e@F>1Yk*EEd6S${q5vQN}UfKva;*suR$YXRp^rttUvQS=6er#r|=axMIEks5PB-B^UC} zT~n}Ry*6q+vEDaoWx)3CDQZ1QTSqtq?CT-YS1xKDAbs^lts^db|6uX$0Ge@$w)KWr zGu|k-9|{(~2%s6iYe|0FYws8=UJsxewZnP)U;JHtO=iLXb&lEsu z(9*Ti+(Y)oeq3VR!}je`rwvT5c<|hwB``ge8y&H?7Nl-0j|`qKb`K5)Gh}-X)3_Qn zW8=;`gm^)Qt7#hZs|}BPy>ACF^*9WV@Yb&5EIh784e7h!l`sprU^(@9d!{Hj2_5ym zHjWN^-}M``k#Xe)b!3Exp&}5KcZo`A7q5QnbN|FCdr6G$oM{@Y3GcRPA5PXn2A#HN zNFT5U$bpM@SpuRUJ(ZihXm2M-U$Zt2_98~c~ zA4bYFRDjHP z?VXn;nUk_i6KBnsZE>Wi(PFtoan50t>r)kP1>y*Q3nsO$c zayX5aTjo_wBi2n#S4g6!N+VVrZAqM{EvY9Lqe?JSsbv^_MFYjJCmN%kY)GQEd98Fn zOsJzDRld5Hb0fggP)85?`*f(|A^KQ5%rTfgP6%@hrH>V1j#2b++Q;_C=;PZT+eg#K zcAwb$)5q{Sj*;~7%}?y}>EnP;l>(i^9S_pf9QYW*ya70W!5#%}d}^--5?T^sZ+n+03U8={kVgv`i zhjmZ709n~}!5%})zjeXhlRk!jVeiLyF#^a-12FFkdmEZ>|3YD7S%kyO#)$|=Po63- z-q8Rwi*%SM)u}J-{aJo2m|4vc1#&MzE;?LPdN}l=(w9va6^3%66!|v0WbaKY6dLf| zf)!qd-NF@~xnyt5H*51O~ z^0#)cg`|9^s9NrKicBUob$C^++4uGV92_~-ARHHefb6XOUg_?h?-k0M?D1SPMX*bM zPy}m^b_`{`NFaj66((Kb1)BgcXgFuy6<)9j01Fo99J`_jc2kVQYsx);wD)0cBoYia zU4u;T`jM|Gkzj~(euOy`o;p`~3=;{4;Vm3(X};~M0^i0KiisGnDInBsslfNnHQq3i zh+&+%4q54X-QJQ`_;*W1`%+ptye4qmwdL(0nb-p?6w3qv zTSC^0Dc}5w7jiNYGR_J4SrI_zpB2kk^RwdVX0&r~QZ*5&=5~PWcl$;0bd!FubLMFx zJmW%Veo=U?)D*%tj0=tV)!vCQZlZ1nwc+`dXWT>>hcvAy4q?A3JU{W9-5ZuhbX08M z@81*~xYW_nmy&J#-9A84yp7R7{Bf^aP(l9sU6Jz1PLAQKQW(&4zuBvUZMS&7jKKUk z^yfL99bWnTeM<>;f(5SGE?~n51tX6yI^k!41Ypi#@$wgv-Gx# zV;VtlsjIgYj`tf>9K*Jd3f%1Cs1EY~v^Q3<0S&zYY37YTm1eI0sqj7MFBRW7xC ztMGm4FSxMCK#WCZjSEx*58Y8%nsG;Qvd8b(y#lbssTie^COqB|qpA_}2%D@1j{mLj z_~qXUkKO*U59A2q2(~x>f!OW-M=`D$369>XQkYRxs<^v@x}V}n-T+m+M^Tf)M8|NZ zmqw6t8Fui-KT!Tt1P6~M{J;xB6F0m^@YV^=2@da&r=#fLIgKZrT1~KPJ4A=qB~40p zc>RzRs}lu~&74x%Jf@{W#_l2y+{|JK|KSSSMj> zbugrc!q}7=3S$RqIF@QAJKVHLnH>H*5hRmj?NDB48lyMk(3^0m<{Nan;XB*-cOvMW ziTyhf^hVr&CxUp@>fec=G9HK}^94M4{C6T)4g5P1goCnwCxVK7{5uh(QPf0+iT_Rn z!M_th>$9u6TvLF)KtSU5?CK}gbK^hYt8Q9=E>YB-GhZ|=-b!D8&#V~7H-sT zB1zw<+C)-0a!ZF0^pf;mc0MlWUi}7q30gs3f^vIE_Ih98(%nUG^>U=tGG&;uG7U*^ zRmwhjO(W1H#SzP;rOYgCD7=pF2ynJDr!Lt9@+zs{3Z7b=*B!jv+wlNbQ{DHTZUsV@ zBR)-3oqIS9g+aI|Nb#L#Or)_6bA4hUcZwJ7+J`Phu?=M3S)kj&cpsGje zN^^-)t7>=COHjD#eV2RH(u6lr`$+Tdcd%sB*58G@1<UhuS zJTt(tMry;-)n{}Xf^`o$9u=Dvkc|i&z4oBa8ifm`39>6spPj1%9b5fusM$8ivC+>3 z65R(o9Ma<)vv{w~IF`V6EXYHKI1Y-^6qcvm0Z~FZ=Ew=hTmq{PTpR9~Bdy}9!)-5T z39PLA&IrdELE6Idv~9a++Z;J=JBCYO^`R%c`@&O~-+cl0{&Jv|SW%!l@v;{+s=xoj z1GCuvi(R7}uhbM@r_^)<#;Y7P+JGS(1kE!Y{720^1?p`z=rVO(rtu~WKUqyDI&z|Q zVOF{dKc}7N=nOuc=*X7-)%r)ok^&z;KZ{p zkbBVOf1Y$S7Q|J!%lg~bZ)%APvmNKe;!SvusP2c=|L{^ESkO&~=0nRniqkh?C(6M# z2Is5J-g5Ym!@^vGj)Dl_^y}l`m3h+~c~xlP+e8a{Om{4j-bNCoaTjS}%o{90r;!@< zfO%S;Ia0S2*fj&o4(T4aJ;TvjyrNdV?@-Y&Jdg^U_2 z-&G&wyR23|eJ=6VIQ^_ii*=Px=mci2br`|LQLDqbYcASDhM>W~%~SXzKJU!GQ46eD zv(5y5w81;3`!IG@r^JO`q%!zz>3ZC~@$Cy$V{noK)o!m~cSdT*tmDL|%g^ zM`f-f&rcLuo#!|rp)$jJu2%vFv};QkGc z5Me$!FD+*4$_B?WvD#*|!4Q6S`m|V=`>ygJ z+A_TS)m*S4#Sb`oA4K+|s+F+Zq`(m)NCu7-&0gCfv`wB8@3rL;ILUMtocm;xNFRi!m%ka>5!F5Ajn@x!mfaX`gp z)i_`;;y~XOdtjC_4geRoIj)JXQ)2IciX+CJ_~2&kj#dv=xF!M}2IvEdJ+Xe)f*rb^ zSp0djb{KHe%Pt)T*h(F(LK0$(rmk_ZU1Q^bU~{C2Mk6>|=7l)g zaxoQttu0tIRC>GDo-na?Otk zO;P`-z54pWQGvHt3A$syQg4SqJ;X4gQ>6kl`Pfz?_oe^Y(%RGvELdp0-D$uU-2bt%XULKX@q*zNGeX zs5^cvejHINI`}%g-|=TP_{AaAIq$)+c^ome__QtBf&Vz%%bE{l^QZQ7c_zbu{VcQW z=o-8Lo*E{%G3v*Jw`IpV$%9zp#wyXfSb`2dAK;h(E+2KgART2TLFL1?heNpE_`Kdx zFy@$JsH&XC9e+e+%QcEaM-^OLP)TXXZwFfo->IZ@8L^`8moLFA#V^ahKJWNI5bgto z=a`i4aKuRMC$c-hTKT-fLf^bFO^2me)iF` z3o1N6)!=#e%cu<$K=CqaOkhPdz$52lmp6q$#K){ti?wDwtXOT2xKz84%#Y6|cxa{eG6t)=+*8^_Z%gmnyaT@7BKkg1lhGm5pbcUUnwd*#Qr zBXuDIgKp@LPmdFvIAcCadg@&zs9EXg4X#YFwhcWGGpMUqEf9!ji?uIIju!il4>-Qa z;sBSxoDlf)Cr7USG#+gF+3~bgqlDQkUH}Sa39K5$m+h<%>aOn>0i3_U31=iLO3r*< z9qa5WHRV$ATqv>x{PC+}imJFKoR(8*agCFuV=h65n|+GH;!%(34xH%pEm2K$QV=)# z0ksFr!T}W@-8*#4@r@`xPO0fkXBlE%%QjZlozv8aW9!1WT z;sFeS{sQPb8p7hgoQuWNCH~LIf2a_6&9HKhqZ5Qt^Ac$#g^^kzhZTviT!M}sd=@yu z{z3rcjIxq+T#2yqyp_&tf_yT>*+&HDj&2Q;SFLn@ffI&{Vi@p$aqVT=!4Ob*zmvPT zwg&o5@8Z>5TwAH`>vg1K_wwrV0%ZYV6ewy6JrGa)S46u3l@AAh7C1-Cx#7+rQ5+5Y zt51grGHx10$gSX$&CaFZN`&(V(5uL~7(M+eJ_#%Ech^F)wt{vg&Qt&!eqEl~z}ZF+ z7Xbe%)n6g@suY@438@_5nh)A^11cAv4B6%Zzx%M-in0(~Lf%g5YA3kS*s1p_L)fns z!yb(o8Z>dv5nl@+fU&gwSG)qK)71I7_(=f7Cuu3tn>ojbKLmjJNrgfM^Napr-lK+@ z1LZ%l;pq{9bXRP$6+1!Bh8u0g%FAr{yXMX*0@x8>)Bxo6-c%jza5^Kvj2{bnf)Qn# zqCm%X&T#P8XR8~7UJaIqm&}L7mb7!$0oN|r8iCyX1$9ZWw@|U}U&6HT1Z!K+q&=c4 zwzns_Q_;`vUCW06!)|BCl9pQXu_XEprXI)US)t&-w?snFLnGM0fHn0Vp zd9#DFE-wE}8&o6W;K350AL?lf`YYWp#nVO*3B7U$H+XY zW3gM6X$JhVuGnR(b^z39tM33P3d)~1<6dh|)wpkc@RM_Mi5=o}lDWHcp)!0pMeMMT2iMpII3tSKZG|E>k|6XK1@$swTm3+tm$@mP~F$q)jM zLBirF+mLKBB!z&PjV$+r+`p{Bf)UjHu@u#mWQt3UH^7?B2^Epx+%9`aacTw1FeMoi z5>ZC43#E~gp>uL#Y-}84!33H|MMcy^1>zFo;y})`&KUeLGhj73>->-Rq$Av^bRfwY zU>0(oN`5gBqZPy)a`ug!JbOGA;CPh;XEuSpKJbg8)jU-c$A^%s9GYlT@i-_r1ZT!kBgrmtISgBR9X zYW>gmB#jPx;=Np25KarTz3bE$Y~`D6LV6lWblRUA!*xwo?6 zkz{!N{#Nu>HmT%?{vl1-S0B8&{O}50r4Byp;~XJ{Zeu}F^WwE0t(GH{?R}l?g`ntd zHG$B#Ut{onKWBfbmAVSjOR@Pjkl)`KEj8zIaW_Bc4`~v)R6OU0#pexho>3LobTfkT z({vko`P`V*!Gbk@GcPw8=sY1v<5>apCYLfchB7vW%f*c44Tg&m)45d47%Uz&#JNV| zi)$E*q>POU$QXPpo*v0z$#|AO8472`(q^t{jVK!Uih}HqxHQ5!OS1VVY@|boH$&V? zb(-OaSjLTXW=e-O^qgwlPw5ZPuI*z*8UJKAgymu9OVV2`AHO{3s%k>3dM#j8dV2@F zOmN`g-plSsoS}mBt)|Urru)r&yAO9j6u#LhLQWa&+$czYscET&-U98$I!mNmTqf2K zyj)d#JF^&Up|?QpIOqMU(i#Pcp=|tuyRJ1*Z!X_GyupD>;K2U!G3RnW3v~0wJ3p0r zar~hLy2uAv0;@(o@woG{APr-A+RYA~DbpM|+3dh2u=+sZBs_V=>uO(wKigWIvR$>V z_9SXae_bsTX0dg(pUlq6U~wg-rt4~X95sGZHEp|gVJ&mJYGF;EOSpre1u#D8Ow~sP zfG2gQ;NrgR+9kE!UZ(lCRN@)Pw!cNRQ54XZ2_=0^C4P*1s=s{pn3e>;rxL&4?tir- zT_I6L$J5)j(Q!A$i>{z?c#+vRm%zk~p755L$&rC(-@^T%a)mR6n|wEXMm_lk_!Sj= zBV|a4P0KWA#2MnV(hTOb*aVX?D=RM3oSbZcvkv@)LM6%{;Hzuq}g_r2Xriir_% z#a^rnozZXoHMfS(sFr{tA^Z0pE(0USO&!eyIc4gIUsNpt#`#YDx1oz^ zON$5{S*s;4sx|`qLT7-30n4?d_-&O1QRxrG@)ZJJ+2CG1hO1_2&8)_Cf(F;SACJvd zfCc6~dov=Cqacf;Ol!fdr*zF4Zr(#`%7Oi^25k5()!&5c{=qJ$t^eo+8}ANYy39Ep zoZ6Zf2Id}mp%Z{V7YYAVfqkjArkq?jgsii}zoqX~C{*Bo?;rek)!=g${-2oq-oPf` z8=SU6W72#KzUL0L-J^x`?3&_ZJN&PZAEEskgDT`!$R9z!yMuGza}Y|a441|~7R4iw z#NT3gNE8|FDoMH0XFoKAh5i<$^|Rx!%%KhIlMNX$MR_nmUnNQzbRk_ zFwWE4^^Nn6F2uLh5QDngS44q-o^d`cMwR-9xdR2DekoQ*t6Zzp84T}th9v%Aj@6KW zRTgKim{jWDAiF9Qyg`cLr8x9*INw&|e3y3ED=JU`5wlCR3*S$WPP2t?qeFk;dlU$D zIqQL`&wSAsTrAqw7EE-(rRVXNtnKkabW;!f)%5eDjliZq3fh3F9$5CR1-lx7Q@u~M z1E)N2O&YI*Zz^+6{I9Qcqg7&qymyy#yxwy6|LvTU^=)xQssAgrAEMfm3)O|cQoB^U zw*5pYRxj1rj|?c{dvbfdY3qU9-hr*l+lz;YdT~zg08uZm(+jw^9RU{{57fe|mq`f* z6I^JX*{WV7xLIZot{#^JSDxWfVweC6B*&YQV-rK*ssvI1;iMcHIezI4i253X#nJnc&4H?*2TfvN#`y_OrAaV>Oy$@!5WJ;}8Imj_2m zIa~r>JATqaPK@&<(b6EdI{%#xCTQ`mm2S%l;@8j^&5))&MS;maCIHMsxJ~2Hl)|8k83mXkd@maA+^6B{ElR|VxR(uxh zNPMQzXo`Xl-n>fbFFNyLF`joSR+} z5^YE@Cqn2m(h}hRk}_gVS*G}; zZkm#lGEB+oP$GsnVBhj(L%CPx+H#?3T$&**Dx>LncD-O!jkYO^(!cJsjX{OBNgfyceF*Y3vJ{gM03^(A%CYp@U$`az`^D$pqh3L!- zxZ0T!n{G^sjf+n3F^|8X7>rh7a5Zt-+*M@bPIW+LYohx(08 zZI=)omy~9TGiN42pOPM*l@Mo+i%(BaH^(JpWI)Fe3sMCL(YdxIyM^e$O~->&=n!Jk z0yk|!ZX*eF`O4YS5SP$7-pHAp*%X&(N=S@{Zrl`~78{!eSH{h0>9C_|5bW3tIpwjH zGlH80T0sXRnr@AfN7Mjog=Ogh1!YQ7+fNlrny4;a1!_rNYm2U;PayT@6|KR!ZX5f8 zwxO;;|3x{H(NfM-U#9*8v0f#syk1vyjA z)6H`x&zN46-EATGc(f}?$OGYHT+Kw|0$>>9YA41m1dokzb%vk2TRX6x9(oifaG%$;UWot&Oo zl>NhMnAJQ3{ImQ@)9RBaXB1`UfF|Qy?ZYmijG)OGiAC9?3&6wUT-}5lpkSOU2EM+o z80Tsf({=+aP%k5MPG;XCqMZF&_CChkV@g{Os8fq5SN9 zm{x$NkMgroU-PqfqLjJWjiJIVDS9CLb@(&ejx_cS^weN_H~9BW^mueS{PPxi>I_lH zej7ctgBWC=MNd}r^bUHeHXHsqho0tu-H*FkKJ+{UC;MHL@Yh`U=RNea62g=HK6;9W z5M_UWo_au-vOh#mMeqp;)>xDs0x`<|7$xR{s0psPWxt_>Pf^0o#qiH(_z8lSJtP0-G0(n;p3t`! z*N0D?Vb16@=SieW%jTG8XU-|g#^1RA3KhX$nf@9*;g1_%#%bsyp5LG+{9VUy(G$Lh z@H_N`FP{4zJ>iS%en3z7!mumo311xbBYMI&Dmc(Z0r&!jt0=7jK0100J>orT*U=MP zumUNg(#CurGBPgAqc&9#^vk{08PjW>>RF43^e0$xoSG zaL;SBwvr~a5(uuhlJ4oS5{$F95-=m(bw}!|ts{xn0fphMqgf`b1Ixvyj?_%o1?drO z9V2NSPp*&p_e{y~%-=g<9l=wNrb*z>iLPic=LuJal%uJ=_B5C< zH_e>g5Sl~rePD#ttW$6{6aj9kCvwp1gQr4IS2T1?J$i8E>@w)8Bapw=y(U9pVN5+B z^cm8!CJF~|1#vGhj;xKgSXkxzC%ay(DQ>XhxYSpPOY1Yb%$b&h{+ls((Sn@mnTcJJ zle3bIu?DzlDDPl35$T zJkQk^oNBRKieicA35VNKYfW%!T%Y?v_*~cF&{wz;pt4>;bMR^3vJB~MmW*l}CcFYF z=DFe|t~jt;+{2o}+K7w?OQa`<7^M}=e8kce*sj&B2iDAYZ4$14MhjfU(p6Rjq%3s} ztH&w{Bb9uQw5)gJH>@CfBJ9gK3tjgMqF|FZEOG@2QjiU1Va;2st&M(=9&SK_wMFUH zW(DUrY`tHezS#AeAT`!hRi80NKNB2f!|U%2^y{h#>N*#U;4q=xQDGu{zcEr?yv+5Y z5E{?ggW89{pOWY5FLh_h7<@6_211v+`bu1RE&BBGL{&@ZI@p$cih?0R6B*{<22dF< zBV~jiLK@wm9=yZqxmalu*FKUD*P$39pT}7VD?l9ru`69)hEC^`Q^$B(ftcAB<3m^~ z(WU9&>?+r0i7SnJ(~_ax!nYZ+dj-@znd=ZXg35f?$hL~9W;4oGzLem=!R?VCY>n%< z0LPyBE+d$fQ%3?ZuS9j=diH=0;pu|~O~I+c!Zr_ltyroKp2IMf!|;2F18?Le3y1vk z7f+huYr&@}qWKhGIdvyr8E&-Bl_i~1derJOV-ly{`g)&~K3k+*bAsl6@4kgmXXudArK0fBXQlt6FlS9RN zcGV{8I(CHsM<9H|B)1hK6y`$#tOe*wR&cq{RV;R(HPDUJ4`^%1HRpwh5q9lv>QFn` zWWrs}6s6BNFitO;><8WUMXqg;x-tbH7rC6$d0G zrC9MCta>rdjXlIUb{xh!>Dk6YA{TXCnDh%ox{{FUn$;3tQeyYwR@W@4h;auBpK-T< z2Y@&Bm3DBcI3l4lKw^;{&FIMeik!vg`8Gf;{`9qry~K(Dyshvh1$m7MBjwrKUG>Yv zQ&0_>6!r(_oFOq>gR6b1ye_6!SugQifCf+ak`fzMBddg4>T6#uPO;SolTyl-`%#SF zQ_4P;Zt0;W`~uqbDeEi!!ezqn3xoXbt$x(zvp!|-hK4&7Eu#SjNB4#-nFN?{2iVrH zEK%ahYXi(#(&0kCx!&OCjMQC1w2RTVxvnZ}` z;q@FT5$C|+HOjzBGD{$#8iYSoc2gS03Shs*Rdt?JHHcKzK))&yshhC4K^fq>CmRNp zg$UAAt|c@Q5}$N{;=yH;r6;)zG!$yaDtpfttC}T25uJf^NZCFiAB-GYHa2V>qlY81 z)IJZ!fRBfkt&ujfbR?Vy!KQg9YJ!SkWz&No2{Kyr$hta2*eD;+A<7%)Y%Fn&XhHZv zhdX7^63GTF945d#dS^~Fm%zlOfb_FB62oBHzBneYrTB=`8;vU)AMF={SS6!z-C#T% z=HpAz( zi@4AH0Vl;r3~jC@xiGCPD_DHjsoiDGND>ti@5ZR}4eXuZTA}9jZ!rapo^Rqn!@_UH zCHM+|=s*FA&i@^J)m++5)}jkbn{Be5F}JK^q}a@*-SNwMGLrV>ewS*;Z$p=M$FJy8 z9Y*>GDIOg)r5-8k5%3}lJa6_+dFevLVA?Q(z+X2{-*9vgNH4ho<`B|L?_OW|$cD1z zq2iM+?aq7F$t$$2OhRdupWj|KEKFPoNz^;<8A*sp^hhCDUS9TOsF?5auM`~=60cI= zn^V&uvg$M8L)1_Xgk14Z2Hq&AhvnA_me}#auR|*}@@fSPqrPaPXMv}DFn&Reamn|E z4dmJrcI64;CjoFyr3idTao$xo#Vv|g0>C^@Lm}sm+PO#&ZwG)mLm^SY{GJcYFQ{SW zK>1IMZ>s1|EAbZePGwr-YhR`@KG*58PwR>O%lsSPT-udBWh&$ARfdg^J7ClvYC9KI7wbV1f4DE#l57awd9j+Q~C>YmK;C~de( zbF`9fa^|>$bW<_MNgZ~s4-tUhK#2gP3N~@fcxU-%lz8*j=p45`uPT4stMEr!P z1$UDvQ@&LSiONYIgwU#E;SM#H+ca3-y*c)yEmzvfN&u&5d@Q7+5F1GCxdPoluD!rg z2nY5tJNaX|VY{$Kd7E>yhSy%0=oP&4*3ilTp4*8K}xAg)>@3d0DL}^7<`1Uu`2^ z44@=ysuP>MK$S%P@Yv2FZNPd`l^~ZD*)106cQEEgAxDw_Lxw9FZLKzGoU@fkru>_vquN% zJ+ns`92bdT)8t+C!HDBq>mF&dt9H0}qTIiEhSnsybR1PphFhttPIcots4-86x`S58 z!9AI0HOfGh=6M5mo(q{*HA>UYvEZS69`j{-8ni?hSOa z0&Aeb>^tN24RjLXk6gdN0sc6F%r|ht?{x$Q{TIs3JPJAvo^aDfV9f7ms7L@6;C(d# zF|SdJsPsIy3iH`o%pZ5(i>cPB70^`QW(acj`UdGgvsdF2ySj80zC}IaZ<}EX)R1=O zYg8YxPaHrmqTl5H3hp~@Z>YO;1~zw3##xuPUX^i*4LsVVzX*@Yr2`l|)8#K*yVBc; z29JNg{y_*4UME6s1u%kcMRdQ^12=!#MX#6q=Ge}Bme^cOfi?Pb`$=>cg;FC7u#Y3+ zpX-4uzwR7QA5FD(g^8&i|510lQV*|IVtbEvBpl&U=~Z3W6J7{+Z_8&XCV_+Ph9>2D z!B$-3Bbrre(a49JmOoHkvf(XNg!ZxbQb-t9lCj-@@3 zK;Dva&T8SNw!-p0oWcI2?#T^}uH5y4&`8>FRR$~cM4a(Mu(bpj3dx+z@{c8P;cowC7psu)N+FCyNOlJ?Hwx== zVYK^hmFbxvXZL1$R}?&P7>(gnO=l9C8m7GE(R@J`e)C3y_g*#L+${9<0GN-VXuL`> zC$rE`13+%pP|#WEl>m@WQAkvfzoZNKUNz(#K>x`Ebat3OTg1zjP4{SxvGE?Prpy?t zFD;*0Pe=rnZ$Wj?d>x*J(Z#e&aeGutLWVusC85T9R2tL(HpgqwT^rn=ck>$_iBu=$+_~IEyM|X{YS)CX+IuAb#W1K3@~y8YJ)D_$nx`fsOC& z2i>}Z(fjsk=LvVz0CRD$(LVnm52M|W+J`lfuEw^96#j-Dqcs#X4tCw=-}cN336HT@ zf1lRF-BE*lm$o-K+@I~?7&whU#tlfbNvBy1?DCL1DnfjEA2vVTW&ByRD=Q%H+dd!Neko`6l=ljTjJ4OeA(qU@s?he$US)0;HWT`x>L7eFiirj5N#wL<=Fs{8#g z@lpV_XhwH=DJhN8c_8!=; zwY}E+)nopb*13-gV#-h)tD<$pG~n~35_NCFM7i_R9=p))ij+1D49>1ahqsca9*Hvpl>Fj_qh1x{-E>Cr2BABj9O_?KQ-(BaGC$#m}}Y zZ>n^HrE^>SCN19nuy|xYIN!MRL5U+pn}L%zlReN_{Kj|Aa z8QnKI?6XY?@bue!i(; zvXNrvQ1cyE!Mm$%&|#5J#|dEab$nyGC=!Dn;X z4qAUWEaw#{JkXL1VniW?>qChSAG8m3Ysm3pJJN?VJ-y%Rk9Pd)Y$pKR*}ML1=gu*U z;dM9xI|fcx+DRg}2g-I_&1w$}&Eoi({A8}&5X1iQEd9)LwXZC(K`wJeR0OelkH zC|uxjcZ#X9g_O0C4IX$5GN;{&=S54Usp#}UB%i{XTU_S0`7tBoPItM#(^vTTFxCO@ z@nQVK=lF2aP~2zuXLhy+0=T4TeU+Un${tz)&VRe9v6xi>EN-_^9Bl{Z-R}1AKIXsN z?vC)|vh6(X-a!*8YJ$^|atCm(eQB-HS+EUwMip+t%Fn)z{}w@u$j^qQ_!Fj!5I^`} z!c*u8pKMr+p77@NCFlt|prz;uLIzTsG+$N|?f-&-AKs$uJvC?D?cP&U+)Q+eJ2f}< zo=(lh#1xT(N%TEv0pbF0_(M;S1D}&~>Jmg79Pp#P=;WNAJbZF)&JlMj>3LQ?FxT=7 zYw#RPKu=gD9S~-GV6LU?J|n%sO2F&D;8};5LC=nr-sMtZMb!D6I_e%Eya8%H=k5~9 z(N%y06E_WQ0_&wG1L$Hc*EpE@peIUx@j3ToLAu7(jawXZ+`UBll}lwUZh!4qC@?G#k&=VQ z8-;R>`C!nBOij3M0E9s_m%#dkp76Q34)`ob&};6Me!$xCn)|r4OwHP`=*28Sr&9P) zvT1qdDhegR8wYFD2WfA(v!v~;IwTAdDT7K5K)28!yiq88P>e^ba@|R{IfjtRMapO1 zbPpD#gN%|?j6zLQrm#JHs4Li6Pgy?eo+?OhYU{wC06GJfoO5S~o?)3pBK2A2y-4LR z9Ux~xPH{yQWvl>Z)86~#SI)bOg20r|+#zr>%n-N+5ioxi+(?2CUIaki$LIY`>Y@p zsr%6vk8?QcalX{pVtFQ*qQEC?v6Fx>IywU6{NSE0?bo(|R5NJzL1H)Hi=W&fVu6pR z$n+S{8J6r-%HSx?rkn*dinY!f1D1vPH>LKZpra0W;lX4TP z5MQq_!P6Ridehxa`q{Vij7oQNRcWa3Ex-$v?jc~%En*;$i`u9@7)R@%!CdvuAZ4(# zz7JJNlV>_h4W3n-3S=nxXLqVkVQ}PUcdXRTw{-7c+#P&NUz{?uz0}ROG-SUqm~eh_ zb=XeNU)}Shp}uA6{H9YQW_F@);TylXZ}~RgD?C0?n(15Gb<3R?%3{VHt^MYT?Rbv^~|5{4N^Xri6!&MU+$@rl}klR0!!b2$Ni9R=}mXsgQNq# zrQ`p07lv|m`|zEu%Qw6m?;p1$NN@8sDlETVeAwd%eVyg`)H>C-*8ji;XL;W^;S;{U zJd5VxP2k48%2$r}3qh^Xkw)IYJ^b6g>o5zd>{@`26FGxCW8sIU4-sN|xHsewqrMdG z=_da6toA6;^=HXcn?Kj9?=r}_Ufn#fw}wad6Y>|<^jwg7B1Xu76_1aiyR!tHkiUk6 z{J@1a;*c+!Lp=8j(xa?CGX8W+o(a+fE|ra*Mu&O^h>souwouRVP>#??oLh)EIX3Vh zD3VKH%!BaS9(<(gLhev;4VA+ZP}qBQUuhNMLtl!^VHTDmKA}Cmj^`iIt`?$&BgR5p zdq^w9<%fKQsLNyp5u$FM+^n8Q6r|TU%&Xm$)kt0dNu6u ze?hOnm}Z_orJ^b@dH=33Nr}Oj%-mubDjrZ{vXASQ29w)S}`Cn;?drrO-P!Z0pSV`h#q)}^O3l%*=;bVdg$DG5FMJ9CGq*-Y z$b!)`Mg*ZfJ<9w{J&_z5O3x5-wc&Xv==D-?HTj1)PqHZ4Sxb78(V?~V>xcq-6Ft93 z&uXdhG;}}sGszPp?dLLa2*_P{Y>4y0-33%U!fDDUszr{hq8LJ9>Hc2vQu+ zl6Sl*c9DU*wSo9T^z^YLkR1!$dUY=G( zp$DlK8|A4RBn2O3)`XQ4PRVM50i!*=rBE&l8JZY;6kHzdG5gZY8skZnn&}h|8ta+t zTfAViXN+XfDL!PJXS`2wJQMD%DIEm)2IilG8~YRoc)UAGQy%f2G~QF_Tm0AYp3YL1 zPVuFWdlsmQ!*z;D(gK~5&rk3eLpdOQw6r%>3Ql-mG7ITcq&=t;QqWSg z9#stmb|5D7=Of!-79I-VS!Fk~XJ&QrD5a)jfx{d%9t+ryYR3ZGj*=}19$>$i+uk3W zMtD(F6}kq$qw&Q?y)%L0S4Xw4!oT#gPHw6I%d$Nc;-8Rr^)?^oss11K-a9^u;(Y*i zHz6eKh9W8SBoL%SdZ8!*1StswM5S|SLPQ8nQE34L=^$mK29P4TyO88^x6(sXiqfS@ z2~Bztq)2;bX6J67-P=q2miK*se|-PR=Q1ZUWcK9vEpB+Dn+l{jA9NSFoR zr%*sLG$5$;r`ZenY8$ni-U`I$4hWha;oEccC4#?x)NXoTU_4_7rhsVC$^c_VFem`B zwx<@OUA|92A8y#FJ%rh5BbBq`0E+zm-H6l_{8^aT82pigRQwT=u%zTD@;M4zf*M(tS^g(;I5Q&KnD&$7tRGi=nJW$Cn0b(W<)#@e12k_<2|eOh5@ z{QBj95uXm4&o+xc-Hv0DoIC39X)GI=a1-mf>lZz~lUWANku8u}<~YofF*4he|GD~{#S@s}~-&u@;Ezp3Vi=(oy^GAzOu%!+NyMod8PcUcIXE+zAS^2Go zmCa>VmKtOjkvi(1@$wr7FX>s95;SzBOAV!Gq{K~H74_Prr=n5#yCL{X(D=h1_|q#< zsiB6DqzL>qoESqyOn79fA&Gt>x<>J>PzCdZDtzrtt`&4WBdz8pm4XIr(kiIeCY6GE zV4VLm1^wQ^)Djf5yUZ}4pj~B#*%cHW$jpAh58mWjKMUAcpU8k&sL|Tx%~8mt>>={k zieJAvHymB~I=dp8GwS=A{5af|E62D=)7652^W6!k59`kuSDL=9XFHBh{Rp9n1-hHY;|KI0q+2k)VJkhmAI);JMjtR4r*jxnOQ~OQD@k z^N??|!{!nV&tu{WIJriaUSV-#s1w zM9V_P#|mG;aU7eANei+^^P@J?)ZRzw{~GIm1QyWjnQ?wY6<`pk=*zok-NNib_eIKx z_$PY3FSWCkFf3Oiz$se;r|u}fEXm%? zZ*v;uIvZt^Jc_?QUF=0XphODM$h0hbkiN-Djh1JB>?S-=BP8$Xb9bb>E3=2I}`{-L^R7i0DNB4yv{~yQ!+RVRd$z;OpElXic_R1l>BNNs{h znb4VUzD1Rc$CA1C*@way7C#WeH2XN4=ERI%DFnwG0F`i$drr;htE8EGvXAq^6$Ol(wy23_ z?adAmZi7;)oL5k#ecAO@t??p9FdDiqyPNO|wsu&3%r?F(iX1gAn!AE}?$3@@0n_!L z!u{Djgo;~LgfN%!#jyVEFkIe&Y@-TJv7fpSj_kr-L6v{a?jZt#oXnyvdw>Zrge?B} zt$X!rHYc=%J(6`U&AMlM9q8rvvqPlShj0=sbO+!BO**sh0}5#%>An@UI+oqVskMBd zV2Dohq~qC(MbNoS74Y008D5E7WzU_UbfRbiKAcG2Oh5Zu_GwO-tF(}XUUrNvLRbV! z39fFqnY;?&)IPV1%^htyg(I9%4=7_>s~XOOEI6H=AZ*pN$M?osoXL(*wKiPI9w8iZ zZrI^$b_-QQstpBaaRe^XwC3k-m5BfLPbIsf4{wBlyAK}{t&@d@m#84g0bNMg$DQSc zrvQ@Dvi4#2AmNSeiY-vBf4U82JXjy-+`P-rBizxpM_2-HYGAmhsO4YT0WLu1{Dnb+ zok8AwjMH(5l;JT>mZF>+20g*M6tE%1o_f6ZoLl=m&8{ti)=rY>!8r7YX~6@9FAB5S zQO8QpvM=&NIv9nHP4mBDppNG$93h#&MH~&GW z`Kj00U7eaQ_|Q0B*rd~%o?8Z;JMpa-<6GKx>T&$_`Btn3PvMO&k{RUbW?Zem)39!b zn~@X#gec=f}9O(+`GBsl(s^ornxui)$Uz;qoE$g-spB2V_7x$-SxFmeZkmGXr}?^ zF>`S214xECXgqHL4lQbNpFKr2azwdJPC#TirN|zg6gZ?Ih0u zp;|lHU8r55$|-bSI{_@AYbSxAK#?-}Mdu+u^7JHqn?U1veVdb_gN#i%q1Fz?Snz5< zf^VQwpmd8a)Wk-oTP5|cWh~7LO%*UXU8Ppk3Y1c#Yq|rqf6JKR-2B>G#xBD9I?dhji_tfOZ9BAPu-T3i zPhyl^*}*Hu%;Pd-mQ=lk@l7}WI;B$I4m{a=rw)*HEsc|T{^<^C2;ezLWgV-c9fYug zJO@cvYLD!ob^utlnbxb85CKc58Msi&fOm~ioWA0t^tQ%AA!MgU?;9xvKwG|RhxJ~! zN~-*xv49uaDPZ!k(Z4$w%|d5Ts;sd+>1h0#Z?{t#+sU|q69J@?PB&%@0wdE&u#}Zx ze2){-)!oapU~mj3)EOM!BbnL7c$O2!flg?cT+r3nSeODziN$i`Q1x!c(IRLqW2;;& zi4SMPeT5SH8e92|Qo2w$DbH=usP~Qch4o4U*;g#+ZX6)wfl@m1di3E3#`i?f+G*rS zHu9QcN2XU=#(rqL%nQfBAe87?J&o@PXF(|)`WOo7WvruWO;YxIvFsLmE$+-^pv>Qm)$s{d}Yo(k3?PnDyXe8oKDo9z9sU4x>kdc6ar=*q9RZ_@c2opUw!e0bIy3DR>UT zA`{}+jh9LfH5Nqjhl5a2+KP(O;kCxxNbWa68GOh`amjrdvybkwZR2Khs~&<=5S zQ~%AR`}AOZxh4Gryk9OKfwbUC{3SP)f6gT+Dr=tq#{T+;KTT|{K3wih2(j2{Rky#4mRI_@a z?I(?;r2|FA1{{8HieQ5>e#xzYRy-SDDOkAzuJq?oO6HcMzrmM{kGQrD&`9uBhXPgB z0j0_n19nq+@WO7b61w3UtuWpo`~kxFH?}sPGHx{5Nq6Y|T_`Z(dR(d|U!EMR9+Yjg ze2G^6f!9yIR4QdB1LiYT7|CD=Iq1E2-H140p#myLjsACWaXLEqtpzu5-zFI|Pbr zY;xq1RrhFf$x^gl<*R_WEt9gTGY12=F_fKkB z`<77(KtIhrO*h_g8IjmEy1B%bRLf=aU)qB9xc2s3RSc0aJg~=_hS8YV(sE zjo6NH(5RISd=;`4MCG(7K$i&8iaOpa#1wp_VIihqPD%|iz0C>Jl+F}`0I}qT4!h{3 z;>Ka7E4=U>0H@P{cOp$O!U|AIW65{uNTjKbsx{vCs)OoBnc{_foz_vN_eIdRlN4|1 zphY83@eFuik36CCCwAsft3`Q&;Gr+dW4KBY<;Yl5HxK?#hbV&@PV6Au1JG2KXPsnu z>?c+1(MOeD3oJp7hV)fbCf%1g_qQ+jme+m+hSl>p{Rxy`0Tr;gZu|SyI$X` zi}G(vB)130CVv~nO&!nuYMJ^vUTRCQuN79Upmj3jLCGN z2@~z?B$q^`7wt`7ar`O<&9aaz08KSv`p;Ucp7`^BNfVm7)P!H0G-00|b(YC@NHAUE zuNEWqmP`znWWX#bx3j4O$3HGc*6lPPXjr0YFYmF}wX8ckAXKux;3VsPCCgerhMm#(ZEJq+cby`oOf@P3W$G$tzm) z!LdG|R9VrY4~});i_Y{i4G;lfE^4x7RuCG}+tg4PriNtCj$xq3y|EVsKq#S)se>>{ zuempAhCLbGtPVhh$HxVr>U~XRRp4~BgCe_7-3QBU?8px6XA0Lrc3(eJQ^BZ)bRaAB z?Qi;;a~`g6@%;Y6Ry7bCE@R33wmc@&@l|FJo<3&U14JaHC7U*Le9>O|a+e>dQG~~q zg>~zs1F0rYSE`=lQRnI>~$U8UM7 z*iO>#*$-_RY$_DmD3ByKtBtaUnBEaOfl`{Awb_T-WSC}%pt;jPlXV873srz7g~4e1 zP*b-4d;*OfW?C(bf;f;ZnUP9?(v37{xM?jXOjhbp+(?sAm<0+HLv8+`s0(*!jHxw0d7nI!00TO4Z$9H5 zpi-Xp-~Ymt$O*?l?-bX;UzxrV&Vo{f%Gl8+173q>PKj1xL}muM0xaJjT!jV>zL@ z&;^=k(^%6ZLD;XTJjL?tI8!&FA}Cd`96R3h4lnFS+sB*2Re*{b)`fuNybx}#=SRNN zL5gTzBw(hZGUOLcsF!42=zm3B_+mGAcq- z4B>|GsFc*$w9tr1V~7fiNlQu%iNOD)p(BkK`bdTC7xZ?oVMtDk4o`~;H>6_pVxnV`lcG|h zL!#3nV?x4GBBi)%+b|I!SfXJmDQV$J(IF8@NfEJ;(b17y>9#^F%|M>HAUr{Ir(b?XvXmt3Bc!3}2$LU+bu%P6CJgIibVO)$Qc_4rN_46rGAS}C zB|HjM_|xPo+gSCm@Q^h8bf_UVIvID78j_Tp9G-;HiHJ^1i$Ou|ll-KX2Ns^@0*W6u zl3H0{@#BWY5-n{a+gXSKn^Y|J6Ul~%i14V$nAoJ4=x{98q|~tJNP`r#0TU9C9FC1A zJUJygHX~_`^-IGi~frf~%sL;@4d}}c_B_cH~DmE%K zEhRZB){u%_f*~nI3JS(fuLkCDQcPrYYIsC=L~=@KYKd{xyoH2OTMzUuR*zS&?oF+}@!3 zU;O`q+y8>w|AHIMxBeI0iVLd$3vT}lZmu$r|5L#&j(>N*_U(M-_`quCi6LG*S~1fH z1(!2tx>$YKRL=a7tGB)ByX>@o`@8J)AE$TO(VQ=8Ru_}-{B?#~nqlbt^e>S4O><*D zwg8=b(;S13llfINci{d&hKlAE_({^NisrW5ZFH@oxuHjOeCTjSH*^Ty4M!b)%r*J? zJJApy^GI$4y6R(Y=205&Rm?D;=8NyvL!EuiP5GF;Xu2=%<^kI0YwphtL-qa4VSLa1 zsIQ+nVjMwYYWf%W{o$$UvG|3*sp;eJb52v!|G*D7Oilk8Ux=HUej6V#pPEhvo|;}C zpX-{MJ_7GSPE996O-+x%3uIH%AJD(U@bbab^q!>8k?B?Fi}Q8UN0NCuy%6{r`9BYhP4NuNsmg8ZTn@O(*r(F>Aakze!@$7u44p64Aye$g|IW63YNAw7=# zqT7|@$uGJwkV$^gb-)Sa7hPzYNPdxt|H$;67(et;wV+X+?0NSC$^-LFDw$7s@<>)5 z@WA}w|LB2ve{^=zy}%k|d7&daGBTgwLl>mUFTCR5^v1lpg}imKZomA-yo);e#(e8q z=C#5OrF&G=*xUw@?{N5UQ%cD%x-YhFKYeJviZndf{H2?4NNIwOv^2jjoCF29rv&a0 zT3go~t!-Enm8oa0FWhiyEzPQDuFW|&zgXX#E z6RKf`$ty)2*$euBt0*ov-w(xxnC}bi)&0o__y92b-WC9smWP@@;oN&;K=~-bTjAy< zfvc=s^VE50#dL3RwYAV3hefHwk$~ zcWk2OE!I5T>`nK?z+00yB$Uu|Yy zEZ9IP9eRUwy1BU!nX$OB5gxmmROTIXEsi^Z8n-lmC!7L9VFcb6E`S0$ z_9-+j&b(CBP&0HzdFbQv(0;lM-!ETfeb&m1AE)DfQIwieeYB0a18UaUTn2w}gX%5! z3;O(B^AD<)no)h^QC}8Ia8X-xvP&0m-dw(lG_sv}GA}d&7*#lv(?N&?1sJ0?D0kB^ zj14k&Fb8W}*F-Nmm?MOC`XJKuj^;3Y1r*d0N`P7T$&>)IkZtO{c=NA9GJvD3>GuoD zNHC8Q`hg0Ja!pkJH2;<`5|mQB$<?)%MDqkxzMI)wAmuC^APq9rWn{o8gd@Jvx^CtSchoz{ zp(xxYY3N7h$(*nWbVj)m+|%4fI1EZ1+`uq9dz$efDhNZ>Fr&A*u5d{WlYpE5+1nhg zZmz*Mz!~4rtL7A6KmcHqe?Rj?!Q)qjdWss2R&GkE0)V5{kj;D*DY(DcgA*z#O=v{$ z_Q3^q{tiT;{mlc>otK&A%7At>o`h7ITUV$LN=ZC%!_dfZX#9r)=?03Uy5dor$mBuf zd*LcfH@k#(@niEXp8t|Tvm*?jtD(ctiep(`eDbf_a}2%khuO(lS@52PuP&}A zv0y{Gi>lFs%;Q{0y!@x;Ou+;g?2x$cdZkp6xb*r{vo9}fQtIT4hCFTn*xW~EGw6b{ zIRF$WeUe`^8%wr74v&w1#PcWB{64Pc807a6Tt)d!kBsymW-iC`_tpHqqlRYuKJCQs zBfr9PBlu^MiB> z1uiKmRxn29cI-jbf%vF{@`3o8q(kk2_$s(kdj{K|ASGwPM5rxV7W?2F&3c)g*ai5R zB6cnPe8xeQ`FyJ30C?IfUFLxOX)h^$vN^$>pMl}=U9eip!F7cJN9A#+%7FMv#ygpOPmsySaH6DWhROo!GiXAc|RxbJ!b7ITbUS^BH~;q1F=f6s`yv zmzcK-08&mn7c4b56ke&}68NHnatiO%{NrWjwnF(sDs4)@otIv2o}q_U;d1jJp{BY$ zI0=Ix4`-QeDzr$LQ{sT*0cc>9|G?qI`#N6SJU3o`iNDh!yOzfFFMPKQ!Aal8x5ZV| z=g_x9kFPS%EXAiXV0`v8sj#C4n7N#UL)68CtAlM(&>nLQm4^ppC~lIvo#H)cd?WcC zvXE@^CQg{4<|wzPbU#rk*lbOB;N8aXN?_d)>&bQVzpT4*AiGK4T zCdb^4-|1izJ=eKi4b1ptbmG(Zgins!s4kEsQ7{+~q_EE(W#Z%1Z!=}YcBpRP#wn+-x>&8<(r8(TOGD*eP-#bcgq}hsrAiq71ernO?SXn^KOps zi^0{`bQK27W8?OcA@LE%?dBMsA3{fj*K`$-Osgx?hkh+{Qf9obpR_c(l!Z!<)(iOhR(xTtZHhhu~RA>V66DAcf znmj>1a~`jP3u^%+9Vo5{C$~AEln%5O-6%4LIJc(XW+-%SefyI6xpV8zrRIhSM>Vba zwMXbdKUH%L5r69tL1)c?DustA`>GrmiDHo#$hl`K#d=II&{wR7xQZy2RCLXJnd9C> zhPQL7b4;ho9aX_GoqF!1QxA1?N*_@Y90PQ#9KlgQ25j-0wf8p0*>PsEZ0&t>hA+2-VC{70R*5t?0r9~*2kGC*&{@)AkDMxgoQV>v zd%sqJP1eFTte(@sm)qiig%@lUFrx!Z72Fma)n3*Zchotk0WP7rRV^95pg_@KX+T8I z1CD$VW>0HqmiiVMN#77_;VNo~LGR==!|O&2 zkXhn8YCxvD4UTDbx7M+LsJp>{7m5%ZM(CxwTu(?rExP9@s|Q2W_`u8cgJeRK6m@#* z9MOxPb>oUFER77+z=Pjjtn+xWbkjKuEY<$dpVUsUSIL3jVauaYX}Ybk9EPQy(qt z=N}?8163r%^Wn!)^|YM*Di}=|Mh;ArZi(fWfYLIw@}mM0!sr9UNyk+_pdZ0Q-v{)@ zRWydt8GZD?oJ@EAD+bLR!6-E}a|9{JwT__o@&Aq^FsU2?p$GL^1RTK+YJ8w0SR+%T zID$Via?Vube?IQo5m*_&@df^`bIAR4>IU$KeZIy4vH!Ol0{qRSQ>`ypbKKb%tRjg0 zN4_8j2p{?aD%9r=p(d7@{cafz7l14HOXh;z6-f2I$qB2#`JH>wd? z(uGAirz&uDQH6au&9u*FC~-PN3)aMxQ>g+ML%`ruCJMv?2Lv>EzQS*0b)XsNq*s6G zu=-C8tN#s?f0v;#5~s$~<|gZ>2g;5QXSvU<973Q4g zrpsW=n!ZtkF>4y}o7S2J{q_&7sRYNc3njiYkvIlQ!jCEvtZH0fZkul>f#r!ucIUWr zST@D$(0<0#BQkWBgfH~==D4dR=+I#e7;3aP=Q8(~YZW@_08pvWL8?Mc`AtsT%*Qp_ zl@E}P&?K=0MxH}M7Z>=TS_g9e6l$JOS-R6S{gOksly?8XiC?$NiW4Vx#`BQ4-xYOh zPKNX&N%%UX*?Eh_Rn&*mc}VKPoFFm}p}^sGLh_6;c)1LmCEYld6T)%$OXHYjB}_={ z4+z;|(cIs1a=4uiQ2qIc{h6TUCsZo8M87H?>J!tYTYMe-) z7(t1rayAL~2m@Jcp&RNkr*lGtC!kc>P``(Ep3Z5b1?eDoomBd8wDu-FW9^|=cgvua z^@1v?AT{Yp1@=M$B&C>%$=?t?HL?X=(cJ& zrqE$0wNj{m@*gU636qn+QkrlqztOtj&IVlCFP()1vX_#cJavFTL+36~X7dM}RBV?HrwcWl{x{N-y$)6vm!1?>+~9aehQ5~C z@|4QHTAXreUrlipwJ)0a2l;OJgy(xOXl7*}sG*sawK}D>vZkkGWrGX6z(FXJ{o>ZJ zT2$V!+fVm|&VDrBXIV5#sIp;#FrA>J=&*dM)b|^uR2fWqyXuBBoUll#(_Lx_WJj?< zAM!3LC{Q|eELXhccp?M8d&k?EcT{9;{pCASIMsH+HN$tR&AG#w-Dj?S&d2=-8gg)F_UvOz?(`Px-2+U2hIH zW&EymTD3Xods;rY!JXFeX3v;{!QH{f1S>@oN_fdoZ{I2$NM6eUzVm67A$7uNxd>G4 z3C85$6HAqc49ow(gZ~7>yK-cAO3TZs17yf7Y0Hugk3IO&bVz+i_EHN{|N9LMJ@^@? zT|2U}p7v3oBjZzLM)QeyjaZ$sw8u5tB)Ki28*usG@MPB*>ffA_J(;dDBFVVH7NBqb z7z27Oz6MG>GRFt4Fl`v-3r=S$#wpb?ZzzSIBv9kbe8gd;6hJJ_*-*d2Q88rofep`GB!` zj|`b5O?kB8N(6tJ60PrIN_)xv!U1x*UT$_cf8z{wF?wh4;y2ns2vZ!7JMKKAecaJR z>s50hz&Lq}1{5grm&WzWjp78qvl=y|pOsQ_wjpI?)IlHeZc9r;?sHBE2H^ut&!U&fxk=jQwNdWa@g8W~>D(s5+d41-sksIfjAqI-R0laaWdhhL6r&+& zxg@2dPsyd8RRy6WGP=I==!dHm4L|&GZYs}@Wzfufe5HnF8vgNFt@r46R+U!hV@Vx{ ze$~ZKC;?7t{li(UTCcGq&D7fS)7+*3{0@w^E47}+c)3l6%#wbZk^3lsKT0XpSL+K} zkT7#@U;uyVtn0`bX}?x;RuwrnpVjU?u8|uQtJnd$Tyi+JX((~+ii)UlxoTcg`oY{6 z9J+Hlmt4HSirQ1~|6Nghs-xw8N1F~V8UY&BM16+2mqrJV{=jh90x!(3JG}=0w(GIXCrsRhz9?!ij#DM|0-*Vp<+JgeTrjWqL{f=^f z%k7|QNl)|FIg#5?=%v#<=S1$us^%Ju=IUeQE3G)0dz}-8gDx@8ptXJlsxWc^=qsUS zorMR>Rp5q8UC!jbqXyOtJ5OiWV$62z?^NsQyML>GSD9@VK||kcm*Of%%$F{l%dN`s zn;G;XG`HEtj%C!q%xYKvuC>~wzdO&tfDD0yDaLe-7by{OlUFuCuP^2X^VijsTva0j zL+m9xB{al}mvZ~?Jcrjz$>jm&fL^Jg87ViNNV)XiAf?K++@At;GaHBLHAg#)8+=g3 zKXR|Q$S1|?x$d0M?3`kRblr>|Es9Y}0dvRR$Q|UXU-kNi!ra-L=LPd0G4``_wGy1X}$Y*cBI+D zZl(LV*Z2aAwJYa-kXc-w448#}LHXU$s6TTPF_Z3 z7yh?%uHF4v2ZYMq=bY2J`|r*^EVi>Test2|>DGLpW^$Kxu8%3I^}e&+Z=44Ao-fofo; z@!ii;jRzTfJc`T7Qy(?gN0exNpl%hRhE7A=MO0yXJs)(%E$^H#uLM4MiE>s7x-5=Q zxux>xAs*s$r@Zou_tGI8+pCy7b#k^CzdvsV>xb&c2-X&iy8owDdvlR-NF~c2I zX_+?^g?#vfy9a4dCIWx?aiu>xJUp)o>i=+UX|Kky(X7JYp6i3|*O=giT3%mPMFn%@ z{-WyI(r`5N30`L;UDL5qg&m80rQkYw`~H8$#SK$~DqNrE%ZnFWJI|U-*}N`LyUCK8 zw90GbCewj=xLI29>5Ri18rv{$49e|2vzcT~&fD>(ow5DL%_xPoeU>*;#iaii7)yx> zJUt^=>e45##{WJ1WQG;>&a8>9S@UX?u$6dB%k6%L))5 zI&}aAz?%-XDvtlvn3ci&RBY$q((Pn|gMO5pC|mn9a=^c?bjX(12frK6pjnvAQbRMx zKmCF>F`Rfol^E)yN)to}vYqV$VKZ{)Kj zZwG&?7!TNuas9g78$NupHSZC}zo2O7=Zd|xAbYmw4d8h3qHFz3bAYJy^D0(X{2?a( zh!bD;$%?F6BLEzfkDh=6MKK&%#}HJsF^`<#!4tF2{5uy_+R^-?OYMloRgN4=nz%b} zB*%ZmpqX}bS3}F%!Ns8pC-Qti4i$@vZv3OHAfR|kzEn~2wSy9RMnsJYRFH9YLRfxK zZeQLCH-04scQu#DWMWz_LuN_gzvex4oUO&v^gonsfK;oWp0l>q!}>^4{e5 zvPG(Cxlp81p!z8AOkNf4i5C5P|0Na311it}QF59wgxEwlMvV|ugh*UPHJT~Hs^9an z-S`hNyemcck%{Pi88S;cd@+xA=LgUs^%Y^a7No<~yzy@Qs3O;1;fMo7N+9on$)gZaU{QO&&{Tyt-YoqHr&pupRCuld~!n7M-; zYG4*D%ueX9Df-WX#s0f$8Xl-=xT{73YQQZ!4YCHHsQY=Hc<)QD72qxtO_@t_VvO#% zEo+VzJjkmouPStQU)G5HTbr+edr^OFMA>0@r0pf_&%7|c@g>(P@!SCcRe~#xjtt3f z#y@mo>8*cXBYHe?a1)sy0W4a>=Se1prXV;*%c%f~!?$XMD#Ya*@$PO<3v z^af=Jx{AF2jZ+@A86t#rdhFqoF01mXei{aWBWt~725C-ujK%P-qR$2P`q@`9r2VAF zY&xWV^tq=6kxzPLU3Tqi-e51CeI@hHK4%&w^O{e&tTol%YDUxB_B}M5{x?o~oMNc2 zzeG=Z1QxHYXO*ezDRAwVs)O$;CcE(^>hRoZxXqrHgDO)lDf?`bN34^9T9r zSB1{WXJ_{6qrZo&s?F6xhQ;}gdj)}{KmFNWbzJ4}J<_*x^IvjYa~YWV>R2@}^EkDy zXceIP6_v-)N0hp0{i>!5C=E_adudm+OMA(7oLRiay8unl%Z2&xpu-FEN8$HIG3~`1 z^lr+eJzDN2OTv2sT{vzI0W0QKN=pqG!kYl~(AGuy-*YPnsQ%5Ab`B^QviUErXg30q zuc#aqwI9GJdGP@hD2m}wy7&t6;zP#L{PJ$XuS9N&n{&EQ(3N2Z`jnL(6exp8LssNh z;n0QLeD;DLQ`IZVC`x1WWF=Nr-70C+s{D@b!Yc(#ei`Tf+Wh8%$5j=|3EV3*d0qYj zZ_rw`$5Bb$9`13xx+33B2cX(Lj)9B;08jaZ$E)@EneIY3=$sypr%wPj1EqB1j=sJZ zeib#_kUvKSqglWiq(9nnp_{fx?LibBK)Uh+@CK|un5VdcpnRN%WL#CnqEE?i`o16? zS1G=ri6tNJ98YD?%o$8pLo;VE?5froq+fMT-1PA!9>GtyYCjs+c2#v$*_NLzWyRPE%QRAysM^%2ze@EC0dL+jny!Xh|(@P7$^=eu2(QK*6nH{~}K?kLUWmtSw9 z_c!NH5^jQW&4|<4h}TLUQIfXgf4~bBuPNxu$33p00o(Iy3FSZqU7Y-JJI1LtD5Z;& z<*uRl!u;c^<{G4CFrcV}Bsdn3kO?A#Sm8s4oqv@OKG+aeZmF~{vAINXRp;OD|h*I8x{6vml&pKjOyH?#1 zv)XU3QL6<@a?{X}U-Q-5nm{s&O3Q~4b*o4tx~;jIrD8`8=HC%&aUF`2DQ6`DfSY45P8m`*-mL&fQ~zDC~Ix z>-7hPt)mC~qcg0mjGK?;eP_i#ZJeLI~QB>?PNOY>d~=H2Nq>kp6e@lp3D!c&VTp^c?+~H zI{bZ^KrrM^9Wcha3N6>P+geYN9Twp&3yJorwC0>Qgl?8?C%JzP^46N3FjEdfM9Q zaZ2aQUDu}b;&mnywg9`;%hHMC>t1&~1@6T3rM3*2CCwBp-*S8`26466)>R9Fye&M( zx4-Us3f#j1qDtLsUe~7X;&tcL9f(_Acm)MOm8X}tI3{lA%Uf#mqbUuJWwtLcg)UV2 zGdtVpKHcpKmH>`lz@V8bf2)ROQXhL=tID5US54jYQ6-652~tmYDfR76Qr}`npH1S< z`&wS{r-~7J1{23`GGLa}-`|2a)@~Fd^v^UPsAXl#75-TXr;4^o9~SXwE^83N}_s6?KvVYFIAt!aGWxJh^HRWXTuW zfl?Yf-noHdYFe5&H=keAGD7I#++0eoWeMg~?KR&o$37jw# zbW9@~eUtkOP)e}F3r_FVvFuQ_)(kew#bDC>x|Y#y!d%cJjkvRo1?k-BTJNE1g$CW$!w3Ci#9j1gsMO&A(b0jx(HjNXG9%pbhyJn`8WdqU<414K$x9PpI7B}BI1oNHZ#C z3`@-zHY7Q9`0z#}2BbDhF^n+GPyZT?i?Oue_MojXmI#kXd}4IQN9e(W8;wwKtfi4h zBT^8JE*S6nqGcy;)+(L;242LN@gZtxzS{S^gXnkU@IEdgeQl{GyAVQRElhg^4D==o)DZ`9*ajmi(d-q$&A@ zH47zH3mWH1WR5ehZ&7I1vgC2BENQxRQ#Cg!zKx|7hgxpS^p;x2S$eti2{&nu4L(zo z_8)$xrkQlNlIk-x9SLSs|Hv$^fNWJ-?Ows+ZK)YMuU1? zjz{Gdk1s8b0;8cLvuDNoj|3$c6Pl{_y-B}VQx&GDpmXW8|%z z7hh57g`K1_-INzR)`O-BA@oBasC$B?89MAU&l4T)H@-YJt9KJDABjH$2&Czp?QZV+ z2c3V_*^mkmu6WiK7&ILKj!xs zlz`TMe{4y2Rrlop%L%dkZH+|$)Yz9uVAt}ONXl*5ev9L4+$O6JP0@;Z?^Xa%;quO~ z3W^d0O8|=SdnCz4qUM-bnyIv{`xd{qOB9gS4HjSuO976Z0(0zR*RD%v#Ho7f)YS$?-7>tTKaXk z6k;;^FjTsuQf=QmK-@)JX0`+e5#Gdg zRJG}H!k&4S)*K(oz~$uxu`vXvx?SatR=3~01D6u~^btlxtxF*0f`b_C3&g$dP_qQ5 zOg@rv$EQq+vR1T2+pBLLKCjQt%IKSKrpKb`M{IS(p%C>7JLU!34>SzEgN{`Cww3q+ z`A7hLkocoJPOCX0Bm>3GnLWe>VN$=vmf4)Rl#IsmOEk2Ktrn`j)DkGJhQ*0Dv*Wp? z2rb1~owj`ts=mxpU$p78U%3niB2{}$AiATYJJf)>Ew}9TJ_x#Gk>yzF zVImHq#1)plA_O277leLaVR>7;1>4gYc@T|QX=$i#uR-me4rBL5189(| zt%qE3LcaMU6*B(dL_GhuTF6fb8ZLzV2-i9MHQH8vc16@{ljSGA;yqbUn4rtw16@!- zzt9T$(Os3x)|Vr7*)C*^e%&JLsn%1szz4k5QKl(IhhoiEeba+xzeXMRSn!;o-U=VI zwC3yw^1t_IE%V_&z_h53!70YnobkDv++&t>u+Sp9q09po{To&ar2SJec1X0h&g^Fr zMgm8?&+lpX0~EL(juBOB!(Hxa_XC>VbB-X8t8xT^B|t`*do8=g)kJFc0Ft=R(pfaY z5^5={@1ek9OM=vGHOe^XUsXo&fGkP-w>|h{Or7L&^x|QHh6|1SRhEQ&?iY<2F(s0} ztyabx5Sk_szunU&5Wn90Pqne*L49rXyRX&8iuYC8C=EMg$*aLPx$j!*G8sb~%8*&o zy1SMR0enjgqTYE@)aIrZWMJ8X2{rgG_g!n+`|PRyhWAyPR`0%6(<;gh-~|v7>Q%9t zcD`}JR#!8Jye0()#2J`KhZd3`@Al1oPc;4Z%{FNK3%<07|5NH|K&4-}{2CN1+Tw`@ z1^t*F;G&Wp8rWz5Y6eb1`ye>g zKJNkU>oA7&2*g<)W8*kG?H~yyb}Volo)(`$jEJ`cdF^AFAjj!x zsb159!(M!)2XyKMo|;s&?Fv&J-v_EQ(r-SH&q%)_J!;QLKi1KrhXgI=ffmFqZP9WX zPLOA~4;b<3p!uwWPsvw79IL2yq1cH(#}FYb(q#kR>480?iNl|W6CSu0Y+GChqK4G3 zUBRDj`~VE^DmsL-SI<*r$Smo%jsYX>@YPQ*2EL2b^w3IbCXyVMOYvf5z&D42`ev(^;aQzE+|;9~5jB z3&Ch~F*;x?C{aXU7h^B<;ExGOe)^5j?=RPo1eJW_hCk;JC%Hf-o*~`3Fw~Q{PBGNS zJqntX;vX|`W~dJ#I5pG@PTV~CKxL>daHPqpi@GEI3uuC^Omp`4hWS3hX1Jz6xIK9 zRy@cPIZ(h7MS4=~fP&tfI0X}8*Hbd74MIBy7KDhiVKJT5PC=d03)I5GY_i4dmS61=h(}G`JZpe)7xG@R| zLkgCOry<%T7UJs#d`3Zc@i$oE2!a7eL9sJlS+Z5>H$u(CZ;4jYPw%|((C#FuRlOwL zy0EIhaUHcPx`MNASV0iSS7zYMs{9@TaB5ZjL#>bc`%jfsxxkTFRj_`Yo%wmHk8aSf z@3fu_B41mGj3)B6#&wt$CGtJ_tYEDtpZd^sv)nggcl9M*=|QxkxR~g<2kf6}fpb5A0WiP>YU*!_dWc1;J?C^nw?t z$>ai0DQi-}YL2(!PF+PpH}mJz?iNg3zq2xyK*K>vEceBqFge5t5-J+AF8 zFEW|t6cmcyj}+~o@zbviC;`@Wc5cBZuIhS!OT!MnP1l*P|43!vbx3b63_KXuDF(h} zUO_jGZ_U7&fwzR<)W91)(i(X1Bb9->z@LUq7j>H#>W9rwA8A)+(`A(HE3@}e!B43A z=XgPOB19A}$c}%cU64(Gq%zW=Q7an=1e)2X9J=%|l?E&>sK|*qusPXu28&7UnM%SA z=#GO_dTD_hCvJhTbmc1JW@fCo8y3?Qr7h^!Wd-5t_IU9r2xT30Zz!J7X>VCx(8wG1 z?}_f0-&6~g&nl=RUWWiQ;A}y2vkE$>2hhaHj(Wt<#V1G}(69q5s3hr!T*{%KN>*}b zjH_>aSNIFG(k$Y5;W|YR8>}keIQ&f?3e427HiV{XSm7_N8hZWpPt`D3A9;)*4f4I* zp_e73plemF$_%SJL`D;5y2_*|ai-VWg2W-*2uclV=`O)9cPMj(6vpSFf2m^4;J@Tp z)06b7jWu0yr8d@dCaC=nc_Q$L%J)I$f_*cvFr&fxbiTGfPUZW^L?-(oUxm!V{^y}=}(@ph32=X;2 zlok)1^xqH}jgx*N)1o-(Ez#D$1-|kV*OP(XjLm*eR1Ui06Y8M-UXvcR4*Ch9wT5af z^%249Kk?7qfw-Z6CJf-?pQyyy;fZT;w!?K)oa~N7jds@eJotgQ16O(fCN^@K44Ea} zjJF>2;J>6}>L>IEwICtgt&KhSX-`}y^p_nVD$koN^O^7bL>u+n;TmleY(oeKT>jTR zuf@S;+4Jh_qEy(&TACBLf#Ilo0p|I_(UF3ZY}wuVS%-R75v(8yopRnX{tb4@>zp(+*;>eXyFXR%V*B@fQ>}eP5tNgY zVl5VWaqg&)D_hFHEUsd@ZV1NTdZULN+@F%`-2V6%T3b{av=1lT)mwp*)UGK^N%=%zKVmIuA28rCKTATiX zvcZ07%ugR(c>~!+UC?M6oVw##l`pU*?%>M;OYaQTiFBI7=Ee z&RT`%t6~sW3$d|UkTMgj_tXv0)bB=W{C;kjN)JkChV+`z0;^tWwaNfTI zFy_H`&A0XwuYhv-tnaV|*7x||nHV4#JL5cxtJR|T!iCRrjoB;fxy7*(@&;DhTNen+~z-1?}LbYi*H+k*>d zoiN7}0z09Or`q3I$K&(2Y6$^S0x+N}SuW~kuhn-veg4)uo}PBZWyiBH*;ZLPw9a~j z=RPBd_Y2lJ2pf->WQNPYSyHgk+S84jLPaU^R)yh&1gBcGOxA zp?g;A$KoMa;jq?#UqG=kEdE9P$41!>FWIc2oOlZ~mG`Au{%CD3K7_@1Un&8e_|f{7 zy0ylgZDy>4gUk6OEK$%ww>Qe#gFkOaY+w&vJ)?^){?9=(tqI^dY65hhrqgCC#}nlz z(01L2(6a77chddmD&2R1A=P~sbL|x>i~}E{hs0$f{xoYQHIWv z#GTfo98vx~R;PEClsx*Z7VLxF)(#v|{ykRs#*zYY*#V(e`R7h5|J+&SA#K5xX(Ps;j0OlVdt+Fl^k_#1CrGk4 zCSQi*{*={d3_7xP@w);U&PDon8`mjr`0)X2Wp`e9A!m3uUJFT#rLO_2g{UU7$u4|)5A+gt-E!wXNe zn7h>!EibZ`7V&>dy~7^|nn1B4TKtRp<5*95X|UrZ>n8k&i^pZ_cJU~Hpvn$rwapm6 z4iW~n@;d;UDxK4XL230BYimxt0b0nX(0#618;cKMF^wuW(9&zx2I}_2%lj(cqB$G< z>I*tMN6CL!Q~0tk(Y`;d1H|$#A^CWx2&7r|&kTw$<;k(vOH_2-dQ+@Z49q)huv!WX zo_B|$tg1a4@K;}e`7>k!N${HE$Ly?C!Tiw9G$;z{AxaR=dycOH(upGd%wg}Bs)=F` zLV*iU@d2)LL@Ts>S|?E&f5*Cr<43YSn7bGT`=IWk?@MjW`rxH1WodGK-2pU znw+MLSy(FSGsjEq6v$o!1vJ^}hd%n#+6rx4G{GBnuD!K1`8R?85mV&Kk@RGOw91`j zp*|s7o1?Uc*6aK}$_RaD(q9Yq(;-u0sNq>(SD>msU@X8-{XUStG>}P9tQzqA!X9U-3EXZ_q2!OJix* zYpVw@&VrC+9~wY>!62r+lD*3m+^2o%jokB>S!{1L2nBiBT8RT;hjh`ct(z^D;|kDt zcUx1@2CFHz^PMpLijAAYF#WES?JHh93?Vg`j$shLFiiL9Vrp-d4b5Q7MMwdW7;qQU8A2-1xGv@< zQpW&W8BTlvVadE8@GdBE_MEdkv3K8?6i{rV`HrARKIF=kMWL;2_9uQt;SDdBA>0$! zDarntnzjQTTpbyj1@B-8O@nv&HxM`2RuOCkdZM9iZOT@lK0)#-uZy~B4Q#rnZ4=)> zaaDhWmr)b!7_&sbbwk_WQd~O0xtNm&HYSyiW#}v^GR$_q6!#S+wSG0`O0>RV2P4dJe61tp4Ycz4mQH|q3AEn6x45#$(gp&MwH&JTxh5Ta$M&2P ze5PI@R9xN^HmhK0o+wbpl>_2<>R=Bi4l#j*Q5!HYf(jzwBuHQfve2 zYZ<(?p>_*PyEM08j;uP2mjWC~Z zC@#@fMGZjk2Q$B#4F8YOj`wY?{8B(CfO|(~epeMW?TTakI<%~-?PGC0Xs4Y_)?!_* zDY?tb-E70e!eaUgW_@j;efjI7=X4yzPLxV0G>|OoZW}3{fdkS+^_>rF{l!bLm@tq# zgPwh0Yo>0mk^ftI@~1m4aBzi{c1vmKWxr1E_z*8qw}DCk@!(wt5I0<>1dvHRY^fex zO&OY5egK4~mM`!$fPgg*Hy$0CAUU=P^%154Bv8N3PE0!;Vmhmc=>*ZyxUu$jV&vFj zOSawQxlagqF`*@a@qK^{oFxrTvvqajMia1Zx@-6!X(3|LZFmiT27zcsm+y50O0pdc z-Tzz(D5;or>vlBd6J@4?z|x+!vj-MB353j(BMU51bVGWD13W(9N_b_DEOZTXBPdat zqwyKGPyAfeaYJcDp~^)*M9iI5$>Rj+(ZvG8F`1?8b1{ZtHeU{}V^Y;*%5@JyQ{_7A zq+G|;%H;x0y0oBQXIC!#WzPpaCR8Wa?zOjqs=3iT1zgap>_!a(9B-a9?{1-&{P2YN zJN#5b7;fR99G-J-;)W_5#fiM~@I+-d^x$(_b(Jh3uCgp)i6R{7&?s9uEX6k(%LR0lV?xyvfzqqM&K!7e>Z$C56y}X0Ea+hovjIYe)gw?u+X%v~mt_&0JeT89v$_8B(M~-QCD@ zOf(VhMBA(4cmIZ>xUTb>@}ch3qxn}SeQHnQ`MRqu;jeiO1cDdS$$#rU>IsGkVULyt z{3nzI$0g$dS|)%!h*X&gj$1kA?wQpjua&k@oOEx6Z8^tJaYri?HucpF3JuH1lif*j zCs|U3?`Lf%1!%= zH<>c$`A;z@4gerPr)t_Sf?QjDb$i7RT>rll)?^Vj{-}SF46r0C2EF{&vS>BBBtcf!zN@f7k;H7u2cL< z7n|+58{d(EGsp5C1gDNAqLfzV4NIvUiwi`FWASrQmsxc_y{+i@#`q{T5hEcMnp|v{ zod}YPsqY_YSUXvkl|;`K4Uj)o8}~xpIG5(wRbAZ#RBTDQZ``rZ`y(lC#@( zhUcxAL#_;Jt^))b6gLZn9=5T!wZC*?@UT*9Uq*}ya#D`!ummW`*nPIE;#I;xdpM?x zNtZy0(i;Dwv*MLy=vk(~;#;jNW6yJF(ndcL%zLQR?=>05h5EgaInA;*%P+Q2j<3qV znfg`o0N_OZ@QKvKKW*@hp%-fH)5lm|Q*u!^=MXg^n5)HAF*ZO)PT1t_V-UYuVT9!P zMV|@7m(g&xwu5DBw(szzt6mUgkgaha$sOXY+&4kS*2=?Kwh&KQwy;Ez7HV|HnGV-RZ@i$vfZZ+~aVe2QZ1rXYK^bV%os|cyB z{IWn(rE~eVMw^qi9Bwmuc+xge+zQ$udOxmO&+%Sp!zo*cxEt0{&$|`Hp2iy!Dj>}g z!A^$9#uD+6x}LGM;>Bxl6q>G5w|^HFlfn6G9`XW(3P3aZE;jllI=a6;7o1iA?7V{# zk@sd{iNZ#^jP{kG2O;}iu;rGZ3fpN*sntbWimNDzwiMa6yW0Gpd&zcGY+4$q5Z&*K zDvh>XwsjSwV2u(A!$GlvJsNif&jj`B7GAZ7w9dQ%AF2e=tS{-zg*)km>y&8L|C%jM z;J;+x%$=Ygbg1hCH;b@TM zcu>42>iCzfleiw%Q9WOY9{h!uew=|u-%j#GOCH<0h?{kQ-hE=5rv@VG2{s-)1UZ3( zh|4JkECHh0`_y*Yl}<>{Y~PE2Ks4y|{|YEkdXo12Z5zUge}PKsK>%_-3^~|=eD*lw zi^ZjRZ#Pdx{n&!!iglTTL;;kexLzjYhFhXOr{**lA&7kNBVf$p5HS!!P(^n0l#Z<4 z)Qr;`q^vRXT`>%T&=+_U&d!PC-8@mKn-r`bh%h}^S>*TAp^NTiWubB77kA;Y8juMP z_?nIaTS*5NJ@|c&e_(P_Xk<)`Atfa(CL|&zDaMc%5)l;|lN=QhmK>TKktAhiE?&(= z490j5XEUTal{kk5*_E^=8=w!Qk8DW-0;=gC!3d~OT8iL5lL<)Dn}5`B1>1XH={M?S z&L1gJVZw`doOduyhtmPv5~5&FE2QU#Y^(eeU>5p9h&-22YEncWq6KRZ4 zh{w{a#}qtVFmVbh_~>{LIwjmlMbm6I8+dKBTt(M03?Ew`^$L)l#Vcu71Ed^2ygo_{ zlpf@+qM3nGU+w^^3Y5AnI)(*MYFUi$@-4MA!WSEsT9)E#qe?BO@f8}Smbd6{YkU^3 z)Y6jvK8JU>ms&Q`-*@mv-%`syycMj}vV;C6;uuwGiNy2krIrx-Yr%w;S_rwNmaBMp zS89o+FspDMq0|z-i2iYv{vIHtXzwVzMf5{AI=@Z6=vB<`kS}^?>AU2MUbyxi`Jxvu zy-&XAwKS*57d`0v0r{fGflre!dOYn6`J(3}&MqRKbf@))AK>N1jFU3^n6)ZL`xskGP)|TL$>$odNZcZdaS5qqlNf_8qz*kp+JAJM&q^f>piWNjg>;yQLD z#dan?UCB=t`RPu6dXS%o$WL$b)0h18CqKF5C(p+Rjh|YchAtnO)2MMgNg`u4*L@A` zP(hXyio%Z0i3>Jh!GaM`_O$X4G$2fRD7Yy>r;4FpRNw?6qFZQ|7ygivqP%->^=f*IwDyl|N)FJwRjeWT+>r1Y9M|0K@B z4O|a*`>?wBU&?g;r#FLiPjW0JG*F(%7w!srJjtPlP|R$T4?0^VTY^mT@=wU=C_3WC zK$MaoO%`6(>d;Ik@Fgvkd{Jp`LVoR~Nyb^yn)WyZif;lmRDH)9fzpz(S$?1;D|OHp zgWi;?lBHRk0FV%uCFO>0BH+{#0+fy&qz2`0s%nouO_jdFGsccIDN^_mlwLMMibP_% zlqLKEQn4%KazCQo=~A)?pz&HCA+c@;sjE=W*DY#5;*V%s2kAv!4TQqR8inc;2j3A} z?H=@vRw?;X#O8yR47d^^g=I<^9N*d(In$&FAr{m}iQdyunj*9Zsf1`g)>oR=NvhB3 z;29Ev6(L2V!+mNbp*b4TMf#c_;EOtSmEwhbP#2|OV^^uSFdU>(3i5qXhi+1p4xAxC zeK;YfRsy7RS<)Czm<#HlHIMBsJtiy#sZ?QeQQHTlc{*sO;${lxkJE~SjfL++-wA2q zp)p`nXuDTs5W2TxOCPVjzCI|dw7jpdpQUCusU!o@w@tOenwuHu#D}C3?lpA!A;}_~ z)R(2a*a~bYR4L?yB0q-)&Dc_dh*uF`>McDhe6GPM7E4G2rM6T`{iOC%qxwp( za<|c^eWfJfCs1mB18XGe&`(+{`~gz2ZhD}^IL;R@NH*#(&CsDR3JOzbxLGR=Qelqt z5HB1LkfZ&+|+bmduVvamy6z4{ojrm$3{s^>K@MfB*zFtLvG{Ak=;5?@J|^#!BryVYB>G(}j0H2^zwRane~G0ue)$Mq9ckZM2cCK#i&vzkoaA zsfEpz%>uQc4 zDQaQ{K3CuYudoja0Nhkhl3o{Pu*8w51B!gixX3WWB1z%2?=su9ln_x>mBX*28gngT z32R7|YOkswOY%6>wG!vksXw}{@XQqHFZ_PBT7)w7C+ud6SX{8gmtQZk(|;>PkLf=X z{c&-X7L%;`k4bw>EGT0JwxG{h5mF1fprrzt=g-6zWSAwLorwqE!cQ8SVnTf$m!gF~ zL8@j#7#20^+`G9i$fZHV{|SsE`Z0!0+AS}FlWmO*^{nVKg4EIoiT??k8;PrsIL1`V z6*~c}(Qq&QGh1563F&OHOjlxy2euL_H!W^iM+%)M-Qk5Epa{xjr-f36&>y6_1;h97 zLmw=ZI_hv3dY|*Ck-AD0U_euw+pb@rVTimM&OM5_CDK6f+L0E8_IQ+y3!s?fwIgz$ z9>z3`Uk5xel}3}ibtJ3-ywY}=z5u=nq+$u=a%<3;rBZhg>tFUL)I|w3NKg+vBa_xZ^t`XVP5NW=|`83j8{pMgB>ApfRSH1e##OEIiDq&12y zfJ&=Z11c@BN3k0!cujJj959ZDhzKgWW@g%Qm>l=sCBhL}enxWdT@qHY^pNAjVEuQ6 z!jQIq>5*O1C9)qCn?PrDyJ~R|*u$jRXo@QOJq?&WOuHJ;JxoFCNV)7DrWJ%~-ECsR zlY~BHj)U}fyJTBxx>TReX(;L;9zd7&h3yLsY`hl?v-~ z&E2^0h=qnGst*a^Tgb3LUAvfmQDo0w@vycFo`OHm2)?r-c(Xh9jU@ktTk>=llZg>8 z`AXU^3}~oRGdoboX{9m*jJ>9q7jlipJn}veH<`)`H!0+j31K3ss0Ig~fb*#X=YJy& z;GR@))kwFL#ihPGr6C*XCNzZmgG|^az8eJC(IU1FN}3>(?Ln0MqdM|mW=UX9`@iHO zUp)l$>UYvE4!=u=O|1qC?W9WgJq5c$x_CnpdG0c;x)uxV$>J8=lvZ-wEjKQ_epIv2 zJU1F`6QP+w}OG#`t}qjLuk-L(zHhwkimP7Bbwd73<>D|e(HI3e7h zF)`BF<6HQnm|vty)bKAlo}}F-@mD<1PBsGfYT@sLc9dr{NB)0FK6vm?;kW-fE?Vee z1W$?|{hL&-E56;7#Ug6=yVOG%YKB9)k}e$5E7Qh_Ipa(`p_X=_guJVwj?d3DYuf~U z&~obtVJ=Gm(}GS>D|-UKk=Zcm=Rfd{J7EP#rd>;d-cnQYG*5JOYGvzR(h6SK!s3tr zGDVOU{3CVegv}sN)5=RAmDWfwc&wBNp>7KgoK01g@q*I`1@+`Aw|c-MKfZFWaK;FM z^H=)!kSse#G%7AbG&(kOmtBe=Il7(^1e0q=Rk4ENMlf z$_aG>HoL^OY3c*q1LU7&sU|;QD=&J=Pj$j&L6zV0!Y)@q5Ff~YuP46J^cqr!Mu$|o zh8w7%@7gH7S}%1cD=DT0v*CQV)FoT<%BMO0Grh1sVT+)`e%(XZw*N-h!G`SM0mtQp zS6ZM(VU>RxI|vF7ulzy~8#DevCpdhxRG?Z*MCIf_!z}4WMCBGvh|x=<9oh$_90min*P}P%{ zjkxhBJH669${a%~s=?Jp;(WK#(VwxE=eapb0jhsJ&K5vbUf7uJdW~$X8)RO+zA7$2 zV-nCx{mYn*#c`EqgzXxZ(#S7}$02zyNTt!5E_7^1quNyt)uAwYxb|NOQrezSS;Y(I z3@bY$S(7Roa>5yqOKJ|%k=c7KA+ORo?C5IU{_f;6uhRstmD`jtfGGz)LJ<+u0tv;|a zu?aI|o`8A6ed6GOq)c|m+_#BGw^-;!i2GM#W=^Gr2np-OJ%2!Ti!a#+TU3Q@Mxp?N z<}HdS+=J$_o|WC}@b)I`$plRj`D*P}1+zjL*0=J*I{c|7?8yWTrHDn@F`zQG4u7!; zdon>odEAYn8-W~Gq|Lp+n${KrNh3zm|HB~J^&XxNc2<1U$E0CsJG62wC$tFADOOo$ z<(meefZ>%73r#^T6A{*^yaog)5uuR=Y8Vkh(7F+o&5db6Cq|gHUnqMdZ2{;bJ$V5- zGsz)U*3bm>#rZS@Wbazt2JIYGIhmiRmY{}!32X_p4Hy`}wgG(u{%>NybGo;<2v6v_ z%^(JBX6a#Kzy^gQEe3QQSNUfM|0?CmI0n3^>gi|z69ZnxJdqf%m6XZGfDHkjF<>1b z?q9`#=T%zR7(kW#onE=$7>NSJfUgu$xMRTf1(km{bs|;&wh-`DIhCwHw!XTH>S|O&1jIDdOjEco^GP2C~1x$o_wb3b`sB zHAjU-rz&^wLJ1ZRP_-Hr3Ifr*GnM}c1t6D11#P=T&I5IoHHa~&ppG>OEyh>U2anXi zjU$7XB`W}xeOMW25*=(Gnns7tAJOPQA5JQ#ig3-!Z6dYS5FFOye64@5?ObIMcSI>b zjSYv`0%&a563E7e^@0C4v7upI*eufblN@(IY`DbI!^DQq6^69f(EdW@4}KiJu#T8E zc|!@@bfC3aO;wHkNi^2NeKMHC^SpJeor1q2rLxiC^FYt&aDkBbucAXEl@c~O5K-_+ zL9WoBFK+GW8&tD$<8VGzt~zJA?7Pa2-h57wc?V&+T6tduvqH-Lsq%eqer%9=2Vpyl z^5kEY;okfd98B~_7d2r!+$g$O&?|_BVtoDZoyJz!_lyhj6m%@%9SHh=2n7q=lBOMm zTDsw%qJn$RHbGJKtXqW_K;?AW>B{NKEMY%L)y6O{peO5FyLh79s&DNf*iBH@cw4*c zP?%xQB{%7s6zKHfC?D%yPB_OF%gjDrF+eB7&ss$A4a(oMJ^{5At;NDkwhB5fzoDgS zK@R;bS|aos3CGD;CwA|u54tL_#Cx_XVIOP*Yxvc3!srRJ(!K03BihW z!>KDna_R6Y%rJ}aL`RhM(bYwb10??d>vUe2$%>IN15te>1{A4GK!F5JT4-9Zl}td< zi(4<(*%Hl{=_U3I%P=zmwaO(i^2&!)H^dslNq3uBvp9agTW}Ha%lZm?*n+6!Hh4&G zRj{tjF{YZ#N7N#;FqGYT4PBRJFIhPk%w7g}*2RPxQ-zk+)*Sz1uz5^vrAqmG1+zkW zHO%@9KC2LH9#i946kCK<%%iqAg3TIVwgUdZoa)?WHOf~ja z$r^1v#|fR9YVJzClQApTt74$kn#^i`jJ4dP%hM*-dQ%v~RJS?3u@I)EX$II0o6(0@UuCl`Vm~(u>%T^!F)l zL)o3JExcnbFbWydOegpZv!o{yt%o_`D^_-leM~lx5#0&?N{aOtX-|r^0Vmw4rHm;C zWsnvu$dE7})b=$R=y%}95%>npTr#GCUT9XckiBs}6|xexI#?gA!^fyas8Wt*i=a~W zZ^njt?`FDyWk@TH@`1)#pca|lh4e``>*E|hubFwMTF;=MH?pn2@T)NEX1%{HZVX+dD#mo_BUNrQk8Ym` z<)TC?nBrEXbfAazH!q=*=tb)!dQ8LbHnAcT@vrM+{oW)}t?g^QV6u!czn}HE@FhzL z?Jix`QbADI-XC|D46~$&9BUyb{Gp*~3sYcW$)U0Z%Ai3g3?yjvxx?n`u4a(D-oOWi zxV)s=vA?Hph+DSg#Er+kS$~}Gb`muHor86xPx7qQJl|d|M)j0-sJSSJX-X~{qpVUw)=@b$2hCSmRYB4u!Mi>(QQ(3~-aY1x4S8avr)F@_H{gkSKe zb$||@;mP$trA}Wv0;>Yi@F~{OCZ_t%6zdB@7F*wyM-K`CS|YI2Pp4Y(rW}0uRBzi% zBYa&IZx;YZ8{z!NtOxnA%{R}$S|1NGaW6>K;AbMd*#m&~-ITSw6 zI;j3AY*MS+J%%O^v9|NFbZn0H&$EVb%h4P2tZ9o@V-b~FaM}157mR;Nsil@LaEvas zkitqW=jb;nrWB)--{s_2JJ(%7e5`=KHnO_2{QQ$M!XYkynQ)|=rS3FN3;y%@gdgi z=&B|r&D`dN)>Fbc!$Qv9cOe;ztqI;lwYb4>l0(#FzO6!9v)FpUo4?(hG&}Hg@6>;J zx_8vqHzUy4r>n)rKe`DgU$}OUW4(F^rR)7b3*}g^Ngh4cyK9y886l*FOSnIx{Bo;u z2s|iQOC{CQ-uweCq#diR*Sv&SEfbZkv*w|7$m)wv%u;j`mHF5fsB@XM9Sa$WHkVlk z3*7;}8^@27in*hg+rN&gm;Blky}QPG0A(JCY~Wc??gneLFxaRdT)A{=gH^yA!a;V{ z@A!0LR`{hl$Y+x^RhR&>FbTO{7#0=$Tqi^XNX^lX_O@vB)h27EFxvN>idkmw z5rFn?wzd^k)($ro;iGWR)ehI99G7>9fg_^bQEm;~}?ZInibdR`OKK@CYcn8!B`rLGAMk7%gs zfm48rBKBDWrTROp_))CLP;g{SLyA&XNgz`GE^7~PCeJ|59%u40Y9K3FsR0y2^=IOg z==zJ+SA@Z#25uajucbnbqf_S_g`n}v9Sg-m0D-1|EB6sBS_)Nx7Y0$z-2qs{m|S;- zWKf@kC0Uo}ml_MPhX*`mF$@#{304g|Pj^Ue2Nj{~kev8Dp<4}9?7(s>&co)t64BA{ zvV+zto|jd0rH?O45S?y1-WkfyH*7_Xj#zcu^@5BEM$`Mr6Ki3n2u+{au!-b<)Y^#` zuWCZaoB2tc&?k&j#MmC5U^E}H{DWV6w#!`w5L&gFR zOeJK*IIMPZ<24onJm96VvcvwkFel!C4L z;JXl;`rz@F>=^qHRi^t2d=n~b_rIK`?sHx2{Q2)K*-OfQQAo$@v-H}_7T2vGptKX*fv>*#`S7}>J{FDL({rRU5LB%jUA>R^1FlAtww0c)SJ9894dIYQwsqgkZvIE zUir(B!XyAsJ9q1r6$@M#8uyd+Jsk>d?-%HybNT!*bp2;*jsZ1=zgTmHwE&*_Hij2| zwI=G}X#joXSLn{^ebQ}BYd$Yr0fkbTT?Ywj zAL;M^SZ9d<5Vj$I0&v=fTnSU!5D$3i;yr6TCo~M#Y=_Eh1Sg;6F&1q@02XaSv>stj zJ5NrONR_3L0PIe++Z_CGuXeza&kT3X;L%rr(+M#q0VM_JX#r(p9l5F=KTt(iBgz1X zP9sXEa5kc(gnP`|1sPMUH0#EBE^hiMaW~RW9>fa^fGDY|=AhFJA1vQ&v08*u8RTKGn9Ux?S`JDO}Y<D5qdklBA##-v3QD8G zYXuTW@m?5$-U=WBP&{75;~b#_1Ivd-pw^-COg(6I%j$fgj{)etBeoD70SxIwOi91n zQvOUR07WuQ{V-3=`|-~)F8?G45c!1>I{%zUsx$G=**H)0&+tfj7SAIUUG>k65S{wx z;t1A1XGg&GrTEHAq?JwWNP0#zNs4iua&lGTOsM`GkN_`nH11FnCMKnvf~RiS>O zU{*->HgXov--uvWpEQ*DEXvGy`8db_g*n$RKWQi{+$c0wxjGr=Fk$-TCuf9bCj$m7 zrIP_ufc`=gQ*simn=XIYg%hzC4mO@cEHC12-X*bZLW3^4fGXHt;thSp$E~ zMY6iYn%7Cbz+Z|qw{NQ|&(9Ua3UqkDOP$f-$=ki9+nwcl9Dgg)+|sLA> zJ_>E_As-e1Jj(AWj~5=&L-s(2L$d@f3W*QNqx8^v8~wz@MuUyX^+A8FENiU}y67o7 ze3#1f5wd&KWg&E!*yzJJkJ>0bws`sVqI#08w~XH%d`c-owbNy=2x_NOqgXqAIO^Zp z>Fs`ocFG+_W&P!ButWTyi)u9v2j|EuID88V=33by-rjwYrbUaAw^g~msbE*&Te4i& zE2FSH`8qmLzQhkj<;l0vv=MSk!=vn4X?K~@q*eLy6ps6z%8lT{J>wc0ryjR@GYVQT z_c~#bK5^lVPHbBWAB{PvKXjVz;~$FF#m@&x^(MBNh4YAQN;rPv=g`Ng zn5s#RhM3eOdq-1~1oxt3p+?hX_q`});gQY;0A4`+$HdVshHJuElp z_(rW1gHhGqpcOC}s`fuU)Q<0xgladTk*eJ|&!u*Jua2kM?=*Wlj%&q|o`LD2q^lum z(ImMy#}960-gLU|!pK)JE2Msp%7;0=q?LJt*rLKq^u1i=ovS!g&Uox3xl3hgEm<1YbNy z?k{|60KQ;&b+iE;e=wl<6&HS&g?!$u#qlncD}=*9U~ULR~)OR|Lv0Fj!a zZLKV~A!t~pbc&OY_tifs?@^{ywNCcpgdf?W8n2gMfjR26S zdZM*{`VIrGs3)jT(tHv_!cxA`x@68yPh2!@uiP{|y`V6os4%%Gu{b?7H6^Vmvmm)R zJv}8oIit9wAS0<*d66dNE+*RZMH-E^gKGKT0_NO1*8mTDJn6ui#omlJKaf{x9*Ctp z6c`Pb_L<=tzDiRIW5{`U$w{vtv2N+3G{0fG)kkRvtGY*N?#3vO()h=MI4>TQ<7*Wj zeUv6fdz8jgUcf??#u6j|lSlrC`gJ6wsWw+Hu6RtKP~ogG1ZYHO5sOzv8LKMvQcyFG$BuaINVj$?8&-X{jx zkI8X-Q4IR-nB0<2i$x~_rFe9v?KYo9T`;Ak7E)a)E}r~O!dfh~kfKX1skpFG3n{YH z;zQGm=x-Xq(zXZY6P~Gz2a+$k(m9BH(aFcbl{kHaQ7zm0n0G*N!#S% zK?RxQeJ5wXZy-4^$ywkdDbtMZ%pFsEYt;K_{%|8i5_J*OPqcoM0c zc4o;J_BCZcUf2=$o!oi|r7yD(ovD&11sZ4NoscE59F&W)ui0{fHh~meC+!n0j74}8 zUJI19w2qJT#cOgLhprS(6w&2(1Yh!Z1}E+YXehsrloPs;q`<9Vuw*5YSDci8K}NTKvIU^u-;np9FW!;;^hF(cP)CKIvgJTW z1zmiZ`L29Y`~=oU8-|kiy27`Ap1!% zr(}Ol{27)=xh?)cUMl_tlPS09r{&??&uHyw`9(bv!&hUI>Njt!3PR`4$Z34jHb^`x z=ZGO~G$TTknV>f0E{+b$lMxz6>YFAyQPDR|vOknx=abu@dLPMa#8h2zzvC_QCq9zb ziJf3_HD8&-r?#OYYob-4K1q^DtIrN<2T*{`;WtT|qv_}6h5WEK=+1e}!3Y3|vPqSb zK9-*n$HQb=UBSle zDQ`eTc?bncotiqkKT_NWNnm_UeNtmL1ff6px2{G zB~meOh)&+I3Xry5k#F z;|h>nQGsW!d}wQW--aSen(kNxVSince)vfnDAUrUqAsvf2EH8hknM} zH26>S^q&LRl>QSQ^jH30(BJoW`PHzR&GR8`PnYNu$C_t7km6RDl=O#O%!$Duk1o85 zVK9XT84RNY86B_|WRh46J~$4w`CHzsFP*m0_kJkvEItSkNVDcgN_M$GK3cczgMnzg zHP2690OJA+6+4F9DV>zr|HzMX;wV@NZMMl?S+NKv<7Rs$KPnFSa<*s#gi)Mrg*cl* z=z&sr+gyV6GH=_Y$08d$#5E9s2#~=3>1B)6!!q0~Hsj`C9oy@ixDOUeM8>^{-mPa_ zCcX$WD4TQZ+m4Dhm`r;o^Sy2BF;YVxTW>v*rk67iNv$Nr*H)~DX9!dyu=QqGPQ@#cA%g26pD1GiERld_JmkkCnX0aQ?J8-sGwKhV6-yG z)>x0mXke>nWy-B^hQyRetI{=hK1wn1DD1XKB*E-qiLx$FI>#e56}9nQ7K_?^6T5(ZP;_D4nsbS(9%vVnhKxa|v0yh|!~*$j;q53~a* zRPh)_3AZ|6E!;L{F}S;^I?9%>FI#FIt{UCV6!JrMH6kBwl* zBx8Z;3a6UizTW18PA1zXiq|0)RsVt%+bA!LqMT&&#I3*4wom*Ii?(@_Z6i_Kku+O# zeT9r6*bNMU4rqp@+nx}cCIEZaR2~kKsmhxspp_l4_;m=u?`Z4Ck5@}j+nzC?1RDMNB(TvhJK;W~U$99?K^1ei zwZaQxl!G;T4pxHtnb`fbiv!o1bQfFGAbwv0U6YQ|W_`6`(s@O&yA{L=DP*uMHi(xK z*d=KyymdhLw-*yfVv$p zP*OA;8#gLa&QjaPI%wr;En49F?>aqgD-wSvf^)@W>igp-PVOrDwFk+>A~Af?3R|iH z{FO;Lbx`|-by|yI21vb2Z4r8;{5ANz=$WS`MuPJYy>nA7l%_RCZZqi_wEpuKYXZ)j{&kM`OhyERq+l6_r&6gzM2Lows{Vju0Pa zF>p0suf~y9Cp-+_Q=DS}dV7s+2m?xpUu6L5zt+}94@!xjw)@dMahnnRI@{xVcrCcT zYyjV-47WQvsxf@NSZx5Bz226r2X%$k$Hb2yycSi79O?OBT@4hCM%C*q8i}e{mYX)& z67*Hk(D-BTsY&90AdYH?3pd*a>EWsD8zy?%?0jVFrU#`0z10NYr1~SmmJ(rrG^O0u z&H(A{a@%k*g@xyTPoSIV^#~+Xx73_{wt6wF&R>;zt}V9tVn0}@=7fV_GHn+6B`VE= z4uPp_zENGIU8uRMma`P?82$>~-R0Wm%gsgk&)Zx(D1|2oImWHTOq`{)62ES)p0$jvV~Qk~G{*sg<~mDNzdDXY=>M zH=Md~;buw=ZJ!%W*OGjU;Bd4*pA1v5 z#pd!!YIj}-OHG_k(e_{wxFm!Q+q&w@#)I_N#i0=K>zH;E9%mc~5BnefZ%=gtY|E|4EsZEv58_y5cP}(WAv?lmyb{{D_ z*qB0P)dYyf#h6a2)k{BUCM~G84duinSfyKmnJ|^weo``8_PXtRJv^hq(?)8*EkSXB zku=fhH?#mspP?C_tQ#eaAw(F*|B*P$9secUo3@J_KS#w@TY$#_Hf;e4li3zvWU{UW zfFjarCi5e;_}o=@OUBNW>`Z2NtZsKvuEzeucWie#-k!|vSk+APx++zxf>|NO|6-fK z^QV%{hX*%V6yM)%mpJ|+mVnvt;8!<_E~p>Jgz0yzZdZl27?rJG+E#=@Q$_?ZMHA!N zbBwb6Q*_GqOVMDN=F%5uQDrM4Lw}sN&FACs303{^FHK^cdNX?)1+fDC@v-e|zDtU^ z!0NLYLoV0~d3*}iR9+3-7&>{iPEi`c#u!zwMzEJ;%$UW3V$h?h|6m$>Qhgb&~FWpDAE z0esw7ctt=5&k)_*h-mY8^zzrXr^LIkBD&+_SCHbi(OC5NnG>N>^)=fmPOO*8D#rFL z9$_?q$wV=J1kg3yOhidjr?o)qzQH>*7G1YBFepX7js+6VmcrLdMP0tLW$F4(7+fbFt#5zoIE6v@n9E|e2EhD2fs^q$9E+x~8Z}~Jg0=qPQPcJsq^>5qz zd_%Gb;woBvUJgM* zb(s$u%iEnOyso{0z9<^kX^1R^MUjxoPsQxuJ9a>CaE8h^q*U3F0aM(xyR|>ZrG0v~ z=q0`O_mPT?eSEjV%u2*9yV6GL;BDW}@o%WuYCr8YfK9xdJH!fqH)Vs|E>p9U2O9E# zRtt7APN$Urg{($dk>ClfXZ6g$AMR%wLZs6RkA|5YPKgD z*k9uC9V-~41xm~~-oX%UJ&X3Wzr8KTwRfY1p{)0o27?E@wJNu|adk%Qovs-1FRUDY zNV^Xs4mT8{+Yolvp=XVHCtoQJgna?c0=5L$x0noQ`vltei&L?H+>SsR*ucpk#a)h6 z5QL3ITmbTv9c>v+?HS^eFqw8A7NB>V+6NoJQ%p*A8ild`1lUy?ZLaMRNE++6=?6nTRKa5t?k`8 zzDo!5M&S&L=NoJPlh5g3-Y9(H#(@5W-=o5ebVlK~${K+d!M}qdK(#rAQc@ZNn4&53 zc3Y}*4{0sXqy?7M=PEqAmep^gS7spp@9d2>tbNM|?JclpqQpITk$nROQ>{h6$c|@e zFzpYD+6mXW9Xw+Iq_hUwrELlJ3%uwgmAM)+rsw#*kq6LaX)f8`i4)(4xO6AX#1wn1 zcn&7h!NdE~jTAfHWU518y0||WRhD$@M3A&J&HfQ5{s2p52)${9ONTR8JJ=&R@lO^v zObffW4RG-hi!Ol)XkVs%wJ2l&0g(U~<_%JSrqt7AKcneeUI~z@JK864Vlx1$#Jdrl z?eSs+OeXQp3j-=Mb~+5Yj*-yCo+PHQ7<{t~BzM7O=@1y1{;Ki@DOUOiFvXLHzg%H} zJ{&d@<@X}tNDXGg2r0(FY%tDp2Q%cHV2_eUWZ4^daWm8+)QC0>6hR}}=nOWZ4bIR- zG(&ooh-R4Oj%WhPKDgfS(D}9uc1*CvMZOx%IzD6%;<)34cH>?`WA#;`V+vvg8a>56 z7~OctJ`mZa+5?rl5T5I8ujJmM0x<75xSknvm-K!g``_FrZmb&m4PkB~V4UL*XRt$t zEviV>7zgF13>jdGTgPrm;xqcjlH}^6JHzeSAkfvxq;_Bs=-yNV-NExX(1l_!<3NWm z`5%s3o9!P}c%$2AmimB@S0~dmxTBaH>#alO0ZtQv{{#^i>?D{Sf;^PP#YP{vyXOR0~qwW*#Vry3NCxtlNys zyid0Yge++A{K)fx&+^4N3CiN)=?)4W0tX)D0f%$hv{0oos&zb8t0H|zDWO8bjmKh+yGYPF zq3wSxZfZQlWY7?9DPl;C`RM&=_T^-$c)ER{;Ry3tH!5@v{>_eTOL15gpP5gXD82Ix zW2uF9Vm%?Gld&gkSo^LIx;GQ|go7g;F@7l+%)=X|`>t=tbz+?%q|<#kgE8IGcaPiC zd2uYM%*6a(GBSVK!8|a>-hdM)*MNJ-2$#&i8dHPz&aZ(lAx1M8wA?o}Yg zEig27f>~9LNF#?p-jM4!EB~%@)~@>EW5)q+MkMR;Nrt4_|E0;zT zCt)(J%Z>&uwSTOKXX+N4I4gXN_8E>@^9U+5Tx9CWdye)mU@( zFpf2cSJ}Vfdv!K%cRx`@*+apuK;yUD2TPOI*zxm(!#kTdz86_MpSAYi_(wXMH@;uH zF?8`I8xyCWypHRvh)j(yP%cXM4W?)cxKU;-sd7b9paZ%|;g#)xHr}xAZEtjF1CB3C z(s6t_q-j?hY18@k&TM?y)Y&t>Kq@KSK`_NlcPv`yXAPB(Z?fYB`cFxfCQ-)qNGU8u znQ?+C?sCyzNRh`V{C3@Ms@T)lu;-#htL@%sK!tq`Kd_6r zC-|$65DieusgSTI%;or^F6K@U#GoMT1ThHLIRGtMYi~uqM)5PcP@e$rM{BKosH*@} zaNMrEA5GUL`eQn=Q-FKc(g{Q;XXX=OHOmp-LTMt$or)ZRcWhVqH}H;=-pV{w(Ra8n zYSpYj^A1Y<@h;Roz*TG8DSP;tNcegvq_`%(zPi`GTl|{TX5tu$st|PrlGdOWp`^Qn zLLaW<@cGbUJV~m$$Uho;tc(1m2uO92PY&2)cs@kMRvU)ku6h^YyioR=_5h&IzZ8Ae z>L7uTE3MFdFB=ED9$i_t$i}1qw~%nN;Lq`6x|%yeA61?s6-=c`KvR#|iMQ@Wb_#sIby>KluWV1Hb=*4`S?udG+?e*D6&=8eWscPY9?V;Cl1-)Lla{hu0* zOvzY|hZH#iw>Y3k!_zJN-|$9%SK>zFY5{hOlbYrkx2W#Qwi*Yz-bbrZixC&2{Ilx< zP#v4S(4<>9&t~6kvPP3`x33WSZosu@kMSPiL3K8_$w~1JdnzybLuh8A)%8Lv#8&3D2#2?GDkAaxn{>C$i(^$2ny ztF-cUdwrfCtYTCD?dJ=SX$#k-8*Sl$|KdgM_wDScFr)%-Oep{g`%X5c!p?+ zo|T1w8fN8ko{JT_KD6^~dwVZ_3uL9QfB-h-Wtj&r^9V1YuH_*^O6g>3pmElMQyxCF zq;o|aTJoXil2EmaV6~IlXv?x7Wc$GW6o0Xsc|>|vjRK!3*cE8|r+6mSa@HPz+MTgK z&)@839)~Je+?Jo?HX7rO;{U;tz*9wrEwk&5*UzY)@k?{l5oz4;q$_4C2N*)NB0RNW zh7wX5HJAcS@*@wK(IS@mzA z#AWH?B&4n;dWU~vOz&d~yu9$%0qF3T_6YRy1$zkc|I{vW ztI&?mYnltOsVZEd6kQ=<_1ELL=LlL2b0O6X8p4`i%DqIejAuaJb|dH-nTWg^oBt*0JfwqT7B$_PV7o1AD+#2 zH$t;@-3{b&@L&{v4XgjTFR|ZcW}CaZ>uuU}r5x(&Ls8Dxc6>b+xjQ=V4DNiK{>t7K zU5S2Lsn7ywAgG1%yC{F^ zm;fpHhW$1tzDFuI>7D;abt+v2H8kvvZc-&TzB2D^&fyu8^Z6g{`JGwFI8=-y>dvhTe>y1gc&~@J9u1o)=gr&>)b>d|BKzp z@jbemJ4T>-nmk*ks=beEo5E^JXu>g@TSWb$|hBS4^3H zKpIOSm@yrc*!@^hN0eXIvx)Tc-}cj9;(E-PnH6C#nDgB2a&9CRPpQ#<0&y(@>K z`Il8=z;8&cJKocmRAt;d+~?8^?NT-Na@_La-_~2w8vvVF5_be0@pHh@-9DFazzw%1 zy{G%=9a@N#0;Dqy96Tr9szFLq|4S)V`)g8KYugabix27?&gVf>G1bFav=dFm6xrBu zxNc+a0qz0vZ^1_8jB_isG<8rM2}+|5*x*6d0qZ@egwy}k0oOF648eA)`qm3^+=HzD z^>>l4_EN&yI}$dxbVQz$sm%Y;F;U40!v`2^0)$SV%cXIs4 zL-~JtD!(0iw3Q={C_avSb>M?~m}_5B)zG8|^#Q8=!2}IoveDY{5+8$4mpdE-4HxJf zEG|}h48e^;4PqTb`3^nI)qm2B3)Rp0qqFf2k3DOD)*?@naFo~9!vx5{gu~CB$2*iA ze!vcj6$yCS!CGtw>3)|pQJNLo!2%3s*g3(cS8%a#&suShf7PM-(8vsuo?aEFkq^cy zdlmBCV-*|)Wd39gn*UVQK((rQ3HyCC$Dgl3;g=Z{gcTl(a@ylqgB9Kyg(qXPS(EG# z`D-<({u_5GI@LQ3RloP&$?%4e4C&}JuqQh@ZQPT(fQJE~Zt0HhXn9Lpj9(lEF;qSu z+mj6fjeAn|YVMha!%hGwTOF3KY}D(Y5|Bc#>^(@KjWmeSpN5otq(xW?7EbCyi*Vr3j~%TD zT&0%z_*iABWg;%G)Iv%vwfv1sD7CD>E0m=cQd%i31zZ69IFUR(Zu|uKqL&cPCSUZX zfH~xgZtI>)zUWr)dH5^RLidQyCy8_$&;s&Br=b^;FD!j}?XMS>AUg8$+z325QX$>w z>NxJrukT6v5BWXZ7oV&i`!8?&9njm+qVZZ%FCAZyFWl`=Zu||`Zv53lDCYJ;Pjt3Q zwgj2v<)4t#(dj;pa>1?@kFG9r~&`(Iy%@f zR`?L4UY+Q`7p@O+(jf>g{ueiAZ{^X2P2 zL?Ur^s77W(rCSGz?uqg@RkfF-fsPM2AqEtq$)r6V%wPJ|SU79CH z!KLHF9cwsYwg#bSe%eT^`Nbd=bGeC|ji!!r^wL2y6*o~To>_av8%I0(aKekA3b&{Z zf<(9K@Lhyk#yXO97)<4XO65ChuYCVF#|-?&D5!@T4i)+*Ak|g7fG!j`7U~d~y4Bl< z->bdu)FMYXC;Y+I63%nJK!eQ`UVf$J1siKnIVum_L{&SmW#V!{XiJG>hR~#!&P|33 z%|U{TQD44EFZA97Y_AZU@Csa}xk4MLMs=B;4?Fg9LPt<8bs1_*-9aibCca}YG~42M zQU^{dYNDBOs8UgSFXc*u6s-skJN|rFmwU!Wtt2fd&&40#^bss=?Q$IV#1iT53<_E$uziairU+ zB`ZvmNXl(Ry&l6_2RMjGH%gOkqDNhr3rsYA z_j$?PJI;Ob+l=6!pDS`tZ*pzTN}!%p9ea^vI>$? z7C4^u!p}NlY~^}upqc?5I4;#3d3SLJp0RaT+0NZ7v1sZUTQmBD8oD9Hg&yeC-UIa# zP}>odxy-Rm7}r}1E?6JAVWYJK1K*g2j&!Ks1dXpKUm!fHK`PC6V$-r%VHQZ$6pUd} z!Rf`rbVx*9z=a-Ds0RcPc?U|gWPaSF3iTyIb!NuTZY9Gq#jpmP3|iNqdW)B)26D1uXc1H_b*XwWoAnJ z6k^kRjo#?ZPE9#_D?<}Fqi4)`*~bn`ElPcX4pEBA9P`5rErp1Y_6+gH=nZA|sTWN$yt+0_kR#OpSqb5T*PPV>U$1S^SJf>MP$PJI8Xj4%egx$ob@XVO)OzyF zPKk*f6BFaZlM++YQxnsYG7~x^p|g+g3_&^nxmX_!JL>3a4i_~R)UFZ0!SFmnZH7Sj=IZklgD^v@H7)@9V+pbz?KuOl28|l zOI~!t$u_;bnt-h*Pg6kMWEu1uWdRPRxIM`gb#hwc=!(y>{&fNm*?z&ysk1C}8YJwF zmH=Wd1|m&UPCUxDEG>+#87P^fz2xwn&vfO5ezcdIU|=da9aP@+rBU2V1h=_@3tmOh zGY#KU@oWI8A&s=#5NMp`|A}F+#x3Ziue(@N@#jgJ1{x<#DDf%Y;J*Vg)iAvOgDWGgMbgWUV z;G@qRHend4TbbJ>V;aQ@#(_k)74XCQqyAqwCb1~$4B&J#oEaA#ZFM+|;jA|?923c} zzNARrb&)M!-e1?}+ysQlcHGwEJZd}HyH>YBKU{W9=8ve@s_h(t*wl8m^k;2neSck- z(@@sbc7hDEdZI&V%DX-64Thh47|#WTU}!uWuAK5g&abfTyl%m^a|aNtx1F0FwsYZr zY{x|Gd#^c;8jpC;)NdS{O-9@y-#R`Q+UIB{hOH?#EM7}6XxI*;>E(d|(vs_r!@ST% z1679H;qBJeMMXCp?S!5niyG;PFRlq(4!Uu}5u?MSGke{BaC8@jL6nJ(e01>#M=akZ zN2>p$V>YKlVvO`v)kp#9%1i@D(0D;pZfQnJuiIRbqchTlgb_$#^ zpIxYr$#z9`Jkii4+p_XR{RdXpd1U6JlQ*gz{zplN-@U5mvPPG}zXb+gqs)dXG6NGn zgA|#$m-YXu<9w5!n#*qJ(D=No)-_o{tUznJlyyc8>pKT4n@-zy#d9$D&++`?Ty|@R zR?0tYDc{z2?&jC!nhuw9>Z;E)OeVr3BP6Vq+UuFKHDs*X?pK~O~->E^u z!3+u-($IN<#<%vPpV|yE7NEty+{0cXyL>*=92zDk0jKnyb zywnYNZqFmrb#%CqFaV`Bbsp4J$h0sCs+a(WHMKBjn>k%K?Qu(p2HbP83kmsVZ41uR z+Lq+z&Ne)^MZtD8Ef8C2S_ZHkpm_sy9Uwq4Xaet}QNi0f{SL63#^~9VJ26g=>&&WM zw5zjj3E|E|_(BHEy2m{ZT2SbtO7$}Z8J{YRaE5c-O@cPaaOPkDgMscwIyd4g$lXS6 z7^;W5vEbAjKCXf}@z@(yt;$cGV1e?h!OGF>R#fHe^c$a$$F^E=d9GILYQ^>}gvT6C z^!rzMn|cqN;j#^VZ!tTM9cjend5$#hlT<0Rjq?B}OeM8xV~a@iYg=cQ@B~P84=%W= zXl{g8-GBV^dAfesRv-^{uuzWksISn0W~=tjU8rLVr--84 zJCE>^T8`>9ufTGs*KE&Yy{0_xKD{OoO4+S1v^dFF{Z~EIe@USnj2af8loV$+DjJDL z48H?f^)~Q}hYei19~-De0ZUOtp&TGRnC2|zg~)uyBxsCo3sT)C;YVPx0veKe)14?H z9V?*x&m=!x8H|mrG_esAk+$qeMM^GG_dV+CLC+9wnx2Wi< zK|Bo6sX+|NXAPoX{(TyRY4_m$W(N$r2OIO*h)|}GtTTzHvam_i`4oqR{eW7%N$kmI z!$Mj9{~i`*cXuXo!g*2~3=4EK%SDi?*#Loc*}x%mqPz2Dblc+a)0M&4!2bWr2BeUO zoW7j!52&5?9Vkup25OYLX~J#6M~;nvMw`Z;C;G`3H4Kl8^zE#)M$hg zUXiy|p;qTDkt4CU%uK-n^c6s;&Rg(76kL$;&3Ib}-iOj!u0GE@}j16$gp!+bu zS~O9IK6oUppNxm%!cjtnYKhbgn7|^cubhB5qO1!ooa%gU7I{`jd8P`dKAW^{Eb9n9=tovab7T)sg0fM+>hd(!foMNGSNC*7+^#a z-)k^hH_w^wf;>CVnH$zagVe@;^!OcRMPdi`Kp)hIUV55 zj_(st*^5rNH>Su%uR4t}?%DN0=rVGy;1>-spCZjwEn>ccjSqa3JH0u6-4OHn(7_A} znzY5aoZpT)*Pn0HCQC-SF{nD#2~lniVL{t6(gd8pFB;<6s6f#v(-|T+0Jks4&!DMOx!Hkkl>y^=w7`V8H_oFbO2>;GUU2$xe2j{&nrJjcCnk!I6>_gQ;kzi_ zL;szH-r8kop?v;OcIG43MXze2!MmMDdCO39>vTO!`mlmnA?56G;tLGt4K=sUrK;>* zDCovsXF0!WsJV5Px-p=2^2L}g{qDBhq4!~wwX|AmQQ6`p0n&y8&c>WjNt9DVPiLcv z9o16D7S~gD+AT`w^+xp}vt#yS_q;^&7v`MdLbM6p|Kq_8YdkAfPTNaR)-T5>>YM8RU79uhc=h**dDKffx zZD{~H=5X$>dBbuJ-n+N_*#y*n)4s{VdPpi+cVDX|XuSt_N9}}S@@sc48ORCSHBiIe z*=s5zph%^6Hf_$9`n+%mpkvuRBOC__bm#N<`CA5gVK6l2!n)2PfLB*l!WL{v6yAea zq+5LD=3IdrCY{|ScjDMe@II6SOL__y0nYTdoOAg@!%&i!6s-d%Y5_a3PI_{K#e$8q z0xep+C6B*L?K0nR``eqIxOA8k5jnpoGchGOsi+{mFu5Q#B{eCtD6J?nIU{32MoLLR zak{j4$(9$n)Mmqd9+;u7$;LG0++8(neRS#lj9P&=hEwek96bbFyz5Dci;G6}rBp5g z-HEMIj(-#yZ31+?p$c@W;E#T%{sV26Y$QiwA0U&lA0#A%*T!5Csye*nb*~1)@pB!! z_H}F-jHzGkHS4j78!d!kOD5(NUsTbFFx+f7YBZxNASj7ss2x>}`wbB{!XsCQ*CNa! zl)W-AIA#`PwRFHwKWI_?%Pmqcl_1Y95WvyC%feWv> z>Wp-B`A_HITIkukSGK=w+hNKCY(Fqth1!or)rDaSgO6-s*Wq;#5!L=;R$jmG*OrDUQ zS)7`hl9`c;vr{rKJO(ZUE&@+BjQSDL^Q*yfF{oIiY7Q}}~W@coTq!xAPP*Rv$m|B#Skx^KZQkXd* zGo5TSNl%sT%vp)Ks%=XNrZ-SJF>zBVwO8exE7?(4kN6-G_YB9((J#;N% zn-DoB9{qB&G$^bVt`N6q^C;y1lXLk0_ptx(VgKL5G=KcR^{~IaR{3#w-Okng8+K$q z_v}8P?SWP0CKHA^K~?Vu8{h4q-r_+g7B-?q1XukMXOOClb-)QDzy+~|?flQjRN z4=}^BA9phrY^=S}-)O-|C~?)6W_VcsO|z=*ymueeHl!-1UK_lraCI1J{@cxn`Vr(i z@o}_$?hYgtNYr)LS5kuQ2OaXI;-=Rck#Uvx9@Q{;=z zh(Arf=tRQ`@IoDcRpm#%mT~wkpxCPZ0wOp{hX$={Sv87#0cAy31%!jic!Ms_F%DgwTZQ-9k!oKz ztoDRjtzUT64GtfgBbA*1mE}d;Z)Nd3sO$&B%D(%5?0t896h-^Ey9p)S(n1n?3ZY58 zn#)lWiXbHg1nF>TKtLdL5F`NvLJuWFHJ~D0K-8lMcSlj*7Yv}F(k>ScR8X3|^Lu7y z?{;=?FL~APe?R?v4xc>xJTuQc^E@-p%+5X|R`yXNyPf-$R(6-E3|f|4buquZ;*^Qg zCZ}hv%ciXi@bYhLWBU?K_+T|K5RYh74=jN3Hl!!_|en$HkHK`EiR<%SFHhx zYGGfSl;x9vK)4Od$Na;@Fyjqj;iy$h`&D5kQ#!&4tZPqWFkYQa9UOw*++VZ4ZFMXA zh+tt6LxOM~>xMu;7d*YijFoIDh+J$qOK0E23+q_cg6B@epai3RjYF3OWVVg}=MS+1JTSB6plfLR6+}23831;=#FQd$#ZaTN`Qg z83w~P`r?4ldbXT+dk!yLWk?XYd+~~`LwkD_UbwCf zJ?5FvpU>Dw2u<0tNy7732IEtm?Y}+jmpMLh2w5A}R;7Xdgmp|^+wEuVXM%*TOfmRv zURR+vi@`TO^IeCaeo6LrezY;@Xp+5!FkHzH1cjpQ8{+HvadZ_XDv5FFK`C~-A8ibJ zm}2iB$07oD61v3BU(7vUN2N~q(~~vUUYD!Y;^q9_ zAt=WLmi6XP`?;Vmp#tK)dr{#q`*SKq)gErYCj8=8)T!b2MksxReU-1gkdgK$K_NqZ zlIVX{3N{xZJJy zpLcP2hw(qr*bW=wf4boZiTIz#_|FIUpIZ3O8u*_L_@DLopV|1I8Ssykfeu%(Bzqn% zKcAGngp`|4%FHL_Eg@wsA?4(gGT@7DZ&*sCBkCj45r{~)AB#w&Bl8N8j#xL5?kg-J zk**4ssU{JR^b-~@J7*}`Hs|PU9HQ1Ne5+0swAyi}BKqaoNipKA`61XwM~@kiK=tfU z8e3g_(LRm8LhPMJR6IN>h_qYKBSXh<^vxW*CK&e_>ZuQHO2gj^&ra$mJi=8nb5T$9 zD21!Q-)D>clPOlXj~PgyHg&L~0v<4ljqSCkVUsuRRQpc{&sw6B$M9 zA-dNnU1e-;usL{_#8@Q%-j0{-$13xtVfgI_n}2WAKMb>~F0n_3>W6tXfFY>ZFaMsL zf;PVUFq(faz%!D6FXgLODx&rI_A$aprVbLtMGRvwUWG!L)!N#!13g>W*4DsQd6~Uu z1z|eFO(Tfz7(=qEgwY{^t$@x?*H_~JZ($j%V)8N>D;|go*V%gqts54CqVhNN5(?Q8 za7@In875`xYbZ$~<}PE4vq4I|MjZDhnp$Z8Svbg+gyYm&60?|GY#%8)F=97E%IFK{ zu0y>x*lqmTVdz>fn^yRMA*9#-joN6>5Q@+ z5MkbC`(pU+q0$!na^VqMm7-N*3bAj>FVdE?)&2%2R2mM_5dYK zO2g5GB70XkExDAu^EUe^A%guN%(wH6>JB{se z@(ETfi;=p|tLVnyb;=ZJLMkgZS;R=j(VE(L5=%k?>_e~F+j7E47N7Xj(HNBS!PHj5 zXcmoafFC&=t=nO5D`!YualA3Q_}$1DVU`-h#5e3_Im7k{M|WYFk~RpWKr>F{wwDu2 z;%rrNU~#(avUij-kkSvR(YD-e*U4#dA2#yYZ(DyYkpWIj?DoNMGM+NqRg!{r{;Xu4 zv4!ll-{JVrz<^$NwnHh#8m*Y_H>q*Wc(;Q(Q#=RmQ?INtL5MuutUpE+V_A z%g!u2(Phh#N?pc|WY2*`gs3(OVKv68Kl3(tCkP{b3-4{vWO;)ovJzq2VA9WzrwxLm z>h$Ay+i&OWo2u|DNeS$|UeZ`_kQ(i>kvOcTU$iIoTicFb0*!)GZ?&i5B56XZf$+sT zr5-=h|3KGRrrD_AmaSvwvc7O9F|gPz-sbP7g<~D5D&mw}5q4Z*fS!Gimf`#2y~Pqo z19bhHjXJb#(f&$kb&0)#t>c$4E!oUB?1OmTHBxz&&ZnWi6~s@&uhTM%Y_&@4%`5N^ zM=H zKUc&9dl#Xv8pGiS_Oo&ZJXkmM4%U6Wd7fA?%M^UfBl~Pln84OWqTcG?+8YbgSu}}y zCyb&|uZ%%1LLaf?{6uKXVkA=qh@2woCuIWT5Q_Q9-j7KHCfUXFD#a83C_*?97`KzK zHkXbMNvuOvSjqL1DB**Za|9dPTA~D;o=dQ^Xrct$D6)mrSSop>O39*7I5ijdNnoL@ zDy%f>Iq;LcRYlH&S#@aCr0N=!Qn<1;Q){LQt5_>e&&7QgxYmU#tYz5=+WN$fGpmwZ zSfN(gj8feyb*6H17T}q0MtSEqM|X~IDRPSwN^_PQkFZ=AO04E!&lL;S|8+hIG}o+f zspf^`2UwM#q4uK!dp~Z9so?ms>NrM3+1E_`7%QG7x(L!t(9bHH2}-|O)>6X`LY(o$ z#Hg|zVLQsZ;0{MqDm&grqi;8?iY8ZfoDvGL5Z<8-FXbX7^LryuZ zgrkF;fvlr5)MyiHJCfzJcvff%6Vv)#-lQXBn7^bZ-(&9rH$uu^&h|9mab<)$k!@^!$9YcJ&y;|qRrWh9x}XExW&LwQ zM^+%}5B#WOq8up-YP>OW)sL`2v}3-UP(BNPBdVEg1lhtwj{c25Msw^r1~0yXEvG9{Q?@ql?f`Ngo7)pcqYs z1}YpEnmYOjZIv9{V>GRqW3rrHu7L+?8aU*9FC&s^o`2_m?;S$8)64qu1Jh+wU4JY` zfDk(cp82LaWNP6k;wOsS;@~l!<;H^tKPa87otUI(khPNC+Le6Ve((UHLm zRWcYMNL8UM23N&b$w1@GVE_KKjn!x!@s7@NTDe@_L|8Jpuq8*RTQbUhxF2t%kbE+| zGh`Or6AKW)g1f^r$%2#HJG$~2BDZM4R+gLedEX4>>c4x2ELvlQW~#=Md1LiwKt*gf ziU(nQ%YWP$^kR~uA)h@L6?9qLO(-@giK9wWvTH&g$W!pc< zaexyBWHKGBh{ZSf%3){%mx%fdb>M{+$?!8dQ|7A^aWw&abv!)t`KoQ-Fh^gGUna7P z&bowUC(b$*`T;I9W~Q6*$eR9Frkel*G}=3ow1OmEIU;YxJFFOrS>`QSD>PQeVvfHg zZ$&Z7PFiuyuN80MR(Nx71`-jEIDwvZ${^yiiOWjY>}ttnD%U(edj+N+p4u`q9aA|z zEGw`>9T)APW)|tNBHQrM5PI=VvI0BQX(h{{u?|RlXvzxgMdy7iGB2tIg2^*Q{_O4W zT)cU?7m)#r9fxtKJt=_o|2f_=_C3Ar} zxUK*$FpFwbTz~G(as0;d8$@=|1=h3d#CY;RiSj$WXJye5ocTU8keQGbD61?{l@&2;ykPwEvZ4dol+T|!7wGw!vkkK##iB5kOIh?K-IbUDecZ_6m zJxW2z08tS$C}WYW+X_e13fwZPze(p0Mxt%MqcA2nL(K!a4&K0vAVzdj**6H2U2D{De_Y;-)s2^ZMv$U^hL((t+{p?G7I z@EQAztOPEgvzr~`+5uE$g#kH4Is7F9OU4*Ie6 z<{1knaYA#ZJaSfw*?in1HkB=o>Z;-EjvGQ;8La!%Sjih=wlJvy=o=L&dvpXGEIDWjyF3uEVS#~n64j7{hminTa2OW^YdJoz@WK+v< zreRFgB+LjP{(txQg&E`mr@}GHIAg6>VllzR1 z=e*lU&OpYyKF1vGgiJMt(qoR}at2AJ8EOop-gC^6GsxS2ORfE7dF}ZVQjnKWeP3hl z6_j@dJCYbcY{pUqaNP~?Omf{;c1H=v*+h2Hb>C*$iR*3~tDK`YjP->?WxH-UqvDU= zj413^kju6}}OJrmN5Ozl(bPiSiYpyiIF5poFuI_jyfrU_a)A z=^JVv+e_~|a{2n%ffoxQJ`ULo|NU5Ho*LI!|A311+p;{__V`1`_F$oBHseQ%Nis~7 zLsldN7^xQY;zh@} z0MBf{Uv&J*33&`7Gd|_BXcB4Up%b4tUI|3MS%p6GibE@>C*PpFc*XI%u%D$T-#L8n zsbd!;SD*BmqqUrgoN_(I(u?vu_qiioPAYfqR$`y9xA?VWUhMvN=Y#BthhbZy7qlfU2eSl@F&gs~T^t&%EISz* z`;Jo%jorslCui5c>JpO|4gov^jk-ey`O+@$Ci4aIMyzC|P^@^Dc^g5}?mE73r1Sh9 zc_VhR?4%KE{Ti`soNs)0=e7tWBZ~G*T!ToW8L$%?eechww6rqF3`#PY5|&a4A`w8mBghul+*c zHO@UR3(=rA!Q>;NYyO6xWnK1H^d+UD|N7R)d7q}qnXGa=><5&y>Frv!i8YjNu`#R> zs_UE%Y8M$gAM2g(Z|;$4ez_7pBD3*gqG zIgOkfROoLEbjAxF75YzNoh{|`^2n`H1-cGk)mN56(SycL{N|}34`%Et6J$ejr3qjm z0m6=8ct(a~JYysG%UgqO{hB&|2;yVKGQ@#7nk|D2%)$g^>=6tvzUIRo4(zCuGccFq z15Hrk{x!;rddRx0?*!%i-OJkmasIB?+Ifx7nh<#8X(?(poiY~LX0~zm;rJQwsltg9 z{Z#i}4GI?2LF;tzi$MW_&O3MTamXg+Q6QImQtmaue^Dmub9}@wPz3Z)Px_q9Tw1fU zF@H?n@iw;86rtMNUcHfgo@6fmMBe2WS#Hwh@A-B4+y8Tymopb9SMZyJaEp+sr#Khq zZ|ts_sIX(^+kii4bEK)bN4&E`2pb0w(JISb&>6zj|U| zr#a%|lR3>;+8z7=V3oh@>pRikd3s^Ruzm5@C+tnW&M0fdwax42Ea8PSY<*-xIxoY( z?8Tiy;RBtU9?^_OW&Jn^`dNSYtG{pHl$e%paSs-VUPgfuMRK`{q<_x!uALe|O7YuB{P97VwXwRSDX0LlSryvIT!AUSl=$w z4V9LW(NRpbTNQ5Mgb70R3lo zTBgaCm$&J4&e$eLE!D2{3g#=Zf`&ln8?z2QYcnH!w+ZuY$SoB~#8%)`yL=pN1(Rl1 zs^oScUez?a<+Y5a*^SK+)9kha$;C9gxUsS{yKQo4n%!sc1JTgEmibi$G0kqd_2D$T z&80NEQoFp$li4isF%~0LjVv>qMS*pWSR-%c&IoA1l6uV6_?2!J7|-7kNM zoPrwXp&XjOB)~J0zodAHbD`#(R6HupEAECaepa*&O-Kv%#9H(lfMr zrE`*|ltDld9ntFPCo7|rRnCswRkU)IbFz#jubL~V!6D3oNA=zsx-w)cMArP`j93OC zN#NrO1wAM;N@yxi_GyYX1&=#SRbuvv3Jh7|+r{Cw(gJ69UK7Efb?cldnn(r#%}U}U zCZikcoOUH;Bh+heahgV}AP<59QO@EQoB7iZ+gIF4(?vmF6$=2(BJ1|fNW0eA8J$4R zYBKiJeQL_j{V8+VS)*Ay$2 zMqKQigp~{&o!jo*q`4tIf;TVDMo3$yptqTQ?*w$H3zKq9X!%?2 z49z1f51kU3IqSZJl^n{}=WXZWAkClBGwe|*nu=3pMI;3Q1xh^HsG*FM47YU@q;Q34 z#!=_zGD1>j3xC4L$D9LXgrvj{{)9pAIX4Q7lsPnq;D6q8p3)@A$;J8g`U&Sw5M{wh z=S=?^(&a2kKzPLN>?9-P9L_$PY5s&e9nRh|!b2O1o1jKcXKT%31vUTY6m-aRyuOTF zF`vw$0}0bRh|Idlr<^r;O%YQf8R{-h$!w+B$zbtN$3Y^8v(6!$j9gLA9KU)N-+JE( zzfVA+vKb1!MjKq>Xi6e;WGjwT2 z@fpo$jO@fLN*Dwgw}FD18cRwHB!ffhQ_{Btd;SQ zX6WSPNtp8adBrVdlv3$k<>XT7t#XT-2#iEIh%CEn)I8QgGeF5Ss)k7ew*v;{6;GDc zL#!$}YnD+nTFyemBGC|21yWemT2*a@+pf$nhO@o%q!LBhdM+$(p;;`U>G+iUxK@=Q zAV${f!F4qZ7b5!FD5p>2=AqYLF77HLB&M|2pK!~f;shBXDe;7YkW^lETyU(4$WOl6 z&_Q!S&d?2EkwK2UCB@@p#Vho)-d{gBd=FQ5kZbwH%QWAsR`m$kmli**dBi+aRJBdL zswmZ}u*Z`1#T&k)L!WNw%h#XIzDv^7nGR%haf1}IVmLhV#U(c5isHH)Zxp%3$VA6* zlWDQxbY)}`K3(<_NnKPLl&C&KKd&mrFT(te^o^LVe04O`E3mjv9#v30fuAv*?2X5& z1++G* EJ2-R3q{3*X=I@t+VWjLW=7{0dnIer7QS$-&23YpJ%8Du-)IUtk#wb9V& zemmb9Mjhz!HP@tay7|8}yO@1FjKF7czlh-hahs1A1es3GqIgt1UP;&pwW~9%lcvO< zdhCYcjxuVP68mW$D+u|s&?$Iz#R{M>;tPMvh_BGrE!b2%N)s_dY8@Giv8VE(Gf=0^ z#Z5J#%u_|x*Zx-3Zm<84^eP=^$o!`ru1(#4%<#zPKj`4r;`{tSky&(~{tPp5pUyLs z?qi_Ia#Hg|UQiM&FcbC^-_-oh;K_VUc1&u{lvSG) z1Y~r_#E+irn8YgRq4e+f6&q!xW1A0?B-eU|@;DI%mKK>wX78-YH+6|0XxXW$VTfylb{^pWBUobBBs#gQEE z5z7zs#7fWT_EEw$cVkUU28+#=kDY~DI*Oai$VpJ1 z>nLue=_n_sL3t1qjef}-(?Z5XJbI)PY$sXHMCx!ki?e0q3ZwES(_>mhP4)7r;`5r( z@)GHWBV$;tM8jgZ7e|~ahTjGFU4-8y_#GAb-*5LnIJLfF~5*;+t}kvj$FVX_7)J7I)t@aJE9%S+I97ziBPm+x_|?s;yisKK2Kx*%4fba% z2Z`|6vS>wBNV~~*Q%jm zv-b2Mf3APvs>(=Bpbl?-5sw+{89PbA6UD|EUzE<+VQc4g1kpt!o;EMfV2zuJcI2r4n6tv<}SYA#lR+>t0-W7lJ*U#q3T zNU!@q@YDpw3NC|Y0D~nFZRa`Ykl^~npM2V&JqFEa74k0CTt*o=jzFR$kKf}n2cH1= zuuw-xZ_uE+tDk1Ryi74TpC@6Zu+es-x=YV%R!h&MLkdhldqAv_DTBUvWe`%K=#Nkr zj(JEz!2NS%;m#ghllszVCp?nEonc|F0sQ+Svl#B2W|(of!yQ1@a2K2TcIO;fw4*AX z__jp#85$NrL|6I{_XusT=VAk#`&3#O^h=AjC7_fVCAlcHj;jlrShb{?rs7BPDB^ zRcfS@PIie@lEUkvXji;uyMi8G%X}Q|>LH_6g!)(hn%P%wMEU|}j)ZkYUL%+9sKHrW zx4PAzf=80okBxO*=O9%H<`s?J#qg3C|G#sUG5)E!|Iq3mHc_=AUh|SN)~WoGzZtnN zz(t_Vz>Hr07|bXJD7gUQYQLzJ9d=z6zlEq_)1lad|+c5eSJuA+& zLw2sK$ocTqmYko^ef)(+JzKiQYBB@Jn&u~KpMNAPWI+(~Ml-UKxp}Rhu&Y&s{kjbZ zyE}leZ}UiE z+h0bpCRaz945Z*t1z`}Dft-$D3ns%zV+AR989k13ol%xaB|s|^T~#2(hFJO3cvp&y zP%$V3i|MTx>!ceP$rjhAoF<8>8pLjdzIY#I^MMQ&*TW~xL#6FqYyHW$cW^b=j8TwR z#ie=!kliS{oof$DdZkZQ8M{Kxit2JkAWtXA2>EFz*GrmQc{P6fSd~?Zz*`;BOxsmF zvl>s*O;{6LW7K0U{w-~n<)=VqscV)hXl-e6FR=SXuP=vN! zeXj$0)L>0GawWN{B73T<3fk6SO)N^e_+D$}gVi%%Ys789RrFUay_2%^L8-2n;F5XT z2j}M3Zm9BJzHfIg7gn%u@tc>cT>OsnbpY8%8>8rfzp?n$`MQ8Ce#2F*8?|{(J%WL# zT=7-r4SB!V1`cpFs>%IaPM@TTQv4wHiS73+SC#4<+$6mVx>6heu31&t-Xys`wwI>6 zmQ;g-s9v@xln_Ye3%ym!RQ|1>%5TV3&gh54-{lMkTV%rlNgBOvm&=!&LDMHsKB_VM zUeCfKa0=hPmu>nI*P~h-WW^A50*wpg(>uh*jmeXInp_)|nMc12O~r*P(=ZPZvkn7%eE%7HOq2@Fd@@XHy&JParw@bD5;-wJO=VMr|52^z@RqcVo+fU4Lor}jssqa)Z zS|D4uGXl~L9|j>A4boorlNhgnxv@%_v;1X74d*=!K@YEh&@*nr9>cr&p#6Wf>(HW zrPu%+zwR=5w@XM19xGe$K&1tyo3OPRS`!SW(n3{(;e!_{_jevF@Sm+2HJ4>9%}WA~ z+~-PMi!>dv5YnVCZgIDhu#(}~>~2>iujws4Q{CeBCMjjgpeH`YdRz}Q!l(tg^+o~^J>v+vZdAWXz{M+K#&z6A~`B4l)(x%TN?)i-Br}-@rNk#uIWYLn+ zlxYs*iq&U;gYZb20j7N8I>28LnZ+sKJi|3wl8T@hQ2CcV|FwV2|xdZRWoK0ecEG3nyc<4u{`_)I-qdWHoFdz` zA6y+E*~-g--!xWHu%MMcxsLGjUJiU>p{9>R79$S=x#UM&yS(f_zI6u4Snd9e*!WMM zdP!_tjvv-0$;^Mnn}V*RPf&{d+K<_|;9<1^>1D2k!0fv9E1H|Z-y1|bbQ>pPX;H;Uxi3vx$9#YM8Q zCTLN>vF0gwB#kviT#22J5}C!ZrUAoD#+u5Dl*^!}7SXO2Kjy4idvnWh$&VyC#h6XC z4XAoBX~g!So09oHKKT_xg+Z%OYLyZ_ik^{Io!KE+PK9S)IxavfLP|QLFPlLaw1bhH4Lx7Q zWp!l^XDt`y7he=H@{<^%9HBb}6#5fYp)aZkt*r_|pAUiX=WYO@zfcN&v23BknN~>l zgX&eMHllb>#MMSMpSb<>8@5;(-k(C}u7YY?!vpW!%c`~oE~Xt)9DWO1EDPuv$!Ltm zAQ(|kgsO`=R8`bLexfcw)5AckKh+0$a{|aaK~>&Ce@os`5$f_n8UPj5Zc&ly?121lCHby`zeyv1n9Of#k%E%9k-aeBQzUT?BkGWE99h8rdYM`dJK zGtHJvILMh{HpW@w;|*G?*=n?8=}bDkE)C@+FATFqUp~2vi!!BKw7NJ;7Cz%IWHP5)b=pjm6~%nDAk3DqY~klzblFwwEGTDrN#E#l>b9coMGM=asw+xDqS7#do(8g(vW<#1WEyHZFnzV6Q z8J76?bc-$vSzlWhZcF%i>0T}h&g;d;=`(fk%0q9=GDAKhvo_vfGNh&H&1w308?^c) zS6-#)aqmK1l%>o{wJ5Pqp{{WKzM*L1(UK}rX*#_z-h_qBvKVz48S%z=ZHC@phLePu zh77GO<^Y-$9BDP_;|-aHETay$Lu;|7Wn{%=7UO^ZKn)xG_2D+h*!B6`ymGq8+6XFrHf8Y0zRBIX_ZeA^ZKlbo%T}Gv&}euobmfhO5mDu| z3SBB)*CH}5E?%3dOHa?R8ldUsxcDqnydf)HXD}JlO;+2ah6};Z@L5stmrPhm=%8EE ztrlaNIo@QoX2PLqb3A(7+2?0q4q0jGmJH}NgAuG8JWiix$}mIc8nO&}bg50D*U!qX z+M=a?R!-gNjGtM-`eCV)ZZdsw;3bQ3W z&6Jj<&opLc!Flj_8}y=`i_%)*zchVZra8-Kv}Twr*0?l-E=wDy&&t$i!KGv7!ti%$ zpgmkv*>#HMS$3VMpb~MjcIcsPUwzc@Mu{d8#=5xlI7>z*xQ;$O)2cJz)KcJY*!wck z;~daVi}2^^s-QiLB4BG^4rZlIp14kdpc> z;~8Je)MlimXTq>&0sWgHhnm?Omyu>kGnoyB3}copCmT%+jx75qvMsgM>qXqWayrQ< z_nUGoQ!l43M_+pEWs9o0BcjS_4@%8JEuwUmjCk-YGYpz0quvBO+l@m7G$Xusn&|P?2>-vRf|ebt=FOzKa^C9H0#qqF!1n97^rn%T!u_D zymrsXGR9@<%}8fl7%m#6L1(cTGmLnI*Bh;tG?@3yY3Xq=6j-dO_n&&P+W%IYJss7+MS*Tj0Q8)h{!T))}qqm`MRib zDn-ulh2US6-1WNXnvS2^UaM`V)wUWo4aQru4x$0Au8kp%@wvDxgAM|VESO{Cjd5mE zd}bPa@B#r4jQS>IeRwj$_UO9>!-6BrK1hLJDDlp4<@B0X?oH*`tVK>;jxx2__r8CS z9}!h%y9^n~+Id5ZCBMv;l z9IZMC#p?_XE0=0AQ+3cQd^{if}3VojqyfnI!u-Zv({|UnzbmE z1K%TYSX9}yXQ4xL*XyFpy0WY0QeSU^MxD(U(3ABgof>3hnM|1(hIErD&IBR8B@HH5 z18Cl)HNic>r%`R&!Dp5Z3yv~@PiATLnQ1UX7!7Ihdaz-O&TNFGK&I84VbeMDA>xg* zLS$kxTA?@05PHC*0zif(Gb2-%m5~`wr?}|8OW%MHx{Qi5bSCVC`pB|tMXBE{Aah&| z)S;-PW?Q|sjfI`(AUICfn!uKHAan){^F|AJn>Ec4pP6AaYsDeIoGnIelf8 z`%u|dYEnd?<*1I#cG%;h%V`y?qtX^OEgZShguZT7AfPjEl=S|0DfjPE?%$;x-DdcA zDObia^53Q0ze~9Q>+OG+a{n&nR92DyF6I7R%Kf{P`*$f9Xbt)AQqFG`{MVOqmRjqZ zJjFeQ|C_sxW@!6qF*y>%+@c{JB%k8{?oT`c-Ba(*2yg=0sdsNuPpOY48Qe!|t0(Cf zuWBH5d#`FBfB0S1fL70H)UaZMC2)g+0VTh6EF2B4@GzRcHwFFK#AD*CL!u|MyD=ZO z1f`nY&EWL#EVDa?kDZUUnB4~6ybxW2#}x(4Uk5#U_@M5*Y1wZhO7ges&naY=O_H^0Q;%_-%f+8D6gDXJdZm_Jy|aXEsTWuEh|^$F0K<$&IDQ z5XlZ;z!3S$&4?lLO+}~)gX92X9ERY*a7clhi=3XsKWr|1S z?&ll^167lAeNf!?<3I5um27TRa;X}ASeceW3A6q=Wzp<87KsD+*yOz*Adpj6X zrU^LD9vYG4Zp}H-@+7xjIL*+JYkZg@tJ5Ow;LS&7YsvW!<(t z=twwvvVGIDL5=f6P*nbgUP4p0Vsb@MBT^5&nTIihFe-(tJYojiK=&-ZQ$CtA(A`x? zkQMjS(HQj2K=(?a2a6^bawg=HvuSb$Y>mt+LjF_RXwRSwZiPB1KzqG3N7#+SVrZbwkvrQ&7okxSvZIC>*u7xkB-npy6qLVflL zX``0KVA`sf26~NTqZxo!w=3<0T8(x$QQ_^PMa zTU~o89aRIjx}NR*vF__Z!gRkvCyT9}%s#=bMHi-0`yrh<8GSUt-C2-P5m{Ha5-Olh z6Wy(aO>7Aw)7gpcQF11t$bBlL7bn4RDl0$d%VUjE&m2(aNfr7Ja$tUt(WkCB-WXk6 zG`5jOh5Yr&pi>z+i2uBBONDg*6nCZ{X$W&s z%ybv>aN7#7vp4HVoJKWHm78@`hCRQVb$XT~Wfxi(TNKT}#bOv&PoC>OB4n^yBUcDo z8H_{?5E+3}XddlRMH}V{lNm|`rueKdo5f%Q4+0u;!;YL-5j*vxlCw24SM012)$6@t zhZ)`nsxXo(-`Jw0MxgU~?xx=SmgJJ111NF68)v?`wEErd8Z5mxR#be5y&ImvFt*gj zEpUIrLB<@yN6%ynXIVyaGwz{f%0t<^m(gRZVoHPn0^-!S5dog%E~3IKPTTU|E>nKF z@K6+%T=*JV^j@W>p3Yl`mm*I=q&g_R0y?zy)ml|d(K<^zgSnl-f~vjlPOEQ-gBO&o zqT!5?wjG=&(YDiB0cxki?|D;-+#M&$J;rZ(odR?&twrZ#bH zbb52EXcK(^rkj>2 z4axc1tIwm7BH-Gx&fVz$z?!-v*JgM6|7ub%zV>QeG=7=8yUeaYr~xQp7Z}Q@t?pib z)xvZe+{3tk^`jgDd>#n;Nk;C*iv_;Ha`F{aZ#DB1@7D=nevKRMfM^;b&1K>rh#IO<%isF zN2$k+-j=4I)V1&#IKEC!*n=hWE)mHN+)f4~HQF}vuv-%>9AO?J=i{SY1qX}C(cAiR zM^LRJ?salfvL5-ECB-o&e`Gni8%s`0ioMO!;$kr^xf4q!g6~c&;YXGM@AH5hHIBPS z$jc^jR9?ZfnJngxpqB5sf0UEr%du@qC)^b|p&rXX_7-11>3$C?u-e@nQietH!?3u5XZ-2UOk{MD;Zjb|mn( zXpPLf8Hv|>R|?BZ*N`km>RI&1Id~fa7Y5*)!MK&O!R}A2oB*q--{2WuP0=e$hkoQ9 z$JZ0N#j&pTN`{+^bwMkYW8H5n{KvWga^iJWZS`j%sP%!v4Q%T#xPv*NJFeC{kYNiz zA6<0|=+BF=R8C}{VULKE6c?+abh`aN>|^(yptP0jp5bV=AY2Kbu@de3#H|xD*e7{; z#f?$b%YdH6qP+|oFT2Oe8OX-bGBw&aufP_OtZ?}*Zr>)N{G(9nb$6GD;Y=Y+Kafj) z-ul%21}7Y1C{RI%_ma?CpSuSL`&l$`EaO#of^eEe6YAotup=s?CemL~67rxq&N8Qo zoK_)yQ&IZeMEct5($noErq8@>X3YXQ!<^x^);HY8IpG&p7SfgxZrJqXRw+y*2nb1P zPZf?@rNB{3$-(`CtR?P?D)gj=CQ5p54G|%9M8Fjmyw@!Zk>brtawvXnDRhRc0Sbd{ z9?)P{-g3Vb^xUct^f`o^mi&rE>ae+jGV z_}xK;l}vzz-@wl7HMULCEOv`UlUeNADl&^PlS+b0!OS$q{TNuLE-I{a_jL6G_pZuZ zMU)p@+7Lyf*huA6_KXUvSSy~&xCqLc5NtE4sv}EEHEskL^ z#BhOz8m^3(Sov%vF+ZvRb!<`EOJ1>T>nxf?^!AFJ+q9F#2LOfhUj{{yomQFx<~rgBz(fw z?XB+8BzF%vt@OI^jvB*Zp)}O zjuhA0TpA;UtYNwq3k+I(Gp;mQrFueNUxj{`x%8r(p4doh6;hL>bf}zE5kyoHdwqQY zjaAk#&6P}*ydAeqY*)(jLVsm7eDWIfKwH{ENM@gqs5XAi-YhEZ>iUr^*#gUtAGWE0I|B!vJ(e76QoqK>a) zj8NY-LV1a$TZ98_W5_^!p&;1oIGqPd6qP>&Xih9eEu`iCRx0@E2Wz_W8nr8k8%T%R`_QAE~l0;wk=K#97nV>nD8x0pa8eO4=T z*mf!2=FVcZV*5F@bUz1K$SJ$1mh~(-OW-W=KJVj|#Sd53D&q&cXkTpnz-o-d4*_hzRyD13 z5-&Wxjx{TM&SifFIJAyM;7mG<(OE3aEGt3_i2exCV?ZeOjF>URb8a&?&pL zshmMEIAsL#z9_aYq_GAdGWutG2PbmT#9QlR+kgkKC;=k%eeldTIN9DFUmDBt=R|hV z4L@Yri5tGXPB}X5Tlc@ZVL1(%>TL*{F)sD%n=QF@N_YI$E4t{8dnT3YTk_S`2M*b1 zi`vz!Cyg$$joMQB*3*2{`oJN3h?rc_%d&In`=!nJw(A4F>gv1E%YkAB-SXXhP#MIM z2khUjqXYWia=5ttg$Fak;{uUfAgGCdE148O>{v1DHj_FDce%N|?>Q%;| zFxJ-MX9TQi(yeM1!`R;3?@PA}o7lQY0D>5dL~UE~LuqYJ*u^{~r$m`up!T8wYyosC zXE9Qd01t)_@3Rf7wTkP;m@|N#^F8zVyT_U^aE!SCg;w>M5vA`Qb z=4uu@HVp_K#Dhrc!jfscw)(RWRNc9l9HUaMY%3Qk-K0XHD6{A$@BLBgXvoJD26mI@ zM72gz&Z2i4+$w0u>k9*W$vOpxEu`J8;D&sc!oUmLD?S$4#8e;TlKV-8LVrJDwL&K* z79;gv;ow_NVInlc=OtuVe=zt~3tUvQaOXd=Id3U`@d{`)aF@?BmtT` z^w!n@(kiRkiuuwL8s0&N{ zAxiz3w;}Dk4Pj>woV1*;iIjd(4axmtXy&b7HGB&c*e?=9^){oNMYgLsw{B_p_9(Dp zyr5(;ymaeG6}~qL>=>JUEHcMv41&oWqZ;ye3|2kVF<1=Kk*=k;P6RT`L(6Wh5Eeiq zC9k=2yl+G>eoW^{2O; zUU#b|CudMNd(Bb@pxO~XZ+!?u&RF~fw_Aobc5XZ zY3$TyLtx{-E9$r<<@Cl*oi_wF{+Si&Sm|Y>+2qd$dRkBF+?`bzQGWQOYdWd%+?PuLsPaO`DCF4pv_Xb4A&pd6oF%&Vr2OwT(?P(0x)Dnu9y8+^rOP(aJVZ{3?nq>(x-wxw;Q^Zv)z=PbHg4oJ;DZ0k< zfF7y!)a6bSL?P$`UDtZTxr>ybd0#+G+<7~KyGaq3S^(m_4%By#A`W!|1gZNcir9r& zh+cwG&2}Kn>j{8}cr&V|Sa(f|e!nHAGk9uqkreSkFF;(Zd#66vk|J8;q6s3NB3g9; z#IRhPYLsNo4_o_i>|ny7{kD7sZ2K;Mtk3us1 z#rDH08?oSv+W0~utm_K>0MYmRFY0iW(WP#HxY-{N7dt?Ig;T_Yfq-~3Cb1HF;rTt` z=uw3)E5c?dq1~>BN0Sy8ys(T87E;{@bP26>OR0_>(|pvJlsad#vjYV?3{r71;h z?+gg3V+|B*!{Yt;^*qw z-jQu8MW4mpL>TiZ;^h&57`gUtIGjEsLLbqBnk1cUrq~&{e8RVjBGwH71aXgdD8hi- zmOJupBzKA;I^ov$?(1m?FONydL$Rw88E;U;kY@o=W$E2|++B)jj@3bG`H>=`@YqJA z3qqF$f=Xu%^OjMABGPeZy;pR%5!a9+UQY3txE2)Ng&l&hn<-+E2@tMFeL~PHsi4hn z6q|y_)i>Y2o4}<~#2P#@p6lmn!i}JaXgqwJ+nC!8{rSn=ig4*65vD1)OyP4L12>cY zeF?XxZ|!?^(3{Ue=`T|(hX;~B!k5LN2?M~$)==zuJjJw{yfPJy+-$1|7Y~vWr#$Cr zk2*Z}pgzj2eNW)_q0+(Ncpc;JMR7+d#RFX02+O@8-1`)<1`ifndfn^DeL@lX4uCj0 z^q!t`Q$#!LN4=-MZV<j0VtArxczwX1OQEc1(fE7l0;<$+vVZ(AbrhlEt&7p`r ziGbML&7Fwcqo6_g7@IQhc<@tCWmnw@VZnbeR1ZV1W2hO1{=kqCL;uB4B8GNiC<#Lw zF*FoI9t@4a(2p3JhM^r8nvbDl7+Qs)4>7a_L*HO%_eOlx@8=kN7b72G=ro4zW9TA= z-o?;O41Iy2dl>o>LqB2YRSX4h0_YbE)x^+s3`Jt-H4L@H&}9t8V`wXex?|`&faYcQ z!{9@V9EqVD7#feEs~DPvp<)az!jKa~Yccc|hPGj-5JUShbP7YqFyz3{2N?PdLzgjh z7(=BP+JvD882Wu427klgD;TQ08K7Ml3dhh_7;1!}QVg}l&<_~ufT02mJ&U1tFfXf1{&VQ3wO=3?jyhL&RJJq)4EA@iQfK99lIF>*JC4q@mthE8JW0EW(C=r)Ev z$IuB3-N8^1hQ7tnMGQT`(AO9ewg7YqLv=Cq35J?t=w}QWF!UHh^Aa%l69)TY=vNF4 z!O%Vojm8kd&{PcF#84iFwqa-`hPGp9GltG$XcvagVCWqTJ;2Z@3?0PK1q{89p&J+~ z37!YwT?~GJkw0SS9)^Op0<;%HH8AAHP(uv8fuR-{I)ouJhCaejHw=A-p;Qd*!O#c{ zUBl2g4Bf%dObl(n(8~bL%YGY!YcTRn3>9JMdkpQvkR3xuG4w5l-pA0#82SW57ck_; z(0&Zv$IxaB{feP;7^?INKx;4*hM`X}6oa8H7-};RgC{ZA9z(Y<)DuJNF*E=}E)1n% z=q`pPV(2J_=3wXuhVlWLwmf+1#PliTJJ91OZ@R~fva&p*xgF^7SWgc$q0d(}k)!AB zTHLEBak?j7*oL{oV0n|h^%Z;orXhM1`E?R3LhgGG7rEjHP2dUC{dR z9t&KJb*BLEF4-?QIR3H`z0kU+q`i z3f1DioZ>OV%7{qjU?odl4w4b|B^~{`Il9>lrpo`WIaY-~;aBo8S~4F5AIfjM-G%fs zjytDADD&#IJKj#FYfT>Ipby)9KfwdP9B{N0W--fnl zd$3qF%XD}7TyY~iQc>|R7Nchyj%q)cU&lAmEAEyhjM4P zuE}@VhIES{q8F{{d_PZBbTD?h1}*>MD*;X`ld5Jat2+4b3k`ZO2j>21%EBkB7EW}M zF}Fe#N_oj6zy+ec2PrJxz(UCvHbF-P;snyD&Y=Mcz$8+ZK76@xwsgkT1I^%TC?_nwhv5Myi3T zCH7aAD5;{x+! z3+9g%uyVYqTE#VG70y|A=WsQUZWDA()mQ1@PsV{rGYtL@R(U${RbEvN`ITNJL%vF1 zR!5J%4+=rO=iIH%b)==XV@vf48Hwp?qLK?=RpHHk5VK#Ka=Q|IE#0{a4?`x#^S{7gI{%AKsM%)U1WUK| z-odqtWADnX;sndTMT$2w#(n_hAu_`fQ>n7S6U}`_1-~o`4&0$=a2{CrwZa5Akw1KI z75)b7P>R@)5=2E% zA&3P9X?8%0xdsFXVnL<+-uvwA-Q4c-{rQK$-rZ}SeP-sFXP$XxrXoySw^0AHP%nKB z>a)*yLn(D-MNN?dv7b2 z4|==4wxYM=Ju_^xEi5kqU743yfiuIc!R@BG9?bsR;O}Vdzq|)ejLqhaX z+?LKS{luFUogA?gvk_f0YMtISxsp?Jpu@~}Lpm^1M65IS&(L*x|MXW019!ZQ7(`bc z*hvMJY{0+(ahsHW2thl)jz-ho0&Qb~ay_3|Uy)8fZkFCuewpD->CI8rb`VAX6;YSI zc^4k!T^8~L3mJxQFrD9kXz5G3xTUJN2Y16onZBtKqxM6&!E|CHkE%8&i&u?C< z_w5a6{94~`-sh~(ui{Ab&stHkZvBYnT z0#^`3`!{GyGw1EpVY%V+x1sSn111-(-tbB7^9IM3#6;1!yv0Fc)El}j8BT@UU`xP> zrC&a%XzduHJ!nY<_gB4N(q}i=x|Z9-62%+*|{Y0evBf1u`S|9OA*;H ztee-xBx#Nr0={`)!08U9IbRwrjaBV0Ap40pgf=l4V80fB$>c@dsy$V8!&-Gem;q~K~wDKR69r#R!N>WhjPbehPTl>H4Hr=_+fJYz0_B~SkX@Nymg zsTq!GPJ3;0pr$30inp0*b6&uB*6=I%@aJ{fSu@ROf~_4MTcp#B zRCAbvgxZ*d?KOkH_&>p+^yYUJapFHozhX;Yy&$GKE%+W{|7oWG9!Teb3&xh6)d6hM zbw?G}oS$Xu&o~{?KXmVOmei&pK< zI6Tqs)t`_3wW66gZ29>Co1YICf2+T&IDszvhvk=-^k0g%@uxPwz*}(juqu3l%shpN zMmlXdhY=Q)5KHb;2$D6R@$QOt$}pA652(D=tzlx41fpJeVsbnFt@#2E{OfI_`5yd& zoDncq=f>YK!i%HK+~IyMhIOq_y`dbQ>h(E7{#*haU#iJjHqF}*OWoSHmGS?vceG~G zR1zSVcMK zWDDA||7=@Y?FG!M(CeM4Xogi+6aBY9`oCvDzoF27Q|MZy6rQUX=V(laFYE6aL(@7r zTR0k#D*(%v3Zw5^2H#8g0KYHj~C)!~)eqF|=L$Go@jE!Vh#s zlu}MJXDVKE(dCK(+5)&w*$(JAP{fly5f@#l$fJ-yE1Ek(Runn=JF3(2Ytj>f zw95ydjiXb4!jl%-bG1|4P|Ch)NY1pdVKp1dg~8U$%n4ww{~HovsWA}OlppA?qT;4I zikLAbfbsZ0V2m^~hTVjbM=SqD&dw4BVRcb?!8`whOZ}u7^q3zcuCCWD2vo)v#HVNO z>Hl7>NEEx@WjhXijlG8Pdnf-|X%HX3YuIqs&w%TgY&%()(*eR1UN{p+O>R`AIZl`* zI;KeU^Sg!{&bZtaHPb`%^@`{XE5!Tb&PzDY{sbd}3{R z4bAGiYR)F&PRnn{>0*h|8v@?)+L4;gr64cpxaB?^@u`pD zSPYRihBzCE9Tw0wd(e(hXGc+~gUVttDS=iF4*?aWbWyC2lm-&JANs=UPputcEj4bl<483pkee zk!FOrp^cApra8L!IEq>6$Pe|nf4hwV)v&TpEu*o`)}ePBPzcu&!9YVUg*Q2n$FB}q z17Cg4Qds9NW1MN?4d46b#5y}*2r`h$tF8)o)zbO3a-_2M>Qa4SNcB&gvop-7fl#E{ zrAYNj;9Dlwa<&$K=%h;q3Boj>&3h|@sIJ2qgIq2f=DC|QBkDLaMd~K5hLqx2-A>(aknjDEC?B>8moxqoR&M$&kwke=_ExcT-wXDdmbl~R!KnRtK`yWieoq<5s5@ZZ) zUu>>FPj%K6SAFl;sJ=5xJCZ2y_5KQcy@4LJL@}&sjL}y z?y_`P!}%7}!zfF)$t+CoKDD!@Ft6*vto8}R=K1NyFwd`AFfU7qDDd5u4XACH=Yu+K zzYhn2(&(v73_@R9a9{dy{DP2DdqGhuM_u?*{K5|y-p%1yS6fOhs+~&Nt(`$wD5;;r zZ+)eivx}%vX0D2`GUKhe{?9gdHgsegzZup72E4icn_JFTUS&$o9rQw&>*_Ea})Y7J=bGNA)%y_dl_)WO*iNyyr_m7nL^ z{#=`o(4t&tFPQ0(ot$0hdakp*V>PwQbN1Cr;Wmpl#%=Zi*=8|w;5Iu<_mFuWGIg9+ z4FxJgyLk0$fkJ9k~MWhso;~k;k2orGl)hE z17B=qLAfh_JkZ%*pNsn0h|mqD4+mf{xNR#3Mny{%exZvyN#V}^v2HYdQUGq2&Q%(3 zv#nYM=ZS-mUyI2=AzX#X!z$#ND@V>ZpQu|$4oov;fz#CjPmD+Q%EeL6dKB%&+w>dc zj1^NXWlh3Q^wEw3yWI!Fw|PZ|1ISX@{lz+)q zV{G8K`GlcpykAK6XDWMjH?W%zgU#M$fqi0u@rruxc&vOc91autyChyziL;aN^8H6R zdx}a6@r<9y>V*pI)f>E`Ykag+antwpV0U9$J`Prg8?m9`c8I*-sb#Gx?fn4VMvQ@O zhe*yqh2vLkdA<1BbS*YMlvV2(;KwQ!xUcq9M$UV`AE4r<$YiUWvhS1!oyH1piTKK7ku3L!BlDa{m8d_#*7-c2KM{%3Rwj3W?5&TWOF|aWdeK)Wx{a9`%@pFuJQtDF&qqAl@Q^i3^-LFuimtqw% z`92udTt`A(N}Yvi;n#kuqU0T~e-L*5Maf^`=eMBfUJ22(=eZp**r8$4#xi_Q9|io{Xz>un z%+Dlfmmg$OL=dGGB?M9SBtsjYnBm){@E=;V(NJ8J{7RK?C?ZiqC(x+n?lA11F^TN< zQ&}Z=1x+R54LNASBjJBPiGOSB4hL@IqzMFladAg>MP1Qh8^-`>U7NEF9c^jR(*aZW z*4s3V=<5XB-cEd*6C?ZM=xs9T?{QcY{5*zMpLR#kyU!zv(BfcD2yL3<3Pa}K_@x0& zZV)3izlM9ucZ<*vp4_IJCZzBAV8u^YFsw2Cz8f2`5Tyr4=_B(sS@Xri+lyS(obd*kNpY%Lkz73Qp;c&!)W{q=;NHZ%-W0m7&I)6)}!+C35hhI7ql0w zf627KT}^wczPbTNBK0$fz;w_{XlpJZda1KDojQ0foZeXuYtY&jo@0h{r!825*}-I; zJJE();23X98*8Q=ZUd_|^I4~MR1oW7xtVq}(N<4@*ofZTEW!6-P&f=xgUV_gqt$ zNf(RF1r&aZ0$wh0HbdZt3qZIhP|?X9-1X?tk%T%_5}$|?UP+V+`PjAu+&d7cZEk2^ zJ?HF%pdOcS&RjytS=1tzuzGu98vXe^wC%NpV-3s(9=F2TRwQoMTU=e*{boQzx$rg= zWXRu;x|Cv>yO#bXlX7CUr|l>;^K7^yu%8SeXH(Hjme9joLO~ol3p#RRDtHksHs2QB zH2}`m2Ys8ZO@Xg4Zka(Z!yj8D3tM0=%xL%dNDJpTHNC`Ky&PUn1(*whU1H0h!v;&A zyY*Y;UoY2oH;eM^x@k*aeWsz~Q>G{m!H(^QvFG~iGCam`a(|POp47#OUVSEm4vj&L z&dyFsrj%812C%VFs}qx?zbKOaxZSWzY&W~EMm#HOhhC!*ba)dyEY8`7a4|l5ZHoRb zDU@2QL3_bL_?rR@UXb=cIt6|@&sX}bMO8iVmQ&vmaS4ARmijK=H6Xs*1Vq!iS=UT zSQiV^pry}8(dq3N?SP3TTt@Rqw z>Idov>$ziX{8&Z2R@zg&1t2Q9`&$fQYpDJS4n>HR)dyMAosYix;C~>PNmeBTtVWbe52#qPkU;Z82UB>w&{8oS4!!JSnc^m`^2LE zAAS1gzMZ_y*$VyX(q|YngFewcV`iP-=A0vL{lpx4x#bgfTpia89W!M*3PSH;N-LFe zagwVkom!FHgo>so$5K(MD@@)qo4^ES6q|E2)&rC&UZe;q36!QX7Ka({m}*SQ zHl;+%z-u?Ef86k&%Kr06`=3jPf3mEIciw5WMjd7+>DCB&aRB9GpE`bt#H#;1v9zEY z2H2AFl!lbGBMCX4AHo$Ir+scQNuzffLjt$pkw3vCEz^NZ6yUS>x-v^cQgLhKh=%Zc zlQ9Q)+Rsz0_mkRF=?y%#)9^Kzz4jLvDlFz`!s0XmpRoPsXu<~9Z$ee4U3D;=`s7r& zTWz^)QO+ELMLDB$-3s@@Hq`Cv8z~KF;hpvCQr0ynp~4o9g9>gYbcYjIW~og%l`vOv zyL21PD(*amHPVoZP9obPdY9Q)*TBNO7AE#9fk(vWPr=%B(|NfnPt!219-W%)A8tiw z3$=rV%Bns7o3jm0H(@F7R;imSoHN8U3udxCrm+i}d{xK1tYWGr8C6vDRdTpu^~r*M z!5$3>6RBiHY6PwFIHPa}3d{PHS_owAuYIKktzP1a5uaPoyDexoYG0he^7r35@DCM; zJ-10zbuFbOoji*L^Gg=s1q+Z(TJ=hpw1(xn@vcwx|24YRfe3{4v@u?5u8kar7tXc+*L@q7o5#Rp)8`mQUuGKd-7aczp=Z+7T(Ji&L(eu71DMV zNccPj-akaP*_5dIA-ctzYYRs#QZX3bI@L?l(~DuxFZCSaP_=ymWvXQMZ5D|@*x zdi})L<+{6d=qtm^MIaG;jiUHmd&&c>9DDpx4<+F+K+WemC*Q}bzYkd015<`2`SND< zn=59{<$ocC{ad+V=3@SKJ|=4I=E@bZn2Uc+l^`O5#hF_w6#ZNu0h(u+&0)-j=xHIagcp^=>*n0CrsRI^=2g z!QtvA_E;$877DEPQ{pcv(q)N&wdN|gO|dRj7T9?Uj9;>4b;#7pJhgPu1nsHpqW-$Yo`hmiAaVT^96HcsM;}{KPg@eU!49O5erd_2>8=Pd zUm_n?kW0c`lN=A)BJZf5?rI^{OWa!u4iXNaszGVNlv=|TgM+H<-Wp4-Hg64M z3d0l$@J|x_y#fx8a!qj@w#6L?#A((7>pwBkE}5W({0rIJ^#o@e_vZVo-2WNdjloU* zb2aVsHIcSQ&c&OZX(&?gkHC!uNqe-8tw(~9R5M28$?s>kMk4(G;#|!|7t4=2?on3c zU#Gijy0(hp0BM`!I+EiySH5Vs$4Dwb62}CwNTn{Q?P?_!Sg7*?sdv@^^+idY$5cl< z?GKseoun5O4~`ZA-}n`KiJYgyFaDz}vi*MP8;b8NMIMqxsz)(o4^FD7o6IYC2Sf+N zpAbS@+XpF@jwQN=ir@E`4ctZ6qc8k@$B=rFbYOjQ1ZCAj!%ai}nigkBq0o8N1r{H zs(XgL&CJ`)Og07&)^}x!MYf1%|>L<{lmJN`ka3_K$>~p?urmwc8pKs(!5kG!Tho8qFYf>`~BVk1(;jl}W zc0Qs>x!;gMEloF(nXdX; zct-;@H-k#nLBLa^8#K_picIZuwe~Zpuw_8)^XNXYnJWWZ78r?x+3G7 z1GzMTuf54k=Hs%ly{Ma#N@;8k z>HqvzT9%c${wyuu`H>>)OWm$c%|nJ(Gdi8?GW%mqz6|ikxNl*7I$k#}gp}+Ri zo&-z`j&DQ^Y;ikRFUK9)Q_Ezt*O!JDhUCrL#ENRPs=cePm?u$l71aE0u5Oh2UPFXZ z+BU%qR-19&?}sWg!+W%+atNRGrD0uI+CMtN61*+xZz%L->(E!LK5E#2-81B7`=nLC zt8BqM<;dvb$`U_F@DT-UL;*)2t;vqL-PMV?ygpj(K=>?iosG+ zQ<^=aVO_e`115Z^1vtn8M3od!R!>)REp(vC^`r{iREE6tl3@)~DSBVC8k8E}IGEQO z#bXw9u?5XO(d6E)7FzT`LvK~lMIWKIA!`PuPJ<=kaAlc=y3s;41dgS$b?NBh9%rN$ zK+yQ7RK8zyd@q8^&bwm8uNMAM3!iP^v3{-$5sjdiHon%N-GhzJv@A^TOl{~?e^)%# zW$}^4e+|~2S{gs62?Q6o8i>vkj9f(@c;}nCI^wB3I73cg+uG7w+tRsfH5=%{8O)MC zS)u#I&K?A@C)$F?+k!dDK5Q_+B*8Bz;ON;{hlX)!L#tCVLiKTGxh)+hiKa5+ht& z9anr`)B}b14ws2_ISJ60Ekd`P@vS(pALz5zI8b!WWYjaS%2#c{sznBEnPMrt;nx8c z+sGC{0vKk{j=mZr-_cw9rS#!|!Wxg(J+ikXW$AH3I8{?zYBEl@uMMlswy*10R~9@b zX2DMiWMR!=klAd{W}sqNvDXH&>l<^XeQj85?!*5pLLYuzhr>+@gby6=nuYL`CZ0lj z*_Ot^wu5)NTEkglQQ;y5(y)?oKjKg(8akEZrC?e|17*m z6ATL(@Jy>3HP-ByZl4^5w(S09HjgFYGhEHY<5JW`X8P=-2K`jkIn`@fU|YmIa}n&Z z^_}TzEVjrZuyG|&8_}~|QytiSs691l1KYZ7w6S@BJBXIdb~O?wB=eY=sfk@WD80Eq z&i1oy0Y8`vK!|V%?Yqa7?g*#dkD^0`(D;X8w7D-~!D0qBpW=bVR158?rPUjihqDbj zqHeTxBg_(+dz-@5s<89{*X@p$w(P7xHd{P&TedQ}+y?y?PcsrN-PkA~?T2oAUcBto zCVy;p_?+^`G$EwLNx9;b%M-<1kjduF-)9&Iew%X-p`W~=zr$Mn9RP?WL^?95cw_Bg zx;```jcUwu#bR;XPE{-Yuj6=$#y{@Tcl|TH`6I4WoM6KmI;hYG>_L|DyxY#FQ*=c} zEH$4G`hGuMi3NV`6PKgC4HvkY!oOnRKMD|&&!%)Jqj5uJR{NJ9s92!O+Ecw|9aWmR z+WI#OJF*xv#wHL$8{9F(JZl(URtSeLSHIdgjSfB3ILH?*#Lj(uQ8jU?bod!GG#{JK z%qV%(l`V!!_8>Exr@7^|8#l(G@{QHmXn`5t&jd$&dcJr}a*NGe)=KKRjCeZvgiE{5 z*(B=2CK_Ayu%{4IDwD{KW+Wzh-Koo7SF&Thnf8{6#sg4~r{R46DrrZ}G;U?9|H#N; zKM$v)nFRdagfs+eXAE1-+7qDisxs{RWwmB<&efn#@h0GuNx7nZ@@o+#nt6?jP)7ALp^oGNiO!O7uv z$WbOFyIggigUhvCBA-=|etFSAmF3sPw(S3z*zDeRe*y08PRYixwLYcpdd1Mi&M{4* z^i;Z!Y`GsWS5)oOb3xF3HM=HWlK+PFVLSIQ_d>RF?7@8ffMG^WCL&=j(3oy{QLIC82_6P(!pOKq%- zYAdacw9i!!D(ygkfxPlErlmt9Y@h;zPR3wcf%a>~ydW&L8Uuds1BR!>BWC8SXk?E{ z2+q6mNrXxpjokw#2;yLY5N`J)R-t2VmJl3n<%6KfH>I*}O&Za%J27SAI2KO92oww< zFcVWtqI_WuY~FFn#A#MOCf+WW#w~8BuQ%YX7ZVQa>47+QKE|$hA+T@|O{AbFB9Wo6 z`C3df=%7BQMP(x8X`O4VxD}gy0=FvNa!{Ys`ZdSR{puTN?rkKemCD)mrfay!ws4wT zIJ}0J{x;mA2?wcgCKf_e3~c0hF~))!X~7sT*i4iFvjB!f#o(=SX>(s!vUtYAddkA$ z$kOv0TxsG{`D!~<7{b1pbm-wGwP{yyMs;4b6x%G=_bphqIUjC<%{eQv9u*6X<>C@q zBmrs54Z>+5p0*HqU_4%iI;e9cX zD(?4)Nuv|%Gb{98es+ugjO{??UVr#YyI@7!c}TYdf9^%(YaEkJ4$bI80cL=MsjEJ4 zrHaR;#EW!^L5Lwv+dVZeGm~1($BN4WmR)f-=3xS&XYX@$zqk#pW|QQ+t8g$4n~0-s zOmB`egMDwl_K;x#*l{_s9UbkMB>k+A`fHuH>Z#0hn!N~K&<|!NjtaJ6a=nCp;%X^E z4(ppW4(nZv-x4l3Gm~iZ`Ao&15aKX*JH=kzu*LJFr~gjOQf@n}cj1;QpWX3lm09%Q zF0`X89ja)t8FqYX=@fn)@bJ>>h^r>8-t7uJA@ELF!Z@{r%?HrN@YT9vw1qyxLg#k> zDxW7THhDSZ)z}X$#H|)0 zdqd5>f;V(V65T4%h(#hz^{GrGLhR1OQG^R%&9xMMQDG_Il%)XnGpBv+%0>pvn(r|N z#T`+aL_cl81L!nfL=n+P%=Wj&5p$if#2fY@fY40`=Bhxyz(xBqv)LsOoh{T37Am*g zGvB&0kpjbF-mOwm@8iTY3udxC23zDq=;vBZYf$zf^k&?proH#eDiC?bFr_=1Ci7y9 zAPf2h3)*O_83;Hq@GBL_Ewgx4rr*O7pIe~2El_p?=6>&LjJN|s|4^Zb^ENI0ylF!Y zl!;3g-UUC8%_+6 z@?!zcRj2Qi(AaKj@(V&^!}&|P@y6#YL3{lfm$TUEcjA1}F!78mY+=wjS=dwN!XE!l zv%2ymG0iC-cO3rGhVS$d2Rk5-VLah*8X&QR)$L3wsA$?+_u#M>Qu|zsH7GXdb!KYQ zWJH%97eC^{8*Q!5gjziTsOSOBnw#Tbhx|~*T7FA0r_jQ_`OdKIY$!iJg}D2zw51Y0 z!7UVX2JU82wR0JyWu0m8R{q)IHCrr>j19!{!NRpFTr0Htc&tbo3-~RwK;~Fxr1%FoZ9zL zr7KAZj69>4@RU-*sh#MItnI*M1FY_u#9w4v3@^PTpG9lN77k6@?TIe4)Ps+Ab&OWmjw7T3Im+ z*S};6mW60f)wTwB0VQ6-l1vvJ-q8%_1RChKg|b-C&K7=~8P3MO=rWA`bR9m$3}?v! zZ|M)hP4csOFUaXDE`2Y*(nEMydgo6JOE2nRTsI!55+lh5yeiJcn*(k8PGhsed+&r)7UP4WYhwdBd=dz^`el)IWX2@aw?v zu@zmUnFV=#M0pnu?(u;pRqZO$MCTuMYrUi^w$F8-m?*b83vP?4nX>tT8_A7ZTVVN2 zOT-)Zqi#b-!wq-$Bp_nw_zl;+*cXcjmNnm@KN{{YTcFkscYE=)L_Db=LWO%Fjz07u z6h#(m0_KbPKN=>IJ8kK$?snosN!qHArd4w=Xty6VNq-&`L&8Z7HIAexYl^^PU28(%ks@m3I?SZtd z{`X|*ehG8;6`dungBiCw+`Sz8V@h;pL-tP^{0<0dbtN6=i7rCczTB9=TtYlfZgN~`W&xH}_dIH!R--;qdp^#a;QRULP+c7H^@fc8;~)-(+00^Bs_$Gf{A)q+92 z%%EWj?#FOIkO_pvAsdh<5faVSLHC zVMP2*pp~|uw^H4$97l8zF02UzJy7307r}iK2+Nd#uf}VDSJT|Bkx#)A;d+`t5G1;j zy0&WJ_q=hAnhE=t8Oy34)X3dNH2X#GrN!9)7fwaAA5j z_JU=)gTzZx`chr`+(Zu?Htj|t9J13%yLA@QE8cGjli2%B_ZCuiGk22MBN62a!hc>$ z?%3>fdgKBwdis=MiXq;iJW_39rU&8|ZuTfl@?N%(mM&R2&;X1RN4 zHvmIE_7RF&x#f93J`|#1_lSDf{;n;&B+%gwD2#`1s4JFm(Zv8q9sQ|kG_9#U%@^CC zUF~omyfjzEQcXsE6^f%lPnTvV(8Au(;!s)0Ae%y(Qt=zm_VrfoSVw`sI7O-bjvAvQ zx2iu{yE8?xB;sD$K(P^QOQPZ*v(u>ap6pP%Ef3}s>n+-sOmFd^_B0?!67*ve3NPn*KpHBD9}m2h+X*u>MC;*2Hb`^k4Ll z9IU}G%dh{G4(?$%)5})^*W%JHMlJfpX8dCv-RUCum|m6Da6lHE4z5MMTcv4^J5|$i z9F=d#j-ZlG*uCbU!#x8!-gTeYz1%YUwjXWj1r4e7s@)!t)y17Aa%EwimBJ9`FNCM0 zftBiOi)CebGKUuW9+H%k5^z<;G)bDQka(R2V#B?wlar#?;zYB=B=*nD>bL6ZK09eqV{4o;s*$qA*&-FTQa>Ev145;#QpWOsKn@wtTWR^S7AxJPLF zoS_7+vfaI9l?lI$9P0S+c6WxjBncN30>aQqRFIR?gm(3WROig^jolsUdvhOzl5P9o z?H!Fin0Z`p9T{|~pV2zd$D5)#;49kQc*v!|M;7O_{&A!JxTy`f1Kn@1gcT|wi^mi3H`dJnoO0KL!pB6ydZ`*=#ZkdhP3_ex}v5!gc&kESz^`PNc+@+Qi zL{E1@5kJ@#f#8!-1P(A9KicSo^|ila8?ZFC7^}FVXY%0SU&&ip@0>3;LA%3TZhlXP zXRhtyo|b%0JMBJZZonia6(^zuPGSbo%=dDP!xVb`syCS)v}lwubOVGlkmkFi>E!hD z2rH*lhEmm=Il(l47^)>-`=;9YyZ#!`c%~0`r-*wbc9t2-XV4s*e!ec9x||b5{jT63 z8s2IfSy%dFls_fTcW1mfD{EoT zXk?{%n5-B`r%f%KsKR~oS>rHvMx4+q0r%ESM!y9jhE`3)i54YuTZYoAN8&^1#yF@x zh;n8GsQ%UyhU$4V&YJG7PVUsor~u>JM$%g;^ko}#dR;m>9-~|~gB9gB*S;(JaOMf4 z597F)IzXPS8$S3B34FpYDCVyNor zmWdQK4e#qTgHPLnjcQ62bx!JaUX!-WG3uN<$Kuq=1WE~O6-g;G&}w6}&n@{Dk=j#B z{jjm>e78GQbeHrzg>lfl*iPW?vD;4>c7z?Di4VJ*X_pE;j6rESKGHT#Rf)4TDQliPS4=r&Uf`O< zz&vs1DZ^5*_cQ+ycZPOzkcN5DkBKF|9I5YocT2It!g|iaVm&Wj;LfD`A9L$r$kX_X z{z4E7w|{C^ypCDuZY@5u@OD{voXxVT*j-P%9!QhzcU3lA8QDr)v|uXz7_J~_Osfdd z4bQc0Yo$r7dOqA>++*(AqV;KgR329k;{mSBc*<=~k#2F?P&&WirpM8rhMv}~!XWJj zGF%2i3?0~wo=v{ z`7G>GYe~ydXs~q|6#3z8(bP8zk?9t;+@{)7^E;yz4yLLn#c~9Z zM%f~V+aWowaqn~Py5d=hT&y7B&_&RvXD|}>f8Jfk@jqMc6Lwr~N%y<}6?`nYA1Pc` z!NI+#@ewP~d_J({zIRjZ+)^|rujINEE?QD9w$IvC)JZ!U53TcGggLHN!PPEeD|FMv z^}cF5YO3fZcYP66VYXip6}&)iYLL&qj5p4gtgb4HU-|A=+zFzSh1K4c^}K^J6rUg|rdoh^*#cjD4c20%1iqvK4NFm{v@!0(ymytmrYN;QpEpBs3ff?L zX|+2}d|jb$X;+zL=b*e2D)WH(vrDR)I!GPNaqJpgBEgq26bvaxZ>oJyf$^ z0^d@B{%-vEyJ!OIEWkBpAd9(i1Jw7E1b(jqS;Cnc-EGBT3+sTHh3nP_Q~Z#2I2(O{ zCqh)i`G{H;A}*+6C&Ay-P8GI`re$-x2h;2V5AH~|p#L+Yx&MAuhW?uaDsD#(fWmBN zP;T8eHRyi>J+Y#x%UsEgU8YKA-cRp=H`c|sBwKl@VQs3>&aLR0!!5iaW*+yDbMK>v zES7KmKlQD-@MRvAKjh6DPZ1-jV` zMFrg>TvEW_Q~_ZCdx?`4!f`W!#rk6hloIRKYd6ZR)Gphr%Fb<~DB`ZIVIsn9u82^# zT}34Bc8AfepQ2-Rb@NHo4i(C^o87!Jk`l+^J=Y3`b|YFL{vYBr)x2)&l$3=`!R^rvPty7k@SvZPk2RKLwB9t-Nq$&mHD z1$fpBS#~R{ta7-_O&|1(vA%yAn7B z^6P`{7UFwZ%weS%-aWqRkh_=TfGu*L9a8VLhp|}bpxs9i(Z8+`k(wJp2amY>I{vdI zUb!i;@%QdF@M<-pXzEqW0B>*QQM_PDn>0H3I&`6_K{WQ74MHQ_EEzETa?_anqdOVS zEt7|CNn%%2ayxRX|Gy z0{W;0y3h>GJBnnC4|LvpDlcmunpp0pjyPEDm^(&nwxBkcQEaew9e3AWprtBhIMxa}w4*^o+SKg3g%gg4O0c1+&*l zV%n=1_*Okc8w;kD8N)ut-@n1fm?|-MsTjXSYVidu(&jJGX)cUJ9ZayGi_B=2@TwCd zN2x?VucBAKi-|Ee#2;L6bxSP3rMAGo-0;TsNMN}Ngma%KKDA(Wm@(|9UGr)#ti+sG zF@~SkQk=E0JQkMbeLK#}J_u6<;wyb$fFUU{PWIU{t&dviAYjTNUZIJjI}x9_NckyTKa%5JM{KG7}>CQp)=CLPZaHp=1&MULY z)jjeGIKP77$QRJ>H_$zPm(+_2m1C0#lSERiMZtF8TS|NFPzGOZ5&c1MhU$81kuk$TPzO5^U**#DgKZcfxT642Yy=K6U- zboa3JwWzAPCrCUb-=n1AS=n(O@cmc`Bi>tSbR3Q`X9s(liB~H17XG641N4t3*hz@( zUg4A-?@6QAW_C%Tp<(a}aZqlwM~!(t$0g`7&t;U8;_-zMH!SZOLNh`=abmB8f1$v+ z`;<5DTC21jCL6=TJTbUU)WqI(Q}%z$y2R77;dtjiCHr@U%{e)%7Q#KuZC9B=vyqVG zz>&Fuf>+wX;mH;d5@H*RwDY<`Qs{7^p%5&(hts%7Pd`VJ_Ec3vy!Jqve^!ICL40(d zF16`U6oefhp?wu-)W_)V(L1{~q|MQgvp18K+PeL`QCr*z*Ts0+iiafU0fmDk-Ec}= zaXyX8uH;4`4LG+h6&K}((20#WpZH$JDt%_Q_CN}JH`PzzdgJy`8He`prYzxgr3CEb z45#v%oLRlsgx`2*CbC%F;e1(sd((n^lPC3jhzQ~bFhV4s8hw==k=i#ZGvrs zufxFwnj)T;1(c`-;3luSr1dkJUDPF%mZV||y3|s@GqQkX=uJ}*@R7D>Hun*K-b4Sb z{xcb7r+E^^5&TZecsQ^Vi<#O`Ee2Q`X|MVd8>C%5zdm?*(IsX6^pm$df7RU*uLGk}v9&$3(t1px-1o*1p};0dD*J-UTcY74{_k4XMOm2dbEHE8x{ zd8xGIb0|SubrJh5g?w!;1aX*q#f^)!{4#cqs89?D+0--}rJwi)Jf3a-W8wW}=5bZs zy%r}=(m z`_*#CBB-UPHA)yEOBiY?;ng$Y1ow(nQ46lEhYtEHfjKN*Jz%QyP`7?-ot7UxGV}d%N>7 za<2%Y`Qd4e%-NjlO$8Y$sxMB-GJZ9e;cqkLm(jzQb@asJGAKKB{A7Yd9V4l{6M9dL zOL`vJPc89+lybSsf^qL9p0%(Rn_1{|BTIXD;>B)B*{M=eTcXV-?KRr$g7|I`v>*|k ziC1wxw%|W9zf7S0iY1 zvbwaTpQoob0>u(+NMGFWga?)>UMy|tul8!c-RORYr>5v7X+0DgTZ^jN-7tTwnO}`E z`@;XlDMdE$t|mAO-Jw64!PtJDC~?1p-=o0U+^x<5w@ZIdUB@h2E}CqB(CnUGmvxO+4mE5ls!pe$>@QkH+5$?oro zq=f@LiMXfHPC;MZw1ig%!%g2c2wJ)-OZeyJC9E2Z68^F+;j*a&f15lq#1rReLV067 z`6B(YVmZ(gv+2E|Xon3hn~g>)cv`5`#%P=xhITMi=M7SMy3OdCpGcn#hg~VKK>L}Y z{`#yO;Yr43GZwN~h5G9=JG4hMWrg<&)&q9)E%=Acc($C;qdm19WjcAIN@l}3YXIW% z|Bi;Z>n*&u%siuAAeVDyj}Qv~)E$Yi2OULF%(`y~E0)RA= zsR7e7q?t^GC!p;V_E)L#I_cQ1#s#!C7ZC6wb!p55Owf>Y639lXiIvUfW!^+jCeE8= z_INYf@J)N-U?dX}nI={u+mz1Nd(@zpCVC>UOO3J5nz5%eH!AU-e0{aafxMGIX_0MW zWh1(dYlo(IvXD#9*pJOvW9o}TN2hvn9Y{L~#3I?miZz;dW2DtH)@#NZt^0N?37d#W zII$9W))#v>W_@-4q}?AN(zpCU)T`gaLxOp@w!ng^|I7Jll)CG7tb2Fufb(U13sAB8 zZ%kfal=f8d`nUq~W_enP9=M)I8)z(L;S6kyo3lLy*tf@Gn2?=JNZ$SR@ElKTagRjK z(tqa{A7?FxQ^$Fp7Atal#?is4Xm2xY*;CDI?GCCB@Ab43t0a4+naxv8jZMYR=SR|^ zl#ZcvaHX*<_mXWfrKVz7EC1Z@=_K~cV!k#P!&j30`haJI<4arQ9uv}NByn{9?Vh1j zG#BpmKN9|z8E&+f7Idw5Ww3u;%5mAYtSVDkypMXy!=9!h{V%;z8&KYpfi`8HXRsqx zd#Z+a>d~UdEv;kuBc3*5kOUQ&K}HCITVj1GKhhHk{8*xL^fSZznBay9%n-#AKHm&C zEME_7w=#+PpowPaH;k?p!)Mqik?YM!L$!@)`W=-@#)#uBa|!EAC2*st^_VAJ9F_2& z%y7SpS@oEw4blfqLgRd&0R6JD>+%FV*5JSOimFC)mIPGPDb3I=ZP+WEvYtdYacG~b zRd(HkWGVYSg?UhGiOex0u~tx*4i)uEq;XF4i`@TVC~0BlHl>&qYEv-gK4Em{(+C)h zm+-M>xPJmv^jm%cmG?#a9q<71UC~qjI7;qm~si+>k>+7ptFy%Jf_RJMC5R=dryb$o=1us(^Ny+@3CySe_ z6nAiUMYxtvT!W&?(*Q@x`$|$`X!l$(Vo5A}ofpxJ-;l7i3hdB}p4+jZ*@sX9zAJTM zU%Fz%&anD2gqpkzx9o@{9aKoTls;U`d#yoLFT;!3Z_C7iu28J-GtsUFQ?r%mw>PeE zh({q}vYJk(YV@f_^9NMcp!iqO1pcwb{$VEtw96rfm|Z;i_6?rt33%gDuTH~&0IDKMK$`wQq48^+8{Hxz?RD^ z(w){~UiYNVeay@~F&^?>U5hQ$#b)GuTO^B`w+`KLtB%B--GM6D?12p^>d*&wt-Jvh zY&3J%+j22SD4_f|J*f`l(QB&3{-{7M`q>=_)tD6elP!&3eE8dV@fx({L(p)p#Fl`H zGG07|l3l$+sOvju1vqPBOF(VG*l)4c7U%ulxgN8*4mupCOa#Jxjka`^Cyt^jdk4`M z8*m#MPM-)Y0H)uj0M_wKA0je1SuX&mO#~Kz{S9@g>d`*6slnzaVsMqWi3_WLGw%3J zn7h89b8*B(AlI*zU(@hE5I9_6VKr>