diff --git a/master/.buildinfo b/master/.buildinfo
index 81e813937..96d2b547c 100644
--- a/master/.buildinfo
+++ b/master/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 1b089fc5a06f18c6c27952b1d6c1bd52
+config: 4a0d84e7b9accd4a678efa733a138b25
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree
index 24d1932b8..032022c62 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ
diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree
index 7900d0588..f48b14c46 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ
diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree
index 996f26a45..a53f276b9 100644
Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ
diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree
index 89fe5a855..589a514ea 100644
Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree
index 4b961b21e..3c6162e1e 100644
Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree
index b4a13e0e2..bee30c2b4 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree
index 4d169a73b..3c2d968e8 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree
index 2d5a2cfa1..e2cafc550 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree
index 0c84ef7b3..65df41450 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree
index 78feae271..62ca1c77c 100644
Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree
index 13f975d31..ffaa8d9ba 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree
index 58d45354b..135aa7965 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree
index e2af32a12..1c80dbecf 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree
index 8b712275e..ed96bcb40 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree
index 15a067b20..425c5898c 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree
index e9062b3cf..b8767b2b1 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree
index 79cead1de..7ce417add 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree
index 91b775d50..5f6eb54ed 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree
index bc1ab2188..40ae63b31 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree
index 695d5a1ca..32bae757f 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree
index 9b13abdd6..a88d31736 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree
index 5fb16ca88..15cce0d99 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree
index f542ebf0a..1e3114d0b 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree
index ba8532f0a..acab22fa8 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree
index f00dc169c..cae9afc75 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree
index bf8fd11f7..4ac589349 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree
index b1e5c729d..087a138c2 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree
index ec334424a..8c9ac4031 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree
index bcc2fb41c..f4129661d 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree
index eeea62c1b..714be3ca3 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree
index 0e80ba68c..4adfd1c97 100644
Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ
diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree
index e63cd2167..796931638 100644
Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree
index e30201671..27f8397d2 100644
Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree
index 14e9ee2a2..4e6768e1b 100644
Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree
index 6bae168e3..1b65ffce8 100644
Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree
index 8020befbf..905b213d1 100644
Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree
index 16bb9384d..67fcfb4e3 100644
Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ
diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree
index a25b62896..4c24d834d 100644
Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree
index d243bc7c3..78f82442b 100644
Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree
index 283ced036..9b048f053 100644
Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree
index c48c6cce5..3561e7cb3 100644
Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree
index 34ac4c585..991a4a2ae 100644
Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree
index b353ea764..8f49ea96f 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree
index 57afb4dd6..20e407012 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree
index 7582d783d..8175a2db7 100644
Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree
index 68fcfec0b..18d1c3018 100644
Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree
index cf7e9a00c..e169ac1b8 100644
Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree
index d18b455be..1d7401d69 100644
Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ
diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree
index daa1beb25..e06005f5b 100644
Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ
diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree
index a506ad789..a15c80afb 100644
Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ
diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree
index 22d14651f..b42ab09fa 100644
Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ
diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree
index 9109a4630..eaedf6d94 100644
Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree
index d0022dbec..81483b461 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree
index bca27bef2..e267ddf96 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree
index 2bb39c6f4..e19922f99 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree
index fe9e8d147..00ce11958 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree
index d348e2984..7e882663a 100644
Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree
index def45dc7d..a7e3df3c0 100644
Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree
index 9801ef1e7..32edeaba3 100644
Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree
index 4b2d5b38b..9d64a2b7b 100644
Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree
index 0606ee40d..e81aeaed7 100644
Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree
index 0bd4ea3d8..4b8b4601a 100644
Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree
index 3f7c223e1..eef749969 100644
Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree
index b54661c50..db93845cb 100644
Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree
index e6a4bc329..ce2abd28e 100644
Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree
index 8fa1c22b2..a08b757cf 100644
Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree
index 01f03bd8f..5571f6ef8 100644
Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree
index 3652baae2..860540c7d 100644
Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree
index 67c9ab5c6..36408f2ab 100644
Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree
index 5a3edb291..e27eecdc6 100644
Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree
index 69fee071f..96ac41c48 100644
Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree
index 7425cf4f5..12b69a3c9 100644
Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree
index 40d1c4f4c..bc5d127c3 100644
Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ
diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle
index 9ae5682ef..e6ff78dc7 100644
Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ
diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree
index 619eed7a4..a6668d547 100644
Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ
diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree
index 9ee0c0827..41a1d7cda 100644
Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ
diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
index a1148cb36..5817f5ff0 100644
--- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:42:55.663268Z",
- "iopub.status.busy": "2024-02-12T22:42:55.663093Z",
- "iopub.status.idle": "2024-02-12T22:43:00.597753Z",
- "shell.execute_reply": "2024-02-12T22:43:00.597131Z"
+ "iopub.execute_input": "2024-02-12T23:49:58.950230Z",
+ "iopub.status.busy": "2024-02-12T23:49:58.950058Z",
+ "iopub.status.idle": "2024-02-12T23:50:03.614414Z",
+ "shell.execute_reply": "2024-02-12T23:50:03.613876Z"
},
"nbsphinx": "hidden"
},
@@ -97,7 +97,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -131,10 +131,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:00.600668Z",
- "iopub.status.busy": "2024-02-12T22:43:00.600181Z",
- "iopub.status.idle": "2024-02-12T22:43:00.603443Z",
- "shell.execute_reply": "2024-02-12T22:43:00.602986Z"
+ "iopub.execute_input": "2024-02-12T23:50:03.617098Z",
+ "iopub.status.busy": "2024-02-12T23:50:03.616600Z",
+ "iopub.status.idle": "2024-02-12T23:50:03.619638Z",
+ "shell.execute_reply": "2024-02-12T23:50:03.619186Z"
},
"id": "LaEiwXUiVHCS"
},
@@ -157,10 +157,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:00.605585Z",
- "iopub.status.busy": "2024-02-12T22:43:00.605245Z",
- "iopub.status.idle": "2024-02-12T22:43:00.609859Z",
- "shell.execute_reply": "2024-02-12T22:43:00.609433Z"
+ "iopub.execute_input": "2024-02-12T23:50:03.621630Z",
+ "iopub.status.busy": "2024-02-12T23:50:03.621303Z",
+ "iopub.status.idle": "2024-02-12T23:50:03.625977Z",
+ "shell.execute_reply": "2024-02-12T23:50:03.625527Z"
},
"nbsphinx": "hidden"
},
@@ -208,10 +208,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:00.611908Z",
- "iopub.status.busy": "2024-02-12T22:43:00.611641Z",
- "iopub.status.idle": "2024-02-12T22:43:02.365244Z",
- "shell.execute_reply": "2024-02-12T22:43:02.364592Z"
+ "iopub.execute_input": "2024-02-12T23:50:03.627914Z",
+ "iopub.status.busy": "2024-02-12T23:50:03.627674Z",
+ "iopub.status.idle": "2024-02-12T23:50:05.174542Z",
+ "shell.execute_reply": "2024-02-12T23:50:05.173915Z"
},
"id": "GRDPEg7-VOQe",
"outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6"
@@ -242,10 +242,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:02.368001Z",
- "iopub.status.busy": "2024-02-12T22:43:02.367610Z",
- "iopub.status.idle": "2024-02-12T22:43:02.378243Z",
- "shell.execute_reply": "2024-02-12T22:43:02.377673Z"
+ "iopub.execute_input": "2024-02-12T23:50:05.177328Z",
+ "iopub.status.busy": "2024-02-12T23:50:05.176944Z",
+ "iopub.status.idle": "2024-02-12T23:50:05.187424Z",
+ "shell.execute_reply": "2024-02-12T23:50:05.186879Z"
},
"id": "FDA5sGZwUSur",
"outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895"
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:02.410709Z",
- "iopub.status.busy": "2024-02-12T22:43:02.410071Z",
- "iopub.status.idle": "2024-02-12T22:43:02.416183Z",
- "shell.execute_reply": "2024-02-12T22:43:02.415584Z"
+ "iopub.execute_input": "2024-02-12T23:50:05.218335Z",
+ "iopub.status.busy": "2024-02-12T23:50:05.218148Z",
+ "iopub.status.idle": "2024-02-12T23:50:05.223706Z",
+ "shell.execute_reply": "2024-02-12T23:50:05.223139Z"
},
"nbsphinx": "hidden"
},
@@ -380,10 +380,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:02.418575Z",
- "iopub.status.busy": "2024-02-12T22:43:02.418093Z",
- "iopub.status.idle": "2024-02-12T22:43:02.869612Z",
- "shell.execute_reply": "2024-02-12T22:43:02.869053Z"
+ "iopub.execute_input": "2024-02-12T23:50:05.225825Z",
+ "iopub.status.busy": "2024-02-12T23:50:05.225491Z",
+ "iopub.status.idle": "2024-02-12T23:50:05.665256Z",
+ "shell.execute_reply": "2024-02-12T23:50:05.664725Z"
},
"id": "dLBvUZLlII5w",
"outputId": "c6a4917f-4a82-4a89-9193-415072e45550"
@@ -435,10 +435,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:02.871806Z",
- "iopub.status.busy": "2024-02-12T22:43:02.871467Z",
- "iopub.status.idle": "2024-02-12T22:43:04.088668Z",
- "shell.execute_reply": "2024-02-12T22:43:04.088066Z"
+ "iopub.execute_input": "2024-02-12T23:50:05.667413Z",
+ "iopub.status.busy": "2024-02-12T23:50:05.667082Z",
+ "iopub.status.idle": "2024-02-12T23:50:07.331311Z",
+ "shell.execute_reply": "2024-02-12T23:50:07.330825Z"
},
"id": "vL9lkiKsHvKr"
},
@@ -474,10 +474,10 @@
"height": 143
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:04.091125Z",
- "iopub.status.busy": "2024-02-12T22:43:04.090799Z",
- "iopub.status.idle": "2024-02-12T22:43:04.109465Z",
- "shell.execute_reply": "2024-02-12T22:43:04.108906Z"
+ "iopub.execute_input": "2024-02-12T23:50:07.333698Z",
+ "iopub.status.busy": "2024-02-12T23:50:07.333323Z",
+ "iopub.status.idle": "2024-02-12T23:50:07.352335Z",
+ "shell.execute_reply": "2024-02-12T23:50:07.351931Z"
},
"id": "obQYDKdLiUU6",
"outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4"
@@ -557,10 +557,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:04.111366Z",
- "iopub.status.busy": "2024-02-12T22:43:04.111159Z",
- "iopub.status.idle": "2024-02-12T22:43:04.114325Z",
- "shell.execute_reply": "2024-02-12T22:43:04.113794Z"
+ "iopub.execute_input": "2024-02-12T23:50:07.354458Z",
+ "iopub.status.busy": "2024-02-12T23:50:07.354058Z",
+ "iopub.status.idle": "2024-02-12T23:50:07.357164Z",
+ "shell.execute_reply": "2024-02-12T23:50:07.356642Z"
},
"id": "I8JqhOZgi94g"
},
@@ -582,10 +582,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:04.116083Z",
- "iopub.status.busy": "2024-02-12T22:43:04.115903Z",
- "iopub.status.idle": "2024-02-12T22:43:19.267676Z",
- "shell.execute_reply": "2024-02-12T22:43:19.267046Z"
+ "iopub.execute_input": "2024-02-12T23:50:07.359126Z",
+ "iopub.status.busy": "2024-02-12T23:50:07.358756Z",
+ "iopub.status.idle": "2024-02-12T23:50:21.146863Z",
+ "shell.execute_reply": "2024-02-12T23:50:21.146239Z"
},
"id": "2FSQ2GR9R_YA"
},
@@ -627,10 +627,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:19.270151Z",
- "iopub.status.busy": "2024-02-12T22:43:19.269836Z",
- "iopub.status.idle": "2024-02-12T22:43:19.273487Z",
- "shell.execute_reply": "2024-02-12T22:43:19.272963Z"
+ "iopub.execute_input": "2024-02-12T23:50:21.149471Z",
+ "iopub.status.busy": "2024-02-12T23:50:21.149115Z",
+ "iopub.status.idle": "2024-02-12T23:50:21.152644Z",
+ "shell.execute_reply": "2024-02-12T23:50:21.152104Z"
},
"id": "kAkY31IVXyr8",
"outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632"
@@ -689,10 +689,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:19.275391Z",
- "iopub.status.busy": "2024-02-12T22:43:19.275191Z",
- "iopub.status.idle": "2024-02-12T22:43:19.992573Z",
- "shell.execute_reply": "2024-02-12T22:43:19.991961Z"
+ "iopub.execute_input": "2024-02-12T23:50:21.154759Z",
+ "iopub.status.busy": "2024-02-12T23:50:21.154432Z",
+ "iopub.status.idle": "2024-02-12T23:50:21.926158Z",
+ "shell.execute_reply": "2024-02-12T23:50:21.925554Z"
},
"id": "i_drkY9YOcw4"
},
@@ -726,10 +726,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:19.995380Z",
- "iopub.status.busy": "2024-02-12T22:43:19.994991Z",
- "iopub.status.idle": "2024-02-12T22:43:19.999908Z",
- "shell.execute_reply": "2024-02-12T22:43:19.999410Z"
+ "iopub.execute_input": "2024-02-12T23:50:21.928939Z",
+ "iopub.status.busy": "2024-02-12T23:50:21.928531Z",
+ "iopub.status.idle": "2024-02-12T23:50:21.933532Z",
+ "shell.execute_reply": "2024-02-12T23:50:21.933024Z"
},
"id": "_b-AQeoXOc7q",
"outputId": "15ae534a-f517-4906-b177-ca91931a8954"
@@ -776,10 +776,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.002224Z",
- "iopub.status.busy": "2024-02-12T22:43:20.001848Z",
- "iopub.status.idle": "2024-02-12T22:43:20.112815Z",
- "shell.execute_reply": "2024-02-12T22:43:20.112251Z"
+ "iopub.execute_input": "2024-02-12T23:50:21.935958Z",
+ "iopub.status.busy": "2024-02-12T23:50:21.935565Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.032656Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.032076Z"
}
},
"outputs": [
@@ -816,10 +816,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.115037Z",
- "iopub.status.busy": "2024-02-12T22:43:20.114739Z",
- "iopub.status.idle": "2024-02-12T22:43:20.124640Z",
- "shell.execute_reply": "2024-02-12T22:43:20.124171Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.035067Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.034642Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.044035Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.043514Z"
},
"scrolled": true
},
@@ -874,10 +874,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.126784Z",
- "iopub.status.busy": "2024-02-12T22:43:20.126378Z",
- "iopub.status.idle": "2024-02-12T22:43:20.134220Z",
- "shell.execute_reply": "2024-02-12T22:43:20.133703Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.046095Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.045728Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.053373Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.052859Z"
}
},
"outputs": [
@@ -981,10 +981,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.136256Z",
- "iopub.status.busy": "2024-02-12T22:43:20.135953Z",
- "iopub.status.idle": "2024-02-12T22:43:20.140319Z",
- "shell.execute_reply": "2024-02-12T22:43:20.139768Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.055437Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.055069Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.059218Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.058701Z"
}
},
"outputs": [
@@ -1022,10 +1022,10 @@
"height": 237
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.142311Z",
- "iopub.status.busy": "2024-02-12T22:43:20.141980Z",
- "iopub.status.idle": "2024-02-12T22:43:20.147650Z",
- "shell.execute_reply": "2024-02-12T22:43:20.147197Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.061212Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.060846Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.066445Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.065927Z"
},
"id": "FQwRHgbclpsO",
"outputId": "fee5c335-c00e-4fcc-f22b-718705e93182"
@@ -1152,10 +1152,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.149772Z",
- "iopub.status.busy": "2024-02-12T22:43:20.149364Z",
- "iopub.status.idle": "2024-02-12T22:43:20.260341Z",
- "shell.execute_reply": "2024-02-12T22:43:20.259772Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.068467Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.068199Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.178852Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.178283Z"
},
"id": "ff1NFVlDoysO",
"outputId": "8141a036-44c1-4349-c338-880432513e37"
@@ -1209,10 +1209,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.262442Z",
- "iopub.status.busy": "2024-02-12T22:43:20.262105Z",
- "iopub.status.idle": "2024-02-12T22:43:20.368046Z",
- "shell.execute_reply": "2024-02-12T22:43:20.367510Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.180861Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.180684Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.286455Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.285873Z"
},
"id": "GZgovGkdiaiP",
"outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7"
@@ -1257,10 +1257,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.370209Z",
- "iopub.status.busy": "2024-02-12T22:43:20.369861Z",
- "iopub.status.idle": "2024-02-12T22:43:20.472149Z",
- "shell.execute_reply": "2024-02-12T22:43:20.471666Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.289111Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.288640Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.391816Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.389959Z"
},
"id": "lfa2eHbMwG8R",
"outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c"
@@ -1301,10 +1301,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.474296Z",
- "iopub.status.busy": "2024-02-12T22:43:20.473956Z",
- "iopub.status.idle": "2024-02-12T22:43:20.577398Z",
- "shell.execute_reply": "2024-02-12T22:43:20.576814Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.393908Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.393686Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.498193Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.497635Z"
}
},
"outputs": [
@@ -1352,10 +1352,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:20.579622Z",
- "iopub.status.busy": "2024-02-12T22:43:20.579292Z",
- "iopub.status.idle": "2024-02-12T22:43:20.582299Z",
- "shell.execute_reply": "2024-02-12T22:43:20.581874Z"
+ "iopub.execute_input": "2024-02-12T23:50:22.500415Z",
+ "iopub.status.busy": "2024-02-12T23:50:22.500098Z",
+ "iopub.status.idle": "2024-02-12T23:50:22.503431Z",
+ "shell.execute_reply": "2024-02-12T23:50:22.502923Z"
},
"nbsphinx": "hidden"
},
@@ -1396,7 +1396,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "0374b11754554bc1ba7c19f14b1b29d0": {
+ "06d0d0fc4139416e933bf3f3a1e6e17b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1449,33 +1449,7 @@
"width": null
}
},
- "03c0964141c54847aa69b94c10ab2c7b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_042573dda0bb4003ad69fdb6eb0ab4ab",
- "max": 2041.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c6490ebd1e86492b9e5cc2e7dc015b36",
- "tabbable": null,
- "tooltip": null,
- "value": 2041.0
- }
- },
- "042573dda0bb4003ad69fdb6eb0ab4ab": {
+ "0714b09e2b4c4a3b9c2f436acf1e590b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1528,31 +1502,7 @@
"width": null
}
},
- "07bfe4c94eb84bb7a3f04eb768fe377c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f15323856bf24b969f3c451a5b8bd1a6",
- "IPY_MODEL_37d2b0c7fb5344a7a60713c839615f9e",
- "IPY_MODEL_2c72f463360c45fc9df16424ee043def"
- ],
- "layout": "IPY_MODEL_0374b11754554bc1ba7c19f14b1b29d0",
- "tabbable": null,
- "tooltip": null
- }
- },
- "08365e90afb940d3a13d46c56fffa027": {
+ "074bf5f3b3ea41c3aa378d93066c8b5a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1605,23 +1555,25 @@
"width": null
}
},
- "153d95a8873f401394286ff366210467": {
+ "0d2ce6eb68db453eb2e492b65b7559ed": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "1a1f9d7fc7cb454eb650b435cfd4ccc2": {
+ "12ce65ebb73b4dd49c49a6317b3665d4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1674,101 +1626,7 @@
"width": null
}
},
- "26fd6c73550943b1b63b6266d5357f31": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a7e9c5bd9cc14ee396c3b3e996a050b5",
- "IPY_MODEL_f3afab33420a4fd590bbc63d2c8829cb",
- "IPY_MODEL_9a657918371041e289a13bd3df3e76db"
- ],
- "layout": "IPY_MODEL_5d68cb0286ee4b399a42bcb8b42d8754",
- "tabbable": null,
- "tooltip": null
- }
- },
- "286a087e6d3e46a2bbeac38ef376ae76": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_50efa8eaed7d446783a0ec20f2aadf25",
- "IPY_MODEL_aa63530b3def4f709271f914668066fa",
- "IPY_MODEL_e503b46574b74dc5bd3bd89d91d15a27"
- ],
- "layout": "IPY_MODEL_e426bfaa64124556afa65366c6855a67",
- "tabbable": null,
- "tooltip": null
- }
- },
- "2b8b87534ffe4083b3560892a1ee6aa4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_a0853f49fdd54aa6aeac377af4748dcd",
- "placeholder": "",
- "style": "IPY_MODEL_53b1ca44d2074bb6b0b9043d53456481",
- "tabbable": null,
- "tooltip": null,
- "value": " 16.9M/16.9M [00:00<00:00, 188MB/s]"
- }
- },
- "2c72f463360c45fc9df16424ee043def": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f5bded0189f34163a0474882cd914f7f",
- "placeholder": "",
- "style": "IPY_MODEL_2f528b31a3aa4e2287e5f9085456f8f3",
- "tabbable": null,
- "tooltip": null,
- "value": " 129k/129k [00:00<00:00, 1.88MB/s]"
- }
- },
- "2f528b31a3aa4e2287e5f9085456f8f3": {
+ "1706f2de3f7a426ba2fb70b7d8d0bb9f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -1786,30 +1644,7 @@
"text_color": null
}
},
- "33d5801ba5ce47779ca5ae54350f5e8c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f532558681d846588610dc4838b35f73",
- "placeholder": "",
- "style": "IPY_MODEL_f55d3e035276473bb50b84222250d2f9",
- "tabbable": null,
- "tooltip": null,
- "value": "embedding_model.ckpt: 100%"
- }
- },
- "3593e0cdfc974ff5a2e227242911eda7": {
+ "184b0c5af2a142f9b216e1012911fedc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1862,33 +1697,7 @@
"width": null
}
},
- "37d2b0c7fb5344a7a60713c839615f9e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_a53a89cc438e4512aa4c50779566caa2",
- "max": 128619.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9021378adf7c4e72b9552d1b9a5a01ce",
- "tabbable": null,
- "tooltip": null,
- "value": 128619.0
- }
- },
- "38a89d97155748e393d238b2cd17037a": {
+ "19e7d03227e14e4fa7327130295a675a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1941,7 +1750,7 @@
"width": null
}
},
- "39b98f8b241b43f29a76dc5c4afe563a": {
+ "1ced20f83df64b208868cab6c009c600": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1994,7 +1803,51 @@
"width": null
}
},
- "43965b0aa1f6413fbf564ceaedc432ee": {
+ "1ec099356d6e4d49a971b97399cc2d29": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "224018df06e14569ace852adad9fdacf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_184b0c5af2a142f9b216e1012911fedc",
+ "max": 16887676.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_cccf7b4c4e2348b294ae32f3351e17ce",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 16887676.0
+ }
+ },
+ "2342f34a20304a84b15ba6b72064fd03": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2047,48 +1900,33 @@
"width": null
}
},
- "50efa8eaed7d446783a0ec20f2aadf25": {
+ "2f10debf7e3a4175af0b00f172b36875": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_43965b0aa1f6413fbf564ceaedc432ee",
- "placeholder": "",
- "style": "IPY_MODEL_a4c3b3c4c9d54688ad9a73f97d3819d7",
+ "layout": "IPY_MODEL_1ced20f83df64b208868cab6c009c600",
+ "max": 2041.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c4e0eb8af4c74da0bcf86061e6703806",
"tabbable": null,
"tooltip": null,
- "value": "classifier.ckpt: 100%"
- }
- },
- "53b1ca44d2074bb6b0b9043d53456481": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "value": 2041.0
}
},
- "5d68cb0286ee4b399a42bcb8b42d8754": {
+ "371538152a85492c9d0584bd47310fa3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2141,7 +1979,76 @@
"width": null
}
},
- "6043203d0d45408e9ee024bd281956e7": {
+ "3c328de0e6924df7ac6f21d0d9e674b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_371538152a85492c9d0584bd47310fa3",
+ "placeholder": "",
+ "style": "IPY_MODEL_c6d91294bed540888a6001f30e05dd5c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 2.04k/2.04k [00:00<00:00, 510kB/s]"
+ }
+ },
+ "3feefb3336cd4d84bc13d23c6431fa7e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cfcbb59d74d04d7b834b341c383e322f",
+ "placeholder": "",
+ "style": "IPY_MODEL_86ff1e9397ac4058a526f76ad7b7d150",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "hyperparams.yaml: 100%"
+ }
+ },
+ "43500b008c0547d3abff1abea8c4be8c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a57a842b9ea24550bc78c463f42a4a3f",
+ "placeholder": "",
+ "style": "IPY_MODEL_1706f2de3f7a426ba2fb70b7d8d0bb9f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 15.9M/15.9M [00:00<00:00, 49.0MB/s]"
+ }
+ },
+ "4dabeea6b6fc4ecd9bfc680f12055e8c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2194,49 +2101,7 @@
"width": null
}
},
- "63c7335bc47a48cdae3b1d7bc3787a29": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9852524da9934c01b18ccd4a6c6ac981",
- "IPY_MODEL_03c0964141c54847aa69b94c10ab2c7b",
- "IPY_MODEL_ce2ecb7554bb476e89cda3d0d6885e9a"
- ],
- "layout": "IPY_MODEL_08365e90afb940d3a13d46c56fffa027",
- "tabbable": null,
- "tooltip": null
- }
- },
- "66e234a10b7944bfb4a2b2b02c6a15ac": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "67b22769b6c744a081c982eff4431421": {
+ "4f7b0381e0e240b0bd6fb594dd9babf3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2289,7 +2154,7 @@
"width": null
}
},
- "78d40f31d7d34e7eaf53cc69e5c0a2f6": {
+ "53ca25cb2c6f4783b0a2963dee93fe2a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2307,7 +2172,7 @@
"text_color": null
}
},
- "8c5e0af2c83246449e4b9290c79a96ea": {
+ "5b38b02241784bba959e00208eb83cff": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2360,113 +2225,73 @@
"width": null
}
},
- "9021378adf7c4e72b9552d1b9a5a01ce": {
+ "64dfa8a8f10644f3b8f9ae847e2d039f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "92f117fd63114e3d9e4e218b82b43f99": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_39b98f8b241b43f29a76dc5c4afe563a",
- "max": 16887676.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_eec76222e72c472a930c607c41c5af9e",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_96a9acad6bac4bfe92a3bb5c88135659",
+ "IPY_MODEL_acc1e9abe77d49449e9b154c7581be10",
+ "IPY_MODEL_cbdbea68f00f422b8f08387a099514c6"
+ ],
+ "layout": "IPY_MODEL_0714b09e2b4c4a3b9c2f436acf1e590b",
"tabbable": null,
- "tooltip": null,
- "value": 16887676.0
+ "tooltip": null
}
},
- "9688d184a766405ea1e7c4afc49a4e90": {
+ "71a12eaa49ee4a66884f31a90bc3d43d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "9852524da9934c01b18ccd4a6c6ac981": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_67b22769b6c744a081c982eff4431421",
- "placeholder": "",
- "style": "IPY_MODEL_66e234a10b7944bfb4a2b2b02c6a15ac",
- "tabbable": null,
- "tooltip": null,
- "value": "hyperparams.yaml: 100%"
+ "bar_color": null,
+ "description_width": ""
}
},
- "9a657918371041e289a13bd3df3e76db": {
+ "7dfa265cbee04798bdce9a9942cd8ca3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_1a1f9d7fc7cb454eb650b435cfd4ccc2",
- "placeholder": "",
- "style": "IPY_MODEL_78d40f31d7d34e7eaf53cc69e5c0a2f6",
+ "layout": "IPY_MODEL_12ce65ebb73b4dd49c49a6317b3665d4",
+ "max": 3201.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_71a12eaa49ee4a66884f31a90bc3d43d",
"tabbable": null,
"tooltip": null,
- "value": " 3.20k/3.20k [00:00<00:00, 757kB/s]"
+ "value": 3201.0
}
},
- "9d7c85b8f0ac42fea3ea010839169ff5": {
+ "808dcc2278324cb797d8eb98a0381e2d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -2481,16 +2306,16 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_33d5801ba5ce47779ca5ae54350f5e8c",
- "IPY_MODEL_92f117fd63114e3d9e4e218b82b43f99",
- "IPY_MODEL_2b8b87534ffe4083b3560892a1ee6aa4"
+ "IPY_MODEL_de1aba6f51504fb6881a55b9be5289b6",
+ "IPY_MODEL_224018df06e14569ace852adad9fdacf",
+ "IPY_MODEL_9d55c1bd342b47b0848da7b561083c6c"
],
- "layout": "IPY_MODEL_3593e0cdfc974ff5a2e227242911eda7",
+ "layout": "IPY_MODEL_5b38b02241784bba959e00208eb83cff",
"tabbable": null,
"tooltip": null
}
},
- "a0853f49fdd54aa6aeac377af4748dcd": {
+ "8264604077b0436da29efb6185b63b45": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2543,7 +2368,7 @@
"width": null
}
},
- "a4c3b3c4c9d54688ad9a73f97d3819d7": {
+ "86ff1e9397ac4058a526f76ad7b7d150": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2561,141 +2386,95 @@
"text_color": null
}
},
- "a53a89cc438e4512aa4c50779566caa2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a7e9c5bd9cc14ee396c3b3e996a050b5": {
+ "8eb7c8763db8400793e39049a2ef4f72": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_d4859a6fe19940f392c55757ea300739",
- "placeholder": "",
- "style": "IPY_MODEL_f89f7f055281489e90bee265dfa4673a",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_3feefb3336cd4d84bc13d23c6431fa7e",
+ "IPY_MODEL_2f10debf7e3a4175af0b00f172b36875",
+ "IPY_MODEL_3c328de0e6924df7ac6f21d0d9e674b0"
+ ],
+ "layout": "IPY_MODEL_4f7b0381e0e240b0bd6fb594dd9babf3",
"tabbable": null,
- "tooltip": null,
- "value": "mean_var_norm_emb.ckpt: 100%"
+ "tooltip": null
}
},
- "aa63530b3def4f709271f914668066fa": {
+ "9623c36b87444b3397281b1c2f3a7cb3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f6ac699d819b4a719c1721a29a24e2f6",
- "max": 15856877.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c16ab204e3ad42deab9f1dbaad2e42b9",
- "tabbable": null,
- "tooltip": null,
- "value": 15856877.0
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "c16ab204e3ad42deab9f1dbaad2e42b9": {
+ "96a9acad6bac4bfe92a3bb5c88135659": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_e1a4d4c6965246bdb7295decbb22951c",
+ "placeholder": "",
+ "style": "IPY_MODEL_53ca25cb2c6f4783b0a2963dee93fe2a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "label_encoder.txt: 100%"
}
},
- "c6490ebd1e86492b9e5cc2e7dc015b36": {
+ "994b6c33f8da476185a82139d36faf79": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_bce15841d51146e6914a8fa9519ebd62",
+ "placeholder": "",
+ "style": "IPY_MODEL_d0857a7c553f4d05aae93a41cd9b0011",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "classifier.ckpt: 100%"
}
},
- "ce2ecb7554bb476e89cda3d0d6885e9a": {
+ "9d55c1bd342b47b0848da7b561083c6c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2710,15 +2489,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_8c5e0af2c83246449e4b9290c79a96ea",
+ "layout": "IPY_MODEL_8264604077b0436da29efb6185b63b45",
"placeholder": "",
- "style": "IPY_MODEL_9688d184a766405ea1e7c4afc49a4e90",
+ "style": "IPY_MODEL_0d2ce6eb68db453eb2e492b65b7559ed",
"tabbable": null,
"tooltip": null,
- "value": " 2.04k/2.04k [00:00<00:00, 450kB/s]"
+ "value": " 16.9M/16.9M [00:00<00:00, 87.2MB/s]"
}
},
- "cf42edd0f9eb422081d16d5ee0231388": {
+ "a06392e62afc41c08b9c7c1634774208": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2736,7 +2515,7 @@
"text_color": null
}
},
- "d4859a6fe19940f392c55757ea300739": {
+ "a57a842b9ea24550bc78c463f42a4a3f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2789,7 +2568,7 @@
"width": null
}
},
- "e2588822d9864f769cf53c499c942f93": {
+ "acbe393e95044d1c8e954d04ccafc103": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2807,7 +2586,33 @@
"text_color": null
}
},
- "e426bfaa64124556afa65366c6855a67": {
+ "acc1e9abe77d49449e9b154c7581be10": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_19e7d03227e14e4fa7327130295a675a",
+ "max": 128619.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ff6f77cb832f4d068f6c5ae2286b4979",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 128619.0
+ }
+ },
+ "b10e2009adb243419b5bc62777095a05": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2860,7 +2665,7 @@
"width": null
}
},
- "e503b46574b74dc5bd3bd89d91d15a27": {
+ "b76ffadc8fcc4507b586e3fd5ac6dcf7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2875,15 +2680,68 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_6043203d0d45408e9ee024bd281956e7",
+ "layout": "IPY_MODEL_4dabeea6b6fc4ecd9bfc680f12055e8c",
"placeholder": "",
- "style": "IPY_MODEL_e2588822d9864f769cf53c499c942f93",
+ "style": "IPY_MODEL_9623c36b87444b3397281b1c2f3a7cb3",
"tabbable": null,
"tooltip": null,
- "value": " 15.9M/15.9M [00:00<00:00, 234MB/s]"
+ "value": "mean_var_norm_emb.ckpt: 100%"
+ }
+ },
+ "b8522625ef86492b821ab763fcb4c799": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "edf8693c6dda4e8f92b5724b720cd986": {
+ "bce15841d51146e6914a8fa9519ebd62": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2936,7 +2794,7 @@
"width": null
}
},
- "eec76222e72c472a930c607c41c5af9e": {
+ "c4e0eb8af4c74da0bcf86061e6703806": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
@@ -2952,7 +2810,25 @@
"description_width": ""
}
},
- "f15323856bf24b969f3c451a5b8bd1a6": {
+ "c6d91294bed540888a6001f30e05dd5c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "cbdbea68f00f422b8f08387a099514c6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2967,15 +2843,31 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_edf8693c6dda4e8f92b5724b720cd986",
+ "layout": "IPY_MODEL_074bf5f3b3ea41c3aa378d93066c8b5a",
"placeholder": "",
- "style": "IPY_MODEL_cf42edd0f9eb422081d16d5ee0231388",
+ "style": "IPY_MODEL_1ec099356d6e4d49a971b97399cc2d29",
"tabbable": null,
"tooltip": null,
- "value": "label_encoder.txt: 100%"
+ "value": " 129k/129k [00:00<00:00, 21.4MB/s]"
+ }
+ },
+ "cccf7b4c4e2348b294ae32f3351e17ce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "f3afab33420a4fd590bbc63d2c8829cb": {
+ "cd11108f5adf459c9c4e228dd71d6585": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2991,17 +2883,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_38a89d97155748e393d238b2cd17037a",
- "max": 3201.0,
+ "layout": "IPY_MODEL_b10e2009adb243419b5bc62777095a05",
+ "max": 15856877.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_153d95a8873f401394286ff366210467",
+ "style": "IPY_MODEL_ee68468240fb49d6bfa9687eacf45ede",
"tabbable": null,
"tooltip": null,
- "value": 3201.0
+ "value": 15856877.0
}
},
- "f532558681d846588610dc4838b35f73": {
+ "cd97cea7f1d8444882936d13b8f596be": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3054,25 +2946,31 @@
"width": null
}
},
- "f55d3e035276473bb50b84222250d2f9": {
+ "ce1924ce0d6b40a585ff0c9da4a0e648": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_994b6c33f8da476185a82139d36faf79",
+ "IPY_MODEL_cd11108f5adf459c9c4e228dd71d6585",
+ "IPY_MODEL_43500b008c0547d3abff1abea8c4be8c"
+ ],
+ "layout": "IPY_MODEL_b8522625ef86492b821ab763fcb4c799",
+ "tabbable": null,
+ "tooltip": null
}
},
- "f5bded0189f34163a0474882cd914f7f": {
+ "cfcbb59d74d04d7b834b341c383e322f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3125,7 +3023,48 @@
"width": null
}
},
- "f6ac699d819b4a719c1721a29a24e2f6": {
+ "d0857a7c553f4d05aae93a41cd9b0011": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "de1aba6f51504fb6881a55b9be5289b6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_06d0d0fc4139416e933bf3f3a1e6e17b",
+ "placeholder": "",
+ "style": "IPY_MODEL_a06392e62afc41c08b9c7c1634774208",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "embedding_model.ckpt: 100%"
+ }
+ },
+ "e1a4d4c6965246bdb7295decbb22951c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3178,22 +3117,83 @@
"width": null
}
},
- "f89f7f055281489e90bee265dfa4673a": {
+ "e52216830f9d4044940afadc453f35dc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2342f34a20304a84b15ba6b72064fd03",
+ "placeholder": "",
+ "style": "IPY_MODEL_acbe393e95044d1c8e954d04ccafc103",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 3.20k/3.20k [00:00<00:00, 758kB/s]"
+ }
+ },
+ "edbb3adf8b7c4ecea382aa742b9b4494": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b76ffadc8fcc4507b586e3fd5ac6dcf7",
+ "IPY_MODEL_7dfa265cbee04798bdce9a9942cd8ca3",
+ "IPY_MODEL_e52216830f9d4044940afadc453f35dc"
+ ],
+ "layout": "IPY_MODEL_cd97cea7f1d8444882936d13b8f596be",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "ee68468240fb49d6bfa9687eacf45ede": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "ff6f77cb832f4d068f6c5ae2286b4979": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
index f11561486..763f9fdec 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
@@ -80,10 +80,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:23.681980Z",
- "iopub.status.busy": "2024-02-12T22:43:23.681570Z",
- "iopub.status.idle": "2024-02-12T22:43:24.803624Z",
- "shell.execute_reply": "2024-02-12T22:43:24.803083Z"
+ "iopub.execute_input": "2024-02-12T23:50:25.813329Z",
+ "iopub.status.busy": "2024-02-12T23:50:25.813154Z",
+ "iopub.status.idle": "2024-02-12T23:50:26.901733Z",
+ "shell.execute_reply": "2024-02-12T23:50:26.901232Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -118,10 +118,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:24.806175Z",
- "iopub.status.busy": "2024-02-12T22:43:24.805685Z",
- "iopub.status.idle": "2024-02-12T22:43:24.808775Z",
- "shell.execute_reply": "2024-02-12T22:43:24.808249Z"
+ "iopub.execute_input": "2024-02-12T23:50:26.904240Z",
+ "iopub.status.busy": "2024-02-12T23:50:26.903866Z",
+ "iopub.status.idle": "2024-02-12T23:50:26.906884Z",
+ "shell.execute_reply": "2024-02-12T23:50:26.906399Z"
}
},
"outputs": [],
@@ -252,10 +252,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:24.810937Z",
- "iopub.status.busy": "2024-02-12T22:43:24.810612Z",
- "iopub.status.idle": "2024-02-12T22:43:24.819261Z",
- "shell.execute_reply": "2024-02-12T22:43:24.818703Z"
+ "iopub.execute_input": "2024-02-12T23:50:26.908934Z",
+ "iopub.status.busy": "2024-02-12T23:50:26.908755Z",
+ "iopub.status.idle": "2024-02-12T23:50:26.917252Z",
+ "shell.execute_reply": "2024-02-12T23:50:26.916822Z"
},
"nbsphinx": "hidden"
},
@@ -353,10 +353,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:24.821274Z",
- "iopub.status.busy": "2024-02-12T22:43:24.820895Z",
- "iopub.status.idle": "2024-02-12T22:43:24.825920Z",
- "shell.execute_reply": "2024-02-12T22:43:24.825384Z"
+ "iopub.execute_input": "2024-02-12T23:50:26.919344Z",
+ "iopub.status.busy": "2024-02-12T23:50:26.918968Z",
+ "iopub.status.idle": "2024-02-12T23:50:26.923624Z",
+ "shell.execute_reply": "2024-02-12T23:50:26.923212Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:24.828230Z",
- "iopub.status.busy": "2024-02-12T22:43:24.827906Z",
- "iopub.status.idle": "2024-02-12T22:43:25.013436Z",
- "shell.execute_reply": "2024-02-12T22:43:25.012850Z"
+ "iopub.execute_input": "2024-02-12T23:50:26.925568Z",
+ "iopub.status.busy": "2024-02-12T23:50:26.925393Z",
+ "iopub.status.idle": "2024-02-12T23:50:27.110086Z",
+ "shell.execute_reply": "2024-02-12T23:50:27.109539Z"
},
"nbsphinx": "hidden"
},
@@ -517,10 +517,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:25.016029Z",
- "iopub.status.busy": "2024-02-12T22:43:25.015590Z",
- "iopub.status.idle": "2024-02-12T22:43:25.389815Z",
- "shell.execute_reply": "2024-02-12T22:43:25.389200Z"
+ "iopub.execute_input": "2024-02-12T23:50:27.112440Z",
+ "iopub.status.busy": "2024-02-12T23:50:27.112124Z",
+ "iopub.status.idle": "2024-02-12T23:50:27.484178Z",
+ "shell.execute_reply": "2024-02-12T23:50:27.483628Z"
}
},
"outputs": [
@@ -568,10 +568,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:25.392153Z",
- "iopub.status.busy": "2024-02-12T22:43:25.391812Z",
- "iopub.status.idle": "2024-02-12T22:43:25.415907Z",
- "shell.execute_reply": "2024-02-12T22:43:25.415439Z"
+ "iopub.execute_input": "2024-02-12T23:50:27.489633Z",
+ "iopub.status.busy": "2024-02-12T23:50:27.489171Z",
+ "iopub.status.idle": "2024-02-12T23:50:27.512963Z",
+ "shell.execute_reply": "2024-02-12T23:50:27.512533Z"
}
},
"outputs": [],
@@ -607,10 +607,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:25.418131Z",
- "iopub.status.busy": "2024-02-12T22:43:25.417792Z",
- "iopub.status.idle": "2024-02-12T22:43:25.428993Z",
- "shell.execute_reply": "2024-02-12T22:43:25.428534Z"
+ "iopub.execute_input": "2024-02-12T23:50:27.515085Z",
+ "iopub.status.busy": "2024-02-12T23:50:27.514743Z",
+ "iopub.status.idle": "2024-02-12T23:50:27.525640Z",
+ "shell.execute_reply": "2024-02-12T23:50:27.525181Z"
}
},
"outputs": [],
@@ -641,10 +641,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:25.431126Z",
- "iopub.status.busy": "2024-02-12T22:43:25.430828Z",
- "iopub.status.idle": "2024-02-12T22:43:27.128662Z",
- "shell.execute_reply": "2024-02-12T22:43:27.128050Z"
+ "iopub.execute_input": "2024-02-12T23:50:27.527620Z",
+ "iopub.status.busy": "2024-02-12T23:50:27.527323Z",
+ "iopub.status.idle": "2024-02-12T23:50:29.155682Z",
+ "shell.execute_reply": "2024-02-12T23:50:29.155033Z"
}
},
"outputs": [
@@ -708,10 +708,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:27.131245Z",
- "iopub.status.busy": "2024-02-12T22:43:27.130743Z",
- "iopub.status.idle": "2024-02-12T22:43:27.152073Z",
- "shell.execute_reply": "2024-02-12T22:43:27.151605Z"
+ "iopub.execute_input": "2024-02-12T23:50:29.158350Z",
+ "iopub.status.busy": "2024-02-12T23:50:29.157835Z",
+ "iopub.status.idle": "2024-02-12T23:50:29.178373Z",
+ "shell.execute_reply": "2024-02-12T23:50:29.177829Z"
}
},
"outputs": [
@@ -820,10 +820,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:27.154298Z",
- "iopub.status.busy": "2024-02-12T22:43:27.153863Z",
- "iopub.status.idle": "2024-02-12T22:43:27.172567Z",
- "shell.execute_reply": "2024-02-12T22:43:27.172004Z"
+ "iopub.execute_input": "2024-02-12T23:50:29.180424Z",
+ "iopub.status.busy": "2024-02-12T23:50:29.180099Z",
+ "iopub.status.idle": "2024-02-12T23:50:29.198267Z",
+ "shell.execute_reply": "2024-02-12T23:50:29.197730Z"
}
},
"outputs": [
@@ -909,7 +909,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n",
+ "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n",
" warnings.warn(\n",
"/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n",
" warnings.warn(\n",
@@ -935,10 +935,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:27.174898Z",
- "iopub.status.busy": "2024-02-12T22:43:27.174407Z",
- "iopub.status.idle": "2024-02-12T22:43:27.187809Z",
- "shell.execute_reply": "2024-02-12T22:43:27.187260Z"
+ "iopub.execute_input": "2024-02-12T23:50:29.200205Z",
+ "iopub.status.busy": "2024-02-12T23:50:29.199911Z",
+ "iopub.status.idle": "2024-02-12T23:50:29.212969Z",
+ "shell.execute_reply": "2024-02-12T23:50:29.212421Z"
}
},
"outputs": [
@@ -1068,17 +1068,17 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:27.190082Z",
- "iopub.status.busy": "2024-02-12T22:43:27.189747Z",
- "iopub.status.idle": "2024-02-12T22:43:27.208536Z",
- "shell.execute_reply": "2024-02-12T22:43:27.207985Z"
+ "iopub.execute_input": "2024-02-12T23:50:29.214971Z",
+ "iopub.status.busy": "2024-02-12T23:50:29.214675Z",
+ "iopub.status.idle": "2024-02-12T23:50:29.233703Z",
+ "shell.execute_reply": "2024-02-12T23:50:29.233098Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9d1a0fa14123492ba235732d88789f85",
+ "model_id": "5ae77e92c13d489a8f287cf1772a4784",
"version_major": 2,
"version_minor": 0
},
@@ -1114,10 +1114,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:27.210686Z",
- "iopub.status.busy": "2024-02-12T22:43:27.210327Z",
- "iopub.status.idle": "2024-02-12T22:43:27.224247Z",
- "shell.execute_reply": "2024-02-12T22:43:27.223768Z"
+ "iopub.execute_input": "2024-02-12T23:50:29.235578Z",
+ "iopub.status.busy": "2024-02-12T23:50:29.235403Z",
+ "iopub.status.idle": "2024-02-12T23:50:29.248888Z",
+ "shell.execute_reply": "2024-02-12T23:50:29.248361Z"
}
},
"outputs": [
@@ -1235,10 +1235,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:27.226285Z",
- "iopub.status.busy": "2024-02-12T22:43:27.226106Z",
- "iopub.status.idle": "2024-02-12T22:43:27.231894Z",
- "shell.execute_reply": "2024-02-12T22:43:27.231475Z"
+ "iopub.execute_input": "2024-02-12T23:50:29.250798Z",
+ "iopub.status.busy": "2024-02-12T23:50:29.250624Z",
+ "iopub.status.idle": "2024-02-12T23:50:29.256451Z",
+ "shell.execute_reply": "2024-02-12T23:50:29.256004Z"
}
},
"outputs": [],
@@ -1295,10 +1295,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:27.233698Z",
- "iopub.status.busy": "2024-02-12T22:43:27.233527Z",
- "iopub.status.idle": "2024-02-12T22:43:27.252030Z",
- "shell.execute_reply": "2024-02-12T22:43:27.251593Z"
+ "iopub.execute_input": "2024-02-12T23:50:29.258300Z",
+ "iopub.status.busy": "2024-02-12T23:50:29.258126Z",
+ "iopub.status.idle": "2024-02-12T23:50:29.276839Z",
+ "shell.execute_reply": "2024-02-12T23:50:29.276385Z"
}
},
"outputs": [
@@ -1430,7 +1430,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "0c11c343f9b340879c1075185e6564f6": {
+ "078a03a4d74c4e77b6b7348cab08a9b3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -1448,7 +1448,31 @@
"text_color": null
}
},
- "504877429b384df6b932b8de2cd821b6": {
+ "5ae77e92c13d489a8f287cf1772a4784": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b5330eb99e2546dbb3e39df108bd3a78",
+ "IPY_MODEL_bb39174f3eea4c32a05ec2dd6960ef0b",
+ "IPY_MODEL_fbd2d3e272634b828cb53bb0546b0ec2"
+ ],
+ "layout": "IPY_MODEL_76464c72ddee4f4292edd8f2736e6492",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "6b45ddad37734005993c7cf7ce1e591c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1501,7 +1525,7 @@
"width": null
}
},
- "9c7aa16a940e4989b30404c642547cc0": {
+ "76464c72ddee4f4292edd8f2736e6492": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1554,96 +1578,72 @@
"width": null
}
},
- "9d1a0fa14123492ba235732d88789f85": {
+ "abfa42a7b8e24706862f67da23311d9f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e3e4f3ebd23847d793f639936afe7519",
- "IPY_MODEL_b858a8665a8a4619bcdd9538c147c862",
- "IPY_MODEL_c29c8f319cb24c879cacd041662111e8"
- ],
- "layout": "IPY_MODEL_9c7aa16a940e4989b30404c642547cc0",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "b858a8665a8a4619bcdd9538c147c862": {
+ "b5330eb99e2546dbb3e39df108bd3a78": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_fe00ddc30a214140a336f41938b97aff",
- "max": 132.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_bba0aaa148ce4380b4eea0c00bedae37",
+ "layout": "IPY_MODEL_edef4777c7294cf1ba886c789e911135",
+ "placeholder": "",
+ "style": "IPY_MODEL_ce3627c6ce6c4bd08b1d653c1927d9ca",
"tabbable": null,
"tooltip": null,
- "value": 132.0
- }
- },
- "bba0aaa148ce4380b4eea0c00bedae37": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": "Saving the dataset (1/1 shards): 100%"
}
},
- "c29c8f319cb24c879cacd041662111e8": {
+ "bb39174f3eea4c32a05ec2dd6960ef0b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_fcd90356d51e472793082c31df28a7b5",
- "placeholder": "",
- "style": "IPY_MODEL_d23e79128a254aa1bd2aea40b3a84ffa",
+ "layout": "IPY_MODEL_fb8c5e7422604ac09074c879916cb12b",
+ "max": 132.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_abfa42a7b8e24706862f67da23311d9f",
"tabbable": null,
"tooltip": null,
- "value": " 132/132 [00:00<00:00, 13488.48 examples/s]"
+ "value": 132.0
}
},
- "d23e79128a254aa1bd2aea40b3a84ffa": {
+ "ce3627c6ce6c4bd08b1d653c1927d9ca": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -1661,30 +1661,7 @@
"text_color": null
}
},
- "e3e4f3ebd23847d793f639936afe7519": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_504877429b384df6b932b8de2cd821b6",
- "placeholder": "",
- "style": "IPY_MODEL_0c11c343f9b340879c1075185e6564f6",
- "tabbable": null,
- "tooltip": null,
- "value": "Saving the dataset (1/1 shards): 100%"
- }
- },
- "fcd90356d51e472793082c31df28a7b5": {
+ "edef4777c7294cf1ba886c789e911135": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1737,7 +1714,7 @@
"width": null
}
},
- "fe00ddc30a214140a336f41938b97aff": {
+ "fb8c5e7422604ac09074c879916cb12b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1789,6 +1766,29 @@
"visibility": null,
"width": null
}
+ },
+ "fbd2d3e272634b828cb53bb0546b0ec2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_6b45ddad37734005993c7cf7ce1e591c",
+ "placeholder": "",
+ "style": "IPY_MODEL_078a03a4d74c4e77b6b7348cab08a9b3",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 132/132 [00:00<00:00, 13172.69 examples/s]"
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
index 304c7799e..0336930c4 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:29.966060Z",
- "iopub.status.busy": "2024-02-12T22:43:29.965634Z",
- "iopub.status.idle": "2024-02-12T22:43:31.069185Z",
- "shell.execute_reply": "2024-02-12T22:43:31.068582Z"
+ "iopub.execute_input": "2024-02-12T23:50:31.969563Z",
+ "iopub.status.busy": "2024-02-12T23:50:31.969390Z",
+ "iopub.status.idle": "2024-02-12T23:50:33.043680Z",
+ "shell.execute_reply": "2024-02-12T23:50:33.043135Z"
},
"nbsphinx": "hidden"
},
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -116,10 +116,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:31.071808Z",
- "iopub.status.busy": "2024-02-12T22:43:31.071519Z",
- "iopub.status.idle": "2024-02-12T22:43:31.074669Z",
- "shell.execute_reply": "2024-02-12T22:43:31.074208Z"
+ "iopub.execute_input": "2024-02-12T23:50:33.046209Z",
+ "iopub.status.busy": "2024-02-12T23:50:33.045819Z",
+ "iopub.status.idle": "2024-02-12T23:50:33.048764Z",
+ "shell.execute_reply": "2024-02-12T23:50:33.048250Z"
}
},
"outputs": [],
@@ -250,10 +250,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:31.076697Z",
- "iopub.status.busy": "2024-02-12T22:43:31.076511Z",
- "iopub.status.idle": "2024-02-12T22:43:31.085496Z",
- "shell.execute_reply": "2024-02-12T22:43:31.085030Z"
+ "iopub.execute_input": "2024-02-12T23:50:33.050927Z",
+ "iopub.status.busy": "2024-02-12T23:50:33.050630Z",
+ "iopub.status.idle": "2024-02-12T23:50:33.059548Z",
+ "shell.execute_reply": "2024-02-12T23:50:33.059018Z"
},
"nbsphinx": "hidden"
},
@@ -356,10 +356,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:31.087537Z",
- "iopub.status.busy": "2024-02-12T22:43:31.087161Z",
- "iopub.status.idle": "2024-02-12T22:43:31.091991Z",
- "shell.execute_reply": "2024-02-12T22:43:31.091450Z"
+ "iopub.execute_input": "2024-02-12T23:50:33.061585Z",
+ "iopub.status.busy": "2024-02-12T23:50:33.061212Z",
+ "iopub.status.idle": "2024-02-12T23:50:33.066220Z",
+ "shell.execute_reply": "2024-02-12T23:50:33.065686Z"
}
},
"outputs": [],
@@ -448,10 +448,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:31.094254Z",
- "iopub.status.busy": "2024-02-12T22:43:31.093892Z",
- "iopub.status.idle": "2024-02-12T22:43:31.279514Z",
- "shell.execute_reply": "2024-02-12T22:43:31.278866Z"
+ "iopub.execute_input": "2024-02-12T23:50:33.068233Z",
+ "iopub.status.busy": "2024-02-12T23:50:33.068051Z",
+ "iopub.status.idle": "2024-02-12T23:50:33.249692Z",
+ "shell.execute_reply": "2024-02-12T23:50:33.249027Z"
},
"nbsphinx": "hidden"
},
@@ -520,10 +520,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:31.281975Z",
- "iopub.status.busy": "2024-02-12T22:43:31.281745Z",
- "iopub.status.idle": "2024-02-12T22:43:31.657649Z",
- "shell.execute_reply": "2024-02-12T22:43:31.657073Z"
+ "iopub.execute_input": "2024-02-12T23:50:33.251845Z",
+ "iopub.status.busy": "2024-02-12T23:50:33.251666Z",
+ "iopub.status.idle": "2024-02-12T23:50:33.621510Z",
+ "shell.execute_reply": "2024-02-12T23:50:33.620938Z"
}
},
"outputs": [
@@ -559,10 +559,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:31.660037Z",
- "iopub.status.busy": "2024-02-12T22:43:31.659730Z",
- "iopub.status.idle": "2024-02-12T22:43:31.662528Z",
- "shell.execute_reply": "2024-02-12T22:43:31.661994Z"
+ "iopub.execute_input": "2024-02-12T23:50:33.623777Z",
+ "iopub.status.busy": "2024-02-12T23:50:33.623369Z",
+ "iopub.status.idle": "2024-02-12T23:50:33.626176Z",
+ "shell.execute_reply": "2024-02-12T23:50:33.625658Z"
}
},
"outputs": [],
@@ -601,10 +601,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:31.664631Z",
- "iopub.status.busy": "2024-02-12T22:43:31.664232Z",
- "iopub.status.idle": "2024-02-12T22:43:31.700647Z",
- "shell.execute_reply": "2024-02-12T22:43:31.700074Z"
+ "iopub.execute_input": "2024-02-12T23:50:33.628232Z",
+ "iopub.status.busy": "2024-02-12T23:50:33.627925Z",
+ "iopub.status.idle": "2024-02-12T23:50:33.663527Z",
+ "shell.execute_reply": "2024-02-12T23:50:33.663022Z"
}
},
"outputs": [
@@ -646,10 +646,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:31.702781Z",
- "iopub.status.busy": "2024-02-12T22:43:31.702466Z",
- "iopub.status.idle": "2024-02-12T22:43:33.400880Z",
- "shell.execute_reply": "2024-02-12T22:43:33.400232Z"
+ "iopub.execute_input": "2024-02-12T23:50:33.665623Z",
+ "iopub.status.busy": "2024-02-12T23:50:33.665242Z",
+ "iopub.status.idle": "2024-02-12T23:50:35.281584Z",
+ "shell.execute_reply": "2024-02-12T23:50:35.280947Z"
}
},
"outputs": [
@@ -702,10 +702,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:33.403610Z",
- "iopub.status.busy": "2024-02-12T22:43:33.402882Z",
- "iopub.status.idle": "2024-02-12T22:43:33.419438Z",
- "shell.execute_reply": "2024-02-12T22:43:33.418973Z"
+ "iopub.execute_input": "2024-02-12T23:50:35.284170Z",
+ "iopub.status.busy": "2024-02-12T23:50:35.283721Z",
+ "iopub.status.idle": "2024-02-12T23:50:35.300371Z",
+ "shell.execute_reply": "2024-02-12T23:50:35.299916Z"
}
},
"outputs": [
@@ -836,10 +836,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:33.421407Z",
- "iopub.status.busy": "2024-02-12T22:43:33.421234Z",
- "iopub.status.idle": "2024-02-12T22:43:33.427778Z",
- "shell.execute_reply": "2024-02-12T22:43:33.427357Z"
+ "iopub.execute_input": "2024-02-12T23:50:35.302251Z",
+ "iopub.status.busy": "2024-02-12T23:50:35.302082Z",
+ "iopub.status.idle": "2024-02-12T23:50:35.308425Z",
+ "shell.execute_reply": "2024-02-12T23:50:35.307847Z"
}
},
"outputs": [
@@ -950,10 +950,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:33.429870Z",
- "iopub.status.busy": "2024-02-12T22:43:33.429486Z",
- "iopub.status.idle": "2024-02-12T22:43:33.435226Z",
- "shell.execute_reply": "2024-02-12T22:43:33.434703Z"
+ "iopub.execute_input": "2024-02-12T23:50:35.310359Z",
+ "iopub.status.busy": "2024-02-12T23:50:35.310186Z",
+ "iopub.status.idle": "2024-02-12T23:50:35.315787Z",
+ "shell.execute_reply": "2024-02-12T23:50:35.315317Z"
}
},
"outputs": [
@@ -1020,10 +1020,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:33.437209Z",
- "iopub.status.busy": "2024-02-12T22:43:33.436892Z",
- "iopub.status.idle": "2024-02-12T22:43:33.447165Z",
- "shell.execute_reply": "2024-02-12T22:43:33.446716Z"
+ "iopub.execute_input": "2024-02-12T23:50:35.317635Z",
+ "iopub.status.busy": "2024-02-12T23:50:35.317440Z",
+ "iopub.status.idle": "2024-02-12T23:50:35.328056Z",
+ "shell.execute_reply": "2024-02-12T23:50:35.327622Z"
}
},
"outputs": [
@@ -1215,10 +1215,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:33.449076Z",
- "iopub.status.busy": "2024-02-12T22:43:33.448756Z",
- "iopub.status.idle": "2024-02-12T22:43:33.457583Z",
- "shell.execute_reply": "2024-02-12T22:43:33.457001Z"
+ "iopub.execute_input": "2024-02-12T23:50:35.330034Z",
+ "iopub.status.busy": "2024-02-12T23:50:35.329766Z",
+ "iopub.status.idle": "2024-02-12T23:50:35.338883Z",
+ "shell.execute_reply": "2024-02-12T23:50:35.338446Z"
}
},
"outputs": [
@@ -1334,10 +1334,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:33.460075Z",
- "iopub.status.busy": "2024-02-12T22:43:33.459902Z",
- "iopub.status.idle": "2024-02-12T22:43:33.468869Z",
- "shell.execute_reply": "2024-02-12T22:43:33.466307Z"
+ "iopub.execute_input": "2024-02-12T23:50:35.340970Z",
+ "iopub.status.busy": "2024-02-12T23:50:35.340655Z",
+ "iopub.status.idle": "2024-02-12T23:50:35.347295Z",
+ "shell.execute_reply": "2024-02-12T23:50:35.346842Z"
},
"scrolled": true
},
@@ -1462,10 +1462,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:33.471771Z",
- "iopub.status.busy": "2024-02-12T22:43:33.471363Z",
- "iopub.status.idle": "2024-02-12T22:43:33.484272Z",
- "shell.execute_reply": "2024-02-12T22:43:33.483731Z"
+ "iopub.execute_input": "2024-02-12T23:50:35.349232Z",
+ "iopub.status.busy": "2024-02-12T23:50:35.348910Z",
+ "iopub.status.idle": "2024-02-12T23:50:35.357792Z",
+ "shell.execute_reply": "2024-02-12T23:50:35.357192Z"
}
},
"outputs": [
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
index dc8cd82e9..fa6b0c368 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
@@ -74,10 +74,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:36.310673Z",
- "iopub.status.busy": "2024-02-12T22:43:36.310338Z",
- "iopub.status.idle": "2024-02-12T22:43:37.379208Z",
- "shell.execute_reply": "2024-02-12T22:43:37.378589Z"
+ "iopub.execute_input": "2024-02-12T23:50:37.928100Z",
+ "iopub.status.busy": "2024-02-12T23:50:37.927569Z",
+ "iopub.status.idle": "2024-02-12T23:50:38.951128Z",
+ "shell.execute_reply": "2024-02-12T23:50:38.950621Z"
},
"nbsphinx": "hidden"
},
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:37.381777Z",
- "iopub.status.busy": "2024-02-12T22:43:37.381354Z",
- "iopub.status.idle": "2024-02-12T22:43:37.399999Z",
- "shell.execute_reply": "2024-02-12T22:43:37.399466Z"
+ "iopub.execute_input": "2024-02-12T23:50:38.953576Z",
+ "iopub.status.busy": "2024-02-12T23:50:38.953228Z",
+ "iopub.status.idle": "2024-02-12T23:50:38.972304Z",
+ "shell.execute_reply": "2024-02-12T23:50:38.971870Z"
}
},
"outputs": [],
@@ -155,10 +155,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:37.402271Z",
- "iopub.status.busy": "2024-02-12T22:43:37.402016Z",
- "iopub.status.idle": "2024-02-12T22:43:37.661145Z",
- "shell.execute_reply": "2024-02-12T22:43:37.660601Z"
+ "iopub.execute_input": "2024-02-12T23:50:38.974472Z",
+ "iopub.status.busy": "2024-02-12T23:50:38.974218Z",
+ "iopub.status.idle": "2024-02-12T23:50:39.094231Z",
+ "shell.execute_reply": "2024-02-12T23:50:39.093759Z"
}
},
"outputs": [
@@ -265,10 +265,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:37.663256Z",
- "iopub.status.busy": "2024-02-12T22:43:37.662997Z",
- "iopub.status.idle": "2024-02-12T22:43:37.666469Z",
- "shell.execute_reply": "2024-02-12T22:43:37.666010Z"
+ "iopub.execute_input": "2024-02-12T23:50:39.096458Z",
+ "iopub.status.busy": "2024-02-12T23:50:39.096001Z",
+ "iopub.status.idle": "2024-02-12T23:50:39.099705Z",
+ "shell.execute_reply": "2024-02-12T23:50:39.099247Z"
}
},
"outputs": [],
@@ -289,10 +289,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:37.668501Z",
- "iopub.status.busy": "2024-02-12T22:43:37.668190Z",
- "iopub.status.idle": "2024-02-12T22:43:37.675738Z",
- "shell.execute_reply": "2024-02-12T22:43:37.675298Z"
+ "iopub.execute_input": "2024-02-12T23:50:39.101864Z",
+ "iopub.status.busy": "2024-02-12T23:50:39.101437Z",
+ "iopub.status.idle": "2024-02-12T23:50:39.108899Z",
+ "shell.execute_reply": "2024-02-12T23:50:39.108501Z"
}
},
"outputs": [],
@@ -337,10 +337,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:37.677839Z",
- "iopub.status.busy": "2024-02-12T22:43:37.677511Z",
- "iopub.status.idle": "2024-02-12T22:43:37.679993Z",
- "shell.execute_reply": "2024-02-12T22:43:37.679580Z"
+ "iopub.execute_input": "2024-02-12T23:50:39.111088Z",
+ "iopub.status.busy": "2024-02-12T23:50:39.110665Z",
+ "iopub.status.idle": "2024-02-12T23:50:39.113299Z",
+ "shell.execute_reply": "2024-02-12T23:50:39.112744Z"
}
},
"outputs": [],
@@ -362,10 +362,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:37.681864Z",
- "iopub.status.busy": "2024-02-12T22:43:37.681615Z",
- "iopub.status.idle": "2024-02-12T22:43:40.638485Z",
- "shell.execute_reply": "2024-02-12T22:43:40.637942Z"
+ "iopub.execute_input": "2024-02-12T23:50:39.115349Z",
+ "iopub.status.busy": "2024-02-12T23:50:39.115027Z",
+ "iopub.status.idle": "2024-02-12T23:50:42.102717Z",
+ "shell.execute_reply": "2024-02-12T23:50:42.102181Z"
}
},
"outputs": [],
@@ -401,10 +401,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:40.641349Z",
- "iopub.status.busy": "2024-02-12T22:43:40.640904Z",
- "iopub.status.idle": "2024-02-12T22:43:40.650321Z",
- "shell.execute_reply": "2024-02-12T22:43:40.649797Z"
+ "iopub.execute_input": "2024-02-12T23:50:42.105503Z",
+ "iopub.status.busy": "2024-02-12T23:50:42.105106Z",
+ "iopub.status.idle": "2024-02-12T23:50:42.114980Z",
+ "shell.execute_reply": "2024-02-12T23:50:42.114545Z"
}
},
"outputs": [],
@@ -436,10 +436,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:40.652470Z",
- "iopub.status.busy": "2024-02-12T22:43:40.652175Z",
- "iopub.status.idle": "2024-02-12T22:43:42.393710Z",
- "shell.execute_reply": "2024-02-12T22:43:42.393114Z"
+ "iopub.execute_input": "2024-02-12T23:50:42.117028Z",
+ "iopub.status.busy": "2024-02-12T23:50:42.116699Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.826936Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.826335Z"
}
},
"outputs": [
@@ -459,8 +459,6 @@
"Finding non_iid issues ...\n",
"Finding class_imbalance issues ...\n",
"Finding underperforming_group issues ...\n",
- "Error in underperforming_group: UnderperformingGroupIssueManager.find_issues() missing 1 required positional argument: 'features'\n",
- "Failed to check for these issue types: [UnderperformingGroupIssueManager]\n",
"\n",
"Audit complete. 358 issues found in the dataset.\n"
]
@@ -478,10 +476,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:42.396767Z",
- "iopub.status.busy": "2024-02-12T22:43:42.396005Z",
- "iopub.status.idle": "2024-02-12T22:43:42.415888Z",
- "shell.execute_reply": "2024-02-12T22:43:42.415412Z"
+ "iopub.execute_input": "2024-02-12T23:50:43.831210Z",
+ "iopub.status.busy": "2024-02-12T23:50:43.829761Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.851793Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.851313Z"
},
"scrolled": true
},
@@ -492,12 +490,13 @@
"text": [
"Here is a summary of the different kinds of issues found in the data:\n",
"\n",
- " issue_type num_issues\n",
- " label 294\n",
- " outlier 46\n",
- " near_duplicate 17\n",
- " non_iid 1\n",
- "class_imbalance 0\n",
+ " issue_type num_issues\n",
+ " label 294\n",
+ " outlier 46\n",
+ " near_duplicate 17\n",
+ " non_iid 1\n",
+ " class_imbalance 0\n",
+ "underperforming_group 0\n",
"\n",
"Dataset Information: num_examples: 941, num_classes: 5\n",
"\n",
@@ -607,10 +606,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:42.418249Z",
- "iopub.status.busy": "2024-02-12T22:43:42.417893Z",
- "iopub.status.idle": "2024-02-12T22:43:42.426819Z",
- "shell.execute_reply": "2024-02-12T22:43:42.426332Z"
+ "iopub.execute_input": "2024-02-12T23:50:43.855169Z",
+ "iopub.status.busy": "2024-02-12T23:50:43.854265Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.865212Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.864722Z"
}
},
"outputs": [
@@ -714,10 +713,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:42.429131Z",
- "iopub.status.busy": "2024-02-12T22:43:42.428770Z",
- "iopub.status.idle": "2024-02-12T22:43:42.439197Z",
- "shell.execute_reply": "2024-02-12T22:43:42.438733Z"
+ "iopub.execute_input": "2024-02-12T23:50:43.868558Z",
+ "iopub.status.busy": "2024-02-12T23:50:43.867664Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.880068Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.879595Z"
}
},
"outputs": [
@@ -846,10 +845,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:42.442235Z",
- "iopub.status.busy": "2024-02-12T22:43:42.441339Z",
- "iopub.status.idle": "2024-02-12T22:43:42.452110Z",
- "shell.execute_reply": "2024-02-12T22:43:42.451636Z"
+ "iopub.execute_input": "2024-02-12T23:50:43.883503Z",
+ "iopub.status.busy": "2024-02-12T23:50:43.882602Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.893502Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.893027Z"
}
},
"outputs": [
@@ -963,10 +962,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:42.455368Z",
- "iopub.status.busy": "2024-02-12T22:43:42.454513Z",
- "iopub.status.idle": "2024-02-12T22:43:42.466944Z",
- "shell.execute_reply": "2024-02-12T22:43:42.466431Z"
+ "iopub.execute_input": "2024-02-12T23:50:43.896468Z",
+ "iopub.status.busy": "2024-02-12T23:50:43.896023Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.905232Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.904606Z"
}
},
"outputs": [
@@ -1077,10 +1076,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:42.470325Z",
- "iopub.status.busy": "2024-02-12T22:43:42.469464Z",
- "iopub.status.idle": "2024-02-12T22:43:42.478794Z",
- "shell.execute_reply": "2024-02-12T22:43:42.478303Z"
+ "iopub.execute_input": "2024-02-12T23:50:43.907347Z",
+ "iopub.status.busy": "2024-02-12T23:50:43.907174Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.914198Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.913563Z"
}
},
"outputs": [
@@ -1164,10 +1163,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:42.482055Z",
- "iopub.status.busy": "2024-02-12T22:43:42.481203Z",
- "iopub.status.idle": "2024-02-12T22:43:42.489002Z",
- "shell.execute_reply": "2024-02-12T22:43:42.488621Z"
+ "iopub.execute_input": "2024-02-12T23:50:43.916077Z",
+ "iopub.status.busy": "2024-02-12T23:50:43.915891Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.922255Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.921819Z"
}
},
"outputs": [
@@ -1260,10 +1259,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:42.491196Z",
- "iopub.status.busy": "2024-02-12T22:43:42.490807Z",
- "iopub.status.idle": "2024-02-12T22:43:42.496855Z",
- "shell.execute_reply": "2024-02-12T22:43:42.496442Z"
+ "iopub.execute_input": "2024-02-12T23:50:43.924097Z",
+ "iopub.status.busy": "2024-02-12T23:50:43.923927Z",
+ "iopub.status.idle": "2024-02-12T23:50:43.930241Z",
+ "shell.execute_reply": "2024-02-12T23:50:43.929791Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
index 33476e566..a117f4a68 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
@@ -75,10 +75,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:45.108931Z",
- "iopub.status.busy": "2024-02-12T22:43:45.108755Z",
- "iopub.status.idle": "2024-02-12T22:43:47.937946Z",
- "shell.execute_reply": "2024-02-12T22:43:47.937319Z"
+ "iopub.execute_input": "2024-02-12T23:50:46.547908Z",
+ "iopub.status.busy": "2024-02-12T23:50:46.547738Z",
+ "iopub.status.idle": "2024-02-12T23:50:49.464248Z",
+ "shell.execute_reply": "2024-02-12T23:50:49.463691Z"
},
"nbsphinx": "hidden"
},
@@ -96,7 +96,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -121,10 +121,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:47.940511Z",
- "iopub.status.busy": "2024-02-12T22:43:47.940215Z",
- "iopub.status.idle": "2024-02-12T22:43:47.943564Z",
- "shell.execute_reply": "2024-02-12T22:43:47.943016Z"
+ "iopub.execute_input": "2024-02-12T23:50:49.466759Z",
+ "iopub.status.busy": "2024-02-12T23:50:49.466365Z",
+ "iopub.status.idle": "2024-02-12T23:50:49.469781Z",
+ "shell.execute_reply": "2024-02-12T23:50:49.469228Z"
}
},
"outputs": [],
@@ -145,10 +145,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:47.945551Z",
- "iopub.status.busy": "2024-02-12T22:43:47.945180Z",
- "iopub.status.idle": "2024-02-12T22:43:47.948334Z",
- "shell.execute_reply": "2024-02-12T22:43:47.947780Z"
+ "iopub.execute_input": "2024-02-12T23:50:49.471957Z",
+ "iopub.status.busy": "2024-02-12T23:50:49.471528Z",
+ "iopub.status.idle": "2024-02-12T23:50:49.474817Z",
+ "shell.execute_reply": "2024-02-12T23:50:49.474375Z"
},
"nbsphinx": "hidden"
},
@@ -178,10 +178,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:47.950219Z",
- "iopub.status.busy": "2024-02-12T22:43:47.949930Z",
- "iopub.status.idle": "2024-02-12T22:43:48.080464Z",
- "shell.execute_reply": "2024-02-12T22:43:48.079915Z"
+ "iopub.execute_input": "2024-02-12T23:50:49.476691Z",
+ "iopub.status.busy": "2024-02-12T23:50:49.476518Z",
+ "iopub.status.idle": "2024-02-12T23:50:49.516403Z",
+ "shell.execute_reply": "2024-02-12T23:50:49.515964Z"
}
},
"outputs": [
@@ -271,10 +271,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:48.082672Z",
- "iopub.status.busy": "2024-02-12T22:43:48.082306Z",
- "iopub.status.idle": "2024-02-12T22:43:48.086375Z",
- "shell.execute_reply": "2024-02-12T22:43:48.085933Z"
+ "iopub.execute_input": "2024-02-12T23:50:49.518460Z",
+ "iopub.status.busy": "2024-02-12T23:50:49.518123Z",
+ "iopub.status.idle": "2024-02-12T23:50:49.522124Z",
+ "shell.execute_reply": "2024-02-12T23:50:49.521556Z"
}
},
"outputs": [
@@ -283,7 +283,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'change_pin'}\n"
+ "Classes: {'getting_spare_card', 'change_pin', 'supported_cards_and_currencies', 'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'cancel_transfer'}\n"
]
}
],
@@ -307,10 +307,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:48.088467Z",
- "iopub.status.busy": "2024-02-12T22:43:48.088066Z",
- "iopub.status.idle": "2024-02-12T22:43:48.091035Z",
- "shell.execute_reply": "2024-02-12T22:43:48.090511Z"
+ "iopub.execute_input": "2024-02-12T23:50:49.524233Z",
+ "iopub.status.busy": "2024-02-12T23:50:49.523938Z",
+ "iopub.status.idle": "2024-02-12T23:50:49.527120Z",
+ "shell.execute_reply": "2024-02-12T23:50:49.526583Z"
}
},
"outputs": [
@@ -365,17 +365,17 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:48.093134Z",
- "iopub.status.busy": "2024-02-12T22:43:48.092761Z",
- "iopub.status.idle": "2024-02-12T22:43:53.349458Z",
- "shell.execute_reply": "2024-02-12T22:43:53.348832Z"
+ "iopub.execute_input": "2024-02-12T23:50:49.529154Z",
+ "iopub.status.busy": "2024-02-12T23:50:49.528777Z",
+ "iopub.status.idle": "2024-02-12T23:50:55.121035Z",
+ "shell.execute_reply": "2024-02-12T23:50:55.120518Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "bc49410cf16f492ab41e09bac981873f",
+ "model_id": "0d69e0cda87e4b0db3bc5d1ae8870983",
"version_major": 2,
"version_minor": 0
},
@@ -389,7 +389,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7973d30d82934f4bb503e1530ab29886",
+ "model_id": "ba0ae1e5a9ea4399876fc8c4dcd94f06",
"version_major": 2,
"version_minor": 0
},
@@ -403,7 +403,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7888f424f9a142f28f742f08ee0eec3b",
+ "model_id": "5d79425c7a594688bfd66acbe8d89554",
"version_major": 2,
"version_minor": 0
},
@@ -417,7 +417,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "b98492928d41432b9a4a2c255cd5eb03",
+ "model_id": "f1f5830aac3040dda957e6d4a51133b0",
"version_major": 2,
"version_minor": 0
},
@@ -431,7 +431,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e0cd874d91724519bc3ad7ec8053cc86",
+ "model_id": "32020a6b3040430a812015f3b91bb5eb",
"version_major": 2,
"version_minor": 0
},
@@ -445,7 +445,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "c961a1e7c7224a6c9b2e28cfd69c9111",
+ "model_id": "5e06e5c8b1c44d8a870e5c1da38e6628",
"version_major": 2,
"version_minor": 0
},
@@ -459,7 +459,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9a6ebe16ddb846c091e9361313175280",
+ "model_id": "1e8808bce153422fa9ae0904e521a824",
"version_major": 2,
"version_minor": 0
},
@@ -521,10 +521,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:53.352113Z",
- "iopub.status.busy": "2024-02-12T22:43:53.351921Z",
- "iopub.status.idle": "2024-02-12T22:43:54.221546Z",
- "shell.execute_reply": "2024-02-12T22:43:54.220979Z"
+ "iopub.execute_input": "2024-02-12T23:50:55.123750Z",
+ "iopub.status.busy": "2024-02-12T23:50:55.123350Z",
+ "iopub.status.idle": "2024-02-12T23:50:56.026031Z",
+ "shell.execute_reply": "2024-02-12T23:50:56.025438Z"
},
"scrolled": true
},
@@ -556,10 +556,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:54.224539Z",
- "iopub.status.busy": "2024-02-12T22:43:54.224249Z",
- "iopub.status.idle": "2024-02-12T22:43:54.226978Z",
- "shell.execute_reply": "2024-02-12T22:43:54.226434Z"
+ "iopub.execute_input": "2024-02-12T23:50:56.028685Z",
+ "iopub.status.busy": "2024-02-12T23:50:56.028318Z",
+ "iopub.status.idle": "2024-02-12T23:50:56.031327Z",
+ "shell.execute_reply": "2024-02-12T23:50:56.030847Z"
}
},
"outputs": [],
@@ -579,10 +579,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:54.229187Z",
- "iopub.status.busy": "2024-02-12T22:43:54.228956Z",
- "iopub.status.idle": "2024-02-12T22:43:55.792512Z",
- "shell.execute_reply": "2024-02-12T22:43:55.791671Z"
+ "iopub.execute_input": "2024-02-12T23:50:56.033657Z",
+ "iopub.status.busy": "2024-02-12T23:50:56.033281Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.560576Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.559960Z"
},
"scrolled": true
},
@@ -627,10 +627,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.796585Z",
- "iopub.status.busy": "2024-02-12T22:43:55.795269Z",
- "iopub.status.idle": "2024-02-12T22:43:55.817853Z",
- "shell.execute_reply": "2024-02-12T22:43:55.817356Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.564403Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.563115Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.585532Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.585039Z"
},
"scrolled": true
},
@@ -758,10 +758,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.821406Z",
- "iopub.status.busy": "2024-02-12T22:43:55.820491Z",
- "iopub.status.idle": "2024-02-12T22:43:55.832094Z",
- "shell.execute_reply": "2024-02-12T22:43:55.831675Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.588960Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.588065Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.599403Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.598929Z"
},
"scrolled": true
},
@@ -871,10 +871,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.834579Z",
- "iopub.status.busy": "2024-02-12T22:43:55.834182Z",
- "iopub.status.idle": "2024-02-12T22:43:55.838685Z",
- "shell.execute_reply": "2024-02-12T22:43:55.838114Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.601838Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.601530Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.605790Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.605214Z"
}
},
"outputs": [
@@ -912,10 +912,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.841090Z",
- "iopub.status.busy": "2024-02-12T22:43:55.840776Z",
- "iopub.status.idle": "2024-02-12T22:43:55.847127Z",
- "shell.execute_reply": "2024-02-12T22:43:55.846708Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.607524Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.607352Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.613568Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.613048Z"
}
},
"outputs": [
@@ -1032,10 +1032,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.849082Z",
- "iopub.status.busy": "2024-02-12T22:43:55.848904Z",
- "iopub.status.idle": "2024-02-12T22:43:55.855567Z",
- "shell.execute_reply": "2024-02-12T22:43:55.855139Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.615597Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.615223Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.621415Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.620879Z"
}
},
"outputs": [
@@ -1118,10 +1118,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.857402Z",
- "iopub.status.busy": "2024-02-12T22:43:55.857226Z",
- "iopub.status.idle": "2024-02-12T22:43:55.863309Z",
- "shell.execute_reply": "2024-02-12T22:43:55.862840Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.623362Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.623041Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.628681Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.628261Z"
}
},
"outputs": [
@@ -1229,10 +1229,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.865143Z",
- "iopub.status.busy": "2024-02-12T22:43:55.864972Z",
- "iopub.status.idle": "2024-02-12T22:43:55.873287Z",
- "shell.execute_reply": "2024-02-12T22:43:55.872791Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.630672Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.630353Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.638513Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.638090Z"
}
},
"outputs": [
@@ -1343,10 +1343,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.875344Z",
- "iopub.status.busy": "2024-02-12T22:43:55.875166Z",
- "iopub.status.idle": "2024-02-12T22:43:55.880754Z",
- "shell.execute_reply": "2024-02-12T22:43:55.880302Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.640390Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.640074Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.645189Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.644683Z"
}
},
"outputs": [
@@ -1414,10 +1414,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.882532Z",
- "iopub.status.busy": "2024-02-12T22:43:55.882348Z",
- "iopub.status.idle": "2024-02-12T22:43:55.887543Z",
- "shell.execute_reply": "2024-02-12T22:43:55.887112Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.647164Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.646844Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.651994Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.651500Z"
}
},
"outputs": [
@@ -1496,10 +1496,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.889365Z",
- "iopub.status.busy": "2024-02-12T22:43:55.889192Z",
- "iopub.status.idle": "2024-02-12T22:43:55.892761Z",
- "shell.execute_reply": "2024-02-12T22:43:55.892326Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.653947Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.653630Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.657140Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.656701Z"
}
},
"outputs": [
@@ -1547,10 +1547,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:55.894681Z",
- "iopub.status.busy": "2024-02-12T22:43:55.894513Z",
- "iopub.status.idle": "2024-02-12T22:43:55.899804Z",
- "shell.execute_reply": "2024-02-12T22:43:55.899349Z"
+ "iopub.execute_input": "2024-02-12T23:50:57.659150Z",
+ "iopub.status.busy": "2024-02-12T23:50:57.658836Z",
+ "iopub.status.idle": "2024-02-12T23:50:57.664957Z",
+ "shell.execute_reply": "2024-02-12T23:50:57.664470Z"
},
"nbsphinx": "hidden"
},
@@ -1600,7 +1600,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "007331ec1d0e4761aff3fd59f45325a9": {
+ "02bf8e58cfc9453d9b45786a755ffedd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1615,38 +1615,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_7ca63b1fcdbe4eb3ae40f208c96d8b22",
+ "layout": "IPY_MODEL_ceda4d033eaf4941a3a2f6f5de0353af",
"placeholder": "",
- "style": "IPY_MODEL_ede107ba26434a7f8340f74d4e3e6239",
+ "style": "IPY_MODEL_b402786af965472fad2b05a2f99cbba0",
"tabbable": null,
"tooltip": null,
- "value": " 29.0/29.0 [00:00<00:00, 5.24kB/s]"
+ "value": " 665/665 [00:00<00:00, 101kB/s]"
}
},
- "038a27f0748245ca932a2606b01b4cdf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_de10a485f79b46bd9fc59d0a1273b6bd",
- "placeholder": "",
- "style": "IPY_MODEL_10dea6c925814728877fdde2805c4881",
- "tabbable": null,
- "tooltip": null,
- "value": " 391/391 [00:00<00:00, 65.5kB/s]"
- }
- },
- "03f3d26e190440cca5fe8a5edef9b2f2": {
+ "03e5163404984b2284059776f312a565": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1699,41 +1676,77 @@
"width": null
}
},
- "04e2fe14dc144348abac67bc2b1739bb": {
+ "0627a2e8fd5a476fa79a58295383bf9a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7fe029bada574dd8a07ecbf943834a9e",
+ "placeholder": "",
+ "style": "IPY_MODEL_a979db5f21a54cae8a4341272da6be28",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 466k/466k [00:00<00:00, 35.9MB/s]"
}
},
- "0aceb9e92a2b4295ae1110f83cd31b15": {
+ "07290d2c8fec4912bf69b27b048cc27b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_e807a597697c499f913d0fb655df2363",
+ "placeholder": "",
+ "style": "IPY_MODEL_15be0882f0be40b68f30f8b78998c2db",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "0d69e0cda87e4b0db3bc5d1ae8870983": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ab8abbc00d8d4a8b9dbd4072348a162e",
+ "IPY_MODEL_b46054ea4aa3451695b4f573b82e894b",
+ "IPY_MODEL_24962a3dc23a49c3967f194f83aeba78"
+ ],
+ "layout": "IPY_MODEL_7d6bd6c1a88c46c190de7e9d935531ab",
+ "tabbable": null,
+ "tooltip": null
}
},
- "0b1e09ba041149c182b8b9e5f21e7574": {
+ "0fa7712852f04d07b560207ac694fb6e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1786,7 +1799,7 @@
"width": null
}
},
- "0d3db42e0f6a46668da2976208661f8e": {
+ "0fd9d4d4df564a708b818a1e42df81e6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1839,41 +1852,7 @@
"width": null
}
},
- "0f2fb4f1a4784eb9964ada5c87272288": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "10dea6c925814728877fdde2805c4881": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "20ca6bb9be964b93a8bc8aa5a603f104": {
+ "144d2d37b3f9450cb129ea809116a407": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1926,30 +1905,25 @@
"width": null
}
},
- "279b7a940ed046ff81998d5a619d7271": {
+ "15be0882f0be40b68f30f8b78998c2db": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c52f333c4b714fcba52ced2b1c8addc2",
- "placeholder": "",
- "style": "IPY_MODEL_cd2d005c234641a1be6779bad13c8005",
- "tabbable": null,
- "tooltip": null,
- "value": "pytorch_model.bin: 100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "2828b76fc8cb4a0cb36e89ed18ced4d6": {
+ "164a0d7104c2472aa64618c0b97d62ab": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2002,7 +1976,7 @@
"width": null
}
},
- "2b2a1be4299247c9a0703a2f1cbd7d0f": {
+ "1cf4b6fd58144b40b8c912e6e6b4599e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2055,30 +2029,49 @@
"width": null
}
},
- "2e52faae0e6541f896e8bdd83f7822be": {
+ "1e8808bce153422fa9ae0904e521a824": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_a91a07c54ac54fbdae5c777e0e8d5fe2",
- "placeholder": "",
- "style": "IPY_MODEL_fe1eaf1c593645fe851c92c767609654",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e41cbdd693434eef99c3e57861b867f8",
+ "IPY_MODEL_2b7f6d6f87bc4e04a1a9c5284b6b6091",
+ "IPY_MODEL_967efcbc262f4fa3bf3c5b6c1362cb8a"
+ ],
+ "layout": "IPY_MODEL_c41b592159b14891a3d07270c0bf251d",
"tabbable": null,
- "tooltip": null,
- "value": "tokenizer_config.json: 100%"
+ "tooltip": null
+ }
+ },
+ "1f132b2f9540427ba597567dc25d796c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "3ae69303cbe945d8a5800f2e5c292337": {
+ "21d7ed4e2f76453bbd35a022c0364d2d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2131,7 +2124,7 @@
"width": null
}
},
- "3be57f825ea24181a397695c3c8b2e3a": {
+ "227c2e44fb024115aed45f5997a36879": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2147,17 +2140,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_fb9a77bc60ec4cdfa1f40d23a9002482",
- "max": 665.0,
+ "layout": "IPY_MODEL_e8b16d4082c2487dbf8ecf1ad07aff3c",
+ "max": 466062.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_e0e851f72732414781cca2ef939d70df",
+ "style": "IPY_MODEL_71d63c8fefec425793cd15bb15541996",
"tabbable": null,
"tooltip": null,
- "value": 665.0
+ "value": 466062.0
}
},
- "413035c2ae5143b7ae5a5bbdba719e6e": {
+ "22ddcf943e894bd29e405575da25012f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2175,7 +2168,7 @@
"text_color": null
}
},
- "49eb389d153d4755baf2114a43b75c85": {
+ "2486b97237a8431a84223361b518a810": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
@@ -2191,69 +2184,7 @@
"description_width": ""
}
},
- "525692a5ca0d460daa82e50f047bf558": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "542f99ebb27e4887b5d82a2306660f2c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_5ae0b54bb4524bab85d66b3ef89af4fb",
- "max": 391.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b37252170e014076b153ae3372ca979b",
- "tabbable": null,
- "tooltip": null,
- "value": 391.0
- }
- },
- "549d92ff898a4de08a1d6302acce527b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "574d603edbcb4515957f60ce56f14e84": {
+ "24962a3dc23a49c3967f194f83aeba78": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2268,15 +2199,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_bfea53a935044fbd9894a84689b48d4e",
+ "layout": "IPY_MODEL_8f1ccf7e3db64657b42840b18a9bebed",
"placeholder": "",
- "style": "IPY_MODEL_525692a5ca0d460daa82e50f047bf558",
+ "style": "IPY_MODEL_b40201b753c34973bcd34ed1354826d2",
"tabbable": null,
"tooltip": null,
- "value": " 2.21k/2.21k [00:00<00:00, 265kB/s]"
+ "value": " 391/391 [00:00<00:00, 70.3kB/s]"
}
},
- "5ae0b54bb4524bab85d66b3ef89af4fb": {
+ "287536aec375489a9cefc9221a10e8ed": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2329,221 +2260,183 @@
"width": null
}
},
- "5db96e2d3b5b4514b6424d1c4154f424": {
+ "2a8900ba9a79407fab01868f7b215ca5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_21d7ed4e2f76453bbd35a022c0364d2d",
+ "placeholder": "",
+ "style": "IPY_MODEL_c41bd7f6a186461e8b08c678ec20162f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "pytorch_model.bin: 100%"
}
},
- "5e28733627154fdeab77bc599193cb33": {
- "model_module": "@jupyter-widgets/base",
+ "2b7f6d6f87bc4e04a1a9c5284b6b6091": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "FloatProgressModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6235084bfbeb4c968f285d064a02a36d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_f9559bd53fdf45dd9f07617a22629378",
- "placeholder": "",
- "style": "IPY_MODEL_549d92ff898a4de08a1d6302acce527b",
+ "layout": "IPY_MODEL_1cf4b6fd58144b40b8c912e6e6b4599e",
+ "max": 231508.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2486b97237a8431a84223361b518a810",
"tabbable": null,
"tooltip": null,
- "value": "README.md: 100%"
+ "value": 231508.0
}
},
- "6313545c6f7b4712a93e8ed4d7facb46": {
+ "32020a6b3040430a812015f3b91bb5eb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c022d8f7f21b418ea8fe9c65be2dfd58",
- "max": 2211.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0aceb9e92a2b4295ae1110f83cd31b15",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6b0233130e964f35abb312dcaaf1e8b7",
+ "IPY_MODEL_227c2e44fb024115aed45f5997a36879",
+ "IPY_MODEL_0627a2e8fd5a476fa79a58295383bf9a"
+ ],
+ "layout": "IPY_MODEL_0fd9d4d4df564a708b818a1e42df81e6",
"tabbable": null,
- "tooltip": null,
- "value": 2211.0
+ "tooltip": null
}
},
- "6b76c69d1c5144819244e34d4f70a27f": {
+ "329b2c4048984fe9914d37285239b804": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_cafa341b8e614f4e9fb67b9322307027",
- "placeholder": "",
- "style": "IPY_MODEL_413035c2ae5143b7ae5a5bbdba719e6e",
- "tabbable": null,
- "tooltip": null,
- "value": " 232k/232k [00:00<00:00, 3.77MB/s]"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "7448d92978b74942a2c73972a8511c5d": {
+ "3bc4139860314681b4c89458955ce8de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_d2efae6d2c244cd7a335b490f5296ebf",
- "placeholder": "",
- "style": "IPY_MODEL_5db96e2d3b5b4514b6424d1c4154f424",
- "tabbable": null,
- "tooltip": null,
- "value": ".gitattributes: 100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "7888f424f9a142f28f742f08ee0eec3b": {
+ "4074e8c904c04f58b3425ded7d6827f4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d6fbea40989b469fb1f920fb73cdacb9",
- "IPY_MODEL_3be57f825ea24181a397695c3c8b2e3a",
- "IPY_MODEL_a52f9ce14fcd4628b8ab5410364d57a2"
- ],
- "layout": "IPY_MODEL_faac09f03b9d4fd783cf1fd44dead568",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "7973d30d82934f4bb503e1530ab29886": {
- "model_module": "@jupyter-widgets/controls",
+ "4554e9a55b5a47adacff6bd4c589d664": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_6235084bfbeb4c968f285d064a02a36d",
- "IPY_MODEL_6313545c6f7b4712a93e8ed4d7facb46",
- "IPY_MODEL_574d603edbcb4515957f60ce56f14e84"
- ],
- "layout": "IPY_MODEL_c577500152bf44a2bc54500034ef5fee",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "7ba61b64f1de4a9ea31572750917ea39": {
+ "54fd7d5e83e84ec7812cddee7c8e69cb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2558,15 +2451,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_df2249da9e5f4d3c85eb2f310f57aba6",
+ "layout": "IPY_MODEL_59e6fdacf2c84772b21de272f26597bf",
"placeholder": "",
- "style": "IPY_MODEL_04e2fe14dc144348abac67bc2b1739bb",
+ "style": "IPY_MODEL_3bc4139860314681b4c89458955ce8de",
"tabbable": null,
"tooltip": null,
- "value": " 54.2M/54.2M [00:00<00:00, 192MB/s]"
+ "value": " 54.2M/54.2M [00:01<00:00, 33.7MB/s]"
}
},
- "7ca63b1fcdbe4eb3ae40f208c96d8b22": {
+ "557bd95bef914d5ba02732b0d5b36a31": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2619,7 +2512,7 @@
"width": null
}
},
- "7e1a7e3edea34cea9dc5b6465178c65a": {
+ "59e6fdacf2c84772b21de272f26597bf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2672,109 +2565,105 @@
"width": null
}
},
- "7eb14cbab77d46889775206528359c88": {
+ "5c97f6922282475cb9199096edc01dd1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5d79425c7a594688bfd66acbe8d89554": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_e6bde73f817144389f759e10cdf2823a",
- "max": 54245363.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_96affdbbf29b44b49bc37a10ca43ca91",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6c8c3598e2934921a6ec0c847439df50",
+ "IPY_MODEL_b9bc5d4aff15418e84e1fc7ee9e7575a",
+ "IPY_MODEL_02bf8e58cfc9453d9b45786a755ffedd"
+ ],
+ "layout": "IPY_MODEL_b1c74520cfee45cf8595ea005fcf6dbb",
"tabbable": null,
- "tooltip": null,
- "value": 54245363.0
+ "tooltip": null
}
},
- "80cf0c01f4d541609cfb176980011ccd": {
+ "5e06e5c8b1c44d8a870e5c1da38e6628": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_5e28733627154fdeab77bc599193cb33",
- "placeholder": "",
- "style": "IPY_MODEL_c7a7db13e40f4e6da0fc9af3a2e1d16e",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_07290d2c8fec4912bf69b27b048cc27b",
+ "IPY_MODEL_f89ff6628e35452dab69d43ccfde25d6",
+ "IPY_MODEL_d188076150b247efbf7563e3d939bd9f"
+ ],
+ "layout": "IPY_MODEL_144d2d37b3f9450cb129ea809116a407",
"tabbable": null,
- "tooltip": null,
- "value": "tokenizer.json: 100%"
+ "tooltip": null
}
},
- "8899f643b6d94e4da8e19d9998f5880a": {
- "model_module": "@jupyter-widgets/base",
+ "61f46939528943c69da2cc4165e02d3b": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "630a511db57b4956b880c74a38d69e18": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "943c6cd89f554dc18894d82b1983f00a": {
+ "65f87821472b48e6854594d0cc7a3997": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2790,33 +2679,40 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_2b2a1be4299247c9a0703a2f1cbd7d0f",
- "max": 231508.0,
+ "layout": "IPY_MODEL_0fa7712852f04d07b560207ac694fb6e",
+ "max": 54245363.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_49eb389d153d4755baf2114a43b75c85",
+ "style": "IPY_MODEL_5c97f6922282475cb9199096edc01dd1",
"tabbable": null,
"tooltip": null,
- "value": 231508.0
+ "value": 54245363.0
}
},
- "96affdbbf29b44b49bc37a10ca43ca91": {
+ "6b0233130e964f35abb312dcaaf1e8b7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_788f3c68287b4e6f9f2cfe2b309c7f65",
+ "placeholder": "",
+ "style": "IPY_MODEL_6b4a88d3825e49e59ff65c9634d271f2",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "tokenizer.json: 100%"
}
},
- "9775e5548bc44271940116f44f537026": {
+ "6b4a88d3825e49e59ff65c9634d271f2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2834,130 +2730,87 @@
"text_color": null
}
},
- "9a6ebe16ddb846c091e9361313175280": {
+ "6c8c3598e2934921a6ec0c847439df50": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a786fa6e84124fada36b7c4e3658e27d",
- "IPY_MODEL_943c6cd89f554dc18894d82b1983f00a",
- "IPY_MODEL_6b76c69d1c5144819244e34d4f70a27f"
- ],
- "layout": "IPY_MODEL_a2bf9f79db214e6a981cc06725172db3",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_4554e9a55b5a47adacff6bd4c589d664",
+ "placeholder": "",
+ "style": "IPY_MODEL_a1d7cca5de474bb58861742269697eaf",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": "config.json: 100%"
}
},
- "a2bf9f79db214e6a981cc06725172db3": {
- "model_module": "@jupyter-widgets/base",
+ "6ec9ef6ceead484e841d60f382e7b720": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_80101e23521d45eb8930a282bacb5d3b",
+ "placeholder": "",
+ "style": "IPY_MODEL_75f2e29663cc4c35874cdb68a14bade0",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 2.21k/2.21k [00:00<00:00, 384kB/s]"
}
},
- "a52f9ce14fcd4628b8ab5410364d57a2": {
+ "71d63c8fefec425793cd15bb15541996": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_03f3d26e190440cca5fe8a5edef9b2f2",
- "placeholder": "",
- "style": "IPY_MODEL_c971351995674469bb1fd4282c4aa242",
- "tabbable": null,
- "tooltip": null,
- "value": " 665/665 [00:00<00:00, 117kB/s]"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "a786fa6e84124fada36b7c4e3658e27d": {
+ "75f2e29663cc4c35874cdb68a14bade0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_0d3db42e0f6a46668da2976208661f8e",
- "placeholder": "",
- "style": "IPY_MODEL_ed25005d46ed4ba68898d3bb5580674f",
- "tabbable": null,
- "tooltip": null,
- "value": "vocab.txt: 100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "a91a07c54ac54fbdae5c777e0e8d5fe2": {
+ "788f3c68287b4e6f9f2cfe2b309c7f65": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3010,87 +2863,7 @@
"width": null
}
},
- "b37252170e014076b153ae3372ca979b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "b5e1806f2c75476bab4c8a8c13aca61e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "b98492928d41432b9a4a2c255cd5eb03": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_279b7a940ed046ff81998d5a619d7271",
- "IPY_MODEL_7eb14cbab77d46889775206528359c88",
- "IPY_MODEL_7ba61b64f1de4a9ea31572750917ea39"
- ],
- "layout": "IPY_MODEL_8899f643b6d94e4da8e19d9998f5880a",
- "tabbable": null,
- "tooltip": null
- }
- },
- "bc49410cf16f492ab41e09bac981873f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7448d92978b74942a2c73972a8511c5d",
- "IPY_MODEL_542f99ebb27e4887b5d82a2306660f2c",
- "IPY_MODEL_038a27f0748245ca932a2606b01b4cdf"
- ],
- "layout": "IPY_MODEL_eb451a3aeb2e4a3d8917ad6a258e6ce0",
- "tabbable": null,
- "tooltip": null
- }
- },
- "bfea53a935044fbd9894a84689b48d4e": {
+ "7d3f2a70b4954e04a8e62aba7d9ed1a1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3143,7 +2916,7 @@
"width": null
}
},
- "c022d8f7f21b418ea8fe9c65be2dfd58": {
+ "7d6bd6c1a88c46c190de7e9d935531ab": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3196,7 +2969,7 @@
"width": null
}
},
- "c52f333c4b714fcba52ced2b1c8addc2": {
+ "7fe029bada574dd8a07ecbf943834a9e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3249,7 +3022,7 @@
"width": null
}
},
- "c577500152bf44a2bc54500034ef5fee": {
+ "80101e23521d45eb8930a282bacb5d3b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3302,67 +3075,7 @@
"width": null
}
},
- "c7a7db13e40f4e6da0fc9af3a2e1d16e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "c961a1e7c7224a6c9b2e28cfd69c9111": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_2e52faae0e6541f896e8bdd83f7822be",
- "IPY_MODEL_e140c223050142d683c6ae5fff33698d",
- "IPY_MODEL_007331ec1d0e4761aff3fd59f45325a9"
- ],
- "layout": "IPY_MODEL_2828b76fc8cb4a0cb36e89ed18ced4d6",
- "tabbable": null,
- "tooltip": null
- }
- },
- "c971351995674469bb1fd4282c4aa242": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "cafa341b8e614f4e9fb67b9322307027": {
+ "8b4802d3ea4e494e8b22b12207f39ee6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3415,25 +3128,7 @@
"width": null
}
},
- "cd2d005c234641a1be6779bad13c8005": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "cf438781bd114bb9b4987c26064ac4bb": {
+ "8f1ccf7e3db64657b42840b18a9bebed": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3486,7 +3181,74 @@
"width": null
}
},
- "d0962d87836148d6a6515908a5326d1e": {
+ "967efcbc262f4fa3bf3c5b6c1362cb8a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_e3df8e413e1244609fa943268ade04bb",
+ "placeholder": "",
+ "style": "IPY_MODEL_1f132b2f9540427ba597567dc25d796c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 232k/232k [00:00<00:00, 31.5MB/s]"
+ }
+ },
+ "991b96dd627f4be4b94260dcce3768a9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7d3f2a70b4954e04a8e62aba7d9ed1a1",
+ "max": 2211.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b1b7b4cfb5ff43998be34547977d3a01",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 2211.0
+ }
+ },
+ "9f006c4408994341a82564a78db2d74a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "a1d7cca5de474bb58861742269697eaf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3504,7 +3266,7 @@
"text_color": null
}
},
- "d2efae6d2c244cd7a335b490f5296ebf": {
+ "a206dc649e414353aaea4628e97a2e1e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3557,7 +3319,25 @@
"width": null
}
},
- "d6fbea40989b469fb1f920fb73cdacb9": {
+ "a979db5f21a54cae8a4341272da6be28": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "ab8abbc00d8d4a8b9dbd4072348a162e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -3572,15 +3352,31 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_20ca6bb9be964b93a8bc8aa5a603f104",
+ "layout": "IPY_MODEL_d1d64d2582e74dada001a7cc02ce800e",
"placeholder": "",
- "style": "IPY_MODEL_d0962d87836148d6a6515908a5326d1e",
+ "style": "IPY_MODEL_9f006c4408994341a82564a78db2d74a",
"tabbable": null,
"tooltip": null,
- "value": "config.json: 100%"
+ "value": ".gitattributes: 100%"
+ }
+ },
+ "b1b7b4cfb5ff43998be34547977d3a01": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "de10a485f79b46bd9fc59d0a1273b6bd": {
+ "b1bde9b48e2e418183f9e2c8e2ad284a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3633,7 +3429,7 @@
"width": null
}
},
- "df2249da9e5f4d3c85eb2f310f57aba6": {
+ "b1c74520cfee45cf8595ea005fcf6dbb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3686,47 +3482,43 @@
"width": null
}
},
- "e0cd874d91724519bc3ad7ec8053cc86": {
+ "b40201b753c34973bcd34ed1354826d2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_80cf0c01f4d541609cfb176980011ccd",
- "IPY_MODEL_f03fe5966d3c4d6a87c6339a316774f0",
- "IPY_MODEL_edb2dc771244454db670358cd3a681fc"
- ],
- "layout": "IPY_MODEL_3ae69303cbe945d8a5800f2e5c292337",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "e0e851f72732414781cca2ef939d70df": {
+ "b402786af965472fad2b05a2f99cbba0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "e140c223050142d683c6ae5fff33698d": {
+ "b46054ea4aa3451695b4f573b82e894b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -3742,17 +3534,43 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_cf438781bd114bb9b4987c26064ac4bb",
- "max": 29.0,
+ "layout": "IPY_MODEL_b9caeef2a45c4c849d83bc62485a80a2",
+ "max": 391.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_0f2fb4f1a4784eb9964ada5c87272288",
+ "style": "IPY_MODEL_329b2c4048984fe9914d37285239b804",
"tabbable": null,
"tooltip": null,
- "value": 29.0
+ "value": 391.0
+ }
+ },
+ "b9bc5d4aff15418e84e1fc7ee9e7575a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_164a0d7104c2472aa64618c0b97d62ab",
+ "max": 665.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_630a511db57b4956b880c74a38d69e18",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 665.0
}
},
- "e6bde73f817144389f759e10cdf2823a": {
+ "b9caeef2a45c4c849d83bc62485a80a2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3805,7 +3623,31 @@
"width": null
}
},
- "eb451a3aeb2e4a3d8917ad6a258e6ce0": {
+ "ba0ae1e5a9ea4399876fc8c4dcd94f06": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d5d8057143aa41998f784156d41114a8",
+ "IPY_MODEL_991b96dd627f4be4b94260dcce3768a9",
+ "IPY_MODEL_6ec9ef6ceead484e841d60f382e7b720"
+ ],
+ "layout": "IPY_MODEL_8b4802d3ea4e494e8b22b12207f39ee6",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "c41b592159b14891a3d07270c0bf251d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3858,7 +3700,7 @@
"width": null
}
},
- "ed25005d46ed4ba68898d3bb5580674f": {
+ "c41bd7f6a186461e8b08c678ec20162f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3876,7 +3718,60 @@
"text_color": null
}
},
- "edb2dc771244454db670358cd3a681fc": {
+ "ceda4d033eaf4941a3a2f6f5de0353af": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d188076150b247efbf7563e3d939bd9f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -3891,15 +3786,68 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_0b1e09ba041149c182b8b9e5f21e7574",
+ "layout": "IPY_MODEL_03e5163404984b2284059776f312a565",
"placeholder": "",
- "style": "IPY_MODEL_9775e5548bc44271940116f44f537026",
+ "style": "IPY_MODEL_61f46939528943c69da2cc4165e02d3b",
"tabbable": null,
"tooltip": null,
- "value": " 466k/466k [00:00<00:00, 2.58MB/s]"
+ "value": " 29.0/29.0 [00:00<00:00, 5.56kB/s]"
+ }
+ },
+ "d1d64d2582e74dada001a7cc02ce800e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "ede107ba26434a7f8340f74d4e3e6239": {
+ "d453fb666dee4030b799039a444d33ff": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3917,33 +3865,30 @@
"text_color": null
}
},
- "f03fe5966d3c4d6a87c6339a316774f0": {
+ "d5d8057143aa41998f784156d41114a8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_7e1a7e3edea34cea9dc5b6465178c65a",
- "max": 466062.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b5e1806f2c75476bab4c8a8c13aca61e",
+ "layout": "IPY_MODEL_b1bde9b48e2e418183f9e2c8e2ad284a",
+ "placeholder": "",
+ "style": "IPY_MODEL_22ddcf943e894bd29e405575da25012f",
"tabbable": null,
"tooltip": null,
- "value": 466062.0
+ "value": "README.md: 100%"
}
},
- "f9559bd53fdf45dd9f07617a22629378": {
+ "e3df8e413e1244609fa943268ade04bb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3996,7 +3941,30 @@
"width": null
}
},
- "faac09f03b9d4fd783cf1fd44dead568": {
+ "e41cbdd693434eef99c3e57861b867f8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_557bd95bef914d5ba02732b0d5b36a31",
+ "placeholder": "",
+ "style": "IPY_MODEL_d453fb666dee4030b799039a444d33ff",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "vocab.txt: 100%"
+ }
+ },
+ "e807a597697c499f913d0fb655df2363": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4049,7 +4017,7 @@
"width": null
}
},
- "fb9a77bc60ec4cdfa1f40d23a9002482": {
+ "e8b16d4082c2487dbf8ecf1ad07aff3c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4102,22 +4070,54 @@
"width": null
}
},
- "fe1eaf1c593645fe851c92c767609654": {
+ "f1f5830aac3040dda957e6d4a51133b0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2a8900ba9a79407fab01868f7b215ca5",
+ "IPY_MODEL_65f87821472b48e6854594d0cc7a3997",
+ "IPY_MODEL_54fd7d5e83e84ec7812cddee7c8e69cb"
+ ],
+ "layout": "IPY_MODEL_a206dc649e414353aaea4628e97a2e1e",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "f89ff6628e35452dab69d43ccfde25d6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_287536aec375489a9cefc9221a10e8ed",
+ "max": 29.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_4074e8c904c04f58b3425ded7d6827f4",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 29.0
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
index cc665f5d7..364b670fd 100644
--- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
@@ -68,10 +68,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:43:59.153077Z",
- "iopub.status.busy": "2024-02-12T22:43:59.152900Z",
- "iopub.status.idle": "2024-02-12T22:44:00.186052Z",
- "shell.execute_reply": "2024-02-12T22:44:00.185503Z"
+ "iopub.execute_input": "2024-02-12T23:51:00.623311Z",
+ "iopub.status.busy": "2024-02-12T23:51:00.623139Z",
+ "iopub.status.idle": "2024-02-12T23:51:01.637686Z",
+ "shell.execute_reply": "2024-02-12T23:51:01.637134Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -108,10 +108,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:00.188427Z",
- "iopub.status.busy": "2024-02-12T22:44:00.188128Z",
- "iopub.status.idle": "2024-02-12T22:44:00.191054Z",
- "shell.execute_reply": "2024-02-12T22:44:00.190486Z"
+ "iopub.execute_input": "2024-02-12T23:51:01.640184Z",
+ "iopub.status.busy": "2024-02-12T23:51:01.639773Z",
+ "iopub.status.idle": "2024-02-12T23:51:01.642576Z",
+ "shell.execute_reply": "2024-02-12T23:51:01.642141Z"
},
"id": "_UvI80l42iyi"
},
@@ -201,10 +201,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:00.193218Z",
- "iopub.status.busy": "2024-02-12T22:44:00.192902Z",
- "iopub.status.idle": "2024-02-12T22:44:00.204514Z",
- "shell.execute_reply": "2024-02-12T22:44:00.203983Z"
+ "iopub.execute_input": "2024-02-12T23:51:01.644579Z",
+ "iopub.status.busy": "2024-02-12T23:51:01.644323Z",
+ "iopub.status.idle": "2024-02-12T23:51:01.655729Z",
+ "shell.execute_reply": "2024-02-12T23:51:01.655306Z"
},
"nbsphinx": "hidden"
},
@@ -283,10 +283,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:00.206661Z",
- "iopub.status.busy": "2024-02-12T22:44:00.206247Z",
- "iopub.status.idle": "2024-02-12T22:44:05.721375Z",
- "shell.execute_reply": "2024-02-12T22:44:05.720878Z"
+ "iopub.execute_input": "2024-02-12T23:51:01.657664Z",
+ "iopub.status.busy": "2024-02-12T23:51:01.657383Z",
+ "iopub.status.idle": "2024-02-12T23:51:04.587049Z",
+ "shell.execute_reply": "2024-02-12T23:51:04.586569Z"
},
"id": "dhTHOg8Pyv5G"
},
@@ -692,13 +692,7 @@
"\n",
"\n",
"🎯 Mnist_test_set 🎯\n",
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "\n",
"\n",
"Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n",
"\n",
@@ -2182,13 +2176,7 @@
"\n",
"\n",
"🎯 Cifar100_test_set 🎯\n",
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "\n",
"\n",
"Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n",
"\n",
diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
index 904b93816..714dce0ab 100644
--- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
@@ -18,10 +18,10 @@
"id": "2a4efdde",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:07.885964Z",
- "iopub.status.busy": "2024-02-12T22:44:07.885419Z",
- "iopub.status.idle": "2024-02-12T22:44:08.935892Z",
- "shell.execute_reply": "2024-02-12T22:44:08.935261Z"
+ "iopub.execute_input": "2024-02-12T23:51:06.631506Z",
+ "iopub.status.busy": "2024-02-12T23:51:06.631339Z",
+ "iopub.status.idle": "2024-02-12T23:51:07.652560Z",
+ "shell.execute_reply": "2024-02-12T23:51:07.652018Z"
},
"nbsphinx": "hidden"
},
@@ -97,10 +97,10 @@
"id": "239d5ee7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:08.938871Z",
- "iopub.status.busy": "2024-02-12T22:44:08.938275Z",
- "iopub.status.idle": "2024-02-12T22:44:08.941545Z",
- "shell.execute_reply": "2024-02-12T22:44:08.941118Z"
+ "iopub.execute_input": "2024-02-12T23:51:07.654980Z",
+ "iopub.status.busy": "2024-02-12T23:51:07.654712Z",
+ "iopub.status.idle": "2024-02-12T23:51:07.657883Z",
+ "shell.execute_reply": "2024-02-12T23:51:07.657421Z"
}
},
"outputs": [],
@@ -136,10 +136,10 @@
"id": "28b324aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:08.943690Z",
- "iopub.status.busy": "2024-02-12T22:44:08.943313Z",
- "iopub.status.idle": "2024-02-12T22:44:11.939654Z",
- "shell.execute_reply": "2024-02-12T22:44:11.939042Z"
+ "iopub.execute_input": "2024-02-12T23:51:07.660001Z",
+ "iopub.status.busy": "2024-02-12T23:51:07.659599Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.535234Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.534519Z"
}
},
"outputs": [],
@@ -162,10 +162,10 @@
"id": "28b324ab",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:11.942467Z",
- "iopub.status.busy": "2024-02-12T22:44:11.941855Z",
- "iopub.status.idle": "2024-02-12T22:44:11.973755Z",
- "shell.execute_reply": "2024-02-12T22:44:11.973183Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.538445Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.537697Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.563193Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.562652Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "90c10e18",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:11.976441Z",
- "iopub.status.busy": "2024-02-12T22:44:11.976079Z",
- "iopub.status.idle": "2024-02-12T22:44:12.005274Z",
- "shell.execute_reply": "2024-02-12T22:44:12.004691Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.565749Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.565346Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.592185Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.591611Z"
}
},
"outputs": [],
@@ -213,10 +213,10 @@
"id": "88839519",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.007890Z",
- "iopub.status.busy": "2024-02-12T22:44:12.007543Z",
- "iopub.status.idle": "2024-02-12T22:44:12.010429Z",
- "shell.execute_reply": "2024-02-12T22:44:12.009986Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.594576Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.594329Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.597380Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.596900Z"
}
},
"outputs": [],
@@ -238,10 +238,10 @@
"id": "558490c2",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.012326Z",
- "iopub.status.busy": "2024-02-12T22:44:12.012045Z",
- "iopub.status.idle": "2024-02-12T22:44:12.015122Z",
- "shell.execute_reply": "2024-02-12T22:44:12.014708Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.599335Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.599024Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.601690Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.601142Z"
}
},
"outputs": [],
@@ -298,10 +298,10 @@
"id": "41714b51",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.017117Z",
- "iopub.status.busy": "2024-02-12T22:44:12.016809Z",
- "iopub.status.idle": "2024-02-12T22:44:12.042704Z",
- "shell.execute_reply": "2024-02-12T22:44:12.042120Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.603824Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.603442Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.626836Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.626286Z"
}
},
"outputs": [
@@ -315,7 +315,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e06e771f239248dbb0370267933dbf4d",
+ "model_id": "4156a167fd8e41f18acbdd0ff822e8c4",
"version_major": 2,
"version_minor": 0
},
@@ -329,7 +329,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "2a6b4c194bf144f6adbc95afaf68f508",
+ "model_id": "cb5bfce9a7a547d1b095ac2700ad52dd",
"version_major": 2,
"version_minor": 0
},
@@ -387,10 +387,10 @@
"id": "20476c70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.048709Z",
- "iopub.status.busy": "2024-02-12T22:44:12.048283Z",
- "iopub.status.idle": "2024-02-12T22:44:12.054765Z",
- "shell.execute_reply": "2024-02-12T22:44:12.054311Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.634182Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.633778Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.640087Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.639577Z"
},
"nbsphinx": "hidden"
},
@@ -421,10 +421,10 @@
"id": "6983cdad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.056800Z",
- "iopub.status.busy": "2024-02-12T22:44:12.056479Z",
- "iopub.status.idle": "2024-02-12T22:44:12.059917Z",
- "shell.execute_reply": "2024-02-12T22:44:12.059447Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.642259Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.641960Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.645344Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.644835Z"
},
"nbsphinx": "hidden"
},
@@ -447,10 +447,10 @@
"id": "9092b8a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.061958Z",
- "iopub.status.busy": "2024-02-12T22:44:12.061590Z",
- "iopub.status.idle": "2024-02-12T22:44:12.067977Z",
- "shell.execute_reply": "2024-02-12T22:44:12.067445Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.647347Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.647018Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.653095Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.652662Z"
}
},
"outputs": [],
@@ -500,10 +500,10 @@
"id": "b0a01109",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.070070Z",
- "iopub.status.busy": "2024-02-12T22:44:12.069746Z",
- "iopub.status.idle": "2024-02-12T22:44:12.104869Z",
- "shell.execute_reply": "2024-02-12T22:44:12.104177Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.655076Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.654762Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.686211Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.685648Z"
}
},
"outputs": [],
@@ -520,10 +520,10 @@
"id": "8b1da032",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.107448Z",
- "iopub.status.busy": "2024-02-12T22:44:12.107221Z",
- "iopub.status.idle": "2024-02-12T22:44:12.141458Z",
- "shell.execute_reply": "2024-02-12T22:44:12.140878Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.688542Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.688262Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.714035Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.713350Z"
},
"nbsphinx": "hidden"
},
@@ -602,10 +602,10 @@
"id": "4c9e9030",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.143942Z",
- "iopub.status.busy": "2024-02-12T22:44:12.143643Z",
- "iopub.status.idle": "2024-02-12T22:44:12.264495Z",
- "shell.execute_reply": "2024-02-12T22:44:12.263902Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.716750Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.716401Z",
+ "iopub.status.idle": "2024-02-12T23:51:10.835388Z",
+ "shell.execute_reply": "2024-02-12T23:51:10.834793Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "8751619e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:12.267324Z",
- "iopub.status.busy": "2024-02-12T22:44:12.266608Z",
- "iopub.status.idle": "2024-02-12T22:44:15.301010Z",
- "shell.execute_reply": "2024-02-12T22:44:15.300381Z"
+ "iopub.execute_input": "2024-02-12T23:51:10.838346Z",
+ "iopub.status.busy": "2024-02-12T23:51:10.837533Z",
+ "iopub.status.idle": "2024-02-12T23:51:13.940183Z",
+ "shell.execute_reply": "2024-02-12T23:51:13.939600Z"
}
},
"outputs": [
@@ -761,10 +761,10 @@
"id": "623df36d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:15.303304Z",
- "iopub.status.busy": "2024-02-12T22:44:15.302942Z",
- "iopub.status.idle": "2024-02-12T22:44:15.357910Z",
- "shell.execute_reply": "2024-02-12T22:44:15.357390Z"
+ "iopub.execute_input": "2024-02-12T23:51:13.942520Z",
+ "iopub.status.busy": "2024-02-12T23:51:13.942149Z",
+ "iopub.status.idle": "2024-02-12T23:51:13.996362Z",
+ "shell.execute_reply": "2024-02-12T23:51:13.995847Z"
}
},
"outputs": [
@@ -1206,7 +1206,7 @@
},
{
"cell_type": "markdown",
- "id": "c4dff28b",
+ "id": "903dc43c",
"metadata": {},
"source": [
"### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?"
@@ -1214,7 +1214,7 @@
},
{
"cell_type": "markdown",
- "id": "7361887f",
+ "id": "0d784e3a",
"metadata": {},
"source": [
"When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n",
@@ -1227,13 +1227,13 @@
{
"cell_type": "code",
"execution_count": 17,
- "id": "52b1678f",
+ "id": "92517096",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:15.360214Z",
- "iopub.status.busy": "2024-02-12T22:44:15.359780Z",
- "iopub.status.idle": "2024-02-12T22:44:15.464451Z",
- "shell.execute_reply": "2024-02-12T22:44:15.463848Z"
+ "iopub.execute_input": "2024-02-12T23:51:13.998512Z",
+ "iopub.status.busy": "2024-02-12T23:51:13.998158Z",
+ "iopub.status.idle": "2024-02-12T23:51:14.094309Z",
+ "shell.execute_reply": "2024-02-12T23:51:14.093765Z"
}
},
"outputs": [
@@ -1274,7 +1274,7 @@
},
{
"cell_type": "markdown",
- "id": "f6968abf",
+ "id": "4f9e27fc",
"metadata": {},
"source": [
"For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:"
@@ -1283,13 +1283,13 @@
{
"cell_type": "code",
"execution_count": 18,
- "id": "cb073e1c",
+ "id": "c8756a9e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:15.467666Z",
- "iopub.status.busy": "2024-02-12T22:44:15.466831Z",
- "iopub.status.idle": "2024-02-12T22:44:15.549682Z",
- "shell.execute_reply": "2024-02-12T22:44:15.549100Z"
+ "iopub.execute_input": "2024-02-12T23:51:14.097179Z",
+ "iopub.status.busy": "2024-02-12T23:51:14.096594Z",
+ "iopub.status.idle": "2024-02-12T23:51:14.166252Z",
+ "shell.execute_reply": "2024-02-12T23:51:14.165767Z"
}
},
"outputs": [
@@ -1325,7 +1325,7 @@
},
{
"cell_type": "markdown",
- "id": "ef88cadd",
+ "id": "0e335fe3",
"metadata": {},
"source": [
"### How to handle near-duplicate data identified by cleanlab?\n",
@@ -1336,13 +1336,13 @@
{
"cell_type": "code",
"execution_count": 19,
- "id": "9eac44cd",
+ "id": "5f56983b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:15.552012Z",
- "iopub.status.busy": "2024-02-12T22:44:15.551611Z",
- "iopub.status.idle": "2024-02-12T22:44:15.559727Z",
- "shell.execute_reply": "2024-02-12T22:44:15.559304Z"
+ "iopub.execute_input": "2024-02-12T23:51:14.168673Z",
+ "iopub.status.busy": "2024-02-12T23:51:14.168170Z",
+ "iopub.status.idle": "2024-02-12T23:51:14.176556Z",
+ "shell.execute_reply": "2024-02-12T23:51:14.175995Z"
}
},
"outputs": [],
@@ -1444,7 +1444,7 @@
},
{
"cell_type": "markdown",
- "id": "cd5a6765",
+ "id": "07ee3776",
"metadata": {},
"source": [
"The functions above collect sets of near-duplicate examples. Within each\n",
@@ -1459,13 +1459,13 @@
{
"cell_type": "code",
"execution_count": 20,
- "id": "195b21c3",
+ "id": "d3e235f2",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:15.561807Z",
- "iopub.status.busy": "2024-02-12T22:44:15.561419Z",
- "iopub.status.idle": "2024-02-12T22:44:15.578757Z",
- "shell.execute_reply": "2024-02-12T22:44:15.578132Z"
+ "iopub.execute_input": "2024-02-12T23:51:14.178836Z",
+ "iopub.status.busy": "2024-02-12T23:51:14.178518Z",
+ "iopub.status.idle": "2024-02-12T23:51:14.195836Z",
+ "shell.execute_reply": "2024-02-12T23:51:14.195289Z"
}
},
"outputs": [
@@ -1482,7 +1482,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/tmp/ipykernel_5954/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
+ "/tmp/ipykernel_5764/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
" to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n"
]
}
@@ -1516,13 +1516,13 @@
{
"cell_type": "code",
"execution_count": 21,
- "id": "24c45755",
+ "id": "ed678593",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:15.580897Z",
- "iopub.status.busy": "2024-02-12T22:44:15.580568Z",
- "iopub.status.idle": "2024-02-12T22:44:15.583895Z",
- "shell.execute_reply": "2024-02-12T22:44:15.583435Z"
+ "iopub.execute_input": "2024-02-12T23:51:14.197889Z",
+ "iopub.status.busy": "2024-02-12T23:51:14.197493Z",
+ "iopub.status.idle": "2024-02-12T23:51:14.200796Z",
+ "shell.execute_reply": "2024-02-12T23:51:14.200257Z"
}
},
"outputs": [
@@ -1617,60 +1617,25 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "13322dbc05764188b2e795e0b9e1fae0": {
- "model_module": "@jupyter-widgets/base",
+ "065772f8ca024512b7505848f3ab4041": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "298c7dafc30f44b1944c3eceee803b94": {
+ "10d4a7c2b3a845f4a7f190fa5fc748ba": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1685,62 +1650,33 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_42b558277e5d4460afa041df9ea77708",
+ "layout": "IPY_MODEL_63fbbe0d4a5c4268980be971815d0bec",
"placeholder": "",
- "style": "IPY_MODEL_cd9cb22b12be48499606394d662627a7",
+ "style": "IPY_MODEL_75664cac23ab46a381714241d5452528",
"tabbable": null,
"tooltip": null,
- "value": "number of examples processed for estimating thresholds: "
- }
- },
- "2a6b4c194bf144f6adbc95afaf68f508": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_33884720556d4a15a3370e2b218b010f",
- "IPY_MODEL_b06081198b144a148b7a3d4b059a24c8",
- "IPY_MODEL_bb0270e12065423398d7592172d5100b"
- ],
- "layout": "IPY_MODEL_ccd912d0516f49469d339b8afd55e6fb",
- "tabbable": null,
- "tooltip": null
+ "value": "number of examples processed for checking labels: "
}
},
- "33884720556d4a15a3370e2b218b010f": {
+ "188bee430f7241db86e8e07f54d8f959": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_5bde82ec335d494c9c0b64ae5e8052f1",
- "placeholder": "",
- "style": "IPY_MODEL_ab5123de7fb74d3aa0289fd3018d0035",
- "tabbable": null,
- "tooltip": null,
- "value": "number of examples processed for checking labels: "
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "42b558277e5d4460afa041df9ea77708": {
+ "1e14b32c9f4547dfbb5470ef358d836c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1793,7 +1729,7 @@
"width": null
}
},
- "5bde82ec335d494c9c0b64ae5e8052f1": {
+ "28c3c74ed1a945faaebeba33863b9df4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1846,76 +1782,54 @@
"width": null
}
},
- "6270ebe560574e87afd9de2aa275300d": {
+ "4156a167fd8e41f18acbdd0ff822e8c4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e71a59d0ddb24117970dd1e99b8c9048",
+ "IPY_MODEL_ec320bf3d33b413ca355b67414ed5e3e",
+ "IPY_MODEL_46121630d4614cfe8ab03eb2f3d899e2"
+ ],
+ "layout": "IPY_MODEL_997574c4958f454a821f746ab52f48f1",
+ "tabbable": null,
+ "tooltip": null
}
},
- "64bf1ffafff84e8583478ea218c9108c": {
- "model_module": "@jupyter-widgets/base",
+ "46121630d4614cfe8ab03eb2f3d899e2": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c2dd6c3bc1374a42afc4394af930f1b3",
+ "placeholder": "",
+ "style": "IPY_MODEL_065772f8ca024512b7505848f3ab4041",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 10000/? [00:00<00:00, 1079559.35it/s]"
}
},
- "6a8668cd3cff481482be063f0ec7fe03": {
+ "63fbbe0d4a5c4268980be971815d0bec": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1968,7 +1882,7 @@
"width": null
}
},
- "95353536b0e34532bf6e3c1a826eecd5": {
+ "664fd20925774349afc796f20324a270": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1983,15 +1897,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_ccbab9924d1d48748d51fcad25f7c0bb",
+ "layout": "IPY_MODEL_1e14b32c9f4547dfbb5470ef358d836c",
"placeholder": "",
- "style": "IPY_MODEL_d02ea1f8d1ed4389a8fe6f46e46e901a",
+ "style": "IPY_MODEL_188bee430f7241db86e8e07f54d8f959",
"tabbable": null,
"tooltip": null,
- "value": " 10000/? [00:00<00:00, 1109340.10it/s]"
+ "value": " 10000/? [00:00<00:00, 1800826.07it/s]"
}
},
- "ab5123de7fb74d3aa0289fd3018d0035": {
+ "75664cac23ab46a381714241d5452528": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2009,7 +1923,7 @@
"text_color": null
}
},
- "b06081198b144a148b7a3d4b059a24c8": {
+ "96dad688a21c4a9c9010f7ca389769a1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2025,56 +1939,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_6a8668cd3cff481482be063f0ec7fe03",
+ "layout": "IPY_MODEL_28c3c74ed1a945faaebeba33863b9df4",
"max": 50.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_6270ebe560574e87afd9de2aa275300d",
+ "style": "IPY_MODEL_d5b3f1dc2aee4e209a49965cdb20cb7a",
"tabbable": null,
"tooltip": null,
"value": 50.0
}
},
- "bb0270e12065423398d7592172d5100b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_e348bdaac9694fa788c70f3aa8362c2f",
- "placeholder": "",
- "style": "IPY_MODEL_ef2156e0c4b5493c955335aad324a7bf",
- "tabbable": null,
- "tooltip": null,
- "value": " 10000/? [00:00<00:00, 1321248.70it/s]"
- }
- },
- "ca002d3fba7e4124bed202493d243d96": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ccbab9924d1d48748d51fcad25f7c0bb": {
+ "997574c4958f454a821f746ab52f48f1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2127,7 +2002,7 @@
"width": null
}
},
- "ccd912d0516f49469d339b8afd55e6fb": {
+ "ab2c0ee5a4dc4ce1b51142432333c293": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2180,7 +2055,7 @@
"width": null
}
},
- "cd9cb22b12be48499606394d662627a7": {
+ "b629e76d91ff48ed9c8019dc2ea0f088": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2198,49 +2073,23 @@
"text_color": null
}
},
- "d02ea1f8d1ed4389a8fe6f46e46e901a": {
+ "bbc27fc22dc342e280bb9434c8f5e198": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "e06e771f239248dbb0370267933dbf4d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_298c7dafc30f44b1944c3eceee803b94",
- "IPY_MODEL_ee2db807b33d49edb9b08f4f786307a5",
- "IPY_MODEL_95353536b0e34532bf6e3c1a826eecd5"
- ],
- "layout": "IPY_MODEL_13322dbc05764188b2e795e0b9e1fae0",
- "tabbable": null,
- "tooltip": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "e348bdaac9694fa788c70f3aa8362c2f": {
+ "c2dd6c3bc1374a42afc4394af930f1b3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2293,7 +2142,70 @@
"width": null
}
},
- "ee2db807b33d49edb9b08f4f786307a5": {
+ "cb5bfce9a7a547d1b095ac2700ad52dd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_10d4a7c2b3a845f4a7f190fa5fc748ba",
+ "IPY_MODEL_96dad688a21c4a9c9010f7ca389769a1",
+ "IPY_MODEL_664fd20925774349afc796f20324a270"
+ ],
+ "layout": "IPY_MODEL_ab2c0ee5a4dc4ce1b51142432333c293",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "d5b3f1dc2aee4e209a49965cdb20cb7a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e71a59d0ddb24117970dd1e99b8c9048": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f7057c28fbef4cc692a6229e6455cda7",
+ "placeholder": "",
+ "style": "IPY_MODEL_b629e76d91ff48ed9c8019dc2ea0f088",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "number of examples processed for estimating thresholds: "
+ }
+ },
+ "ec320bf3d33b413ca355b67414ed5e3e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2309,32 +2221,120 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_64bf1ffafff84e8583478ea218c9108c",
+ "layout": "IPY_MODEL_fef5053a2a92416fbf20b23d11adca9f",
"max": 50.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_ca002d3fba7e4124bed202493d243d96",
+ "style": "IPY_MODEL_bbc27fc22dc342e280bb9434c8f5e198",
"tabbable": null,
"tooltip": null,
"value": 50.0
}
},
- "ef2156e0c4b5493c955335aad324a7bf": {
- "model_module": "@jupyter-widgets/controls",
+ "f7057c28fbef4cc692a6229e6455cda7": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fef5053a2a92416fbf20b23d11adca9f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb
index 69ce591e4..1f800a1d6 100644
--- a/master/.doctrees/nbsphinx/tutorials/image.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb
@@ -71,10 +71,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:19.284884Z",
- "iopub.status.busy": "2024-02-12T22:44:19.284345Z",
- "iopub.status.idle": "2024-02-12T22:44:22.098536Z",
- "shell.execute_reply": "2024-02-12T22:44:22.097883Z"
+ "iopub.execute_input": "2024-02-12T23:51:17.543638Z",
+ "iopub.status.busy": "2024-02-12T23:51:17.543236Z",
+ "iopub.status.idle": "2024-02-12T23:51:20.266342Z",
+ "shell.execute_reply": "2024-02-12T23:51:20.265795Z"
},
"nbsphinx": "hidden"
},
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:22.101326Z",
- "iopub.status.busy": "2024-02-12T22:44:22.100881Z",
- "iopub.status.idle": "2024-02-12T22:44:22.104420Z",
- "shell.execute_reply": "2024-02-12T22:44:22.103951Z"
+ "iopub.execute_input": "2024-02-12T23:51:20.268825Z",
+ "iopub.status.busy": "2024-02-12T23:51:20.268396Z",
+ "iopub.status.idle": "2024-02-12T23:51:20.271910Z",
+ "shell.execute_reply": "2024-02-12T23:51:20.271396Z"
}
},
"outputs": [],
@@ -152,17 +152,17 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:22.106329Z",
- "iopub.status.busy": "2024-02-12T22:44:22.106067Z",
- "iopub.status.idle": "2024-02-12T22:44:25.912755Z",
- "shell.execute_reply": "2024-02-12T22:44:25.912269Z"
+ "iopub.execute_input": "2024-02-12T23:51:20.274022Z",
+ "iopub.status.busy": "2024-02-12T23:51:20.273681Z",
+ "iopub.status.idle": "2024-02-12T23:51:22.670819Z",
+ "shell.execute_reply": "2024-02-12T23:51:22.670272Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "f52ce44d13004a27827b9ca93535fcd6",
+ "model_id": "49444ac3669a4b7db5936fb36da40a4a",
"version_major": 2,
"version_minor": 0
},
@@ -176,7 +176,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7ac64f420608407d8d80a7af78490e1f",
+ "model_id": "4c9a7feaa41d423588db9de703b40909",
"version_major": 2,
"version_minor": 0
},
@@ -190,7 +190,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4a5148a28d904f3194b1f4fa99f5fb1b",
+ "model_id": "1bc0d0483cf54ad9b740813c2b40012f",
"version_major": 2,
"version_minor": 0
},
@@ -204,7 +204,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "fa2e9c9fd9864adaa999004e25b0de4e",
+ "model_id": "d00b19cf3e0644ceb1ea4ddf852375d9",
"version_major": 2,
"version_minor": 0
},
@@ -246,10 +246,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:25.914832Z",
- "iopub.status.busy": "2024-02-12T22:44:25.914562Z",
- "iopub.status.idle": "2024-02-12T22:44:25.918478Z",
- "shell.execute_reply": "2024-02-12T22:44:25.917997Z"
+ "iopub.execute_input": "2024-02-12T23:51:22.672825Z",
+ "iopub.status.busy": "2024-02-12T23:51:22.672621Z",
+ "iopub.status.idle": "2024-02-12T23:51:22.676150Z",
+ "shell.execute_reply": "2024-02-12T23:51:22.675719Z"
}
},
"outputs": [
@@ -274,17 +274,17 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:25.920642Z",
- "iopub.status.busy": "2024-02-12T22:44:25.920219Z",
- "iopub.status.idle": "2024-02-12T22:44:36.822079Z",
- "shell.execute_reply": "2024-02-12T22:44:36.821426Z"
+ "iopub.execute_input": "2024-02-12T23:51:22.678185Z",
+ "iopub.status.busy": "2024-02-12T23:51:22.677800Z",
+ "iopub.status.idle": "2024-02-12T23:51:33.488887Z",
+ "shell.execute_reply": "2024-02-12T23:51:33.488380Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "fcd65dab45b140d2be0244abfb708e0d",
+ "model_id": "9005032e78ae418baf5419ccfb813e17",
"version_major": 2,
"version_minor": 0
},
@@ -322,10 +322,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:36.824910Z",
- "iopub.status.busy": "2024-02-12T22:44:36.824373Z",
- "iopub.status.idle": "2024-02-12T22:44:55.134865Z",
- "shell.execute_reply": "2024-02-12T22:44:55.134311Z"
+ "iopub.execute_input": "2024-02-12T23:51:33.491504Z",
+ "iopub.status.busy": "2024-02-12T23:51:33.491029Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.925430Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.924840Z"
}
},
"outputs": [],
@@ -358,10 +358,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.137385Z",
- "iopub.status.busy": "2024-02-12T22:44:55.137025Z",
- "iopub.status.idle": "2024-02-12T22:44:55.142925Z",
- "shell.execute_reply": "2024-02-12T22:44:55.142476Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.928132Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.927730Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.932661Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.932126Z"
}
},
"outputs": [],
@@ -399,10 +399,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.144862Z",
- "iopub.status.busy": "2024-02-12T22:44:55.144531Z",
- "iopub.status.idle": "2024-02-12T22:44:55.148291Z",
- "shell.execute_reply": "2024-02-12T22:44:55.147871Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.934747Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.934444Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.938661Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.938252Z"
},
"nbsphinx": "hidden"
},
@@ -539,10 +539,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.150384Z",
- "iopub.status.busy": "2024-02-12T22:44:55.150076Z",
- "iopub.status.idle": "2024-02-12T22:44:55.158633Z",
- "shell.execute_reply": "2024-02-12T22:44:55.158186Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.940534Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.940366Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.949071Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.948610Z"
},
"nbsphinx": "hidden"
},
@@ -667,10 +667,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.160561Z",
- "iopub.status.busy": "2024-02-12T22:44:55.160241Z",
- "iopub.status.idle": "2024-02-12T22:44:55.188128Z",
- "shell.execute_reply": "2024-02-12T22:44:55.187663Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.951083Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.950765Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.978497Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.978013Z"
}
},
"outputs": [],
@@ -707,10 +707,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.190217Z",
- "iopub.status.busy": "2024-02-12T22:44:55.189887Z",
- "iopub.status.idle": "2024-02-12T22:45:27.674436Z",
- "shell.execute_reply": "2024-02-12T22:45:27.673664Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.980815Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.980446Z",
+ "iopub.status.idle": "2024-02-12T23:52:23.493148Z",
+ "shell.execute_reply": "2024-02-12T23:52:23.492408Z"
}
},
"outputs": [
@@ -726,14 +726,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.817\n"
+ "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.773\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.679\n",
+ "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.440\n",
"Computing feature embeddings ...\n"
]
},
@@ -750,7 +750,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.46it/s]"
+ " 5%|▌ | 2/40 [00:00<00:01, 19.48it/s]"
]
},
{
@@ -758,7 +758,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 8/40 [00:00<00:00, 43.33it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 47.14it/s]"
]
},
{
@@ -766,7 +766,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 15/40 [00:00<00:00, 54.87it/s]"
+ " 40%|████ | 16/40 [00:00<00:00, 54.36it/s]"
]
},
{
@@ -774,7 +774,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 22/40 [00:00<00:00, 59.81it/s]"
+ " 57%|█████▊ | 23/40 [00:00<00:00, 57.75it/s]"
]
},
{
@@ -782,7 +782,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|███████ | 28/40 [00:00<00:00, 59.64it/s]"
+ " 72%|███████▎ | 29/40 [00:00<00:00, 53.55it/s]"
]
},
{
@@ -790,7 +790,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 58.52it/s]"
+ " 88%|████████▊ | 35/40 [00:00<00:00, 54.02it/s]"
]
},
{
@@ -798,7 +798,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 55.48it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 52.34it/s]"
]
},
{
@@ -828,7 +828,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 17.07it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 17.28it/s]"
]
},
{
@@ -836,7 +836,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 8/40 [00:00<00:00, 38.52it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 45.42it/s]"
]
},
{
@@ -844,7 +844,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▌ | 14/40 [00:00<00:00, 47.54it/s]"
+ " 38%|███▊ | 15/40 [00:00<00:00, 49.97it/s]"
]
},
{
@@ -852,7 +852,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|█████ | 20/40 [00:00<00:00, 51.10it/s]"
+ " 52%|█████▎ | 21/40 [00:00<00:00, 51.44it/s]"
]
},
{
@@ -860,7 +860,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 53.01it/s]"
+ " 70%|███████ | 28/40 [00:00<00:00, 55.46it/s]"
]
},
{
@@ -868,7 +868,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 59.73it/s]"
+ " 90%|█████████ | 36/40 [00:00<00:00, 61.79it/s]"
]
},
{
@@ -876,36 +876,36 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 54.24it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 55.50it/s]"
]
},
{
- "name": "stderr",
+ "name": "stdout",
"output_type": "stream",
"text": [
- "\n"
+ "\n",
+ "Training on fold: 2 ...\n"
]
},
{
- "name": "stdout",
+ "name": "stderr",
"output_type": "stream",
"text": [
- "\n",
- "Training on fold: 2 ...\n"
+ "\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.830\n"
+ "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.625\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.590\n",
+ "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.389\n",
"Computing feature embeddings ...\n"
]
},
@@ -922,7 +922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 17.68it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 8.53it/s]"
]
},
{
@@ -930,7 +930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 45.30it/s]"
+ " 20%|██ | 8/40 [00:00<00:00, 41.57it/s]"
]
},
{
@@ -938,7 +938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 15/40 [00:00<00:00, 49.10it/s]"
+ " 38%|███▊ | 15/40 [00:00<00:00, 53.26it/s]"
]
},
{
@@ -946,7 +946,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 22/40 [00:00<00:00, 56.35it/s]"
+ " 55%|█████▌ | 22/40 [00:00<00:00, 59.37it/s]"
]
},
{
@@ -954,7 +954,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▎ | 29/40 [00:00<00:00, 59.56it/s]"
+ " 72%|███████▎ | 29/40 [00:00<00:00, 60.26it/s]"
]
},
{
@@ -962,7 +962,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▎| 37/40 [00:00<00:00, 65.68it/s]"
+ " 92%|█████████▎| 37/40 [00:00<00:00, 65.41it/s]"
]
},
{
@@ -970,7 +970,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 57.72it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 57.75it/s]"
]
},
{
@@ -1000,7 +1000,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.37it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.07it/s]"
]
},
{
@@ -1008,7 +1008,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 8/40 [00:00<00:00, 42.97it/s]"
+ " 18%|█▊ | 7/40 [00:00<00:00, 36.33it/s]"
]
},
{
@@ -1016,7 +1016,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 15/40 [00:00<00:00, 54.41it/s]"
+ " 35%|███▌ | 14/40 [00:00<00:00, 49.06it/s]"
]
},
{
@@ -1024,7 +1024,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 22/40 [00:00<00:00, 57.80it/s]"
+ " 55%|█████▌ | 22/40 [00:00<00:00, 57.78it/s]"
]
},
{
@@ -1032,7 +1032,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▎ | 29/40 [00:00<00:00, 61.20it/s]"
+ " 72%|███████▎ | 29/40 [00:00<00:00, 61.67it/s]"
]
},
{
@@ -1040,7 +1040,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|█████████ | 36/40 [00:00<00:00, 61.98it/s]"
+ " 92%|█████████▎| 37/40 [00:00<00:00, 67.09it/s]"
]
},
{
@@ -1048,7 +1048,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 56.32it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 57.88it/s]"
]
},
{
@@ -1070,14 +1070,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.789\n"
+ "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.594\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.561\n",
+ "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.414\n",
"Computing feature embeddings ...\n"
]
},
@@ -1094,7 +1094,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:01, 19.87it/s]"
+ " 2%|▎ | 1/40 [00:00<00:03, 9.99it/s]"
]
},
{
@@ -1102,7 +1102,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 46.53it/s]"
+ " 20%|██ | 8/40 [00:00<00:00, 40.73it/s]"
]
},
{
@@ -1110,7 +1110,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 54.23it/s]"
+ " 38%|███▊ | 15/40 [00:00<00:00, 52.94it/s]"
]
},
{
@@ -1118,7 +1118,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▊ | 23/40 [00:00<00:00, 59.21it/s]"
+ " 55%|█████▌ | 22/40 [00:00<00:00, 57.73it/s]"
]
},
{
@@ -1126,7 +1126,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▌ | 30/40 [00:00<00:00, 62.39it/s]"
+ " 75%|███████▌ | 30/40 [00:00<00:00, 62.43it/s]"
]
},
{
@@ -1134,7 +1134,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▌| 38/40 [00:00<00:00, 67.73it/s]"
+ " 98%|█████████▊| 39/40 [00:00<00:00, 68.69it/s]"
]
},
{
@@ -1142,7 +1142,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 59.92it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 58.99it/s]"
]
},
{
@@ -1172,7 +1172,15 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 17.92it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.52it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 18%|█▊ | 7/40 [00:00<00:00, 38.56it/s]"
]
},
{
@@ -1180,7 +1188,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 45.93it/s]"
+ " 35%|███▌ | 14/40 [00:00<00:00, 51.15it/s]"
]
},
{
@@ -1188,7 +1196,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 56.44it/s]"
+ " 52%|█████▎ | 21/40 [00:00<00:00, 57.29it/s]"
]
},
{
@@ -1196,7 +1204,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▊ | 23/40 [00:00<00:00, 60.90it/s]"
+ " 70%|███████ | 28/40 [00:00<00:00, 60.00it/s]"
]
},
{
@@ -1204,7 +1212,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 64.93it/s]"
+ " 90%|█████████ | 36/40 [00:00<00:00, 65.08it/s]"
]
},
{
@@ -1212,7 +1220,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 61.40it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 57.49it/s]"
]
},
{
@@ -1289,10 +1297,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:45:27.676800Z",
- "iopub.status.busy": "2024-02-12T22:45:27.676560Z",
- "iopub.status.idle": "2024-02-12T22:45:27.692250Z",
- "shell.execute_reply": "2024-02-12T22:45:27.691828Z"
+ "iopub.execute_input": "2024-02-12T23:52:23.495654Z",
+ "iopub.status.busy": "2024-02-12T23:52:23.495270Z",
+ "iopub.status.idle": "2024-02-12T23:52:23.510571Z",
+ "shell.execute_reply": "2024-02-12T23:52:23.510158Z"
}
},
"outputs": [],
@@ -1317,10 +1325,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:45:27.694364Z",
- "iopub.status.busy": "2024-02-12T22:45:27.693983Z",
- "iopub.status.idle": "2024-02-12T22:45:28.161031Z",
- "shell.execute_reply": "2024-02-12T22:45:28.160543Z"
+ "iopub.execute_input": "2024-02-12T23:52:23.512509Z",
+ "iopub.status.busy": "2024-02-12T23:52:23.512207Z",
+ "iopub.status.idle": "2024-02-12T23:52:23.943697Z",
+ "shell.execute_reply": "2024-02-12T23:52:23.943177Z"
}
},
"outputs": [],
@@ -1340,10 +1348,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:45:28.163357Z",
- "iopub.status.busy": "2024-02-12T22:45:28.163177Z",
- "iopub.status.idle": "2024-02-12T22:48:54.291763Z",
- "shell.execute_reply": "2024-02-12T22:48:54.291105Z"
+ "iopub.execute_input": "2024-02-12T23:52:23.946059Z",
+ "iopub.status.busy": "2024-02-12T23:52:23.945723Z",
+ "iopub.status.idle": "2024-02-12T23:55:47.777354Z",
+ "shell.execute_reply": "2024-02-12T23:55:47.776802Z"
}
},
"outputs": [
@@ -1389,7 +1397,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7eeea8c1775c427982135e3e26276a66",
+ "model_id": "c44a3a93af7b497c8dd54e04f2398ff3",
"version_major": 2,
"version_minor": 0
},
@@ -1428,10 +1436,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:54.294606Z",
- "iopub.status.busy": "2024-02-12T22:48:54.293842Z",
- "iopub.status.idle": "2024-02-12T22:48:54.982960Z",
- "shell.execute_reply": "2024-02-12T22:48:54.982388Z"
+ "iopub.execute_input": "2024-02-12T23:55:47.780109Z",
+ "iopub.status.busy": "2024-02-12T23:55:47.779325Z",
+ "iopub.status.idle": "2024-02-12T23:55:48.450450Z",
+ "shell.execute_reply": "2024-02-12T23:55:48.449924Z"
}
},
"outputs": [
@@ -1580,10 +1588,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:54.985630Z",
- "iopub.status.busy": "2024-02-12T22:48:54.985124Z",
- "iopub.status.idle": "2024-02-12T22:48:55.031830Z",
- "shell.execute_reply": "2024-02-12T22:48:55.031185Z"
+ "iopub.execute_input": "2024-02-12T23:55:48.453200Z",
+ "iopub.status.busy": "2024-02-12T23:55:48.452700Z",
+ "iopub.status.idle": "2024-02-12T23:55:48.513844Z",
+ "shell.execute_reply": "2024-02-12T23:55:48.513231Z"
}
},
"outputs": [
@@ -1687,10 +1695,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.034085Z",
- "iopub.status.busy": "2024-02-12T22:48:55.033900Z",
- "iopub.status.idle": "2024-02-12T22:48:55.042902Z",
- "shell.execute_reply": "2024-02-12T22:48:55.042316Z"
+ "iopub.execute_input": "2024-02-12T23:55:48.516272Z",
+ "iopub.status.busy": "2024-02-12T23:55:48.516008Z",
+ "iopub.status.idle": "2024-02-12T23:55:48.524298Z",
+ "shell.execute_reply": "2024-02-12T23:55:48.523789Z"
}
},
"outputs": [
@@ -1820,10 +1828,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.045048Z",
- "iopub.status.busy": "2024-02-12T22:48:55.044874Z",
- "iopub.status.idle": "2024-02-12T22:48:55.049643Z",
- "shell.execute_reply": "2024-02-12T22:48:55.048973Z"
+ "iopub.execute_input": "2024-02-12T23:55:48.526308Z",
+ "iopub.status.busy": "2024-02-12T23:55:48.525983Z",
+ "iopub.status.idle": "2024-02-12T23:55:48.530423Z",
+ "shell.execute_reply": "2024-02-12T23:55:48.529990Z"
},
"nbsphinx": "hidden"
},
@@ -1869,10 +1877,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.051986Z",
- "iopub.status.busy": "2024-02-12T22:48:55.051507Z",
- "iopub.status.idle": "2024-02-12T22:48:55.531274Z",
- "shell.execute_reply": "2024-02-12T22:48:55.530776Z"
+ "iopub.execute_input": "2024-02-12T23:55:48.532364Z",
+ "iopub.status.busy": "2024-02-12T23:55:48.532044Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.032753Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.032135Z"
}
},
"outputs": [
@@ -1907,10 +1915,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.533264Z",
- "iopub.status.busy": "2024-02-12T22:48:55.533086Z",
- "iopub.status.idle": "2024-02-12T22:48:55.541235Z",
- "shell.execute_reply": "2024-02-12T22:48:55.540803Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.035187Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.034765Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.043186Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.042756Z"
}
},
"outputs": [
@@ -2077,10 +2085,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.543398Z",
- "iopub.status.busy": "2024-02-12T22:48:55.543079Z",
- "iopub.status.idle": "2024-02-12T22:48:55.550044Z",
- "shell.execute_reply": "2024-02-12T22:48:55.549626Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.045323Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.044909Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.052058Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.051606Z"
},
"nbsphinx": "hidden"
},
@@ -2156,10 +2164,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.551945Z",
- "iopub.status.busy": "2024-02-12T22:48:55.551628Z",
- "iopub.status.idle": "2024-02-12T22:48:55.998382Z",
- "shell.execute_reply": "2024-02-12T22:48:55.997804Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.054137Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.053664Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.495796Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.495211Z"
}
},
"outputs": [
@@ -2196,10 +2204,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.000477Z",
- "iopub.status.busy": "2024-02-12T22:48:56.000147Z",
- "iopub.status.idle": "2024-02-12T22:48:56.017045Z",
- "shell.execute_reply": "2024-02-12T22:48:56.016503Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.498021Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.497714Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.513142Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.512658Z"
}
},
"outputs": [
@@ -2356,10 +2364,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.019335Z",
- "iopub.status.busy": "2024-02-12T22:48:56.018963Z",
- "iopub.status.idle": "2024-02-12T22:48:56.025855Z",
- "shell.execute_reply": "2024-02-12T22:48:56.025360Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.515375Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.514993Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.520435Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.519933Z"
},
"nbsphinx": "hidden"
},
@@ -2404,10 +2412,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.027870Z",
- "iopub.status.busy": "2024-02-12T22:48:56.027691Z",
- "iopub.status.idle": "2024-02-12T22:48:56.499740Z",
- "shell.execute_reply": "2024-02-12T22:48:56.499195Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.522377Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.522207Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.985456Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.984854Z"
}
},
"outputs": [
@@ -2489,10 +2497,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.502563Z",
- "iopub.status.busy": "2024-02-12T22:48:56.502261Z",
- "iopub.status.idle": "2024-02-12T22:48:56.515634Z",
- "shell.execute_reply": "2024-02-12T22:48:56.515111Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.988051Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.987761Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.996872Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.996285Z"
}
},
"outputs": [
@@ -2517,47 +2525,47 @@
" \n",
" \n",
" | \n",
- " dark_score | \n",
" is_dark_issue | \n",
+ " dark_score | \n",
"
\n",
" \n",
"
\n",
" \n",
" 34848 | \n",
- " 0.203922 | \n",
" True | \n",
+ " 0.203922 | \n",
"
\n",
" \n",
" 50270 | \n",
- " 0.204588 | \n",
" True | \n",
+ " 0.204588 | \n",
"
\n",
" \n",
" 3936 | \n",
- " 0.213098 | \n",
" True | \n",
+ " 0.213098 | \n",
"
\n",
" \n",
" 733 | \n",
- " 0.217686 | \n",
" True | \n",
+ " 0.217686 | \n",
"
\n",
" \n",
" 8094 | \n",
- " 0.230118 | \n",
" True | \n",
+ " 0.230118 | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " dark_score is_dark_issue\n",
- "34848 0.203922 True\n",
- "50270 0.204588 True\n",
- "3936 0.213098 True\n",
- "733 0.217686 True\n",
- "8094 0.230118 True"
+ " is_dark_issue dark_score\n",
+ "34848 True 0.203922\n",
+ "50270 True 0.204588\n",
+ "3936 True 0.213098\n",
+ "733 True 0.217686\n",
+ "8094 True 0.230118"
]
},
"execution_count": 26,
@@ -2620,10 +2628,10 @@
"execution_count": 27,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.518466Z",
- "iopub.status.busy": "2024-02-12T22:48:56.518111Z",
- "iopub.status.idle": "2024-02-12T22:48:56.525043Z",
- "shell.execute_reply": "2024-02-12T22:48:56.524527Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.999329Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.999133Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.006113Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.005539Z"
},
"nbsphinx": "hidden"
},
@@ -2660,10 +2668,10 @@
"execution_count": 28,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.527376Z",
- "iopub.status.busy": "2024-02-12T22:48:56.527033Z",
- "iopub.status.idle": "2024-02-12T22:48:56.735810Z",
- "shell.execute_reply": "2024-02-12T22:48:56.735245Z"
+ "iopub.execute_input": "2024-02-12T23:55:50.008923Z",
+ "iopub.status.busy": "2024-02-12T23:55:50.008583Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.210129Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.209624Z"
}
},
"outputs": [
@@ -2705,10 +2713,10 @@
"execution_count": 29,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.738025Z",
- "iopub.status.busy": "2024-02-12T22:48:56.737691Z",
- "iopub.status.idle": "2024-02-12T22:48:56.745625Z",
- "shell.execute_reply": "2024-02-12T22:48:56.745067Z"
+ "iopub.execute_input": "2024-02-12T23:55:50.212155Z",
+ "iopub.status.busy": "2024-02-12T23:55:50.211986Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.219576Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.219136Z"
}
},
"outputs": [
@@ -2794,10 +2802,10 @@
"execution_count": 30,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.747644Z",
- "iopub.status.busy": "2024-02-12T22:48:56.747336Z",
- "iopub.status.idle": "2024-02-12T22:48:56.946903Z",
- "shell.execute_reply": "2024-02-12T22:48:56.946319Z"
+ "iopub.execute_input": "2024-02-12T23:55:50.221513Z",
+ "iopub.status.busy": "2024-02-12T23:55:50.221277Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.417109Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.416621Z"
}
},
"outputs": [
@@ -2837,10 +2845,10 @@
"execution_count": 31,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.949238Z",
- "iopub.status.busy": "2024-02-12T22:48:56.948902Z",
- "iopub.status.idle": "2024-02-12T22:48:56.953326Z",
- "shell.execute_reply": "2024-02-12T22:48:56.952778Z"
+ "iopub.execute_input": "2024-02-12T23:55:50.419231Z",
+ "iopub.status.busy": "2024-02-12T23:55:50.419048Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.423409Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.422978Z"
},
"nbsphinx": "hidden"
},
@@ -2877,115 +2885,60 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "03e1112c1c1947b485f61fcf1c31bac0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_0c398ad7386f4244a5ef32858ff05e49",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9b402dc36b6b43e5b2bff1fc495afcad",
- "tabbable": null,
- "tooltip": null,
- "value": 60000.0
- }
- },
- "0411e85d1c6c494688ded4a849e3e349": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "0581d052d09b45b09b85b09a70890239": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_d1167f3318f64da59ad78f10a5e80234",
- "placeholder": "",
- "style": "IPY_MODEL_7c2c2699a3b0492fb79e5d40dda65e77",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:00<00:00, 940019.42 examples/s]"
- }
- },
- "09d9439722cc441fb0feae0271106f17": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_5c03bf666dcd45f4b0cb1abe912a7260",
- "placeholder": "",
- "style": "IPY_MODEL_7752c29e622f4e2fb78f3b394f8e7b66",
- "tabbable": null,
- "tooltip": null,
- "value": " 10000/10000 [00:00<00:00, 671711.99 examples/s]"
- }
- },
- "0a5cd3e27c764b77aa59f033076b98dc": {
- "model_module": "@jupyter-widgets/controls",
+ "00ba701378704e378518cfc9cd9ac1fe": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "0b1453a34968449dbb75d7a69288bf0e": {
+ "00f8338cd9aa4d588ec1f06fb59f02f4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3038,7 +2991,48 @@
"width": null
}
},
- "0c398ad7386f4244a5ef32858ff05e49": {
+ "02d633541d2d4fb18b517409e7f65fd1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cce039caae1742479d51c4b2ac5e8421",
+ "placeholder": "",
+ "style": "IPY_MODEL_2f3c92e749ae490d8e1f2b5fd5adc7df",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating train split: 100%"
+ }
+ },
+ "03e46e048a0146b593bc738d11494b15": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "063c7dfbcb0b4f6197e12b92dc3aff4c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3091,7 +3085,7 @@
"width": null
}
},
- "1069e0bb4e6548d5a1883737621d97ea": {
+ "08a74e17a4ac45949ebae406dfd05251": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3144,7 +3138,23 @@
"width": null
}
},
- "14372a011b8c4b8ab00670fc03e5b5b2": {
+ "0b4c101a7f6e46848edbef1597422682": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0d30740987e3448ea761721f201fd306": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -3159,15 +3169,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_c74b5ad3cf884b47bfd6db73251256bc",
+ "layout": "IPY_MODEL_2617ff545f9541809b742f122a1901c9",
"placeholder": "",
- "style": "IPY_MODEL_18cbee11368d4992abc8ae0f24d86834",
+ "style": "IPY_MODEL_73ba1a65a7b141d4a3f4cc8ead2bf28b",
"tabbable": null,
"tooltip": null,
- "value": "Generating train split: 100%"
+ "value": " 60000/60000 [00:10<00:00, 7397.36 examples/s]"
}
},
- "18cbee11368d4992abc8ae0f24d86834": {
+ "1043375dfd374096a15e8567a20c594f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3185,25 +3195,33 @@
"text_color": null
}
},
- "198d5739f1dc442da99d2e5b0ac70da0": {
+ "1168ea19eb6c4dcfb75a4fd777b03e74": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cf7e56c89e9e44c6ac44dfc7e99577a3",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_acfec9ea8d1346a3a57538fa4c9c1a2f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 60000.0
}
},
- "24f025a8f17946fea6d98d528d8e2522": {
+ "132daea313c246d9a165657433d5802a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3256,30 +3274,88 @@
"width": null
}
},
- "256dbc32c2b145649d09487d9b0ba0b8": {
- "model_module": "@jupyter-widgets/base",
+ "15919b2a7e89404eab85f75b8444d361": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "19df4da09271453183a0c7442667ff80": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1a248332df5e401eafc3bd11daab7ad6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7d16870c10bc4462bce6d85dd2108a21",
+ "max": 10000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1c24d3c192584eb496b9f59b8402ad4a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 10000.0
+ }
+ },
+ "1af15514bb5c4b7d9d94faf4d7a02829": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
@@ -3309,7 +3385,47 @@
"width": null
}
},
- "277ae682a79a436fbddc5a33718d59ae": {
+ "1bc0d0483cf54ad9b740813c2b40012f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_02d633541d2d4fb18b517409e7f65fd1",
+ "IPY_MODEL_2d3a6a6c81d94d8c95efc420e26aab59",
+ "IPY_MODEL_81ab3d18d02d4b22bdd1364a3e2c67c8"
+ ],
+ "layout": "IPY_MODEL_9e5bf703fe794f5eb178adb37d8aa1ba",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "1c24d3c192584eb496b9f59b8402ad4a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1e204caf2f104dada914a5c75208b661": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3362,7 +3478,30 @@
"width": null
}
},
- "3d152f25eb1e41d7b2d02f8e24ff9d8c": {
+ "1f5a909d647e495ca7fe1290e7ac5b90": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d6170e03528545b8a1ea345d9bd04f9d",
+ "placeholder": "",
+ "style": "IPY_MODEL_6d28384e365f4951a48d6cdbcece77ec",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating test split: 100%"
+ }
+ },
+ "2617ff545f9541809b742f122a1901c9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3415,7 +3554,7 @@
"width": null
}
},
- "3ed89d7d1f384e3099ce700826fbd45e": {
+ "2b56696914bf496482c85356023bfdc0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3468,80 +3607,7 @@
"width": null
}
},
- "4a5148a28d904f3194b1f4fa99f5fb1b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_14372a011b8c4b8ab00670fc03e5b5b2",
- "IPY_MODEL_f9dba5827560474e90d100a225e69c39",
- "IPY_MODEL_0581d052d09b45b09b85b09a70890239"
- ],
- "layout": "IPY_MODEL_652fb6b4cc8b4c5e85c767e3ef6dfb24",
- "tabbable": null,
- "tooltip": null
- }
- },
- "4b5c3fffb2ff4350920c1f9943b92b02": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b75958ade3a1489982759d599fca2fc1",
- "max": 5175617.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d1d8fd559fef4ed2a1c0db0f1c8b62e9",
- "tabbable": null,
- "tooltip": null,
- "value": 5175617.0
- }
- },
- "4cbbc2876da645eb94cfd627d5f024cd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_3ed89d7d1f384e3099ce700826fbd45e",
- "placeholder": "",
- "style": "IPY_MODEL_c0dfe9a56d874e679b0f950b3a8b612c",
- "tabbable": null,
- "tooltip": null,
- "value": " 5.18M/5.18M [00:00<00:00, 37.3MB/s]"
- }
- },
- "514f6ffe7cea4fa5bc280cc0556d851d": {
+ "2caeebe76700433faf6320697fd12f06": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3594,7 +3660,33 @@
"width": null
}
},
- "51ca526941124466bf7ade05b775221e": {
+ "2d3a6a6c81d94d8c95efc420e26aab59": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_88d04a9e668a4b19a7559cc558944f3c",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b37b96fba4bc45dd8967ee83271dfc82",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 60000.0
+ }
+ },
+ "2f3c92e749ae490d8e1f2b5fd5adc7df": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3612,7 +3704,7 @@
"text_color": null
}
},
- "573369fdc7e541ce962aa06d56f287ae": {
+ "2fd64d954d784b03838577f8f14c36cc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3630,7 +3722,56 @@
"text_color": null
}
},
- "5af1051454c9460593b95ed6b9376707": {
+ "30e5bcf86de240aca326feb96727dba9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a9e69b8d0db84aa39758d3d1d767f854",
+ "max": 2.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0b4c101a7f6e46848edbef1597422682",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 2.0
+ }
+ },
+ "310b58da57fd42389105173d7638049d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_38dca7ea53c3493cb06e22e7d24906ab",
+ "placeholder": "",
+ "style": "IPY_MODEL_d67e2a26ec31489f9c92ad823ec2f89e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 2/2 [00:00<00:00, 657.93it/s]"
+ }
+ },
+ "38dca7ea53c3493cb06e22e7d24906ab": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3683,7 +3824,7 @@
"width": null
}
},
- "5c03bf666dcd45f4b0cb1abe912a7260": {
+ "3f531c123b90444194a701a233f725ec": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3736,7 +3877,7 @@
"width": null
}
},
- "5e246fcd65934ca6837e949024263b4b": {
+ "41a34ea0ee32424c97c3420800fa3909": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3789,60 +3930,30 @@
"width": null
}
},
- "619985bbbc694c5994ca2af31e36ed46": {
- "model_module": "@jupyter-widgets/base",
+ "43d7d89665ff44ed8d6584eec78426d2": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cb8bf9dd371043f8a34ecc974c5a2bbd",
+ "placeholder": "",
+ "style": "IPY_MODEL_2fd64d954d784b03838577f8f14c36cc",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 10000/10000 [00:00<00:00, 647069.42 examples/s]"
}
},
- "64c3b67342654487ab72f12cc4480c2b": {
+ "466ce29fc5834c8f96104974db316c3c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3860,7 +3971,130 @@
"text_color": null
}
},
- "652fb6b4cc8b4c5e85c767e3ef6dfb24": {
+ "49444ac3669a4b7db5936fb36da40a4a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_cd9108f865244e498a9af5a123fd3a8b",
+ "IPY_MODEL_fa4d3b38eacc4a56963051b21f1f6ba1",
+ "IPY_MODEL_d109e89ea29a494dbf2093031912d023"
+ ],
+ "layout": "IPY_MODEL_6e03f71c926a47e3a091c577f881f449",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "4c626fb816c94daa978ae85d8eddb3a7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_3f531c123b90444194a701a233f725ec",
+ "placeholder": "",
+ "style": "IPY_MODEL_466ce29fc5834c8f96104974db316c3c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 5.18M/5.18M [00:00<00:00, 11.0MB/s]"
+ }
+ },
+ "4c9a7feaa41d423588db9de703b40909": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b2f748b56e1c4f3db4d4b68096af50bd",
+ "IPY_MODEL_a3414fc08f764afaa977c37952c1ee0a",
+ "IPY_MODEL_4c626fb816c94daa978ae85d8eddb3a7"
+ ],
+ "layout": "IPY_MODEL_08a74e17a4ac45949ebae406dfd05251",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "55c7624faa0849868d643f64a86e60c8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "690c569d0aea414598c08bd25bfe4ed0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "6d28384e365f4951a48d6cdbcece77ec": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "6e03f71c926a47e3a091c577f881f449": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3913,23 +4147,7 @@
"width": null
}
},
- "6be9f53a62d8401193fdcd84b132c0d8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "6c007c5895214b5d80b5f66056ce1689": {
+ "70d78a7fead541728d996199b525cc53": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3982,30 +4200,25 @@
"width": null
}
},
- "6d72c7d8ce794979a928a93df2986302": {
+ "73ba1a65a7b141d4a3f4cc8ead2bf28b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_619985bbbc694c5994ca2af31e36ed46",
- "placeholder": "",
- "style": "IPY_MODEL_0411e85d1c6c494688ded4a849e3e349",
- "tabbable": null,
- "tooltip": null,
- "value": "Downloading data: 100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "75ed2253d3e84140b09f6b4ef3fcceb7": {
+ "7d16870c10bc4462bce6d85dd2108a21": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4058,67 +4271,7 @@
"width": null
}
},
- "7752c29e622f4e2fb78f3b394f8e7b66": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "7ac64f420608407d8d80a7af78490e1f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e7e1a63b50304089a0c52e8e3169a7e8",
- "IPY_MODEL_4b5c3fffb2ff4350920c1f9943b92b02",
- "IPY_MODEL_4cbbc2876da645eb94cfd627d5f024cd"
- ],
- "layout": "IPY_MODEL_24f025a8f17946fea6d98d528d8e2522",
- "tabbable": null,
- "tooltip": null
- }
- },
- "7c2c2699a3b0492fb79e5d40dda65e77": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "7cb09f07cc6544f7a35c94cddeb810a9": {
+ "81ab3d18d02d4b22bdd1364a3e2c67c8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4126,98 +4279,22 @@
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b5beb944d19843779b46def805e6c07a",
- "placeholder": "",
- "style": "IPY_MODEL_51ca526941124466bf7ade05b775221e",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:36<00:00, 1558.88it/s]"
- }
- },
- "7eeea8c1775c427982135e3e26276a66": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e7358c2b0eae4b6b9f88153f6b4a987e",
- "IPY_MODEL_c5326b588c6542fa94a34e1e115ade16",
- "IPY_MODEL_7cb09f07cc6544f7a35c94cddeb810a9"
- ],
- "layout": "IPY_MODEL_5af1051454c9460593b95ed6b9376707",
- "tabbable": null,
- "tooltip": null
- }
- },
- "8821281212024a5a8296b14f1beca713": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_3d152f25eb1e41d7b2d02f8e24ff9d8c",
- "max": 30931277.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d18b9814f2bb49ed925e6a01a32bdd84",
- "tabbable": null,
- "tooltip": null,
- "value": 30931277.0
- }
- },
- "8d609b55a9cf4709b1bddd6986b8821d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_514f6ffe7cea4fa5bc280cc0556d851d",
- "max": 2.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_ae48c28296754b1ab63b07679c18a643",
+ "layout": "IPY_MODEL_41a34ea0ee32424c97c3420800fa3909",
+ "placeholder": "",
+ "style": "IPY_MODEL_03e46e048a0146b593bc738d11494b15",
"tabbable": null,
"tooltip": null,
- "value": 2.0
+ "value": " 60000/60000 [00:00<00:00, 837665.73 examples/s]"
}
},
- "91adc4ed96704020b95e65eb661a0c4f": {
+ "88d04a9e668a4b19a7559cc558944f3c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4270,7 +4347,7 @@
"width": null
}
},
- "99f4ace301054d228e0cf464bb15f99c": {
+ "9005032e78ae418baf5419ccfb813e17": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -4285,32 +4362,16 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_fc4c22de60394f1c95acf596fcf1c1c5",
- "IPY_MODEL_8d609b55a9cf4709b1bddd6986b8821d",
- "IPY_MODEL_b71a25664f484763bd3d175917c9fcbe"
+ "IPY_MODEL_a7056113865747e080b5c3c166c466b2",
+ "IPY_MODEL_b8e3516af7e848a6ace724ce0521f55f",
+ "IPY_MODEL_0d30740987e3448ea761721f201fd306"
],
- "layout": "IPY_MODEL_ec6eb2a130dd443c8d8e5f429b5692ef",
+ "layout": "IPY_MODEL_f65d64c208cc4b3786e7f68927d0a6a9",
"tabbable": null,
"tooltip": null
}
},
- "9b402dc36b6b43e5b2bff1fc495afcad": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "9e289ff8041743608a680f0a4b583b1c": {
+ "94459cbd07a2487dbbc854f5df8397e1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4363,7 +4424,31 @@
"width": null
}
},
- "a039bce3ef044f94a3322f098c6c008a": {
+ "9d85276285e1461582877e3ada98c31e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_dea0e8c245bd444c9dd46bb1f71ecbb8",
+ "IPY_MODEL_30e5bcf86de240aca326feb96727dba9",
+ "IPY_MODEL_310b58da57fd42389105173d7638049d"
+ ],
+ "layout": "IPY_MODEL_c3f8212e6da349c4a7449c5b369c026d",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "9e5bf703fe794f5eb178adb37d8aa1ba": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4416,80 +4501,56 @@
"width": null
}
},
- "a9d3ac20b8d6484ebc511d547100aaca": {
+ "a3414fc08f764afaa977c37952c1ee0a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_dbb5829c8cc74cdc855ae4c74b8e80ae",
- "placeholder": "",
- "style": "IPY_MODEL_64c3b67342654487ab72f12cc4480c2b",
+ "layout": "IPY_MODEL_1af15514bb5c4b7d9d94faf4d7a02829",
+ "max": 5175617.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_55c7624faa0849868d643f64a86e60c8",
"tabbable": null,
"tooltip": null,
- "value": "Map (num_proc=4): 100%"
- }
- },
- "ab39dcedfccf490f9a7d2d633fbd7c8a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ae48c28296754b1ab63b07679c18a643": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": 5175617.0
}
},
- "b25fc3b878fb43e599ebfa03c75bfd98": {
+ "a7056113865747e080b5c3c166c466b2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2b56696914bf496482c85356023bfdc0",
+ "placeholder": "",
+ "style": "IPY_MODEL_d7aaed42000b49e78b3ff8b77f505687",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Map (num_proc=4): 100%"
}
},
- "b5beb944d19843779b46def805e6c07a": {
+ "a9e69b8d0db84aa39758d3d1d767f854": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4542,7 +4603,23 @@
"width": null
}
},
- "b71a25664f484763bd3d175917c9fcbe": {
+ "acfec9ea8d1346a3a57538fa4c9c1a2f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "af1a8a030e8549f1a5934f3113bb2849": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4557,68 +4634,54 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_9e289ff8041743608a680f0a4b583b1c",
+ "layout": "IPY_MODEL_70d78a7fead541728d996199b525cc53",
"placeholder": "",
- "style": "IPY_MODEL_b25fc3b878fb43e599ebfa03c75bfd98",
+ "style": "IPY_MODEL_690c569d0aea414598c08bd25bfe4ed0",
"tabbable": null,
"tooltip": null,
- "value": " 2/2 [00:00<00:00, 644.98it/s]"
+ "value": "100%"
}
},
- "b75958ade3a1489982759d599fca2fc1": {
- "model_module": "@jupyter-widgets/base",
+ "b2f748b56e1c4f3db4d4b68096af50bd": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_94459cbd07a2487dbbc854f5df8397e1",
+ "placeholder": "",
+ "style": "IPY_MODEL_1043375dfd374096a15e8567a20c594f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
+ }
+ },
+ "b37b96fba4bc45dd8967ee83271dfc82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "c0dfe9a56d874e679b0f950b3a8b612c": {
+ "b6da4a05e58e4db0ab7e83bdf9c14aa4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -4636,7 +4699,7 @@
"text_color": null
}
},
- "c5326b588c6542fa94a34e1e115ade16": {
+ "b8e3516af7e848a6ace724ce0521f55f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -4652,17 +4715,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_5e246fcd65934ca6837e949024263b4b",
+ "layout": "IPY_MODEL_00f8338cd9aa4d588ec1f06fb59f02f4",
"max": 60000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_ab39dcedfccf490f9a7d2d633fbd7c8a",
+ "style": "IPY_MODEL_19df4da09271453183a0c7442667ff80",
"tabbable": null,
"tooltip": null,
"value": 60000.0
}
},
- "c7038c929ce345bab52fe4f4801afb33": {
+ "b9d664576f9045a59f6a14bac275d4c0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4677,15 +4740,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_75ed2253d3e84140b09f6b4ef3fcceb7",
+ "layout": "IPY_MODEL_2caeebe76700433faf6320697fd12f06",
"placeholder": "",
- "style": "IPY_MODEL_573369fdc7e541ce962aa06d56f287ae",
+ "style": "IPY_MODEL_ccaa3ee9237d414d9f4b417b938e34ee",
"tabbable": null,
"tooltip": null,
- "value": "Generating test split: 100%"
+ "value": " 60000/60000 [00:35<00:00, 1759.49it/s]"
}
},
- "c74b5ad3cf884b47bfd6db73251256bc": {
+ "c3f8212e6da349c4a7449c5b369c026d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4738,25 +4801,31 @@
"width": null
}
},
- "cb352467e0e541e393b6377e35c6e8e9": {
+ "c44a3a93af7b497c8dd54e04f2398ff3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_af1a8a030e8549f1a5934f3113bb2849",
+ "IPY_MODEL_1168ea19eb6c4dcfb75a4fd777b03e74",
+ "IPY_MODEL_b9d664576f9045a59f6a14bac275d4c0"
+ ],
+ "layout": "IPY_MODEL_132daea313c246d9a165657433d5802a",
+ "tabbable": null,
+ "tooltip": null
}
},
- "d1167f3318f64da59ad78f10a5e80234": {
+ "cb8bf9dd371043f8a34ecc974c5a2bbd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4809,39 +4878,25 @@
"width": null
}
},
- "d18b9814f2bb49ed925e6a01a32bdd84": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "d1d8fd559fef4ed2a1c0db0f1c8b62e9": {
+ "ccaa3ee9237d414d9f4b417b938e34ee": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "dbb5829c8cc74cdc855ae4c74b8e80ae": {
+ "cce039caae1742479d51c4b2ac5e8421": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4890,47 +4945,34 @@
"padding": null,
"right": null,
"top": null,
- "visibility": null,
- "width": null
- }
- },
- "dfa39c3954554700a6257dd5506b2800": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "visibility": null,
+ "width": null
}
},
- "dfcf7973eccc416389166130f1dc1244": {
+ "cd9108f865244e498a9af5a123fd3a8b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_1e204caf2f104dada914a5c75208b661",
+ "placeholder": "",
+ "style": "IPY_MODEL_b6da4a05e58e4db0ab7e83bdf9c14aa4",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
}
},
- "e0410516962745c3afcfe3ec64a86da5": {
+ "cf7e56c89e9e44c6ac44dfc7e99577a3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4983,56 +5025,31 @@
"width": null
}
},
- "e4d6d9f83e7f4431ab93880ff97a097d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_91adc4ed96704020b95e65eb661a0c4f",
- "max": 10000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6be9f53a62d8401193fdcd84b132c0d8",
- "tabbable": null,
- "tooltip": null,
- "value": 10000.0
- }
- },
- "e7358c2b0eae4b6b9f88153f6b4a987e": {
+ "d00b19cf3e0644ceb1ea4ddf852375d9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_a039bce3ef044f94a3322f098c6c008a",
- "placeholder": "",
- "style": "IPY_MODEL_198d5739f1dc442da99d2e5b0ac70da0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1f5a909d647e495ca7fe1290e7ac5b90",
+ "IPY_MODEL_1a248332df5e401eafc3bd11daab7ad6",
+ "IPY_MODEL_43d7d89665ff44ed8d6584eec78426d2"
+ ],
+ "layout": "IPY_MODEL_00ba701378704e378518cfc9cd9ac1fe",
"tabbable": null,
- "tooltip": null,
- "value": "100%"
+ "tooltip": null
}
},
- "e7e1a63b50304089a0c52e8e3169a7e8": {
+ "d109e89ea29a494dbf2093031912d023": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -5047,54 +5064,68 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_6c007c5895214b5d80b5f66056ce1689",
+ "layout": "IPY_MODEL_063c7dfbcb0b4f6197e12b92dc3aff4c",
"placeholder": "",
- "style": "IPY_MODEL_0a5cd3e27c764b77aa59f033076b98dc",
+ "style": "IPY_MODEL_e304882d3b8f4f17be0bebcc0e3e16ce",
"tabbable": null,
"tooltip": null,
- "value": "Downloading data: 100%"
+ "value": " 30.9M/30.9M [00:00<00:00, 63.4MB/s]"
}
},
- "e83a549069a34c089e17807f4050c329": {
- "model_module": "@jupyter-widgets/controls",
+ "d58c19b1b3c0441f81cd7c70d97d66c2": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ec6a854658214e7fbead2e735f30ad7e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f88c5998f3d74afd927bf9a11bb16d63",
- "placeholder": "",
- "style": "IPY_MODEL_dfa39c3954554700a6257dd5506b2800",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:10<00:00, 5373.56 examples/s]"
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "ec6eb2a130dd443c8d8e5f429b5692ef": {
+ "d6170e03528545b8a1ea345d9bd04f9d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5147,31 +5178,43 @@
"width": null
}
},
- "f52ce44d13004a27827b9ca93535fcd6": {
+ "d67e2a26ec31489f9c92ad823ec2f89e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_6d72c7d8ce794979a928a93df2986302",
- "IPY_MODEL_8821281212024a5a8296b14f1beca713",
- "IPY_MODEL_f66eb3e358484069a54a66d5c72a0230"
- ],
- "layout": "IPY_MODEL_fa2b5dfa903b41beb8e2a28ef7ecfa5c",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "d7aaed42000b49e78b3ff8b77f505687": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "f66eb3e358484069a54a66d5c72a0230": {
+ "dea0e8c245bd444c9dd46bb1f71ecbb8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -5186,15 +5229,33 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_256dbc32c2b145649d09487d9b0ba0b8",
+ "layout": "IPY_MODEL_d58c19b1b3c0441f81cd7c70d97d66c2",
"placeholder": "",
- "style": "IPY_MODEL_cb352467e0e541e393b6377e35c6e8e9",
+ "style": "IPY_MODEL_ff923e82e9414ac0a7ab29acb7fc43e3",
"tabbable": null,
"tooltip": null,
- "value": " 30.9M/30.9M [00:00<00:00, 58.6MB/s]"
+ "value": "Computing checksums: 100%"
+ }
+ },
+ "e304882d3b8f4f17be0bebcc0e3e16ce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "f88c5998f3d74afd927bf9a11bb16d63": {
+ "f1fc2110b5e0474b906b22da9cfc9b3d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5247,33 +5308,7 @@
"width": null
}
},
- "f9dba5827560474e90d100a225e69c39": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_1069e0bb4e6548d5a1883737621d97ea",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e83a549069a34c089e17807f4050c329",
- "tabbable": null,
- "tooltip": null,
- "value": 60000.0
- }
- },
- "fa2b5dfa903b41beb8e2a28ef7ecfa5c": {
+ "f65d64c208cc4b3786e7f68927d0a6a9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5326,75 +5361,48 @@
"width": null
}
},
- "fa2e9c9fd9864adaa999004e25b0de4e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c7038c929ce345bab52fe4f4801afb33",
- "IPY_MODEL_e4d6d9f83e7f4431ab93880ff97a097d",
- "IPY_MODEL_09d9439722cc441fb0feae0271106f17"
- ],
- "layout": "IPY_MODEL_277ae682a79a436fbddc5a33718d59ae",
- "tabbable": null,
- "tooltip": null
- }
- },
- "fc4c22de60394f1c95acf596fcf1c1c5": {
+ "fa4d3b38eacc4a56963051b21f1f6ba1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_e0410516962745c3afcfe3ec64a86da5",
- "placeholder": "",
- "style": "IPY_MODEL_dfcf7973eccc416389166130f1dc1244",
+ "layout": "IPY_MODEL_f1fc2110b5e0474b906b22da9cfc9b3d",
+ "max": 30931277.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_15919b2a7e89404eab85f75b8444d361",
"tabbable": null,
"tooltip": null,
- "value": "Computing checksums: 100%"
+ "value": 30931277.0
}
},
- "fcd65dab45b140d2be0244abfb708e0d": {
+ "ff923e82e9414ac0a7ab29acb7fc43e3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a9d3ac20b8d6484ebc511d547100aaca",
- "IPY_MODEL_03e1112c1c1947b485f61fcf1c31bac0",
- "IPY_MODEL_ec6a854658214e7fbead2e735f30ad7e"
- ],
- "layout": "IPY_MODEL_0b1453a34968449dbb75d7a69288bf0e",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
index aaaa6b078..c7ccb86c3 100644
--- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
@@ -53,10 +53,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:00.610077Z",
- "iopub.status.busy": "2024-02-12T22:49:00.609912Z",
- "iopub.status.idle": "2024-02-12T22:49:01.712997Z",
- "shell.execute_reply": "2024-02-12T22:49:01.712384Z"
+ "iopub.execute_input": "2024-02-12T23:55:54.087725Z",
+ "iopub.status.busy": "2024-02-12T23:55:54.087559Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.178378Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.177829Z"
},
"nbsphinx": "hidden"
},
@@ -68,7 +68,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -95,10 +95,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:01.715838Z",
- "iopub.status.busy": "2024-02-12T22:49:01.715329Z",
- "iopub.status.idle": "2024-02-12T22:49:01.894754Z",
- "shell.execute_reply": "2024-02-12T22:49:01.894257Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.180886Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.180607Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.356836Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.356299Z"
},
"id": "avXlHJcXjruP"
},
@@ -234,10 +234,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:01.897328Z",
- "iopub.status.busy": "2024-02-12T22:49:01.896970Z",
- "iopub.status.idle": "2024-02-12T22:49:01.908719Z",
- "shell.execute_reply": "2024-02-12T22:49:01.908293Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.359426Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.359033Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.370398Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.369839Z"
},
"nbsphinx": "hidden"
},
@@ -340,10 +340,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:01.910563Z",
- "iopub.status.busy": "2024-02-12T22:49:01.910373Z",
- "iopub.status.idle": "2024-02-12T22:49:02.147141Z",
- "shell.execute_reply": "2024-02-12T22:49:02.146584Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.372618Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.372226Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.578316Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.577704Z"
}
},
"outputs": [
@@ -393,10 +393,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:02.149358Z",
- "iopub.status.busy": "2024-02-12T22:49:02.149033Z",
- "iopub.status.idle": "2024-02-12T22:49:02.176810Z",
- "shell.execute_reply": "2024-02-12T22:49:02.176231Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.580602Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.580408Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.607573Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.607109Z"
}
},
"outputs": [],
@@ -427,10 +427,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:02.179209Z",
- "iopub.status.busy": "2024-02-12T22:49:02.178889Z",
- "iopub.status.idle": "2024-02-12T22:49:03.859070Z",
- "shell.execute_reply": "2024-02-12T22:49:03.858397Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.609469Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.609294Z",
+ "iopub.status.idle": "2024-02-12T23:55:57.237839Z",
+ "shell.execute_reply": "2024-02-12T23:55:57.237205Z"
}
},
"outputs": [
@@ -474,10 +474,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:03.861746Z",
- "iopub.status.busy": "2024-02-12T22:49:03.860991Z",
- "iopub.status.idle": "2024-02-12T22:49:03.876970Z",
- "shell.execute_reply": "2024-02-12T22:49:03.876507Z"
+ "iopub.execute_input": "2024-02-12T23:55:57.240636Z",
+ "iopub.status.busy": "2024-02-12T23:55:57.239978Z",
+ "iopub.status.idle": "2024-02-12T23:55:57.255920Z",
+ "shell.execute_reply": "2024-02-12T23:55:57.255468Z"
},
"scrolled": true
},
@@ -605,10 +605,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:03.879202Z",
- "iopub.status.busy": "2024-02-12T22:49:03.878865Z",
- "iopub.status.idle": "2024-02-12T22:49:05.289171Z",
- "shell.execute_reply": "2024-02-12T22:49:05.288522Z"
+ "iopub.execute_input": "2024-02-12T23:55:57.257954Z",
+ "iopub.status.busy": "2024-02-12T23:55:57.257611Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.663580Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.663012Z"
},
"id": "AaHC5MRKjruT"
},
@@ -727,10 +727,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.291686Z",
- "iopub.status.busy": "2024-02-12T22:49:05.291116Z",
- "iopub.status.idle": "2024-02-12T22:49:05.305038Z",
- "shell.execute_reply": "2024-02-12T22:49:05.304497Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.666177Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.665565Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.679124Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.678647Z"
},
"id": "Wy27rvyhjruU"
},
@@ -779,10 +779,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.307029Z",
- "iopub.status.busy": "2024-02-12T22:49:05.306774Z",
- "iopub.status.idle": "2024-02-12T22:49:05.380772Z",
- "shell.execute_reply": "2024-02-12T22:49:05.380174Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.681314Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.680885Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.753379Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.752708Z"
},
"id": "Db8YHnyVjruU"
},
@@ -889,10 +889,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.383078Z",
- "iopub.status.busy": "2024-02-12T22:49:05.382857Z",
- "iopub.status.idle": "2024-02-12T22:49:05.593726Z",
- "shell.execute_reply": "2024-02-12T22:49:05.593031Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.755871Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.755432Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.962038Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.961464Z"
},
"id": "iJqAHuS2jruV"
},
@@ -929,10 +929,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.596024Z",
- "iopub.status.busy": "2024-02-12T22:49:05.595626Z",
- "iopub.status.idle": "2024-02-12T22:49:05.612522Z",
- "shell.execute_reply": "2024-02-12T22:49:05.612077Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.964265Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.963929Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.980448Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.979929Z"
},
"id": "PcPTZ_JJG3Cx"
},
@@ -1398,10 +1398,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.614308Z",
- "iopub.status.busy": "2024-02-12T22:49:05.614153Z",
- "iopub.status.idle": "2024-02-12T22:49:05.623602Z",
- "shell.execute_reply": "2024-02-12T22:49:05.623174Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.982444Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.982140Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.991902Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.991458Z"
},
"id": "0lonvOYvjruV"
},
@@ -1548,10 +1548,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.625501Z",
- "iopub.status.busy": "2024-02-12T22:49:05.625327Z",
- "iopub.status.idle": "2024-02-12T22:49:05.710943Z",
- "shell.execute_reply": "2024-02-12T22:49:05.710323Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.993954Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.993646Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.073809Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.073168Z"
},
"id": "MfqTCa3kjruV"
},
@@ -1632,10 +1632,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.713363Z",
- "iopub.status.busy": "2024-02-12T22:49:05.713024Z",
- "iopub.status.idle": "2024-02-12T22:49:05.839351Z",
- "shell.execute_reply": "2024-02-12T22:49:05.838695Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.076295Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.075923Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.201155Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.200545Z"
},
"id": "9ZtWAYXqMAPL"
},
@@ -1695,10 +1695,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.841599Z",
- "iopub.status.busy": "2024-02-12T22:49:05.841367Z",
- "iopub.status.idle": "2024-02-12T22:49:05.845182Z",
- "shell.execute_reply": "2024-02-12T22:49:05.844645Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.203389Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.203174Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.206879Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.206332Z"
},
"id": "0rXP3ZPWjruW"
},
@@ -1736,10 +1736,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.847194Z",
- "iopub.status.busy": "2024-02-12T22:49:05.846811Z",
- "iopub.status.idle": "2024-02-12T22:49:05.850643Z",
- "shell.execute_reply": "2024-02-12T22:49:05.850097Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.208887Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.208621Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.212375Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.211842Z"
},
"id": "-iRPe8KXjruW"
},
@@ -1794,10 +1794,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.852567Z",
- "iopub.status.busy": "2024-02-12T22:49:05.852314Z",
- "iopub.status.idle": "2024-02-12T22:49:05.889443Z",
- "shell.execute_reply": "2024-02-12T22:49:05.888870Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.214448Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.214122Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.250504Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.250029Z"
},
"id": "ZpipUliyjruW"
},
@@ -1848,10 +1848,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.891645Z",
- "iopub.status.busy": "2024-02-12T22:49:05.891221Z",
- "iopub.status.idle": "2024-02-12T22:49:05.933189Z",
- "shell.execute_reply": "2024-02-12T22:49:05.932608Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.252341Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.252167Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.293709Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.293229Z"
},
"id": "SLq-3q4xjruX"
},
@@ -1920,10 +1920,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.935223Z",
- "iopub.status.busy": "2024-02-12T22:49:05.935045Z",
- "iopub.status.idle": "2024-02-12T22:49:06.027588Z",
- "shell.execute_reply": "2024-02-12T22:49:06.026989Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.295651Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.295479Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.383183Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.382631Z"
},
"id": "g5LHhhuqFbXK"
},
@@ -1955,10 +1955,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.030120Z",
- "iopub.status.busy": "2024-02-12T22:49:06.029768Z",
- "iopub.status.idle": "2024-02-12T22:49:06.121246Z",
- "shell.execute_reply": "2024-02-12T22:49:06.120701Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.385763Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.385390Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.467070Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.466528Z"
},
"id": "p7w8F8ezBcet"
},
@@ -2015,10 +2015,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.123460Z",
- "iopub.status.busy": "2024-02-12T22:49:06.123177Z",
- "iopub.status.idle": "2024-02-12T22:49:06.331328Z",
- "shell.execute_reply": "2024-02-12T22:49:06.330898Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.469288Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.469050Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.675895Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.675346Z"
},
"id": "WETRL74tE_sU"
},
@@ -2053,10 +2053,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.333585Z",
- "iopub.status.busy": "2024-02-12T22:49:06.333155Z",
- "iopub.status.idle": "2024-02-12T22:49:06.514172Z",
- "shell.execute_reply": "2024-02-12T22:49:06.513534Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.678037Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.677856Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.842655Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.842038Z"
},
"id": "kCfdx2gOLmXS"
},
@@ -2218,10 +2218,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.516462Z",
- "iopub.status.busy": "2024-02-12T22:49:06.516269Z",
- "iopub.status.idle": "2024-02-12T22:49:06.522329Z",
- "shell.execute_reply": "2024-02-12T22:49:06.521896Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.845039Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.844653Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.850413Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.849954Z"
},
"id": "-uogYRWFYnuu"
},
@@ -2275,10 +2275,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.524470Z",
- "iopub.status.busy": "2024-02-12T22:49:06.524170Z",
- "iopub.status.idle": "2024-02-12T22:49:06.740727Z",
- "shell.execute_reply": "2024-02-12T22:49:06.740021Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.852474Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.852080Z",
+ "iopub.status.idle": "2024-02-12T23:56:00.071774Z",
+ "shell.execute_reply": "2024-02-12T23:56:00.071205Z"
},
"id": "pG-ljrmcYp9Q"
},
@@ -2325,10 +2325,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.743180Z",
- "iopub.status.busy": "2024-02-12T22:49:06.742849Z",
- "iopub.status.idle": "2024-02-12T22:49:07.830568Z",
- "shell.execute_reply": "2024-02-12T22:49:07.829930Z"
+ "iopub.execute_input": "2024-02-12T23:56:00.074077Z",
+ "iopub.status.busy": "2024-02-12T23:56:00.073754Z",
+ "iopub.status.idle": "2024-02-12T23:56:01.156090Z",
+ "shell.execute_reply": "2024-02-12T23:56:01.155450Z"
},
"id": "wL3ngCnuLEWd"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
index a8731c237..707556a1f 100644
--- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
@@ -89,10 +89,10 @@
"id": "a3ddc95f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:11.327098Z",
- "iopub.status.busy": "2024-02-12T22:49:11.326930Z",
- "iopub.status.idle": "2024-02-12T22:49:12.371035Z",
- "shell.execute_reply": "2024-02-12T22:49:12.370449Z"
+ "iopub.execute_input": "2024-02-12T23:56:04.538038Z",
+ "iopub.status.busy": "2024-02-12T23:56:04.537630Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.578886Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.578336Z"
},
"nbsphinx": "hidden"
},
@@ -102,7 +102,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -136,10 +136,10 @@
"id": "c4efd119",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.373689Z",
- "iopub.status.busy": "2024-02-12T22:49:12.373162Z",
- "iopub.status.idle": "2024-02-12T22:49:12.376283Z",
- "shell.execute_reply": "2024-02-12T22:49:12.375854Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.581551Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.581138Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.584685Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.584263Z"
}
},
"outputs": [],
@@ -264,10 +264,10 @@
"id": "c37c0a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.378463Z",
- "iopub.status.busy": "2024-02-12T22:49:12.378020Z",
- "iopub.status.idle": "2024-02-12T22:49:12.385700Z",
- "shell.execute_reply": "2024-02-12T22:49:12.385291Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.586771Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.586447Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.594060Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.593629Z"
},
"nbsphinx": "hidden"
},
@@ -351,10 +351,10 @@
"id": "99f69523",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.387657Z",
- "iopub.status.busy": "2024-02-12T22:49:12.387343Z",
- "iopub.status.idle": "2024-02-12T22:49:12.433505Z",
- "shell.execute_reply": "2024-02-12T22:49:12.432990Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.595992Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.595672Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.642907Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.642415Z"
}
},
"outputs": [],
@@ -380,10 +380,10 @@
"id": "8f241c16",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.435717Z",
- "iopub.status.busy": "2024-02-12T22:49:12.435537Z",
- "iopub.status.idle": "2024-02-12T22:49:12.452948Z",
- "shell.execute_reply": "2024-02-12T22:49:12.452435Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.645075Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.644741Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.661843Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.661343Z"
}
},
"outputs": [
@@ -598,10 +598,10 @@
"id": "4f0819ba",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.454912Z",
- "iopub.status.busy": "2024-02-12T22:49:12.454742Z",
- "iopub.status.idle": "2024-02-12T22:49:12.458402Z",
- "shell.execute_reply": "2024-02-12T22:49:12.457979Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.663789Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.663465Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.667196Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.666678Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "d009f347",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.460570Z",
- "iopub.status.busy": "2024-02-12T22:49:12.460187Z",
- "iopub.status.idle": "2024-02-12T22:49:12.490002Z",
- "shell.execute_reply": "2024-02-12T22:49:12.489582Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.669251Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.668941Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.695637Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.695211Z"
}
},
"outputs": [],
@@ -699,10 +699,10 @@
"id": "cbd1e415",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.492004Z",
- "iopub.status.busy": "2024-02-12T22:49:12.491823Z",
- "iopub.status.idle": "2024-02-12T22:49:12.517574Z",
- "shell.execute_reply": "2024-02-12T22:49:12.517147Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.697621Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.697287Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.723892Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.723447Z"
}
},
"outputs": [],
@@ -739,10 +739,10 @@
"id": "6ca92617",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.519566Z",
- "iopub.status.busy": "2024-02-12T22:49:12.519393Z",
- "iopub.status.idle": "2024-02-12T22:49:14.258314Z",
- "shell.execute_reply": "2024-02-12T22:49:14.257760Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.726040Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.725708Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.441080Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.440542Z"
}
},
"outputs": [],
@@ -772,10 +772,10 @@
"id": "bf945113",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.260696Z",
- "iopub.status.busy": "2024-02-12T22:49:14.260402Z",
- "iopub.status.idle": "2024-02-12T22:49:14.267174Z",
- "shell.execute_reply": "2024-02-12T22:49:14.266719Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.443609Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.443156Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.449967Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.449505Z"
},
"scrolled": true
},
@@ -886,10 +886,10 @@
"id": "14251ee0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.269182Z",
- "iopub.status.busy": "2024-02-12T22:49:14.269013Z",
- "iopub.status.idle": "2024-02-12T22:49:14.281566Z",
- "shell.execute_reply": "2024-02-12T22:49:14.281123Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.451895Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.451573Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.464138Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.463588Z"
}
},
"outputs": [
@@ -1139,10 +1139,10 @@
"id": "efe16638",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.283654Z",
- "iopub.status.busy": "2024-02-12T22:49:14.283391Z",
- "iopub.status.idle": "2024-02-12T22:49:14.289606Z",
- "shell.execute_reply": "2024-02-12T22:49:14.289172Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.465960Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.465790Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.472235Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.471788Z"
},
"scrolled": true
},
@@ -1316,10 +1316,10 @@
"id": "abd0fb0b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.291635Z",
- "iopub.status.busy": "2024-02-12T22:49:14.291386Z",
- "iopub.status.idle": "2024-02-12T22:49:14.294083Z",
- "shell.execute_reply": "2024-02-12T22:49:14.293677Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.474190Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.473885Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.476603Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.476049Z"
}
},
"outputs": [],
@@ -1341,10 +1341,10 @@
"id": "cdf061df",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.296112Z",
- "iopub.status.busy": "2024-02-12T22:49:14.295801Z",
- "iopub.status.idle": "2024-02-12T22:49:14.299071Z",
- "shell.execute_reply": "2024-02-12T22:49:14.298561Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.478499Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.478209Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.481667Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.481127Z"
},
"scrolled": true
},
@@ -1396,10 +1396,10 @@
"id": "08949890",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.301134Z",
- "iopub.status.busy": "2024-02-12T22:49:14.300817Z",
- "iopub.status.idle": "2024-02-12T22:49:14.303249Z",
- "shell.execute_reply": "2024-02-12T22:49:14.302831Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.483781Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.483461Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.485919Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.485483Z"
}
},
"outputs": [],
@@ -1423,10 +1423,10 @@
"id": "6948b073",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.305180Z",
- "iopub.status.busy": "2024-02-12T22:49:14.304871Z",
- "iopub.status.idle": "2024-02-12T22:49:14.309081Z",
- "shell.execute_reply": "2024-02-12T22:49:14.308563Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.488011Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.487693Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.491554Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.491034Z"
}
},
"outputs": [
@@ -1481,10 +1481,10 @@
"id": "6f8e6914",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.311113Z",
- "iopub.status.busy": "2024-02-12T22:49:14.310799Z",
- "iopub.status.idle": "2024-02-12T22:49:14.339130Z",
- "shell.execute_reply": "2024-02-12T22:49:14.338700Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.493639Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.493306Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.522407Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.521930Z"
}
},
"outputs": [],
@@ -1527,10 +1527,10 @@
"id": "b806d2ea",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.341393Z",
- "iopub.status.busy": "2024-02-12T22:49:14.341075Z",
- "iopub.status.idle": "2024-02-12T22:49:14.345755Z",
- "shell.execute_reply": "2024-02-12T22:49:14.345217Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.524554Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.524222Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.528683Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.528255Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
index 57e7ea255..25d4e4304 100644
--- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
@@ -64,10 +64,10 @@
"id": "7383d024-8273-4039-bccd-aab3020d331f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:17.137846Z",
- "iopub.status.busy": "2024-02-12T22:49:17.137670Z",
- "iopub.status.idle": "2024-02-12T22:49:18.258972Z",
- "shell.execute_reply": "2024-02-12T22:49:18.258419Z"
+ "iopub.execute_input": "2024-02-12T23:56:10.240468Z",
+ "iopub.status.busy": "2024-02-12T23:56:10.240301Z",
+ "iopub.status.idle": "2024-02-12T23:56:11.320917Z",
+ "shell.execute_reply": "2024-02-12T23:56:11.320373Z"
},
"nbsphinx": "hidden"
},
@@ -79,7 +79,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -105,10 +105,10 @@
"id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:18.261671Z",
- "iopub.status.busy": "2024-02-12T22:49:18.261219Z",
- "iopub.status.idle": "2024-02-12T22:49:18.457380Z",
- "shell.execute_reply": "2024-02-12T22:49:18.456833Z"
+ "iopub.execute_input": "2024-02-12T23:56:11.323289Z",
+ "iopub.status.busy": "2024-02-12T23:56:11.323027Z",
+ "iopub.status.idle": "2024-02-12T23:56:11.513590Z",
+ "shell.execute_reply": "2024-02-12T23:56:11.513001Z"
}
},
"outputs": [],
@@ -268,10 +268,10 @@
"id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:18.460133Z",
- "iopub.status.busy": "2024-02-12T22:49:18.459571Z",
- "iopub.status.idle": "2024-02-12T22:49:18.472669Z",
- "shell.execute_reply": "2024-02-12T22:49:18.472164Z"
+ "iopub.execute_input": "2024-02-12T23:56:11.516308Z",
+ "iopub.status.busy": "2024-02-12T23:56:11.515954Z",
+ "iopub.status.idle": "2024-02-12T23:56:11.528800Z",
+ "shell.execute_reply": "2024-02-12T23:56:11.528260Z"
},
"nbsphinx": "hidden"
},
@@ -407,10 +407,10 @@
"id": "dac65d3b-51e8-4682-b829-beab610b56d6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:18.474828Z",
- "iopub.status.busy": "2024-02-12T22:49:18.474498Z",
- "iopub.status.idle": "2024-02-12T22:49:21.113443Z",
- "shell.execute_reply": "2024-02-12T22:49:21.112936Z"
+ "iopub.execute_input": "2024-02-12T23:56:11.531020Z",
+ "iopub.status.busy": "2024-02-12T23:56:11.530698Z",
+ "iopub.status.idle": "2024-02-12T23:56:14.158976Z",
+ "shell.execute_reply": "2024-02-12T23:56:14.158514Z"
}
},
"outputs": [
@@ -452,10 +452,10 @@
"id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:21.115686Z",
- "iopub.status.busy": "2024-02-12T22:49:21.115348Z",
- "iopub.status.idle": "2024-02-12T22:49:22.470789Z",
- "shell.execute_reply": "2024-02-12T22:49:22.470212Z"
+ "iopub.execute_input": "2024-02-12T23:56:14.161097Z",
+ "iopub.status.busy": "2024-02-12T23:56:14.160804Z",
+ "iopub.status.idle": "2024-02-12T23:56:15.499117Z",
+ "shell.execute_reply": "2024-02-12T23:56:15.498486Z"
}
},
"outputs": [],
@@ -497,10 +497,10 @@
"id": "ac1a60df",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:22.473099Z",
- "iopub.status.busy": "2024-02-12T22:49:22.472794Z",
- "iopub.status.idle": "2024-02-12T22:49:22.476749Z",
- "shell.execute_reply": "2024-02-12T22:49:22.476196Z"
+ "iopub.execute_input": "2024-02-12T23:56:15.501657Z",
+ "iopub.status.busy": "2024-02-12T23:56:15.501305Z",
+ "iopub.status.idle": "2024-02-12T23:56:15.505246Z",
+ "shell.execute_reply": "2024-02-12T23:56:15.504700Z"
}
},
"outputs": [
@@ -542,10 +542,10 @@
"id": "d09115b6-ad44-474f-9c8a-85a459586439",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:22.478756Z",
- "iopub.status.busy": "2024-02-12T22:49:22.478452Z",
- "iopub.status.idle": "2024-02-12T22:49:24.288753Z",
- "shell.execute_reply": "2024-02-12T22:49:24.288102Z"
+ "iopub.execute_input": "2024-02-12T23:56:15.507214Z",
+ "iopub.status.busy": "2024-02-12T23:56:15.506912Z",
+ "iopub.status.idle": "2024-02-12T23:56:17.247126Z",
+ "shell.execute_reply": "2024-02-12T23:56:17.246558Z"
}
},
"outputs": [
@@ -592,10 +592,10 @@
"id": "c18dd83b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:24.291487Z",
- "iopub.status.busy": "2024-02-12T22:49:24.290920Z",
- "iopub.status.idle": "2024-02-12T22:49:24.298783Z",
- "shell.execute_reply": "2024-02-12T22:49:24.298297Z"
+ "iopub.execute_input": "2024-02-12T23:56:17.249916Z",
+ "iopub.status.busy": "2024-02-12T23:56:17.249208Z",
+ "iopub.status.idle": "2024-02-12T23:56:17.256754Z",
+ "shell.execute_reply": "2024-02-12T23:56:17.256235Z"
}
},
"outputs": [
@@ -631,10 +631,10 @@
"id": "fffa88f6-84d7-45fe-8214-0e22079a06d1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:24.300968Z",
- "iopub.status.busy": "2024-02-12T22:49:24.300576Z",
- "iopub.status.idle": "2024-02-12T22:49:26.891347Z",
- "shell.execute_reply": "2024-02-12T22:49:26.890823Z"
+ "iopub.execute_input": "2024-02-12T23:56:17.258904Z",
+ "iopub.status.busy": "2024-02-12T23:56:17.258582Z",
+ "iopub.status.idle": "2024-02-12T23:56:19.821797Z",
+ "shell.execute_reply": "2024-02-12T23:56:19.821210Z"
}
},
"outputs": [
@@ -669,10 +669,10 @@
"id": "c1198575",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:26.893420Z",
- "iopub.status.busy": "2024-02-12T22:49:26.893225Z",
- "iopub.status.idle": "2024-02-12T22:49:26.896998Z",
- "shell.execute_reply": "2024-02-12T22:49:26.896539Z"
+ "iopub.execute_input": "2024-02-12T23:56:19.823998Z",
+ "iopub.status.busy": "2024-02-12T23:56:19.823698Z",
+ "iopub.status.idle": "2024-02-12T23:56:19.827135Z",
+ "shell.execute_reply": "2024-02-12T23:56:19.826622Z"
}
},
"outputs": [
@@ -719,10 +719,10 @@
"id": "49161b19-7625-4fb7-add9-607d91a7eca1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:26.898924Z",
- "iopub.status.busy": "2024-02-12T22:49:26.898746Z",
- "iopub.status.idle": "2024-02-12T22:49:26.902892Z",
- "shell.execute_reply": "2024-02-12T22:49:26.902428Z"
+ "iopub.execute_input": "2024-02-12T23:56:19.829148Z",
+ "iopub.status.busy": "2024-02-12T23:56:19.828830Z",
+ "iopub.status.idle": "2024-02-12T23:56:19.832857Z",
+ "shell.execute_reply": "2024-02-12T23:56:19.832422Z"
}
},
"outputs": [],
@@ -750,10 +750,10 @@
"id": "d1a2c008",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:26.904728Z",
- "iopub.status.busy": "2024-02-12T22:49:26.904551Z",
- "iopub.status.idle": "2024-02-12T22:49:26.907736Z",
- "shell.execute_reply": "2024-02-12T22:49:26.907290Z"
+ "iopub.execute_input": "2024-02-12T23:56:19.834802Z",
+ "iopub.status.busy": "2024-02-12T23:56:19.834481Z",
+ "iopub.status.idle": "2024-02-12T23:56:19.837391Z",
+ "shell.execute_reply": "2024-02-12T23:56:19.836962Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
index 780640890..e80a8f1e8 100644
--- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
@@ -70,10 +70,10 @@
"id": "0ba0dc70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:29.412355Z",
- "iopub.status.busy": "2024-02-12T22:49:29.412182Z",
- "iopub.status.idle": "2024-02-12T22:49:30.526526Z",
- "shell.execute_reply": "2024-02-12T22:49:30.525887Z"
+ "iopub.execute_input": "2024-02-12T23:56:22.140899Z",
+ "iopub.status.busy": "2024-02-12T23:56:22.140709Z",
+ "iopub.status.idle": "2024-02-12T23:56:23.228656Z",
+ "shell.execute_reply": "2024-02-12T23:56:23.228102Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -109,10 +109,10 @@
"id": "c90449c8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:30.528990Z",
- "iopub.status.busy": "2024-02-12T22:49:30.528713Z",
- "iopub.status.idle": "2024-02-12T22:49:33.180612Z",
- "shell.execute_reply": "2024-02-12T22:49:33.179832Z"
+ "iopub.execute_input": "2024-02-12T23:56:23.231351Z",
+ "iopub.status.busy": "2024-02-12T23:56:23.230862Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.303894Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.303203Z"
}
},
"outputs": [],
@@ -130,10 +130,10 @@
"id": "df8be4c6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.183324Z",
- "iopub.status.busy": "2024-02-12T22:49:33.183127Z",
- "iopub.status.idle": "2024-02-12T22:49:33.186465Z",
- "shell.execute_reply": "2024-02-12T22:49:33.185898Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.306476Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.306007Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.309229Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.308792Z"
}
},
"outputs": [],
@@ -169,10 +169,10 @@
"id": "2e9ffd6f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.188663Z",
- "iopub.status.busy": "2024-02-12T22:49:33.188286Z",
- "iopub.status.idle": "2024-02-12T22:49:33.194879Z",
- "shell.execute_reply": "2024-02-12T22:49:33.194329Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.311203Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.311026Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.317765Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.317326Z"
}
},
"outputs": [],
@@ -198,10 +198,10 @@
"id": "56705562",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.196918Z",
- "iopub.status.busy": "2024-02-12T22:49:33.196600Z",
- "iopub.status.idle": "2024-02-12T22:49:33.683030Z",
- "shell.execute_reply": "2024-02-12T22:49:33.682447Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.319762Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.319435Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.802961Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.802339Z"
},
"scrolled": true
},
@@ -242,10 +242,10 @@
"id": "b08144d7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.685697Z",
- "iopub.status.busy": "2024-02-12T22:49:33.685346Z",
- "iopub.status.idle": "2024-02-12T22:49:33.690668Z",
- "shell.execute_reply": "2024-02-12T22:49:33.690108Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.805323Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.804884Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.810173Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.809617Z"
}
},
"outputs": [
@@ -497,10 +497,10 @@
"id": "3d70bec6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.692667Z",
- "iopub.status.busy": "2024-02-12T22:49:33.692303Z",
- "iopub.status.idle": "2024-02-12T22:49:33.696167Z",
- "shell.execute_reply": "2024-02-12T22:49:33.695665Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.812189Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.812028Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.815640Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.815111Z"
}
},
"outputs": [
@@ -557,10 +557,10 @@
"id": "4caa635d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.698014Z",
- "iopub.status.busy": "2024-02-12T22:49:33.697830Z",
- "iopub.status.idle": "2024-02-12T22:49:34.370682Z",
- "shell.execute_reply": "2024-02-12T22:49:34.370018Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.817678Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.817338Z",
+ "iopub.status.idle": "2024-02-12T23:56:25.518766Z",
+ "shell.execute_reply": "2024-02-12T23:56:25.518129Z"
}
},
"outputs": [
@@ -616,10 +616,10 @@
"id": "a9b4c590",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:34.372860Z",
- "iopub.status.busy": "2024-02-12T22:49:34.372665Z",
- "iopub.status.idle": "2024-02-12T22:49:34.541716Z",
- "shell.execute_reply": "2024-02-12T22:49:34.541246Z"
+ "iopub.execute_input": "2024-02-12T23:56:25.521164Z",
+ "iopub.status.busy": "2024-02-12T23:56:25.520797Z",
+ "iopub.status.idle": "2024-02-12T23:56:25.667693Z",
+ "shell.execute_reply": "2024-02-12T23:56:25.667126Z"
}
},
"outputs": [
@@ -660,10 +660,10 @@
"id": "ffd9ebcc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:34.543729Z",
- "iopub.status.busy": "2024-02-12T22:49:34.543542Z",
- "iopub.status.idle": "2024-02-12T22:49:34.547818Z",
- "shell.execute_reply": "2024-02-12T22:49:34.547385Z"
+ "iopub.execute_input": "2024-02-12T23:56:25.669798Z",
+ "iopub.status.busy": "2024-02-12T23:56:25.669479Z",
+ "iopub.status.idle": "2024-02-12T23:56:25.673810Z",
+ "shell.execute_reply": "2024-02-12T23:56:25.673249Z"
}
},
"outputs": [
@@ -700,10 +700,10 @@
"id": "4dd46d67",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:34.549616Z",
- "iopub.status.busy": "2024-02-12T22:49:34.549442Z",
- "iopub.status.idle": "2024-02-12T22:49:35.003592Z",
- "shell.execute_reply": "2024-02-12T22:49:35.003069Z"
+ "iopub.execute_input": "2024-02-12T23:56:25.675766Z",
+ "iopub.status.busy": "2024-02-12T23:56:25.675467Z",
+ "iopub.status.idle": "2024-02-12T23:56:26.120953Z",
+ "shell.execute_reply": "2024-02-12T23:56:26.120360Z"
}
},
"outputs": [
@@ -762,10 +762,10 @@
"id": "ceec2394",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:35.005867Z",
- "iopub.status.busy": "2024-02-12T22:49:35.005681Z",
- "iopub.status.idle": "2024-02-12T22:49:35.340134Z",
- "shell.execute_reply": "2024-02-12T22:49:35.339527Z"
+ "iopub.execute_input": "2024-02-12T23:56:26.123845Z",
+ "iopub.status.busy": "2024-02-12T23:56:26.123481Z",
+ "iopub.status.idle": "2024-02-12T23:56:26.454695Z",
+ "shell.execute_reply": "2024-02-12T23:56:26.454102Z"
}
},
"outputs": [
@@ -812,10 +812,10 @@
"id": "94f82b0d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:35.342655Z",
- "iopub.status.busy": "2024-02-12T22:49:35.342175Z",
- "iopub.status.idle": "2024-02-12T22:49:35.687614Z",
- "shell.execute_reply": "2024-02-12T22:49:35.687041Z"
+ "iopub.execute_input": "2024-02-12T23:56:26.457118Z",
+ "iopub.status.busy": "2024-02-12T23:56:26.456922Z",
+ "iopub.status.idle": "2024-02-12T23:56:26.818521Z",
+ "shell.execute_reply": "2024-02-12T23:56:26.817933Z"
}
},
"outputs": [
@@ -862,10 +862,10 @@
"id": "1ea18c5d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:35.689838Z",
- "iopub.status.busy": "2024-02-12T22:49:35.689432Z",
- "iopub.status.idle": "2024-02-12T22:49:36.105407Z",
- "shell.execute_reply": "2024-02-12T22:49:36.104863Z"
+ "iopub.execute_input": "2024-02-12T23:56:26.821330Z",
+ "iopub.status.busy": "2024-02-12T23:56:26.820948Z",
+ "iopub.status.idle": "2024-02-12T23:56:27.236356Z",
+ "shell.execute_reply": "2024-02-12T23:56:27.235774Z"
}
},
"outputs": [
@@ -925,10 +925,10 @@
"id": "7e770d23",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.109633Z",
- "iopub.status.busy": "2024-02-12T22:49:36.109271Z",
- "iopub.status.idle": "2024-02-12T22:49:36.557639Z",
- "shell.execute_reply": "2024-02-12T22:49:36.557070Z"
+ "iopub.execute_input": "2024-02-12T23:56:27.240859Z",
+ "iopub.status.busy": "2024-02-12T23:56:27.240397Z",
+ "iopub.status.idle": "2024-02-12T23:56:27.662840Z",
+ "shell.execute_reply": "2024-02-12T23:56:27.662274Z"
}
},
"outputs": [
@@ -971,10 +971,10 @@
"id": "57e84a27",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.560788Z",
- "iopub.status.busy": "2024-02-12T22:49:36.560443Z",
- "iopub.status.idle": "2024-02-12T22:49:36.777646Z",
- "shell.execute_reply": "2024-02-12T22:49:36.777086Z"
+ "iopub.execute_input": "2024-02-12T23:56:27.665109Z",
+ "iopub.status.busy": "2024-02-12T23:56:27.664778Z",
+ "iopub.status.idle": "2024-02-12T23:56:27.878959Z",
+ "shell.execute_reply": "2024-02-12T23:56:27.878412Z"
}
},
"outputs": [
@@ -1017,10 +1017,10 @@
"id": "0302818a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.779941Z",
- "iopub.status.busy": "2024-02-12T22:49:36.779591Z",
- "iopub.status.idle": "2024-02-12T22:49:36.978942Z",
- "shell.execute_reply": "2024-02-12T22:49:36.978426Z"
+ "iopub.execute_input": "2024-02-12T23:56:27.881237Z",
+ "iopub.status.busy": "2024-02-12T23:56:27.880881Z",
+ "iopub.status.idle": "2024-02-12T23:56:28.080478Z",
+ "shell.execute_reply": "2024-02-12T23:56:28.079892Z"
}
},
"outputs": [
@@ -1067,10 +1067,10 @@
"id": "5cacec81-2adf-46a8-82c5-7ec0185d4356",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.981446Z",
- "iopub.status.busy": "2024-02-12T22:49:36.981110Z",
- "iopub.status.idle": "2024-02-12T22:49:36.983896Z",
- "shell.execute_reply": "2024-02-12T22:49:36.983476Z"
+ "iopub.execute_input": "2024-02-12T23:56:28.083155Z",
+ "iopub.status.busy": "2024-02-12T23:56:28.082956Z",
+ "iopub.status.idle": "2024-02-12T23:56:28.086231Z",
+ "shell.execute_reply": "2024-02-12T23:56:28.085665Z"
}
},
"outputs": [],
@@ -1090,10 +1090,10 @@
"id": "3335b8a3-d0b4-415a-a97d-c203088a124e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.985865Z",
- "iopub.status.busy": "2024-02-12T22:49:36.985551Z",
- "iopub.status.idle": "2024-02-12T22:49:37.936717Z",
- "shell.execute_reply": "2024-02-12T22:49:37.936159Z"
+ "iopub.execute_input": "2024-02-12T23:56:28.088300Z",
+ "iopub.status.busy": "2024-02-12T23:56:28.087899Z",
+ "iopub.status.idle": "2024-02-12T23:56:28.970362Z",
+ "shell.execute_reply": "2024-02-12T23:56:28.969773Z"
}
},
"outputs": [
@@ -1172,10 +1172,10 @@
"id": "9d4b7677-6ebd-447d-b0a1-76e094686628",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:37.939245Z",
- "iopub.status.busy": "2024-02-12T22:49:37.938917Z",
- "iopub.status.idle": "2024-02-12T22:49:38.135881Z",
- "shell.execute_reply": "2024-02-12T22:49:38.135304Z"
+ "iopub.execute_input": "2024-02-12T23:56:28.972655Z",
+ "iopub.status.busy": "2024-02-12T23:56:28.972226Z",
+ "iopub.status.idle": "2024-02-12T23:56:29.148666Z",
+ "shell.execute_reply": "2024-02-12T23:56:29.148176Z"
}
},
"outputs": [
@@ -1214,10 +1214,10 @@
"id": "59d7ee39-3785-434b-8680-9133014851cd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:38.137933Z",
- "iopub.status.busy": "2024-02-12T22:49:38.137744Z",
- "iopub.status.idle": "2024-02-12T22:49:38.327707Z",
- "shell.execute_reply": "2024-02-12T22:49:38.327186Z"
+ "iopub.execute_input": "2024-02-12T23:56:29.150860Z",
+ "iopub.status.busy": "2024-02-12T23:56:29.150472Z",
+ "iopub.status.idle": "2024-02-12T23:56:29.282035Z",
+ "shell.execute_reply": "2024-02-12T23:56:29.281540Z"
}
},
"outputs": [],
@@ -1266,10 +1266,10 @@
"id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:38.329962Z",
- "iopub.status.busy": "2024-02-12T22:49:38.329554Z",
- "iopub.status.idle": "2024-02-12T22:49:39.006742Z",
- "shell.execute_reply": "2024-02-12T22:49:39.006151Z"
+ "iopub.execute_input": "2024-02-12T23:56:29.284124Z",
+ "iopub.status.busy": "2024-02-12T23:56:29.283813Z",
+ "iopub.status.idle": "2024-02-12T23:56:29.941641Z",
+ "shell.execute_reply": "2024-02-12T23:56:29.941084Z"
}
},
"outputs": [
@@ -1351,10 +1351,10 @@
"id": "8ce74938",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:39.008876Z",
- "iopub.status.busy": "2024-02-12T22:49:39.008488Z",
- "iopub.status.idle": "2024-02-12T22:49:39.012205Z",
- "shell.execute_reply": "2024-02-12T22:49:39.011666Z"
+ "iopub.execute_input": "2024-02-12T23:56:29.943939Z",
+ "iopub.status.busy": "2024-02-12T23:56:29.943614Z",
+ "iopub.status.idle": "2024-02-12T23:56:29.947267Z",
+ "shell.execute_reply": "2024-02-12T23:56:29.946713Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
index 1999d8efb..a994cfc9a 100644
--- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
@@ -109,10 +109,10 @@
"id": "2bbebfc8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:41.292653Z",
- "iopub.status.busy": "2024-02-12T22:49:41.292476Z",
- "iopub.status.idle": "2024-02-12T22:49:43.982151Z",
- "shell.execute_reply": "2024-02-12T22:49:43.981502Z"
+ "iopub.execute_input": "2024-02-12T23:56:32.159199Z",
+ "iopub.status.busy": "2024-02-12T23:56:32.159028Z",
+ "iopub.status.idle": "2024-02-12T23:56:34.810928Z",
+ "shell.execute_reply": "2024-02-12T23:56:34.810392Z"
},
"nbsphinx": "hidden"
},
@@ -125,7 +125,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -159,10 +159,10 @@
"id": "4396f544",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:43.984906Z",
- "iopub.status.busy": "2024-02-12T22:49:43.984552Z",
- "iopub.status.idle": "2024-02-12T22:49:44.315677Z",
- "shell.execute_reply": "2024-02-12T22:49:44.315133Z"
+ "iopub.execute_input": "2024-02-12T23:56:34.813415Z",
+ "iopub.status.busy": "2024-02-12T23:56:34.813020Z",
+ "iopub.status.idle": "2024-02-12T23:56:35.129081Z",
+ "shell.execute_reply": "2024-02-12T23:56:35.128477Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "3792f82e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:44.318302Z",
- "iopub.status.busy": "2024-02-12T22:49:44.317808Z",
- "iopub.status.idle": "2024-02-12T22:49:44.322143Z",
- "shell.execute_reply": "2024-02-12T22:49:44.321736Z"
+ "iopub.execute_input": "2024-02-12T23:56:35.131751Z",
+ "iopub.status.busy": "2024-02-12T23:56:35.131287Z",
+ "iopub.status.idle": "2024-02-12T23:56:35.135413Z",
+ "shell.execute_reply": "2024-02-12T23:56:35.134862Z"
},
"nbsphinx": "hidden"
},
@@ -225,10 +225,10 @@
"id": "fd853a54",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:44.324312Z",
- "iopub.status.busy": "2024-02-12T22:49:44.323991Z",
- "iopub.status.idle": "2024-02-12T22:49:51.451484Z",
- "shell.execute_reply": "2024-02-12T22:49:51.450894Z"
+ "iopub.execute_input": "2024-02-12T23:56:35.137495Z",
+ "iopub.status.busy": "2024-02-12T23:56:35.137174Z",
+ "iopub.status.idle": "2024-02-12T23:56:39.466216Z",
+ "shell.execute_reply": "2024-02-12T23:56:39.465693Z"
}
},
"outputs": [
@@ -252,7 +252,7 @@
"output_type": "stream",
"text": [
"\r",
- " 0%| | 32768/170498071 [00:00<10:56, 259760.86it/s]"
+ " 1%| | 1802240/170498071 [00:00<00:09, 17420188.60it/s]"
]
},
{
@@ -260,7 +260,7 @@
"output_type": "stream",
"text": [
"\r",
- " 0%| | 229376/170498071 [00:00<02:48, 1013452.73it/s]"
+ " 8%|▊ | 12910592/170498071 [00:00<00:02, 71718447.75it/s]"
]
},
{
@@ -268,7 +268,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 917504/170498071 [00:00<00:56, 3013301.37it/s]"
+ " 14%|█▎ | 23134208/170498071 [00:00<00:01, 85392427.94it/s]"
]
},
{
@@ -276,7 +276,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 3637248/170498071 [00:00<00:16, 10225271.03it/s]"
+ " 20%|██ | 34504704/170498071 [00:00<00:01, 96420440.67it/s]"
]
},
{
@@ -284,7 +284,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▌ | 9895936/170498071 [00:00<00:06, 24123869.57it/s]"
+ " 27%|██▋ | 45547520/170498071 [00:00<00:01, 101432409.23it/s]"
]
},
{
@@ -292,7 +292,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▉ | 16089088/170498071 [00:00<00:04, 34950691.93it/s]"
+ " 33%|███▎ | 56328192/170498071 [00:00<00:01, 103567606.74it/s]"
]
},
{
@@ -300,7 +300,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 19857408/170498071 [00:00<00:04, 35673560.64it/s]"
+ " 40%|███▉ | 67469312/170498071 [00:00<00:00, 106043387.90it/s]"
]
},
{
@@ -308,7 +308,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▍ | 25329664/170498071 [00:00<00:03, 41244393.79it/s]"
+ " 46%|████▌ | 78643200/170498071 [00:00<00:00, 107789353.86it/s]"
]
},
{
@@ -316,7 +316,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 29622272/170498071 [00:01<00:03, 39680237.22it/s]"
+ " 52%|█████▏ | 89456640/170498071 [00:00<00:00, 107728183.91it/s]"
]
},
{
@@ -324,7 +324,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 34504704/170498071 [00:01<00:03, 42281101.45it/s]"
+ " 59%|█████▉ | 100663296/170498071 [00:01<00:00, 109001065.79it/s]"
]
},
{
@@ -332,7 +332,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 39485440/170498071 [00:01<00:02, 44145585.46it/s]"
+ " 65%|██████▌ | 111640576/170498071 [00:01<00:00, 109224961.81it/s]"
]
},
{
@@ -340,7 +340,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▌ | 44269568/170498071 [00:01<00:02, 45199586.29it/s]"
+ " 72%|███████▏ | 122585088/170498071 [00:01<00:00, 108681474.32it/s]"
]
},
{
@@ -348,7 +348,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▊ | 48988160/170498071 [00:01<00:02, 45775350.54it/s]"
+ " 78%|███████▊ | 133660672/170498071 [00:01<00:00, 109260086.21it/s]"
]
},
{
@@ -356,7 +356,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 53805056/170498071 [00:01<00:02, 45183876.11it/s]"
+ " 85%|████████▍ | 144703488/170498071 [00:01<00:00, 109581030.26it/s]"
]
},
{
@@ -364,7 +364,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 58589184/170498071 [00:01<00:02, 45796320.03it/s]"
+ " 91%|█████████▏| 155680768/170498071 [00:01<00:00, 108983888.33it/s]"
]
},
{
@@ -372,7 +372,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 63406080/170498071 [00:01<00:02, 46147354.31it/s]"
+ " 98%|█████████▊| 166920192/170498071 [00:01<00:00, 109943123.24it/s]"
]
},
{
@@ -380,183 +380,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|███▉ | 68190208/170498071 [00:01<00:02, 46324128.53it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 43%|████▎ | 72974336/170498071 [00:01<00:02, 46609648.87it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 46%|████▌ | 77791232/170498071 [00:02<00:01, 46661956.22it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 48%|████▊ | 82608128/170498071 [00:02<00:01, 46908594.64it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 51%|█████▏ | 87392256/170498071 [00:02<00:01, 46774612.73it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 54%|█████▍ | 92176384/170498071 [00:02<00:01, 46951193.97it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 57%|█████▋ | 96960512/170498071 [00:02<00:01, 47030587.14it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 60%|█████▉ | 101777408/170498071 [00:02<00:01, 47348319.53it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 62%|██████▏ | 106528768/170498071 [00:02<00:01, 47106159.04it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 65%|██████▌ | 111443968/170498071 [00:02<00:01, 46917633.51it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 68%|██████▊ | 116162560/170498071 [00:02<00:01, 46725366.91it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 71%|███████ | 121044992/170498071 [00:03<00:01, 46740527.00it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 74%|███████▍ | 126058496/170498071 [00:03<00:00, 47396518.74it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 77%|███████▋ | 130809856/170498071 [00:03<00:00, 46918292.58it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 79%|███████▉ | 135528448/170498071 [00:03<00:00, 46946332.80it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 82%|████████▏ | 140378112/170498071 [00:03<00:00, 47359362.26it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 85%|████████▌ | 145129472/170498071 [00:03<00:00, 46591375.23it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 88%|████████▊ | 149815296/170498071 [00:03<00:00, 46431826.39it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 91%|█████████ | 154664960/170498071 [00:03<00:00, 46772791.07it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 94%|█████████▎| 159449088/170498071 [00:03<00:00, 46988428.10it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 96%|█████████▋| 164167680/170498071 [00:03<00:00, 46554638.88it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 99%|█████████▉| 169312256/170498071 [00:04<00:00, 47759854.97it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- "100%|██████████| 170498071/170498071 [00:04<00:00, 42069878.05it/s]"
+ "100%|██████████| 170498071/170498071 [00:01<00:00, 103685437.16it/s]"
]
},
{
@@ -674,10 +498,10 @@
"id": "9b64e0aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:51.453920Z",
- "iopub.status.busy": "2024-02-12T22:49:51.453462Z",
- "iopub.status.idle": "2024-02-12T22:49:51.458250Z",
- "shell.execute_reply": "2024-02-12T22:49:51.457734Z"
+ "iopub.execute_input": "2024-02-12T23:56:39.468335Z",
+ "iopub.status.busy": "2024-02-12T23:56:39.468120Z",
+ "iopub.status.idle": "2024-02-12T23:56:39.472835Z",
+ "shell.execute_reply": "2024-02-12T23:56:39.472310Z"
},
"nbsphinx": "hidden"
},
@@ -728,10 +552,10 @@
"id": "a00aa3ed",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:51.460350Z",
- "iopub.status.busy": "2024-02-12T22:49:51.459949Z",
- "iopub.status.idle": "2024-02-12T22:49:51.991464Z",
- "shell.execute_reply": "2024-02-12T22:49:51.990841Z"
+ "iopub.execute_input": "2024-02-12T23:56:39.474786Z",
+ "iopub.status.busy": "2024-02-12T23:56:39.474488Z",
+ "iopub.status.idle": "2024-02-12T23:56:40.022486Z",
+ "shell.execute_reply": "2024-02-12T23:56:40.021868Z"
}
},
"outputs": [
@@ -764,10 +588,10 @@
"id": "41e5cb6b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:51.993762Z",
- "iopub.status.busy": "2024-02-12T22:49:51.993347Z",
- "iopub.status.idle": "2024-02-12T22:49:52.493103Z",
- "shell.execute_reply": "2024-02-12T22:49:52.492555Z"
+ "iopub.execute_input": "2024-02-12T23:56:40.024671Z",
+ "iopub.status.busy": "2024-02-12T23:56:40.024342Z",
+ "iopub.status.idle": "2024-02-12T23:56:40.545825Z",
+ "shell.execute_reply": "2024-02-12T23:56:40.545307Z"
}
},
"outputs": [
@@ -805,10 +629,10 @@
"id": "1cf25354",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:52.495326Z",
- "iopub.status.busy": "2024-02-12T22:49:52.494904Z",
- "iopub.status.idle": "2024-02-12T22:49:52.498539Z",
- "shell.execute_reply": "2024-02-12T22:49:52.497977Z"
+ "iopub.execute_input": "2024-02-12T23:56:40.547960Z",
+ "iopub.status.busy": "2024-02-12T23:56:40.547639Z",
+ "iopub.status.idle": "2024-02-12T23:56:40.551167Z",
+ "shell.execute_reply": "2024-02-12T23:56:40.550625Z"
}
},
"outputs": [],
@@ -831,17 +655,17 @@
"id": "85a58d41",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:52.500593Z",
- "iopub.status.busy": "2024-02-12T22:49:52.500241Z",
- "iopub.status.idle": "2024-02-12T22:50:05.244174Z",
- "shell.execute_reply": "2024-02-12T22:50:05.243405Z"
+ "iopub.execute_input": "2024-02-12T23:56:40.553114Z",
+ "iopub.status.busy": "2024-02-12T23:56:40.552809Z",
+ "iopub.status.idle": "2024-02-12T23:56:53.237596Z",
+ "shell.execute_reply": "2024-02-12T23:56:53.237023Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "5377f8ec4cfa4ac78bd354fea2f653c4",
+ "model_id": "017a74533f5b405db58535e8b1d74ed5",
"version_major": 2,
"version_minor": 0
},
@@ -900,10 +724,10 @@
"id": "feb0f519",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:05.246672Z",
- "iopub.status.busy": "2024-02-12T22:50:05.246236Z",
- "iopub.status.idle": "2024-02-12T22:50:06.795720Z",
- "shell.execute_reply": "2024-02-12T22:50:06.795112Z"
+ "iopub.execute_input": "2024-02-12T23:56:53.239985Z",
+ "iopub.status.busy": "2024-02-12T23:56:53.239607Z",
+ "iopub.status.idle": "2024-02-12T23:56:54.836936Z",
+ "shell.execute_reply": "2024-02-12T23:56:54.836377Z"
}
},
"outputs": [
@@ -947,10 +771,10 @@
"id": "089d5860",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:06.798025Z",
- "iopub.status.busy": "2024-02-12T22:50:06.797837Z",
- "iopub.status.idle": "2024-02-12T22:50:07.244875Z",
- "shell.execute_reply": "2024-02-12T22:50:07.244240Z"
+ "iopub.execute_input": "2024-02-12T23:56:54.839869Z",
+ "iopub.status.busy": "2024-02-12T23:56:54.839352Z",
+ "iopub.status.idle": "2024-02-12T23:56:55.257311Z",
+ "shell.execute_reply": "2024-02-12T23:56:55.256285Z"
}
},
"outputs": [
@@ -986,10 +810,10 @@
"id": "78b1951c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:07.247618Z",
- "iopub.status.busy": "2024-02-12T22:50:07.247212Z",
- "iopub.status.idle": "2024-02-12T22:50:07.923555Z",
- "shell.execute_reply": "2024-02-12T22:50:07.923024Z"
+ "iopub.execute_input": "2024-02-12T23:56:55.259846Z",
+ "iopub.status.busy": "2024-02-12T23:56:55.259632Z",
+ "iopub.status.idle": "2024-02-12T23:56:55.931088Z",
+ "shell.execute_reply": "2024-02-12T23:56:55.930544Z"
}
},
"outputs": [
@@ -1039,10 +863,10 @@
"id": "e9dff81b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:07.926208Z",
- "iopub.status.busy": "2024-02-12T22:50:07.925816Z",
- "iopub.status.idle": "2024-02-12T22:50:08.267828Z",
- "shell.execute_reply": "2024-02-12T22:50:08.267271Z"
+ "iopub.execute_input": "2024-02-12T23:56:55.934027Z",
+ "iopub.status.busy": "2024-02-12T23:56:55.933514Z",
+ "iopub.status.idle": "2024-02-12T23:56:56.223374Z",
+ "shell.execute_reply": "2024-02-12T23:56:56.222846Z"
}
},
"outputs": [
@@ -1090,10 +914,10 @@
"id": "616769f8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:08.270071Z",
- "iopub.status.busy": "2024-02-12T22:50:08.269729Z",
- "iopub.status.idle": "2024-02-12T22:50:08.502395Z",
- "shell.execute_reply": "2024-02-12T22:50:08.501809Z"
+ "iopub.execute_input": "2024-02-12T23:56:56.225614Z",
+ "iopub.status.busy": "2024-02-12T23:56:56.225238Z",
+ "iopub.status.idle": "2024-02-12T23:56:56.470927Z",
+ "shell.execute_reply": "2024-02-12T23:56:56.470350Z"
}
},
"outputs": [
@@ -1149,10 +973,10 @@
"id": "40fed4ef",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:08.505090Z",
- "iopub.status.busy": "2024-02-12T22:50:08.504619Z",
- "iopub.status.idle": "2024-02-12T22:50:08.588290Z",
- "shell.execute_reply": "2024-02-12T22:50:08.587680Z"
+ "iopub.execute_input": "2024-02-12T23:56:56.473678Z",
+ "iopub.status.busy": "2024-02-12T23:56:56.473354Z",
+ "iopub.status.idle": "2024-02-12T23:56:56.560192Z",
+ "shell.execute_reply": "2024-02-12T23:56:56.559682Z"
}
},
"outputs": [],
@@ -1173,10 +997,10 @@
"id": "89f9db72",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:08.590821Z",
- "iopub.status.busy": "2024-02-12T22:50:08.590474Z",
- "iopub.status.idle": "2024-02-12T22:50:18.785722Z",
- "shell.execute_reply": "2024-02-12T22:50:18.785117Z"
+ "iopub.execute_input": "2024-02-12T23:56:56.562911Z",
+ "iopub.status.busy": "2024-02-12T23:56:56.562491Z",
+ "iopub.status.idle": "2024-02-12T23:57:06.625155Z",
+ "shell.execute_reply": "2024-02-12T23:57:06.624497Z"
}
},
"outputs": [
@@ -1213,10 +1037,10 @@
"id": "874c885a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:18.787956Z",
- "iopub.status.busy": "2024-02-12T22:50:18.787745Z",
- "iopub.status.idle": "2024-02-12T22:50:20.511145Z",
- "shell.execute_reply": "2024-02-12T22:50:20.510579Z"
+ "iopub.execute_input": "2024-02-12T23:57:06.627573Z",
+ "iopub.status.busy": "2024-02-12T23:57:06.627373Z",
+ "iopub.status.idle": "2024-02-12T23:57:08.277896Z",
+ "shell.execute_reply": "2024-02-12T23:57:08.277340Z"
}
},
"outputs": [
@@ -1247,10 +1071,10 @@
"id": "e110fc4b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:20.513572Z",
- "iopub.status.busy": "2024-02-12T22:50:20.513217Z",
- "iopub.status.idle": "2024-02-12T22:50:20.721174Z",
- "shell.execute_reply": "2024-02-12T22:50:20.720677Z"
+ "iopub.execute_input": "2024-02-12T23:57:08.280410Z",
+ "iopub.status.busy": "2024-02-12T23:57:08.280059Z",
+ "iopub.status.idle": "2024-02-12T23:57:08.480254Z",
+ "shell.execute_reply": "2024-02-12T23:57:08.479772Z"
}
},
"outputs": [],
@@ -1264,10 +1088,10 @@
"id": "85b60cbf",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:20.723588Z",
- "iopub.status.busy": "2024-02-12T22:50:20.723251Z",
- "iopub.status.idle": "2024-02-12T22:50:20.726292Z",
- "shell.execute_reply": "2024-02-12T22:50:20.725857Z"
+ "iopub.execute_input": "2024-02-12T23:57:08.482481Z",
+ "iopub.status.busy": "2024-02-12T23:57:08.482203Z",
+ "iopub.status.idle": "2024-02-12T23:57:08.485364Z",
+ "shell.execute_reply": "2024-02-12T23:57:08.484926Z"
}
},
"outputs": [],
@@ -1289,10 +1113,10 @@
"id": "17f96fa6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:20.728325Z",
- "iopub.status.busy": "2024-02-12T22:50:20.728051Z",
- "iopub.status.idle": "2024-02-12T22:50:20.735993Z",
- "shell.execute_reply": "2024-02-12T22:50:20.735588Z"
+ "iopub.execute_input": "2024-02-12T23:57:08.487417Z",
+ "iopub.status.busy": "2024-02-12T23:57:08.487021Z",
+ "iopub.status.idle": "2024-02-12T23:57:08.495014Z",
+ "shell.execute_reply": "2024-02-12T23:57:08.494489Z"
},
"nbsphinx": "hidden"
},
@@ -1337,33 +1161,49 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "23bc04b78ad441188e51d8cc027f27f9": {
+ "017a74533f5b405db58535e8b1d74ed5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_3e648b799aa34960aa354907af2eec3a",
- "max": 102469840.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_f5c85706528247838e9a61037e100efd",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6d7bb6635b5e4735bcbdefaf554ca78b",
+ "IPY_MODEL_af1407e8d71643029066a5d226d8a4d2",
+ "IPY_MODEL_c74281e277f24558bf560e8162dd4434"
+ ],
+ "layout": "IPY_MODEL_3d263329165e4175a0eeffc1b1054672",
"tabbable": null,
- "tooltip": null,
- "value": 102469840.0
+ "tooltip": null
+ }
+ },
+ "1d6147e7905043b094718b1c113e8340": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "3e648b799aa34960aa354907af2eec3a": {
+ "3d263329165e4175a0eeffc1b1054672": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1416,31 +1256,25 @@
"width": null
}
},
- "5377f8ec4cfa4ac78bd354fea2f653c4": {
+ "4274b8c48fd849ba9450024116dcc572": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d1c017fa3ace4a7fb4bdc67367b315b7",
- "IPY_MODEL_23bc04b78ad441188e51d8cc027f27f9",
- "IPY_MODEL_e5587cc6825f4b6096de40b37699d2f5"
- ],
- "layout": "IPY_MODEL_6d4b9b439b4b4dcea6bf57fdc7d1a12e",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "6d4b9b439b4b4dcea6bf57fdc7d1a12e": {
+ "450240e17e6f42c59f8ff8151b25ec0e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1493,43 +1327,7 @@
"width": null
}
},
- "79812b2f690d4b8b90df7b4f09dcfe37": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "a1c6a1712ffb4039aa17404ca174eb17": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "d1c017fa3ace4a7fb4bdc67367b315b7": {
+ "6d7bb6635b5e4735bcbdefaf554ca78b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1544,15 +1342,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_f01d905ca45149bb85118321b9e9d217",
+ "layout": "IPY_MODEL_450240e17e6f42c59f8ff8151b25ec0e",
"placeholder": "",
- "style": "IPY_MODEL_79812b2f690d4b8b90df7b4f09dcfe37",
+ "style": "IPY_MODEL_4274b8c48fd849ba9450024116dcc572",
"tabbable": null,
"tooltip": null,
"value": "model.safetensors: 100%"
}
},
- "db08de5b0ca54b51b52620f6d945608f": {
+ "8ec7223f24ea40d29bf59b5b4d45efe7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1605,7 +1403,49 @@
"width": null
}
},
- "e5587cc6825f4b6096de40b37699d2f5": {
+ "af1407e8d71643029066a5d226d8a4d2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d2935b46625545d98c0227f8b6ae8cb0",
+ "max": 102469840.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c0763ca974ee417eb472326941560ab0",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 102469840.0
+ }
+ },
+ "c0763ca974ee417eb472326941560ab0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c74281e277f24558bf560e8162dd4434": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1620,15 +1460,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_db08de5b0ca54b51b52620f6d945608f",
+ "layout": "IPY_MODEL_8ec7223f24ea40d29bf59b5b4d45efe7",
"placeholder": "",
- "style": "IPY_MODEL_a1c6a1712ffb4039aa17404ca174eb17",
+ "style": "IPY_MODEL_1d6147e7905043b094718b1c113e8340",
"tabbable": null,
"tooltip": null,
- "value": " 102M/102M [00:00<00:00, 219MB/s]"
+ "value": " 102M/102M [00:00<00:00, 140MB/s]"
}
},
- "f01d905ca45149bb85118321b9e9d217": {
+ "d2935b46625545d98c0227f8b6ae8cb0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1680,22 +1520,6 @@
"visibility": null,
"width": null
}
- },
- "f5c85706528247838e9a61037e100efd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb
index 6c57fa5ef..5e68b6ff2 100644
--- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb
@@ -102,10 +102,10 @@
"id": "2e1af7d8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:25.099191Z",
- "iopub.status.busy": "2024-02-12T22:50:25.099010Z",
- "iopub.status.idle": "2024-02-12T22:50:26.235153Z",
- "shell.execute_reply": "2024-02-12T22:50:26.234599Z"
+ "iopub.execute_input": "2024-02-12T23:57:12.963223Z",
+ "iopub.status.busy": "2024-02-12T23:57:12.963058Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.042048Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.041504Z"
},
"nbsphinx": "hidden"
},
@@ -117,7 +117,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -143,10 +143,10 @@
"id": "4fb10b8f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.237759Z",
- "iopub.status.busy": "2024-02-12T22:50:26.237293Z",
- "iopub.status.idle": "2024-02-12T22:50:26.256297Z",
- "shell.execute_reply": "2024-02-12T22:50:26.255847Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.044689Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.044164Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.062139Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.061557Z"
}
},
"outputs": [],
@@ -165,10 +165,10 @@
"id": "284dc264",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.258493Z",
- "iopub.status.busy": "2024-02-12T22:50:26.258033Z",
- "iopub.status.idle": "2024-02-12T22:50:26.260988Z",
- "shell.execute_reply": "2024-02-12T22:50:26.260551Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.064431Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.063963Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.066850Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.066406Z"
},
"nbsphinx": "hidden"
},
@@ -199,10 +199,10 @@
"id": "0f7450db",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.263084Z",
- "iopub.status.busy": "2024-02-12T22:50:26.262759Z",
- "iopub.status.idle": "2024-02-12T22:50:26.449469Z",
- "shell.execute_reply": "2024-02-12T22:50:26.448866Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.068748Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.068571Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.150919Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.150439Z"
}
},
"outputs": [
@@ -375,10 +375,10 @@
"id": "55513fed",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.451948Z",
- "iopub.status.busy": "2024-02-12T22:50:26.451622Z",
- "iopub.status.idle": "2024-02-12T22:50:26.633470Z",
- "shell.execute_reply": "2024-02-12T22:50:26.632896Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.153189Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.152803Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.331317Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.330685Z"
},
"nbsphinx": "hidden"
},
@@ -418,10 +418,10 @@
"id": "df5a0f59",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.636060Z",
- "iopub.status.busy": "2024-02-12T22:50:26.635616Z",
- "iopub.status.idle": "2024-02-12T22:50:26.881374Z",
- "shell.execute_reply": "2024-02-12T22:50:26.880812Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.333666Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.333443Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.575086Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.574497Z"
}
},
"outputs": [
@@ -457,10 +457,10 @@
"id": "7af78a8a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.883542Z",
- "iopub.status.busy": "2024-02-12T22:50:26.883249Z",
- "iopub.status.idle": "2024-02-12T22:50:26.887621Z",
- "shell.execute_reply": "2024-02-12T22:50:26.887164Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.577365Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.576927Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.581296Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.580830Z"
}
},
"outputs": [],
@@ -478,10 +478,10 @@
"id": "9556c624",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.889621Z",
- "iopub.status.busy": "2024-02-12T22:50:26.889288Z",
- "iopub.status.idle": "2024-02-12T22:50:26.895326Z",
- "shell.execute_reply": "2024-02-12T22:50:26.894898Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.583173Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.582993Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.589143Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.588731Z"
}
},
"outputs": [],
@@ -528,10 +528,10 @@
"id": "3c2f1ccc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.897327Z",
- "iopub.status.busy": "2024-02-12T22:50:26.897005Z",
- "iopub.status.idle": "2024-02-12T22:50:26.899505Z",
- "shell.execute_reply": "2024-02-12T22:50:26.899080Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.591048Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.590879Z",
+ "iopub.status.idle": "2024-02-12T23:57:14.593500Z",
+ "shell.execute_reply": "2024-02-12T23:57:14.593055Z"
}
},
"outputs": [],
@@ -546,10 +546,10 @@
"id": "7e1b7860",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:26.901492Z",
- "iopub.status.busy": "2024-02-12T22:50:26.901190Z",
- "iopub.status.idle": "2024-02-12T22:50:35.208828Z",
- "shell.execute_reply": "2024-02-12T22:50:35.208264Z"
+ "iopub.execute_input": "2024-02-12T23:57:14.595440Z",
+ "iopub.status.busy": "2024-02-12T23:57:14.595145Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.687810Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.687170Z"
}
},
"outputs": [],
@@ -573,10 +573,10 @@
"id": "f407bd69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.211705Z",
- "iopub.status.busy": "2024-02-12T22:50:35.211097Z",
- "iopub.status.idle": "2024-02-12T22:50:35.218647Z",
- "shell.execute_reply": "2024-02-12T22:50:35.218149Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.690647Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.690084Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.696997Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.696452Z"
}
},
"outputs": [
@@ -679,10 +679,10 @@
"id": "f7385336",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.220715Z",
- "iopub.status.busy": "2024-02-12T22:50:35.220375Z",
- "iopub.status.idle": "2024-02-12T22:50:35.224214Z",
- "shell.execute_reply": "2024-02-12T22:50:35.223647Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.699113Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.698706Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.702296Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.701848Z"
}
},
"outputs": [],
@@ -697,10 +697,10 @@
"id": "59fc3091",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.226289Z",
- "iopub.status.busy": "2024-02-12T22:50:35.225988Z",
- "iopub.status.idle": "2024-02-12T22:50:35.229331Z",
- "shell.execute_reply": "2024-02-12T22:50:35.228863Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.704128Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.703955Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.706933Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.706415Z"
}
},
"outputs": [
@@ -735,10 +735,10 @@
"id": "00949977",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.231282Z",
- "iopub.status.busy": "2024-02-12T22:50:35.230982Z",
- "iopub.status.idle": "2024-02-12T22:50:35.234004Z",
- "shell.execute_reply": "2024-02-12T22:50:35.233540Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.708924Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.708624Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.711635Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.711166Z"
}
},
"outputs": [],
@@ -757,10 +757,10 @@
"id": "b6c1ae3a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.235911Z",
- "iopub.status.busy": "2024-02-12T22:50:35.235584Z",
- "iopub.status.idle": "2024-02-12T22:50:35.243360Z",
- "shell.execute_reply": "2024-02-12T22:50:35.242934Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.713579Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.713284Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.721520Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.720994Z"
}
},
"outputs": [
@@ -884,10 +884,10 @@
"id": "9131d82d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.245309Z",
- "iopub.status.busy": "2024-02-12T22:50:35.244998Z",
- "iopub.status.idle": "2024-02-12T22:50:35.247682Z",
- "shell.execute_reply": "2024-02-12T22:50:35.247142Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.723475Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.723301Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.725775Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.725335Z"
},
"nbsphinx": "hidden"
},
@@ -922,10 +922,10 @@
"id": "31c704e7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.249725Z",
- "iopub.status.busy": "2024-02-12T22:50:35.249363Z",
- "iopub.status.idle": "2024-02-12T22:50:35.371186Z",
- "shell.execute_reply": "2024-02-12T22:50:35.370576Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.727618Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.727443Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.846650Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.846108Z"
}
},
"outputs": [
@@ -964,10 +964,10 @@
"id": "0bcc43db",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.373611Z",
- "iopub.status.busy": "2024-02-12T22:50:35.373218Z",
- "iopub.status.idle": "2024-02-12T22:50:35.484523Z",
- "shell.execute_reply": "2024-02-12T22:50:35.483946Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.848883Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.848516Z",
+ "iopub.status.idle": "2024-02-12T23:57:22.956258Z",
+ "shell.execute_reply": "2024-02-12T23:57:22.955795Z"
}
},
"outputs": [
@@ -1023,10 +1023,10 @@
"id": "7021bd68",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.486912Z",
- "iopub.status.busy": "2024-02-12T22:50:35.486720Z",
- "iopub.status.idle": "2024-02-12T22:50:35.983625Z",
- "shell.execute_reply": "2024-02-12T22:50:35.983077Z"
+ "iopub.execute_input": "2024-02-12T23:57:22.958333Z",
+ "iopub.status.busy": "2024-02-12T23:57:22.958050Z",
+ "iopub.status.idle": "2024-02-12T23:57:23.441001Z",
+ "shell.execute_reply": "2024-02-12T23:57:23.440386Z"
}
},
"outputs": [],
@@ -1042,10 +1042,10 @@
"id": "d49c990b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:35.986256Z",
- "iopub.status.busy": "2024-02-12T22:50:35.985854Z",
- "iopub.status.idle": "2024-02-12T22:50:36.089101Z",
- "shell.execute_reply": "2024-02-12T22:50:36.088532Z"
+ "iopub.execute_input": "2024-02-12T23:57:23.443768Z",
+ "iopub.status.busy": "2024-02-12T23:57:23.443314Z",
+ "iopub.status.idle": "2024-02-12T23:57:23.531977Z",
+ "shell.execute_reply": "2024-02-12T23:57:23.531480Z"
}
},
"outputs": [
@@ -1080,10 +1080,10 @@
"id": "dbab6fb3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:36.091391Z",
- "iopub.status.busy": "2024-02-12T22:50:36.091024Z",
- "iopub.status.idle": "2024-02-12T22:50:36.099320Z",
- "shell.execute_reply": "2024-02-12T22:50:36.098884Z"
+ "iopub.execute_input": "2024-02-12T23:57:23.534389Z",
+ "iopub.status.busy": "2024-02-12T23:57:23.533954Z",
+ "iopub.status.idle": "2024-02-12T23:57:23.542310Z",
+ "shell.execute_reply": "2024-02-12T23:57:23.541767Z"
}
},
"outputs": [
@@ -1190,10 +1190,10 @@
"id": "5b39b8b5",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:36.101289Z",
- "iopub.status.busy": "2024-02-12T22:50:36.100965Z",
- "iopub.status.idle": "2024-02-12T22:50:36.103606Z",
- "shell.execute_reply": "2024-02-12T22:50:36.103155Z"
+ "iopub.execute_input": "2024-02-12T23:57:23.544237Z",
+ "iopub.status.busy": "2024-02-12T23:57:23.543948Z",
+ "iopub.status.idle": "2024-02-12T23:57:23.546623Z",
+ "shell.execute_reply": "2024-02-12T23:57:23.546074Z"
},
"nbsphinx": "hidden"
},
@@ -1218,10 +1218,10 @@
"id": "df06525b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:36.105526Z",
- "iopub.status.busy": "2024-02-12T22:50:36.105207Z",
- "iopub.status.idle": "2024-02-12T22:50:41.556334Z",
- "shell.execute_reply": "2024-02-12T22:50:41.555742Z"
+ "iopub.execute_input": "2024-02-12T23:57:23.548716Z",
+ "iopub.status.busy": "2024-02-12T23:57:23.548417Z",
+ "iopub.status.idle": "2024-02-12T23:57:28.918727Z",
+ "shell.execute_reply": "2024-02-12T23:57:28.918156Z"
}
},
"outputs": [
@@ -1265,10 +1265,10 @@
"id": "05282559",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:41.558728Z",
- "iopub.status.busy": "2024-02-12T22:50:41.558302Z",
- "iopub.status.idle": "2024-02-12T22:50:41.566601Z",
- "shell.execute_reply": "2024-02-12T22:50:41.566123Z"
+ "iopub.execute_input": "2024-02-12T23:57:28.920984Z",
+ "iopub.status.busy": "2024-02-12T23:57:28.920680Z",
+ "iopub.status.idle": "2024-02-12T23:57:28.928839Z",
+ "shell.execute_reply": "2024-02-12T23:57:28.928384Z"
}
},
"outputs": [
@@ -1377,10 +1377,10 @@
"id": "95531cda",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:41.568597Z",
- "iopub.status.busy": "2024-02-12T22:50:41.568412Z",
- "iopub.status.idle": "2024-02-12T22:50:41.636178Z",
- "shell.execute_reply": "2024-02-12T22:50:41.635548Z"
+ "iopub.execute_input": "2024-02-12T23:57:28.930758Z",
+ "iopub.status.busy": "2024-02-12T23:57:28.930586Z",
+ "iopub.status.idle": "2024-02-12T23:57:28.999714Z",
+ "shell.execute_reply": "2024-02-12T23:57:28.999244Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
index fffb7678e..e7c9d1c68 100644
--- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
@@ -61,10 +61,10 @@
"id": "ae8a08e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:44.504949Z",
- "iopub.status.busy": "2024-02-12T22:50:44.504771Z",
- "iopub.status.idle": "2024-02-12T22:50:50.125486Z",
- "shell.execute_reply": "2024-02-12T22:50:50.124745Z"
+ "iopub.execute_input": "2024-02-12T23:57:31.687791Z",
+ "iopub.status.busy": "2024-02-12T23:57:31.687381Z",
+ "iopub.status.idle": "2024-02-12T23:57:33.189943Z",
+ "shell.execute_reply": "2024-02-12T23:57:33.189288Z"
}
},
"outputs": [],
@@ -79,10 +79,10 @@
"id": "58fd4c55",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:50:50.128040Z",
- "iopub.status.busy": "2024-02-12T22:50:50.127842Z",
- "iopub.status.idle": "2024-02-12T22:51:53.510469Z",
- "shell.execute_reply": "2024-02-12T22:51:53.509795Z"
+ "iopub.execute_input": "2024-02-12T23:57:33.192463Z",
+ "iopub.status.busy": "2024-02-12T23:57:33.192155Z",
+ "iopub.status.idle": "2024-02-12T23:58:21.445866Z",
+ "shell.execute_reply": "2024-02-12T23:58:21.445206Z"
}
},
"outputs": [],
@@ -97,10 +97,10 @@
"id": "439b0305",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:51:53.513124Z",
- "iopub.status.busy": "2024-02-12T22:51:53.512721Z",
- "iopub.status.idle": "2024-02-12T22:51:54.596125Z",
- "shell.execute_reply": "2024-02-12T22:51:54.595479Z"
+ "iopub.execute_input": "2024-02-12T23:58:21.448431Z",
+ "iopub.status.busy": "2024-02-12T23:58:21.448094Z",
+ "iopub.status.idle": "2024-02-12T23:58:22.478605Z",
+ "shell.execute_reply": "2024-02-12T23:58:22.478056Z"
},
"nbsphinx": "hidden"
},
@@ -111,7 +111,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -137,10 +137,10 @@
"id": "a1349304",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:51:54.599006Z",
- "iopub.status.busy": "2024-02-12T22:51:54.598538Z",
- "iopub.status.idle": "2024-02-12T22:51:54.601691Z",
- "shell.execute_reply": "2024-02-12T22:51:54.601263Z"
+ "iopub.execute_input": "2024-02-12T23:58:22.481078Z",
+ "iopub.status.busy": "2024-02-12T23:58:22.480657Z",
+ "iopub.status.idle": "2024-02-12T23:58:22.483973Z",
+ "shell.execute_reply": "2024-02-12T23:58:22.483547Z"
}
},
"outputs": [],
@@ -203,10 +203,10 @@
"id": "07dc5678",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:51:54.603712Z",
- "iopub.status.busy": "2024-02-12T22:51:54.603390Z",
- "iopub.status.idle": "2024-02-12T22:51:54.607320Z",
- "shell.execute_reply": "2024-02-12T22:51:54.606801Z"
+ "iopub.execute_input": "2024-02-12T23:58:22.485960Z",
+ "iopub.status.busy": "2024-02-12T23:58:22.485639Z",
+ "iopub.status.idle": "2024-02-12T23:58:22.489507Z",
+ "shell.execute_reply": "2024-02-12T23:58:22.489086Z"
}
},
"outputs": [
@@ -247,10 +247,10 @@
"id": "25ebe22a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:51:54.609244Z",
- "iopub.status.busy": "2024-02-12T22:51:54.609067Z",
- "iopub.status.idle": "2024-02-12T22:51:54.612588Z",
- "shell.execute_reply": "2024-02-12T22:51:54.612149Z"
+ "iopub.execute_input": "2024-02-12T23:58:22.491572Z",
+ "iopub.status.busy": "2024-02-12T23:58:22.491243Z",
+ "iopub.status.idle": "2024-02-12T23:58:22.494730Z",
+ "shell.execute_reply": "2024-02-12T23:58:22.494299Z"
}
},
"outputs": [
@@ -290,10 +290,10 @@
"id": "3faedea9",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:51:54.614645Z",
- "iopub.status.busy": "2024-02-12T22:51:54.614216Z",
- "iopub.status.idle": "2024-02-12T22:51:54.617100Z",
- "shell.execute_reply": "2024-02-12T22:51:54.616561Z"
+ "iopub.execute_input": "2024-02-12T23:58:22.496670Z",
+ "iopub.status.busy": "2024-02-12T23:58:22.496351Z",
+ "iopub.status.idle": "2024-02-12T23:58:22.499244Z",
+ "shell.execute_reply": "2024-02-12T23:58:22.498688Z"
}
},
"outputs": [],
@@ -333,17 +333,17 @@
"id": "2c2ad9ad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:51:54.619208Z",
- "iopub.status.busy": "2024-02-12T22:51:54.618846Z",
- "iopub.status.idle": "2024-02-12T22:53:10.020184Z",
- "shell.execute_reply": "2024-02-12T22:53:10.019560Z"
+ "iopub.execute_input": "2024-02-12T23:58:22.501177Z",
+ "iopub.status.busy": "2024-02-12T23:58:22.500856Z",
+ "iopub.status.idle": "2024-02-12T23:59:38.955019Z",
+ "shell.execute_reply": "2024-02-12T23:59:38.954386Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "3db2ca6b30ef473f94f3cae0c359480f",
+ "model_id": "f5ce7cecdffc49ffac8772d9b3b7f8a1",
"version_major": 2,
"version_minor": 0
},
@@ -357,7 +357,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "cc90f9418f084e469e82a2102f599dc6",
+ "model_id": "cc97231b3c294c33a39161229bb2b2a4",
"version_major": 2,
"version_minor": 0
},
@@ -400,10 +400,10 @@
"id": "95dc7268",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:53:10.022657Z",
- "iopub.status.busy": "2024-02-12T22:53:10.022426Z",
- "iopub.status.idle": "2024-02-12T22:53:10.693646Z",
- "shell.execute_reply": "2024-02-12T22:53:10.693158Z"
+ "iopub.execute_input": "2024-02-12T23:59:38.958077Z",
+ "iopub.status.busy": "2024-02-12T23:59:38.957646Z",
+ "iopub.status.idle": "2024-02-12T23:59:39.638697Z",
+ "shell.execute_reply": "2024-02-12T23:59:39.638206Z"
}
},
"outputs": [
@@ -446,10 +446,10 @@
"id": "57fed473",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:53:10.695777Z",
- "iopub.status.busy": "2024-02-12T22:53:10.695486Z",
- "iopub.status.idle": "2024-02-12T22:53:13.385446Z",
- "shell.execute_reply": "2024-02-12T22:53:13.384843Z"
+ "iopub.execute_input": "2024-02-12T23:59:39.640964Z",
+ "iopub.status.busy": "2024-02-12T23:59:39.640516Z",
+ "iopub.status.idle": "2024-02-12T23:59:42.320458Z",
+ "shell.execute_reply": "2024-02-12T23:59:42.319917Z"
}
},
"outputs": [
@@ -519,10 +519,10 @@
"id": "e4a006bd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:53:13.387781Z",
- "iopub.status.busy": "2024-02-12T22:53:13.387444Z",
- "iopub.status.idle": "2024-02-12T22:53:45.553933Z",
- "shell.execute_reply": "2024-02-12T22:53:45.553403Z"
+ "iopub.execute_input": "2024-02-12T23:59:42.322684Z",
+ "iopub.status.busy": "2024-02-12T23:59:42.322341Z",
+ "iopub.status.idle": "2024-02-13T00:00:15.194920Z",
+ "shell.execute_reply": "2024-02-13T00:00:15.194350Z"
}
},
"outputs": [
@@ -539,7 +539,7 @@
"output_type": "stream",
"text": [
"\r",
- " 0%| | 15635/4997817 [00:00<00:31, 156331.14it/s]"
+ " 0%| | 15119/4997817 [00:00<00:32, 151177.17it/s]"
]
},
{
@@ -547,7 +547,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 31269/4997817 [00:00<00:31, 156181.15it/s]"
+ " 1%| | 30297/4997817 [00:00<00:32, 151525.90it/s]"
]
},
{
@@ -555,7 +555,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 47001/4997817 [00:00<00:31, 156696.00it/s]"
+ " 1%| | 45686/4997817 [00:00<00:32, 152603.09it/s]"
]
},
{
@@ -563,7 +563,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%|▏ | 62811/4997817 [00:00<00:31, 157245.26it/s]"
+ " 1%| | 60970/4997817 [00:00<00:32, 152692.22it/s]"
]
},
{
@@ -571,7 +571,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 78536/4997817 [00:00<00:31, 157211.89it/s]"
+ " 2%|▏ | 76340/4997817 [00:00<00:32, 153053.96it/s]"
]
},
{
@@ -579,7 +579,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 94435/4997817 [00:00<00:31, 157814.26it/s]"
+ " 2%|▏ | 91655/4997817 [00:00<00:32, 153084.18it/s]"
]
},
{
@@ -587,7 +587,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 110217/4997817 [00:00<00:31, 157599.79it/s]"
+ " 2%|▏ | 106964/4997817 [00:00<00:31, 153078.38it/s]"
]
},
{
@@ -595,7 +595,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 125996/4997817 [00:00<00:30, 157658.06it/s]"
+ " 2%|▏ | 122328/4997817 [00:00<00:31, 153255.81it/s]"
]
},
{
@@ -603,7 +603,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 141762/4997817 [00:00<00:30, 157536.69it/s]"
+ " 3%|▎ | 137721/4997817 [00:00<00:31, 153464.44it/s]"
]
},
{
@@ -611,7 +611,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 157656/4997817 [00:01<00:30, 157967.77it/s]"
+ " 3%|▎ | 153097/4997817 [00:01<00:31, 153554.82it/s]"
]
},
{
@@ -619,7 +619,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 173453/4997817 [00:01<00:30, 157685.54it/s]"
+ " 3%|▎ | 168480/4997817 [00:01<00:31, 153636.84it/s]"
]
},
{
@@ -627,7 +627,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 189231/4997817 [00:01<00:30, 157709.48it/s]"
+ " 4%|▎ | 183844/4997817 [00:01<00:31, 153630.60it/s]"
]
},
{
@@ -635,7 +635,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 205048/4997817 [00:01<00:30, 157845.67it/s]"
+ " 4%|▍ | 199361/4997817 [00:01<00:31, 154093.84it/s]"
]
},
{
@@ -643,7 +643,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 220833/4997817 [00:01<00:30, 157663.82it/s]"
+ " 4%|▍ | 214846/4997817 [00:01<00:30, 154319.83it/s]"
]
},
{
@@ -651,7 +651,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▍ | 236710/4997817 [00:01<00:30, 157993.08it/s]"
+ " 5%|▍ | 230278/4997817 [00:01<00:30, 154245.77it/s]"
]
},
{
@@ -659,7 +659,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 252510/4997817 [00:01<00:30, 157393.22it/s]"
+ " 5%|▍ | 245801/4997817 [00:01<00:30, 154540.29it/s]"
]
},
{
@@ -667,7 +667,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 268484/4997817 [00:01<00:29, 158092.27it/s]"
+ " 5%|▌ | 261306/4997817 [00:01<00:30, 154692.24it/s]"
]
},
{
@@ -675,7 +675,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▌ | 284416/4997817 [00:01<00:29, 158457.30it/s]"
+ " 6%|▌ | 276819/4997817 [00:01<00:30, 154823.02it/s]"
]
},
{
@@ -683,7 +683,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▌ | 300275/4997817 [00:01<00:29, 158495.88it/s]"
+ " 6%|▌ | 292311/4997817 [00:01<00:30, 154849.20it/s]"
]
},
{
@@ -691,7 +691,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▋ | 316164/4997817 [00:02<00:29, 158610.04it/s]"
+ " 6%|▌ | 307814/4997817 [00:02<00:30, 154901.19it/s]"
]
},
{
@@ -699,7 +699,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 332026/4997817 [00:02<00:29, 157763.84it/s]"
+ " 6%|▋ | 323305/4997817 [00:02<00:30, 154700.85it/s]"
]
},
{
@@ -707,7 +707,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 347846/4997817 [00:02<00:29, 157890.06it/s]"
+ " 7%|▋ | 338816/4997817 [00:02<00:30, 154819.58it/s]"
]
},
{
@@ -715,7 +715,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 363636/4997817 [00:02<00:29, 157749.50it/s]"
+ " 7%|▋ | 354303/4997817 [00:02<00:29, 154832.75it/s]"
]
},
{
@@ -723,7 +723,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 379462/4997817 [00:02<00:29, 157900.05it/s]"
+ " 7%|▋ | 369787/4997817 [00:02<00:29, 154628.88it/s]"
]
},
{
@@ -731,7 +731,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 395291/4997817 [00:02<00:29, 158013.14it/s]"
+ " 8%|▊ | 385250/4997817 [00:02<00:29, 154058.35it/s]"
]
},
{
@@ -739,7 +739,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 411117/4997817 [00:02<00:29, 158084.78it/s]"
+ " 8%|▊ | 400657/4997817 [00:02<00:29, 153248.15it/s]"
]
},
{
@@ -747,7 +747,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▊ | 426928/4997817 [00:02<00:28, 158088.43it/s]"
+ " 8%|▊ | 416027/4997817 [00:02<00:29, 153381.29it/s]"
]
},
{
@@ -755,7 +755,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▉ | 442738/4997817 [00:02<00:28, 157833.37it/s]"
+ " 9%|▊ | 431366/4997817 [00:02<00:29, 153176.22it/s]"
]
},
{
@@ -763,7 +763,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▉ | 458591/4997817 [00:02<00:28, 158039.70it/s]"
+ " 9%|▉ | 446731/4997817 [00:02<00:29, 153294.58it/s]"
]
},
{
@@ -771,7 +771,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▉ | 474396/4997817 [00:03<00:28, 157590.22it/s]"
+ " 9%|▉ | 462102/4997817 [00:03<00:29, 153415.50it/s]"
]
},
{
@@ -779,7 +779,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|▉ | 490156/4997817 [00:03<00:29, 150814.11it/s]"
+ " 10%|▉ | 477444/4997817 [00:03<00:29, 153308.99it/s]"
]
},
{
@@ -787,7 +787,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|█ | 505977/4997817 [00:03<00:29, 152957.89it/s]"
+ " 10%|▉ | 492870/4997817 [00:03<00:29, 153591.05it/s]"
]
},
{
@@ -795,7 +795,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|█ | 521672/4997817 [00:03<00:29, 154124.54it/s]"
+ " 10%|█ | 508296/4997817 [00:03<00:29, 153788.98it/s]"
]
},
{
@@ -803,7 +803,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█ | 537492/4997817 [00:03<00:28, 155323.72it/s]"
+ " 10%|█ | 523685/4997817 [00:03<00:29, 153818.20it/s]"
]
},
{
@@ -811,7 +811,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█ | 553382/4997817 [00:03<00:28, 156380.10it/s]"
+ " 11%|█ | 539067/4997817 [00:03<00:29, 153342.55it/s]"
]
},
{
@@ -819,7 +819,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█▏ | 569071/4997817 [00:03<00:28, 156530.67it/s]"
+ " 11%|█ | 554402/4997817 [00:03<00:29, 150494.68it/s]"
]
},
{
@@ -827,7 +827,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 584739/4997817 [00:03<00:28, 156405.06it/s]"
+ " 11%|█▏ | 569722/4997817 [00:03<00:29, 151293.15it/s]"
]
},
{
@@ -835,7 +835,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 600468/4997817 [00:03<00:28, 156665.99it/s]"
+ " 12%|█▏ | 585090/4997817 [00:03<00:29, 152000.98it/s]"
]
},
{
@@ -843,7 +843,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 616211/4997817 [00:03<00:27, 156892.02it/s]"
+ " 12%|█▏ | 600436/4997817 [00:03<00:28, 152434.31it/s]"
]
},
{
@@ -851,7 +851,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 631906/4997817 [00:04<00:27, 156627.99it/s]"
+ " 12%|█▏ | 615785/4997817 [00:04<00:28, 152746.92it/s]"
]
},
{
@@ -859,7 +859,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 647573/4997817 [00:04<00:27, 156154.59it/s]"
+ " 13%|█▎ | 631064/4997817 [00:04<00:28, 152708.58it/s]"
]
},
{
@@ -867,7 +867,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 663276/4997817 [00:04<00:27, 156397.33it/s]"
+ " 13%|█▎ | 646338/4997817 [00:04<00:28, 152501.46it/s]"
]
},
{
@@ -875,7 +875,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▎ | 678918/4997817 [00:04<00:27, 156157.50it/s]"
+ " 13%|█▎ | 661972/4997817 [00:04<00:28, 153645.95it/s]"
]
},
{
@@ -883,7 +883,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▍ | 694628/4997817 [00:04<00:27, 156436.71it/s]"
+ " 14%|█▎ | 677339/4997817 [00:04<00:28, 153468.07it/s]"
]
},
{
@@ -891,7 +891,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▍ | 710275/4997817 [00:04<00:27, 156443.26it/s]"
+ " 14%|█▍ | 692687/4997817 [00:04<00:28, 153282.12it/s]"
]
},
{
@@ -899,7 +899,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▍ | 725921/4997817 [00:04<00:27, 155837.59it/s]"
+ " 14%|█▍ | 708017/4997817 [00:04<00:28, 153137.06it/s]"
]
},
{
@@ -907,7 +907,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▍ | 741546/4997817 [00:04<00:27, 155959.21it/s]"
+ " 14%|█▍ | 723332/4997817 [00:04<00:27, 152901.40it/s]"
]
},
{
@@ -915,7 +915,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 757143/4997817 [00:04<00:27, 155952.80it/s]"
+ " 15%|█▍ | 738648/4997817 [00:04<00:27, 152977.17it/s]"
]
},
{
@@ -923,7 +923,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 772896/4997817 [00:04<00:27, 156421.29it/s]"
+ " 15%|█▌ | 753947/4997817 [00:04<00:27, 152797.37it/s]"
]
},
{
@@ -931,7 +931,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▌ | 788619/4997817 [00:05<00:26, 156659.81it/s]"
+ " 15%|█▌ | 769366/4997817 [00:05<00:27, 153212.31it/s]"
]
},
{
@@ -939,7 +939,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▌ | 804286/4997817 [00:05<00:26, 155906.59it/s]"
+ " 16%|█▌ | 784799/4997817 [00:05<00:27, 153545.27it/s]"
]
},
{
@@ -947,7 +947,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▋ | 819878/4997817 [00:05<00:27, 151591.76it/s]"
+ " 16%|█▌ | 800232/4997817 [00:05<00:27, 153778.39it/s]"
]
},
{
@@ -955,7 +955,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 835898/4997817 [00:05<00:27, 154113.05it/s]"
+ " 16%|█▋ | 815668/4997817 [00:05<00:27, 153949.37it/s]"
]
},
{
@@ -963,7 +963,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 851693/4997817 [00:05<00:26, 155244.70it/s]"
+ " 17%|█▋ | 831064/4997817 [00:05<00:27, 153888.69it/s]"
]
},
{
@@ -971,7 +971,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 867614/4997817 [00:05<00:26, 156417.69it/s]"
+ " 17%|█▋ | 846453/4997817 [00:05<00:26, 153879.01it/s]"
]
},
{
@@ -979,7 +979,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 883395/4997817 [00:05<00:26, 156828.05it/s]"
+ " 17%|█▋ | 861916/4997817 [00:05<00:26, 154102.14it/s]"
]
},
{
@@ -987,7 +987,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 899408/4997817 [00:05<00:25, 157811.54it/s]"
+ " 18%|█▊ | 877327/4997817 [00:05<00:27, 151166.65it/s]"
]
},
{
@@ -995,7 +995,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 915350/4997817 [00:05<00:25, 158289.67it/s]"
+ " 18%|█▊ | 892851/4997817 [00:05<00:26, 152368.54it/s]"
]
},
{
@@ -1003,7 +1003,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▊ | 931360/4997817 [00:05<00:25, 158828.16it/s]"
+ " 18%|█▊ | 908402/4997817 [00:05<00:26, 153299.12it/s]"
]
},
{
@@ -1011,7 +1011,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▉ | 947247/4997817 [00:06<00:25, 158645.15it/s]"
+ " 18%|█▊ | 924026/4997817 [00:06<00:26, 154174.02it/s]"
]
},
{
@@ -1019,7 +1019,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▉ | 963115/4997817 [00:06<00:25, 157919.11it/s]"
+ " 19%|█▉ | 939495/4997817 [00:06<00:26, 154324.94it/s]"
]
},
{
@@ -1027,7 +1027,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|█▉ | 978910/4997817 [00:06<00:25, 157712.83it/s]"
+ " 19%|█▉ | 955048/4997817 [00:06<00:26, 154682.64it/s]"
]
},
{
@@ -1035,7 +1035,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|█▉ | 994896/4997817 [00:06<00:25, 158351.20it/s]"
+ " 19%|█▉ | 970661/4997817 [00:06<00:25, 155112.88it/s]"
]
},
{
@@ -1043,7 +1043,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 1010883/4997817 [00:06<00:25, 158802.56it/s]"
+ " 20%|█▉ | 986306/4997817 [00:06<00:25, 155512.06it/s]"
]
},
{
@@ -1051,7 +1051,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██ | 1026780/4997817 [00:06<00:24, 158848.99it/s]"
+ " 20%|██ | 1001859/4997817 [00:06<00:25, 155423.65it/s]"
]
},
{
@@ -1059,7 +1059,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██ | 1042666/4997817 [00:06<00:24, 158822.27it/s]"
+ " 20%|██ | 1017505/4997817 [00:06<00:25, 155732.44it/s]"
]
},
{
@@ -1067,7 +1067,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██ | 1058549/4997817 [00:06<00:24, 158623.83it/s]"
+ " 21%|██ | 1033080/4997817 [00:06<00:25, 155458.12it/s]"
]
},
{
@@ -1075,7 +1075,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██▏ | 1074472/4997817 [00:06<00:24, 158802.46it/s]"
+ " 21%|██ | 1048627/4997817 [00:06<00:25, 155179.11it/s]"
]
},
{
@@ -1083,7 +1083,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1090353/4997817 [00:06<00:24, 158798.07it/s]"
+ " 21%|██▏ | 1064150/4997817 [00:06<00:25, 155190.62it/s]"
]
},
{
@@ -1091,7 +1091,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1106234/4997817 [00:07<00:24, 158301.56it/s]"
+ " 22%|██▏ | 1079760/4997817 [00:07<00:25, 155461.65it/s]"
]
},
{
@@ -1099,7 +1099,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1122065/4997817 [00:07<00:24, 158170.79it/s]"
+ " 22%|██▏ | 1095386/4997817 [00:07<00:25, 155698.78it/s]"
]
},
{
@@ -1107,7 +1107,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1137883/4997817 [00:07<00:24, 154493.82it/s]"
+ " 22%|██▏ | 1110957/4997817 [00:07<00:24, 155581.44it/s]"
]
},
{
@@ -1115,7 +1115,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1154003/4997817 [00:07<00:24, 156466.17it/s]"
+ " 23%|██▎ | 1126517/4997817 [00:07<00:24, 155585.71it/s]"
]
},
{
@@ -1123,7 +1123,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1169937/4997817 [00:07<00:24, 157314.10it/s]"
+ " 23%|██▎ | 1142100/4997817 [00:07<00:24, 155657.20it/s]"
]
},
{
@@ -1131,7 +1131,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▎ | 1185793/4997817 [00:07<00:24, 157680.30it/s]"
+ " 23%|██▎ | 1157666/4997817 [00:07<00:24, 155236.52it/s]"
]
},
{
@@ -1139,7 +1139,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▍ | 1201696/4997817 [00:07<00:24, 158080.89it/s]"
+ " 23%|██▎ | 1173196/4997817 [00:07<00:24, 155252.13it/s]"
]
},
{
@@ -1147,7 +1147,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▍ | 1217613/4997817 [00:07<00:23, 158402.26it/s]"
+ " 24%|██▍ | 1188780/4997817 [00:07<00:24, 155425.69it/s]"
]
},
{
@@ -1155,7 +1155,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▍ | 1233459/4997817 [00:07<00:23, 157498.51it/s]"
+ " 24%|██▍ | 1204323/4997817 [00:07<00:24, 155024.11it/s]"
]
},
{
@@ -1163,7 +1163,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▍ | 1249214/4997817 [00:07<00:23, 157303.26it/s]"
+ " 24%|██▍ | 1219845/4997817 [00:07<00:24, 155079.33it/s]"
]
},
{
@@ -1171,7 +1171,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 1264948/4997817 [00:08<00:23, 156710.66it/s]"
+ " 25%|██▍ | 1235430/4997817 [00:08<00:24, 155306.49it/s]"
]
},
{
@@ -1179,7 +1179,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▌ | 1280622/4997817 [00:08<00:23, 156662.45it/s]"
+ " 25%|██▌ | 1250964/4997817 [00:08<00:24, 155314.91it/s]"
]
},
{
@@ -1187,7 +1187,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▌ | 1296290/4997817 [00:08<00:24, 149833.84it/s]"
+ " 25%|██▌ | 1266496/4997817 [00:08<00:24, 155124.04it/s]"
]
},
{
@@ -1195,7 +1195,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▋ | 1311968/4997817 [00:08<00:24, 151842.45it/s]"
+ " 26%|██▌ | 1282009/4997817 [00:08<00:24, 154776.69it/s]"
]
},
{
@@ -1203,7 +1203,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1327731/4997817 [00:08<00:23, 153535.10it/s]"
+ " 26%|██▌ | 1297678/4997817 [00:08<00:23, 155346.33it/s]"
]
},
{
@@ -1211,7 +1211,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1343391/4997817 [00:08<00:23, 154436.63it/s]"
+ " 26%|██▋ | 1313253/4997817 [00:08<00:23, 155463.70it/s]"
]
},
{
@@ -1219,7 +1219,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1359215/4997817 [00:08<00:23, 155562.53it/s]"
+ " 27%|██▋ | 1328876/4997817 [00:08<00:23, 155691.22it/s]"
]
},
{
@@ -1227,7 +1227,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1374794/4997817 [00:08<00:23, 155571.98it/s]"
+ " 27%|██▋ | 1344446/4997817 [00:08<00:24, 148842.23it/s]"
]
},
{
@@ -1235,7 +1235,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1390507/4997817 [00:08<00:23, 156035.54it/s]"
+ " 27%|██▋ | 1360012/4997817 [00:08<00:24, 150821.71it/s]"
]
},
{
@@ -1243,7 +1243,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1406370/4997817 [00:08<00:22, 156808.41it/s]"
+ " 28%|██▊ | 1375684/4997817 [00:08<00:23, 152550.22it/s]"
]
},
{
@@ -1251,7 +1251,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1422083/4997817 [00:09<00:22, 156902.96it/s]"
+ " 28%|██▊ | 1391414/4997817 [00:09<00:23, 153950.84it/s]"
]
},
{
@@ -1259,7 +1259,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▉ | 1437788/4997817 [00:09<00:22, 156945.45it/s]"
+ " 28%|██▊ | 1407096/4997817 [00:09<00:23, 154800.04it/s]"
]
},
{
@@ -1267,7 +1267,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▉ | 1453487/4997817 [00:09<00:22, 156316.82it/s]"
+ " 28%|██▊ | 1422727/4997817 [00:09<00:23, 155247.64it/s]"
]
},
{
@@ -1275,7 +1275,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▉ | 1469122/4997817 [00:09<00:22, 156230.94it/s]"
+ " 29%|██▉ | 1438328/4997817 [00:09<00:22, 155474.25it/s]"
]
},
{
@@ -1283,7 +1283,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|██▉ | 1484909/4997817 [00:09<00:22, 156717.90it/s]"
+ " 29%|██▉ | 1453976/4997817 [00:09<00:22, 155773.85it/s]"
]
},
{
@@ -1291,7 +1291,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|███ | 1500583/4997817 [00:09<00:22, 156642.28it/s]"
+ " 29%|██▉ | 1469562/4997817 [00:09<00:22, 155560.99it/s]"
]
},
{
@@ -1299,7 +1299,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|███ | 1516413/4997817 [00:09<00:22, 157135.88it/s]"
+ " 30%|██▉ | 1485132/4997817 [00:09<00:22, 155597.51it/s]"
]
},
{
@@ -1307,7 +1307,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███ | 1532354/4997817 [00:09<00:21, 157813.50it/s]"
+ " 30%|███ | 1500696/4997817 [00:09<00:22, 155554.65it/s]"
]
},
{
@@ -1315,7 +1315,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███ | 1548228/4997817 [00:09<00:21, 158088.86it/s]"
+ " 30%|███ | 1516314/4997817 [00:09<00:22, 155739.86it/s]"
]
},
{
@@ -1323,7 +1323,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███▏ | 1564038/4997817 [00:09<00:21, 157804.17it/s]"
+ " 31%|███ | 1531890/4997817 [00:09<00:22, 155698.56it/s]"
]
},
{
@@ -1331,7 +1331,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1579819/4997817 [00:10<00:21, 157173.03it/s]"
+ " 31%|███ | 1547462/4997817 [00:10<00:22, 155234.86it/s]"
]
},
{
@@ -1339,7 +1339,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1595538/4997817 [00:10<00:21, 157071.52it/s]"
+ " 31%|███▏ | 1562987/4997817 [00:10<00:22, 154861.92it/s]"
]
},
{
@@ -1347,7 +1347,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1611246/4997817 [00:10<00:21, 156841.53it/s]"
+ " 32%|███▏ | 1578475/4997817 [00:10<00:22, 154725.80it/s]"
]
},
{
@@ -1355,7 +1355,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1626931/4997817 [00:10<00:21, 156422.50it/s]"
+ " 32%|███▏ | 1593970/4997817 [00:10<00:21, 154790.68it/s]"
]
},
{
@@ -1363,7 +1363,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1642574/4997817 [00:10<00:21, 155753.75it/s]"
+ " 32%|███▏ | 1609450/4997817 [00:10<00:21, 154341.49it/s]"
]
},
{
@@ -1371,7 +1371,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1658151/4997817 [00:10<00:21, 155169.62it/s]"
+ " 33%|███▎ | 1624885/4997817 [00:10<00:21, 153914.54it/s]"
]
},
{
@@ -1379,7 +1379,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1673836/4997817 [00:10<00:21, 155668.57it/s]"
+ " 33%|███▎ | 1640319/4997817 [00:10<00:21, 154040.88it/s]"
]
},
{
@@ -1387,7 +1387,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 1689667/4997817 [00:10<00:21, 156456.02it/s]"
+ " 33%|███▎ | 1655749/4997817 [00:10<00:21, 154117.86it/s]"
]
},
{
@@ -1395,7 +1395,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 1705342/4997817 [00:10<00:21, 156540.17it/s]"
+ " 33%|███▎ | 1671162/4997817 [00:10<00:21, 153979.89it/s]"
]
},
{
@@ -1403,7 +1403,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 1720997/4997817 [00:10<00:20, 156293.23it/s]"
+ " 34%|███▎ | 1686604/4997817 [00:10<00:21, 154110.36it/s]"
]
},
{
@@ -1411,7 +1411,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▍ | 1736627/4997817 [00:11<00:20, 156082.77it/s]"
+ " 34%|███▍ | 1702133/4997817 [00:11<00:21, 154461.54it/s]"
]
},
{
@@ -1419,7 +1419,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▌ | 1752304/4997817 [00:11<00:20, 156284.15it/s]"
+ " 34%|███▍ | 1717772/4997817 [00:11<00:21, 155037.61it/s]"
]
},
{
@@ -1427,7 +1427,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▌ | 1767975/4997817 [00:11<00:20, 156409.90it/s]"
+ " 35%|███▍ | 1733276/4997817 [00:11<00:21, 154627.37it/s]"
]
},
{
@@ -1435,7 +1435,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▌ | 1783691/4997817 [00:11<00:20, 156633.20it/s]"
+ " 35%|███▍ | 1748740/4997817 [00:11<00:21, 154451.12it/s]"
]
},
{
@@ -1443,7 +1443,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▌ | 1799355/4997817 [00:11<00:20, 156437.21it/s]"
+ " 35%|███▌ | 1764186/4997817 [00:11<00:20, 154387.18it/s]"
]
},
{
@@ -1451,7 +1451,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▋ | 1814999/4997817 [00:11<00:20, 156266.35it/s]"
+ " 36%|███▌ | 1779638/4997817 [00:11<00:20, 154425.00it/s]"
]
},
{
@@ -1459,7 +1459,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1830626/4997817 [00:11<00:20, 156216.97it/s]"
+ " 36%|███▌ | 1795081/4997817 [00:11<00:20, 154420.26it/s]"
]
},
{
@@ -1467,7 +1467,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1846251/4997817 [00:11<00:20, 156224.79it/s]"
+ " 36%|███▌ | 1810786/4997817 [00:11<00:20, 155206.41it/s]"
]
},
{
@@ -1475,7 +1475,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1861874/4997817 [00:11<00:20, 155618.21it/s]"
+ " 37%|███▋ | 1826307/4997817 [00:11<00:21, 149052.22it/s]"
]
},
{
@@ -1483,7 +1483,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1877502/4997817 [00:11<00:20, 155813.88it/s]"
+ " 37%|███▋ | 1841911/4997817 [00:11<00:20, 151085.91it/s]"
]
},
{
@@ -1491,7 +1491,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1893385/4997817 [00:12<00:19, 156713.63it/s]"
+ " 37%|███▋ | 1857538/4997817 [00:12<00:20, 152606.97it/s]"
]
},
{
@@ -1499,7 +1499,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1909110/4997817 [00:12<00:19, 156872.74it/s]"
+ " 37%|███▋ | 1873271/4997817 [00:12<00:20, 154000.59it/s]"
]
},
{
@@ -1507,7 +1507,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▊ | 1924930/4997817 [00:12<00:19, 157268.23it/s]"
+ " 38%|███▊ | 1888935/4997817 [00:12<00:20, 154783.64it/s]"
]
},
{
@@ -1515,7 +1515,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▉ | 1940790/4997817 [00:12<00:19, 157665.66it/s]"
+ " 38%|███▊ | 1904519/4997817 [00:12<00:19, 155096.49it/s]"
]
},
{
@@ -1523,7 +1523,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▉ | 1956557/4997817 [00:12<00:19, 157283.96it/s]"
+ " 38%|███▊ | 1920180/4997817 [00:12<00:19, 155545.79it/s]"
]
},
{
@@ -1531,7 +1531,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▉ | 1972286/4997817 [00:12<00:19, 156927.73it/s]"
+ " 39%|███▊ | 1935847/4997817 [00:12<00:19, 155879.26it/s]"
]
},
{
@@ -1539,7 +1539,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|███▉ | 1988086/4997817 [00:12<00:19, 157246.90it/s]"
+ " 39%|███▉ | 1951473/4997817 [00:12<00:19, 155991.58it/s]"
]
},
{
@@ -1547,7 +1547,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 2003876/4997817 [00:12<00:19, 157441.44it/s]"
+ " 39%|███▉ | 1967104/4997817 [00:12<00:19, 156084.53it/s]"
]
},
{
@@ -1555,7 +1555,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 2019621/4997817 [00:12<00:18, 156776.07it/s]"
+ " 40%|███▉ | 1982716/4997817 [00:12<00:19, 155874.28it/s]"
]
},
{
@@ -1563,7 +1563,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████ | 2035318/4997817 [00:12<00:18, 156832.94it/s]"
+ " 40%|███▉ | 1998306/4997817 [00:12<00:19, 155429.72it/s]"
]
},
{
@@ -1571,7 +1571,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████ | 2051002/4997817 [00:13<00:18, 156489.66it/s]"
+ " 40%|████ | 2013883/4997817 [00:13<00:19, 155530.18it/s]"
]
},
{
@@ -1579,7 +1579,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████▏ | 2066652/4997817 [00:13<00:18, 156471.83it/s]"
+ " 41%|████ | 2029456/4997817 [00:13<00:19, 155588.37it/s]"
]
},
{
@@ -1587,7 +1587,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2082300/4997817 [00:13<00:18, 156263.39it/s]"
+ " 41%|████ | 2045045/4997817 [00:13<00:18, 155677.97it/s]"
]
},
{
@@ -1595,7 +1595,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2097927/4997817 [00:13<00:18, 155703.33it/s]"
+ " 41%|████ | 2060614/4997817 [00:13<00:18, 155639.15it/s]"
]
},
{
@@ -1603,7 +1603,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2113498/4997817 [00:13<00:18, 155556.49it/s]"
+ " 42%|████▏ | 2076179/4997817 [00:13<00:18, 155005.92it/s]"
]
},
{
@@ -1611,7 +1611,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2129153/4997817 [00:13<00:18, 155852.46it/s]"
+ " 42%|████▏ | 2091710/4997817 [00:13<00:18, 155094.54it/s]"
]
},
{
@@ -1619,7 +1619,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2144739/4997817 [00:13<00:18, 155636.04it/s]"
+ " 42%|████▏ | 2107221/4997817 [00:13<00:18, 154938.26it/s]"
]
},
{
@@ -1627,7 +1627,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2160387/4997817 [00:13<00:18, 155883.89it/s]"
+ " 42%|████▏ | 2122832/4997817 [00:13<00:18, 155287.29it/s]"
]
},
{
@@ -1635,7 +1635,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▎ | 2175976/4997817 [00:13<00:18, 155749.24it/s]"
+ " 43%|████▎ | 2138362/4997817 [00:13<00:18, 155067.93it/s]"
]
},
{
@@ -1643,7 +1643,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▍ | 2191726/4997817 [00:13<00:17, 156271.22it/s]"
+ " 43%|████▎ | 2153870/4997817 [00:13<00:18, 154773.69it/s]"
]
},
{
@@ -1651,7 +1651,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▍ | 2207354/4997817 [00:14<00:17, 156141.29it/s]"
+ " 43%|████▎ | 2169348/4997817 [00:14<00:18, 154454.52it/s]"
]
},
{
@@ -1659,7 +1659,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▍ | 2222969/4997817 [00:14<00:17, 155970.86it/s]"
+ " 44%|████▎ | 2184794/4997817 [00:14<00:18, 154307.40it/s]"
]
},
{
@@ -1667,7 +1667,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▍ | 2238567/4997817 [00:14<00:17, 155949.93it/s]"
+ " 44%|████▍ | 2200225/4997817 [00:14<00:18, 153836.66it/s]"
]
},
{
@@ -1675,7 +1675,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 2254163/4997817 [00:14<00:17, 152822.33it/s]"
+ " 44%|████▍ | 2215650/4997817 [00:14<00:18, 153947.89it/s]"
]
},
{
@@ -1683,7 +1683,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 2269839/4997817 [00:14<00:17, 153982.87it/s]"
+ " 45%|████▍ | 2231067/4997817 [00:14<00:17, 154010.85it/s]"
]
},
{
@@ -1691,7 +1691,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▌ | 2285524/4997817 [00:14<00:17, 154832.68it/s]"
+ " 45%|████▍ | 2246525/4997817 [00:14<00:17, 154178.63it/s]"
]
},
{
@@ -1699,7 +1699,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▌ | 2301337/4997817 [00:14<00:17, 155813.08it/s]"
+ " 45%|████▌ | 2261944/4997817 [00:14<00:17, 153710.60it/s]"
]
},
{
@@ -1707,7 +1707,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▋ | 2317127/4997817 [00:14<00:17, 156434.68it/s]"
+ " 46%|████▌ | 2277359/4997817 [00:14<00:17, 153838.64it/s]"
]
},
{
@@ -1715,7 +1715,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2333044/4997817 [00:14<00:16, 157248.60it/s]"
+ " 46%|████▌ | 2292744/4997817 [00:14<00:18, 149984.37it/s]"
]
},
{
@@ -1723,7 +1723,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2348836/4997817 [00:14<00:16, 157446.06it/s]"
+ " 46%|████▌ | 2308094/4997817 [00:14<00:17, 151016.88it/s]"
]
},
{
@@ -1731,7 +1731,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2364584/4997817 [00:15<00:16, 157329.34it/s]"
+ " 46%|████▋ | 2323513/4997817 [00:15<00:17, 151953.59it/s]"
]
},
{
@@ -1739,7 +1739,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2380469/4997817 [00:15<00:16, 157782.71it/s]"
+ " 47%|████▋ | 2339051/4997817 [00:15<00:17, 152970.76it/s]"
]
},
{
@@ -1747,7 +1747,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2396249/4997817 [00:15<00:16, 157591.95it/s]"
+ " 47%|████▋ | 2354572/4997817 [00:15<00:17, 153634.91it/s]"
]
},
{
@@ -1755,7 +1755,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2412010/4997817 [00:15<00:16, 153501.00it/s]"
+ " 47%|████▋ | 2370073/4997817 [00:15<00:17, 154043.67it/s]"
]
},
{
@@ -1763,7 +1763,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▊ | 2427384/4997817 [00:15<00:16, 152472.93it/s]"
+ " 48%|████▊ | 2385576/4997817 [00:15<00:16, 154336.32it/s]"
]
},
{
@@ -1771,7 +1771,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▉ | 2443158/4997817 [00:15<00:16, 154021.50it/s]"
+ " 48%|████▊ | 2401057/4997817 [00:15<00:16, 154474.50it/s]"
]
},
{
@@ -1779,7 +1779,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▉ | 2459135/4997817 [00:15<00:16, 155721.99it/s]"
+ " 48%|████▊ | 2416508/4997817 [00:15<00:16, 154414.72it/s]"
]
},
{
@@ -1787,7 +1787,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|████▉ | 2474863/4997817 [00:15<00:16, 156184.10it/s]"
+ " 49%|████▊ | 2432082/4997817 [00:15<00:16, 154810.54it/s]"
]
},
{
@@ -1795,7 +1795,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|████▉ | 2490673/4997817 [00:15<00:15, 156753.71it/s]"
+ " 49%|████▉ | 2447565/4997817 [00:15<00:16, 153983.98it/s]"
]
},
{
@@ -1803,7 +1803,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|█████ | 2506626/4997817 [00:16<00:15, 157581.70it/s]"
+ " 49%|████▉ | 2462966/4997817 [00:15<00:16, 151617.16it/s]"
]
},
{
@@ -1811,7 +1811,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|█████ | 2522390/4997817 [00:16<00:15, 157546.61it/s]"
+ " 50%|████▉ | 2478498/4997817 [00:16<00:16, 152710.81it/s]"
]
},
{
@@ -1819,7 +1819,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████ | 2538149/4997817 [00:16<00:15, 156271.86it/s]"
+ " 50%|████▉ | 2493976/4997817 [00:16<00:16, 153322.46it/s]"
]
},
{
@@ -1827,7 +1827,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████ | 2553886/4997817 [00:16<00:15, 156596.11it/s]"
+ " 50%|█████ | 2509432/4997817 [00:16<00:16, 153689.35it/s]"
]
},
{
@@ -1835,7 +1835,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████▏ | 2569791/4997817 [00:16<00:15, 157326.44it/s]"
+ " 51%|█████ | 2524856/4997817 [00:16<00:16, 153852.03it/s]"
]
},
{
@@ -1843,7 +1843,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2585527/4997817 [00:16<00:15, 157095.38it/s]"
+ " 51%|█████ | 2540320/4997817 [00:16<00:15, 154087.11it/s]"
]
},
{
@@ -1851,7 +1851,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2601477/4997817 [00:16<00:15, 157810.68it/s]"
+ " 51%|█████ | 2555775/4997817 [00:16<00:15, 154222.61it/s]"
]
},
{
@@ -1859,7 +1859,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2617260/4997817 [00:16<00:15, 157670.95it/s]"
+ " 51%|█████▏ | 2571208/4997817 [00:16<00:15, 154253.93it/s]"
]
},
{
@@ -1867,7 +1867,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2633134/4997817 [00:16<00:14, 157989.35it/s]"
+ " 52%|█████▏ | 2586635/4997817 [00:16<00:15, 154190.72it/s]"
]
},
{
@@ -1875,7 +1875,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2648937/4997817 [00:16<00:14, 157997.96it/s]"
+ " 52%|█████▏ | 2602055/4997817 [00:16<00:15, 153740.02it/s]"
]
},
{
@@ -1883,7 +1883,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2664738/4997817 [00:17<00:14, 157437.12it/s]"
+ " 52%|█████▏ | 2617430/4997817 [00:17<00:16, 147459.87it/s]"
]
},
{
@@ -1891,7 +1891,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▎ | 2680532/4997817 [00:17<00:14, 157583.48it/s]"
+ " 53%|█████▎ | 2632820/4997817 [00:17<00:15, 149330.43it/s]"
]
},
{
@@ -1899,7 +1899,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▍ | 2696406/4997817 [00:17<00:14, 157925.83it/s]"
+ " 53%|█████▎ | 2648142/4997817 [00:17<00:15, 150465.62it/s]"
]
},
{
@@ -1907,7 +1907,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▍ | 2712200/4997817 [00:17<00:14, 157812.81it/s]"
+ " 53%|█████▎ | 2663803/4997817 [00:17<00:15, 152278.06it/s]"
]
},
{
@@ -1915,7 +1915,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▍ | 2727982/4997817 [00:17<00:14, 155316.81it/s]"
+ " 54%|█████▎ | 2679396/4997817 [00:17<00:15, 153360.59it/s]"
]
},
{
@@ -1923,7 +1923,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▍ | 2743523/4997817 [00:17<00:14, 152295.82it/s]"
+ " 54%|█████▍ | 2694891/4997817 [00:17<00:14, 153832.18it/s]"
]
},
{
@@ -1931,7 +1931,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 2759224/4997817 [00:17<00:14, 153676.82it/s]"
+ " 54%|█████▍ | 2710289/4997817 [00:17<00:18, 124505.33it/s]"
]
},
{
@@ -1939,7 +1939,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2774797/4997817 [00:17<00:14, 154280.59it/s]"
+ " 55%|█████▍ | 2724685/4997817 [00:17<00:17, 129492.23it/s]"
]
},
{
@@ -1947,7 +1947,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2790559/4997817 [00:17<00:14, 155269.78it/s]"
+ " 55%|█████▍ | 2738354/4997817 [00:17<00:17, 129954.90it/s]"
]
},
{
@@ -1955,7 +1955,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2806277/4997817 [00:17<00:14, 155836.42it/s]"
+ " 55%|█████▌ | 2753723/4997817 [00:17<00:16, 136473.64it/s]"
]
},
{
@@ -1963,7 +1963,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▋ | 2822139/4997817 [00:18<00:13, 156665.62it/s]"
+ " 55%|█████▌ | 2769090/4997817 [00:18<00:15, 141318.63it/s]"
]
},
{
@@ -1971,7 +1971,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2837871/4997817 [00:18<00:13, 156859.43it/s]"
+ " 56%|█████▌ | 2784610/4997817 [00:18<00:15, 145301.30it/s]"
]
},
{
@@ -1979,7 +1979,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2853561/4997817 [00:18<00:13, 156472.03it/s]"
+ " 56%|█████▌ | 2800097/4997817 [00:18<00:14, 148080.75it/s]"
]
},
{
@@ -1987,7 +1987,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2869249/4997817 [00:18<00:13, 156591.79it/s]"
+ " 56%|█████▋ | 2815568/4997817 [00:18<00:14, 150022.93it/s]"
]
},
{
@@ -1995,7 +1995,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2884939/4997817 [00:18<00:13, 156681.93it/s]"
+ " 57%|█████▋ | 2831053/4997817 [00:18<00:14, 151447.81it/s]"
]
},
{
@@ -2003,7 +2003,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2900609/4997817 [00:18<00:13, 156239.19it/s]"
+ " 57%|█████▋ | 2846534/4997817 [00:18<00:14, 152443.51it/s]"
]
},
{
@@ -2011,7 +2011,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2916404/4997817 [00:18<00:13, 156713.14it/s]"
+ " 57%|█████▋ | 2861980/4997817 [00:18<00:13, 153040.24it/s]"
]
},
{
@@ -2019,7 +2019,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▊ | 2932100/4997817 [00:18<00:13, 156786.28it/s]"
+ " 58%|█████▊ | 2877368/4997817 [00:18<00:13, 153287.60it/s]"
]
},
{
@@ -2027,7 +2027,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▉ | 2947780/4997817 [00:18<00:13, 156379.76it/s]"
+ " 58%|█████▊ | 2892824/4997817 [00:18<00:13, 153664.54it/s]"
]
},
{
@@ -2035,7 +2035,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▉ | 2963488/4997817 [00:18<00:12, 156577.40it/s]"
+ " 58%|█████▊ | 2908214/4997817 [00:18<00:13, 150555.83it/s]"
]
},
{
@@ -2043,7 +2043,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|█████▉ | 2979386/4997817 [00:19<00:12, 157294.63it/s]"
+ " 58%|█████▊ | 2923649/4997817 [00:19<00:13, 151674.82it/s]"
]
},
{
@@ -2051,7 +2051,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|█████▉ | 2995116/4997817 [00:19<00:12, 157244.63it/s]"
+ " 59%|█████▉ | 2939018/4997817 [00:19<00:13, 152270.07it/s]"
]
},
{
@@ -2059,7 +2059,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|██████ | 3010841/4997817 [00:19<00:12, 157141.33it/s]"
+ " 59%|█████▉ | 2954298/4997817 [00:19<00:13, 152425.43it/s]"
]
},
{
@@ -2067,7 +2067,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3026563/4997817 [00:19<00:12, 157163.26it/s]"
+ " 59%|█████▉ | 2969553/4997817 [00:19<00:13, 150724.52it/s]"
]
},
{
@@ -2075,7 +2075,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3042280/4997817 [00:19<00:12, 156676.08it/s]"
+ " 60%|█████▉ | 2984638/4997817 [00:19<00:13, 147770.66it/s]"
]
},
{
@@ -2083,7 +2083,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3057949/4997817 [00:19<00:12, 156248.69it/s]"
+ " 60%|██████ | 2999434/4997817 [00:19<00:13, 147091.10it/s]"
]
},
{
@@ -2091,7 +2091,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████▏ | 3073575/4997817 [00:19<00:12, 155706.77it/s]"
+ " 60%|██████ | 3014706/4997817 [00:19<00:13, 148744.39it/s]"
]
},
{
@@ -2099,7 +2099,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3089607/4997817 [00:19<00:12, 157079.68it/s]"
+ " 61%|██████ | 3030139/4997817 [00:19<00:13, 150395.12it/s]"
]
},
{
@@ -2107,7 +2107,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3105441/4997817 [00:19<00:12, 157455.20it/s]"
+ " 61%|██████ | 3045526/4997817 [00:19<00:12, 151425.56it/s]"
]
},
{
@@ -2115,7 +2115,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3121284/4997817 [00:19<00:11, 157745.70it/s]"
+ " 61%|██████ | 3060677/4997817 [00:20<00:12, 151415.91it/s]"
]
},
{
@@ -2123,7 +2123,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3137123/4997817 [00:20<00:11, 157937.78it/s]"
+ " 62%|██████▏ | 3076145/4997817 [00:20<00:12, 152386.96it/s]"
]
},
{
@@ -2131,7 +2131,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3153085/4997817 [00:20<00:11, 158440.49it/s]"
+ " 62%|██████▏ | 3091569/4997817 [00:20<00:12, 152937.96it/s]"
]
},
{
@@ -2139,7 +2139,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3168962/4997817 [00:20<00:11, 158536.47it/s]"
+ " 62%|██████▏ | 3107006/4997817 [00:20<00:12, 153365.27it/s]"
]
},
{
@@ -2147,7 +2147,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▎ | 3184816/4997817 [00:20<00:11, 158462.25it/s]"
+ " 62%|██████▏ | 3122464/4997817 [00:20<00:12, 153726.15it/s]"
]
},
{
@@ -2155,7 +2155,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▍ | 3200663/4997817 [00:20<00:11, 158427.93it/s]"
+ " 63%|██████▎ | 3137871/4997817 [00:20<00:12, 153826.04it/s]"
]
},
{
@@ -2163,7 +2163,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▍ | 3216506/4997817 [00:20<00:11, 152739.19it/s]"
+ " 63%|██████▎ | 3153294/4997817 [00:20<00:11, 153944.31it/s]"
]
},
{
@@ -2171,7 +2171,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▍ | 3231824/4997817 [00:20<00:11, 152302.46it/s]"
+ " 63%|██████▎ | 3168690/4997817 [00:20<00:11, 153711.18it/s]"
]
},
{
@@ -2179,7 +2179,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▍ | 3247456/4997817 [00:20<00:11, 153479.75it/s]"
+ " 64%|██████▎ | 3184156/4997817 [00:20<00:11, 153993.35it/s]"
]
},
{
@@ -2187,7 +2187,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 3263266/4997817 [00:20<00:11, 154843.65it/s]"
+ " 64%|██████▍ | 3199654/4997817 [00:20<00:11, 154285.43it/s]"
]
},
{
@@ -2195,7 +2195,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▌ | 3278961/4997817 [00:20<00:11, 155467.09it/s]"
+ " 64%|██████▍ | 3215093/4997817 [00:21<00:11, 154314.84it/s]"
]
},
{
@@ -2203,7 +2203,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▌ | 3294621/4997817 [00:21<00:10, 155801.66it/s]"
+ " 65%|██████▍ | 3230525/4997817 [00:21<00:11, 154174.36it/s]"
]
},
{
@@ -2211,7 +2211,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▌ | 3310476/4997817 [00:21<00:10, 156619.21it/s]"
+ " 65%|██████▍ | 3245959/4997817 [00:21<00:11, 154222.84it/s]"
]
},
{
@@ -2219,7 +2219,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3326146/4997817 [00:21<00:10, 156538.20it/s]"
+ " 65%|██████▌ | 3261454/4997817 [00:21<00:11, 154437.78it/s]"
]
},
{
@@ -2227,7 +2227,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3341805/4997817 [00:21<00:10, 156132.65it/s]"
+ " 66%|██████▌ | 3276999/4997817 [00:21<00:11, 154737.68it/s]"
]
},
{
@@ -2235,7 +2235,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3357422/4997817 [00:21<00:10, 156084.14it/s]"
+ " 66%|██████▌ | 3292520/4997817 [00:21<00:11, 154877.38it/s]"
]
},
{
@@ -2243,7 +2243,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3373199/4997817 [00:21<00:10, 156586.39it/s]"
+ " 66%|██████▌ | 3308072/4997817 [00:21<00:10, 155067.71it/s]"
]
},
{
@@ -2251,7 +2251,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3388921/4997817 [00:21<00:10, 156772.64it/s]"
+ " 67%|██████▋ | 3323660/4997817 [00:21<00:10, 155309.17it/s]"
]
},
{
@@ -2259,7 +2259,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3404787/4997817 [00:21<00:10, 157334.77it/s]"
+ " 67%|██████▋ | 3339231/4997817 [00:21<00:10, 155426.78it/s]"
]
},
{
@@ -2267,7 +2267,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3420570/4997817 [00:21<00:10, 157481.43it/s]"
+ " 67%|██████▋ | 3354774/4997817 [00:21<00:10, 155101.12it/s]"
]
},
{
@@ -2275,7 +2275,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▉ | 3436319/4997817 [00:21<00:09, 157005.12it/s]"
+ " 67%|██████▋ | 3370285/4997817 [00:22<00:10, 154946.03it/s]"
]
},
{
@@ -2283,7 +2283,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▉ | 3452021/4997817 [00:22<00:09, 156563.43it/s]"
+ " 68%|██████▊ | 3385780/4997817 [00:22<00:10, 154740.56it/s]"
]
},
{
@@ -2291,7 +2291,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▉ | 3467679/4997817 [00:22<00:09, 156366.44it/s]"
+ " 68%|██████▊ | 3401255/4997817 [00:22<00:10, 154633.18it/s]"
]
},
{
@@ -2299,7 +2299,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|██████▉ | 3483371/4997817 [00:22<00:09, 156529.17it/s]"
+ " 68%|██████▊ | 3416771/4997817 [00:22<00:10, 154789.07it/s]"
]
},
{
@@ -2307,7 +2307,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|███████ | 3499025/4997817 [00:22<00:09, 156118.89it/s]"
+ " 69%|██████▊ | 3432294/4997817 [00:22<00:10, 154919.99it/s]"
]
},
{
@@ -2315,7 +2315,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|███████ | 3514638/4997817 [00:22<00:09, 155983.19it/s]"
+ " 69%|██████▉ | 3447787/4997817 [00:22<00:10, 154509.57it/s]"
]
},
{
@@ -2323,7 +2323,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████ | 3530499/4997817 [00:22<00:09, 156767.78it/s]"
+ " 69%|██████▉ | 3463239/4997817 [00:22<00:09, 154158.83it/s]"
]
},
{
@@ -2331,7 +2331,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████ | 3546177/4997817 [00:22<00:09, 150573.86it/s]"
+ " 70%|██████▉ | 3478657/4997817 [00:22<00:09, 154164.43it/s]"
]
},
{
@@ -2339,7 +2339,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████▏ | 3561940/4997817 [00:22<00:09, 152626.10it/s]"
+ " 70%|██████▉ | 3494074/4997817 [00:22<00:09, 154109.62it/s]"
]
},
{
@@ -2347,7 +2347,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3577799/4997817 [00:22<00:09, 154375.81it/s]"
+ " 70%|███████ | 3509486/4997817 [00:22<00:09, 153846.77it/s]"
]
},
{
@@ -2355,7 +2355,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3593506/4997817 [00:22<00:09, 155169.93it/s]"
+ " 71%|███████ | 3524871/4997817 [00:23<00:09, 153779.43it/s]"
]
},
{
@@ -2363,7 +2363,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3609245/4997817 [00:23<00:08, 155825.57it/s]"
+ " 71%|███████ | 3540250/4997817 [00:23<00:09, 150019.54it/s]"
]
},
{
@@ -2371,7 +2371,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3625063/4997817 [00:23<00:08, 156525.80it/s]"
+ " 71%|███████ | 3555780/4997817 [00:23<00:09, 151573.33it/s]"
]
},
{
@@ -2379,7 +2379,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3640802/4997817 [00:23<00:08, 156781.21it/s]"
+ " 71%|███████▏ | 3571388/4997817 [00:23<00:09, 152904.54it/s]"
]
},
{
@@ -2387,7 +2387,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3656490/4997817 [00:23<00:08, 156777.49it/s]"
+ " 72%|███████▏ | 3587018/4997817 [00:23<00:09, 153912.14it/s]"
]
},
{
@@ -2395,7 +2395,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3672175/4997817 [00:23<00:08, 156682.32it/s]"
+ " 72%|███████▏ | 3602592/4997817 [00:23<00:09, 154456.09it/s]"
]
},
{
@@ -2403,7 +2403,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▍ | 3687848/4997817 [00:23<00:08, 156400.67it/s]"
+ " 72%|███████▏ | 3618202/4997817 [00:23<00:08, 154943.96it/s]"
]
},
{
@@ -2411,7 +2411,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▍ | 3703492/4997817 [00:23<00:08, 149301.94it/s]"
+ " 73%|███████▎ | 3633867/4997817 [00:23<00:08, 155451.62it/s]"
]
},
{
@@ -2419,7 +2419,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▍ | 3719241/4997817 [00:23<00:08, 151670.95it/s]"
+ " 73%|███████▎ | 3649613/4997817 [00:23<00:08, 156050.70it/s]"
]
},
{
@@ -2427,7 +2427,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▍ | 3735133/4997817 [00:23<00:08, 153789.45it/s]"
+ " 73%|███████▎ | 3665222/4997817 [00:23<00:08, 155520.88it/s]"
]
},
{
@@ -2435,7 +2435,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▌ | 3750826/4997817 [00:23<00:08, 154714.31it/s]"
+ " 74%|███████▎ | 3680824/4997817 [00:24<00:08, 155667.91it/s]"
]
},
{
@@ -2443,7 +2443,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▌ | 3766665/4997817 [00:24<00:07, 155801.55it/s]"
+ " 74%|███████▍ | 3696436/4997817 [00:24<00:08, 155799.68it/s]"
]
},
{
@@ -2451,7 +2451,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▌ | 3782414/4997817 [00:24<00:07, 156300.40it/s]"
+ " 74%|███████▍ | 3712018/4997817 [00:24<00:08, 155626.58it/s]"
]
},
{
@@ -2459,7 +2459,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▌ | 3798239/4997817 [00:24<00:07, 156879.60it/s]"
+ " 75%|███████▍ | 3727582/4997817 [00:24<00:08, 155527.73it/s]"
]
},
{
@@ -2467,7 +2467,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▋ | 3813940/4997817 [00:24<00:07, 156802.78it/s]"
+ " 75%|███████▍ | 3743192/4997817 [00:24<00:08, 155697.46it/s]"
]
},
{
@@ -2475,7 +2475,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3829654/4997817 [00:24<00:07, 156902.75it/s]"
+ " 75%|███████▌ | 3758864/4997817 [00:24<00:07, 156001.08it/s]"
]
},
{
@@ -2483,7 +2483,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3845415/4997817 [00:24<00:07, 157112.21it/s]"
+ " 76%|███████▌ | 3774465/4997817 [00:24<00:07, 155942.73it/s]"
]
},
{
@@ -2491,7 +2491,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3861131/4997817 [00:24<00:07, 149791.11it/s]"
+ " 76%|███████▌ | 3790060/4997817 [00:24<00:07, 155846.73it/s]"
]
},
{
@@ -2499,7 +2499,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3876805/4997817 [00:24<00:07, 151803.13it/s]"
+ " 76%|███████▌ | 3805655/4997817 [00:24<00:07, 155874.94it/s]"
]
},
{
@@ -2507,7 +2507,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3892531/4997817 [00:24<00:07, 153399.31it/s]"
+ " 76%|███████▋ | 3821286/4997817 [00:24<00:07, 156002.39it/s]"
]
},
{
@@ -2515,7 +2515,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3908365/4997817 [00:24<00:07, 154853.02it/s]"
+ " 77%|███████▋ | 3836896/4997817 [00:25<00:07, 156028.58it/s]"
]
},
{
@@ -2523,7 +2523,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▊ | 3924007/4997817 [00:25<00:06, 155315.84it/s]"
+ " 77%|███████▋ | 3852499/4997817 [00:25<00:07, 152987.39it/s]"
]
},
{
@@ -2531,7 +2531,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▉ | 3939657/4997817 [00:25<00:06, 155666.24it/s]"
+ " 77%|███████▋ | 3867811/4997817 [00:25<00:07, 152936.27it/s]"
]
},
{
@@ -2539,7 +2539,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▉ | 3955298/4997817 [00:25<00:06, 155885.98it/s]"
+ " 78%|███████▊ | 3883118/4997817 [00:25<00:07, 152974.51it/s]"
]
},
{
@@ -2547,7 +2547,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▉ | 3971013/4997817 [00:25<00:06, 156261.08it/s]"
+ " 78%|███████▊ | 3898474/4997817 [00:25<00:07, 153146.65it/s]"
]
},
{
@@ -2555,7 +2555,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|███████▉ | 3986648/4997817 [00:25<00:06, 156206.18it/s]"
+ " 78%|███████▊ | 3913835/4997817 [00:25<00:07, 153283.47it/s]"
]
},
{
@@ -2563,7 +2563,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 4002427/4997817 [00:25<00:06, 156679.10it/s]"
+ " 79%|███████▊ | 3929171/4997817 [00:25<00:06, 153303.11it/s]"
]
},
{
@@ -2571,7 +2571,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 4018107/4997817 [00:25<00:06, 156712.11it/s]"
+ " 79%|███████▉ | 3944504/4997817 [00:25<00:06, 153202.33it/s]"
]
},
{
@@ -2579,7 +2579,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████ | 4033909/4997817 [00:25<00:06, 157100.90it/s]"
+ " 79%|███████▉ | 3959826/4997817 [00:25<00:06, 153109.22it/s]"
]
},
{
@@ -2587,7 +2587,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████ | 4049890/4997817 [00:25<00:06, 157909.25it/s]"
+ " 80%|███████▉ | 3975139/4997817 [00:25<00:06, 152900.48it/s]"
]
},
{
@@ -2595,7 +2595,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████▏ | 4065683/4997817 [00:25<00:05, 157871.51it/s]"
+ " 80%|███████▉ | 3990438/4997817 [00:26<00:06, 152926.33it/s]"
]
},
{
@@ -2603,7 +2603,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 4081537/4997817 [00:26<00:05, 158070.39it/s]"
+ " 80%|████████ | 4005732/4997817 [00:26<00:06, 152857.34it/s]"
]
},
{
@@ -2611,7 +2611,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 4097345/4997817 [00:26<00:05, 157299.04it/s]"
+ " 80%|████████ | 4021019/4997817 [00:26<00:06, 152542.85it/s]"
]
},
{
@@ -2619,7 +2619,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 4113090/4997817 [00:26<00:05, 157342.97it/s]"
+ " 81%|████████ | 4036305/4997817 [00:26<00:06, 152636.49it/s]"
]
},
{
@@ -2627,7 +2627,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4128923/4997817 [00:26<00:05, 157636.66it/s]"
+ " 81%|████████ | 4051573/4997817 [00:26<00:06, 152648.36it/s]"
]
},
{
@@ -2635,7 +2635,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4144717/4997817 [00:26<00:05, 157724.83it/s]"
+ " 81%|████████▏ | 4066839/4997817 [00:26<00:06, 152533.67it/s]"
]
},
{
@@ -2643,7 +2643,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4160491/4997817 [00:26<00:05, 156872.74it/s]"
+ " 82%|████████▏ | 4082093/4997817 [00:26<00:06, 152336.71it/s]"
]
},
{
@@ -2651,7 +2651,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▎ | 4176270/4997817 [00:26<00:05, 157143.87it/s]"
+ " 82%|████████▏ | 4097327/4997817 [00:26<00:05, 152163.50it/s]"
]
},
{
@@ -2659,7 +2659,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▍ | 4191986/4997817 [00:26<00:05, 156705.80it/s]"
+ " 82%|████████▏ | 4112615/4997817 [00:26<00:05, 152376.95it/s]"
]
},
{
@@ -2667,7 +2667,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▍ | 4207687/4997817 [00:26<00:05, 156795.37it/s]"
+ " 83%|████████▎ | 4127853/4997817 [00:26<00:05, 152370.07it/s]"
]
},
{
@@ -2675,7 +2675,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▍ | 4223368/4997817 [00:27<00:04, 156774.64it/s]"
+ " 83%|████████▎ | 4143140/4997817 [00:27<00:05, 152517.42it/s]"
]
},
{
@@ -2683,7 +2683,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▍ | 4239057/4997817 [00:27<00:04, 156807.42it/s]"
+ " 83%|████████▎ | 4158392/4997817 [00:27<00:05, 152364.26it/s]"
]
},
{
@@ -2691,7 +2691,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 4254974/4997817 [00:27<00:04, 157512.99it/s]"
+ " 84%|████████▎ | 4173629/4997817 [00:27<00:05, 152185.01it/s]"
]
},
{
@@ -2699,7 +2699,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 4270726/4997817 [00:27<00:04, 157435.50it/s]"
+ " 84%|████████▍ | 4188848/4997817 [00:27<00:05, 151949.48it/s]"
]
},
{
@@ -2707,7 +2707,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▌ | 4286487/4997817 [00:27<00:04, 157484.80it/s]"
+ " 84%|████████▍ | 4204044/4997817 [00:27<00:05, 151851.46it/s]"
]
},
{
@@ -2715,7 +2715,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▌ | 4302390/4997817 [00:27<00:04, 157944.19it/s]"
+ " 84%|████████▍ | 4219254/4997817 [00:27<00:05, 151923.42it/s]"
]
},
{
@@ -2723,7 +2723,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▋ | 4318225/4997817 [00:27<00:04, 158063.31it/s]"
+ " 85%|████████▍ | 4234584/4997817 [00:27<00:05, 152332.79it/s]"
]
},
{
@@ -2731,7 +2731,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4334032/4997817 [00:27<00:04, 157438.17it/s]"
+ " 85%|████████▌ | 4249983/4997817 [00:27<00:04, 152827.95it/s]"
]
},
{
@@ -2739,7 +2739,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4349777/4997817 [00:27<00:04, 155772.41it/s]"
+ " 85%|████████▌ | 4265311/4997817 [00:27<00:04, 152960.56it/s]"
]
},
{
@@ -2747,7 +2747,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4365518/4997817 [00:27<00:04, 156256.58it/s]"
+ " 86%|████████▌ | 4280651/4997817 [00:27<00:04, 153091.49it/s]"
]
},
{
@@ -2755,7 +2755,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4381296/4997817 [00:28<00:03, 156707.57it/s]"
+ " 86%|████████▌ | 4296017/4997817 [00:28<00:04, 153259.94it/s]"
]
},
{
@@ -2763,7 +2763,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4396970/4997817 [00:28<00:03, 156686.51it/s]"
+ " 86%|████████▋ | 4311408/4997817 [00:28<00:04, 153452.21it/s]"
]
},
{
@@ -2771,7 +2771,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4412707/4997817 [00:28<00:03, 156888.43it/s]"
+ " 87%|████████▋ | 4326754/4997817 [00:28<00:04, 152548.60it/s]"
]
},
{
@@ -2779,7 +2779,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▊ | 4428410/4997817 [00:28<00:03, 156928.60it/s]"
+ " 87%|████████▋ | 4342011/4997817 [00:28<00:04, 146019.12it/s]"
]
},
{
@@ -2787,7 +2787,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▉ | 4444117/4997817 [00:28<00:03, 156967.74it/s]"
+ " 87%|████████▋ | 4356671/4997817 [00:28<00:04, 143165.92it/s]"
]
},
{
@@ -2795,7 +2795,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▉ | 4459833/4997817 [00:28<00:03, 157023.15it/s]"
+ " 87%|████████▋ | 4372052/4997817 [00:28<00:04, 146236.88it/s]"
]
},
{
@@ -2803,7 +2803,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|████████▉ | 4475693/4997817 [00:28<00:03, 157493.26it/s]"
+ " 88%|████████▊ | 4387393/4997817 [00:28<00:04, 148328.18it/s]"
]
},
{
@@ -2811,7 +2811,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|████████▉ | 4491443/4997817 [00:28<00:03, 157450.30it/s]"
+ " 88%|████████▊ | 4402842/4997817 [00:28<00:03, 150140.65it/s]"
]
},
{
@@ -2819,7 +2819,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|█████████ | 4507189/4997817 [00:28<00:03, 156978.72it/s]"
+ " 88%|████████▊ | 4418223/4997817 [00:28<00:03, 151224.77it/s]"
]
},
{
@@ -2827,7 +2827,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|█████████ | 4522888/4997817 [00:28<00:03, 156554.26it/s]"
+ " 89%|████████▊ | 4433607/4997817 [00:28<00:03, 152001.04it/s]"
]
},
{
@@ -2835,7 +2835,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████ | 4538611/4997817 [00:29<00:02, 156752.36it/s]"
+ " 89%|████████▉ | 4449002/4997817 [00:29<00:03, 152579.42it/s]"
]
},
{
@@ -2843,7 +2843,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████ | 4554306/4997817 [00:29<00:02, 156809.53it/s]"
+ " 89%|████████▉ | 4464272/4997817 [00:29<00:03, 152426.43it/s]"
]
},
{
@@ -2851,7 +2851,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████▏| 4569988/4997817 [00:29<00:02, 156729.80it/s]"
+ " 90%|████████▉ | 4479523/4997817 [00:29<00:03, 152428.42it/s]"
]
},
{
@@ -2859,7 +2859,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▏| 4585739/4997817 [00:29<00:02, 156962.06it/s]"
+ " 90%|████████▉ | 4494806/4997817 [00:29<00:03, 152545.86it/s]"
]
},
{
@@ -2867,7 +2867,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▏| 4601436/4997817 [00:29<00:02, 156402.11it/s]"
+ " 90%|█████████ | 4510131/4997817 [00:29<00:03, 152754.74it/s]"
]
},
{
@@ -2875,7 +2875,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▏| 4617077/4997817 [00:29<00:02, 156194.85it/s]"
+ " 91%|█████████ | 4525561/4997817 [00:29<00:03, 153216.03it/s]"
]
},
{
@@ -2883,7 +2883,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4632697/4997817 [00:29<00:02, 156080.37it/s]"
+ " 91%|█████████ | 4540975/4997817 [00:29<00:02, 153489.90it/s]"
]
},
{
@@ -2891,7 +2891,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4648347/4997817 [00:29<00:02, 156202.94it/s]"
+ " 91%|█████████ | 4556343/4997817 [00:29<00:02, 153544.85it/s]"
]
},
{
@@ -2899,7 +2899,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4663968/4997817 [00:29<00:02, 156055.83it/s]"
+ " 91%|█████████▏| 4571699/4997817 [00:29<00:02, 153344.99it/s]"
]
},
{
@@ -2907,7 +2907,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▎| 4679632/4997817 [00:29<00:02, 156227.75it/s]"
+ " 92%|█████████▏| 4587137/4997817 [00:29<00:02, 153652.50it/s]"
]
},
{
@@ -2915,7 +2915,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▍| 4695464/4997817 [00:30<00:01, 156851.09it/s]"
+ " 92%|█████████▏| 4602503/4997817 [00:30<00:02, 152544.98it/s]"
]
},
{
@@ -2923,7 +2923,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▍| 4711162/4997817 [00:30<00:01, 156888.87it/s]"
+ " 92%|█████████▏| 4617815/4997817 [00:30<00:02, 152714.70it/s]"
]
},
{
@@ -2931,7 +2931,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▍| 4726852/4997817 [00:30<00:01, 156657.34it/s]"
+ " 93%|█████████▎| 4633089/4997817 [00:30<00:02, 152619.02it/s]"
]
},
{
@@ -2939,7 +2939,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▍| 4742518/4997817 [00:30<00:01, 155928.36it/s]"
+ " 93%|█████████▎| 4648352/4997817 [00:30<00:02, 152497.75it/s]"
]
},
{
@@ -2947,7 +2947,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▌| 4758112/4997817 [00:30<00:01, 155515.35it/s]"
+ " 93%|█████████▎| 4663603/4997817 [00:30<00:02, 152136.13it/s]"
]
},
{
@@ -2955,7 +2955,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4773665/4997817 [00:30<00:01, 155226.11it/s]"
+ " 94%|█████████▎| 4678818/4997817 [00:30<00:02, 152106.28it/s]"
]
},
{
@@ -2963,7 +2963,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4789274/4997817 [00:30<00:01, 155482.98it/s]"
+ " 94%|█████████▍| 4694030/4997817 [00:30<00:02, 151854.91it/s]"
]
},
{
@@ -2971,7 +2971,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4804823/4997817 [00:30<00:01, 155475.59it/s]"
+ " 94%|█████████▍| 4709280/4997817 [00:30<00:01, 152044.63it/s]"
]
},
{
@@ -2979,7 +2979,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▋| 4820501/4997817 [00:30<00:01, 155864.47it/s]"
+ " 95%|█████████▍| 4724493/4997817 [00:30<00:01, 152068.71it/s]"
]
},
{
@@ -2987,7 +2987,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4836088/4997817 [00:30<00:01, 153480.86it/s]"
+ " 95%|█████████▍| 4739701/4997817 [00:30<00:01, 151711.77it/s]"
]
},
{
@@ -2995,7 +2995,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4851877/4997817 [00:31<00:00, 154785.46it/s]"
+ " 95%|█████████▌| 4754873/4997817 [00:31<00:01, 151651.43it/s]"
]
},
{
@@ -3003,7 +3003,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4867810/4997817 [00:31<00:00, 156136.32it/s]"
+ " 95%|█████████▌| 4770039/4997817 [00:31<00:01, 151529.67it/s]"
]
},
{
@@ -3011,7 +3011,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4883492/4997817 [00:31<00:00, 156338.70it/s]"
+ " 96%|█████████▌| 4785193/4997817 [00:31<00:01, 144986.69it/s]"
]
},
{
@@ -3019,7 +3019,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4899335/4997817 [00:31<00:00, 156962.64it/s]"
+ " 96%|█████████▌| 4800427/4997817 [00:31<00:01, 147118.66it/s]"
]
},
{
@@ -3027,7 +3027,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4915035/4997817 [00:31<00:00, 156952.60it/s]"
+ " 96%|█████████▋| 4815695/4997817 [00:31<00:01, 148746.84it/s]"
]
},
{
@@ -3035,7 +3035,7 @@
"output_type": "stream",
"text": [
"\r",
- " 99%|█████████▊| 4930771/4997817 [00:31<00:00, 157073.26it/s]"
+ " 97%|█████████▋| 4830915/4997817 [00:31<00:01, 149764.67it/s]"
]
},
{
@@ -3043,7 +3043,7 @@
"output_type": "stream",
"text": [
"\r",
- " 99%|█████████▉| 4946661/4997817 [00:31<00:00, 157619.04it/s]"
+ " 97%|█████████▋| 4846166/4997817 [00:31<00:01, 150577.01it/s]"
]
},
{
@@ -3051,7 +3051,7 @@
"output_type": "stream",
"text": [
"\r",
- " 99%|█████████▉| 4962654/4997817 [00:31<00:00, 158309.38it/s]"
+ " 97%|█████████▋| 4861567/4997817 [00:31<00:00, 151598.14it/s]"
]
},
{
@@ -3059,7 +3059,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|█████████▉| 4978486/4997817 [00:31<00:00, 158262.73it/s]"
+ " 98%|█████████▊| 4877000/4997817 [00:31<00:00, 152411.99it/s]"
]
},
{
@@ -3067,7 +3067,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|█████████▉| 4994313/4997817 [00:31<00:00, 157585.79it/s]"
+ " 98%|█████████▊| 4892397/4997817 [00:31<00:00, 152874.78it/s]"
]
},
{
@@ -3075,7 +3075,55 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 4997817/4997817 [00:31<00:00, 156453.81it/s]"
+ " 98%|█████████▊| 4907722/4997817 [00:32<00:00, 152985.33it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▊| 4923092/4997817 [00:32<00:00, 153197.61it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▉| 4938516/4997817 [00:32<00:00, 153507.32it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▉| 4953976/4997817 [00:32<00:00, 153831.22it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▉| 4969481/4997817 [00:32<00:00, 154193.45it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ "100%|█████████▉| 4985021/4997817 [00:32<00:00, 154553.84it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ "100%|██████████| 4997817/4997817 [00:32<00:00, 153025.88it/s]"
]
},
{
@@ -3314,10 +3362,10 @@
"id": "c8f4e163",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:53:45.555956Z",
- "iopub.status.busy": "2024-02-12T22:53:45.555749Z",
- "iopub.status.idle": "2024-02-12T22:53:59.964689Z",
- "shell.execute_reply": "2024-02-12T22:53:59.964124Z"
+ "iopub.execute_input": "2024-02-13T00:00:15.197315Z",
+ "iopub.status.busy": "2024-02-13T00:00:15.196990Z",
+ "iopub.status.idle": "2024-02-13T00:00:29.551906Z",
+ "shell.execute_reply": "2024-02-13T00:00:29.551335Z"
}
},
"outputs": [],
@@ -3331,10 +3379,10 @@
"id": "716c74f3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:53:59.967161Z",
- "iopub.status.busy": "2024-02-12T22:53:59.966959Z",
- "iopub.status.idle": "2024-02-12T22:54:03.755587Z",
- "shell.execute_reply": "2024-02-12T22:54:03.754987Z"
+ "iopub.execute_input": "2024-02-13T00:00:29.554426Z",
+ "iopub.status.busy": "2024-02-13T00:00:29.554217Z",
+ "iopub.status.idle": "2024-02-13T00:00:33.358401Z",
+ "shell.execute_reply": "2024-02-13T00:00:33.357855Z"
}
},
"outputs": [
@@ -3403,17 +3451,17 @@
"id": "db0b5179",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:03.757812Z",
- "iopub.status.busy": "2024-02-12T22:54:03.757413Z",
- "iopub.status.idle": "2024-02-12T22:54:05.147215Z",
- "shell.execute_reply": "2024-02-12T22:54:05.146593Z"
+ "iopub.execute_input": "2024-02-13T00:00:33.360512Z",
+ "iopub.status.busy": "2024-02-13T00:00:33.360328Z",
+ "iopub.status.idle": "2024-02-13T00:00:34.694210Z",
+ "shell.execute_reply": "2024-02-13T00:00:34.693642Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "0387b2866d8f467cb62e5e3265e23ef5",
+ "model_id": "f0bb13de1feb41efa0c5ce2968eb9a0c",
"version_major": 2,
"version_minor": 0
},
@@ -3443,10 +3491,10 @@
"id": "390780a1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:05.149682Z",
- "iopub.status.busy": "2024-02-12T22:54:05.149490Z",
- "iopub.status.idle": "2024-02-12T22:54:05.707619Z",
- "shell.execute_reply": "2024-02-12T22:54:05.706968Z"
+ "iopub.execute_input": "2024-02-13T00:00:34.696669Z",
+ "iopub.status.busy": "2024-02-13T00:00:34.696341Z",
+ "iopub.status.idle": "2024-02-13T00:00:35.254241Z",
+ "shell.execute_reply": "2024-02-13T00:00:35.253554Z"
}
},
"outputs": [],
@@ -3460,10 +3508,10 @@
"id": "933d6ef0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:05.710106Z",
- "iopub.status.busy": "2024-02-12T22:54:05.709926Z",
- "iopub.status.idle": "2024-02-12T22:54:11.811784Z",
- "shell.execute_reply": "2024-02-12T22:54:11.811264Z"
+ "iopub.execute_input": "2024-02-13T00:00:35.256646Z",
+ "iopub.status.busy": "2024-02-13T00:00:35.256458Z",
+ "iopub.status.idle": "2024-02-13T00:00:41.339870Z",
+ "shell.execute_reply": "2024-02-13T00:00:41.339279Z"
}
},
"outputs": [
@@ -3536,10 +3584,10 @@
"id": "86bac686",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:11.813857Z",
- "iopub.status.busy": "2024-02-12T22:54:11.813677Z",
- "iopub.status.idle": "2024-02-12T22:54:11.870372Z",
- "shell.execute_reply": "2024-02-12T22:54:11.869829Z"
+ "iopub.execute_input": "2024-02-13T00:00:41.341974Z",
+ "iopub.status.busy": "2024-02-13T00:00:41.341792Z",
+ "iopub.status.idle": "2024-02-13T00:00:41.397918Z",
+ "shell.execute_reply": "2024-02-13T00:00:41.397377Z"
},
"nbsphinx": "hidden"
},
@@ -3583,31 +3631,33 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "0387b2866d8f467cb62e5e3265e23ef5": {
+ "02cce28475484b248b560df004c278d1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c79821bef648497db90cfd645a67df4b",
- "IPY_MODEL_579f865b5bd743edba48df8122cb553a",
- "IPY_MODEL_c260ed374dfd4c9cb544202c8f506e41"
- ],
- "layout": "IPY_MODEL_88b842b72de04edc87515d98ff68284e",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_5d987a2f82f74f9889b35eb32fc4cf3f",
+ "max": 30.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_92bb15b623ce44ee872408672d874c1b",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": 30.0
}
},
- "0531e34bf2dd46c49fdc9b88cc895727": {
+ "06f82056e0534017b3a00b864b66c31c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3660,43 +3710,76 @@
"width": null
}
},
- "0b2040caccfd4c00acc417c4f8752dc4": {
- "model_module": "@jupyter-widgets/controls",
+ "1e33abd9644b4423930453a3dd438e62": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "0ca2ac531b144d89b7fb089b7ce6596f": {
+ "37c2539d85ab4ef8b8a92ac6bd6f7fcc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "0dc333dee1db4b1ca087bed5813bf9d4": {
+ "4533c7417099431c87e9022a5d079d33": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3749,33 +3832,7 @@
"width": null
}
},
- "11738a5eee594ccfac173c08d502b974": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_aaabd5e05bf04f79925c8a7d95a649b7",
- "max": 30.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_4b13f63d6ee9448dae20577d52581101",
- "tabbable": null,
- "tooltip": null,
- "value": 30.0
- }
- },
- "213512a25593456fb9600587043fc65d": {
+ "4c137a78c38644a19654bf1f8a339d4e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3828,49 +3885,7 @@
"width": null
}
},
- "3bd6d26e310b400bbb26cd8a2bd4b8ac": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "3db2ca6b30ef473f94f3cae0c359480f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a999785b413b4a13825b5f1d4c9f61ca",
- "IPY_MODEL_6ba82482c80e4e06a862a04c3259f8f4",
- "IPY_MODEL_ea569cccba2f4da598c784666dda7e09"
- ],
- "layout": "IPY_MODEL_0dc333dee1db4b1ca087bed5813bf9d4",
- "tabbable": null,
- "tooltip": null
- }
- },
- "4783c08bce86475a93aea98a7887d9e7": {
+ "5d987a2f82f74f9889b35eb32fc4cf3f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3923,49 +3938,48 @@
"width": null
}
},
- "4b13f63d6ee9448dae20577d52581101": {
+ "629b0da6749442d5bf5388b82c0de389": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_bd9a53f64cf14ea597e51ad91ccd9b50",
+ "placeholder": "",
+ "style": "IPY_MODEL_f3f2bfde852c4cebbde8872f495bf013",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 30/30 [00:00<00:00, 437.04it/s]"
}
},
- "579f865b5bd743edba48df8122cb553a": {
+ "69118f8b89b64c938496e7cfebe2307b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4783c08bce86475a93aea98a7887d9e7",
- "max": 30.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_f76e05781be34103be010b3daa3719cc",
- "tabbable": null,
- "tooltip": null,
- "value": 30.0
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "5e7dc5a3bcdb4ff4a164aafbb6371297": {
+ "715a8333c1ca4e64a7474cad9e196d00": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4018,7 +4032,111 @@
"width": null
}
},
- "6020e05ab3fd48c587db6bd96d086775": {
+ "801e53b214db49aeba2adfbec1bf0296": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_4c137a78c38644a19654bf1f8a339d4e",
+ "placeholder": "",
+ "style": "IPY_MODEL_b8f60a6056284e6fb04100c0a87d710a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 30/30 [00:01<00:00, 22.84it/s]"
+ }
+ },
+ "916cbb0b34df44aabdb6b5173ee005cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "92bb15b623ce44ee872408672d874c1b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "97cfc1a4a6ea4ed9a113a0b824086321": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_4533c7417099431c87e9022a5d079d33",
+ "max": 30.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_916cbb0b34df44aabdb6b5173ee005cf",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 30.0
+ }
+ },
+ "a74acfe642144e979eba718fcab7aeae": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_1e33abd9644b4423930453a3dd438e62",
+ "placeholder": "",
+ "style": "IPY_MODEL_e0f0f6210c4e41a3a63f2ee8c052800d",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 30/30 [00:21<00:00, 1.38it/s]"
+ }
+ },
+ "a8af7b27543c4fccaceb925bd2689db6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4071,49 +4189,30 @@
"width": null
}
},
- "6ba82482c80e4e06a862a04c3259f8f4": {
+ "af33eb7620314a65ae9be5942c5bb1de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_c9c37607b40e4feca16db119f7ac6e2a",
- "max": 30.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6f416afa87b04febb3a3ca3ce6530763",
+ "layout": "IPY_MODEL_ff8db72843434e2fba12fbee26dfc840",
+ "placeholder": "",
+ "style": "IPY_MODEL_ea1c7df63b7f4886b0304e6ece563441",
"tabbable": null,
"tooltip": null,
- "value": 30.0
- }
- },
- "6f416afa87b04febb3a3ca3ce6530763": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": "number of examples processed for estimating thresholds: 100%"
}
},
- "860dc6edad67450c869b455315469967": {
+ "b8f60a6056284e6fb04100c0a87d710a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -4131,7 +4230,7 @@
"text_color": null
}
},
- "88b842b72de04edc87515d98ff68284e": {
+ "bd9a53f64cf14ea597e51ad91ccd9b50": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4184,7 +4283,7 @@
"width": null
}
},
- "9b370cf0ef0c44b5812a70f328154e99": {
+ "c26106f7d46e4f6fbcfa0d3b50eb9e0a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -4202,30 +4301,7 @@
"text_color": null
}
},
- "a06c5e3711a14c0881858ae91aff594a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_a3afab877b754e978e07ba1464387c30",
- "placeholder": "",
- "style": "IPY_MODEL_c6e60a1123d1437388ed18d473229336",
- "tabbable": null,
- "tooltip": null,
- "value": " 30/30 [00:21<00:00, 1.42it/s]"
- }
- },
- "a3afab877b754e978e07ba1464387c30": {
+ "c4b62df35a2e441ca05e4aa8bd3c1c28": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4278,30 +4354,31 @@
"width": null
}
},
- "a999785b413b4a13825b5f1d4c9f61ca": {
+ "cc97231b3c294c33a39161229bb2b2a4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_d544b392aefb4a9f9175757bf306c09b",
- "placeholder": "",
- "style": "IPY_MODEL_0ca2ac531b144d89b7fb089b7ce6596f",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f6e36cd8b6f747e4aacfec89a9314017",
+ "IPY_MODEL_02cce28475484b248b560df004c278d1",
+ "IPY_MODEL_a74acfe642144e979eba718fcab7aeae"
+ ],
+ "layout": "IPY_MODEL_06f82056e0534017b3a00b864b66c31c",
"tabbable": null,
- "tooltip": null,
- "value": "number of examples processed for estimating thresholds: 100%"
+ "tooltip": null
}
},
- "aaabd5e05bf04f79925c8a7d95a649b7": {
+ "d08da8912ed2492aa4b75a5439cce724": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4354,7 +4431,7 @@
"width": null
}
},
- "c260ed374dfd4c9cb544202c8f506e41": {
+ "d6cb9d6d336e47d6a3c09f0194e4bbd9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4369,15 +4446,41 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_0531e34bf2dd46c49fdc9b88cc895727",
+ "layout": "IPY_MODEL_a8af7b27543c4fccaceb925bd2689db6",
"placeholder": "",
- "style": "IPY_MODEL_0b2040caccfd4c00acc417c4f8752dc4",
+ "style": "IPY_MODEL_69118f8b89b64c938496e7cfebe2307b",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "images processed using softmin: 100%"
+ }
+ },
+ "e02ffa1980aa4867b917f66d6d190df0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d08da8912ed2492aa4b75a5439cce724",
+ "max": 30.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_37c2539d85ab4ef8b8a92ac6bd6f7fcc",
"tabbable": null,
"tooltip": null,
- "value": " 30/30 [00:01<00:00, 22.01it/s]"
+ "value": 30.0
}
},
- "c6e60a1123d1437388ed18d473229336": {
+ "e0f0f6210c4e41a3a63f2ee8c052800d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -4395,30 +4498,25 @@
"text_color": null
}
},
- "c79821bef648497db90cfd645a67df4b": {
+ "ea1c7df63b7f4886b0304e6ece563441": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_5e7dc5a3bcdb4ff4a164aafbb6371297",
- "placeholder": "",
- "style": "IPY_MODEL_3bd6d26e310b400bbb26cd8a2bd4b8ac",
- "tabbable": null,
- "tooltip": null,
- "value": "images processed using softmin: 100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "c9c37607b40e4feca16db119f7ac6e2a": {
+ "eb81b9af8ad84bebadb0b0a89a4f42dd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4471,7 +4569,7 @@
"width": null
}
},
- "cc90f9418f084e469e82a2102f599dc6": {
+ "f0bb13de1feb41efa0c5ce2968eb9a0c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -4486,92 +4584,58 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_ddda40fc9f0b44fc9ce6c1db71ee9a44",
- "IPY_MODEL_11738a5eee594ccfac173c08d502b974",
- "IPY_MODEL_a06c5e3711a14c0881858ae91aff594a"
+ "IPY_MODEL_d6cb9d6d336e47d6a3c09f0194e4bbd9",
+ "IPY_MODEL_97cfc1a4a6ea4ed9a113a0b824086321",
+ "IPY_MODEL_801e53b214db49aeba2adfbec1bf0296"
],
- "layout": "IPY_MODEL_6020e05ab3fd48c587db6bd96d086775",
+ "layout": "IPY_MODEL_eb81b9af8ad84bebadb0b0a89a4f42dd",
"tabbable": null,
"tooltip": null
}
},
- "d544b392aefb4a9f9175757bf306c09b": {
- "model_module": "@jupyter-widgets/base",
+ "f3f2bfde852c4cebbde8872f495bf013": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "ddda40fc9f0b44fc9ce6c1db71ee9a44": {
+ "f5ce7cecdffc49ffac8772d9b3b7f8a1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f788e14198644ea087bd9e9b8d8cbfd5",
- "placeholder": "",
- "style": "IPY_MODEL_860dc6edad67450c869b455315469967",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_af33eb7620314a65ae9be5942c5bb1de",
+ "IPY_MODEL_e02ffa1980aa4867b917f66d6d190df0",
+ "IPY_MODEL_629b0da6749442d5bf5388b82c0de389"
+ ],
+ "layout": "IPY_MODEL_715a8333c1ca4e64a7474cad9e196d00",
"tabbable": null,
- "tooltip": null,
- "value": "number of examples processed for checking labels: 100%"
+ "tooltip": null
}
},
- "ea569cccba2f4da598c784666dda7e09": {
+ "f6e36cd8b6f747e4aacfec89a9314017": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4586,31 +4650,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_213512a25593456fb9600587043fc65d",
+ "layout": "IPY_MODEL_c4b62df35a2e441ca05e4aa8bd3c1c28",
"placeholder": "",
- "style": "IPY_MODEL_9b370cf0ef0c44b5812a70f328154e99",
+ "style": "IPY_MODEL_c26106f7d46e4f6fbcfa0d3b50eb9e0a",
"tabbable": null,
"tooltip": null,
- "value": " 30/30 [00:00<00:00, 450.39it/s]"
- }
- },
- "f76e05781be34103be010b3daa3719cc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": "number of examples processed for checking labels: 100%"
}
},
- "f788e14198644ea087bd9e9b8d8cbfd5": {
+ "ff8db72843434e2fba12fbee26dfc840": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
index 25e520b7f..d667a3e35 100644
--- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
@@ -112,10 +112,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:15.718588Z",
- "iopub.status.busy": "2024-02-12T22:54:15.718422Z",
- "iopub.status.idle": "2024-02-12T22:54:16.895172Z",
- "shell.execute_reply": "2024-02-12T22:54:16.894569Z"
+ "iopub.execute_input": "2024-02-13T00:00:45.146100Z",
+ "iopub.status.busy": "2024-02-13T00:00:45.145933Z",
+ "iopub.status.idle": "2024-02-13T00:00:46.285124Z",
+ "shell.execute_reply": "2024-02-13T00:00:46.284585Z"
},
"nbsphinx": "hidden"
},
@@ -125,7 +125,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -150,10 +150,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:16.897765Z",
- "iopub.status.busy": "2024-02-12T22:54:16.897499Z",
- "iopub.status.idle": "2024-02-12T22:54:16.921077Z",
- "shell.execute_reply": "2024-02-12T22:54:16.920649Z"
+ "iopub.execute_input": "2024-02-13T00:00:46.287665Z",
+ "iopub.status.busy": "2024-02-13T00:00:46.287240Z",
+ "iopub.status.idle": "2024-02-13T00:00:46.311201Z",
+ "shell.execute_reply": "2024-02-13T00:00:46.310783Z"
}
},
"outputs": [],
@@ -194,10 +194,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:16.923127Z",
- "iopub.status.busy": "2024-02-12T22:54:16.922788Z",
- "iopub.status.idle": "2024-02-12T22:54:17.029530Z",
- "shell.execute_reply": "2024-02-12T22:54:17.029032Z"
+ "iopub.execute_input": "2024-02-13T00:00:46.313407Z",
+ "iopub.status.busy": "2024-02-13T00:00:46.313032Z",
+ "iopub.status.idle": "2024-02-13T00:00:46.343834Z",
+ "shell.execute_reply": "2024-02-13T00:00:46.343309Z"
}
},
"outputs": [
@@ -304,10 +304,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:17.031676Z",
- "iopub.status.busy": "2024-02-12T22:54:17.031340Z",
- "iopub.status.idle": "2024-02-12T22:54:17.034673Z",
- "shell.execute_reply": "2024-02-12T22:54:17.034250Z"
+ "iopub.execute_input": "2024-02-13T00:00:46.345840Z",
+ "iopub.status.busy": "2024-02-13T00:00:46.345503Z",
+ "iopub.status.idle": "2024-02-13T00:00:46.348832Z",
+ "shell.execute_reply": "2024-02-13T00:00:46.348402Z"
}
},
"outputs": [],
@@ -328,10 +328,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:17.036735Z",
- "iopub.status.busy": "2024-02-12T22:54:17.036414Z",
- "iopub.status.idle": "2024-02-12T22:54:17.044159Z",
- "shell.execute_reply": "2024-02-12T22:54:17.043749Z"
+ "iopub.execute_input": "2024-02-13T00:00:46.350791Z",
+ "iopub.status.busy": "2024-02-13T00:00:46.350617Z",
+ "iopub.status.idle": "2024-02-13T00:00:46.359163Z",
+ "shell.execute_reply": "2024-02-13T00:00:46.358757Z"
}
},
"outputs": [],
@@ -383,10 +383,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:17.046090Z",
- "iopub.status.busy": "2024-02-12T22:54:17.045836Z",
- "iopub.status.idle": "2024-02-12T22:54:17.048332Z",
- "shell.execute_reply": "2024-02-12T22:54:17.047898Z"
+ "iopub.execute_input": "2024-02-13T00:00:46.361190Z",
+ "iopub.status.busy": "2024-02-13T00:00:46.360858Z",
+ "iopub.status.idle": "2024-02-13T00:00:46.363354Z",
+ "shell.execute_reply": "2024-02-13T00:00:46.362920Z"
}
},
"outputs": [],
@@ -408,10 +408,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:17.050177Z",
- "iopub.status.busy": "2024-02-12T22:54:17.049877Z",
- "iopub.status.idle": "2024-02-12T22:54:17.569792Z",
- "shell.execute_reply": "2024-02-12T22:54:17.569242Z"
+ "iopub.execute_input": "2024-02-13T00:00:46.365203Z",
+ "iopub.status.busy": "2024-02-13T00:00:46.365027Z",
+ "iopub.status.idle": "2024-02-13T00:00:46.879652Z",
+ "shell.execute_reply": "2024-02-13T00:00:46.879111Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:17.572274Z",
- "iopub.status.busy": "2024-02-12T22:54:17.571874Z",
- "iopub.status.idle": "2024-02-12T22:54:19.233873Z",
- "shell.execute_reply": "2024-02-12T22:54:19.233192Z"
+ "iopub.execute_input": "2024-02-13T00:00:46.881975Z",
+ "iopub.status.busy": "2024-02-13T00:00:46.881781Z",
+ "iopub.status.idle": "2024-02-13T00:00:48.497589Z",
+ "shell.execute_reply": "2024-02-13T00:00:48.496946Z"
}
},
"outputs": [
@@ -480,10 +480,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:19.236985Z",
- "iopub.status.busy": "2024-02-12T22:54:19.236199Z",
- "iopub.status.idle": "2024-02-12T22:54:19.248159Z",
- "shell.execute_reply": "2024-02-12T22:54:19.247708Z"
+ "iopub.execute_input": "2024-02-13T00:00:48.500297Z",
+ "iopub.status.busy": "2024-02-13T00:00:48.499626Z",
+ "iopub.status.idle": "2024-02-13T00:00:48.509445Z",
+ "shell.execute_reply": "2024-02-13T00:00:48.508995Z"
}
},
"outputs": [
@@ -604,10 +604,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:19.250132Z",
- "iopub.status.busy": "2024-02-12T22:54:19.249879Z",
- "iopub.status.idle": "2024-02-12T22:54:19.253861Z",
- "shell.execute_reply": "2024-02-12T22:54:19.253424Z"
+ "iopub.execute_input": "2024-02-13T00:00:48.511691Z",
+ "iopub.status.busy": "2024-02-13T00:00:48.511380Z",
+ "iopub.status.idle": "2024-02-13T00:00:48.515279Z",
+ "shell.execute_reply": "2024-02-13T00:00:48.514827Z"
}
},
"outputs": [],
@@ -632,10 +632,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:19.255886Z",
- "iopub.status.busy": "2024-02-12T22:54:19.255574Z",
- "iopub.status.idle": "2024-02-12T22:54:19.262506Z",
- "shell.execute_reply": "2024-02-12T22:54:19.262068Z"
+ "iopub.execute_input": "2024-02-13T00:00:48.517337Z",
+ "iopub.status.busy": "2024-02-13T00:00:48.517035Z",
+ "iopub.status.idle": "2024-02-13T00:00:48.524232Z",
+ "shell.execute_reply": "2024-02-13T00:00:48.523804Z"
}
},
"outputs": [],
@@ -657,10 +657,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:19.264413Z",
- "iopub.status.busy": "2024-02-12T22:54:19.264107Z",
- "iopub.status.idle": "2024-02-12T22:54:19.374492Z",
- "shell.execute_reply": "2024-02-12T22:54:19.373885Z"
+ "iopub.execute_input": "2024-02-13T00:00:48.526339Z",
+ "iopub.status.busy": "2024-02-13T00:00:48.525957Z",
+ "iopub.status.idle": "2024-02-13T00:00:48.636777Z",
+ "shell.execute_reply": "2024-02-13T00:00:48.636280Z"
}
},
"outputs": [
@@ -690,10 +690,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:19.376644Z",
- "iopub.status.busy": "2024-02-12T22:54:19.376297Z",
- "iopub.status.idle": "2024-02-12T22:54:19.378933Z",
- "shell.execute_reply": "2024-02-12T22:54:19.378484Z"
+ "iopub.execute_input": "2024-02-13T00:00:48.639075Z",
+ "iopub.status.busy": "2024-02-13T00:00:48.638648Z",
+ "iopub.status.idle": "2024-02-13T00:00:48.641454Z",
+ "shell.execute_reply": "2024-02-13T00:00:48.640999Z"
}
},
"outputs": [],
@@ -714,10 +714,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:19.380839Z",
- "iopub.status.busy": "2024-02-12T22:54:19.380485Z",
- "iopub.status.idle": "2024-02-12T22:54:21.362206Z",
- "shell.execute_reply": "2024-02-12T22:54:21.361590Z"
+ "iopub.execute_input": "2024-02-13T00:00:48.643503Z",
+ "iopub.status.busy": "2024-02-13T00:00:48.643194Z",
+ "iopub.status.idle": "2024-02-13T00:00:50.590835Z",
+ "shell.execute_reply": "2024-02-13T00:00:50.590071Z"
}
},
"outputs": [],
@@ -737,10 +737,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:21.365392Z",
- "iopub.status.busy": "2024-02-12T22:54:21.364788Z",
- "iopub.status.idle": "2024-02-12T22:54:21.376541Z",
- "shell.execute_reply": "2024-02-12T22:54:21.376107Z"
+ "iopub.execute_input": "2024-02-13T00:00:50.593857Z",
+ "iopub.status.busy": "2024-02-13T00:00:50.593252Z",
+ "iopub.status.idle": "2024-02-13T00:00:50.604701Z",
+ "shell.execute_reply": "2024-02-13T00:00:50.604143Z"
}
},
"outputs": [
@@ -770,10 +770,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:21.378580Z",
- "iopub.status.busy": "2024-02-12T22:54:21.378387Z",
- "iopub.status.idle": "2024-02-12T22:54:21.475141Z",
- "shell.execute_reply": "2024-02-12T22:54:21.474624Z"
+ "iopub.execute_input": "2024-02-13T00:00:50.606592Z",
+ "iopub.status.busy": "2024-02-13T00:00:50.606420Z",
+ "iopub.status.idle": "2024-02-13T00:00:50.633566Z",
+ "shell.execute_reply": "2024-02-13T00:00:50.633034Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb
index dc9c39b14..7a7859853 100644
--- a/master/.doctrees/nbsphinx/tutorials/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb
@@ -114,10 +114,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:24.472151Z",
- "iopub.status.busy": "2024-02-12T22:54:24.471956Z",
- "iopub.status.idle": "2024-02-12T22:54:27.154039Z",
- "shell.execute_reply": "2024-02-12T22:54:27.153485Z"
+ "iopub.execute_input": "2024-02-13T00:00:53.454074Z",
+ "iopub.status.busy": "2024-02-13T00:00:53.453900Z",
+ "iopub.status.idle": "2024-02-13T00:00:56.053240Z",
+ "shell.execute_reply": "2024-02-13T00:00:56.052598Z"
},
"nbsphinx": "hidden"
},
@@ -134,7 +134,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -159,10 +159,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:27.156895Z",
- "iopub.status.busy": "2024-02-12T22:54:27.156278Z",
- "iopub.status.idle": "2024-02-12T22:54:27.159760Z",
- "shell.execute_reply": "2024-02-12T22:54:27.159235Z"
+ "iopub.execute_input": "2024-02-13T00:00:56.055903Z",
+ "iopub.status.busy": "2024-02-13T00:00:56.055608Z",
+ "iopub.status.idle": "2024-02-13T00:00:56.059151Z",
+ "shell.execute_reply": "2024-02-13T00:00:56.058595Z"
}
},
"outputs": [],
@@ -184,10 +184,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:27.161738Z",
- "iopub.status.busy": "2024-02-12T22:54:27.161442Z",
- "iopub.status.idle": "2024-02-12T22:54:27.164477Z",
- "shell.execute_reply": "2024-02-12T22:54:27.164023Z"
+ "iopub.execute_input": "2024-02-13T00:00:56.061151Z",
+ "iopub.status.busy": "2024-02-13T00:00:56.060785Z",
+ "iopub.status.idle": "2024-02-13T00:00:56.063916Z",
+ "shell.execute_reply": "2024-02-13T00:00:56.063344Z"
},
"nbsphinx": "hidden"
},
@@ -218,10 +218,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:27.166442Z",
- "iopub.status.busy": "2024-02-12T22:54:27.166095Z",
- "iopub.status.idle": "2024-02-12T22:54:27.289455Z",
- "shell.execute_reply": "2024-02-12T22:54:27.288982Z"
+ "iopub.execute_input": "2024-02-13T00:00:56.065972Z",
+ "iopub.status.busy": "2024-02-13T00:00:56.065569Z",
+ "iopub.status.idle": "2024-02-13T00:00:56.103755Z",
+ "shell.execute_reply": "2024-02-13T00:00:56.103220Z"
}
},
"outputs": [
@@ -311,10 +311,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:27.291479Z",
- "iopub.status.busy": "2024-02-12T22:54:27.291258Z",
- "iopub.status.idle": "2024-02-12T22:54:27.294919Z",
- "shell.execute_reply": "2024-02-12T22:54:27.294451Z"
+ "iopub.execute_input": "2024-02-13T00:00:56.105853Z",
+ "iopub.status.busy": "2024-02-13T00:00:56.105436Z",
+ "iopub.status.idle": "2024-02-13T00:00:56.108964Z",
+ "shell.execute_reply": "2024-02-13T00:00:56.108460Z"
}
},
"outputs": [],
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:27.296743Z",
- "iopub.status.busy": "2024-02-12T22:54:27.296566Z",
- "iopub.status.idle": "2024-02-12T22:54:27.300138Z",
- "shell.execute_reply": "2024-02-12T22:54:27.299700Z"
+ "iopub.execute_input": "2024-02-13T00:00:56.110806Z",
+ "iopub.status.busy": "2024-02-13T00:00:56.110632Z",
+ "iopub.status.idle": "2024-02-13T00:00:56.113775Z",
+ "shell.execute_reply": "2024-02-13T00:00:56.113283Z"
}
},
"outputs": [
@@ -341,7 +341,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'card_about_to_expire', 'supported_cards_and_currencies', 'getting_spare_card', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'lost_or_stolen_phone'}\n"
+ "Classes: {'change_pin', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_payment_fee_charged', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}\n"
]
}
],
@@ -364,10 +364,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:27.302169Z",
- "iopub.status.busy": "2024-02-12T22:54:27.301867Z",
- "iopub.status.idle": "2024-02-12T22:54:27.305035Z",
- "shell.execute_reply": "2024-02-12T22:54:27.304494Z"
+ "iopub.execute_input": "2024-02-13T00:00:56.115634Z",
+ "iopub.status.busy": "2024-02-13T00:00:56.115336Z",
+ "iopub.status.idle": "2024-02-13T00:00:56.118425Z",
+ "shell.execute_reply": "2024-02-13T00:00:56.117900Z"
}
},
"outputs": [
@@ -408,10 +408,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:27.307038Z",
- "iopub.status.busy": "2024-02-12T22:54:27.306855Z",
- "iopub.status.idle": "2024-02-12T22:54:27.310157Z",
- "shell.execute_reply": "2024-02-12T22:54:27.309707Z"
+ "iopub.execute_input": "2024-02-13T00:00:56.120324Z",
+ "iopub.status.busy": "2024-02-13T00:00:56.120017Z",
+ "iopub.status.idle": "2024-02-13T00:00:56.123243Z",
+ "shell.execute_reply": "2024-02-13T00:00:56.122720Z"
}
},
"outputs": [],
@@ -452,10 +452,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:27.312080Z",
- "iopub.status.busy": "2024-02-12T22:54:27.311906Z",
- "iopub.status.idle": "2024-02-12T22:54:31.469177Z",
- "shell.execute_reply": "2024-02-12T22:54:31.468662Z"
+ "iopub.execute_input": "2024-02-13T00:00:56.125359Z",
+ "iopub.status.busy": "2024-02-13T00:00:56.124990Z",
+ "iopub.status.idle": "2024-02-13T00:00:59.927052Z",
+ "shell.execute_reply": "2024-02-13T00:00:59.926514Z"
}
},
"outputs": [
@@ -510,10 +510,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:31.471825Z",
- "iopub.status.busy": "2024-02-12T22:54:31.471441Z",
- "iopub.status.idle": "2024-02-12T22:54:31.474435Z",
- "shell.execute_reply": "2024-02-12T22:54:31.473939Z"
+ "iopub.execute_input": "2024-02-13T00:00:59.929712Z",
+ "iopub.status.busy": "2024-02-13T00:00:59.929322Z",
+ "iopub.status.idle": "2024-02-13T00:00:59.932312Z",
+ "shell.execute_reply": "2024-02-13T00:00:59.931833Z"
}
},
"outputs": [],
@@ -535,10 +535,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:31.476467Z",
- "iopub.status.busy": "2024-02-12T22:54:31.476144Z",
- "iopub.status.idle": "2024-02-12T22:54:31.478798Z",
- "shell.execute_reply": "2024-02-12T22:54:31.478221Z"
+ "iopub.execute_input": "2024-02-13T00:00:59.934277Z",
+ "iopub.status.busy": "2024-02-13T00:00:59.933955Z",
+ "iopub.status.idle": "2024-02-13T00:00:59.936549Z",
+ "shell.execute_reply": "2024-02-13T00:00:59.936118Z"
}
},
"outputs": [],
@@ -553,10 +553,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:31.480960Z",
- "iopub.status.busy": "2024-02-12T22:54:31.480543Z",
- "iopub.status.idle": "2024-02-12T22:54:33.739868Z",
- "shell.execute_reply": "2024-02-12T22:54:33.739236Z"
+ "iopub.execute_input": "2024-02-13T00:00:59.938434Z",
+ "iopub.status.busy": "2024-02-13T00:00:59.938122Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.288052Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.287443Z"
},
"scrolled": true
},
@@ -579,10 +579,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:33.742958Z",
- "iopub.status.busy": "2024-02-12T22:54:33.742167Z",
- "iopub.status.idle": "2024-02-12T22:54:33.749610Z",
- "shell.execute_reply": "2024-02-12T22:54:33.749143Z"
+ "iopub.execute_input": "2024-02-13T00:01:02.290985Z",
+ "iopub.status.busy": "2024-02-13T00:01:02.290386Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.298125Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.297545Z"
}
},
"outputs": [
@@ -683,10 +683,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:33.751674Z",
- "iopub.status.busy": "2024-02-12T22:54:33.751291Z",
- "iopub.status.idle": "2024-02-12T22:54:33.755192Z",
- "shell.execute_reply": "2024-02-12T22:54:33.754671Z"
+ "iopub.execute_input": "2024-02-13T00:01:02.300260Z",
+ "iopub.status.busy": "2024-02-13T00:01:02.299850Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.303823Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.303383Z"
}
},
"outputs": [],
@@ -700,10 +700,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:33.757166Z",
- "iopub.status.busy": "2024-02-12T22:54:33.756852Z",
- "iopub.status.idle": "2024-02-12T22:54:33.760085Z",
- "shell.execute_reply": "2024-02-12T22:54:33.759646Z"
+ "iopub.execute_input": "2024-02-13T00:01:02.305902Z",
+ "iopub.status.busy": "2024-02-13T00:01:02.305570Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.308609Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.308061Z"
}
},
"outputs": [
@@ -738,10 +738,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:33.761912Z",
- "iopub.status.busy": "2024-02-12T22:54:33.761659Z",
- "iopub.status.idle": "2024-02-12T22:54:33.764541Z",
- "shell.execute_reply": "2024-02-12T22:54:33.764116Z"
+ "iopub.execute_input": "2024-02-13T00:01:02.310691Z",
+ "iopub.status.busy": "2024-02-13T00:01:02.310387Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.313217Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.312779Z"
}
},
"outputs": [],
@@ -761,10 +761,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:33.766455Z",
- "iopub.status.busy": "2024-02-12T22:54:33.766183Z",
- "iopub.status.idle": "2024-02-12T22:54:33.773212Z",
- "shell.execute_reply": "2024-02-12T22:54:33.772779Z"
+ "iopub.execute_input": "2024-02-13T00:01:02.315296Z",
+ "iopub.status.busy": "2024-02-13T00:01:02.314973Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.322249Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.321797Z"
}
},
"outputs": [
@@ -889,10 +889,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:33.775174Z",
- "iopub.status.busy": "2024-02-12T22:54:33.774918Z",
- "iopub.status.idle": "2024-02-12T22:54:33.999884Z",
- "shell.execute_reply": "2024-02-12T22:54:33.999331Z"
+ "iopub.execute_input": "2024-02-13T00:01:02.324156Z",
+ "iopub.status.busy": "2024-02-13T00:01:02.323977Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.550554Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.550018Z"
},
"scrolled": true
},
@@ -931,10 +931,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:34.002439Z",
- "iopub.status.busy": "2024-02-12T22:54:34.002052Z",
- "iopub.status.idle": "2024-02-12T22:54:34.179782Z",
- "shell.execute_reply": "2024-02-12T22:54:34.179270Z"
+ "iopub.execute_input": "2024-02-13T00:01:02.553196Z",
+ "iopub.status.busy": "2024-02-13T00:01:02.552806Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.757471Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.756942Z"
},
"scrolled": true
},
@@ -967,10 +967,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:34.182293Z",
- "iopub.status.busy": "2024-02-12T22:54:34.181929Z",
- "iopub.status.idle": "2024-02-12T22:54:34.185599Z",
- "shell.execute_reply": "2024-02-12T22:54:34.185137Z"
+ "iopub.execute_input": "2024-02-13T00:01:02.761232Z",
+ "iopub.status.busy": "2024-02-13T00:01:02.760305Z",
+ "iopub.status.idle": "2024-02-13T00:01:02.765229Z",
+ "shell.execute_reply": "2024-02-13T00:01:02.764733Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
index 4bbe232b1..607f351cf 100644
--- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
"id": "ae8a08e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:37.229716Z",
- "iopub.status.busy": "2024-02-12T22:54:37.229313Z",
- "iopub.status.idle": "2024-02-12T22:54:41.816308Z",
- "shell.execute_reply": "2024-02-12T22:54:41.815652Z"
+ "iopub.execute_input": "2024-02-13T00:01:05.912632Z",
+ "iopub.status.busy": "2024-02-13T00:01:05.912244Z",
+ "iopub.status.idle": "2024-02-13T00:01:07.157985Z",
+ "shell.execute_reply": "2024-02-13T00:01:07.157338Z"
}
},
"outputs": [
@@ -86,7 +86,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "--2024-02-12 22:54:37-- https://data.deepai.org/conll2003.zip\r\n",
+ "--2024-02-13 00:01:05-- https://data.deepai.org/conll2003.zip\r\n",
"Resolving data.deepai.org (data.deepai.org)... "
]
},
@@ -94,8 +94,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "143.244.50.91, 2400:52e0:1a01::985:1\r\n",
- "Connecting to data.deepai.org (data.deepai.org)|143.244.50.91|:443... connected.\r\n",
+ "185.93.1.250, 2400:52e0:1a00::1067:1\r\n",
+ "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
"HTTP request sent, awaiting response... "
]
},
@@ -116,9 +122,9 @@
"output_type": "stream",
"text": [
"\r",
- "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.05s \r\n",
+ "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n",
"\r\n",
- "2024-02-12 22:54:37 (18.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+ "2024-02-13 00:01:06 (7.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
"\r\n",
"mkdir: cannot create directory ‘data’: File exists\r\n"
]
@@ -138,22 +144,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "--2024-02-12 22:54:37-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
- "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.25.192, 52.217.138.17, 3.5.29.248, ...\r\n",
- "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.25.192|:443... "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "connected.\r\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "--2024-02-13 00:01:06-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+ "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.25.36, 52.216.214.73, 3.5.9.158, ...\r\n",
+ "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.25.36|:443... connected.\r\n",
"HTTP request sent, awaiting response... "
]
},
@@ -174,137 +167,9 @@
"output_type": "stream",
"text": [
"\r",
- "pred_probs.npz 0%[ ] 139.34K 643KB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 4%[ ] 691.31K 1.57MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 8%[> ] 1.32M 2.05MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 12%[=> ] 2.05M 2.39MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 17%[==> ] 2.92M 2.70MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 24%[===> ] 3.91M 3.02MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 31%[=====> ] 5.08M 3.37MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 39%[======> ] 6.40M 3.71MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 45%[========> ] 7.38M 3.81MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 51%[=========> ] 8.43M 3.92MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 58%[==========> ] 9.51M 4.02MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 65%[============> ] 10.62M 4.12MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 72%[=============> ] 11.75M 4.21MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 79%[==============> ] 12.93M 4.30MB/s eta 1s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 86%[================> ] 14.12M 4.38MB/s eta 1s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 94%[=================> ] 15.35M 4.46MB/s eta 1s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 100%[===================>] 16.26M 4.54MB/s in 3.6s \r\n",
+ "pred_probs.npz 100%[===================>] 16.26M 87.9MB/s in 0.2s \r\n",
"\r\n",
- "2024-02-12 22:54:41 (4.54 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+ "2024-02-13 00:01:07 (87.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
"\r\n"
]
}
@@ -321,10 +186,10 @@
"id": "439b0305",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:41.818840Z",
- "iopub.status.busy": "2024-02-12T22:54:41.818641Z",
- "iopub.status.idle": "2024-02-12T22:54:42.950995Z",
- "shell.execute_reply": "2024-02-12T22:54:42.950448Z"
+ "iopub.execute_input": "2024-02-13T00:01:07.160527Z",
+ "iopub.status.busy": "2024-02-13T00:01:07.160193Z",
+ "iopub.status.idle": "2024-02-13T00:01:08.185897Z",
+ "shell.execute_reply": "2024-02-13T00:01:08.185342Z"
},
"nbsphinx": "hidden"
},
@@ -335,7 +200,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -361,10 +226,10 @@
"id": "a1349304",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:42.953609Z",
- "iopub.status.busy": "2024-02-12T22:54:42.953138Z",
- "iopub.status.idle": "2024-02-12T22:54:42.956757Z",
- "shell.execute_reply": "2024-02-12T22:54:42.956297Z"
+ "iopub.execute_input": "2024-02-13T00:01:08.188315Z",
+ "iopub.status.busy": "2024-02-13T00:01:08.187899Z",
+ "iopub.status.idle": "2024-02-13T00:01:08.191498Z",
+ "shell.execute_reply": "2024-02-13T00:01:08.190971Z"
}
},
"outputs": [],
@@ -414,10 +279,10 @@
"id": "ab9d59a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:42.958734Z",
- "iopub.status.busy": "2024-02-12T22:54:42.958394Z",
- "iopub.status.idle": "2024-02-12T22:54:42.961227Z",
- "shell.execute_reply": "2024-02-12T22:54:42.960790Z"
+ "iopub.execute_input": "2024-02-13T00:01:08.193558Z",
+ "iopub.status.busy": "2024-02-13T00:01:08.193261Z",
+ "iopub.status.idle": "2024-02-13T00:01:08.196200Z",
+ "shell.execute_reply": "2024-02-13T00:01:08.195760Z"
},
"nbsphinx": "hidden"
},
@@ -435,10 +300,10 @@
"id": "519cb80c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:42.963243Z",
- "iopub.status.busy": "2024-02-12T22:54:42.962936Z",
- "iopub.status.idle": "2024-02-12T22:54:52.053162Z",
- "shell.execute_reply": "2024-02-12T22:54:52.052552Z"
+ "iopub.execute_input": "2024-02-13T00:01:08.198165Z",
+ "iopub.status.busy": "2024-02-13T00:01:08.197839Z",
+ "iopub.status.idle": "2024-02-13T00:01:17.303247Z",
+ "shell.execute_reply": "2024-02-13T00:01:17.302702Z"
}
},
"outputs": [],
@@ -512,10 +377,10 @@
"id": "202f1526",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:52.055681Z",
- "iopub.status.busy": "2024-02-12T22:54:52.055485Z",
- "iopub.status.idle": "2024-02-12T22:54:52.061124Z",
- "shell.execute_reply": "2024-02-12T22:54:52.060579Z"
+ "iopub.execute_input": "2024-02-13T00:01:17.305682Z",
+ "iopub.status.busy": "2024-02-13T00:01:17.305340Z",
+ "iopub.status.idle": "2024-02-13T00:01:17.310825Z",
+ "shell.execute_reply": "2024-02-13T00:01:17.310353Z"
},
"nbsphinx": "hidden"
},
@@ -555,10 +420,10 @@
"id": "a4381f03",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:52.063271Z",
- "iopub.status.busy": "2024-02-12T22:54:52.062947Z",
- "iopub.status.idle": "2024-02-12T22:54:52.402682Z",
- "shell.execute_reply": "2024-02-12T22:54:52.402118Z"
+ "iopub.execute_input": "2024-02-13T00:01:17.312738Z",
+ "iopub.status.busy": "2024-02-13T00:01:17.312437Z",
+ "iopub.status.idle": "2024-02-13T00:01:17.648420Z",
+ "shell.execute_reply": "2024-02-13T00:01:17.647777Z"
}
},
"outputs": [],
@@ -595,10 +460,10 @@
"id": "7842e4a3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:52.405163Z",
- "iopub.status.busy": "2024-02-12T22:54:52.404824Z",
- "iopub.status.idle": "2024-02-12T22:54:52.409012Z",
- "shell.execute_reply": "2024-02-12T22:54:52.408492Z"
+ "iopub.execute_input": "2024-02-13T00:01:17.650849Z",
+ "iopub.status.busy": "2024-02-13T00:01:17.650647Z",
+ "iopub.status.idle": "2024-02-13T00:01:17.655292Z",
+ "shell.execute_reply": "2024-02-13T00:01:17.654778Z"
}
},
"outputs": [
@@ -670,10 +535,10 @@
"id": "2c2ad9ad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:52.411050Z",
- "iopub.status.busy": "2024-02-12T22:54:52.410730Z",
- "iopub.status.idle": "2024-02-12T22:54:54.752600Z",
- "shell.execute_reply": "2024-02-12T22:54:54.751833Z"
+ "iopub.execute_input": "2024-02-13T00:01:17.657157Z",
+ "iopub.status.busy": "2024-02-13T00:01:17.656986Z",
+ "iopub.status.idle": "2024-02-13T00:01:19.950045Z",
+ "shell.execute_reply": "2024-02-13T00:01:19.949225Z"
}
},
"outputs": [],
@@ -695,10 +560,10 @@
"id": "95dc7268",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:54.755608Z",
- "iopub.status.busy": "2024-02-12T22:54:54.755075Z",
- "iopub.status.idle": "2024-02-12T22:54:54.759098Z",
- "shell.execute_reply": "2024-02-12T22:54:54.758557Z"
+ "iopub.execute_input": "2024-02-13T00:01:19.953156Z",
+ "iopub.status.busy": "2024-02-13T00:01:19.952430Z",
+ "iopub.status.idle": "2024-02-13T00:01:19.956591Z",
+ "shell.execute_reply": "2024-02-13T00:01:19.956102Z"
}
},
"outputs": [
@@ -734,10 +599,10 @@
"id": "e13de188",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:54.761170Z",
- "iopub.status.busy": "2024-02-12T22:54:54.760760Z",
- "iopub.status.idle": "2024-02-12T22:54:54.766259Z",
- "shell.execute_reply": "2024-02-12T22:54:54.765709Z"
+ "iopub.execute_input": "2024-02-13T00:01:19.958663Z",
+ "iopub.status.busy": "2024-02-13T00:01:19.958344Z",
+ "iopub.status.idle": "2024-02-13T00:01:19.963954Z",
+ "shell.execute_reply": "2024-02-13T00:01:19.963484Z"
}
},
"outputs": [
@@ -915,10 +780,10 @@
"id": "e4a006bd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:54.768713Z",
- "iopub.status.busy": "2024-02-12T22:54:54.768341Z",
- "iopub.status.idle": "2024-02-12T22:54:54.794889Z",
- "shell.execute_reply": "2024-02-12T22:54:54.794299Z"
+ "iopub.execute_input": "2024-02-13T00:01:19.965967Z",
+ "iopub.status.busy": "2024-02-13T00:01:19.965645Z",
+ "iopub.status.idle": "2024-02-13T00:01:19.991237Z",
+ "shell.execute_reply": "2024-02-13T00:01:19.990779Z"
}
},
"outputs": [
@@ -1020,10 +885,10 @@
"id": "c8f4e163",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:54.797026Z",
- "iopub.status.busy": "2024-02-12T22:54:54.796712Z",
- "iopub.status.idle": "2024-02-12T22:54:54.800960Z",
- "shell.execute_reply": "2024-02-12T22:54:54.800439Z"
+ "iopub.execute_input": "2024-02-13T00:01:19.993199Z",
+ "iopub.status.busy": "2024-02-13T00:01:19.992883Z",
+ "iopub.status.idle": "2024-02-13T00:01:19.997091Z",
+ "shell.execute_reply": "2024-02-13T00:01:19.996645Z"
}
},
"outputs": [
@@ -1097,10 +962,10 @@
"id": "db0b5179",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:54.802769Z",
- "iopub.status.busy": "2024-02-12T22:54:54.802597Z",
- "iopub.status.idle": "2024-02-12T22:54:56.206403Z",
- "shell.execute_reply": "2024-02-12T22:54:56.205913Z"
+ "iopub.execute_input": "2024-02-13T00:01:19.999024Z",
+ "iopub.status.busy": "2024-02-13T00:01:19.998772Z",
+ "iopub.status.idle": "2024-02-13T00:01:21.407266Z",
+ "shell.execute_reply": "2024-02-13T00:01:21.406726Z"
}
},
"outputs": [
@@ -1272,10 +1137,10 @@
"id": "a18795eb",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:54:56.208399Z",
- "iopub.status.busy": "2024-02-12T22:54:56.208213Z",
- "iopub.status.idle": "2024-02-12T22:54:56.212328Z",
- "shell.execute_reply": "2024-02-12T22:54:56.211886Z"
+ "iopub.execute_input": "2024-02-13T00:01:21.409493Z",
+ "iopub.status.busy": "2024-02-13T00:01:21.409161Z",
+ "iopub.status.idle": "2024-02-13T00:01:21.414031Z",
+ "shell.execute_reply": "2024-02-13T00:01:21.413466Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree
index 8a4a5723e..da6d385fa 100644
Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree
index 755e85419..df942d520 100644
Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree
index 3d6b3cbb4..283a2fa4b 100644
Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree
index acb12ae99..69145f2ec 100644
Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree
index 83eaf1189..26b83b3e0 100644
Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree
index c815833d5..a28cead5e 100644
Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ
diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree
index b0822cffc..cc9ffa746 100644
Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ
diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree
index 3302f3d20..a07edd876 100644
Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ
diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree
index 6b00382e7..53b5d55e9 100644
Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ
diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree
index f616eabf3..9883d2e80 100644
Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ
diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree
index b2822ce5c..a8bd3bac5 100644
Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ
diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree
index afdb3cee2..6b487f347 100644
Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ
diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree
index 295f6544a..6990e9e34 100644
Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ
diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree
index dedc9b087..a0307e20d 100644
Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ
diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree
index 4f70aeee1..077d74cf1 100644
Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ
diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree
index dca928dea..b14131574 100644
Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ
diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree
index 040d70405..1ef9ced86 100644
Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ
diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree
index 6a0ce169f..26e0edcfd 100644
Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ
diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree
index 8ba771739..4ee379a21 100644
Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ
diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree
index 6e433d8c7..facc003b1 100644
Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ
diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree
index 19fb6d2aa..c51ac8c3c 100644
Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ
diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html
index 8028633c2..4b474f77d 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_manager/underperforming_group.html
@@ -625,8 +625,8 @@ Source code for cleanlab.datalab.internal.issue_manager.underperforming_grou
[docs] def set_knn_graph(
-
self, features: npt.NDArray, find_issues_kwargs: Dict[str, Any]
+
self, features: Optional[npt.NDArray], find_issues_kwargs: Dict[str, Any]
) -> csr_matrix:
knn_graph = self._process_knn_graph_from_inputs(find_issues_kwargs)
old_knn_metric = self.datalab.get_info("statistics").get("knn_metric")
diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb
index a132cb157..dc99451a9 100644
--- a/master/_sources/tutorials/audio.ipynb
+++ b/master/_sources/tutorials/audio.ipynb
@@ -91,7 +91,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index dc5572679..6e0038c03 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index 8dfca67f0..09574dfc5 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index 2f34a8eb5..4233b3e37 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -81,7 +81,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index 697727369..571720f79 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index 26d56baa9..b57d1a78d 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index 536dae745..ad443f917 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index 50e70f883..08c79ed22 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -96,7 +96,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index fd7976fd9..8d8828558 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -73,7 +73,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index 032d057c8..6f4547d32 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index 190b0dd97..57a1151bb 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index 60e2a6eff..a34982b84 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -111,7 +111,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index 1fa4cb9fb..30972450d 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb
index 8edb029f9..b4659acf4 100644
--- a/master/_sources/tutorials/tabular.ipynb
+++ b/master/_sources/tutorials/tabular.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb
index 23b41967e..55f94f538 100644
--- a/master/_sources/tutorials/text.ipynb
+++ b/master/_sources/tutorials/text.ipynb
@@ -128,7 +128,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 66cd8098d..3d9a15212 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html b/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html
index 68132f3c5..439f42c6b 100644
--- a/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html
+++ b/master/cleanlab/datalab/internal/issue_manager/underperforming_group.html
@@ -606,7 +606,7 @@
underperforming_group
-find_issues (features, pred_probs[, cluster_ids])
|
+
find_issues (pred_probs[, features, cluster_ids])
|
Finds occurrences of this particular issue in the dataset. |
set_knn_graph (features, find_issues_kwargs)
|
@@ -683,7 +683,7 @@ underperforming_group[source]
Finds occurrences of this particular issue in the dataset.
Computes the issues and summary dataframes. Calls collect_info to compute the info dict.
diff --git a/master/searchindex.js b/master/searchindex.js
index ff6c4093f..d7c758ac5 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 74, 76, 77, 84, 86, 87], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 76, 77, 84, 86, 87], "generate_noise_matrix_from_trac": [0, 1, 76, 77, 84, 86, 87], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 35, 39, 41, 42, 43, 44, 45, 46, 58, 81, 83, 95], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "us": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 73, 74, 76, 81, 85, 90], "benchmark": [1, 32, 73, 74, 76, 77, 84, 86, 87], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 81, 85, 90], "": [1, 2, 3, 8, 16, 31, 32, 36, 39, 42, 44, 46, 51, 52, 56, 58, 59, 60, 61, 63, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "core": [1, 4, 35, 37, 65, 67], "algorithm": [1, 2, 6, 8, 27, 33, 46, 51, 60, 69, 71, 73, 82, 84, 86, 95], "These": [1, 2, 3, 6, 8, 19, 32, 34, 36, 37, 38, 49, 51, 52, 55, 59, 60, 64, 68, 69, 71, 72, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "introduc": [1, 75, 82, 84], "synthet": [1, 86, 87, 92], "nois": [1, 2, 3, 31, 37, 40, 46, 52, 76, 77, 81, 86, 91], "label": [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 18, 19, 20, 25, 27, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 81, 85, 89, 90], "classif": [1, 3, 4, 5, 8, 10, 12, 14, 29, 31, 35, 37, 40, 42, 43, 46, 51, 52, 53, 54, 55, 60, 61, 69, 70, 71, 72, 73, 74, 76, 77, 85, 86, 89, 90, 91, 92], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 34, 35, 36, 37, 40, 42, 46, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 79, 85, 86, 90, 93], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 34, 49, 53, 56, 59, 68, 72, 79, 80, 83, 84, 88, 95], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 29, 31, 32, 33, 34, 35, 36, 37, 42, 44, 46, 49, 51, 56, 59, 60, 61, 73, 82, 83, 87], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 29, 31, 32, 33, 35, 36, 37, 40, 46, 50, 51, 52, 53, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 90, 91, 92, 93, 94, 95], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 31, 42, 46, 47, 60, 61, 63, 68, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 89, 90, 92, 94, 95], "valid": [1, 2, 3, 4, 8, 10, 29, 31, 37, 38, 40, 41, 42, 44, 46, 51, 53, 56, 59, 61, 63, 64, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 91, 92, 93, 94, 95], "matric": [1, 3, 40, 82], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 31, 32, 36, 37, 40, 42, 45, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 33, 34, 35, 36, 37, 39, 41, 46, 49, 51, 53, 60, 62, 64, 67, 71, 73, 75, 76, 79, 80, 81, 83, 85, 86, 87, 91, 94], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "possibl": [1, 2, 3, 8, 31, 32, 36, 37, 39, 40, 42, 53, 54, 55, 56, 58, 59, 60, 61, 63, 69, 71, 72, 77, 82, 84, 86, 87, 88, 91, 92, 95], "noisi": [1, 2, 3, 8, 31, 33, 36, 37, 40, 46, 52, 53, 55, 61, 63, 64, 65, 67, 68, 74, 76, 77, 79, 80, 82, 85, 86], "given": [1, 2, 3, 8, 12, 26, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 45, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 31, 37, 39, 40, 43, 46, 47, 53, 56, 58, 59, 60, 61, 79, 88, 89], "trace": [1, 76, 77, 84, 86, 87], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 29, 31, 32, 33, 35, 36, 37, 39, 40, 42, 44, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "more": [1, 2, 3, 4, 5, 8, 11, 12, 14, 16, 22, 31, 32, 35, 36, 39, 42, 44, 46, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 64, 67, 68, 69, 71, 73, 75, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 92, 95], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 77, 81, 82, 84, 86, 87, 88, 92, 93, 94, 95], "noise_matrix": [1, 2, 3, 8, 40, 46, 76, 77, 84, 86, 87], "py": [1, 3, 28, 32, 33, 37, 40, 42, 75, 76, 77, 80, 82, 84, 86, 87, 94], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 37, 51, 52, 53, 58, 60, 61, 63, 65, 67, 68, 72, 76, 84, 86], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 41, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 75, 76, 77, 79, 80, 82, 83, 84, 86, 88, 89, 91, 92, 94], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72], "prior": [1, 2, 3, 31, 37, 40, 42], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 29, 31, 35, 37, 40, 43, 44, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "p": [1, 2, 3, 8, 31, 37, 39, 40, 46, 51, 59, 60, 61, 65, 79, 80, 84, 86, 95], "true_label": [1, 2, 3, 31, 40, 46, 84, 86], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 31, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 75, 76, 77, 82, 84, 86, 87, 88, 89, 92, 93, 95], "check": [1, 2, 4, 7, 8, 10, 14, 23, 29, 32, 35, 36, 41, 47, 50, 56, 59, 63, 73, 75, 76, 77, 79, 82, 83, 84, 86, 87, 91, 93, 94], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 33, 36, 40, 42, 44, 58, 63, 77, 80, 82, 84, 86, 87, 88, 89, 91, 94], "achiev": [1, 2, 32, 33, 36, 63, 82, 86, 95], "better": [1, 4, 37, 51, 53, 61, 63, 64, 73, 75, 77, 79, 80, 82, 84, 87, 88, 89, 94, 95], "than": [1, 2, 3, 5, 8, 22, 24, 27, 31, 37, 46, 50, 51, 56, 58, 60, 61, 63, 67, 71, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 95], "random": [1, 2, 3, 5, 8, 16, 27, 35, 42, 51, 61, 63, 75, 76, 77, 79, 82, 83, 84, 86, 87, 89, 93], "perform": [1, 2, 5, 8, 22, 24, 27, 32, 36, 42, 59, 63, 73, 76, 82, 84, 86, 87, 90, 91, 93, 94], "averag": [1, 3, 8, 20, 24, 31, 32, 36, 42, 44, 51, 52, 59, 60, 61, 82, 86, 89], "amount": [1, 3, 83], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 77, 80, 83, 93, 94], "np": [1, 2, 3, 4, 5, 14, 16, 27, 31, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 71, 72, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 31, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 95], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 31, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "shape": [1, 2, 3, 4, 14, 16, 31, 33, 35, 37, 39, 40, 41, 42, 44, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 81, 82, 84, 87, 88, 89, 92, 95], "condit": [1, 2, 3, 40, 45, 46, 61, 83, 84, 95], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 31, 35, 36, 37, 39, 40, 42, 43, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 81, 82, 84, 85, 87, 88, 89, 92, 95], "k_": [1, 2, 3, 40, 46], "k_y": [1, 2, 3, 40, 46], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 35, 36, 37, 39, 40, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94], "fraction": [1, 2, 3, 8, 18, 33, 40, 46, 51, 63, 79, 82], "exampl": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 86, 87, 88, 90, 91, 92, 93, 94, 95], "everi": [1, 2, 3, 4, 14, 32, 36, 37, 40, 45, 46, 53, 61, 63, 64, 75, 76, 77, 79, 80, 82, 83, 86, 88, 90, 92, 93, 95], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95], "other": [1, 2, 3, 4, 8, 14, 20, 23, 31, 32, 34, 35, 36, 37, 40, 43, 46, 47, 49, 51, 52, 55, 59, 60, 61, 63, 68, 75, 76, 77, 79, 80, 82, 83, 84, 87, 89, 92, 95], "assum": [1, 2, 3, 10, 37, 40, 45, 46, 61, 65, 68, 82, 87, 89, 91, 92, 95], "column": [1, 2, 3, 4, 8, 10, 11, 26, 31, 35, 37, 40, 42, 43, 45, 46, 51, 52, 53, 55, 56, 59, 60, 61, 63, 68, 69, 71, 72, 75, 76, 77, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "sum": [1, 2, 3, 22, 27, 31, 40, 42, 46, 52, 53, 55, 58, 63, 76, 77, 82, 83, 84, 86, 87, 92, 95], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 81, 82, 90], "each": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 18, 20, 21, 22, 27, 28, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 40, 42, 45, 46, 47, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 87, 88, 91, 92, 93, 95], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 42, 45, 46, 51, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 32, 35, 36, 37, 46, 51, 52, 53, 55, 56, 72, 75, 77, 79, 80, 81, 82, 83, 84, 91, 94, 95], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 40, 42, 43, 44, 45, 46, 51, 53, 55, 58, 59, 60, 61, 63, 64, 69, 71, 72, 73, 75, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 92, 95], "perfect": [1, 2, 31, 63, 84, 88], "exactli": [1, 3, 8, 31, 32, 36, 37, 54, 60, 76, 77, 79, 80, 83, 84], "yield": [1, 32, 36], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 44, 49, 51, 52, 55, 58, 60, 61, 63, 64, 67, 71, 72, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "below": [1, 3, 4, 8, 31, 32, 35, 36, 37, 39, 42, 51, 52, 53, 58, 59, 67, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "we": [1, 2, 3, 4, 5, 8, 11, 20, 32, 35, 36, 37, 42, 46, 47, 51, 58, 59, 61, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "loop": [1, 3, 40, 46, 83, 88], "implement": [1, 2, 3, 4, 7, 12, 20, 32, 33, 35, 36, 40, 46, 63, 73, 75, 76, 79, 89, 90, 93], "what": [1, 4, 7, 8, 14, 28, 31, 33, 35, 37, 51, 52, 56, 58, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "doe": [1, 2, 3, 8, 35, 36, 37, 42, 47, 58, 59, 63, 65, 67, 71, 75, 76, 77, 79, 80, 83, 87, 91, 92, 94], "do": [1, 2, 4, 8, 31, 35, 36, 46, 47, 60, 61, 65, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "fast": 1, "explain": [1, 8], "python": [1, 2, 36, 50, 63, 75, 76, 77, 80, 81, 89, 94], "pseudocod": [1, 90], "happen": [1, 8, 37, 53, 80, 86, 92], "n": [1, 2, 3, 4, 5, 31, 32, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 75, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "without": [1, 2, 4, 8, 10, 12, 18, 32, 36, 55, 63, 73, 75, 80, 84, 88, 89, 94], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 35, 36, 37, 39, 41, 44, 45, 46, 50, 51, 53, 55, 56, 58, 59, 61, 63, 65, 67, 68, 73, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "distinct": [1, 16, 46, 95], "natur": [1, 8, 86, 89], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 92, 95], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "count_joint": 1, "len": [1, 2, 3, 5, 31, 35, 40, 45, 46, 47, 60, 61, 63, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "y": [1, 2, 3, 4, 6, 16, 26, 27, 36, 40, 42, 46, 47, 50, 59, 63, 64, 75, 76, 77, 79, 82, 84, 86, 87, 89, 91, 94], "round": [1, 35, 37, 46, 63, 82, 91], "astyp": [1, 86], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 35, 36, 37, 42, 43, 44, 45, 46, 47, 52, 53, 55, 59, 60, 61, 63, 65, 67, 68, 69, 72, 75, 76, 83, 88, 89], "rang": [1, 3, 4, 5, 10, 40, 42, 44, 46, 59, 63, 64, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 95], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 31, 35, 37, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95], "pragma": 1, "cover": [1, 3, 74, 81], "choic": [1, 6, 37, 44, 82, 83, 87, 89], "replac": [1, 45, 50, 61, 76, 77, 80, 81, 82, 83, 86, 89, 93, 94], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 61, 75, 76, 77], "05": [1, 8, 22, 26, 45, 59, 63, 69, 71, 79, 81, 82, 84, 88, 92, 95], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 76, 77, 84, 86, 87], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 76, 77, 82, 83, 84, 86, 87, 92], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 34, 36, 42, 63, 75, 76, 77, 79, 81, 84, 86, 87, 93], "max_it": [1, 75, 80, 89, 94], "10000": [1, 35, 81, 82], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 32, 33, 36, 37, 39, 40, 42, 45, 46, 47, 50, 51, 53, 59, 60, 61, 63, 65, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 89, 91, 93, 94], "diagon": [1, 3, 4, 37, 40, 46], "equal": [1, 3, 8, 10, 53, 58, 68, 90], "creat": [1, 2, 7, 14, 16, 32, 35, 36, 37, 46, 63, 73, 75, 79, 80, 82, 83, 92, 94, 95], "impli": [1, 8, 31, 52, 59], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 44, 45, 46, 51, 52, 53, 55, 58, 59, 63, 67, 71, 75, 76, 77, 84, 86, 87], "entri": [1, 3, 4, 31, 32, 36, 37, 39, 43, 44, 46, 51, 52, 53, 56, 79, 80, 84, 87, 88, 91, 93, 94], "maximum": [1, 8, 60, 68, 72, 92], "minimum": [1, 6, 8, 18, 37, 39, 53, 58, 71], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 32, 36, 37, 58, 63, 76, 82, 84, 86, 88, 89], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 31, 32, 33, 35, 36, 37, 39, 40, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 82, 83, 91, 92], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 29, 31, 32, 35, 36, 37, 39, 40, 42, 45, 46, 50, 51, 52, 53, 56, 58, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 31, 32, 34, 35, 36, 37, 40, 42, 46, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 68, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 31, 32, 35, 36, 37, 40, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "necessari": [1, 2, 3, 5, 8, 10, 45, 76], "In": [1, 2, 3, 8, 31, 32, 35, 36, 51, 52, 54, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 32, 36, 46, 51, 55, 59, 63, 68, 72, 73, 75, 77, 80, 82, 86, 87, 89, 91, 93, 94], "satisfi": [1, 3, 31], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 30, 32, 33, 34, 35, 36, 37, 40, 46, 49, 50, 53, 60, 61, 63, 65, 73, 74, 75, 81, 82, 84, 90], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 32, 35, 36, 37, 42, 47, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 67, 68, 69, 71, 77, 79, 80, 81, 82, 83, 87, 88, 91, 94, 95], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 32, 36, 37, 40, 42, 46, 50, 53, 55, 56, 58, 60, 61, 63, 64, 76, 77, 79, 80, 83, 86, 90, 91, 92, 93, 94, 95], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "rate": [1, 2, 3, 8, 33, 46, 75, 95], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 35, 36, 37, 41, 42, 44, 46, 50, 51, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 76, 77, 79, 80, 82, 86, 87, 89, 90, 91, 92, 93, 94, 95], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 29, 32, 35, 36, 37, 42, 46, 51, 56, 58, 59, 60, 61, 63, 64, 68, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "you": [1, 2, 3, 4, 5, 8, 12, 14, 31, 32, 34, 35, 36, 37, 42, 49, 50, 51, 53, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "high": [1, 2, 14, 35, 37, 46, 58, 61, 63, 76, 77, 81, 83, 84, 88, 91, 92, 93, 94, 95], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 31, 32, 34, 35, 36, 37, 40, 42, 46, 51, 52, 56, 58, 59, 60, 61, 63, 65, 68, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95], "imposs": [1, 8, 84], "also": [1, 2, 3, 4, 5, 8, 20, 29, 31, 32, 35, 36, 37, 42, 45, 50, 51, 60, 63, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "low": [1, 8, 46, 51, 73, 76, 77, 80, 84, 88, 92], "zero": [1, 3, 4, 32, 36, 39, 46, 47, 76, 83, 87, 88, 89], "forc": [1, 2, 3, 4, 36, 76, 95], "instead": [1, 2, 3, 8, 11, 14, 28, 31, 32, 35, 36, 37, 40, 46, 50, 51, 53, 55, 59, 60, 61, 63, 64, 67, 69, 71, 74, 75, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 95], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 31, 32, 35, 36, 37, 39, 40, 45, 46, 47, 50, 51, 60, 61, 63, 65, 67, 71, 72, 73, 75, 76, 77, 80, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95], "guarante": [1, 3, 4, 13, 19, 25, 32, 34, 36, 38, 40, 49, 74], "produc": [1, 2, 4, 8, 14, 42, 51, 61, 63, 65, 67, 73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95], "higher": [1, 4, 8, 31, 37, 39, 40, 42, 44, 51, 52, 63, 77, 80, 82, 88], "opposit": [1, 95], "occur": [1, 3, 8, 31, 45, 58, 76, 77, 82, 83, 89], "small": [1, 3, 8, 31, 35, 42, 46, 52, 59, 80, 81, 83, 87, 89, 94], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 35, 36, 42, 44, 45, 47, 50, 55, 58, 63, 64, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "max": [1, 37, 60, 61, 77, 83, 89], "tri": [1, 32, 36, 90], "befor": [1, 2, 3, 32, 36, 44, 46, 60, 63, 68, 80, 82, 84, 86, 89, 91, 93, 94], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 31, 32, 35, 36, 37, 40, 42, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 82, 83, 84, 87, 91, 92, 93], "left": [1, 2, 37, 39, 44, 46, 53, 56, 59, 76, 77, 87, 88, 89, 92], "stochast": 1, "exceed": 1, "m": [1, 4, 32, 36, 41, 42, 51, 56, 58, 59, 60, 76, 77, 81, 86, 87, 88, 95], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 32, 36, 50, 82, 84, 92], "length": [1, 4, 10, 22, 23, 31, 33, 37, 46, 53, 56, 60, 61, 63, 65, 68, 72, 75, 87, 89, 92, 93, 95], "must": [1, 2, 3, 4, 14, 31, 32, 33, 34, 36, 37, 40, 42, 43, 46, 49, 50, 51, 52, 53, 60, 61, 63, 65, 67, 68, 69, 71, 72, 75, 86, 90, 92, 95], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 31, 35, 37, 43, 46, 47, 51, 53, 59, 65, 67, 68, 69, 71, 72, 75, 82, 86, 87, 88, 92, 93, 94, 95], "ball": [1, 81], "bin": [1, 3, 53, 76, 77, 89], "ensur": [1, 2, 8, 32, 36, 46, 47, 58, 61, 63, 75, 76, 77, 80, 82, 83, 84, 89, 90, 91, 93, 94], "most": [1, 3, 4, 5, 8, 14, 31, 35, 37, 42, 50, 51, 52, 53, 56, 58, 59, 60, 61, 64, 67, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94], "least": [1, 8, 16, 27, 31, 35, 51, 52, 58, 61, 71, 77, 82, 83, 86, 89, 92], "int_arrai": [1, 46], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76, 79, 80, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95], "model": [2, 3, 4, 8, 14, 16, 26, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 81, 85, 90, 92, 95], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 30, 31, 32, 35, 36, 37, 40, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 69, 71, 72, 73, 75, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95], "regular": [2, 3, 35, 50], "multi": [2, 3, 8, 31, 32, 35, 36, 37, 41, 42, 43, 46, 47, 52, 53, 54, 55, 60, 61, 73, 82, 84, 85], "task": [2, 4, 5, 8, 9, 10, 12, 13, 14, 26, 28, 31, 35, 40, 42, 43, 44, 46, 51, 53, 61, 63, 73, 75, 80, 81, 82, 84, 87, 89, 91, 92, 94, 95], "cleanlearn": [2, 3, 8, 21, 26, 32, 46, 50, 62, 63, 64, 73, 74, 91, 93, 94], "wrap": [2, 32, 36, 50, 60, 63, 73, 76, 77, 79, 80, 84, 91, 93, 94], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 36, 42, 50, 59, 60, 63, 68, 75, 76, 77, 79, 80, 83, 84, 88, 93, 94], "sklearn": [2, 3, 4, 6, 8, 16, 27, 31, 36, 42, 46, 50, 60, 63, 64, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94], "classifi": [2, 3, 36, 42, 46, 51, 54, 60, 61, 73, 74, 75, 79, 80, 82, 86, 87, 89, 90, 92, 93, 94, 95], "adher": [2, 36, 63], "estim": [2, 3, 4, 7, 11, 20, 31, 35, 36, 37, 40, 46, 51, 52, 53, 58, 60, 63, 65, 67, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 95], "api": [2, 3, 12, 50, 56, 59, 60, 63, 74, 82, 91], "defin": [2, 3, 4, 5, 8, 12, 20, 31, 32, 33, 35, 36, 37, 61, 63, 65, 75, 76, 77, 79, 82, 86, 89, 95], "four": [2, 8, 81, 84, 95], "clf": [2, 3, 4, 42, 63, 73, 79, 82, 84, 87, 93], "fit": [2, 3, 4, 6, 8, 16, 34, 36, 49, 50, 60, 62, 63, 73, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94, 95], "sample_weight": [2, 36, 63, 84], "predict_proba": [2, 4, 31, 34, 36, 42, 49, 50, 75, 76, 77, 79, 80, 82, 84, 86, 87, 89, 93], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 29, 31, 34, 35, 36, 37, 39, 40, 42, 43, 45, 46, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 81, 82, 84, 85, 89, 91, 92, 94, 95], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 37, 39, 42, 44, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 89, 91, 93, 94], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 42, 43, 46, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 68, 69, 70, 71, 72, 74, 78, 83, 85, 90, 94], "e": [2, 3, 4, 8, 10, 20, 31, 32, 35, 36, 37, 40, 42, 43, 46, 47, 51, 52, 53, 54, 56, 59, 60, 61, 63, 65, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 42, 46, 60, 63, 73, 76, 77, 79, 80, 82, 84, 86, 87, 91, 93], "element": [2, 3, 4, 31, 37, 39, 46, 51, 53, 61, 68, 69, 71, 75, 80, 82, 94, 95], "first": [2, 4, 8, 15, 22, 23, 31, 35, 42, 46, 51, 52, 56, 59, 61, 63, 75, 76, 79, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "index": [2, 8, 22, 31, 37, 45, 46, 47, 52, 61, 63, 68, 71, 72, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 31, 32, 35, 36, 37, 39, 40, 42, 44, 45, 46, 50, 51, 52, 55, 56, 58, 59, 60, 61, 63, 64, 68, 69, 71, 72, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 31, 32, 35, 36, 37, 39, 40, 42, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 68, 69, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 31, 32, 34, 35, 36, 37, 38, 42, 46, 47, 49, 51, 56, 58, 60, 63, 75, 76, 77, 79, 80, 83, 84, 86, 87, 89, 90, 91, 93], "sampl": [2, 3, 4, 6, 8, 14, 18, 37, 39, 42, 53, 56, 59, 61, 63, 64, 73, 74, 81, 82, 84, 85, 87, 88, 91, 92, 94, 95], "size": [2, 8, 27, 32, 35, 36, 37, 42, 53, 58, 59, 63, 65, 67, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94], "here": [2, 4, 5, 8, 12, 35, 37, 40, 50, 51, 52, 53, 55, 56, 59, 60, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "re": [2, 4, 32, 36, 45, 51, 63, 73, 75, 76, 79, 80, 82, 91, 92, 93, 94, 95], "weight": [2, 8, 32, 33, 36, 42, 51, 58, 61, 63, 75, 76, 77, 80, 94], "loss": [2, 33, 50, 61, 63, 83], "while": [2, 3, 8, 32, 35, 36, 41, 42, 46, 63, 73, 82, 83, 84, 86, 87, 91], "train": [2, 3, 4, 8, 14, 16, 32, 33, 34, 36, 42, 46, 50, 51, 56, 59, 60, 63, 64, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 90, 92, 95], "support": [2, 3, 4, 10, 12, 28, 29, 35, 42, 46, 47, 60, 61, 71, 73, 74, 75, 76, 77, 82, 83], "your": [2, 3, 4, 7, 8, 14, 31, 32, 34, 35, 36, 37, 42, 46, 49, 50, 51, 52, 53, 55, 60, 61, 63, 64, 65, 67, 68, 74, 75, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "recommend": [2, 4, 8, 11, 14, 35, 37, 51, 76, 77, 82, 83, 90, 91], "furthermor": 2, "correctli": [2, 3, 8, 31, 32, 36, 37, 40, 47, 52, 53, 58, 59, 63, 65, 80, 82, 87, 88, 91, 92, 94], "clonabl": [2, 63], "via": [2, 4, 8, 11, 14, 16, 20, 31, 33, 35, 36, 42, 46, 51, 56, 59, 60, 61, 63, 64, 67, 71, 75, 76, 77, 79, 80, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 55, 58, 60, 61, 63, 64, 67, 69, 71, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 95], "clone": [2, 63, 87], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47, 55, 59, 63, 69, 74, 75, 76, 82, 84, 86, 87, 88, 89, 91, 95], "multipl": [2, 3, 4, 10, 11, 29, 31, 37, 45, 51, 52, 53, 55, 58, 59, 63, 73, 76, 77, 82, 83, 85, 87, 88, 91], "g": [2, 3, 4, 8, 10, 20, 31, 32, 36, 37, 43, 46, 53, 54, 56, 59, 60, 61, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94], "manual": [2, 63, 75, 82, 89, 90, 91, 93, 94, 95], "pytorch": [2, 32, 33, 36, 63, 73, 75, 82, 85, 87, 92], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 42, 46, 50, 60, 63, 75, 76, 77, 80, 82, 84, 87, 89, 90, 91, 92, 94, 95], "__init__": [2, 33, 63, 83], "independ": [2, 3, 8, 52, 63, 80, 90, 91, 95], "compat": [2, 32, 35, 36, 50, 63, 64, 67, 71, 73, 82, 90, 91, 93, 94], "neural": [2, 33, 50, 60, 63, 75, 82, 83, 87, 89, 91], "network": [2, 32, 33, 36, 50, 60, 63, 75, 80, 82, 83, 87, 89, 91, 94], "typic": [2, 32, 36, 60, 63, 75, 77, 79, 80, 83, 89, 90, 93, 94], "initi": [2, 3, 11, 16, 32, 36, 51, 63, 80, 82, 93], "insid": [2, 36, 63, 82, 84], "There": [2, 3, 73, 84, 86], "two": [2, 3, 8, 16, 22, 31, 32, 35, 36, 43, 46, 56, 58, 59, 74, 76, 77, 79, 80, 82, 83, 84, 87, 91, 92, 94, 95], "new": [2, 5, 12, 20, 32, 35, 36, 41, 45, 46, 51, 63, 75, 76, 80, 81, 82, 89, 90, 94, 95], "notion": 2, "confid": [2, 3, 8, 20, 31, 35, 37, 40, 42, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 67, 71, 73, 79, 80, 83, 84, 86, 87, 88, 90, 92, 93, 95], "packag": [2, 4, 5, 7, 8, 9, 13, 30, 34, 37, 38, 46, 49, 56, 59, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "prune": [2, 3, 37, 53, 63, 74, 88], "everyth": [2, 59, 84], "els": [2, 59, 76, 81, 82, 83, 86, 87, 88], "mathemat": [2, 3, 8, 40, 87], "keep": [2, 11, 12, 46, 73, 76, 81, 82, 92], "belong": [2, 3, 8, 31, 37, 39, 40, 52, 53, 54, 55, 60, 61, 65, 69, 71, 72, 77, 83, 84, 87, 89, 92, 95], "2": [2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 50, 52, 53, 55, 56, 59, 60, 61, 63, 64, 68, 69, 71, 72, 81, 82, 90], "error": [2, 3, 4, 8, 32, 36, 37, 39, 40, 46, 52, 53, 55, 56, 58, 59, 61, 63, 65, 67, 68, 71, 74, 75, 76, 77, 79, 80, 81, 85, 93], "erron": [2, 3, 31, 37, 40, 46, 52, 53, 61, 63, 64, 65, 89, 91], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 35, 42, 44, 45, 51, 55, 58, 63, 64, 69, 71, 72, 73, 79, 80, 82, 87, 88, 89, 91, 92, 93, 94, 95], "linear_model": [2, 4, 31, 46, 63, 73, 75, 76, 77, 80, 82, 84, 86, 89, 94], "logisticregress": [2, 3, 4, 31, 46, 73, 75, 76, 77, 80, 82, 84, 86, 89, 94], "logreg": 2, "cl": [2, 12, 26, 63, 73, 82, 84, 91, 93, 94], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 32, 35, 36, 37, 41, 42, 46, 50, 51, 53, 60, 61, 63, 69, 73, 75, 76, 77, 80, 81, 82, 84, 86, 88, 89, 91, 94], "x_train": [2, 76, 77, 84, 86, 87, 91, 93], "labels_maybe_with_error": 2, "had": [2, 3, 63, 88], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 35, 36, 37, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 78, 85, 86, 90, 91, 94], "pred": [2, 37, 46, 90, 91, 93, 94], "x_test": [2, 76, 77, 84, 87, 91, 93], "might": [2, 51, 63, 68, 76, 77, 82, 83, 88, 93, 94], "case": [2, 3, 11, 31, 42, 51, 63, 75, 76, 77, 79, 81, 82, 83, 84, 89, 91, 93, 94, 95], "standard": [2, 3, 4, 26, 31, 37, 50, 52, 53, 55, 61, 63, 73, 76, 77, 79, 81, 84, 88, 93], "adapt": [2, 32, 34, 46, 49, 63, 89], "skorch": [2, 63, 73, 82], "kera": [2, 49, 56, 59, 63, 73, 82, 88], "scikera": [2, 50, 63, 82], "open": [2, 35, 81, 88, 95], "doesn": [2, 63, 73], "t": [2, 3, 8, 15, 23, 32, 33, 35, 36, 37, 42, 44, 45, 55, 60, 61, 63, 69, 71, 72, 73, 76, 77, 79, 80, 81, 83, 84, 87, 88, 91, 95], "alreadi": [2, 4, 8, 14, 32, 35, 36, 40, 50, 51, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 93, 94], "exist": [2, 4, 8, 10, 16, 32, 35, 36, 45, 50, 56, 58, 60, 63, 73, 74, 76, 77, 80, 86, 94, 95], "made": [2, 4, 14, 32, 36, 63, 80, 82, 83, 86, 88, 90, 91, 93, 94], "easi": [2, 40, 63, 76, 77, 81, 82, 84, 87], "inherit": [2, 5, 33, 63], "baseestim": [2, 36, 63], "yourmodel": [2, 63], "def": [2, 5, 12, 32, 36, 50, 63, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 94, 95], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 32, 33, 35, 36, 37, 42, 60, 61, 63, 76, 80, 81, 83, 87, 92, 93, 94, 95], "refer": [2, 8, 14, 32, 36, 52, 53, 55, 56, 58, 59, 63, 67, 68, 76, 77, 79, 80, 82, 83, 84, 87, 90, 91], "origin": [2, 4, 8, 36, 37, 45, 46, 50, 52, 53, 56, 59, 60, 63, 64, 67, 69, 71, 76, 79, 80, 82, 83, 84, 88, 89, 91, 93, 94, 95], "total": [2, 3, 31, 35, 46, 52, 72, 82, 83, 92], "state": [2, 3, 4, 32, 33, 36, 41, 63, 84, 87, 88, 95], "art": [2, 33, 84, 87], "northcutt": [2, 3, 31, 60, 61], "et": [2, 3, 31, 33, 60, 61], "al": [2, 3, 31, 33, 60, 61], "2021": [2, 3, 31, 60, 61], "weak": [2, 59], "supervis": [2, 8, 76, 77, 82, 86], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 31, 32, 34, 35, 36, 37, 41, 45, 46, 49, 56, 59, 60, 61, 63, 65, 69, 71, 74, 76, 85, 90], "uncertainti": [2, 8, 39, 60, 63, 82, 89, 91], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 29, 32, 36, 37, 40, 42, 51, 58, 59, 63, 73, 76, 77, 80, 82, 83, 84, 87, 90, 94], "work": [2, 3, 5, 8, 10, 26, 31, 32, 35, 36, 37, 40, 45, 46, 47, 50, 51, 61, 63, 73, 74, 76, 77, 81, 89, 91, 94], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 32, 34, 35, 36, 45, 46, 49, 51, 52, 55, 56, 60, 61, 63, 67, 68, 69, 71, 73, 74, 76, 77, 79, 80, 82, 83, 84, 87, 88, 89, 95], "deep": [2, 34, 36, 49, 50, 63, 80], "see": [2, 3, 4, 11, 12, 28, 31, 32, 35, 36, 37, 42, 46, 50, 52, 53, 55, 56, 59, 60, 61, 63, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "subfield": 2, "theori": [2, 84], "machin": [2, 4, 12, 14, 28, 34, 49, 63, 76, 77, 81, 86], "across": [2, 3, 4, 5, 8, 11, 20, 31, 35, 42, 52, 59, 60, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 90, 91], "varieti": [2, 82, 93, 94], "like": [2, 3, 4, 5, 8, 12, 31, 32, 35, 36, 37, 40, 46, 50, 51, 52, 55, 56, 58, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "pu": [2, 46], "input": [2, 3, 4, 8, 14, 22, 31, 32, 35, 36, 40, 42, 45, 46, 47, 50, 59, 63, 73, 74, 75, 77, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 94, 95], "discret": [2, 29, 37, 40, 46, 60, 61, 65, 67, 68], "vector": [2, 3, 4, 8, 14, 37, 40, 42, 43, 46, 60, 61, 73, 75, 76, 77, 79, 80, 83, 84, 87, 88, 89, 92, 94, 95], "would": [2, 3, 4, 32, 35, 36, 37, 46, 53, 63, 73, 76, 82, 83, 84, 89, 91, 94, 95], "obtain": [2, 4, 6, 8, 14, 37, 51, 53, 56, 59, 61, 64, 75, 77, 80, 82, 86, 88, 90, 92, 95], "been": [2, 31, 37, 40, 45, 46, 51, 52, 56, 58, 60, 61, 63, 75, 76, 79, 82, 84, 86, 87, 88, 89, 92, 95], "dure": [2, 8, 14, 60, 63, 75, 79, 80, 82, 84, 87, 90, 91, 93, 94, 95], "denot": [2, 3, 40, 42, 46, 53, 60, 61, 71], "tild": 2, "paper": [2, 8, 51, 60, 69, 71, 81, 84, 86, 89, 91, 95], "cv_n_fold": [2, 3, 63, 94], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 36, 37, 39, 41, 42, 46, 51, 52, 55, 56, 59, 63, 64, 71, 76, 80, 81, 82, 87, 88, 89, 90, 92, 94, 95], "converge_latent_estim": [2, 3], "pulearn": [2, 46], "find_label_issues_kwarg": [2, 8, 63, 74, 82, 84], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 53, 69, 82], "clean": [2, 58, 61, 63, 64, 73, 76, 77, 81, 91, 93, 94], "even": [2, 3, 31, 35, 39, 40, 46, 63, 75, 82, 84, 86, 87, 88], "messi": [2, 63, 84], "ridden": [2, 63], "autom": [2, 63, 73, 77, 81, 82], "robust": [2, 40, 63, 77, 82], "prone": [2, 63], "out": [2, 3, 4, 8, 14, 24, 32, 36, 37, 42, 50, 53, 54, 56, 59, 60, 61, 63, 64, 72, 73, 74, 81, 82, 84, 85, 87, 88, 89, 91, 92, 94, 95], "current": [2, 3, 5, 8, 11, 12, 20, 32, 36, 37, 42, 51, 58, 63, 76, 77, 82, 86, 88], "intend": [2, 11, 12, 13, 14, 28, 29, 38, 51, 67, 71, 75, 76, 77, 80, 84], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 55, 58, 59, 60, 61, 63, 65, 67, 68, 72, 74, 75, 76, 79, 80, 81, 82, 83, 84, 86, 88, 90, 93, 94, 95], "follow": [2, 3, 8, 12, 26, 29, 31, 32, 35, 36, 42, 44, 51, 52, 56, 58, 59, 60, 63, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "experiment": [2, 32, 33, 35, 36, 53, 74, 82], "wrapper": [2, 4, 50, 75, 91, 93, 94], "around": [2, 4, 58, 76, 77, 88, 89, 95], "fasttext": [2, 49], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 60, 63, 79, 80, 81, 82, 92, 93, 94, 95], "along": [2, 42, 53, 71, 76, 77, 82, 83, 89], "dimens": [2, 46, 65, 68, 82, 83, 89, 92], "select": [2, 7, 8, 22, 51, 61, 82, 83, 86, 89], "split": [2, 3, 4, 8, 10, 35, 42, 45, 46, 63, 75, 76, 77, 79, 80, 81, 83, 84, 87, 90, 93, 95], "cross": [2, 3, 8, 31, 37, 40, 41, 42, 53, 56, 59, 61, 63, 64, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 91, 92, 93, 94, 95], "fold": [2, 3, 31, 37, 40, 63, 75, 79, 81, 82, 88, 92, 93], "By": [2, 31, 52, 53, 63, 76, 82, 92], "need": [2, 3, 8, 31, 32, 35, 36, 37, 52, 53, 55, 60, 63, 73, 75, 76, 77, 80, 82, 84, 86, 87, 88, 92, 94], "holdout": [2, 3, 63], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 46, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 65, 67, 73, 74, 76, 77, 81, 84, 85, 88, 89, 91, 92, 94], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 30, 32, 34, 35, 36, 37, 49, 51, 60, 63, 74, 76, 77, 79, 80, 82, 83, 86, 87, 89, 91, 92, 93, 94, 95], "numer": [2, 3, 4, 8, 11, 20, 26, 29, 42, 58, 60, 63, 68, 73, 74, 75, 76, 77, 78, 80, 83, 84, 86, 87, 89, 91, 93, 94], "consist": [2, 3, 32, 36, 46, 51, 92, 95], "latent": [2, 3, 40], "thei": [2, 3, 4, 13, 19, 22, 25, 32, 33, 34, 36, 37, 38, 44, 46, 50, 53, 58, 61, 63, 64, 67, 71, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, 94, 95], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 40, 46, 52, 63, 77, 80], "close": [2, 3, 8, 35, 40, 60, 75, 76, 77, 79, 80, 82, 83, 84, 88], "form": [2, 3, 8, 32, 33, 36, 40, 45, 46, 61, 63, 82], "equival": [2, 3, 32, 36, 40, 60, 89, 91], "iter": [2, 3, 31, 32, 36, 37, 46, 52, 53, 63, 82, 86, 92], "enforc": [2, 32, 36, 46], "perfectli": [2, 31, 52, 84], "certain": [2, 3, 4, 32, 36, 50, 59, 63, 76, 77, 81, 88, 89], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 35, 36, 37, 41, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 71, 76, 77, 82, 83, 95], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 32, 35, 36, 37, 39, 42, 45, 50, 51, 53, 60, 61, 63, 69, 71, 76], "filter": [2, 3, 8, 35, 45, 52, 54, 55, 57, 59, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 80, 81, 82, 83, 87, 88, 91, 92, 93, 94, 95], "find_label_issu": [2, 3, 8, 26, 35, 37, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 87, 88, 91, 92, 93, 94, 95], "particularli": [2, 73, 86, 89], "filter_bi": [2, 3, 35, 37, 53, 74, 82], "frac_nois": [2, 37, 53, 69, 82], "min_examples_per_class": [2, 37, 53, 77, 82, 84], "impact": [2, 8, 76, 77, 83], "ml": [2, 4, 8, 13, 63, 73, 76, 77, 79, 80, 83, 86, 87, 91, 93, 94], "accuraci": [2, 33, 61, 75, 82, 83, 84, 86, 89, 91, 92, 93, 94], "n_job": [2, 35, 37, 53, 65, 67, 69, 82, 89, 92], "disabl": [2, 32, 36, 37, 89], "process": [2, 3, 5, 11, 14, 32, 35, 36, 37, 45, 51, 53, 59, 65, 67, 69, 75, 76, 82, 86, 90, 94], "caus": [2, 37, 42, 76, 77, 82], "rank": [2, 3, 8, 31, 35, 37, 42, 52, 53, 54, 56, 57, 59, 60, 62, 66, 68, 69, 70, 72, 73, 74, 76, 77, 81, 82, 87, 88, 89, 92, 93, 94, 95], "get_label_quality_scor": [2, 35, 37, 38, 42, 51, 53, 54, 55, 56, 57, 58, 61, 62, 64, 66, 67, 69, 70, 71, 74, 84, 87, 88, 92, 95], "adjust_pred_prob": [2, 8, 55, 60, 61, 84], "control": [2, 4, 7, 8, 14, 35, 37, 51, 59, 60, 63, 69, 71, 76, 77, 81, 82], "how": [2, 3, 4, 8, 10, 11, 12, 14, 20, 31, 32, 33, 35, 36, 40, 46, 51, 52, 55, 56, 58, 60, 61, 63, 67, 71, 73, 76, 77, 79, 80, 81, 83, 88, 89, 90, 91, 92, 93, 94], "much": [2, 8, 31, 35, 37, 63, 82, 84, 86, 89], "output": [2, 3, 4, 8, 14, 32, 33, 36, 40, 46, 50, 51, 52, 56, 58, 59, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 80, 81, 82, 83, 88, 89, 90, 91, 94], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 46, 51, 52, 53, 58, 60, 61, 63, 65, 67, 68, 72, 74, 75, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "suppress": [2, 35, 51, 58, 60, 61, 63, 65, 67, 68, 92, 95], "statement": [2, 35, 51, 58, 60, 61, 63, 65, 67, 68], "big": [2, 35, 53, 59, 63, 84], "limit": [2, 4, 14, 35, 53, 88, 92, 95], "memori": [2, 32, 35, 36, 53, 59, 65, 67, 76, 92], "label_issues_batch": [2, 34, 53, 82], "find_label_issues_batch": [2, 34, 35, 53, 82], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 31, 35, 37, 39, 40, 41, 42, 43, 46, 47, 51, 52, 53, 55, 56, 59, 60, 61, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 91, 93, 94], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 35, 58, 59, 60, 61, 67, 71, 76, 88, 89, 92, 95], "inverse_noise_matrix": [2, 3, 8, 40, 46, 74, 84], "label_issu": [2, 35, 37, 53, 56, 63, 65, 74, 75, 80, 82, 83, 84, 87, 91, 93, 94], "clf_kwarg": [2, 3, 8, 63], "clf_final_kwarg": [2, 63], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 31, 35, 37, 39, 51, 52, 53, 55, 56, 58, 59, 61, 63, 64, 67, 71, 73, 75, 79, 80, 83, 84, 86, 88, 90, 91], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 35, 36, 37, 39, 44, 46, 53, 55, 56, 59, 61, 63, 64, 65, 67, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 91, 92, 93, 94, 95], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 31, 35, 37, 53, 56, 59, 61, 63, 64, 65, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 87, 89, 91, 92, 93, 94, 95], "final": [2, 8, 63, 79, 88, 90, 91, 93], "remain": [2, 63, 74, 83, 87, 91, 93, 94, 95], "datasetlik": [2, 46, 63], "beyond": [2, 4, 5, 7, 9, 30, 73, 91, 92], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 41, 50, 51, 52, 63, 71, 75, 76, 77, 79, 80, 82, 84, 86, 91, 93, 94, 95], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 46, 47, 50, 51, 52, 63, 68, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 91, 92, 94, 95], "scipi": [2, 4, 11, 46], "spars": [2, 4, 8, 11, 14, 16, 27, 46, 47, 79], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 32, 33, 36, 75, 80, 81, 83, 89, 94], "util": [2, 4, 8, 14, 28, 32, 33, 36, 38, 51, 56, 59, 63, 73, 74, 75, 76, 77, 82, 83, 84, 89], "tensorflow": [2, 46, 50, 73, 75, 82], "object": [2, 4, 8, 10, 11, 14, 28, 32, 33, 35, 36, 42, 46, 47, 50, 53, 56, 57, 58, 59, 60, 63, 71, 73, 75, 77, 79, 83, 84, 85, 87, 91, 94], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 43, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 67, 68, 69, 71, 72, 74, 75, 76, 77, 81, 82, 83, 84, 87, 88, 91, 94, 95], "index_list": 2, "subset": [2, 3, 4, 14, 31, 35, 37, 46, 61, 68, 72, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 93, 94, 95], "wa": [2, 3, 10, 12, 35, 46, 51, 52, 58, 60, 72, 75, 76, 77, 79, 80, 82, 84, 87, 88, 90, 92, 93, 94, 95], "abl": [2, 3, 8, 63, 75, 82, 84, 86, 87], "format": [2, 3, 4, 8, 10, 32, 35, 36, 37, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 75, 76, 77, 79, 81, 83, 86, 91, 92, 93, 95], "make": [2, 3, 16, 32, 35, 36, 42, 50, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "sure": [2, 35, 37, 42, 75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 93, 94], "shuffl": [2, 8, 46, 75, 80, 83, 87, 89], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 36, 40, 42, 45, 46, 51, 56, 58, 63, 69, 71, 72, 73, 75, 76, 77, 79, 80, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "batch": [2, 35, 46, 50, 51, 65, 67, 82, 83, 89], "order": [2, 4, 8, 29, 31, 32, 36, 37, 40, 41, 42, 46, 51, 52, 53, 56, 59, 60, 61, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 84, 88, 91, 92, 94, 95], "destroi": [2, 46], "oper": [2, 32, 35, 36, 46, 50, 61, 73, 80, 82, 89, 93, 94], "eg": [2, 8, 46, 56, 59, 76, 77, 82], "repeat": [2, 46, 51, 86, 89], "appli": [2, 32, 34, 36, 37, 42, 43, 45, 46, 55, 60, 69, 75, 76, 77, 79, 82, 83, 86, 87, 89, 90, 91, 92, 93, 94], "array_lik": [2, 3, 31, 37, 46, 53, 60, 64], "some": [2, 3, 4, 8, 12, 20, 31, 32, 34, 36, 37, 40, 45, 46, 49, 51, 52, 53, 55, 56, 59, 60, 61, 63, 65, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "seri": [2, 3, 35, 46, 47, 63, 71, 82], "row": [2, 3, 4, 8, 11, 23, 31, 35, 37, 39, 40, 46, 51, 52, 53, 55, 60, 61, 63, 68, 69, 71, 72, 75, 76, 79, 80, 81, 82, 83, 86, 87, 89, 93, 95], "rather": [2, 3, 22, 31, 46, 50, 51, 58, 67, 71, 86, 90, 91, 92, 94, 95], "leav": [2, 37], "per": [2, 3, 11, 31, 35, 37, 42, 45, 51, 52, 53, 55, 58, 59, 61, 64, 65, 67, 71, 77, 82, 88, 95], "determin": [2, 3, 8, 10, 14, 20, 22, 26, 31, 35, 37, 42, 46, 51, 53, 56, 58, 61, 67, 71, 76, 82, 86, 88, 89, 91], "cutoff": [2, 3, 89], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 31, 32, 36, 37, 46, 51, 58, 60, 61, 64, 67, 71, 75, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 94], "section": [2, 3, 5, 8, 74, 79, 83, 88], "3": [2, 3, 4, 5, 8, 29, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 53, 60, 61, 63, 64, 69, 71, 81, 82, 90], "equat": [2, 3, 40], "advanc": [2, 3, 4, 7, 8, 14, 58, 60, 71, 74, 77, 78, 84], "user": [2, 3, 4, 8, 12, 14, 23, 28, 29, 32, 36, 37, 58, 60, 61, 63, 67, 71, 84], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 32, 35, 36, 37, 42, 45, 51, 52, 53, 56, 58, 60, 61, 63, 64, 72, 74, 75, 77, 80, 83, 86, 88, 91, 94], "automat": [2, 3, 4, 22, 31, 73, 79, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "greater": [2, 3, 4, 7, 8, 24, 35, 46, 58, 77, 81, 82, 95], "count": [2, 20, 22, 31, 35, 37, 40, 46, 52, 53, 59, 74, 82, 83, 88], "observ": [2, 3, 40, 75, 76, 77, 86, 89, 91], "mislabel": [2, 8, 31, 35, 37, 40, 51, 52, 53, 56, 58, 61, 67, 69, 71, 73, 75, 79, 80, 82, 83, 84, 88, 91, 93, 94], "one": [2, 3, 4, 8, 22, 31, 32, 35, 36, 37, 42, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 83, 86, 89, 90, 91, 93, 94, 95], "get_label_issu": [2, 34, 35, 62, 63, 84, 91, 93, 94], "either": [2, 3, 5, 8, 32, 35, 36, 37, 51, 53, 58, 60, 61, 65, 67, 77, 82, 87, 88], "boolean": [2, 5, 8, 20, 35, 37, 45, 51, 53, 56, 61, 63, 65, 67, 68, 73, 75, 77, 80, 82, 83, 88, 91, 92, 94], "label_issues_mask": [2, 37, 61, 63, 74], "indic": [2, 3, 4, 5, 8, 11, 20, 31, 35, 36, 37, 39, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 67, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "its": [2, 4, 7, 8, 14, 32, 35, 36, 37, 44, 45, 53, 56, 59, 60, 61, 63, 65, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 94, 95], "return_indices_ranked_bi": [2, 35, 37, 53, 69, 74, 82, 84, 93, 94], "significantli": [2, 83, 84, 86, 90], "reduc": [2, 35, 37, 46, 75, 82], "time": [2, 8, 32, 35, 36, 46, 51, 74, 76, 81, 82, 83, 84, 88, 89, 91, 92, 93, 94, 95], "take": [2, 4, 8, 31, 32, 36, 41, 42, 46, 50, 61, 79, 83, 86, 87, 88, 93, 95], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 30, 32, 35, 36, 63, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "skip": [2, 8, 32, 36, 63, 75, 82, 87, 95], "slow": [2, 3], "step": [2, 5, 22, 42, 59, 82, 83, 84, 86, 90], "caution": [2, 4, 82], "previous": [2, 4, 11, 46, 60, 63, 74, 75, 76, 79, 80, 86, 90, 93], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 41, 42, 46, 63, 76, 79, 82, 83, 91, 92, 93, 95], "individu": [2, 8, 11, 22, 32, 36, 51, 55, 58, 61, 63, 69, 71, 74, 77, 79, 82, 86, 87, 88, 93, 95], "still": [2, 35, 36, 46, 60, 75, 82, 83, 89, 93], "extra": [2, 32, 36, 46, 50, 51, 52, 63, 80, 82, 83, 86, 89], "receiv": [2, 8, 32, 36, 52, 55, 56, 63, 65, 69, 77, 88], "overwritten": [2, 63], "callabl": [2, 3, 32, 36, 42, 45, 50, 55, 82], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 35, 36, 38, 41, 45, 46, 59, 61, 63, 68, 75, 76, 77, 82, 83, 84, 87, 95], "appropri": [2, 8, 14, 53, 61, 76, 79, 87, 88], "earli": [2, 83], "stop": [2, 83], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 31, 46, 60, 76, 79, 83, 87, 91, 93, 95], "f": [2, 5, 75, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "ignor": [2, 32, 36, 45, 50, 63, 68, 72, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "allow": [2, 31, 32, 35, 36, 39, 46, 51, 59, 60, 63, 65, 67, 75, 82, 83, 90, 92, 94], "access": [2, 8, 11, 32, 36, 63, 77, 80, 83, 87, 94], "hyperparamet": [2, 55, 60, 83], "purpos": [2, 76, 77, 82, 87, 91], "want": [2, 4, 8, 31, 35, 47, 51, 53, 63, 76, 80, 81, 83, 86, 88, 89, 90, 92, 94, 95], "explicitli": [2, 6, 8, 36, 63, 82], "yourself": [2, 4, 35, 77], "altern": [2, 5, 8, 42, 46, 50, 51, 61, 74, 75, 79, 80, 82, 83, 84, 86, 87, 89, 91, 94], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 32, 35, 36, 37, 46, 50, 51, 53, 60, 61, 63, 67, 68, 71, 72, 73, 76, 77, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 94], "effect": [2, 8, 23, 32, 36, 51, 60, 63, 79, 80, 82, 83, 89], "offer": [2, 4, 75, 76, 77, 80, 82, 84, 87, 94], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 51, 63, 76, 80, 82, 83, 84, 86, 88, 89, 90, 91, 92, 94], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 36, 42, 60, 63, 76, 93], "label_issues_df": [2, 63, 83], "similar": [2, 8, 31, 32, 36, 46, 51, 55, 56, 58, 60, 63, 67, 71, 76, 77, 79, 80, 82, 83, 84, 88, 89, 92], "document": [2, 3, 4, 8, 12, 14, 31, 32, 35, 36, 37, 42, 45, 50, 52, 53, 55, 58, 59, 60, 63, 67, 68, 69, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 46, 56, 63, 76, 77], "were": [2, 3, 4, 31, 36, 52, 58, 71, 75, 79, 82, 84, 86, 88, 90, 92, 93], "present": [2, 3, 4, 8, 10, 11, 18, 31, 46, 60, 68, 73, 79, 82, 83, 89], "actual": [2, 3, 4, 31, 51, 52, 61, 77, 82, 84, 95], "num_class": [2, 31, 35, 46, 50, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 93, 94], "uniqu": [2, 27, 46, 68, 76, 82, 87, 89], "given_label": [2, 4, 26, 31, 40, 63, 68, 72, 75, 76, 77, 79, 80, 83, 84, 91, 92, 94, 95], "normal": [2, 3, 16, 22, 27, 37, 39, 42, 44, 45, 46, 61, 82, 84, 89], "trick": [2, 82], "distribut": [2, 3, 4, 8, 22, 24, 31, 36, 37, 41, 44, 51, 59, 60, 61, 73, 76, 77, 79, 80, 83, 88, 89], "account": [2, 31, 51, 55, 60, 61, 80, 82, 84, 86, 87, 89, 91, 94], "word": [2, 3, 45, 71, 72, 82], "remov": [2, 8, 27, 31, 32, 36, 37, 63, 73, 80, 81, 82, 83, 87, 89, 91, 93, 94], "so": [2, 3, 4, 5, 8, 12, 22, 31, 32, 35, 36, 37, 46, 51, 52, 58, 61, 63, 67, 71, 75, 76, 77, 80, 83, 84, 87, 89, 92], "proportion": [2, 8, 37], "just": [2, 3, 4, 8, 11, 31, 33, 35, 46, 50, 61, 63, 65, 73, 74, 75, 77, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 32, 33, 36, 37, 42, 45, 46, 51, 53, 55, 60, 61, 63, 64, 65, 73, 75, 80, 81, 82, 83, 84, 89, 90, 91, 93, 94], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 44, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 73, 76, 78, 83, 85, 87, 91, 92, 93, 94, 95], "arg": [2, 10, 20, 23, 27, 32, 33, 36, 42, 46, 61, 63], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 42, 50, 63, 65, 67, 69, 82], "test": [2, 8, 22, 36, 42, 50, 63, 73, 76, 77, 79, 80, 83, 90, 91, 93, 94, 95], "expect": [2, 3, 32, 36, 37, 42, 51, 60, 61, 63, 82, 84, 86, 87, 88, 91, 93, 94, 95], "class_predict": 2, "evalu": [2, 8, 32, 33, 34, 35, 36, 59, 63, 75, 76, 77, 82, 83, 84, 86, 90, 91, 92, 93, 94], "simpli": [2, 31, 61, 76, 77, 79, 80, 82, 84, 87, 91, 92, 94, 95], "quantifi": [2, 4, 5, 8, 11, 37, 55, 60, 63, 73, 77, 79, 80, 83, 84, 88], "save_spac": [2, 8, 62, 63], "potenti": [2, 8, 31, 37, 45, 53, 56, 59, 61, 63, 65, 67, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 92, 93, 95], "cach": [2, 80, 94], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 46, 47, 50, 51, 52, 74, 75, 76, 77, 79, 80, 81, 82, 84, 86, 91, 92, 93, 94], "unlik": [2, 8, 37, 39, 42, 50, 52, 53, 55, 71, 76, 86, 87, 89, 91], "both": [2, 4, 8, 14, 22, 31, 32, 36, 37, 46, 51, 53, 61, 65, 67, 72, 73, 76, 82, 83, 84, 86, 95], "mask": [2, 35, 37, 45, 46, 53, 56, 61, 63, 65, 67, 68, 73, 81, 82, 86, 88, 92, 95], "prefer": [2, 61, 69, 87], "plan": 2, "subsequ": [2, 3, 32, 36, 80, 82, 84, 88, 94], "invok": [2, 32, 36, 84, 90], "scratch": [2, 63], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 30, 32, 35, 36, 37, 50, 51, 53, 55, 59, 60, 61, 63, 64, 65, 67, 73, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "share": [2, 61, 63], "mostli": [2, 46, 58, 63, 87, 91], "longer": [2, 29, 41, 42, 45, 63, 74, 80, 82, 88, 94], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 52, 63, 71, 76, 77, 81, 82, 95], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 35, 39, 51, 52, 55, 59, 63, 68, 71, 75, 76, 79, 80, 81, 82, 83, 84, 86, 89], "docstr": [2, 31, 32, 36, 46, 63, 81, 84], "unless": [2, 32, 36, 63, 82], "our": [2, 3, 8, 50, 51, 61, 63, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "is_label_issu": [2, 26, 63, 75, 76, 77, 79, 80, 83, 84, 87, 91, 94], "entir": [2, 8, 22, 35, 37, 40, 52, 53, 58, 61, 63, 65, 67, 68, 73, 76, 77, 82, 88, 89, 90, 92, 95], "accur": [2, 3, 4, 8, 14, 31, 35, 37, 51, 52, 53, 56, 59, 61, 63, 64, 65, 67, 68, 74, 77, 79, 80, 82, 83, 86, 91], "label_qu": [2, 51, 63, 84, 86, 91, 94], "measur": [2, 31, 51, 52, 63, 73, 81, 82, 84, 86, 87, 91, 92, 93, 95], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 31, 35, 37, 39, 42, 51, 52, 53, 55, 56, 58, 61, 63, 64, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 91, 93, 94], "lower": [2, 4, 5, 8, 11, 24, 35, 42, 44, 51, 52, 55, 58, 59, 61, 63, 64, 67, 71, 75, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 94, 95], "eas": 2, "comparison": [2, 32, 36, 59, 84, 86], "against": [2, 32, 36, 76, 79, 82, 86, 87], "predicted_label": [2, 4, 26, 63, 68, 72, 75, 76, 77, 79, 80, 83, 84, 91, 92, 94], "ad": [2, 32, 36, 77, 86, 91], "precis": [2, 53, 56, 59, 82, 84, 92, 95], "definit": [2, 5, 29, 42, 63, 79, 93], "accessor": [2, 63], "describ": [2, 8, 16, 51, 60, 61, 63, 69, 71, 84, 86, 87, 88, 90, 95], "precomput": [2, 4, 40, 63, 81], "clear": [2, 32, 36, 63, 80, 91, 94], "save": [2, 4, 14, 32, 35, 36, 59, 63, 82, 88, 92, 95], "space": [2, 8, 60, 63, 79, 81, 83], "place": [2, 32, 36, 46, 63, 86, 93], "larg": [2, 35, 63, 79, 80, 82, 83, 88, 89, 92, 95], "deploi": [2, 63, 79, 80, 82, 83], "care": [2, 8, 32, 36, 63, 80, 82, 84], "avail": [2, 4, 5, 10, 12, 28, 36, 63, 82, 84, 86, 88, 91], "cannot": [2, 4, 10, 12, 46, 90, 95], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 36, 42, 63], "__init_subclass__": [2, 34, 36, 62, 63], "set_": [2, 36, 63], "_request": [2, 36, 63], "pep": [2, 36, 63], "487": [2, 36, 63], "look": [2, 4, 5, 14, 32, 36, 46, 63, 68, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 92, 93, 95], "inform": [2, 4, 5, 8, 11, 14, 28, 32, 36, 46, 51, 52, 56, 59, 63, 68, 71, 72, 73, 75, 76, 79, 80, 84, 86, 89, 92, 95], "__metadata_request__": [2, 36, 63], "infer": [2, 36, 46, 63, 68, 72, 83, 86, 87, 93, 94], "signatur": [2, 32, 36, 63], "accept": [2, 32, 36, 61, 63, 76, 77], "metadata": [2, 36, 63, 79, 80, 83, 95], "through": [2, 4, 5, 36, 63, 75, 77, 80, 81, 82, 86, 88, 89, 94], "develop": [2, 7, 36, 63, 82, 84, 95], "request": [2, 36, 63, 77, 80, 81, 87, 93, 94, 95], "those": [2, 3, 8, 35, 36, 37, 50, 51, 53, 59, 63, 67, 71, 72, 73, 75, 82, 83, 88, 92], "http": [2, 4, 5, 7, 8, 9, 16, 30, 32, 33, 35, 36, 39, 46, 56, 59, 60, 63, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "www": [2, 36, 63, 89], "org": [2, 16, 32, 33, 36, 46, 60, 63, 82, 84, 95], "dev": [2, 36, 63], "0487": [2, 36, 63], "get_metadata_rout": [2, 34, 36, 62, 63], "rout": [2, 36, 63], "pleas": [2, 32, 36, 50, 63, 73, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 89, 91, 94, 95], "guid": [2, 5, 36, 63, 74, 83], "mechan": [2, 32, 36, 63], "metadatarequest": [2, 36, 63], "encapsul": [2, 14, 36, 58, 63], "get_param": [2, 34, 36, 49, 50, 62, 63], "subobject": [2, 36, 63], "param": [2, 8, 32, 36, 50, 60, 63, 82], "name": [2, 4, 5, 8, 10, 11, 29, 31, 32, 36, 41, 42, 46, 50, 51, 52, 59, 63, 68, 72, 75, 77, 80, 81, 82, 83, 84, 87, 91, 92, 94, 95], "set_fit_request": [2, 34, 36, 62, 63], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 40, 42, 45, 46, 50, 51, 52, 56, 58, 59, 61, 63, 68, 72, 75, 76, 82, 86, 87, 88, 95], "unchang": [2, 32, 36, 63, 95], "relev": [2, 14, 22, 36, 63, 83], "enable_metadata_rout": [2, 36, 63], "set_config": [2, 36, 63], "meta": [2, 36, 63], "rais": [2, 4, 10, 11, 29, 32, 36, 39, 42, 63, 75, 82], "alia": [2, 32, 36, 63], "metadata_rout": [2, 36, 63], "retain": [2, 36, 46, 63], "chang": [2, 32, 35, 36, 39, 63, 71, 75, 76, 80, 82, 88, 89, 94, 95], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 30, 32, 34, 36, 38, 39, 46, 49, 50, 61, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "sub": [2, 36, 58, 63], "pipelin": [2, 36, 63, 91], "otherwis": [2, 8, 29, 31, 32, 35, 36, 37, 43, 45, 46, 53, 60, 63, 65, 67, 68, 72, 80, 82, 94], "updat": [2, 11, 32, 35, 36, 63, 74, 76, 83], "set_param": [2, 34, 36, 49, 50, 62, 63], "simpl": [2, 32, 36, 37, 51, 61, 63, 76, 77, 79, 80, 83, 86, 89, 91, 93, 94], "well": [2, 3, 8, 32, 36, 39, 40, 51, 53, 59, 61, 63, 68, 71, 72, 74, 76, 77, 79, 80, 82, 83, 84, 86, 88, 89], "nest": [2, 32, 36, 47, 63, 69, 71, 72, 95], "latter": [2, 32, 36, 63, 89], "compon": [2, 36, 63], "__": [2, 36, 63], "set_score_request": [2, 62, 63], "structur": [3, 60, 79, 93], "unobserv": 3, "less": [3, 4, 8, 27, 35, 42, 51, 60, 61, 65, 67, 71, 77, 79, 81, 82, 83, 84, 88, 95], "channel": [3, 75, 84], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 31, 40, 46, 52, 77, 81, 94], "inv": 3, "confident_joint": [3, 20, 31, 37, 46, 52, 53, 74, 82, 84], "un": 3, "under": [3, 8, 32, 36, 52, 59, 60, 77, 89], "joint": [3, 31, 37, 40, 46, 52, 53, 81], "num_label_issu": [3, 35, 37, 53, 68, 72, 74], "estimation_method": [3, 35], "off_diagon": 3, "multi_label": [3, 31, 37, 46, 47, 53, 87], "don": [3, 73, 77, 79, 80, 83, 84, 88, 91], "statis": 3, "compute_confident_joint": [3, 31, 37, 46, 53, 84], "off": [3, 37, 46, 58, 83, 84, 88, 89], "j": [3, 4, 31, 32, 36, 37, 53, 56, 59, 60, 69, 71, 72, 76, 77, 84, 92, 95], "confident_learn": [3, 37, 53, 84], "off_diagonal_calibr": 3, "calibr": [3, 37, 46, 51, 86], "cj": [3, 40, 46], "axi": [3, 27, 40, 42, 44, 65, 68, 75, 76, 77, 82, 83, 84, 86, 87, 89, 91, 92], "bincount": [3, 76, 77, 84, 86, 87], "alwai": [3, 8, 32, 36, 46, 75, 84, 91, 93, 94], "estimate_issu": 3, "over": [3, 8, 32, 35, 36, 58, 59, 65, 67, 77, 79, 81, 82, 83, 84, 89, 91, 93], "As": [3, 5, 73, 76, 77, 80, 84, 91, 95], "add": [3, 4, 5, 10, 11, 32, 36, 50, 59, 75, 76, 77, 80, 82, 83, 84, 87, 94], "approach": [3, 31, 35, 37, 79, 84, 87, 89, 91, 93], "custom": [3, 5, 8, 9, 26, 32, 35, 36, 42, 45, 61, 77, 80, 84, 91, 94], "know": [3, 76, 77, 79, 80, 82, 83, 84, 86, 91], "cut": [3, 58, 73, 84], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 89, 95], "underestim": 3, "few": [3, 59, 73, 77, 82, 86, 87, 88, 89, 95], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 45, 55, 56, 58, 59, 61, 64, 71, 81, 82, 87, 92, 95], "detail": [3, 4, 8, 12, 14, 28, 31, 32, 36, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 67, 68, 69, 73, 74, 75, 87, 89, 95], "num_issu": [3, 5, 35, 75, 76, 77, 79, 80, 83, 84], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 37, 42, 51, 81, 82, 88, 91, 94, 95], "p_": [3, 31, 37], "pair": [3, 4, 8, 31, 37, 84], "v": [3, 8, 35, 52, 53, 55, 61, 76, 77, 87, 88, 89, 90], "rest": [3, 4, 5, 7, 8, 9, 30, 52, 53, 55, 63, 76, 77, 79, 80, 82, 83, 84, 86, 91, 93, 94], "fashion": [3, 4, 65, 93], "2x2": 3, "incorrectli": [3, 31, 52, 53, 56, 79, 95], "calibrated_cj": 3, "c": [3, 8, 45, 53, 61, 73, 75, 76, 77, 79, 80, 82, 84, 87, 88, 89, 90, 91, 93], "whose": [3, 4, 8, 24, 32, 36, 40, 45, 51, 55, 58, 64, 67, 71, 72, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 89, 92, 95], "truli": [3, 89, 92], "estimate_joint": [3, 31, 84], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 53, 59, 84, 88, 90, 92, 95], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 51, 52, 59, 68, 88, 89], "done": [3, 8, 63, 76, 82, 84, 87, 89, 90], "overfit": [3, 8, 56, 59, 75, 76, 77, 79, 80, 83, 90, 93], "classifict": 3, "singl": [3, 4, 10, 22, 31, 32, 36, 42, 43, 46, 51, 52, 58, 59, 60, 61, 71, 75, 76, 82, 84, 87, 88, 93], "baselin": [3, 32, 37, 89, 91, 94], "proxi": 3, "union": [3, 4, 10, 42, 46, 47, 53, 59, 63, 67, 71, 82], "tupl": [3, 27, 32, 36, 40, 41, 43, 45, 46, 51, 53, 59, 67, 69, 71, 72, 75, 95], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 35, 40, 51, 65, 67, 73, 82, 83, 92, 94], "practic": [3, 77, 83, 84, 89, 91, 93, 94], "complet": [3, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 91], "gist": 3, "cj_ish": 3, "guess": [3, 40, 84, 86], "8": [3, 4, 5, 6, 41, 42, 43, 45, 55, 69, 71, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "parallel": [3, 37, 59, 69, 81], "again": [3, 50, 82, 89, 93], "simplifi": [3, 12], "understand": [3, 7, 31, 52, 59, 77, 84, 91, 92, 95], "100": [3, 32, 36, 61, 76, 77, 79, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95], "optim": [3, 32, 33, 36, 50, 83, 86], "speed": [3, 37, 81, 82, 91, 94], "dtype": [3, 21, 22, 27, 32, 36, 45, 46, 55, 71, 75, 88], "enumer": [3, 32, 36, 75, 76, 77, 83, 95], "s_label": 3, "confident_bin": 3, "6": [3, 4, 36, 42, 46, 71, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "num_confident_bin": 3, "argmax": [3, 37, 61, 65, 68, 75, 82, 84, 88, 89, 92], "elif": 3, "estimate_lat": 3, "py_method": [3, 40], "cnt": [3, 40], "1d": [3, 4, 10, 14, 35, 37, 42, 43, 46, 47, 55, 64, 75, 93], "eqn": [3, 40], "margin": [3, 37, 40, 42, 61], "marginal_p": [3, 40], "shorthand": [3, 11], "proport": [3, 8, 31, 52, 84, 90], "poorli": [3, 40, 93], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 84], "variabl": [3, 5, 12, 23, 46, 63, 64, 75, 76, 79, 84, 87, 91], "exact": [3, 40, 76, 77, 79, 83, 93], "within": [3, 4, 8, 13, 32, 33, 36, 38, 53, 58, 67, 69, 71, 76, 77, 82, 83, 88, 92], "percent": 3, "often": [3, 31, 40, 52, 82, 84, 90, 92], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 46, 47, 59, 75, 76, 79, 80, 82, 83, 87, 88, 89, 91, 94], "wai": [3, 4, 50, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 90, 93, 94], "pro": 3, "con": 3, "pred_proba": [3, 90], "combin": [3, 31, 76, 81, 82, 83, 84, 90, 91], "becaus": [3, 40, 46, 58, 80, 82, 84, 86, 88], "littl": [3, 35, 81, 88, 95], "uniform": [3, 61, 81, 82, 84], "20": [3, 5, 72, 75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 95], "Such": [3, 83, 89], "bound": [3, 21, 32, 36, 45, 55, 56, 58, 59, 88], "reason": [3, 20, 32, 36], "comment": [3, 45, 95], "end": [3, 4, 32, 36, 59, 83, 89, 92, 95], "file": [3, 4, 10, 34, 35, 49, 59, 75, 76, 79, 80, 81, 82, 88, 89, 92, 93, 95], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 84], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 74, 76, 77, 79, 80, 83, 84, 92, 93, 95], "five": [3, 56, 59, 84, 88], "estimate_cv_predicted_prob": [3, 84], "estimate_noise_matric": 3, "get_confident_threshold": [3, 34, 35], "amongst": [3, 8, 88], "confident_threshold": [3, 8, 20, 35, 60], "unifi": 4, "audit": [4, 7, 10, 11, 14, 75, 78, 79, 80, 82, 83, 84, 87, 88, 91], "kind": [4, 5, 75, 76, 79, 80, 81, 83, 84], "addit": [4, 5, 7, 8, 9, 11, 28, 30, 32, 36, 42, 47, 51, 59, 69, 75, 76, 79, 80, 84, 86, 89, 90, 93, 94], "depend": [4, 5, 7, 8, 9, 10, 11, 30, 34, 37, 39, 46, 49, 53, 60, 63, 64, 73], "instal": [4, 5, 7, 8, 9, 30, 32, 34, 35, 36, 37, 49, 50, 65, 67], "pip": [4, 5, 7, 9, 30, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "development": [4, 5, 7, 9, 30], "git": [4, 5, 7, 9, 30, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "github": [4, 5, 7, 9, 30, 32, 33, 46, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "com": [4, 5, 7, 9, 30, 32, 33, 35, 39, 46, 60, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "egg": [4, 5, 7, 9, 30, 73, 81], "label_nam": [4, 5, 6, 8, 10, 16, 27, 73, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 91], "image_kei": [4, 83], "interfac": [4, 73, 82, 84], "librari": [4, 8, 36, 56, 59, 60, 73, 76, 80, 81, 82, 94], "goal": [4, 91], "track": [4, 11, 12, 73, 76, 81, 82, 84], "intermedi": [4, 7, 77], "statist": [4, 8, 11, 20, 22, 31, 51, 52, 59, 77, 79, 80, 84], "convert": [4, 10, 29, 32, 36, 43, 44, 47, 51, 58, 67, 71, 74, 75, 80, 81, 82, 83, 86, 87, 88, 94], "hug": [4, 10, 83], "face": [4, 10, 14, 81, 83, 87], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 36, 42, 51, 52, 58, 60, 76, 77, 80, 82, 83, 84, 86, 88], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 36, 46, 51, 52, 64, 68, 71, 72, 79, 80, 82, 86, 87, 94, 95], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 36, 41, 46, 51, 52, 55, 56, 58, 59, 76, 77, 79, 80, 84, 86, 87, 88], "path": [4, 10, 32, 35, 36, 59, 75, 76, 82, 88], "local": [4, 10, 32, 33, 36, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 42, 60, 69, 71, 72, 73, 76, 77, 78, 81, 82, 84, 85, 86, 89], "txt": [4, 10, 95], "csv": [4, 10, 79, 80, 91, 93, 94], "json": [4, 10], "hub": [4, 10], "multiclass": [4, 10, 13, 42, 46, 51, 87], "regress": [4, 5, 10, 12, 14, 19, 26, 29, 76, 77, 80, 85, 86, 89, 94], "multilabel": [4, 10, 12, 13, 29, 43, 87], "imag": [4, 7, 31, 36, 56, 58, 59, 60, 65, 67, 68, 73, 76, 77, 81, 82, 85, 86, 87, 88, 90, 92], "point": [4, 5, 8, 16, 22, 32, 36, 76, 77, 79, 80, 82, 83, 84, 86], "field": [4, 8, 32, 36], "themselv": [4, 91, 93, 94], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 45, 69, 71, 77, 83, 85, 87, 92], "load_dataset": [4, 10, 83], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 29, 32, 36], "has_label": [4, 10], "class_nam": [4, 10, 18, 31, 52, 59, 68, 72, 73, 81, 84, 88, 92, 95], "empti": [4, 10, 40, 51, 77, 82, 87], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 73, 75, 76, 77, 79, 80, 82, 83, 84, 87, 91], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 79], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 75, 76, 77, 79, 80, 82, 83, 84, 87, 91], "sort": [4, 14, 35, 37, 42, 51, 53, 56, 58, 59, 61, 67, 69, 71, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "common": [4, 11, 14, 77, 78, 81, 82, 84, 87, 88, 92], "real": [4, 14, 73, 76, 77, 82, 84, 86, 91, 92], "world": [4, 14, 73, 76, 77, 82, 84, 86, 91, 92], "interact": [4, 14, 80, 82], "embed": [4, 8, 14, 60, 73, 75, 76, 77, 79, 80, 84, 87, 91, 94], "thereof": [4, 14], "insight": [4, 14, 59, 86], "act": [4, 8, 58, 76], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 35, 37, 65, 67], "best": [4, 14, 41, 51, 61, 76, 77, 79, 80, 82, 83, 86, 87, 89, 91, 93, 94, 95], "2d": [4, 14, 35, 42, 43, 45, 46, 51, 75, 87, 93], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 52, 75, 76, 77, 79, 80, 83, 84], "represent": [4, 8, 14, 29, 32, 36, 43, 53, 73, 75, 76, 77, 80, 82, 83, 84, 89, 94], "num_featur": [4, 14, 32, 36, 50], "distanc": [4, 8, 14, 16, 22, 24, 27, 44, 58, 60, 79, 89], "nearest": [4, 8, 14, 21, 22, 24, 44, 60, 77, 80, 89], "neighbor": [4, 8, 14, 16, 21, 22, 24, 44, 60, 76, 77, 79, 80, 82, 83, 89], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 46, 63, 81, 91], "csr": 4, "evenli": 4, "omit": [4, 58, 59, 83, 88], "itself": [4, 32, 36, 88], "three": [4, 8, 31, 51, 52, 63, 68, 75, 76, 77, 79, 81, 84, 86, 90, 91, 92, 93, 95], "indptr": 4, "wise": 4, "start": [4, 5, 8, 29, 32, 33, 36, 42, 73, 79, 87, 95], "th": [4, 41, 45, 46, 51, 53, 56, 58, 59, 60, 69, 71, 72, 80, 87, 88, 95], "ascend": [4, 31, 52, 83, 84], "segment": [4, 65, 67, 68, 85], "reflect": [4, 79, 80, 86, 88, 89, 91, 93, 94], "maintain": 4, "posit": [4, 32, 36, 44, 46, 59, 79, 81, 89], "nearestneighbor": [4, 8, 16, 60, 79, 89], "kneighbors_graph": [4, 16, 79], "illustr": 4, "todens": 4, "second": [4, 42, 46, 59, 61, 76, 82, 84, 95], "duplic": [4, 7, 19, 20, 32, 36, 73, 76, 84, 91], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 36, 42, 50], "neither": [4, 8, 12, 88], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 51, 82, 86, 95], "unspecifi": [4, 14, 37, 53], "interest": [4, 14, 20, 68, 72, 80, 84, 91, 92, 93, 94, 95], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 63, 64, 81, 91, 95], "random_st": [4, 75, 76, 77, 83, 84, 87, 89, 93], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 91], "comprehens": [4, 73, 83, 87, 91], "nbr": 4, "n_neighbor": [4, 8, 16, 60], "metric": [4, 8, 17, 22, 27, 46, 50, 59, 60, 75, 79, 80, 83, 84, 91, 93, 94], "euclidean": [4, 8, 58, 60, 79], "mode": [4, 16, 32, 35, 36, 89], "4x4": 4, "float64": [4, 22, 32, 36, 71], "compress": [4, 8, 46, 65, 67], "toarrai": 4, "NOT": [4, 35, 80], "23606798": 4, "41421356": 4, "configur": [4, 14, 42, 77], "suppos": [4, 8, 56, 89, 91, 93, 94], "who": [4, 58, 79, 84, 93, 95], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 76], "clean_learning_kwarg": [4, 8, 21, 26, 91], "labelissuemanag": [4, 8, 12, 19, 21], "prune_method": [4, 74], "prune_by_noise_r": [4, 37, 53, 84], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 52, 72, 73, 75, 76, 77, 79, 80, 84, 87, 91, 95], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 49, 50, 52, 57, 66, 67, 69, 70, 71, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 91, 92, 95], "show": [4, 22, 32, 36, 41, 46, 59, 68, 72, 77, 79, 80, 81, 82, 83, 84, 86, 89, 91, 92, 93, 95], "top": [4, 8, 31, 35, 37, 46, 53, 56, 59, 61, 68, 72, 73, 75, 76, 77, 79, 80, 81, 82, 84, 88, 89, 91, 94, 95], "suffer": [4, 8, 11, 20, 53, 61, 72, 95], "onc": [4, 20, 31, 32, 36, 76, 82, 84, 87, 88, 93], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 42, 51, 52, 55, 58, 59, 63, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 88, 95], "sever": [4, 5, 8, 10, 11, 20, 32, 35, 36, 37, 55, 58, 60, 61, 67, 71, 73, 75, 76, 77, 79, 80, 81, 82, 84, 88, 89, 93, 94, 95], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 73, 75, 76, 77, 79, 80, 82, 83, 87, 89, 91, 93, 94, 95], "With": [4, 35, 80, 84, 86, 91, 92, 94, 95], "usag": [4, 35, 50], "issue_summari": [4, 8, 11, 76], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 38, 61, 73, 76, 77, 84, 85, 91], "someth": [4, 5, 32, 36, 61, 88], "123": [4, 76, 77], "456": [4, 75, 93, 94], "nearest_neighbor": 4, "7": [4, 42, 43, 50, 69, 71, 75, 76, 77, 79, 80, 81, 82, 86, 87, 88, 89, 91, 92, 93, 94, 95], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 42, 43, 55, 69, 71, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "distance_to_nearest_neighbor": [4, 76, 77, 79, 80, 83, 84], "789": [4, 83], "get_issu": [4, 8, 11, 75, 77, 79, 80, 82, 83, 87, 91], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76, 77], "focu": [4, 11, 80, 92, 95], "full": [4, 8, 11, 35, 59, 83, 95], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 52, 68, 72, 73, 92], "valueerror": [4, 10, 11, 29, 39, 42, 82], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 68, 77, 79, 80, 83, 84, 88], "lie": [4, 8, 60, 61, 75, 76, 77, 79, 80, 83, 84, 94], "directli": [4, 12, 14, 28, 29, 35, 50, 51, 77, 80, 87, 88, 91, 94], "compar": [4, 51, 60, 71, 76, 77, 79, 84, 88], "get_issue_summari": [4, 11, 77], "get_info": [4, 11, 77, 80], "yet": [4, 15, 19, 23, 81, 86], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 32, 36, 76], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 75, 76, 83], "load": [4, 10, 35, 59, 81, 82, 83, 84, 88, 89, 92, 95], "futur": [4, 8, 20, 32, 36, 51, 73, 75, 76, 80, 82, 94], "overwrit": [4, 76], "separ": [4, 31, 42, 55, 76, 77, 82, 83, 88, 90], "static": 4, "rememb": [4, 80, 82, 84], "part": [4, 8, 32, 36, 37, 56, 58, 59, 75, 76, 81, 92, 95], "ident": [4, 8, 20, 46, 80], "walk": 5, "alongsid": [5, 32, 36, 76, 82], "pre": [5, 6, 8, 32, 36, 76, 77, 83, 91, 92, 95], "runtim": [5, 32, 35, 36, 63, 65, 67, 75, 82, 83], "issue_manager_factori": [5, 12, 76], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 42, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "thing": [5, 36, 84, 91, 94], "next": [5, 51, 73, 75, 79, 80, 82, 86, 88, 91, 93, 94, 95], "dummi": 5, "randint": [5, 27, 42, 76, 77, 82], "mark": [5, 8, 74, 88, 89, 91], "regard": [5, 77, 84], "rand": [5, 42, 76, 77], "is_": [5, 8, 76], "_issu": [5, 8, 76], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76], "whole": [5, 22, 32, 36, 77], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76], "popul": [5, 77, 80], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": [5, 88], "raw_scor": 5, "bit": 5, "involv": [5, 35, 68, 72, 82, 87], "intermediate_arg": 5, "min": [5, 42, 58, 71, 76, 82, 89], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 76], "instanti": [5, 14, 35, 50, 60, 75, 77, 79, 94], "477762": 5, "286455": 5, "term": [5, 8, 40, 46, 59, 75, 76, 77, 79, 80, 83, 84], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 75, 76, 77, 79, 80, 81, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "003042": 5, "058117": 5, "11": [5, 50, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "121908": 5, "15": [5, 44, 63, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "169312": 5, "17": [5, 75, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 94, 95], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 76, 77, 81, 84], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 81, 88, 95], "dbscan": [6, 8, 27, 82], "hdbscan": [6, 82], "etc": [6, 8, 20, 32, 36, 40, 50, 51, 69, 73, 76, 77, 79, 80, 82, 84, 87, 91], "sensit": [6, 8, 44], "ep": [6, 27, 59], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 73, 75, 82, 83, 86, 91, 93, 94], "kmean": [6, 82], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 82], "cluster_id": [6, 8, 27, 82], "labels_": 6, "underperforming_group": [6, 8, 12, 19, 77, 79, 80, 82, 83, 84], "search": [7, 8, 18, 22, 23, 45, 63, 82, 90], "nondefault": 7, "Near": [7, 82], "iid": [7, 22, 79, 84], "imbal": [7, 19, 55, 60, 61, 77], "null": [7, 12, 19, 77, 80, 83, 84], "valuat": [7, 16], "togeth": [7, 8, 40, 76, 77, 79, 80, 83, 84, 91, 94, 95], "built": [7, 42], "own": [7, 32, 34, 36, 49, 55, 56, 59, 65, 69, 75, 77, 79, 80, 82, 83, 86, 87, 91, 92, 93, 94, 95], "prerequisit": 7, "basic": [7, 36, 50, 79, 80, 89], "page": [8, 77, 82, 84], "variou": [8, 11, 26, 34, 47, 49, 73, 76, 77, 79, 80, 81, 84, 86, 88, 93], "sai": [8, 32, 36, 87, 92], "why": [8, 80], "matter": [8, 31, 52, 80, 94], "_score": 8, "flag": [8, 20, 22, 37, 42, 52, 53, 56, 63, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 91, 92, 94], "badli": [8, 58, 95], "code": [8, 32, 36, 40, 46, 50, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "issue_scor": 8, "outlier_scor": [8, 24, 76, 77, 79, 80, 83, 84, 89], "atyp": [8, 60, 76, 77, 79, 80, 83, 84, 89], "datapoint": [8, 27, 37, 42, 46, 61, 64, 73, 75, 76, 77, 79, 80, 82, 90, 91, 93, 94], "is_issu": [8, 20], "is_outlier_issu": [8, 76, 77, 79, 80, 83, 84], "annot": [8, 31, 41, 51, 52, 53, 55, 56, 58, 59, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 85, 88, 92], "transform": [8, 42, 44, 46, 60, 61, 77, 80, 83, 89, 93, 94, 95], "dissimilar": [8, 79, 80], "preced": 8, "cosin": [8, 60, 89], "incorrect": [8, 58, 61, 64, 75, 76, 77, 79, 80, 83, 84, 88, 91, 93], "due": [8, 35, 37, 61, 65, 67, 75, 76, 77, 79, 80, 83, 84, 91], "appear": [8, 31, 41, 52, 53, 56, 64, 77, 79, 80, 83, 91, 92], "likelihood": [8, 35, 37, 53, 58, 60, 61, 65, 69], "now": [8, 35, 74, 75, 77, 86, 88, 89, 91, 93, 94, 95], "u": [8, 75, 76, 79, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 95], "token": [8, 45, 67, 68, 69, 70, 71, 72, 82, 84, 85], "calcul": [8, 16, 22, 35, 42, 51, 55, 56, 58, 59, 60, 63, 67, 81, 83], "hamper": [8, 81, 83], "analyt": [8, 73, 82, 86], "lead": [8, 58, 61, 83, 88], "draw": [8, 76, 77], "conclus": [8, 80], "try": [8, 35, 37, 50, 51, 65, 67, 73, 77, 79, 80, 82, 83, 84, 92], "veri": [8, 31, 52, 56, 58, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, 94], "rare": [8, 37, 59, 76, 77, 79, 80, 82, 83, 84], "anomal": [8, 61, 76, 77, 79, 80, 83, 84], "articl": [8, 35, 82], "ai": [8, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95], "blog": 8, "unexpect": [8, 32, 36, 80], "consequ": 8, "inspect": [8, 75, 77, 83, 84, 88, 91, 94], "neg": [8, 58, 59, 76, 77, 81], "affect": [8, 32, 36, 65, 71, 80, 82], "extrem": [8, 76, 77, 79, 80, 82, 83, 84], "rel": [8, 31, 51, 52, 60, 76, 77, 79, 80, 83, 84, 89], "record": [8, 32, 36, 75, 79, 91], "abbrevi": 8, "misspel": 8, "typo": [8, 72], "resolut": 8, "video": [8, 81], "audio": [8, 76, 77, 82, 85], "minor": [8, 45], "variat": 8, "translat": 8, "d": [8, 44, 79, 80, 84, 87, 91, 93, 95], "constant": [8, 27, 63], "median": [8, 26, 44], "question": [8, 20, 73, 84], "nearli": [8, 20, 77, 79, 80, 83], "awar": [8, 74, 84], "presenc": [8, 84], "signific": [8, 79, 80, 84], "violat": [8, 79, 80, 84], "assumpt": [8, 79, 80, 84], "changepoint": [8, 79, 80, 84], "shift": [8, 79, 80, 84], "drift": [8, 77, 79, 84], "autocorrel": [8, 79, 80, 84], "almost": [8, 79, 80, 84], "adjac": [8, 79, 80, 84], "tend": [8, 31, 40, 79, 80, 84, 92, 95], "sequenti": [8, 32, 36, 50, 83], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 45, 46, 71, 79, 80, 81, 84, 90, 93, 95], "x1": [8, 56, 59, 88], "x2": [8, 56, 59, 88], "10th": 8, "100th": 8, "90": [8, 71, 79, 83, 84, 90, 91, 92, 93], "similarli": [8, 32, 36, 76, 79, 82, 83, 88], "math": [8, 83], "behind": [8, 60, 84], "fundament": 8, "proper": [8, 46, 51, 56, 59, 80, 83, 86, 88, 93], "closer": [8, 58, 88], "scenario": [8, 61, 76, 77], "underli": [8, 60, 69, 71, 95], "stem": [8, 60, 89], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 87, 89], "partit": [8, 90], "ahead": 8, "good": [8, 32, 36, 44, 50, 52, 58, 61, 65, 67, 68, 73, 79, 80, 83], "fix": [8, 51, 80, 84, 91, 94], "problem": [8, 35, 42, 68, 73, 76, 77, 80, 82, 83], "deploy": [8, 84, 91, 93, 94], "overlook": [8, 58, 88], "fact": 8, "thu": [8, 31, 36, 52, 75, 79, 80, 84, 90, 93, 95], "diagnos": [8, 77, 82], "rarest": [8, 77], "q": [8, 88], "fall": [8, 58, 67, 71, 84, 89], "subpar": 8, "special": [8, 45], "techniqu": [8, 88], "smote": 8, "asymmetr": [8, 31], "properli": [8, 35, 41, 46, 47, 65, 82, 87, 89, 91, 92], "too": [8, 37, 42, 60, 77, 82, 83, 88], "dark": [8, 92], "bright": [8, 95], "blurri": [8, 83], "abnorm": [8, 59, 83, 88], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 51, 59, 77, 82, 83, 86, 87, 88, 92], "get_self_confidence_for_each_label": [8, 42, 61], "power": [8, 79, 80, 81, 83, 84, 95], "r": [8, 35, 63, 76, 77, 91, 92], "tabular": [8, 73, 76, 77, 78, 82, 85, 86], "categor": [8, 60, 76, 77, 78, 82, 91, 93], "encod": [8, 43, 59, 65, 68, 79, 80, 82, 91, 92, 93, 94], "miss": [8, 23, 32, 36, 46, 56, 58, 79, 82, 88, 91], "pattern": 8, "contribut": [8, 16, 88], "isn": [8, 15, 23], "approxim": [8, 16, 35, 60, 86], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 60, 79, 89], "scalabl": 8, "sacrific": 8, "One": [8, 46, 60, 82], "quantif": 8, "exert": [8, 77], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 76, 77, 79, 80, 82, 83, 84], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 77, 79, 80, 83, 84], "non_iid_kwarg": 8, "class_imbal": [8, 12, 18, 77, 79, 80, 83, 84], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 31, 73, 81], "health_summary_kwarg": 8, "tandem": [8, 81], "view": [8, 32, 36, 37, 67, 69, 71, 73, 75, 76, 77, 79, 80, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "ood_kwarg": 8, "outofdistribut": [8, 24, 60, 89], "outsid": [8, 87], "outlierissuemanag": [8, 12, 19, 24, 76], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 12, 18, 19], "underperforminggroupissuemanag": [8, 12, 19, 27, 79], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 73, 77, 79, 80, 83, 85], "nullissuemanag": [8, 12, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 12, 19], "datavaluationissuemanag": [8, 12, 16, 19], "codeblock": 8, "demonstr": [8, 35, 76, 77, 80, 82, 83, 84, 86, 87, 88, 91, 92], "howev": [8, 32, 36, 46, 75, 79, 80, 83, 86, 90, 92, 93, 94], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 75, 76, 81, 86, 88, 89, 92], "fewer": [8, 37, 46, 88], "vice": [8, 52], "versa": [8, 52], "light": [8, 81, 83, 88, 92], "29": [8, 81, 83, 86, 87, 88, 89, 92, 95], "low_inform": [8, 83], "odd_aspect_ratio": [8, 83], "35": [8, 76, 81, 83, 86, 87, 88, 92], "odd_siz": [8, 83], "10": [8, 16, 17, 21, 22, 27, 32, 33, 59, 60, 61, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "doc": [8, 32, 36, 73, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "data_issu": [9, 13, 14, 28, 76], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 32, 36, 50, 61, 76, 77, 83, 86], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 83, 86, 91], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": [10, 79], "hold": 10, "associ": [10, 14, 32, 36, 59, 86], "sublist": 10, "map_to_int": 10, "abc": [10, 20], "is_avail": [10, 83], "serv": [11, 14, 86], "central": [11, 95], "repositori": 11, "strategi": [11, 42, 82], "being": [11, 31, 32, 36, 37, 42, 45, 46, 61, 79, 82, 84, 91, 92, 93], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 32, 35, 36, 37, 46, 53, 56, 59, 63, 65, 67, 76, 77, 82], "recomput": [11, 94], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 31, 52, 73], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 32, 36, 60, 76], "regressionlabelissuemanag": [12, 19, 25, 26], "multilabelissuemanag": 12, "from_str": [12, 29, 38, 42], "my_issu": 12, "stabl": [13, 19, 25, 34, 38, 46, 49, 60, 74], "unregist": 13, "instati": 14, "public": [14, 84, 88, 92, 95], "creation": [14, 36], "execut": [14, 32, 36, 76, 82, 88], "coordin": [14, 56, 58, 59, 88, 95], "behavior": [14, 31, 32, 36, 59, 82], "At": [14, 59, 82], "get_available_issue_typ": 14, "direct": [15, 23, 32, 36], "valuabl": 16, "vstack": [16, 46, 81, 82, 83, 84, 86, 87], "25": [16, 22, 32, 42, 44, 77, 81, 83, 84, 86, 87, 88, 92, 95], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 45, 46], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 76, 77, 82, 83, 84, 86, 87], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 84], "ab": [16, 84, 88], "1911": 16, "07128": 16, "larger": [16, 63, 65, 67, 80, 81, 82, 83], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 32, 36, 80, 89, 94], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 42, 45, 46, 75, 76, 81, 83, 84, 87, 93], "near_duplicate_set": [17, 19, 76, 77, 79, 80, 82, 83, 84], "occurr": [17, 18, 20, 22, 23, 24, 27, 45], "median_nn_dist": 17, "near_duplicate_scor": [17, 76, 77, 79, 80, 82, 83, 84], "class_imbalance_scor": [18, 77], "bleed": [19, 25, 34], "edg": [19, 25, 34, 58, 73, 84, 95], "sharp": [19, 25, 34], "get_health_summari": [19, 21], "ood": [19, 24, 60, 61, 76, 77, 80, 83, 84, 89], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 92], "priori": [20, 84], "global": [20, 32, 36], "anoth": [20, 31, 35, 45, 58, 61, 79, 80, 82, 84, 86, 89, 94], "abstract": 20, "applic": [21, 51, 82, 84, 86, 95], "typevar": [21, 32, 36, 45, 55, 58, 59], "scalartyp": 21, "covari": [21, 63, 91], "summary_dict": 21, "label_scor": [21, 26, 75, 76, 77, 79, 80, 83, 84, 87, 91], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 35, 42, 61, 65, 67, 88, 92], "empir": [22, 41, 51], "cumul": 22, "ecdf": 22, "histogram": [22, 79, 91], "absolut": [22, 26], "dimension": [22, 46, 75, 84, 89], "trial": 22, "non_iid_scor": [22, 77, 79, 80, 84], "null_track": 23, "extend": [23, 43, 83, 88, 89, 95], "superclass": 23, "arbitrari": [23, 31, 67, 71, 76, 89, 91], "prompt": 23, "address": [23, 76, 77, 80, 82, 94], "enabl": [23, 36], "null_scor": [23, 77], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 31, 32, 36, 37, 46, 59, 94, 95], "50": [27, 36, 82, 83, 84, 86, 88, 89, 91, 92, 95], "keepdim": [27, 82], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 75, 86], "npt": 27, "int_": 27, "id": [27, 51, 76, 82, 83, 86], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": [27, 77], "datset": 28, "exclud": [28, 68, 72, 76, 82, 95], "get_report": 28, "qualnam": [29, 42], "boundari": [29, 42, 76, 77], "enum": [29, 42], "continu": [29, 80, 82, 83, 86, 88, 91, 93, 94, 95], "binari": [29, 42, 46, 53, 55, 84, 95], "simultan": [29, 91], "task_str": 29, "is_classif": 29, "__contains__": [29, 38, 42], "member": [29, 32, 36, 42, 76, 77], "typeerror": [29, 42], "12": [29, 42, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "__getitem__": [29, 38, 42], "match": [29, 31, 32, 36, 37, 42, 51, 52, 61, 76, 77, 81, 83, 88, 90, 92], "__iter__": [29, 38, 42], "__len__": [29, 38, 42], "alias": [29, 42], "is_regress": 29, "is_multilabel": 29, "overview": [31, 75, 77, 79, 80, 83, 86, 88, 89, 91, 93, 94, 95], "modifi": [31, 32, 35, 36, 46, 82, 84], "help": [31, 32, 36, 59, 73, 74, 75, 76, 79, 80, 81, 82, 83, 86, 87, 91, 92, 93, 94, 95], "rank_classes_by_label_qu": [31, 77], "merg": [31, 45, 73, 81, 82, 95], "find_overlapping_class": [31, 82, 84], "problemat": [31, 52, 68, 72, 75, 88, 95], "unnorm": [31, 52, 84], "abov": [31, 32, 35, 36, 46, 51, 58, 59, 61, 67, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "model_select": [31, 42, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 91, 93, 94], "cross_val_predict": [31, 36, 75, 76, 77, 79, 80, 82, 84, 86, 90, 91, 93, 94], "get_data_labels_from_dataset": 31, "yourfavoritemodel": [31, 84], "cv": [31, 42, 75, 76, 77, 79, 84, 86, 93], "df": [31, 46, 72, 75, 82], "overall_label_qu": [31, 52], "col": 31, "prob": [31, 45, 84, 90], "divid": [31, 52, 61], "label_nois": [31, 52], "human": [31, 81, 92, 95], "clearli": [31, 61, 83, 88, 92], "num": [31, 52, 81, 84], "overlap": [31, 73, 81, 82, 84], "ontolog": 31, "publish": [31, 95], "therefor": [31, 61], "vehicl": [31, 81], "truck": [31, 81, 89, 92], "intuit": [31, 52], "car": [31, 81, 88, 92], "frequent": [31, 51, 79, 82, 91], "characterist": 31, "l": [31, 32, 36, 56, 58, 59], "class1": 31, "class2": 31, "relationship": 31, "dog": [31, 46, 52, 54, 68, 81, 82, 89, 90, 95], "cat": [31, 46, 52, 54, 81, 82, 89, 90], "captur": [31, 75, 88, 89, 92], "co": [31, 32, 33], "noisy_label": [31, 76, 77, 87], "overlapping_class": 31, "descend": [31, 32, 36, 42, 52, 59], "overall_label_health_scor": [31, 52, 84], "suggest": [31, 51, 52, 58, 80, 82, 83, 91, 94], "half": [31, 32, 34, 36, 52, 81, 95], "health_scor": [31, 52], "classes_by_label_qu": [31, 77], "cnn": [32, 34, 36, 83], "cifar": [32, 33, 81, 89], "teach": [32, 33], "bhanml": 32, "blob": 32, "master": [32, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "call_bn": [32, 34], "bn": 32, "input_channel": 32, "n_output": 32, "dropout_r": 32, "top_bn": 32, "architectur": [32, 36], "shown": [32, 59, 76, 82, 86, 89, 90, 92, 95], "forward": [32, 33, 34, 36, 83, 86], "overridden": [32, 36], "although": [32, 36, 60, 79, 93], "recip": [32, 36], "afterward": [32, 36], "sinc": [32, 36, 39, 47, 52, 59, 67, 71, 82, 86, 87, 88, 90, 95], "former": [32, 36], "hook": [32, 36, 81], "silent": [32, 35, 36], "t_destin": [32, 34, 36], "__call__": [32, 34, 36, 38, 42], "add_modul": [32, 34, 36], "child": [32, 36], "fn": [32, 36, 59], "recurs": [32, 36, 42], "submodul": [32, 36], "children": [32, 34, 36, 95], "nn": [32, 33, 36, 83], "init": [32, 36, 84], "no_grad": [32, 36, 83, 89], "init_weight": [32, 36], "linear": [32, 36, 80, 83, 94], "fill_": [32, 36], "net": [32, 36, 75, 81, 83], "in_featur": [32, 36], "out_featur": [32, 36], "bia": [32, 36, 83], "tensor": [32, 33, 36, 75, 80, 83, 89, 94], "requires_grad": [32, 36], "bfloat16": [32, 34, 36], "cast": [32, 36, 75], "buffer": [32, 34, 36], "datatyp": [32, 36], "xdoctest": [32, 36], "undefin": [32, 36], "var": [32, 36], "buf": [32, 36], "20l": [32, 36], "1l": [32, 36], "5l": [32, 36], "call_super_init": [32, 34, 36], "immedi": [32, 36, 89], "compil": [32, 34, 36, 50], "cpu": [32, 34, 36, 37, 75, 83], "move": [32, 36, 42, 74, 81], "cuda": [32, 34, 36, 75, 83], "devic": [32, 36, 75, 83], "gpu": [32, 36, 75, 80, 94], "live": [32, 36], "copi": [32, 36, 63, 75, 76, 77, 79, 82, 87, 90, 91, 93], "doubl": [32, 34, 36], "dump_patch": [32, 34, 36], "eval": [32, 34, 36, 83, 87, 89], "dropout": [32, 36], "batchnorm": [32, 36], "grad": [32, 36], "extra_repr": [32, 34, 36], "line": [32, 36, 73, 76, 81, 86, 89, 95], "get_buff": [32, 34, 36], "target": [32, 33, 36, 63, 64, 89, 91], "throw": [32, 36], "get_submodul": [32, 34, 36], "explan": [32, 36], "fulli": [32, 36, 50, 82], "qualifi": [32, 36], "referenc": [32, 36], "attributeerror": [32, 36], "invalid": [32, 36, 80], "resolv": [32, 36, 95], "get_extra_st": [32, 34, 36], "state_dict": [32, 34, 36], "set_extra_st": [32, 34, 36], "build": [32, 36, 83, 92], "picklabl": [32, 36], "serial": [32, 36], "backward": [32, 36, 83], "break": [32, 36, 83, 88], "pickl": [32, 36, 88], "get_paramet": [32, 34, 36], "let": [32, 36, 60, 61, 75, 77, 79, 80, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "net_b": [32, 36], "net_c": [32, 36], "conv": [32, 36], "conv2d": [32, 36, 83], "16": [32, 36, 42, 67, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 92, 94, 95], "33": [32, 36, 81, 88, 92], "kernel_s": [32, 36], "stride": [32, 36], "200": [32, 36, 61, 81, 88, 95], "diagram": [32, 36, 90], "degre": [32, 36], "queri": [32, 36, 77, 82, 83, 87], "named_modul": [32, 34, 36], "o": [32, 36, 44, 45, 75, 76, 77, 81, 82, 84, 87, 88, 95], "transit": [32, 36], "ipu": [32, 34, 36], "load_state_dict": [32, 34, 36], "strict": [32, 36, 42], "persist": [32, 36], "strictli": [32, 36], "inplac": [32, 36, 86], "preserv": [32, 36, 46], "namedtupl": [32, 36], "missing_kei": [32, 36], "unexpected_kei": [32, 36], "runtimeerror": [32, 36], "idx": [32, 36, 46, 47, 59, 76, 82, 83, 84, 86, 88, 89], "named_buff": [32, 34, 36], "prefix": [32, 36, 75, 95], "remove_dupl": [32, 36], "prepend": [32, 36], "running_var": [32, 36], "named_children": [32, 34, 36], "conv4": [32, 36], "conv5": [32, 36], "memo": [32, 36], "named_paramet": [32, 34, 36], "register_backward_hook": [32, 34, 36], "deprec": [32, 36, 39, 75, 80, 82, 94], "favor": [32, 36], "register_full_backward_hook": [32, 34, 36], "removablehandl": [32, 36], "register_buff": [32, 34, 36], "running_mean": [32, 36], "register_forward_hook": [32, 34, 36], "with_kwarg": [32, 36], "always_cal": [32, 36], "won": [32, 36, 76, 77, 82, 87], "possibli": [32, 36, 79, 93], "fire": [32, 36, 81], "register_module_forward_hook": [32, 36], "regardless": [32, 36, 76, 77], "register_forward_pre_hook": [32, 34, 36], "And": [32, 36], "forward_pr": [32, 36], "register_module_forward_pre_hook": [32, 36], "gradient": [32, 36, 79, 83, 91], "respect": [32, 36, 56, 59, 84, 88], "grad_input": [32, 36], "grad_output": [32, 36], "technic": [32, 36], "caller": [32, 36], "register_module_full_backward_hook": [32, 36], "register_full_backward_pre_hook": [32, 34, 36], "backward_pr": [32, 36], "register_module_full_backward_pre_hook": [32, 36], "register_load_state_dict_post_hook": [32, 34, 36], "post": [32, 36], "incompatible_kei": [32, 36], "modif": [32, 36], "thrown": [32, 36], "register_modul": [32, 34, 36], "register_paramet": [32, 34, 36], "register_state_dict_pre_hook": [32, 34, 36], "keep_var": [32, 36], "requires_grad_": [32, 34, 36], "autograd": [32, 36], "freez": [32, 36, 75, 80, 94], "finetun": [32, 36], "gan": [32, 36], "share_memori": [32, 34, 36], "share_memory_": [32, 36], "destin": [32, 36], "shallow": [32, 36], "releas": [32, 36, 74, 75, 82], "design": [32, 36], "ordereddict": [32, 36], "detach": [32, 36, 83], "non_block": [32, 36], "memory_format": [32, 36], "channels_last": [32, 36], "Its": [32, 36, 42, 52, 58], "complex": [32, 36, 75], "integr": [32, 36, 73], "asynchron": [32, 36], "host": [32, 36], "pin": [32, 36, 80, 81, 94], "desir": [32, 36, 45, 59], "4d": [32, 36], "ignore_w": [32, 36], "determinist": [32, 36, 75], "1913": [32, 36], "3420": [32, 36], "5113": [32, 36], "2325": [32, 36], "env": [32, 36], "torch_doctest_cuda1": [32, 36], "gpu1": [32, 36], "1914": [32, 36], "5112": [32, 36], "2324": [32, 36], "float16": [32, 36], "cdoubl": [32, 36], "3741": [32, 36], "2382": [32, 36], "5593": [32, 36], "4443": [32, 36], "complex128": [32, 36], "6122": [32, 36], "1150": [32, 36], "to_empti": [32, 34, 36], "storag": [32, 36, 80, 94], "dst_type": [32, 36], "xpu": [32, 34, 36], "zero_grad": [32, 34, 36, 83], "set_to_non": [32, 36], "reset": [32, 36], "context": [32, 36, 88], "noisili": [33, 84], "han": 33, "2018": 33, "cifar_cnn": [33, 34], "loss_coteach": [33, 34], "y_1": 33, "y_2": 33, "forget_r": 33, "class_weight": 33, "logit": [33, 50, 83], "decim": [33, 46], "quickli": [33, 75, 79, 80, 82, 83, 87, 89, 92, 93, 95], "forget": [33, 42, 95], "rate_schedul": 33, "epoch": [33, 34, 36, 82, 83], "initialize_lr_schedul": [33, 34], "lr": [33, 34, 36], "001": [33, 61, 82], "250": [33, 76, 77, 84, 88], "epoch_decay_start": 33, "80": [33, 79, 87, 91, 92, 93], "schedul": 33, "adjust": [33, 37, 55, 60, 61, 73, 84], "beta": 33, "adam": 33, "adjust_learning_r": [33, 34], "alpha_plan": 33, "beta1_plan": 33, "forget_rate_schedul": [33, 34], "num_gradu": 33, "expon": 33, "tell": [33, 80, 83, 84, 94], "train_load": [33, 36], "model1": [33, 84], "optimizer1": 33, "model2": [33, 84], "optimizer2": 33, "dataload": [33, 83, 89], "parser": 33, "parse_arg": 33, "num_iter_per_epoch": 33, "print_freq": 33, "topk": 33, "top1": 33, "top5": 33, "test_load": 33, "offici": [34, 49, 95], "wish": [34, 49, 89, 92, 95], "adj_confident_thresholds_shar": [34, 35], "labels_shar": [34, 35], "pred_probs_shar": [34, 35], "labelinspector": [34, 35, 82], "get_num_issu": [34, 35], "get_quality_scor": [34, 35], "update_confident_threshold": [34, 35], "score_label_qu": [34, 35], "split_arr": [34, 35], "mnist_pytorch": 34, "get_mnist_dataset": [34, 36], "get_sklearn_digits_dataset": [34, 36], "simplenet": [34, 36], "batch_siz": [34, 35, 36, 65, 67, 82, 83, 89, 92], "log_interv": [34, 36], "momentum": [34, 36], "no_cuda": [34, 36], "test_batch_s": [34, 36, 83], "loader": [34, 36, 83], "set_predict_proba_request": [34, 36], "set_predict_request": [34, 36], "coteach": [34, 74], "mini": [35, 65, 67, 82], "low_self_confid": [35, 37, 53], "self_confid": [35, 37, 38, 42, 53, 55, 61, 69, 71, 82, 84, 93, 94], "conveni": [35, 75, 80, 94], "script": 35, "labels_fil": [35, 82], "pred_probs_fil": [35, 82], "quality_score_kwarg": 35, "num_issue_kwarg": 35, "return_mask": 35, "variant": [35, 51, 92], "read": [35, 39, 77, 82, 84, 89, 95], "zarr": [35, 82], "memmap": [35, 92], "pythonspe": 35, "mmap": [35, 82], "hdf5": 35, "further": [35, 52, 53, 55, 58, 59, 67, 68, 75, 82], "yourfil": 35, "npy": [35, 81, 82, 92], "mmap_mod": [35, 92], "tip": [35, 37, 50, 82], "save_arrai": 35, "your_arrai": 35, "disk": [35, 81, 82], "npz": [35, 95], "maxim": [35, 51, 65, 67, 92], "multiprocess": [35, 37, 53, 65, 67, 82, 83], "linux": [35, 65, 67], "physic": [35, 37, 65, 67, 88], "psutil": [35, 37, 65, 67], "labels_arrai": [35, 47], "predprob": 35, "pred_probs_arrai": 35, "back": [35, 59, 76, 82, 88, 89], "store_result": 35, "becom": [35, 89], "verifi": [35, 82, 86, 89], "long": [35, 51, 60, 86], "enough": [35, 46, 82], "chunk": [35, 90], "ram": [35, 81], "faster": [35, 60, 63, 65, 67, 82, 84], "end_index": 35, "labels_batch": 35, "pred_probs_batch": 35, "batch_result": 35, "indices_of_examples_with_issu": [35, 82], "shortcut": 35, "encount": [35, 37, 65], "1000": [35, 75, 80, 82, 89], "aggreg": [35, 38, 42, 51, 55, 58, 61, 71, 82, 84, 86], "fetch": [35, 75, 77], "seen": [35, 82, 89, 95], "far": [35, 51], "label_quality_scor": [35, 55, 58, 61, 64, 84, 88], "method1": 35, "method2": 35, "normalized_margin": [35, 37, 38, 42, 53, 55, 61, 69, 71], "low_normalized_margin": [35, 37, 53], "issue_indic": [35, 58, 83], "update_num_issu": 35, "arr": [35, 82], "chunksiz": 35, "convnet": 36, "bespok": [36, 50], "download": [36, 75, 82, 89], "mnist": [36, 73, 75, 81], "handwritten": 36, "digit": [36, 75, 81], "last": [36, 42, 56, 59, 76, 77, 82, 86, 88, 95], "sklearn_digits_test_s": 36, "hard": [36, 81, 89], "64": [36, 79, 83, 84, 88, 92, 93], "01": [36, 61, 63, 75, 83, 84, 87, 88, 89, 92], "templat": 36, "flexibli": 36, "among": [36, 51, 84], "test_set": 36, "Be": 36, "overrid": 36, "train_idx": [36, 46, 89], "train_label": [36, 89, 94], "scikit": [36, 46, 60, 73, 75, 76, 77, 79, 80, 82, 85, 91, 94], "encourag": [37, 53, 61, 64], "multilabel_classif": [37, 52, 53, 55, 61, 82, 87], "pred_probs_by_class": 37, "prune_count_matrix_col": 37, "rank_by_kwarg": [37, 53, 61, 84], "num_to_remove_per_class": [37, 53], "bad": [37, 53, 58, 61, 80, 82, 94], "seem": [37, 84, 87], "aren": 37, "confidence_weighted_entropi": [37, 38, 42, 53, 55, 61, 69, 71], "label_issues_idx": [37, 61], "entropi": [37, 39, 41, 42, 60, 61], "prune_by_class": [37, 53, 84], "predicted_neq_given": [37, 53, 84], "prune_counts_matrix": 37, "smallest": [37, 61], "unus": 37, "number_of_mislabeled_examples_in_class_k": 37, "delet": [37, 73, 82, 94], "thread": [37, 53], "window": [37, 75, 81], "shorter": [37, 56], "find_predicted_neq_given": 37, "find_label_issues_using_argmax_confusion_matrix": 37, "remove_noise_from_class": [38, 46], "clip_noise_r": [38, 46], "clip_valu": [38, 46], "value_count": [38, 46, 82], "value_counts_fill_missing_class": [38, 46], "get_missing_class": [38, 46], "round_preserving_sum": [38, 46], "round_preserving_row_tot": [38, 46], "estimate_pu_f1": [38, 46], "confusion_matrix": [38, 46], "print_square_matrix": [38, 46], "print_noise_matrix": [38, 46, 84], "print_inverse_noise_matrix": [38, 46], "print_joint_matrix": [38, 46, 84], "compress_int_arrai": [38, 46], "train_val_split": [38, 46], "subset_x_i": [38, 46], "subset_label": [38, 46], "subset_data": [38, 46], "extract_indices_tf": [38, 46], "unshuffle_tensorflow_dataset": [38, 46], "is_torch_dataset": [38, 46], "is_tensorflow_dataset": [38, 46], "csr_vstack": [38, 46], "append_extra_datapoint": [38, 46], "get_num_class": [38, 46], "num_unique_class": [38, 46], "get_unique_class": [38, 46], "format_label": [38, 46], "smart_display_datafram": [38, 46], "force_two_dimens": [38, 46], "latent_algebra": [38, 74], "compute_ps_py_inv_noise_matrix": [38, 40], "compute_py_inv_noise_matrix": [38, 40], "compute_inv_noise_matrix": [38, 40], "compute_noise_matrix_from_invers": [38, 40], "compute_pi": [38, 40], "compute_pyx": [38, 40], "label_quality_util": 38, "get_normalized_entropi": [38, 39], "multilabel_util": [38, 87], "stack_compl": [38, 43], "get_onehot_num_class": [38, 43], "int2onehot": [38, 43, 87], "onehot2int": [38, 43, 87], "multilabel_scor": [38, 55], "classlabelscor": [38, 42], "exponential_moving_averag": [38, 42, 55], "softmin": [38, 42, 55, 58, 67, 71], "possible_method": [38, 42], "multilabelscor": [38, 42], "get_class_label_quality_scor": [38, 42], "multilabel_pi": [38, 42], "get_cross_validated_multilabel_pred_prob": [38, 42], "transform_distances_to_scor": [38, 44], "token_classification_util": [38, 95], "get_sent": [38, 45, 95], "filter_sent": [38, 45, 95], "process_token": [38, 45], "merge_prob": [38, 45], "color_sent": [38, 45], "assert_valid_input": [38, 47], "assert_valid_class_label": [38, 47], "assert_nonempty_input": [38, 47], "assert_indexing_work": [38, 47], "labels_to_arrai": [38, 47], "labels_to_list_multilabel": [38, 47], "min_allowed_prob": 39, "wikipedia": 39, "activ": [39, 41, 51, 73, 86], "towardsdatasci": 39, "cheatsheet": 39, "ec57bc067c0b": 39, "clip": [39, 46, 75], "behav": 39, "unnecessari": [39, 82], "slightli": [39, 93, 94], "interv": [39, 42, 89], "herein": 40, "inexact": 40, "cours": 40, "propag": 40, "throughout": [40, 46, 63, 75, 86, 92, 95], "easili": [40, 74, 75, 77, 79, 80, 84, 86, 87, 89, 90, 91, 92, 93, 94], "increas": [40, 58, 60, 61, 75, 76, 82, 86, 87, 95], "dot": [40, 71, 82], "true_labels_class_count": 40, "pyx": 40, "multiannot": 41, "assert_valid_inputs_multiannot": 41, "labels_multiannot": [41, 51], "ensembl": [41, 42, 51, 61, 79, 82, 87, 89, 91, 93], "allow_single_label": 41, "annotator_id": 41, "assert_valid_pred_prob": 41, "pred_probs_unlabel": [41, 51], "format_multiannotator_label": [41, 51, 86], "lexicograph": [41, 46], "formatted_label": [41, 46], "old": [41, 46, 74, 75, 81], "check_consensus_label_class": 41, "consensus_label": [41, 51, 86], "consensus_method": [41, 51], "consensu": [41, 51, 73, 85, 95], "establish": [41, 91, 94], "compute_soft_cross_entropi": 41, "soft": [41, 81], "find_best_temp_scal": 41, "coarse_search_rang": [41, 63, 82], "fine_search_s": [41, 63, 82], "temperatur": [41, 42, 58, 67, 71], "scale": [41, 44, 81, 82, 89, 92, 93], "factor": [41, 42, 44, 65, 67], "minim": [41, 58, 89], "temp_scale_pred_prob": 41, "temp": 41, "sharpen": [41, 81], "smoothen": 41, "get_normalized_margin_for_each_label": [42, 61], "get_confidence_weighted_entropy_for_each_label": [42, 61], "75": [42, 76, 77, 81, 83, 86, 87, 88, 91, 92, 95], "scorer": 42, "alpha": [42, 55, 58, 76, 77, 84, 87, 91], "exponenti": 42, "ema": 42, "s_1": 42, "s_k": 42, "ema_k": 42, "accord": [42, 53, 79, 80, 84, 95], "formula": [42, 44], "_t": 42, "cdot": 42, "s_t": 42, "qquad": 42, "leq": 42, "_1": 42, "give": [42, 61, 84, 86, 92], "recent": [42, 95], "success": 42, "previou": [42, 82, 83, 88], "discount": 42, "s_ema": 42, "175": [42, 83, 84, 88], "underflow": 42, "nan": [42, 51, 79, 86, 91, 93], "aggregated_scor": 42, "base_scor": 42, "base_scorer_kwarg": 42, "aggregator_kwarg": [42, 55], "n_sampl": 42, "n_label": 42, "worst": [42, 86], "class_label_quality_scor": 42, "42": [42, 80, 81, 83, 88, 92, 95], "452": 42, "new_scor": 42, "575": 42, "get_label_quality_scores_per_class": [42, 54, 55], "ml_scorer": 42, "binar": [42, 43], "reformat": [42, 75], "wider": 42, "splitter": 42, "kfold": [42, 83], "onevsrestclassifi": [42, 87], "randomforestclassifi": [42, 84, 87], "n_split": [42, 77, 83, 87], "pred_prob_slic": 43, "onehot": 43, "hot": [43, 53, 59, 65, 68, 79, 81, 82, 91, 92, 93], "onehot_matrix": 43, "avg_dist": 44, "scaling_factor": 44, "exp": [44, 60, 61, 76], "dt": 44, "right": [44, 56, 59, 80, 87, 88, 89, 94], "strength": [44, 59], "pronounc": 44, "differenti": 44, "ly": 44, "rule": [44, 45, 81], "thumb": 44, "ood_features_scor": [44, 60, 89], "88988177": 44, "80519832": 44, "token_classif": [45, 69, 71, 72, 82], "sentenc": [45, 69, 71, 72, 80, 94], "readabl": 45, "lambda": [45, 75, 76, 82, 86], "long_sent": 45, "headlin": 45, "charact": [45, 46], "s1": 45, "s2": 45, "processed_token": 45, "alecnlcb": 45, "entiti": [45, 73, 82, 95], "mapped_ent": 45, "unique_ident": 45, "loc": [45, 76, 77, 83, 95], "nbitbas": [45, 55], "probs_merg": 45, "55": [45, 81, 83, 88, 91, 92], "0125": [45, 71], "0375": 45, "075": 45, "025": 45, "color": [45, 68, 76, 77, 79, 84, 87, 89, 91, 92], "red": [45, 59, 76, 77, 81, 84, 87, 88, 89, 92], "colored_sent": 45, "termcolor": 45, "31msentenc": 45, "0m": 45, "ancillari": 46, "class_without_nois": 46, "any_other_class": 46, "choos": [46, 61, 79, 82, 84, 91, 93], "tradition": 46, "new_sum": 46, "fill": 46, "wherea": [46, 53, 90], "come": [46, 76, 77, 82, 83, 89, 92], "major": [46, 51, 74, 83, 89], "versu": [46, 84], "obviou": 46, "cgdeboer": 46, "iteround": 46, "reach": 46, "prob_s_eq_1": 46, "claesen": 46, "f1": [46, 59, 80, 84], "BE": 46, "left_nam": 46, "top_nam": 46, "titl": [46, 76, 77, 84, 87, 89], "short_titl": 46, "round_plac": 46, "pretti": [46, 84], "joint_matrix": 46, "num_possible_valu": 46, "holdout_idx": 46, "extract": [46, 60, 75, 80, 86, 89, 92, 94], "allow_shuffl": 46, "turn": [46, 73, 88], "shuffledataset": 46, "histori": 46, "pre_x": 46, "buffer_s": 46, "csr_matric": 46, "append": [46, 75, 81, 82, 83, 84, 86, 87, 88, 89, 95], "bottom": [46, 56, 59, 88], "to_data": 46, "from_data": 46, "taken": 46, "label_matrix": 46, "canon": 46, "displai": [46, 59, 68, 72, 75, 80, 84, 94, 95], "jupyt": [46, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "notebook": [46, 51, 75, 77, 81, 82, 84, 86, 87, 88, 92, 95], "consol": 46, "html": [46, 56, 59, 60, 79, 82, 84], "allow_missing_class": 47, "allow_one_class": 47, "length_x": 47, "labellik": 47, "labels_list": [47, 53], "keraswrappermodel": [49, 50, 73], "keraswrappersequenti": [49, 50], "tf": [50, 75], "legaci": 50, "lack": 50, "keraswrapp": 50, "huggingface_keras_imdb": 50, "unit": [50, 95], "model_kwarg": [50, 63], "compile_kwarg": 50, "sparsecategoricalcrossentropi": 50, "layer": [50, 75, 80, 89, 94], "dens": 50, "my_keras_model": 50, "from_logit": 50, "declar": 50, "apply_softmax": 50, "analysi": 51, "analyz": [51, 73, 84, 86, 87], "get_label_quality_multiannot": [51, 86], "vote": 51, "crowdsourc": [51, 73, 86], "dawid": [51, 86], "skene": [51, 86], "analog": [51, 81, 86], "chosen": [51, 61, 82, 86], "crowdlab": [51, 86], "unlabel": [51, 79, 80, 83, 86, 89, 92], "decid": [51, 80, 81, 86, 91, 94, 95], "get_active_learning_scor": [51, 86], "activelab": [51, 86], "priorit": [51, 58, 88, 92, 95], "showcas": 51, "main": 51, "best_qual": 51, "quality_method": 51, "calibrate_prob": 51, "return_detailed_qu": 51, "return_annotator_stat": 51, "return_weight": 51, "label_quality_score_kwarg": 51, "necessarili": [51, 59, 80, 84], "did": [51, 52, 75, 79, 84, 86, 91, 93, 94], "majority_vot": 51, "ti": 51, "broken": [51, 59, 81, 91], "highest": [51, 59, 76, 83, 90], "0th": 51, "consensus_quality_scor": [51, 86], "annotator_agr": [51, 86], "reman": 51, "1st": 51, "2nd": [51, 65], "3rd": 51, "consensus_label_suffix": 51, "consensus_quality_score_suffix": 51, "suffix": 51, "emsembl": 51, "weigh": [51, 81], "agreement": [51, 86], "agre": 51, "prevent": [51, 82], "overconfid": [51, 90], "wrong": [51, 56, 58, 74, 76, 77, 80, 82, 84, 88, 94], "detailed_label_qu": [51, 86], "annotator_stat": [51, 86], "model_weight": 51, "annotator_weight": 51, "warn": [51, 76, 77, 82], "labels_info": 51, "num_annot": [51, 86], "deriv": [51, 86], "quality_annotator_1": 51, "quality_annotator_2": 51, "quality_annotator_m": 51, "annotator_qu": [51, 86], "num_examples_label": [51, 86], "agreement_with_consensu": [51, 86], "worst_class": [51, 86], "trustworthi": [51, 86, 91], "get_label_quality_multiannotator_ensembl": 51, "weigtht": 51, "budget": 51, "retrain": [51, 91, 94], "active_learning_scor": 51, "improv": [51, 77, 81, 82, 83, 84, 91, 92, 93, 94], "active_learning_scores_unlabel": 51, "get_active_learning_scores_ensembl": 51, "henc": [51, 75, 76, 86], "get_majority_vote_label": [51, 86], "event": 51, "lastli": [51, 79], "convert_long_to_wide_dataset": 51, "labels_multiannotator_long": 51, "wide": [51, 75, 93, 94], "suitabl": [51, 79, 93], "labels_multiannotator_wid": 51, "common_multilabel_issu": [52, 54], "mutual": [52, 87], "exclus": [52, 87], "rank_classes_by_multilabel_qu": [52, 54], "overall_multilabel_health_scor": [52, 54], "multilabel_health_summari": [52, 54], "classes_by_multilabel_qu": 52, "inner": [53, 67], "find_multilabel_issues_per_class": [53, 54], "per_class_label_issu": 53, "label_issues_list": 53, "pred_probs_list": [53, 61, 83, 84], "anim": [54, 89], "rat": 54, "predat": 54, "pet": 54, "reptil": 54, "manner": [55, 86, 91, 93, 94], "box": [56, 58, 59, 81, 88], "object_detect": [56, 58, 59, 88], "return_indices_ranked_by_scor": [56, 88], "overlapping_label_check": [56, 58], "suboptim": [56, 58], "locat": [56, 58, 88, 92, 95], "bbox": [56, 59, 88], "image_nam": [56, 59], "y1": [56, 59, 88], "y2": [56, 59, 88], "later": [56, 59, 60, 94, 95], "corner": [56, 59, 88], "xyxi": [56, 59, 88], "io": [56, 59, 75, 81], "keras_cv": [56, 59], "bounding_box": [56, 59, 88], "detectron": [56, 59, 88], "detectron2": [56, 59, 88], "readthedoc": [56, 59], "en": [56, 59], "latest": [56, 59], "visual": [56, 57, 59, 76, 77, 83, 91, 93, 95], "draw_box": [56, 59], "mmdetect": [56, 59, 88], "swap": [56, 58, 68, 72], "penal": [56, 58], "concern": [56, 58, 73, 77], "issues_from_scor": [57, 58, 66, 67, 68, 70, 71, 72, 88, 92, 95], "compute_overlooked_box_scor": [57, 58], "compute_badloc_box_scor": [57, 58], "compute_swap_box_scor": [57, 58], "pool_box_scores_per_imag": [57, 58], "object_counts_per_imag": [57, 59, 88], "bounding_box_size_distribut": [57, 59, 88], "class_label_distribut": [57, 59, 88], "get_sorted_bbox_count_idx": [57, 59], "plot_class_size_distribut": [57, 59], "plot_class_distribut": [57, 59], "get_average_per_class_confusion_matrix": [57, 59], "calculate_per_class_metr": [57, 59], "aggregation_weight": 58, "imperfect": [58, 82], "chose": [58, 86, 88], "imperfectli": [58, 88], "dirti": [58, 61, 64, 91], "subtyp": 58, "badloc": 58, "nonneg": 58, "high_probability_threshold": 58, "auxiliary_input": [58, 59], "vari": [58, 77], "iou": [58, 59], "heavili": 58, "auxiliarytypesdict": 58, "pred_label": [58, 94], "pred_label_prob": 58, "pred_bbox": 58, "lab_label": 58, "lab_bbox": 58, "similarity_matrix": 58, "min_possible_similar": 58, "scores_overlook": 58, "low_probability_threshold": 58, "scores_badloc": 58, "accident": [58, 79, 80, 82, 94], "scores_swap": 58, "box_scor": 58, "image_scor": [58, 67, 92], "discov": [59, 77, 95], "auxiliari": [59, 89, 92], "_get_valid_inputs_for_compute_scor": 59, "object_count": 59, "down": 59, "bbox_siz": 59, "class_distribut": 59, "plot": [59, 76, 77, 84, 87, 89, 91, 92], "sorted_idx": [59, 89], "class_to_show": 59, "hidden": [59, 89], "max_class_to_show": 59, "prediction_threshold": 59, "overlai": [59, 88], "figsiz": [59, 76, 77, 83, 84, 87, 89], "save_path": [59, 88], "blue": [59, 81, 84, 88], "overlaid": 59, "side": [59, 81, 88], "figur": [59, 84, 87, 89, 91], "extens": [59, 84, 86], "png": [59, 88], "pdf": [59, 60], "svg": 59, "matplotlib": [59, 76, 77, 83, 84, 87, 88, 89, 91], "num_proc": [59, 83], "intersect": [59, 82], "tp": 59, "fp": 59, "ground": [59, 81, 84, 86, 91], "truth": [59, 84, 86, 91], "bias": 59, "avg_metr": 59, "distionari": 59, "95": [59, 69, 71, 79, 81, 83, 84, 91, 92], "per_class_metr": 59, "Of": 60, "li": 60, "smaller": [60, 87, 88], "find_top_issu": [60, 61, 89], "reli": [60, 75, 76, 77, 80, 88, 89, 91, 94], "dist_metr": 60, "dim": [60, 83, 92], "subtract": [60, 61], "renorm": [60, 61, 82], "least_confid": 60, "sum_": 60, "log": [60, 61, 74], "softmax": [60, 67, 71, 83], "literatur": 60, "gen": 60, "liu": 60, "lochman": 60, "zach": 60, "openaccess": 60, "thecvf": 60, "content": [60, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "cvpr2023": 60, "liu_gen_pushing_the_limits_of_softmax": 60, "based_out": 60, "distribution_detection_cvpr_2023_pap": 60, "fit_scor": [60, 89], "ood_predictions_scor": 60, "pretrain": [60, 75, 80, 89, 94], "adjust_confident_threshold": 60, "probabilist": [60, 75, 76, 77, 79, 80, 89, 90, 93], "order_label_issu": [61, 74], "whichev": [61, 90], "argsort": [61, 80, 83, 84, 88, 89, 91, 94], "max_": 61, "get_label_quality_ensemble_scor": [61, 82, 84], "weight_ensemble_members_bi": 61, "custom_weight": 61, "log_loss_search_t_valu": 61, "0001": [61, 81], "scheme": 61, "log_loss_search": 61, "log_loss": [61, 80], "1e0": 61, "1e1": 61, "1e2": 61, "2e2": 61, "quality_scor": [61, 89], "forth": 61, "top_issue_indic": 61, "rank_bi": [61, 74], "weird": [61, 72], "minu": 61, "prob_label": 61, "max_prob_not_label": 61, "idea": [61, 88], "AND": [61, 80], "get_epistemic_uncertainti": [62, 63], "get_aleatoric_uncertainti": [62, 63], "corrupt": [63, 91], "linearregress": [63, 82, 91], "y_with_nois": 63, "n_boot": [63, 82], "include_aleatoric_uncertainti": [63, 82], "sole": [63, 76, 86, 89, 93], "bootstrap": [63, 82, 91], "resampl": [63, 75, 82], "epistem": [63, 82, 89, 91], "aleator": [63, 82, 91], "model_final_kwarg": 63, "coars": 63, "thorough": [63, 82], "fine": [63, 75, 80, 89, 94], "grain": 63, "grid": 63, "varianc": [63, 84], "epistemic_uncertainti": 63, "residu": [63, 64, 82], "deviat": [63, 88, 91], "ie": 63, "aleatoric_uncertainti": 63, "outr": 64, "contin": 64, "raw": [64, 73, 74, 77, 81, 83, 86, 88, 89, 91], "aka": [64, 75, 84, 88, 91, 95], "00323821": 64, "33692597": 64, "00191686": 64, "semant": [65, 67, 68, 85], "pixel": [65, 67, 68, 89, 92], "h": [65, 67, 68, 92], "height": [65, 67, 68, 92], "w": [65, 67, 68, 92], "width": [65, 67, 68, 92], "labels_one_hot": [65, 68, 92], "stream": [65, 89, 95], "downsampl": [65, 67, 92], "shrink": [65, 67], "divis": [65, 67, 76], "display_issu": [66, 67, 68, 69, 70, 71, 72, 92, 95], "common_label_issu": [66, 68, 70, 72, 92, 95], "filter_by_class": [66, 68, 92], "segmant": [67, 68], "num_pixel_issu": [67, 92], "product": [67, 82, 83], "pixel_scor": [67, 92], "highlight": [68, 72, 76, 77, 79, 92], "enter": 68, "legend": [68, 76, 77, 87, 88, 91, 92], "colormap": 68, "background": 68, "person": [68, 82, 88, 92, 95], "ambigu": [68, 72, 75, 80, 81, 84, 94, 95], "systemat": [68, 72, 86], "misunderstood": [68, 72], "issues_df": [68, 83], "class_index": 68, "issues_subset": [68, 72], "filter_by_token": [70, 72, 95], "token_score_method": 71, "sentence_score_method": 71, "sentence_score_kwarg": 71, "compris": [71, 72], "token_scor": [71, 95], "converg": 71, "toward": 71, "_softmin_sentence_scor": 71, "sentence_scor": [71, 95], "token_info": 71, "70": [71, 79, 83, 92], "02": [71, 76, 77, 83, 84, 88, 89, 92, 95], "03": [71, 79, 81, 84, 88, 89, 92, 95], "04": [71, 79, 83, 88, 89, 92], "08": [71, 84, 88, 91, 92, 95], "commonli": [72, 74, 76, 77, 87, 95], "But": [72, 80, 84, 91, 95], "restrict": [72, 82], "reliabl": [73, 75, 82, 86, 92, 93], "thousand": 73, "imagenet": [73, 81], "popular": [73, 86, 88], "centric": [73, 79, 80, 83, 85], "capabl": 73, "minut": [73, 75, 79, 80, 81, 86, 87, 88, 91, 92, 93, 94, 95], "conda": 73, "feature_embed": [73, 89], "Then": [73, 82, 83, 93, 94], "your_dataset": [73, 75, 76, 77, 79, 80, 82, 83], "column_name_of_label": [73, 75, 76, 77, 79, 80, 83], "plagu": [73, 77], "untrain": 73, "\u30c4": 73, "label_issues_info": [73, 77], "sklearn_compatible_model": 73, "framework": [73, 87, 88], "complianc": 73, "tag": [73, 87, 95], "sequenc": 73, "recognit": [73, 75, 82, 95], "train_data": [73, 89, 91, 93, 94], "gotten": 73, "test_data": [73, 84, 87, 89, 91, 93, 94], "deal": [73, 77], "tutori": [73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "feel": [73, 75, 77, 82], "free": [73, 75, 77, 79, 80, 82, 83, 84], "ask": [73, 82], "slack": [73, 82], "project": [73, 91], "welcom": 73, "commun": [73, 82], "guidelin": [73, 88], "piec": 73, "studio": [73, 77, 79, 80, 82, 83], "platform": [73, 79, 80, 82, 83], "automl": [73, 82], "foundat": 73, "smart": [73, 79, 80, 82, 83], "edit": [73, 82], "easier": [73, 84], "unreli": [73, 75, 79, 80, 93], "link": [73, 75, 81, 88], "older": 74, "outlin": 74, "substitut": 74, "v2": [74, 79, 93], "get_noise_indic": 74, "psx": 74, "sorted_index_method": 74, "order_label_error": 74, "label_errors_bool": 74, "latent_estim": 74, "num_label_error": 74, "learningwithnoisylabel": 74, "neatli": 74, "organ": [74, 79, 81, 93, 95], "reorgan": 74, "baseline_method": 74, "incorpor": [74, 84], "research": [74, 84], "polyplex": 74, "terminologi": 74, "label_error": 74, "quickstart": [75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "spoken": 75, "500": [75, 89, 95], "english": [75, 81], "pronunci": 75, "wav": 75, "huggingfac": [75, 76, 77, 83], "voxceleb": 75, "speech": [75, 95], "your_pred_prob": [75, 76, 77, 79, 80], "tensorflow_io": 75, "huggingface_hub": 75, "branch": [75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "reproduc": [75, 79, 84, 86], "command": 75, "wget": [75, 88, 92, 95], "navig": 75, "browser": 75, "jakobovski": 75, "archiv": [75, 95], "v1": 75, "tar": [75, 89], "gz": [75, 89], "mkdir": [75, 95], "spoken_digit": 75, "xf": 75, "6_nicolas_32": 75, "data_path": 75, "listdir": 75, "nondeterminist": 75, "file_nam": 75, "endswith": 75, "file_path": 75, "join": [75, 82, 83], "39": [75, 76, 79, 80, 81, 82, 83, 88, 91, 92, 94, 95], "7_george_26": 75, "0_nicolas_24": 75, "0_nicolas_6": 75, "listen": 75, "display_exampl": 75, "click": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "expand": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "pulldown": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "colab": [75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "tfio": 75, "pathlib": 75, "ipython": 75, "load_wav_16k_mono": 75, "filenam": 75, "khz": 75, "file_cont": 75, "read_fil": 75, "sample_r": 75, "decode_wav": 75, "desired_channel": 75, "squeez": 75, "rate_in": 75, "rate_out": 75, "16000": 75, "wav_file_nam": 75, "audio_r": 75, "wav_file_exampl": 75, "plai": [75, 81, 82], "button": 75, "wav_file_name_exampl": 75, "7_jackson_43": 75, "hear": 75, "extractor": 75, "encoderclassifi": 75, "spkrec": 75, "xvect": 75, "feature_extractor": 75, "from_hparam": 75, "run_opt": 75, "uncom": 75, "ffmpeg": 75, "system": [75, 79, 80, 83, 92], "backend": 75, "wav_audio_file_path": 75, "head": [75, 77, 79, 80, 81, 83, 84, 86, 91, 93, 94], "torchaudio": 75, "extract_audio_embed": 75, "emb": [75, 83], "signal": 75, "encode_batch": 75, "embeddings_list": [75, 83], "embeddings_arrai": 75, "opt": [75, 77, 80, 94], "hostedtoolcach": [75, 77, 80, 94], "x64": [75, 77, 80, 94], "lib": [75, 77, 80, 94], "python3": [75, 77, 80, 94], "site": [75, 77, 80, 94], "650": 75, "userwarn": [75, 76, 77, 80, 94], "stft": 75, "return_complex": 75, "view_as_r": 75, "recov": 75, "trigger": 75, "aten": 75, "src": 75, "nativ": 75, "spectralop": 75, "cpp": 75, "863": [75, 94], "_vf": 75, "n_fft": 75, "hop_length": 75, "win_length": 75, "attr": 75, "512": [75, 83], "14": [75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "196311": 75, "319459": 75, "478975": 75, "2890875": 75, "8170238": 75, "89265": 75, "24": [75, 81, 84, 86, 88, 91, 92, 95], "898056": 75, "256195": 75, "559641": 75, "559721": 75, "62067": 75, "285245": 75, "21": [75, 76, 81, 82, 84, 88, 91, 92, 95], "709627": 75, "5033693": 75, "913803": 75, "819831": 75, "1831515": 75, "208763": 75, "084257": 75, "3210397": 75, "005453": 75, "216152": 75, "478235": 75, "6821785": 75, "053807": 75, "242471": 75, "091424": 75, "78334856": 75, "03954": 75, "23": [75, 81, 83, 84, 88, 89, 91, 92], "569176": 75, "19": [75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 94], "761097": 75, "1258295": 75, "753237": 75, "3508866": 75, "598274": 75, "23712": 75, "2500": 75, "leverag": [75, 80, 82, 84, 86, 94], "tune": [75, 80, 81, 89, 94], "computation": [75, 80, 94], "intens": [75, 80, 94], "held": [75, 79, 80, 81, 88, 89, 90, 93], "straightforward": [75, 79, 93], "benefit": [75, 90, 92, 93], "tol": 75, "num_crossval_fold": [75, 79, 86, 93], "decreas": [75, 82], "never": [75, 84, 87, 89, 90], "accuracy_scor": [75, 80, 84, 93, 94], "cv_accuraci": 75, "9708": 75, "probabilit": [75, 94], "9976": 75, "986": 75, "002161": 75, "176": [75, 81, 84, 87], "002483": 75, "2318": 75, "004411": 75, "1005": 75, "004857": 75, "1871": 75, "007494": 75, "investig": 75, "040587": 75, "999207": 75, "999377": 75, "975220": 75, "999367": 75, "18": [75, 80, 81, 82, 84, 88, 89, 91, 92, 94, 95], "identified_label_issu": [75, 80], "lowest_quality_label": [75, 80, 84, 91, 94], "sort_valu": [75, 77, 79, 80, 82, 83, 84, 86, 87, 91], "516": 75, "1946": 75, "469": 75, "2132": 75, "worth": [75, 84], "iloc": [75, 79, 80, 91, 93, 94], "6_yweweler_25": 75, "7_nicolas_43": 75, "6_theo_27": 75, "6_yweweler_36": 75, "6_yweweler_14": 75, "6_yweweler_35": 75, "6_nicolas_8": 75, "sound": 75, "quit": [75, 89], "22": [75, 76, 81, 83, 84, 87, 88, 92, 95], "blindli": [75, 82, 91, 93, 94], "trust": [75, 82, 84, 86, 90, 91, 93, 94], "underneath": 76, "hood": 76, "alert": 76, "introduct": 76, "mayb": [76, 77, 80], "examin": [76, 77, 79, 88, 93], "your_feature_matrix": [76, 77], "toi": [76, 77, 81, 83, 84, 86], "train_test_split": [76, 77, 89, 93, 94], "inf": [76, 77], "mid": [76, 77], "bins_map": [76, 77], "create_data": [76, 77], "y_bin": [76, 77], "y_i": [76, 77], "y_bin_idx": [76, 77], "y_train": [76, 77, 84, 91], "y_test": [76, 77, 84, 91], "y_train_idx": [76, 77], "y_test_idx": [76, 77], "test_siz": [76, 77, 93, 94], "slide": [76, 77, 81], "decis": [76, 77, 93], "frame": [76, 77], "x_out": [76, 77], "tini": [76, 77], "concaten": [76, 77, 82, 90], "y_out": [76, 77], "y_out_bin": [76, 77], "y_out_bin_idx": [76, 77], "exact_duplicate_idx": [76, 77], "x_duplic": [76, 77], "y_duplic": [76, 77], "y_duplicate_idx": [76, 77], "noisy_labels_idx": [76, 77, 87], "scatter": [76, 77, 84, 87, 91], "black": [76, 77, 81, 91], "cyan": [76, 77], "pyplot": [76, 77, 83, 84, 87, 89, 91], "plt": [76, 77, 83, 84, 87, 89, 91], "plot_data": [76, 77, 84, 87, 91], "fig": [76, 77, 81, 83, 89, 91], "ax": [76, 77, 83, 89, 91], "subplot": [76, 77, 83, 89], "set_titl": [76, 77, 83, 89], "set_xlabel": [76, 77], "x_1": [76, 77], "fontsiz": [76, 77, 83, 84, 87], "set_ylabel": [76, 77], "x_2": [76, 77], "set_xlim": [76, 77], "set_ylim": [76, 77], "linestyl": [76, 77], "circl": [76, 77, 84, 87], "misclassifi": [76, 77], "zip": [76, 77, 83, 88, 95], "label_err": [76, 77], "180": [76, 77, 88], "marker": [76, 77], "facecolor": [76, 77], "edgecolor": [76, 77], "linewidth": [76, 77, 89], "dup": [76, 77], "first_legend": [76, 77], "align": [76, 77], "title_fontproperti": [76, 77], "semibold": [76, 77], "second_legend": [76, 77], "45": [76, 77, 81, 83, 84, 88, 92, 95], "gca": [76, 77], "add_artist": [76, 77], "tight_layout": [76, 77], "ideal": [76, 77], "logist": [76, 77, 80, 86, 89, 94], "remaind": 76, "modal": [76, 77, 82, 86], "132": [76, 77, 84, 88], "9318": 76, "77": [76, 77, 79, 88, 89, 92, 93], "006940": 76, "007830": 76, "40": [76, 77, 80, 81, 83, 89, 92], "014828": 76, "107": [76, 77, 84, 87], "021241": 76, "120": [76, 77, 93], "026407": 76, "notic": [76, 84, 86, 88], "3558": [76, 77], "126": [76, 77, 84, 88], "006636": [76, 77], "130": [76, 77], "012571": [76, 77], "129": [76, 77], "127": [76, 77], "014909": [76, 77], "128": [76, 77, 83], "017443": [76, 77], "6160": [76, 77], "is_near_duplicate_issu": [76, 77, 79, 80, 82, 83, 84], "131": [76, 77, 92], "000000e": [76, 77], "00": [76, 77, 79, 81, 83, 89, 92, 93], "000002": [76, 77], "463180e": [76, 77], "07": [76, 77, 79, 83, 84, 88, 91, 92], "51": [76, 77, 79, 81, 83, 84, 88, 89, 92, 95], "161148": [76, 77], "859087e": [76, 77], "30": [76, 77, 81, 82, 83, 87, 92, 95], "3453": 76, "029542": 76, "031182": 76, "057961": 76, "058244": 76, "home": [76, 77, 80, 81, 94], "runner": [76, 77, 80, 94], "329": [76, 83, 88], "359": 76, "338": 76, "34": [76, 81, 83, 84, 86, 88, 89, 92, 95], "54": [76, 81, 83, 84, 88, 89, 92, 95], "039122": 76, "53": [76, 77, 79, 81, 83, 87, 88, 92, 93], "044598": 76, "105": [76, 88], "105196": 76, "133654": 76, "43": [76, 81, 83, 84, 88, 89, 92], "168033": 76, "125": 76, "101107": 76, "37": [76, 81, 83, 89, 92, 95], "183382": 76, "109": [76, 81, 88], "209259": 76, "211042": 76, "221316": 76, "average_ood_scor": 76, "34530442089193386": 76, "52": [76, 81, 88, 92, 95], "169820": 76, "087324e": 76, "89": [76, 79, 88, 91, 92, 94], "92": [76, 83, 84, 88, 92, 93], "259024": 76, "583757e": 76, "91": [76, 88, 89, 92, 95], "346458": 76, "341292e": 76, "specfi": 76, "new_lab": 76, "scoring_funct": 76, "div": 76, "rem": 76, "inv_scal": 76, "49": [76, 81, 83, 84, 88, 92], "superstitionissuemanag": 76, "unlucki": 76, "superstit": 76, "to_seri": 76, "issues_mask": 76, "summary_scor": 76, "9242": 76, "is_superstition_issu": 76, "superstition_scor": 76, "26": [76, 81, 83, 84, 86, 88, 89, 92], "047581": 76, "090635": 76, "129591": 76, "65": [76, 83, 88, 89, 92, 93, 95], "164840": 76, "demo": [77, 79, 87, 93], "lurk": [77, 83, 84], "_split": 77, "737": 77, "thoroughli": 77, "preprocess": [77, 79, 89, 91, 93, 94], "904": 77, "review": [77, 79, 80, 81, 82, 84, 88, 91, 92, 93, 94, 95], "8561": 77, "001908": 77, "58": [77, 79, 81, 83, 84, 88, 92, 93, 95], "003564": 77, "007331": 77, "008963": 77, "009664": 77, "0227": 77, "is_class_imbalance_issu": 77, "022727": 77, "86": [77, 79, 83, 84, 88, 91, 92, 93, 95], "87": [77, 83, 88, 91, 92, 94], "auto": [77, 81, 82, 91, 93, 94], "conceptu": 77, "856061": 77, "355772": 77, "616034": 77, "821750": 77, "901562": 77, "betweeen": 77, "is_null_issu": 77, "is_non_iid_issu": [77, 79, 80, 84], "is_underperforming_group_issu": 77, "859131": 77, "417707": 77, "664083": 77, "970324": 77, "816953": 77, "375317": 77, "641516": 77, "890575": 77, "531021": 77, "460593": 77, "601188": 77, "826147": 77, "752808": 77, "321635": 77, "562539": 77, "948362": 77, "090243": 77, "472909": 77, "746763": 77, "878267": 77, "examples_w_issu": [77, 82], "013445": 77, "025184": 77, "026376": 77, "inde": [77, 80], "miscellan": [77, 95], "428571": 77, "111111": 77, "571429": 77, "407407": 77, "592593": 77, "337838": 77, "092593": 77, "662162": 77, "333333": [77, 81], "952381": 77, "666667": 77, "portion": 77, "huge": [77, 84], "worri": [77, 80], "critic": 77, "highli": [77, 83], "sql": [79, 93], "databas": [79, 93], "excel": [79, 93], "parquet": [79, 93], "student": [79, 91, 93, 95], "grade": [79, 91, 93], "900": [79, 91, 93], "exam": [79, 91, 93], "letter": [79, 93, 95], "hundr": [79, 93], "histgradientboostingclassifi": 79, "standardscal": [79, 89, 93], "grades_data": [79, 93], "read_csv": [79, 80, 91, 93, 94], "stud_id": [79, 93], "exam_1": [79, 91, 93], "exam_2": [79, 91, 93], "exam_3": [79, 91, 93], "letter_grad": [79, 93], "f48f73": [79, 93], "0bd4e7": [79, 93], "81": [79, 80, 88, 91, 92, 93, 95], "great": [79, 81, 93], "particip": [79, 93], "cb9d7a": [79, 93], "61": [79, 83, 84, 88, 91, 92, 93], "94": [79, 81, 84, 88, 89, 91, 92, 93, 95], "78": [79, 81, 83, 84, 88, 91, 92, 93], "9acca4": [79, 93], "48": [79, 81, 84, 88, 89, 92, 93], "x_raw": [79, 93], "cat_featur": 79, "x_encod": [79, 93], "get_dummi": [79, 91, 93], "drop_first": [79, 93], "numeric_featur": [79, 93], "scaler": [79, 89, 93], "x_process": [79, 93], "fit_transform": [79, 93], "bring": [79, 80, 83, 86, 91, 93, 94], "byod": [79, 80, 83, 86, 91, 93, 94], "boost": [79, 82, 86, 91], "xgboost": [79, 82, 91], "think": [79, 80, 82, 87, 92, 95], "carefulli": [79, 80, 83, 93], "nonzero": 79, "suspici": [79, 93], "tabl": [79, 81, 86, 93], "358": 79, "294": [79, 88], "46": [79, 81, 83, 84, 88, 89, 92], "941": 79, "7109": 79, "000005": [79, 80, 91], "886": 79, "000059": 79, "709": 79, "000104": 79, "723": 79, "000169": 79, "689": 79, "000181": 79, "3590": 79, "051882e": 79, "683133e": 79, "536582e": 79, "406589e": 79, "324246e": 79, "6165": 79, "582": 79, "185": [79, 81, 88], "187": [79, 81], "27": [79, 81, 84, 88, 92, 95], "898": 79, "637": [79, 93], "0014": [79, 81], "595": 79, "702427": 79, "147": [79, 84, 88], "711186": 79, "157": [79, 84], "721394": 79, "771": 79, "731979": 79, "740335": 79, "0014153602099278074": 79, "issue_result": 79, "000842": 79, "555944": 79, "004374": 79, "sorted_issu": 79, "73": [79, 81, 87, 88, 91, 92], "deserv": 79, "outlier_result": 79, "sorted_outli": 79, "56": [79, 81, 83, 89, 91, 92], "96": [79, 81, 84, 87, 88, 89, 91, 92], "lt": [79, 80, 81, 83, 86, 89, 92], "style": [79, 92], "font": 79, "18px": 79, "ff00ff": 79, "bac": 79, "unintend": [79, 80], "mistak": [79, 80, 83, 93, 94], "duplicate_result": 79, "690": 79, "246": [79, 88], "perhap": [79, 84, 86], "twice": 79, "67": [79, 81, 83, 88, 91, 92], "wari": [79, 80, 82], "super": [79, 80, 83], "intent": [80, 94], "servic": [80, 82, 94], "onlin": [80, 94], "bank": [80, 81, 94], "banking77": [80, 94], "oo": [80, 94], "000": [80, 81, 83, 94, 95], "categori": [80, 83, 94], "scope": [80, 94], "dive": 80, "your_featur": 80, "sentence_transform": [80, 94], "sentencetransform": [80, 94], "payment": [80, 94], "cancel_transf": [80, 94], "transfer": [80, 94], "fund": [80, 94], "cancel": [80, 94], "transact": [80, 94], "my": [80, 94], "revert": [80, 94], "morn": [80, 94], "realis": [80, 94], "yesterdai": [80, 94], "rent": [80, 94], "realli": [80, 86, 92, 94], "tomorrow": [80, 94], "raw_text": [80, 94], "beneficiary_not_allow": [80, 94], "apple_pay_or_google_pai": [80, 94], "visa_or_mastercard": [80, 94], "supported_cards_and_curr": [80, 94], "lost_or_stolen_phon": [80, 94], "card_payment_fee_charg": [80, 94], "getting_spare_card": [80, 94], "card_about_to_expir": [80, 94], "change_pin": [80, 94], "utter": [80, 94], "suit": [80, 81, 82, 94], "electra": [80, 94], "discrimin": [80, 94], "googl": [80, 94], "text_embed": 80, "No": [80, 82, 94], "google_electra": [80, 94], "pool": [80, 82, 89, 94], "_util": [80, 94], "831": [80, 94], "typedstorag": [80, 94], "untypedstorag": [80, 94], "untyped_storag": [80, 94], "fget": [80, 94], "__get__": [80, 94], "owner": [80, 94], "400": [80, 94], "data_dict": [80, 84, 86], "85": [80, 83, 88, 89, 92], "38": [80, 81, 83, 88, 92], "9710": 80, "981": 80, "974": 80, "000146": 80, "982": [80, 81], "000224": 80, "971": 80, "000507": 80, "980": [80, 81], "000960": 80, "3584": 80, "994": 80, "009642": 80, "999": 80, "013067": 80, "013841": 80, "433": 80, "014722": 80, "989": 80, "018224": 80, "6070": 80, "160": [80, 91], "095724": 80, "148": 80, "006237": 80, "546": 80, "099341": 80, "514": 80, "006485": 80, "481": 80, "123418": 80, "008165": 80, "0000": [80, 81, 84], "313": [80, 88], "564102": 80, "572258": 80, "28": [80, 81, 83, 84, 86, 92, 95], "574915": 80, "31": [80, 81, 83, 84, 86, 88, 92, 95], "575507": 80, "575874": 80, "792090": 80, "257611": 80, "698710": 80, "182121": 80, "771619": 80, "to_numpi": [80, 82, 91, 94], "data_with_suggested_label": 80, "suggested_label": 80, "charg": [80, 94], "cash": [80, 94], "holidai": [80, 94], "sent": [80, 94, 95], "card": [80, 81, 94], "mine": [80, 94], "expir": [80, 94], "me": [80, 94], "withdraw": 80, "monei": 80, "whoever": [80, 94], "outlier_issu": [80, 83], "lowest_quality_outli": 80, "OR": 80, "636c65616e6c616220697320617765736f6d6521": 80, "phone": [80, 81], "gone": 80, "gt": [80, 86, 95], "samp": 80, "br": 80, "press": [80, 95], "nonsens": 80, "sens": 80, "detriment": 80, "duplicate_issu": 80, "fee": 80, "pai": 80, "go": [80, 81, 84], "strongli": 80, "p_valu": 80, "benign": 80, "shortlist": [80, 91, 94], "curat": [80, 85], "mnist_test_set": 81, "imagenet_val_set": 81, "tench": 81, "goldfish": 81, "white": [81, 95], "shark": 81, "tiger": 81, "hammerhead": 81, "electr": 81, "rai": 81, "stingrai": 81, "cock": 81, "hen": 81, "ostrich": 81, "brambl": 81, "goldfinch": 81, "hous": 81, "finch": 81, "junco": 81, "indigo": 81, "bunt": 81, "american": [81, 95], "robin": 81, "bulbul": 81, "jai": 81, "magpi": 81, "chickade": 81, "dipper": 81, "kite": 81, "bald": 81, "eagl": 81, "vultur": 81, "grei": 81, "owl": 81, "salamand": 81, "smooth": 81, "newt": 81, "spot": [81, 88], "axolotl": 81, "bullfrog": 81, "tree": 81, "frog": [81, 89], "tail": 81, "loggerhead": 81, "sea": 81, "turtl": 81, "leatherback": 81, "mud": 81, "terrapin": 81, "band": 81, "gecko": 81, "green": [81, 95], "iguana": 81, "carolina": 81, "anol": 81, "desert": 81, "grassland": 81, "whiptail": 81, "lizard": 81, "agama": 81, "frill": 81, "neck": 81, "allig": 81, "gila": 81, "monster": 81, "european": 81, "chameleon": 81, "komodo": 81, "dragon": 81, "nile": 81, "crocodil": 81, "triceratop": 81, "worm": 81, "snake": 81, "ring": 81, "eastern": 81, "hog": 81, "nose": 81, "kingsnak": 81, "garter": 81, "water": 81, "vine": 81, "night": 81, "boa": 81, "constrictor": 81, "african": 81, "rock": 81, "indian": 81, "cobra": 81, "mamba": 81, "saharan": 81, "horn": 81, "viper": 81, "diamondback": 81, "rattlesnak": 81, "sidewind": 81, "trilobit": 81, "harvestman": 81, "scorpion": 81, "yellow": 81, "garden": 81, "spider": 81, "barn": 81, "southern": 81, "widow": 81, "tarantula": 81, "wolf": 81, "tick": 81, "centiped": 81, "grous": 81, "ptarmigan": 81, "ruf": 81, "prairi": 81, "peacock": 81, "quail": 81, "partridg": 81, "parrot": 81, "macaw": 81, "sulphur": 81, "crest": 81, "cockatoo": 81, "lorikeet": 81, "coucal": 81, "bee": 81, "eater": 81, "hornbil": 81, "hummingbird": 81, "jacamar": 81, "toucan": 81, "duck": [81, 94], "breast": 81, "mergans": 81, "goos": 81, "swan": 81, "tusker": 81, "echidna": 81, "platypu": 81, "wallabi": 81, "koala": 81, "wombat": 81, "jellyfish": 81, "anemon": 81, "brain": 81, "coral": 81, "flatworm": 81, "nematod": 81, "conch": 81, "snail": 81, "slug": 81, "chiton": 81, "chamber": 81, "nautilu": 81, "dung": 81, "crab": 81, "fiddler": 81, "king": 81, "lobster": 81, "spini": 81, "crayfish": 81, "hermit": 81, "isopod": 81, "stork": 81, "spoonbil": 81, "flamingo": 81, "heron": 81, "egret": 81, "bittern": 81, "crane": 81, "bird": [81, 89], "limpkin": 81, "gallinul": 81, "coot": 81, "bustard": 81, "ruddi": 81, "turnston": 81, "dunlin": 81, "redshank": 81, "dowitch": 81, "oystercatch": 81, "pelican": 81, "penguin": 81, "albatross": 81, "whale": 81, "killer": 81, "dugong": 81, "lion": 81, "chihuahua": 81, "japanes": 81, "chin": 81, "maltes": 81, "pekinges": 81, "shih": 81, "tzu": 81, "charl": 81, "spaniel": 81, "papillon": 81, "terrier": 81, "rhodesian": 81, "ridgeback": 81, "afghan": [81, 95], "hound": 81, "basset": 81, "beagl": 81, "bloodhound": 81, "bluetick": 81, "coonhound": 81, "tan": 81, "walker": 81, "foxhound": 81, "redbon": 81, "borzoi": 81, "irish": 81, "wolfhound": 81, "italian": 81, "greyhound": 81, "whippet": 81, "ibizan": 81, "norwegian": 81, "elkhound": 81, "otterhound": 81, "saluki": 81, "scottish": 81, "deerhound": 81, "weimaran": 81, "staffordshir": 81, "bull": 81, "bedlington": 81, "border": 81, "kerri": 81, "norfolk": 81, "norwich": 81, "yorkshir": 81, "wire": 81, "fox": 81, "lakeland": 81, "sealyham": 81, "airedal": 81, "cairn": 81, "australian": 81, "dandi": 81, "dinmont": 81, "boston": 81, "miniatur": 81, "schnauzer": 81, "giant": 81, "tibetan": 81, "silki": 81, "coat": [81, 83], "wheaten": 81, "west": 81, "highland": 81, "lhasa": 81, "apso": 81, "flat": 81, "retriev": 81, "curli": 81, "golden": 81, "labrador": 81, "chesapeak": 81, "bai": 81, "german": [81, 95], "shorthair": 81, "pointer": 81, "vizsla": 81, "setter": 81, "gordon": 81, "brittani": 81, "clumber": 81, "springer": 81, "welsh": 81, "cocker": 81, "sussex": 81, "kuvasz": 81, "schipperk": 81, "groenendael": 81, "malinoi": 81, "briard": 81, "kelpi": 81, "komondor": 81, "sheepdog": 81, "shetland": 81, "colli": 81, "bouvier": 81, "de": 81, "flandr": 81, "rottweil": 81, "shepherd": 81, "dobermann": 81, "pinscher": 81, "swiss": [81, 95], "mountain": 81, "bernes": 81, "appenzel": 81, "sennenhund": 81, "entlebuch": 81, "boxer": 81, "bullmastiff": 81, "mastiff": 81, "french": 81, "bulldog": 81, "dane": 81, "st": 81, "bernard": 81, "huski": 81, "alaskan": 81, "malamut": 81, "siberian": 81, "dalmatian": 81, "affenpinsch": 81, "basenji": 81, "pug": 81, "leonberg": 81, "newfoundland": 81, "pyrenean": 81, "samoi": 81, "pomeranian": 81, "chow": 81, "keeshond": 81, "griffon": 81, "bruxelloi": 81, "pembrok": 81, "corgi": 81, "cardigan": 81, "poodl": 81, "mexican": 81, "hairless": 81, "tundra": 81, "coyot": 81, "dingo": 81, "dhole": 81, "wild": 81, "hyena": 81, "kit": 81, "arctic": 81, "tabbi": 81, "persian": 81, "siames": 81, "egyptian": 81, "mau": 81, "cougar": 81, "lynx": 81, "leopard": 81, "snow": 81, "jaguar": 81, "cheetah": 81, "brown": [81, 92], "bear": 81, "polar": 81, "sloth": 81, "mongoos": 81, "meerkat": 81, "beetl": 81, "ladybug": 81, "longhorn": 81, "leaf": 81, "rhinocero": 81, "weevil": 81, "fly": 81, "ant": 81, "grasshopp": 81, "cricket": 81, "stick": 81, "insect": 81, "cockroach": 81, "manti": 81, "cicada": 81, "leafhopp": 81, "lacew": 81, "dragonfli": 81, "damselfli": 81, "admir": 81, "ringlet": 81, "monarch": 81, "butterfli": 81, "gossam": 81, "wing": 81, "starfish": 81, "urchin": 81, "cucumb": 81, "cottontail": 81, "rabbit": 81, "hare": 81, "angora": 81, "hamster": 81, "porcupin": 81, "squirrel": 81, "marmot": 81, "beaver": 81, "guinea": 81, "pig": 81, "sorrel": 81, "zebra": 81, "boar": 81, "warthog": 81, "hippopotamu": 81, "ox": 81, "buffalo": 81, "bison": 81, "bighorn": 81, "sheep": 81, "alpin": 81, "ibex": 81, "hartebeest": 81, "impala": 81, "gazel": 81, "dromedari": 81, "llama": 81, "weasel": 81, "mink": 81, "polecat": 81, "foot": 81, "ferret": 81, "otter": 81, "skunk": 81, "badger": 81, "armadillo": 81, "toed": 81, "orangutan": 81, "gorilla": 81, "chimpanze": 81, "gibbon": 81, "siamang": 81, "guenon": 81, "pata": 81, "monkei": 81, "baboon": 81, "macaqu": 81, "langur": 81, "colobu": 81, "probosci": 81, "marmoset": 81, "capuchin": 81, "howler": 81, "titi": 81, "geoffroi": 81, "lemur": 81, "indri": 81, "asian": 81, "eleph": 81, "bush": 81, "snoek": 81, "eel": 81, "coho": 81, "salmon": 81, "beauti": 81, "clownfish": 81, "sturgeon": 81, "garfish": 81, "lionfish": 81, "pufferfish": 81, "abacu": 81, "abaya": 81, "academ": 81, "gown": 81, "accordion": 81, "acoust": 81, "guitar": 81, "aircraft": 81, "carrier": 81, "airlin": 81, "airship": 81, "altar": 81, "ambul": 81, "amphibi": 81, "clock": [81, 95], "apiari": 81, "apron": 81, "wast": 81, "assault": 81, "rifl": 81, "backpack": 81, "bakeri": 81, "balanc": 81, "beam": 81, "balloon": 81, "ballpoint": 81, "pen": 81, "aid": 81, "banjo": 81, "balust": 81, "barbel": 81, "barber": 81, "chair": [81, 88], "barbershop": 81, "baromet": 81, "barrel": 81, "wheelbarrow": 81, "basebal": 81, "basketbal": 81, "bassinet": 81, "bassoon": 81, "swim": 81, "cap": 81, "bath": 81, "towel": 81, "bathtub": 81, "station": 81, "wagon": 81, "lighthous": 81, "beaker": 81, "militari": 81, "beer": 81, "bottl": 81, "glass": 81, "bell": 81, "cot": 81, "bib": 81, "bicycl": [81, 92], "bikini": 81, "binder": 81, "binocular": 81, "birdhous": 81, "boathous": 81, "bobsleigh": 81, "bolo": 81, "tie": 81, "poke": 81, "bonnet": 81, "bookcas": 81, "bookstor": 81, "bow": 81, "brass": 81, "bra": 81, "breakwat": 81, "breastplat": 81, "broom": 81, "bucket": 81, "buckl": 81, "bulletproof": 81, "vest": 81, "butcher": 81, "shop": 81, "taxicab": 81, "cauldron": 81, "candl": 81, "cannon": 81, "cano": 81, "mirror": [81, 88], "carousel": 81, "tool": [81, 84, 86], "carton": 81, "wheel": 81, "teller": 81, "cassett": 81, "player": 81, "castl": 81, "catamaran": 81, "cd": 81, "cello": 81, "mobil": [81, 95], "chain": 81, "fenc": [81, 92], "mail": 81, "chainsaw": 81, "chest": 81, "chiffoni": 81, "chime": 81, "china": 81, "cabinet": 81, "christma": 81, "stock": 81, "church": 81, "movi": 81, "theater": 81, "cleaver": 81, "cliff": 81, "dwell": 81, "cloak": 81, "clog": 81, "cocktail": 81, "shaker": 81, "coffe": 81, "mug": 81, "coffeemak": 81, "coil": 81, "lock": 81, "keyboard": 81, "confectioneri": 81, "ship": [81, 89], "corkscrew": 81, "cornet": 81, "cowboi": 81, "boot": 81, "hat": 81, "cradl": 81, "crash": 81, "helmet": 81, "crate": 81, "infant": 81, "bed": 81, "crock": 81, "pot": 81, "croquet": 81, "crutch": 81, "cuirass": 81, "dam": 81, "desk": 81, "desktop": 81, "rotari": 81, "dial": 81, "telephon": 81, "diaper": 81, "watch": 81, "dine": 81, "dishcloth": 81, "dishwash": 81, "disc": 81, "brake": 81, "dock": 81, "sled": 81, "dome": 81, "doormat": 81, "drill": 81, "rig": 81, "drum": 81, "drumstick": 81, "dumbbel": 81, "dutch": 81, "oven": 81, "fan": 81, "locomot": 81, "entertain": 81, "center": 81, "envelop": 81, "espresso": 81, "powder": 81, "feather": 81, "fireboat": 81, "engin": [81, 92], "screen": 81, "sheet": 81, "flagpol": 81, "flute": 81, "footbal": 81, "forklift": 81, "fountain": 81, "poster": 81, "freight": 81, "fry": 81, "pan": 81, "fur": 81, "garbag": 81, "ga": 81, "pump": 81, "goblet": 81, "kart": 81, "golf": 81, "cart": 81, "gondola": 81, "gong": 81, "grand": 81, "piano": 81, "greenhous": 81, "grill": 81, "groceri": 81, "guillotin": 81, "barrett": 81, "hair": 81, "sprai": 81, "hammer": 81, "dryer": 81, "hand": [81, 84], "handkerchief": 81, "drive": 81, "harmonica": 81, "harp": 81, "harvest": 81, "hatchet": 81, "holster": 81, "honeycomb": 81, "hoop": 81, "skirt": 81, "horizont": 81, "bar": 81, "hors": [81, 89, 94], "drawn": 81, "hourglass": 81, "ipod": 81, "cloth": 81, "iron": 81, "jack": 81, "lantern": 81, "jean": 81, "jeep": 81, "shirt": [81, 83], "jigsaw": 81, "puzzl": 81, "pull": 81, "rickshaw": 81, "joystick": 81, "kimono": 81, "knee": 81, "pad": 81, "knot": 81, "ladl": 81, "lampshad": 81, "laptop": 81, "lawn": 81, "mower": 81, "knife": 81, "lifeboat": 81, "lighter": 81, "limousin": 81, "ocean": 81, "liner": 81, "lipstick": 81, "slip": 81, "shoe": 81, "lotion": 81, "speaker": 81, "loup": 81, "sawmil": 81, "magnet": 81, "compass": 81, "bag": [81, 83, 89, 90], "mailbox": 81, "tight": 81, "tank": 81, "manhol": 81, "maraca": 81, "marimba": 81, "maypol": 81, "maze": 81, "cup": [81, 88], "medicin": 81, "megalith": 81, "microphon": 81, "microwav": 81, "milk": 81, "minibu": 81, "miniskirt": 81, "minivan": 81, "missil": 81, "mitten": 81, "mix": 81, "bowl": 81, "modem": 81, "monasteri": 81, "monitor": 81, "mope": 81, "mortar": 81, "mosqu": 81, "mosquito": 81, "scooter": 81, "bike": 81, "tent": 81, "mous": [81, 82], "mousetrap": 81, "van": 81, "muzzl": 81, "nail": 81, "brace": 81, "necklac": 81, "nippl": 81, "obelisk": 81, "obo": 81, "ocarina": 81, "odomet": 81, "oil": 81, "oscilloscop": 81, "overskirt": 81, "bullock": 81, "oxygen": 81, "packet": 81, "paddl": 81, "padlock": 81, "paintbrush": 81, "pajama": 81, "palac": [81, 95], "parachut": 81, "park": 81, "bench": 81, "meter": 81, "passeng": 81, "patio": 81, "payphon": 81, "pedest": 81, "pencil": 81, "perfum": 81, "petri": 81, "dish": 81, "photocopi": 81, "plectrum": 81, "pickelhaub": 81, "picket": 81, "pickup": 81, "pier": 81, "piggi": 81, "pill": 81, "pillow": 81, "ping": 81, "pong": 81, "pinwheel": 81, "pirat": 81, "pitcher": 81, "plane": 81, "planetarium": 81, "plastic": 81, "plate": 81, "rack": 81, "plow": 81, "plunger": 81, "polaroid": 81, "camera": 81, "pole": [81, 92], "polic": 81, "poncho": 81, "billiard": 81, "soda": 81, "potter": 81, "prayer": 81, "rug": 81, "printer": 81, "prison": 81, "projectil": 81, "projector": 81, "hockei": 81, "puck": 81, "punch": 81, "purs": 81, "quill": 81, "quilt": 81, "race": 81, "racket": 81, "radiat": 81, "radio": 81, "telescop": 81, "rain": 81, "recreat": 81, "reel": 81, "reflex": 81, "refriger": 81, "remot": 81, "restaur": 81, "revolv": 81, "rotisseri": 81, "eras": 81, "rugbi": 81, "ruler": 81, "safe": 81, "safeti": 81, "salt": 81, "sandal": [81, 83], "sarong": 81, "saxophon": 81, "scabbard": 81, "school": 81, "bu": [81, 92], "schooner": 81, "scoreboard": 81, "crt": 81, "screw": 81, "screwdriv": 81, "seat": 81, "belt": 81, "sew": 81, "shield": 81, "shoji": 81, "basket": 81, "shovel": 81, "shower": 81, "curtain": 81, "ski": 81, "sleep": 81, "door": 81, "slot": 81, "snorkel": 81, "snowmobil": 81, "snowplow": 81, "soap": 81, "dispens": 81, "soccer": [81, 95], "sock": 81, "solar": 81, "thermal": 81, "collector": 81, "sombrero": 81, "soup": 81, "heater": 81, "shuttl": 81, "spatula": 81, "motorboat": 81, "web": 81, "spindl": 81, "sport": [81, 95], "spotlight": 81, "stage": 81, "steam": 81, "arch": 81, "bridg": 81, "steel": 81, "stethoscop": 81, "scarf": 81, "stone": 81, "wall": [81, 92], "stopwatch": 81, "stove": 81, "strainer": 81, "tram": 81, "stretcher": 81, "couch": 81, "stupa": 81, "submarin": 81, "sundial": 81, "sunglass": 81, "sunscreen": 81, "suspens": 81, "mop": 81, "sweatshirt": 81, "swimsuit": 81, "swing": 81, "switch": 81, "syring": 81, "lamp": 81, "tape": 81, "teapot": 81, "teddi": 81, "televis": [81, 95], "tenni": 81, "thatch": 81, "roof": 81, "front": 81, "thimbl": 81, "thresh": 81, "throne": 81, "tile": 81, "toaster": 81, "tobacco": 81, "toilet": 81, "totem": 81, "tow": 81, "tractor": 81, "semi": 81, "trailer": 81, "trai": 81, "trench": 81, "tricycl": 81, "trimaran": 81, "tripod": 81, "triumphal": 81, "trolleybu": 81, "trombon": 81, "tub": 81, "turnstil": 81, "typewrit": 81, "umbrella": 81, "unicycl": 81, "upright": 81, "vacuum": 81, "cleaner": 81, "vase": 81, "vault": 81, "velvet": 81, "vend": 81, "vestment": 81, "viaduct": 81, "violin": 81, "volleybal": 81, "waffl": 81, "wallet": 81, "wardrob": 81, "sink": 81, "wash": 81, "jug": 81, "tower": 81, "whiskei": 81, "whistl": 81, "wig": 81, "shade": [81, 92], "windsor": 81, "wine": 81, "wok": 81, "wooden": 81, "spoon": 81, "wool": 81, "rail": 81, "shipwreck": 81, "yawl": 81, "yurt": 81, "websit": 81, "comic": 81, "book": 81, "crossword": 81, "traffic": [81, 88, 92], "sign": [81, 92, 95], "dust": 81, "jacket": [81, 88], "menu": 81, "guacamol": 81, "consomm": 81, "trifl": 81, "ic": 81, "cream": 81, "pop": 81, "baguett": 81, "bagel": 81, "pretzel": 81, "cheeseburg": 81, "mash": 81, "potato": 81, "cabbag": 81, "broccoli": 81, "cauliflow": 81, "zucchini": 81, "spaghetti": 81, "squash": 81, "acorn": 81, "butternut": 81, "artichok": 81, "pepper": 81, "cardoon": 81, "mushroom": 81, "granni": 81, "smith": 81, "strawberri": 81, "orang": 81, "lemon": 81, "pineappl": 81, "banana": 81, "jackfruit": 81, "custard": 81, "appl": 81, "pomegran": 81, "hai": 81, "carbonara": 81, "chocol": 81, "syrup": 81, "dough": 81, "meatloaf": 81, "pizza": 81, "pie": 81, "burrito": 81, "eggnog": 81, "alp": 81, "bubbl": 81, "reef": 81, "geyser": 81, "lakeshor": 81, "promontori": 81, "shoal": 81, "seashor": 81, "vallei": 81, "volcano": 81, "bridegroom": 81, "scuba": 81, "diver": 81, "rapese": 81, "daisi": 81, "ladi": 81, "slipper": 81, "corn": 81, "rose": 81, "hip": 81, "chestnut": 81, "fungu": 81, "agar": 81, "gyromitra": 81, "stinkhorn": 81, "earth": 81, "star": 81, "wood": 81, "bolet": 81, "ear": 81, "cifar10_test_set": 81, "airplan": [81, 89], "automobil": [81, 89], "deer": [81, 89], "cifar100_test_set": 81, "aquarium_fish": 81, "babi": 81, "boi": 81, "camel": 81, "caterpillar": 81, "cattl": [81, 95], "cloud": 81, "dinosaur": 81, "dolphin": 81, "flatfish": 81, "forest": 81, "girl": 81, "kangaroo": 81, "lawn_mow": 81, "man": 81, "maple_tre": 81, "motorcycl": [81, 92], "oak_tre": 81, "orchid": 81, "palm_tre": 81, "pear": 81, "pickup_truck": 81, "pine_tre": 81, "plain": 81, "poppi": 81, "possum": 81, "raccoon": 81, "road": [81, 92], "rocket": 81, "seal": 81, "shrew": 81, "skyscrap": 81, "streetcar": 81, "sunflow": 81, "sweet_pepp": 81, "trout": 81, "tulip": 81, "willow_tre": 81, "woman": [81, 88], "caltech256": 81, "ak47": 81, "bat": 81, "glove": 81, "birdbath": 81, "blimp": 81, "bonsai": 81, "boom": 81, "breadmak": 81, "buddha": 81, "bulldoz": 81, "cactu": 81, "cake": 81, "tire": 81, "cartman": 81, "cereal": 81, "chandeli": 81, "chess": 81, "board": 81, "chimp": 81, "chopstick": 81, "coffin": 81, "coin": 81, "comet": 81, "cormor": 81, "globe": 81, "diamond": 81, "dice": 81, "doorknob": 81, "drink": 81, "straw": 81, "dumb": 81, "eiffel": 81, "elk": 81, "ewer": 81, "eyeglass": 81, "fern": 81, "fighter": 81, "jet": [81, 91], "extinguish": 81, "hydrant": 81, "firework": 81, "flashlight": 81, "floppi": 81, "fri": 81, "frisbe": 81, "galaxi": 81, "giraff": 81, "goat": 81, "gate": 81, "grape": 81, "pick": [81, 82], "hamburg": 81, "hammock": 81, "harpsichord": 81, "hawksbil": 81, "helicopt": 81, "hibiscu": 81, "homer": 81, "simpson": 81, "horsesho": 81, "air": 81, "skeleton": 81, "ibi": 81, "cone": 81, "iri": 81, "jesu": 81, "christ": 81, "joi": 81, "kayak": 81, "ketch": 81, "ladder": 81, "lath": 81, "licens": 81, "lightbulb": 81, "lightn": 81, "mandolin": 81, "mar": 81, "mattress": 81, "megaphon": 81, "menorah": 81, "microscop": 81, "minaret": 81, "minotaur": 81, "motorbik": 81, "mussel": 81, "neckti": 81, "octopu": 81, "palm": 81, "pilot": 81, "paperclip": 81, "shredder": 81, "pci": 81, "peopl": [81, 88], "pez": 81, "picnic": 81, "pram": 81, "prai": 81, "pyramid": 81, "rainbow": 81, "roulett": 81, "saddl": 81, "saturn": 81, "segwai": 81, "propel": 81, "sextant": 81, "music": 81, "skateboard": 81, "smokestack": 81, "sneaker": 81, "boat": 81, "stain": 81, "steer": 81, "stirrup": 81, "superman": 81, "sushi": 81, "armi": [81, 95], "sword": 81, "tambourin": 81, "teepe": 81, "court": 81, "theodolit": 81, "tomato": 81, "tombston": 81, "tour": 81, "pisa": 81, "treadmil": 81, "fork": 81, "tweezer": 81, "unicorn": 81, "vcr": 81, "waterfal": 81, "watermelon": 81, "weld": 81, "windmil": 81, "xylophon": 81, "yarmulk": 81, "yo": 81, "toad": 81, "twenty_news_test_set": 81, "alt": 81, "atheism": 81, "comp": 81, "graphic": [81, 92], "misc": [81, 95], "sy": 81, "ibm": 81, "pc": 81, "hardwar": 81, "mac": 81, "forsal": 81, "rec": 81, "sci": 81, "crypt": 81, "electron": 81, "med": 81, "soc": 81, "religion": 81, "christian": [81, 95], "talk": [81, 95], "polit": 81, "gun": 81, "mideast": 81, "amazon": 81, "neutral": 81, "imdb_test_set": 81, "all_class": 81, "20news_test_set": 81, "_load_classes_predprobs_label": 81, "dataset_nam": 81, "labelerror": 81, "url_bas": 81, "5392f6c71473055060be3044becdde1cbc18284d": 81, "url_label": 81, "original_test_label": 81, "_original_label": 81, "url_prob": 81, "cross_validated_predicted_prob": 81, "_pyx": 81, "num_part": 81, "datatset": 81, "bytesio": 81, "allow_pickl": 81, "pred_probs_part": 81, "url": 81, "_of_": 81, "nload": 81, "imdb": 81, "ve": [81, 82, 84, 86, 88], "interpret": [81, 82, 84, 87, 91], "capit": 81, "29780": 81, "256": [81, 82, 88], "780": 81, "medic": [81, 95], "doctor": 81, "254": [81, 88], "359223": 81, "640777": 81, "184": [81, 84], "258427": 81, "341176": 81, "263158": 81, "658824": 81, "337349": 81, "246575": 81, "662651": 81, "248": [81, 95], "330000": 81, "355769": 81, "670000": 81, "251": [81, 88], "167": [81, 84, 88], "252": 81, "112": 81, "253": [81, 88], "022989": 81, "255": [81, 83], "049505": 81, "190": [81, 84, 88], "66": [81, 92], "002216": 81, "000974": 81, "59": [81, 83, 88, 92], "88": [81, 82, 83, 84, 87, 88, 89, 91, 92], "000873": 81, "000739": 81, "79": [81, 88, 89, 92, 93, 95], "32635": 81, "32636": 81, "47": [81, 83, 88, 92], "32637": 81, "32638": 81, "32639": 81, "32640": 81, "051": 81, "93": [81, 88, 91, 92, 93], "002242": 81, "997758": 81, "002088": 81, "001045": 81, "997912": 81, "002053": 81, "997947": 81, "001980": 81, "000991": 81, "998020": 81, "001946": 81, "002915": 81, "998054": 81, "001938": 81, "002904": 81, "998062": 81, "001020": 81, "998980": 81, "001018": 81, "002035": 81, "998982": 81, "999009": 81, "0003": 81, "0002": 81, "36": [81, 83, 92, 95], "41": [81, 88, 91, 92, 95], "44": [81, 87, 88, 92, 94], "71": [81, 84, 88, 89, 91, 92], "071": 81, "067269": 81, "929": 81, "046": 81, "058243": 81, "954": 81, "035": 81, "032096": 81, "965": 81, "031": 81, "012232": 81, "969": 81, "022": 81, "025896": 81, "978": 81, "020": [81, 84], "013092": 81, "018": 81, "013065": 81, "016": 81, "030542": 81, "984": 81, "013": 81, "020833": 81, "987": 81, "012": 81, "010020": 81, "988": 81, "0073": 81, "0020": 81, "0016": 81, "0015": 81, "0013": 81, "0012": 81, "0010": 81, "0008": 81, "0007": 81, "0006": 81, "0005": 81, "0004": 81, "244": [81, 88, 95], "98": [81, 82, 91, 92], "452381": 81, "459770": 81, "72": [81, 83, 84, 87, 91, 92, 95], "523364": 81, "460784": 81, "446602": 81, "57": [81, 83, 84, 89, 92], "68": [81, 84, 88, 89, 92, 93], "103774": 81, "030612": 81, "97": [81, 82, 84, 88, 91, 92, 93, 95], "110092": 81, "049020": 81, "99": [81, 84, 89, 92, 93], "0034": 81, "0032": 81, "0026": 81, "0025": 81, "4945": 81, "4946": 81, "4947": 81, "4948": 81, "4949": 81, "4950": 81, "846": 81, "82": [81, 84, 88, 89, 91, 92], "7532": 81, "532": 81, "034483": 81, "009646": 81, "965517": 81, "030457": 81, "020513": 81, "969543": 81, "028061": 81, "035443": 81, "971939": 81, "025316": 81, "005168": 81, "974684": 81, "049751": 81, "979487": 81, "019920": 81, "042802": 81, "980080": 81, "017677": 81, "005115": 81, "982323": 81, "012987": 81, "005236": 81, "987013": 81, "012723": 81, "025126": 81, "987277": 81, "010989": 81, "008264": 81, "989011": 81, "010283": 81, "027778": 81, "989717": 81, "009677": 81, "990323": 81, "007614": 81, "010127": 81, "992386": 81, "005051": 81, "994949": 81, "005025": 81, "994975": 81, "005013": 81, "994987": 81, "001859": 81, "001328": 81, "000929": 81, "000664": 81, "186": [81, 84], "188": [81, 84, 87], "189": [81, 84], "snippet": 82, "nlp": [82, 95], "mind": [82, 84], "number_of_class": 82, "total_number_of_data_point": 82, "drop": [82, 86, 91, 94], "feed": 82, "alphabet": 82, "labels_proper_format": 82, "your_classifi": 82, "issues_datafram": 82, "class_predicted_for_flagged_exampl": 82, "class_predicted_for_all_exampl": 82, "grant": 82, "datataset": 82, "fair": [82, 84], "game": 82, "speedup": [82, 89], "flexibl": 82, "tempfil": 82, "mkdtemp": 82, "sped": 82, "anywai": 82, "pred_probs_merg": 82, "merge_rare_class": 82, "count_threshold": 82, "class_mapping_orig2new": 82, "heath_summari": 82, "num_examples_per_class": 82, "rare_class": 82, "num_classes_merg": 82, "other_class": 82, "labels_merg": 82, "new_c": 82, "merged_prob": 82, "hstack": [82, 83, 84, 86], "new_class": 82, "original_class": 82, "num_check": 82, "ones_array_ref": 82, "isclos": 82, "though": [82, 84, 95], "successfulli": 82, "meaning": [82, 89], "virtuou": [82, 86], "cycl": [82, 86], "jointli": 82, "junk": 82, "clutter": 82, "unknown": 82, "caltech": 82, "combined_boolean_mask": 82, "mask1": 82, "mask2": 82, "gradientboostingclassifi": [82, 84], "true_error": [82, 84, 87], "101": [82, 88], "102": [82, 87, 88], "104": [82, 84, 88], "model_to_find_error": 82, "model_to_return": 82, "cl0": 82, "randomizedsearchcv": 82, "expens": 82, "param_distribut": 82, "learning_r": [82, 84], "max_depth": [82, 84], "magnitud": 82, "coeffici": [82, 91], "optin": 82, "environ": [82, 84], "rerun": [82, 84], "cell": [82, 84], "On": [82, 84, 88], "unabl": [82, 84], "render": [82, 84], "nbviewer": [82, 84], "nbsp": [82, 84], "cleanlearninginot": [82, 84], "fittedcleanlearn": [82, 84], "linearregressionlinearregress": 82, "n_init": 82, "fit_predict": 82, "continuous_column": 82, "categorical_column": 82, "data_df": 82, "feature_a": 82, "feature_b": 82, "unexpectedli": 82, "emphas": 82, "especi": [82, 83, 91, 93, 94], "crucial": 82, "merge_duplicate_set": 82, "merge_kei": 82, "construct_group_kei": 82, "merged_set": 82, "consolidate_set": 82, "tolist": [82, 87], "issubset": 82, "frozenset": 82, "sets_list": 82, "mutabl": 82, "new_set": 82, "current_set": 82, "intersecting_set": 82, "lowest_score_strategi": 82, "sub_df": 82, "idxmin": 82, "filter_near_dupl": 82, "strategy_fn": 82, "strategy_kwarg": 82, "duplicate_row": 82, "group_kei": 82, "to_keep_indic": 82, "groupbi": 82, "explod": 82, "to_remov": 82, "isin": [82, 89], "kept": 82, "near_duplicate_issu": [82, 83], "ids_to_remove_seri": 82, "tmp": 82, "ipykernel_5954": 82, "1995098996": 82, "deprecationwarn": 82, "dataframegroupbi": 82, "include_group": 82, "silenc": 82, "assist": 82, "streamlin": 82, "ux": 82, "agpl": 82, "compani": 82, "commerci": 82, "alter": 82, "email": 82, "discuss": 82, "anywher": 82, "profession": 82, "expert": 82, "60": [83, 84, 89, 91, 92], "excess": 83, "torchvis": [83, 89], "tensordataset": 83, "stratifiedkfold": [83, 87], "tqdm": 83, "fashion_mnist": 83, "num_row": 83, "60000": 83, "pil": 83, "transformed_dataset": 83, "with_format": 83, "unsqueez": 83, "cpu_count": 83, "torch_dataset": 83, "quick": [83, 87], "relu": 83, "batchnorm2d": 83, "maxpool2d": 83, "lazylinear": 83, "flatten": 83, "get_test_accuraci": 83, "testload": [83, 89], "energi": 83, "trainload": [83, 89], "n_epoch": 83, "patienc": 83, "criterion": 83, "crossentropyloss": 83, "adamw": 83, "best_test_accuraci": 83, "start_epoch": 83, "running_loss": 83, "best_epoch": 83, "end_epoch": 83, "3f": [83, 91], "acc": [83, 84], "time_taken": 83, "compute_embed": 83, "compute_pred_prob": 83, "train_batch_s": 83, "num_work": 83, "worker": [83, 95], "train_id_list": 83, "test_id_list": 83, "train_id": 83, "test_id": 83, "embeddings_model": 83, "ntrain": 83, "trainset": 83, "testset": 83, "pin_memori": 83, "fold_embed": 83, "fold_pred_prob": 83, "finish": 83, "482": 83, "720": 83, "817": 83, "195": 83, "679": 83, "stderr": [83, 89, 92], "sphinxverbatim": [83, 89, 92, 95], "46it": [83, 89, 92], "33it": [83, 92], "87it": [83, 89, 92], "81it": [83, 92], "64it": [83, 89, 92], "52it": [83, 92], "48it": [83, 92], "07it": [83, 89, 92], "54it": [83, 89, 92], "10it": [83, 89, 92], "01it": 83, "73it": [83, 89, 92], "24it": [83, 92], "493": 83, "060": 83, "830": 83, "330": [83, 88], "505": 83, "590": 83, "68it": [83, 92], "30it": [83, 92], "35it": [83, 92], "56it": [83, 92], "72it": [83, 92], "37it": [83, 89, 92], "97it": [83, 89, 92], "41it": [83, 92], "80it": [83, 89, 92], "20it": [83, 92], "98it": [83, 92], "32it": [83, 92], "476": 83, "340": 83, "328": [83, 88], "310": 83, "561": 83, "53it": [83, 89, 92], "23it": [83, 89, 92], "21it": [83, 92], "62": [83, 84, 88, 89, 91, 92], "39it": [83, 89, 92], "92it": 83, "93it": [83, 89, 92], "44it": [83, 92], "90it": [83, 92], "40it": [83, 92], "reorder": 83, "vision": 83, "grayscal": 83, "exce": 83, "max_preval": 83, "7714": 83, "3772": 83, "3585": 83, "166": 83, "3651": 83, "27080": 83, "873833e": 83, "40378": 83, "915575e": 83, "25316": 83, "390277e": 83, "06": [83, 84, 88, 89, 92, 95], "2090": 83, "751164e": 83, "14999": 83, "881301e": 83, "9569": 83, "11262": 83, "000003": 83, "19228": 83, "000010": 83, "dress": 83, "32657": 83, "000013": 83, "21282": 83, "000016": 83, "53564": 83, "000018": 83, "pullov": 83, "6321": 83, "30968": 83, "001267": 83, "30659": 83, "000022": [83, 95], "47824": 83, "001454": 83, "3370": 83, "000026": 83, "54565": 83, "001854": 83, "9762": 83, "258": 83, "47139": 83, "000033": 83, "166980": 83, "986195": 83, "997205": 83, "948781": 83, "999358": 83, "54078": 83, "17371": 83, "000025": 83, "plot_label_issue_exampl": 83, "ncol": [83, 89], "nrow": [83, 89], "ceil": 83, "axes_list": 83, "label_issue_indic": 83, "gl": 83, "sl": 83, "fontdict": 83, "imshow": [83, 89], "cmap": [83, 91], "grai": 83, "subplots_adjust": 83, "hspace": 83, "outsiz": 83, "outlier_issues_df": 83, "depict": [83, 87, 88, 89, 90, 92], "plot_outlier_issues_exampl": 83, "n_comparison_imag": 83, "sample_from_class": 83, "number_of_sampl": 83, "non_outlier_indic": 83, "isnul": 83, "non_outlier_indices_excluding_curr": 83, "sampled_indic": 83, "label_scores_of_sampl": 83, "top_score_indic": 83, "top_label_indic": 83, "sampled_imag": 83, "get_image_given_label_and_sampl": 83, "image_from_dataset": 83, "corresponding_label": 83, "comparison_imag": 83, "images_to_plot": 83, "idlist": 83, "iterrow": 83, "closest": 83, "counterpart": 83, "near_duplicate_issues_df": 83, "plot_near_duplicate_issue_exampl": 83, "seen_id_pair": 83, "get_image_and_given_label_and_predicted_label": 83, "duplicate_imag": 83, "nd_set": 83, "challeng": 83, "dark_issu": 83, "reveal": [83, 88, 92], "dark_scor": 83, "dark_issues_df": 83, "is_dark_issu": 83, "34848": 83, "203922": 83, "50270": 83, "204588": 83, "3936": 83, "213098": 83, "733": 83, "217686": 83, "8094": 83, "230118": 83, "plot_image_issue_exampl": 83, "difficult": 83, "disproportion": 83, "lowinfo_issu": 83, "low_information_scor": 83, "lowinfo_issues_df": 83, "is_low_information_issu": 83, "53050": 83, "067975": 83, "40875": 83, "089929": 83, "9594": 83, "092601": 83, "34825": 83, "107744": 83, "37530": 83, "108516": 83, "lot": 83, "depth": 84, "survei": [84, 95], "focus": [84, 86, 87, 91], "scienc": 84, "multivariate_norm": [84, 86, 87], "make_data": [84, 86], "cov": [84, 86, 87], "avg_trac": [84, 87], "test_label": [84, 87, 89, 94], "py_tru": 84, "noise_matrix_tru": 84, "noise_marix": 84, "s_test": 84, "noisy_test_label": 84, "purpl": 84, "val": 84, "namespac": 84, "exec": 84, "markerfacecolor": [84, 87], "markeredgecolor": [84, 87, 91], "markers": [84, 87, 91], "markeredgewidth": [84, 87, 91], "realist": 84, "7560": 84, "637318e": 84, "896262e": 84, "548391e": 84, "923417e": 84, "375075e": 84, "3454": 84, "014051": 84, "020451": 84, "249": [84, 88], "042594": 84, "043859": 84, "045954": 84, "6120": 84, "023714": 84, "007136": 84, "119": [84, 88], "107266": 84, "103": [84, 88], "033738": 84, "238": [84, 88], "119505": 84, "236": [84, 88], "037843": 84, "222": 84, "614915": 84, "122": [84, 88], "624422": 84, "625965": 84, "626079": 84, "118": 84, "627675": 84, "695223": 84, "323529": 84, "523015": 84, "013720": 84, "675727": 84, "646521": 84, "anyth": 84, "enhanc": [84, 86, 88], "magic": 84, "83": [84, 88, 91, 92, 93, 95], "liter": 84, "identif": 84, "x27": 84, "logisticregressionlogisticregress": 84, "ever": 84, "092": 84, "040": 84, "024": 84, "004": 84, "surpris": 84, "1705": 84, "01936": 84, "ton": 84, "yourfavoritemodel1": 84, "merged_label": 84, "merged_test_label": 84, "newli": [84, 86], "yourfavoritemodel2": 84, "yourfavoritemodel3": 84, "cl3": 84, "takeawai": 84, "That": [84, 87], "randomli": 84, "my_test_pred_prob": 84, "my_test_pr": 84, "issues_test": 84, "corrected_test_label": 84, "pretend": 84, "cl_test_pr": 84, "69": [84, 91, 92], "fairli": 84, "label_acc": 84, "percentag": 84, "offset": 84, "nquestion": 84, "overestim": 84, "answer": 84, "experienc": 84, "76": [84, 87, 88, 91, 92, 93], "knowledg": 84, "quantiti": [84, 91], "prioiri": 84, "known": 84, "versatil": 84, "label_issues_indic": 84, "213": [84, 88], "212": [84, 93], "218": [84, 88], "152": 84, "197": [84, 88], "196": [84, 88], "170": 84, "214": 84, "164": [84, 87], "198": [84, 88], "191": [84, 88], "63": [84, 88, 91, 92], "121": [84, 94], "117": [84, 91], "206": [84, 88], "115": [84, 88], "193": 84, "194": 84, "201": [84, 88], "174": 84, "163": 84, "150": [84, 86, 88], "169": 84, "151": [84, 88], "168": 84, "precision_scor": 84, "recall_scor": 84, "f1_score": 84, "true_label_issu": 84, "filter_by_list": 84, "718750": [84, 86], "807018": 84, "912": 84, "733333": 84, "800000": 84, "721311": 84, "792793": 84, "908": 84, "676923": 84, "765217": 84, "892": 84, "567901": 84, "702290": 84, "844": 84, "gaug": 84, "label_issues_count": 84, "155": [84, 88], "156": 84, "172": [84, 87], "easiest": 84, "modular": 84, "penalti": 84, "l2": 84, "model3": 84, "n_estim": 84, "cv_pred_probs_1": 84, "cv_pred_probs_2": 84, "cv_pred_probs_3": 84, "label_quality_scores_best": 84, "cv_pred_probs_ensembl": 84, "label_quality_scores_bett": 84, "superior": [84, 90], "workflow": [85, 91], "speechbrain": 85, "timm": 85, "glad": 86, "multiannotator_label": 86, "300": [86, 95], "noisier": 86, "111": [86, 91], "local_data": [86, 87], "true_labels_train": [86, 87], "noise_matrix_bett": 86, "noise_matrix_wors": 86, "transpos": [86, 89], "dropna": 86, "zfill": 86, "row_na_check": 86, "notna": 86, "reset_index": 86, "a0001": 86, "a0002": 86, "a0003": 86, "a0004": 86, "a0005": 86, "a0006": 86, "a0007": 86, "a0008": 86, "a0009": 86, "a0010": 86, "a0041": 86, "a0042": 86, "a0043": 86, "a0044": 86, "a0045": 86, "a0046": 86, "a0047": 86, "a0048": 86, "a0049": 86, "a0050": 86, "na": 86, "60856743": 86, "41693214": 86, "40908785": 86, "87147629": 86, "64941785": 86, "10774851": 86, "0524466": 86, "71853246": 86, "37169848": 86, "66031048": 86, "multiannotator_util": 86, "crude": 86, "straight": 86, "majority_vote_label": 86, "736118": 86, "757751": 86, "782232": 86, "715565": 86, "824256": 86, "quality_annotator_a0001": 86, "quality_annotator_a0002": 86, "quality_annotator_a0003": 86, "quality_annotator_a0004": 86, "quality_annotator_a0005": 86, "quality_annotator_a0006": 86, "quality_annotator_a0007": 86, "quality_annotator_a0008": 86, "quality_annotator_a0009": 86, "quality_annotator_a0010": 86, "quality_annotator_a0041": 86, "quality_annotator_a0042": 86, "quality_annotator_a0043": 86, "quality_annotator_a0044": 86, "quality_annotator_a0045": 86, "quality_annotator_a0046": 86, "quality_annotator_a0047": 86, "quality_annotator_a0048": 86, "quality_annotator_a0049": 86, "quality_annotator_a0050": 86, "070564": 86, "216078": 86, "119188": 86, "alongisd": 86, "244981": 86, "208333": 86, "295979": 86, "294118": 86, "324197": 86, "310345": 86, "355316": 86, "346154": 86, "439732": 86, "480000": 86, "a0031": 86, "523205": 86, "580645": 86, "a0034": 86, "535313": 86, "607143": 86, "a0021": 86, "606999": 86, "a0015": 86, "609526": 86, "678571": 86, "a0011": 86, "621103": 86, "692308": 86, "wors": 86, "improved_consensus_label": 86, "majority_vote_accuraci": 86, "cleanlab_label_accuraci": 86, "8581081081081081": 86, "9797297297297297": 86, "besid": 86, "sorted_consensus_quality_scor": 86, "worst_qual": 86, "better_qu": 86, "worst_quality_accuraci": 86, "better_quality_accuraci": 86, "9893238434163701": 86, "improved_pred_prob": 86, "treat": [86, 87, 91, 95], "analzi": 86, "copyright": 87, "advertis": 87, "violenc": 87, "nsfw": 87, "suppli": [87, 88, 91], "celeba": 87, "make_multilabel_data": 87, "boxes_coordin": 87, "box_multilabel": 87, "make_multi": 87, "bx1": 87, "by1": 87, "bx2": 87, "by2": 87, "label_list": 87, "ur": 87, "upper": 87, "inidx": 87, "logical_and": 87, "inv_d": 87, "labels_idx": 87, "true_labels_test": 87, "dict_unique_label": 87, "get_color_arrai": 87, "dcolor": 87, "aa4400": 87, "55227f": 87, "55a100": 87, "00ff00": 87, "007f7f": 87, "386b55": 87, "0000ff": 87, "simplic": 87, "advis": 87, "y_onehot": 87, "single_class_label": 87, "stratifi": [87, 90], "kf": 87, "train_index": 87, "test_index": 87, "clf_cv": 87, "x_train_cv": 87, "x_test_cv": 87, "y_train_cv": 87, "y_test_cv": 87, "y_pred_cv": 87, "saw": 87, "num_to_displai": 87, "09": [87, 88, 91, 92], "275": 87, "267": 87, "225": 87, "171": 87, "234": 87, "165": 87, "227": [87, 88], "262": [87, 88], "263": [87, 88], "266": [87, 88], "139": [87, 95], "143": [87, 88, 95], "216": [87, 88], "265": 87, "159": [87, 88], "despit": [87, 95], "suspect": 87, "888": 87, "8224": 87, "9632": 87, "968": 87, "6512": 87, "0444": 87, "774": 87, "labels_binary_format": 87, "labels_list_format": 87, "surround": 88, "scene": 88, "coco": 88, "everydai": 88, "has_label_issu": 88, "insal": 88, "nc": [88, 92, 95], "s3": [88, 92, 95], "amazonaw": [88, 92, 95], "objectdetectionbenchmark": 88, "tutorial_obj": 88, "pkl": 88, "example_imag": 88, "unzip": [88, 95], "_separate_label": 88, "_separate_predict": 88, "begin": 88, "image_path": 88, "rb": 88, "image_to_visu": 88, "seg_map": 88, "334": 88, "float32": 88, "bboxes_ignor": 88, "290": 88, "286": 88, "285": 88, "224": 88, "231": 88, "293": 88, "235": 88, "289": 88, "282": 88, "74": [88, 89, 91, 92, 93], "281": 88, "271": 88, "280": 88, "277": 88, "279": 88, "287": 88, "299": 88, "276": 88, "307": 88, "321": 88, "326": 88, "333": 88, "261": 88, "319": 88, "257": 88, "295": 88, "283": 88, "243": 88, "303": 88, "316": 88, "247": 88, "323": 88, "327": 88, "226": 88, "228": 88, "232": 88, "219": 88, "239": 88, "240": 88, "209": 88, "242": 88, "202": 88, "230": 88, "215": 88, "220": 88, "229": 88, "217": [88, 95], "237": 88, "207": 88, "204": 88, "84": [88, 91, 92], "205": 88, "223": 88, "153": 88, "149": 88, "140": 88, "124": 88, "268": 88, "273": 88, "108": 88, "284": 88, "110": 88, "136": 88, "145": 88, "173": 88, "297": 88, "317": 88, "192": [88, 95], "332": 88, "324": 88, "203": 88, "320": 88, "314": 88, "199": 88, "291": 88, "000000481413": 88, "jpg": 88, "42398": 88, "44503": 88, "337": [88, 94], "29968": 88, "336": 88, "21005": 88, "9978472": 88, "forgot": 88, "drew": 88, "label_issue_idx": 88, "num_examples_to_show": 88, "138": [88, 95], "candid": 88, "97489622": 88, "70610878": 88, "98764951": 88, "88899237": 88, "99085805": 88, "issue_idx": 88, "95569726e": 88, "03354841e": 88, "57510169e": 88, "58447666e": 88, "39755858e": 88, "issue_to_visu": 88, "000000009483": 88, "95569726168054e": 88, "addition": [88, 92], "visibl": 88, "missmatch": 88, "likelei": 88, "agnost": 88, "vaidat": 88, "inconsist": 88, "000000395701": 88, "033548411774308e": 88, "armchair": 88, "tv": 88, "000000154004": 88, "38300759625496356": 88, "foreground": 88, "000000448410": 88, "0008575101690203273": 88, "crowd": 88, "alon": 88, "explor": [88, 89], "resembl": [88, 89], "000000499768": 88, "9748962231208227": 88, "000000521141": 88, "8889923658893665": 88, "000000143931": 88, "9876495074395956": 88, "bonu": 88, "uncov": 88, "irregular": 88, "anomali": 88, "unusu": [88, 89], "object_detection_util": 88, "calculate_bounding_box_area": 88, "num_imgs_to_show": 88, "lab_object_count": 88, "pred_object_count": 88, "000000430073": 88, "000000183709": 88, "000000189475": 88, "studi": 88, "label_norm": 88, "pred_norm": 88, "area": [88, 92], "assess": 88, "lab_area": 88, "pred_area": 88, "lab_area_mean": 88, "lab_area_std": 88, "max_deviation_valu": 88, "max_deviation_class": 88, "deviation_valu": 88, "deviation_class": 88, "mean_area": 88, "std_area": 88, "class_area": 88, "deviations_awai": 88, "max_deviation_index": 88, "num_imgs_to_show_per_class": 88, "class_num": 88, "sorted_indic": 88, "000000422886": 88, "000000341828": 88, "000000461009": 88, "train_feature_embed": 89, "ood_train_feature_scor": 89, "test_feature_embed": 89, "ood_test_feature_scor": 89, "ood_train_predictions_scor": 89, "train_pred_prob": 89, "ood_test_predictions_scor": 89, "test_pred_prob": 89, "pylab": 89, "rcparam": 89, "baggingclassifi": 89, "therebi": 89, "rescal": 89, "transform_norm": 89, "totensor": 89, "root": 89, "animal_class": 89, "non_animal_class": 89, "animal_idx": 89, "test_idx": 89, "toronto": 89, "edu": 89, "kriz": 89, "170498071": 89, "32768": 89, "259760": 89, "86it": [89, 92], "229376": 89, "1013452": 89, "917504": 89, "3013301": 89, "3637248": 89, "10225271": 89, "03it": [89, 92], "9895936": 89, "24123869": 89, "57it": [89, 92], "16089088": 89, "34950691": 89, "19857408": 89, "35673560": 89, "25329664": 89, "41244393": 89, "79it": [89, 92], "29622272": 89, "39680237": 89, "22it": [89, 92], "34504704": 89, "42281101": 89, "45it": [89, 92], "39485440": 89, "44145585": 89, "44269568": 89, "45199586": 89, "29it": [89, 92], "48988160": 89, "45775350": 89, "53805056": 89, "45183876": 89, "11it": [89, 92], "58589184": 89, "45796320": 89, "63406080": 89, "46147354": 89, "31it": [89, 92], "68190208": 89, "46324128": 89, "72974336": 89, "46609648": 89, "77791232": 89, "46661956": 89, "82608128": 89, "46908594": 89, "87392256": 89, "46774612": 89, "92176384": 89, "46951193": 89, "96960512": 89, "47030587": 89, "14it": [89, 92], "101777408": 89, "47348319": 89, "106528768": 89, "47106159": 89, "04it": [89, 92], "111443968": 89, "46917633": 89, "51it": [89, 92], "116162560": 89, "46725366": 89, "91it": 89, "121044992": 89, "46740527": 89, "00it": [89, 92], "126058496": 89, "47396518": 89, "74it": [89, 92], "130809856": 89, "46918292": 89, "58it": [89, 92], "135528448": 89, "46946332": 89, "140378112": 89, "47359362": 89, "26it": [89, 92], "145129472": 89, "46591375": 89, "149815296": 89, "46431826": 89, "154664960": 89, "46772791": 89, "159449088": 89, "46988428": 89, "164167680": 89, "46554638": 89, "88it": [89, 92], "169312256": 89, "47759854": 89, "42069878": 89, "05it": [89, 92], "5000": 89, "plot_imag": 89, "visualize_outli": 89, "txt_class": 89, "img": [89, 91], "npimg": 89, "show_label": 89, "data_subset": 89, "resnet50": 89, "corpu": 89, "2048": 89, "embed_imag": 89, "create_model": 89, "strang": 89, "odd": 89, "train_ood_features_scor": 89, "top_train_ood_features_idx": 89, "fun": 89, "negat": 89, "homogen": 89, "bottom_train_ood_features_idx": 89, "test_ood_features_scor": 89, "top_ood_features_idx": 89, "inevit": 89, "trade": 89, "5th": 89, "percentil": 89, "fifth_percentil": 89, "plt_rang": 89, "hist": 89, "train_outlier_scor": 89, "ylabel": 89, "axvlin": 89, "test_outlier_scor": 89, "ood_features_indic": 89, "revisit": 89, "return_invers": 89, "train_feature_embeddings_sc": 89, "test_feature_embeddings_sc": 89, "train_pred_label": 89, "9702": 89, "train_ood_predictions_scor": 89, "test_ood_predictions_scor": 89, "mainli": [89, 95], "lost": 89, "unsuit": 90, "ok": [90, 95], "convention": 90, "aforement": 90, "hypothet": 90, "contrast": 90, "tradit": 90, "disjoint": 90, "out_of_sample_pred_probs_for_a": 90, "out_of_sample_pred_probs_for_b": 90, "out_of_sample_pred_probs_for_c": 90, "out_of_sample_pred_prob": 90, "price": 91, "incom": 91, "ag": 91, "sensor": 91, "histgradientboostingregressor": 91, "r2_score": 91, "student_grades_r": 91, "final_scor": 91, "true_final_scor": 91, "homework": 91, "3d": 91, "hue": 91, "mpl_toolkit": 91, "mplot3d": 91, "axes3d": 91, "errors_idx": 91, "add_subplot": 91, "z": 91, "colorbar": 91, "errors_mask": 91, "feature_column": 91, "predicted_column": 91, "x_train_raw": 91, "x_test_raw": 91, "categorical_featur": [91, 93], "randomforestregressor": 91, "636197": 91, "499503": 91, "843478": 91, "776647": 91, "350358": 91, "170547": 91, "706969": 91, "984759": 91, "812515": 91, "795928": 91, "identified_issu": [91, 94], "141": 91, "659": 91, "367": 91, "318": 91, "305": 91, "560": 91, "657": 91, "688": 91, "view_datapoint": 91, "concat": 91, "consum": [91, 94], "baseline_model": [91, 94], "preds_og": 91, "r2_og": 91, "838": 91, "robustli": [91, 93, 94], "acceler": [91, 94], "found_label_issu": 91, "preds_cl": 91, "r2_cl": 91, "926": 91, "effort": [91, 93, 94], "favorit": 91, "968627e": 91, "228799": 91, "646674e": 91, "402962": 91, "323818e": 91, "952758": 91, "422144e": 91, "456908": 91, "465815e": 91, "753968": 91, "110719": 91, "000044": 91, "670640": 91, "000060": 91, "749976": 91, "000066": 91, "947007": 91, "000314": 91, "648396": 91, "plu": 91, "synthia": 92, "imagesegment": 92, "given_mask": 92, "predicted_mask": 92, "set_printopt": [92, 95], "sky": 92, "sidewalk": 92, "veget": 92, "terrain": 92, "rider": 92, "pred_probs_filepath": 92, "1088": 92, "1920": 92, "label_filepath": 92, "synthia_class": 92, "maunal": 92, "100000": 92, "244800": 92, "leftmost": 92, "middl": [92, 95], "infact": 92, "rightmost": 92, "discrep": 92, "4997817": 92, "15635": 92, "156331": 92, "31269": 92, "156181": 92, "15it": 92, "47001": 92, "156696": 92, "62811": 92, "157245": 92, "78536": 92, "157211": 92, "89it": 92, "94435": 92, "157814": 92, "110217": 92, "157599": 92, "125996": 92, "157658": 92, "06it": 92, "141762": 92, "157536": 92, "69it": 92, "157656": 92, "157967": 92, "77it": 92, "173453": 92, "157685": 92, "189231": 92, "157709": 92, "205048": 92, "157845": 92, "67it": 92, "220833": 92, "157663": 92, "82it": 92, "236710": 92, "157993": 92, "08it": 92, "252510": 92, "157393": 92, "268484": 92, "158092": 92, "27it": 92, "284416": 92, "158457": 92, "300275": 92, "158495": 92, "316164": 92, "158610": 92, "332026": 92, "157763": 92, "84it": 92, "347846": 92, "157890": 92, "363636": 92, "157749": 92, "50it": 92, "379462": 92, "157900": 92, "395291": 92, "158013": 92, "411117": 92, "158084": 92, "78it": 92, "426928": 92, "158088": 92, "43it": 92, "442738": 92, "157833": 92, "458591": 92, "158039": 92, "70it": 92, "474396": 92, "157590": 92, "490156": 92, "150814": 92, "505977": 92, "152957": 92, "521672": 92, "154124": 92, "537492": 92, "155323": 92, "553382": 92, "156380": 92, "569071": 92, "156530": 92, "584739": 92, "156405": 92, "600468": 92, "156665": 92, "99it": 92, "616211": 92, "156892": 92, "02it": 92, "631906": 92, "156627": 92, "647573": 92, "156154": 92, "59it": 92, "663276": 92, "156397": 92, "678918": 92, "156157": 92, "694628": 92, "156436": 92, "71it": 92, "710275": 92, "156443": 92, "725921": 92, "155837": 92, "741546": 92, "155959": 92, "757143": 92, "155952": 92, "772896": 92, "156421": 92, "788619": 92, "156659": 92, "804286": 92, "155906": 92, "819878": 92, "151591": 92, "76it": 92, "835898": 92, "154113": 92, "851693": 92, "155244": 92, "867614": 92, "156417": 92, "883395": 92, "156828": 92, "899408": 92, "157811": 92, "915350": 92, "158289": 92, "931360": 92, "158828": 92, "16it": 92, "947247": 92, "158645": 92, "963115": 92, "157919": 92, "978910": 92, "157712": 92, "83it": 92, "994896": 92, "158351": 92, "1010883": 92, "158802": 92, "1026780": 92, "158848": 92, "1042666": 92, "158822": 92, "1058549": 92, "158623": 92, "1074472": 92, "1090353": 92, "158798": 92, "1106234": 92, "158301": 92, "1122065": 92, "158170": 92, "1137883": 92, "154493": 92, "1154003": 92, "156466": 92, "17it": 92, "1169937": 92, "157314": 92, "1185793": 92, "157680": 92, "1201696": 92, "158080": 92, "1217613": 92, "158402": 92, "1233459": 92, "157498": 92, "1249214": 92, "157303": 92, "1264948": 92, "156710": 92, "66it": 92, "1280622": 92, "156662": 92, "1296290": 92, "149833": 92, "1311968": 92, "151842": 92, "1327731": 92, "153535": 92, "1343391": 92, "154436": 92, "63it": 92, "1359215": 92, "155562": 92, "1374794": 92, "155571": 92, "1390507": 92, "156035": 92, "1406370": 92, "156808": 92, "1422083": 92, "156902": 92, "96it": 92, "1437788": 92, "156945": 92, "1453487": 92, "156316": 92, "1469122": 92, "156230": 92, "94it": 92, "1484909": 92, "156717": 92, "1500583": 92, "156642": 92, "28it": 92, "1516413": 92, "157135": 92, "1532354": 92, "157813": 92, "1548228": 92, "1564038": 92, "157804": 92, "1579819": 92, "157173": 92, "1595538": 92, "157071": 92, "1611246": 92, "156841": 92, "1626931": 92, "156422": 92, "1642574": 92, "155753": 92, "75it": 92, "1658151": 92, "155169": 92, "62it": 92, "1673836": 92, "155668": 92, "1689667": 92, "156456": 92, "1705342": 92, "156540": 92, "1720997": 92, "156293": 92, "1736627": 92, "156082": 92, "1752304": 92, "156284": 92, "1767975": 92, "156409": 92, "1783691": 92, "156633": 92, "1799355": 92, "156437": 92, "1814999": 92, "156266": 92, "1830626": 92, "156216": 92, "1846251": 92, "156224": 92, "1861874": 92, "155618": 92, "1877502": 92, "155813": 92, "1893385": 92, "156713": 92, "1909110": 92, "156872": 92, "1924930": 92, "157268": 92, "1940790": 92, "157665": 92, "1956557": 92, "157283": 92, "1972286": 92, "156927": 92, "1988086": 92, "157246": 92, "2003876": 92, "157441": 92, "2019621": 92, "156776": 92, "2035318": 92, "156832": 92, "2051002": 92, "156489": 92, "2066652": 92, "156471": 92, "2082300": 92, "156263": 92, "2097927": 92, "155703": 92, "2113498": 92, "155556": 92, "49it": 92, "2129153": 92, "155852": 92, "2144739": 92, "155636": 92, "2160387": 92, "155883": 92, "2175976": 92, "155749": 92, "2191726": 92, "156271": 92, "2207354": 92, "156141": 92, "2222969": 92, "155970": 92, "2238567": 92, "155949": 92, "2254163": 92, "152822": 92, "2269839": 92, "153982": 92, "2285524": 92, "154832": 92, "2301337": 92, "2317127": 92, "156434": 92, "2333044": 92, "157248": 92, "60it": 92, "2348836": 92, "157446": 92, "2364584": 92, "157329": 92, "34it": 92, "2380469": 92, "157782": 92, "2396249": 92, "157591": 92, "95it": 92, "2412010": 92, "153501": 92, "2427384": 92, "152472": 92, "2443158": 92, "154021": 92, "2459135": 92, "155721": 92, "2474863": 92, "156184": 92, "2490673": 92, "156753": 92, "2506626": 92, "157581": 92, "2522390": 92, "157546": 92, "61it": 92, "2538149": 92, "2553886": 92, "156596": 92, "2569791": 92, "157326": 92, "2585527": 92, "157095": 92, "38it": 92, "2601477": 92, "157810": 92, "2617260": 92, "157670": 92, "2633134": 92, "157989": 92, "2648937": 92, "157997": 92, "2664738": 92, "157437": 92, "12it": 92, "2680532": 92, "157583": 92, "2696406": 92, "157925": 92, "2712200": 92, "157812": 92, "2727982": 92, "155316": 92, "2743523": 92, "152295": 92, "2759224": 92, "153676": 92, "2774797": 92, "154280": 92, "2790559": 92, "155269": 92, "2806277": 92, "155836": 92, "42it": 92, "2822139": 92, "2837871": 92, "156859": 92, "2853561": 92, "156472": 92, "2869249": 92, "156591": 92, "2884939": 92, "156681": 92, "2900609": 92, "156239": 92, "19it": 92, "2916404": 92, "2932100": 92, "156786": 92, "2947780": 92, "156379": 92, "2963488": 92, "156577": 92, "2979386": 92, "157294": 92, "2995116": 92, "157244": 92, "3010841": 92, "157141": 92, "3026563": 92, "157163": 92, "3042280": 92, "156676": 92, "3057949": 92, "156248": 92, "3073575": 92, "155706": 92, "3089607": 92, "157079": 92, "3105441": 92, "157455": 92, "3121284": 92, "157745": 92, "3137123": 92, "157937": 92, "3153085": 92, "158440": 92, "3168962": 92, "158536": 92, "47it": 92, "3184816": 92, "158462": 92, "25it": 92, "3200663": 92, "158427": 92, "3216506": 92, "152739": 92, "3231824": 92, "152302": 92, "3247456": 92, "153479": 92, "3263266": 92, "154843": 92, "65it": 92, "3278961": 92, "155467": 92, "09it": 92, "3294621": 92, "155801": 92, "3310476": 92, "156619": 92, "3326146": 92, "156538": 92, "3341805": 92, "156132": 92, "3357422": 92, "156084": 92, "3373199": 92, "156586": 92, "3388921": 92, "156772": 92, "3404787": 92, "157334": 92, "3420570": 92, "157481": 92, "3436319": 92, "157005": 92, "3452021": 92, "156563": 92, "3467679": 92, "156366": 92, "3483371": 92, "156529": 92, "3499025": 92, "156118": 92, "3514638": 92, "155983": 92, "3530499": 92, "156767": 92, "3546177": 92, "150573": 92, "3561940": 92, "152626": 92, "3577799": 92, "154375": 92, "3593506": 92, "3609245": 92, "155825": 92, "3625063": 92, "156525": 92, "3640802": 92, "156781": 92, "3656490": 92, "156777": 92, "3672175": 92, "156682": 92, "3687848": 92, "156400": 92, "3703492": 92, "149301": 92, "3719241": 92, "151670": 92, "3735133": 92, "153789": 92, "3750826": 92, "154714": 92, "3766665": 92, "55it": 92, "3782414": 92, "156300": 92, "3798239": 92, "156879": 92, "3813940": 92, "156802": 92, "3829654": 92, "3845415": 92, "157112": 92, "3861131": 92, "149791": 92, "3876805": 92, "151803": 92, "13it": 92, "3892531": 92, "153399": 92, "3908365": 92, "154853": 92, "3924007": 92, "155315": 92, "3939657": 92, "155666": 92, "3955298": 92, "155885": 92, "3971013": 92, "156261": 92, "3986648": 92, "156206": 92, "18it": 92, "4002427": 92, "156679": 92, "4018107": 92, "156712": 92, "4033909": 92, "157100": 92, "4049890": 92, "157909": 92, "4065683": 92, "157871": 92, "4081537": 92, "158070": 92, "4097345": 92, "157299": 92, "4113090": 92, "157342": 92, "4128923": 92, "157636": 92, "4144717": 92, "157724": 92, "4160491": 92, "4176270": 92, "157143": 92, "4191986": 92, "156705": 92, "4207687": 92, "156795": 92, "4223368": 92, "156774": 92, "4239057": 92, "156807": 92, "4254974": 92, "157512": 92, "4270726": 92, "157435": 92, "4286487": 92, "157484": 92, "4302390": 92, "157944": 92, "4318225": 92, "158063": 92, "4334032": 92, "157438": 92, "4349777": 92, "155772": 92, "4365518": 92, "156256": 92, "4381296": 92, "156707": 92, "4396970": 92, "156686": 92, "4412707": 92, "156888": 92, "4428410": 92, "156928": 92, "4444117": 92, "156967": 92, "4459833": 92, "157023": 92, "4475693": 92, "157493": 92, "4491443": 92, "157450": 92, "4507189": 92, "156978": 92, "4522888": 92, "156554": 92, "4538611": 92, "156752": 92, "36it": 92, "4554306": 92, "156809": 92, "4569988": 92, "156729": 92, "4585739": 92, "156962": 92, "4601436": 92, "156402": 92, "4617077": 92, "156194": 92, "85it": 92, "4632697": 92, "156080": 92, "4648347": 92, "156202": 92, "4663968": 92, "156055": 92, "4679632": 92, "156227": 92, "4695464": 92, "156851": 92, "4711162": 92, "4726852": 92, "156657": 92, "4742518": 92, "155928": 92, "4758112": 92, "155515": 92, "4773665": 92, "155226": 92, "4789274": 92, "155482": 92, "4804823": 92, "155475": 92, "4820501": 92, "155864": 92, "4836088": 92, "153480": 92, "4851877": 92, "154785": 92, "4867810": 92, "156136": 92, "4883492": 92, "156338": 92, "4899335": 92, "4915035": 92, "156952": 92, "4930771": 92, "157073": 92, "4946661": 92, "157619": 92, "4962654": 92, "158309": 92, "4978486": 92, "158262": 92, "4994313": 92, "157585": 92, "156453": 92, "3263230": 92, "783379": 92, "275110": 92, "255792": 92, "78225": 92, "55990": 92, "54427": 92, "33591": 92, "24645": 92, "21308": 92, "15045": 92, "14171": 92, "13832": 92, "13498": 92, "11490": 92, "9164": 92, "8769": 92, "6999": 92, "6031": 92, "5011": 92, "mistakenli": 92, "class_issu": 92, "aim": [92, 95], "domin": 92, "extratreesclassifi": 93, "extratre": 93, "ranked_label_issu": [93, 94], "labelencod": [93, 94], "labels_raw": 93, "interg": [93, 94], "tress": 93, "827": 93, "cheat": 93, "0pt": 93, "233": 93, "labels_train": 93, "labels_test": 93, "acc_og": [93, 94], "783068783068783": 93, "acc_cl": [93, 94], "8095238095238095": 93, "earlier": [94, 95], "raw_label": 94, "raw_train_text": 94, "raw_test_text": 94, "raw_train_label": 94, "raw_test_label": 94, "encond": 94, "train_text": 94, "test_text": 94, "858371": 94, "547274": 94, "826228": 94, "966008": 94, "792449": 94, "646": 94, "390": 94, "628": 94, "702": 94, "135": 94, "735": 94, "print_as_df": 94, "inverse_transform": 94, "fight": 94, "bunch": 95, "conll": 95, "2003": 95, "love": 95, "n_i": 95, "optional_list_of_ordered_class_nam": 95, "deepai": 95, "conll2003": 95, "rm": 95, "tokenclassif": 95, "2024": 95, "2400": 95, "52e0": 95, "1a01": 95, "985": 95, "connect": 95, "443": 95, "await": 95, "982975": 95, "960k": 95, "kb": 95, "959": 95, "94k": 95, "mb": 95, "directori": 95, "inflat": 95, "17045998": 95, "16m": 95, "octet": 95, "34k": 95, "643kb": 95, "691": 95, "31k": 95, "57mb": 95, "32m": 95, "05mb": 95, "05m": 95, "39mb": 95, "92m": 95, "70mb": 95, "91m": 95, "02mb": 95, "08m": 95, "37mb": 95, "40m": 95, "71mb": 95, "38m": 95, "81mb": 95, "43m": 95, "92mb": 95, "51m": 95, "62m": 95, "12mb": 95, "75m": 95, "21mb": 95, "93m": 95, "30mb": 95, "eta": 95, "12m": 95, "38mb": 95, "35m": 95, "46mb": 95, "26m": 95, "54mb": 95, "bert": 95, "read_npz": 95, "filepath": 95, "corrsespond": 95, "iob2": 95, "given_ent": 95, "entity_map": 95, "readfil": 95, "sep": 95, "startswith": 95, "docstart": 95, "isalpha": 95, "isupp": 95, "indices_to_preview": 95, "nsentenc": 95, "eu": 95, "reject": 95, "boycott": 95, "british": 95, "lamb": 95, "00030412": 95, "00023826": 95, "99936208": 95, "00007009": 95, "00002545": 95, "99998795": 95, "00000401": 95, "00000218": 95, "00000455": 95, "00000131": 95, "00000749": 95, "99996115": 95, "00001371": 95, "0000087": 95, "00000895": 95, "99998936": 95, "00000382": 95, "00000178": 95, "00000366": 95, "00000137": 95, "99999101": 95, "00000266": 95, "00000174": 95, "0000035": 95, "00000109": 95, "99998768": 95, "00000482": 95, "00000202": 95, "00000438": 95, "0000011": 95, "00000465": 95, "99996392": 95, "00001105": 95, "0000116": 95, "00000878": 95, "99998671": 95, "00000364": 95, "00000213": 95, "00000472": 95, "00000281": 95, "99999073": 95, "00000211": 95, "00000159": 95, "00000442": 95, "00000115": 95, "peter": 95, "blackburn": 95, "00000358": 95, "00000529": 95, "99995623": 95, "0000129": 95, "0000024": 95, "00001812": 95, "99994141": 95, "00001645": 95, "00002162": 95, "brussel": 95, "1996": 95, "00001172": 95, "00000821": 95, "00004661": 95, "0000618": 95, "99987167": 95, "99999061": 95, "00000201": 95, "00000195": 95, "00000408": 95, "00000135": 95, "2254": 95, "2907": 95, "19392": 95, "9962": 95, "8904": 95, "19303": 95, "12918": 95, "9256": 95, "11855": 95, "18392": 95, "20426": 95, "19402": 95, "14744": 95, "19371": 95, "4645": 95, "10331": 95, "9430": 95, "6143": 95, "18367": 95, "12914": 95, "todai": 95, "weather": 95, "march": 95, "scalfaro": 95, "northern": 95, "himself": 95, "said": 95, "germani": 95, "nastja": 95, "rysich": 95, "north": 95, "spla": 95, "fought": 95, "khartoum": 95, "govern": 95, "south": 95, "1983": 95, "autonomi": 95, "animist": 95, "region": 95, "moslem": 95, "arabis": 95, "mayor": 95, "antonio": 95, "gonzalez": 95, "garcia": 95, "revolutionari": 95, "parti": 95, "wednesdai": 95, "troop": 95, "raid": 95, "farm": 95, "stole": 95, "rape": 95, "women": 95, "spring": 95, "chg": 95, "hrw": 95, "12pct": 95, "princ": 95, "photo": 95, "moment": 95, "spokeswoman": 95, "rainier": 95, "told": 95, "reuter": 95, "danila": 95, "carib": 95, "w224": 95, "equip": 95, "radiomet": 95, "earn": 95, "19996": 95, "london": 95, "denom": 95, "sale": 95, "uk": 95, "jp": 95, "fr": 95, "maccabi": 95, "hapoel": 95, "haifa": 95, "tel": 95, "aviv": 95, "hospit": 95, "rever": 95, "roman": 95, "cathol": 95, "nun": 95, "admit": 95, "calcutta": 95, "week": 95, "ago": 95, "fever": 95, "vomit": 95, "allianc": 95, "embattl": 95, "kabul": 95, "salang": 95, "highwai": 95, "mondai": 95, "tuesdai": 95, "suprem": 95, "council": 95, "led": 95, "jumbish": 95, "milli": 95, "movement": 95, "warlord": 95, "abdul": 95, "rashid": 95, "dostum": 95, "dollar": 95, "exchang": 95, "3570": 95, "12049": 95, "born": 95, "1937": 95, "provinc": 95, "anhui": 95, "dai": 95, "came": 95, "shanghai": 95, "citi": 95, "prolif": 95, "author": 95, "teacher": 95, "chines": 95, "16764": 95, "1990": 95, "historian": 95, "alan": 95, "john": 95, "percival": 95, "taylor": 95, "di": 95, "20446": 95, "pace": 95, "bowler": 95, "ian": 95, "harvei": 95, "claim": 95, "victoria": 95, "15514": 95, "cotti": 95, "osc": 95, "foreign": 95, "minist": 95, "7525": 95, "sultan": 95, "specter": 95, "met": 95, "crown": 95, "abdullah": 95, "defenc": 95, "aviat": 95, "jeddah": 95, "saudi": 95, "agenc": 95, "2288": 95, "hi": 95, "customari": 95, "outfit": 95, "champion": 95, "damp": 95, "scalp": 95, "canada": 95, "reign": 95, "olymp": 95, "donovan": 95, "bailei": 95, "1992": 95, "linford": 95, "christi": 95, "britain": 95, "1984": 95, "1988": 95, "carl": 95, "lewi": 95, "ambigi": 95, "punctuat": 95, "chicago": 95, "digest": 95, "philadelphia": 95, "usda": 95, "york": 95, "token_issu": 95, "471": 95, "kean": 95, "year": 95, "contract": 95, "manchest": 95, "19072": 95, "societi": 95, "million": 95, "bite": 95, "deliv": 95, "19910": 95, "father": 95, "clarenc": 95, "woolmer": 95, "renam": 95, "uttar": 95, "pradesh": 95, "india": 95, "ranji": 95, "trophi": 95, "nation": 95, "championship": 95, "captain": 95, "1949": 95, "15658": 95, "19879": 95, "iii": 95, "brian": 95, "shimer": 95, "randi": 95, "jone": 95, "19104": 95}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [31, 0, 0, "-", "dataset"], [34, 0, 0, "-", "experimental"], [37, 0, 0, "-", "filter"], [38, 0, 0, "-", "internal"], [49, 0, 0, "-", "models"], [51, 0, 0, "-", "multiannotator"], [54, 0, 0, "-", "multilabel_classification"], [57, 0, 0, "-", "object_detection"], [60, 0, 0, "-", "outlier"], [61, 0, 0, "-", "rank"], [62, 0, 0, "-", "regression"], [66, 0, 0, "-", "segmentation"], [70, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"], [29, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[29, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[29, 6, 1, "", "CLASSIFICATION"], [29, 6, 1, "", "MULTILABEL"], [29, 6, 1, "", "REGRESSION"], [29, 3, 1, "", "__contains__"], [29, 3, 1, "", "__getitem__"], [29, 3, 1, "", "__iter__"], [29, 3, 1, "", "__len__"], [29, 3, 1, "", "from_str"], [29, 4, 1, "", "is_classification"], [29, 4, 1, "", "is_multilabel"], [29, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[31, 1, 1, "", "find_overlapping_classes"], [31, 1, 1, "", "health_summary"], [31, 1, 1, "", "overall_label_health_score"], [31, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[32, 0, 0, "-", "cifar_cnn"], [33, 0, 0, "-", "coteaching"], [35, 0, 0, "-", "label_issues_batched"], [36, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[32, 2, 1, "", "CNN"], [32, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[32, 6, 1, "", "T_destination"], [32, 3, 1, "", "__call__"], [32, 3, 1, "", "add_module"], [32, 3, 1, "", "apply"], [32, 3, 1, "", "bfloat16"], [32, 3, 1, "", "buffers"], [32, 6, 1, "", "call_super_init"], [32, 3, 1, "", "children"], [32, 3, 1, "", "compile"], [32, 3, 1, "", "cpu"], [32, 3, 1, "", "cuda"], [32, 3, 1, "", "double"], [32, 6, 1, "", "dump_patches"], [32, 3, 1, "", "eval"], [32, 3, 1, "", "extra_repr"], [32, 3, 1, "", "float"], [32, 3, 1, "id0", "forward"], [32, 3, 1, "", "get_buffer"], [32, 3, 1, "", "get_extra_state"], [32, 3, 1, "", "get_parameter"], [32, 3, 1, "", "get_submodule"], [32, 3, 1, "", "half"], [32, 3, 1, "", "ipu"], [32, 3, 1, "", "load_state_dict"], [32, 3, 1, "", "modules"], [32, 3, 1, "", "named_buffers"], [32, 3, 1, "", "named_children"], [32, 3, 1, "", "named_modules"], [32, 3, 1, "", "named_parameters"], [32, 3, 1, "", "parameters"], [32, 3, 1, "", "register_backward_hook"], [32, 3, 1, "", "register_buffer"], [32, 3, 1, "", "register_forward_hook"], [32, 3, 1, "", "register_forward_pre_hook"], [32, 3, 1, "", "register_full_backward_hook"], [32, 3, 1, "", "register_full_backward_pre_hook"], [32, 3, 1, "", "register_load_state_dict_post_hook"], [32, 3, 1, "", "register_module"], [32, 3, 1, "", "register_parameter"], [32, 3, 1, "", "register_state_dict_pre_hook"], [32, 3, 1, "", "requires_grad_"], [32, 3, 1, "", "set_extra_state"], [32, 3, 1, "", "share_memory"], [32, 3, 1, "", "state_dict"], [32, 3, 1, "", "to"], [32, 3, 1, "", "to_empty"], [32, 3, 1, "", "train"], [32, 6, 1, "", "training"], [32, 3, 1, "", "type"], [32, 3, 1, "", "xpu"], [32, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[33, 1, 1, "", "adjust_learning_rate"], [33, 1, 1, "", "evaluate"], [33, 1, 1, "", "forget_rate_scheduler"], [33, 1, 1, "", "initialize_lr_scheduler"], [33, 1, 1, "", "loss_coteaching"], [33, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[35, 2, 1, "", "LabelInspector"], [35, 7, 1, "", "adj_confident_thresholds_shared"], [35, 1, 1, "", "find_label_issues_batched"], [35, 7, 1, "", "labels_shared"], [35, 7, 1, "", "pred_probs_shared"], [35, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[35, 3, 1, "", "get_confident_thresholds"], [35, 3, 1, "", "get_label_issues"], [35, 3, 1, "", "get_num_issues"], [35, 3, 1, "", "get_quality_scores"], [35, 3, 1, "", "score_label_quality"], [35, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[36, 2, 1, "", "CNN"], [36, 2, 1, "", "SimpleNet"], [36, 1, 1, "", "get_mnist_dataset"], [36, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[36, 3, 1, "", "__init_subclass__"], [36, 6, 1, "", "batch_size"], [36, 6, 1, "", "dataset"], [36, 6, 1, "", "epochs"], [36, 3, 1, "id0", "fit"], [36, 3, 1, "", "get_metadata_routing"], [36, 3, 1, "", "get_params"], [36, 6, 1, "", "loader"], [36, 6, 1, "", "log_interval"], [36, 6, 1, "", "lr"], [36, 6, 1, "", "momentum"], [36, 6, 1, "", "no_cuda"], [36, 3, 1, "id1", "predict"], [36, 3, 1, "id4", "predict_proba"], [36, 6, 1, "", "seed"], [36, 3, 1, "", "set_fit_request"], [36, 3, 1, "", "set_params"], [36, 3, 1, "", "set_predict_proba_request"], [36, 3, 1, "", "set_predict_request"], [36, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[36, 6, 1, "", "T_destination"], [36, 3, 1, "", "__call__"], [36, 3, 1, "", "add_module"], [36, 3, 1, "", "apply"], [36, 3, 1, "", "bfloat16"], [36, 3, 1, "", "buffers"], [36, 6, 1, "", "call_super_init"], [36, 3, 1, "", "children"], [36, 3, 1, "", "compile"], [36, 3, 1, "", "cpu"], [36, 3, 1, "", "cuda"], [36, 3, 1, "", "double"], [36, 6, 1, "", "dump_patches"], [36, 3, 1, "", "eval"], [36, 3, 1, "", "extra_repr"], [36, 3, 1, "", "float"], [36, 3, 1, "", "forward"], [36, 3, 1, "", "get_buffer"], [36, 3, 1, "", "get_extra_state"], [36, 3, 1, "", "get_parameter"], [36, 3, 1, "", "get_submodule"], [36, 3, 1, "", "half"], [36, 3, 1, "", "ipu"], [36, 3, 1, "", "load_state_dict"], [36, 3, 1, "", "modules"], [36, 3, 1, "", "named_buffers"], [36, 3, 1, "", "named_children"], [36, 3, 1, "", "named_modules"], [36, 3, 1, "", "named_parameters"], [36, 3, 1, "", "parameters"], [36, 3, 1, "", "register_backward_hook"], [36, 3, 1, "", "register_buffer"], [36, 3, 1, "", "register_forward_hook"], [36, 3, 1, "", "register_forward_pre_hook"], [36, 3, 1, "", "register_full_backward_hook"], [36, 3, 1, "", "register_full_backward_pre_hook"], [36, 3, 1, "", "register_load_state_dict_post_hook"], [36, 3, 1, "", "register_module"], [36, 3, 1, "", "register_parameter"], [36, 3, 1, "", "register_state_dict_pre_hook"], [36, 3, 1, "", "requires_grad_"], [36, 3, 1, "", "set_extra_state"], [36, 3, 1, "", "share_memory"], [36, 3, 1, "", "state_dict"], [36, 3, 1, "", "to"], [36, 3, 1, "", "to_empty"], [36, 3, 1, "", "train"], [36, 6, 1, "", "training"], [36, 3, 1, "", "type"], [36, 3, 1, "", "xpu"], [36, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[37, 1, 1, "", "find_label_issues"], [37, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [37, 1, 1, "", "find_predicted_neq_given"], [37, 7, 1, "", "pred_probs_by_class"], [37, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[39, 0, 0, "-", "label_quality_utils"], [40, 0, 0, "-", "latent_algebra"], [41, 0, 0, "-", "multiannotator_utils"], [42, 0, 0, "-", "multilabel_scorer"], [43, 0, 0, "-", "multilabel_utils"], [44, 0, 0, "-", "outlier"], [45, 0, 0, "-", "token_classification_utils"], [46, 0, 0, "-", "util"], [47, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[39, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[40, 1, 1, "", "compute_inv_noise_matrix"], [40, 1, 1, "", "compute_noise_matrix_from_inverse"], [40, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [40, 1, 1, "", "compute_py"], [40, 1, 1, "", "compute_py_inv_noise_matrix"], [40, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[41, 1, 1, "", "assert_valid_inputs_multiannotator"], [41, 1, 1, "", "assert_valid_pred_probs"], [41, 1, 1, "", "check_consensus_label_classes"], [41, 1, 1, "", "compute_soft_cross_entropy"], [41, 1, 1, "", "find_best_temp_scaler"], [41, 1, 1, "", "format_multiannotator_labels"], [41, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[42, 2, 1, "", "Aggregator"], [42, 2, 1, "", "ClassLabelScorer"], [42, 2, 1, "", "MultilabelScorer"], [42, 1, 1, "", "exponential_moving_average"], [42, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [42, 1, 1, "", "get_label_quality_scores"], [42, 1, 1, "", "multilabel_py"], [42, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[42, 3, 1, "", "__call__"], [42, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[42, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [42, 6, 1, "", "NORMALIZED_MARGIN"], [42, 6, 1, "", "SELF_CONFIDENCE"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "__contains__"], [42, 3, 1, "", "__getitem__"], [42, 3, 1, "", "__iter__"], [42, 3, 1, "", "__len__"], [42, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[42, 3, 1, "", "__call__"], [42, 3, 1, "", "aggregate"], [42, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[43, 1, 1, "", "get_onehot_num_classes"], [43, 1, 1, "", "int2onehot"], [43, 1, 1, "", "onehot2int"], [43, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[44, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[45, 1, 1, "", "color_sentence"], [45, 1, 1, "", "filter_sentence"], [45, 1, 1, "", "get_sentence"], [45, 1, 1, "", "mapping"], [45, 1, 1, "", "merge_probs"], [45, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[46, 1, 1, "", "append_extra_datapoint"], [46, 1, 1, "", "clip_noise_rates"], [46, 1, 1, "", "clip_values"], [46, 1, 1, "", "compress_int_array"], [46, 1, 1, "", "confusion_matrix"], [46, 1, 1, "", "csr_vstack"], [46, 1, 1, "", "estimate_pu_f1"], [46, 1, 1, "", "extract_indices_tf"], [46, 1, 1, "", "force_two_dimensions"], [46, 1, 1, "", "format_labels"], [46, 1, 1, "", "get_missing_classes"], [46, 1, 1, "", "get_num_classes"], [46, 1, 1, "", "get_unique_classes"], [46, 1, 1, "", "is_tensorflow_dataset"], [46, 1, 1, "", "is_torch_dataset"], [46, 1, 1, "", "num_unique_classes"], [46, 1, 1, "", "print_inverse_noise_matrix"], [46, 1, 1, "", "print_joint_matrix"], [46, 1, 1, "", "print_noise_matrix"], [46, 1, 1, "", "print_square_matrix"], [46, 1, 1, "", "remove_noise_from_class"], [46, 1, 1, "", "round_preserving_row_totals"], [46, 1, 1, "", "round_preserving_sum"], [46, 1, 1, "", "smart_display_dataframe"], [46, 1, 1, "", "subset_X_y"], [46, 1, 1, "", "subset_data"], [46, 1, 1, "", "subset_labels"], [46, 1, 1, "", "train_val_split"], [46, 1, 1, "", "unshuffle_tensorflow_dataset"], [46, 1, 1, "", "value_counts"], [46, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[47, 1, 1, "", "assert_indexing_works"], [47, 1, 1, "", "assert_nonempty_input"], [47, 1, 1, "", "assert_valid_class_labels"], [47, 1, 1, "", "assert_valid_inputs"], [47, 1, 1, "", "labels_to_array"], [47, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[50, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[50, 2, 1, "", "KerasWrapperModel"], [50, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[50, 3, 1, "", "fit"], [50, 3, 1, "", "get_params"], [50, 3, 1, "", "predict"], [50, 3, 1, "", "predict_proba"], [50, 3, 1, "", "set_params"], [50, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[50, 3, 1, "", "fit"], [50, 3, 1, "", "get_params"], [50, 3, 1, "", "predict"], [50, 3, 1, "", "predict_proba"], [50, 3, 1, "", "set_params"], [50, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[51, 1, 1, "", "convert_long_to_wide_dataset"], [51, 1, 1, "", "get_active_learning_scores"], [51, 1, 1, "", "get_active_learning_scores_ensemble"], [51, 1, 1, "", "get_label_quality_multiannotator"], [51, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [51, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[52, 0, 0, "-", "dataset"], [53, 0, 0, "-", "filter"], [55, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[52, 1, 1, "", "common_multilabel_issues"], [52, 1, 1, "", "multilabel_health_summary"], [52, 1, 1, "", "overall_multilabel_health_score"], [52, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[53, 1, 1, "", "find_label_issues"], [53, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[55, 1, 1, "", "get_label_quality_scores"], [55, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[56, 0, 0, "-", "filter"], [58, 0, 0, "-", "rank"], [59, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[56, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[58, 1, 1, "", "compute_badloc_box_scores"], [58, 1, 1, "", "compute_overlooked_box_scores"], [58, 1, 1, "", "compute_swap_box_scores"], [58, 1, 1, "", "get_label_quality_scores"], [58, 1, 1, "", "issues_from_scores"], [58, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[59, 1, 1, "", "bounding_box_size_distribution"], [59, 1, 1, "", "calculate_per_class_metrics"], [59, 1, 1, "", "class_label_distribution"], [59, 1, 1, "", "get_average_per_class_confusion_matrix"], [59, 1, 1, "", "get_sorted_bbox_count_idxs"], [59, 1, 1, "", "object_counts_per_image"], [59, 1, 1, "", "plot_class_distribution"], [59, 1, 1, "", "plot_class_size_distributions"], [59, 1, 1, "", "visualize"]], "cleanlab.outlier": [[60, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "fit_score"], [60, 3, 1, "", "score"]], "cleanlab.rank": [[61, 1, 1, "", "find_top_issues"], [61, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [61, 1, 1, "", "get_label_quality_ensemble_scores"], [61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_normalized_margin_for_each_label"], [61, 1, 1, "", "get_self_confidence_for_each_label"], [61, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[63, 0, 0, "-", "learn"], [64, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[63, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[63, 3, 1, "", "__init_subclass__"], [63, 3, 1, "", "find_label_issues"], [63, 3, 1, "", "fit"], [63, 3, 1, "", "get_aleatoric_uncertainty"], [63, 3, 1, "", "get_epistemic_uncertainty"], [63, 3, 1, "", "get_label_issues"], [63, 3, 1, "", "get_metadata_routing"], [63, 3, 1, "", "get_params"], [63, 3, 1, "", "predict"], [63, 3, 1, "", "save_space"], [63, 3, 1, "", "score"], [63, 3, 1, "", "set_fit_request"], [63, 3, 1, "", "set_params"], [63, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[64, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[65, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[68, 1, 1, "", "common_label_issues"], [68, 1, 1, "", "display_issues"], [68, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[69, 0, 0, "-", "filter"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[69, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[72, 1, 1, "", "common_label_issues"], [72, 1, 1, "", "display_issues"], [72, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 75, 79, 80, 82, 83, 84, 87, 93, 94, 95], "count": [3, 84], "datalab": [4, 5, 7, 8, 9, 76, 77, 78, 79, 80, 84, 87], "creat": [5, 76, 77, 84, 86], "your": [5, 73, 76, 77, 80, 82, 84], "own": 5, "issu": [5, 7, 8, 19, 26, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 92, 93, 95], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 76], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 76], "us": [5, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "gener": 6, "cluster": [6, 82], "id": 6, "guid": [7, 9], "type": [7, 8, 84], "custom": [7, 76], "can": [8, 77, 81, 82, 84, 86], "detect": [8, 77, 79, 80, 82, 84, 88, 89], "estim": [8, 84, 86, 87], "each": 8, "label": [8, 21, 26, 73, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "outlier": [8, 24, 44, 60, 79, 80, 83, 87, 89], "Near": [8, 77, 79, 80, 83], "duplic": [8, 17, 77, 79, 80, 82, 83, 87], "non": [8, 80], "iid": [8, 80], "class": [8, 74, 84, 92], "imbal": [8, 18], "imag": [8, 83, 89], "specif": [8, 19, 92], "underperform": [8, 82], "group": [8, 82], "null": [8, 23], "data": [8, 10, 73, 75, 76, 77, 79, 80, 81, 82, 84, 86, 87, 88, 89, 91, 92, 93, 95], "valuat": 8, "option": 8, "paramet": [8, 84], "get": [9, 76, 77, 86, 87, 88, 92, 95], "start": [9, 81], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 38], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 82, 84], "task": [19, 29], "noniid": 22, "regress": [25, 62, 63, 64, 82, 91], "prioriti": 26, "order": 26, "find": [26, 73, 75, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "underperforming_group": 27, "report": [28, 83], "dataset": [31, 52, 73, 77, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 94, 95], "cifar_cnn": 32, "coteach": 33, "experiment": 34, "label_issues_batch": 35, "mnist_pytorch": 36, "filter": [37, 53, 56, 65, 69, 84], "label_quality_util": 39, "latent_algebra": 40, "multiannotator_util": 41, "multilabel_scor": 42, "multilabel_util": 43, "token_classification_util": 45, "util": 46, "valid": [47, 83, 90], "fasttext": 48, "model": [49, 73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "kera": 50, "multiannot": [51, 86], "multilabel_classif": 54, "rank": [55, 58, 61, 64, 67, 71, 84], "object_detect": 57, "summari": [59, 68, 72], "learn": [63, 77, 82, 84, 93], "segment": [66, 92], "token_classif": [70, 95], "cleanlab": [73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "open": [73, 82], "sourc": [73, 82], "document": 73, "quickstart": 73, "1": [73, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "instal": [73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "2": [73, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "common": [73, 74, 95], "3": [73, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "handl": [73, 82], "error": [73, 82, 83, 84, 86, 87, 88, 91, 92, 94, 95], "train": [73, 75, 82, 89, 91, 93, 94], "robust": [73, 84, 91, 93, 94], "noisi": [73, 84, 91, 93, 94], "4": [73, 75, 76, 77, 79, 80, 83, 84, 86, 88, 89, 91, 93, 94], "curat": [73, 81], "fix": [73, 82], "level": [73, 81, 84, 95], "5": [73, 75, 77, 79, 83, 84, 86, 91, 93], "improv": [73, 86], "via": [73, 84, 86], "mani": [73, 84], "other": [73, 86, 88, 91], "techniqu": 73, "contribut": 73, "easi": [73, 79, 80, 83], "mode": [73, 79, 80, 83], "how": [74, 82, 84, 86, 87, 95], "migrat": 74, "version": 74, "0": 74, "from": [74, 76, 77, 84, 91, 93, 94], "pre": [74, 75, 82, 89], "function": [74, 76], "name": 74, "chang": 74, "modul": [74, 84], "new": 74, "remov": 74, "argument": [74, 76], "variabl": 74, "audio": 75, "speechbrain": 75, "depend": [75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "import": [75, 76, 77, 81, 83, 84, 86], "them": [75, 81, 84], "load": [75, 76, 77, 79, 80, 91, 93, 94], "featur": [75, 83, 89], "fit": 75, "linear": 75, "comput": [75, 79, 80, 82, 83, 86, 90, 93], "out": [75, 76, 77, 79, 80, 83, 86, 90, 93], "sampl": [75, 76, 77, 79, 80, 83, 86, 90, 93], "predict": [75, 76, 77, 79, 80, 83, 86, 87, 88, 90, 93], "probabl": [75, 76, 77, 79, 80, 83, 86, 90, 93], "workflow": [76, 84], "audit": [76, 77], "requir": [76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "classifi": [76, 77], "instanti": 76, "object": [76, 88], "increment": 76, "search": 76, "specifi": [76, 82], "nondefault": 76, "save": 76, "ad": 76, "A": 77, "unifi": 77, "all": [77, 84], "kind": [77, 88], "skip": [77, 81, 84, 86], "detail": [77, 81, 84, 86], "more": [77, 84, 91, 93, 94], "about": 77, "addit": 77, "inform": [77, 83], "tutori": [78, 81, 85], "tabular": [79, 93], "numer": 79, "categor": 79, "column": 79, "process": [79, 89, 91, 93], "select": [79, 93], "construct": 79, "k": [79, 83, 90], "nearest": 79, "neighbour": 79, "graph": 79, "text": [80, 94, 95], "format": [80, 82, 87, 88, 94], "defin": [80, 83, 91, 94], "drift": [80, 87], "fetch": [81, 83], "evalu": 81, "health": [81, 84], "8": [81, 84], "popular": 81, "faq": 82, "what": [82, 84, 90], "do": [82, 84], "i": [82, 84, 90], "infer": 82, "correct": 82, "exampl": [82, 83, 84, 89], "ha": 82, "flag": 82, "should": 82, "v": 82, "test": [82, 84, 89], "big": 82, "limit": 82, "memori": 82, "why": 82, "isn": 82, "t": 82, "cleanlearn": [82, 84], "work": [82, 84, 86, 95], "me": 82, "differ": [82, 88], "clean": [82, 84], "final": 82, "hyperparamet": 82, "tune": 82, "onli": 82, "one": [82, 84, 87, 92], "doe": [82, 86, 95], "take": 82, "so": 82, "long": 82, "slice": 82, "when": [82, 84], "identifi": [82, 88], "run": 82, "licens": 82, "under": 82, "an": 82, "answer": 82, "question": 82, "pytorch": [83, 89], "normal": 83, "fashion": 83, "mnist": 83, "prepar": 83, "fold": [83, 90], "cross": [83, 90], "embed": [83, 89], "7": [83, 84], "view": 83, "most": [83, 95], "like": 83, "sever": 83, "set": [83, 84], "dark": 83, "top": [83, 92], "low": 83, "The": 84, "centric": 84, "ai": 84, "machin": 84, "find_label_issu": 84, "line": 84, "code": 84, "visual": [84, 88, 89, 92], "twenti": 84, "lowest": 84, "qualiti": [84, 86, 87, 88, 92, 95], "see": 84, "now": 84, "let": 84, "": 84, "happen": 84, "we": 84, "merg": 84, "seafoam": 84, "green": 84, "yellow": 84, "too": 84, "you": 84, "re": 84, "6": 84, "One": 84, "score": [84, 86, 87, 88, 92, 95], "rule": 84, "overal": [84, 92], "accur": 84, "thi": 84, "directli": 84, "fulli": 84, "character": 84, "nois": 84, "matrix": [84, 87], "joint": 84, "prior": 84, "true": 84, "distribut": 84, "flip": 84, "rate": 84, "ani": 84, "again": 84, "support": 84, "lot": 84, "method": 84, "filter_bi": 84, "automat": 84, "everi": 84, "uniqu": 84, "num_label_issu": 84, "threshold": 84, "found": 84, "Not": 84, "sure": 84, "ensembl": 84, "multipl": [84, 86], "predictor": 84, "consensu": 86, "annot": 86, "initi": 86, "major": 86, "vote": 86, "better": 86, "statist": 86, "compar": 86, "inspect": 86, "potenti": [86, 91, 94], "retrain": 86, "further": 86, "multi": 87, "beyond": 87, "mislabel": [87, 92, 95], "given": 87, "hot": 87, "binari": 87, "without": 87, "applic": 87, "real": 87, "download": [88, 92, 95], "objectlab": 88, "exploratori": 88, "analysi": 88, "timm": 89, "cifar10": 89, "some": 89, "pred_prob": [89, 92, 95], "wai": 91, "semant": 92, "which": 92, "ar": 92, "commonli": 92, "focus": 92, "scikit": 93, "token": 95, "word": 95, "sentenc": 95, "contain": 95, "particular": 95}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [38, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [44, "module-cleanlab.internal.outlier"], [60, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [62, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "task": [[29, "task"]], "dataset": [[31, "module-cleanlab.dataset"], [52, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[32, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[33, "module-cleanlab.experimental.coteaching"]], "experimental": [[34, "experimental"]], "label_issues_batched": [[35, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[36, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[37, "module-cleanlab.filter"], [53, "module-cleanlab.multilabel_classification.filter"], [56, "filter"], [65, "filter"], [69, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[39, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[40, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[41, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[42, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[43, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[45, "module-cleanlab.internal.token_classification_utils"]], "util": [[46, "module-cleanlab.internal.util"]], "validation": [[47, "module-cleanlab.internal.validation"]], "fasttext": [[48, "fasttext"]], "models": [[49, "models"]], "keras": [[50, "module-cleanlab.models.keras"]], "multiannotator": [[51, "module-cleanlab.multiannotator"]], "multilabel_classification": [[54, "multilabel-classification"]], "rank": [[55, "module-cleanlab.multilabel_classification.rank"], [58, "module-cleanlab.object_detection.rank"], [61, "module-cleanlab.rank"], [67, "module-cleanlab.segmentation.rank"], [71, "module-cleanlab.token_classification.rank"]], "object_detection": [[57, "object-detection"]], "summary": [[59, "summary"], [68, "module-cleanlab.segmentation.summary"], [72, "module-cleanlab.token_classification.summary"]], "regression.learn": [[63, "module-cleanlab.regression.learn"]], "regression.rank": [[64, "module-cleanlab.regression.rank"]], "segmentation": [[66, "segmentation"]], "token_classification": [[70, "token-classification"]], "cleanlab open-source documentation": [[73, "cleanlab-open-source-documentation"]], "Quickstart": [[73, "quickstart"]], "1. Install cleanlab": [[73, "install-cleanlab"]], "2. Find common issues in your data": [[73, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[73, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[73, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[73, "improve-your-data-via-many-other-techniques"]], "Contributing": [[73, "contributing"]], "Easy Mode": [[73, "easy-mode"], [79, "Easy-Mode"], [80, "Easy-Mode"], [83, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[74, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[74, "function-and-class-name-changes"]], "Module name changes": [[74, "module-name-changes"]], "New modules": [[74, "new-modules"]], "Removed modules": [[74, "removed-modules"]], "Common argument and variable name changes": [[74, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[75, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[75, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[75, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[75, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[75, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[75, "5.-Use-cleanlab-to-find-label-issues"], [79, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[76, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[76, "Install-and-import-required-dependencies"]], "Create and load the data": [[76, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[76, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[76, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[76, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[76, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[76, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[76, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[77, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[77, "1.-Install-and-import-required-dependencies"], [83, "1.-Install-and-import-required-dependencies"], [86, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[77, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[77, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[77, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[77, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[77, "Get-additional-information"]], "Near duplicate issues": [[77, "Near-duplicate-issues"], [83, "Near-duplicate-issues"]], "Datalab Tutorials": [[78, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[79, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[79, "1.-Install-required-dependencies"], [80, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"]], "2. Load and process the data": [[79, "2.-Load-and-process-the-data"], [91, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[79, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[79, "Label-issues"], [80, "Label-issues"], [83, "Label-issues"]], "Outlier issues": [[79, "Outlier-issues"], [80, "Outlier-issues"], [83, "Outlier-issues"]], "Near-duplicate issues": [[79, "Near-duplicate-issues"], [80, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[80, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[80, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[80, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[80, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[80, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[81, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[81, "Install-dependencies-and-import-them"], [84, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[81, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[81, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[82, "FAQ"]], "What data can cleanlab detect issues in?": [[82, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[82, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[82, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[82, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[82, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[82, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[82, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[82, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[82, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[82, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[82, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[82, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[82, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[82, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[83, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[83, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[83, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[83, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[83, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[83, "7.-Use-cleanlab-to-find-issues"]], "View report": [[83, "View-report"]], "View most likely examples with label errors": [[83, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[83, "View-most-severe-outliers"]], "View sets of near duplicate images": [[83, "View-sets-of-near-duplicate-images"]], "Dark images": [[83, "Dark-images"]], "View top examples of dark images": [[83, "View-top-examples-of-dark-images"]], "Low information images": [[83, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[84, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[84, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[84, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[84, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[84, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[84, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[84, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[84, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[84, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[84, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[84, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[84, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[84, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[84, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[84, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[84, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[84, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[84, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[84, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[84, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[84, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[84, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[85, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[86, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[86, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[86, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[86, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[86, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[86, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[86, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[86, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[86, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[87, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[87, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[87, "2.-Format-data,-labels,-and-model-predictions"], [88, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[87, "3.-Use-cleanlab-to-find-label-issues"], [88, "3.-Use-cleanlab-to-find-label-issues"], [92, "3.-Use-cleanlab-to-find-label-issues"], [95, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[87, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[87, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[87, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[87, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[87, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[88, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[88, "1.-Install-required-dependencies-and-download-data"], [92, "1.-Install-required-dependencies-and-download-data"], [95, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[88, "Get-label-quality-scores"], [92, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[88, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[88, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[88, "Other-uses-of-visualize"]], "Exploratory data analysis": [[88, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[89, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[89, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[89, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[89, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[89, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[89, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[90, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[90, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[90, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[91, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[91, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[91, "4.-Train-a-more-robust-model-from-noisy-labels"], [94, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[91, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[92, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[92, "2.-Get-data,-labels,-and-pred_probs"], [95, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[92, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[92, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[92, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[93, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[93, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[93, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[94, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[94, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[95, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[95, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[95, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[95, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[95, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [29, "module-cleanlab.datalab.internal.task"], [31, "module-cleanlab.dataset"], [32, "module-cleanlab.experimental.cifar_cnn"], [33, "module-cleanlab.experimental.coteaching"], [34, "module-cleanlab.experimental"], [35, "module-cleanlab.experimental.label_issues_batched"], [36, "module-cleanlab.experimental.mnist_pytorch"], [37, "module-cleanlab.filter"], [38, "module-cleanlab.internal"], [39, "module-cleanlab.internal.label_quality_utils"], [40, "module-cleanlab.internal.latent_algebra"], [41, "module-cleanlab.internal.multiannotator_utils"], [42, "module-cleanlab.internal.multilabel_scorer"], [43, "module-cleanlab.internal.multilabel_utils"], [44, "module-cleanlab.internal.outlier"], [45, "module-cleanlab.internal.token_classification_utils"], [46, "module-cleanlab.internal.util"], [47, "module-cleanlab.internal.validation"], [49, "module-cleanlab.models"], [50, "module-cleanlab.models.keras"], [51, "module-cleanlab.multiannotator"], [52, "module-cleanlab.multilabel_classification.dataset"], [53, "module-cleanlab.multilabel_classification.filter"], [54, "module-cleanlab.multilabel_classification"], [55, "module-cleanlab.multilabel_classification.rank"], [56, "module-cleanlab.object_detection.filter"], [57, "module-cleanlab.object_detection"], [58, "module-cleanlab.object_detection.rank"], [59, "module-cleanlab.object_detection.summary"], [60, "module-cleanlab.outlier"], [61, "module-cleanlab.rank"], [62, "module-cleanlab.regression"], [63, "module-cleanlab.regression.learn"], [64, "module-cleanlab.regression.rank"], [65, "module-cleanlab.segmentation.filter"], [66, "module-cleanlab.segmentation"], [67, "module-cleanlab.segmentation.rank"], [68, "module-cleanlab.segmentation.summary"], [69, "module-cleanlab.token_classification.filter"], [70, "module-cleanlab.token_classification"], [71, "module-cleanlab.token_classification.rank"], [72, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[29, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[29, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[31, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[32, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[32, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[32, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.forward"], [32, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[33, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[34, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[35, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[36, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [36, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [36, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [36, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[37, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[37, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[37, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[38, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[39, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[39, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[40, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[41, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[42, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[43, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[44, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[44, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[45, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[46, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[47, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[49, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[50, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[50, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[50, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[51, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[52, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[53, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[53, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[53, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[54, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[55, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[55, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[55, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[56, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[56, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[57, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[58, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[59, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[60, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[60, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[61, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[61, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[61, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[62, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[63, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[63, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[63, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[64, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[64, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[65, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[65, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[66, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[67, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[67, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[67, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[68, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[69, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[69, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[70, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[71, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[71, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[71, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[72, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 74, 76, 77, 84, 86, 87], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 76, 77, 84, 86, 87], "generate_noise_matrix_from_trac": [0, 1, 76, 77, 84, 86, 87], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 35, 39, 41, 42, 43, 44, 45, 46, 58, 81, 83, 95], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "us": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 73, 74, 76, 81, 85, 90], "benchmark": [1, 32, 73, 74, 76, 77, 84, 86, 87], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 81, 85, 90], "": [1, 2, 3, 8, 16, 31, 32, 36, 39, 42, 44, 46, 51, 52, 56, 58, 59, 60, 61, 63, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "core": [1, 4, 35, 37, 65, 67], "algorithm": [1, 2, 6, 8, 27, 33, 46, 51, 60, 69, 71, 73, 82, 84, 86, 95], "These": [1, 2, 3, 6, 8, 19, 32, 34, 36, 37, 38, 49, 51, 52, 55, 59, 60, 64, 68, 69, 71, 72, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "introduc": [1, 75, 82, 84], "synthet": [1, 86, 87, 92], "nois": [1, 2, 3, 31, 37, 40, 46, 52, 76, 77, 81, 86, 91], "label": [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 18, 19, 20, 25, 27, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 76, 81, 85, 89, 90], "classif": [1, 3, 4, 5, 8, 10, 12, 14, 29, 31, 35, 37, 40, 42, 43, 46, 51, 52, 53, 54, 55, 60, 61, 69, 70, 71, 72, 73, 74, 76, 77, 85, 86, 89, 90, 91, 92], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 34, 35, 36, 37, 40, 42, 46, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 79, 85, 86, 90, 93], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 34, 49, 53, 56, 59, 68, 72, 79, 80, 83, 84, 88, 95], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 29, 31, 32, 33, 34, 35, 36, 37, 42, 44, 46, 49, 51, 56, 59, 60, 61, 73, 82, 83, 87], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 29, 31, 32, 33, 35, 36, 37, 40, 46, 50, 51, 52, 53, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 90, 91, 92, 93, 94, 95], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 31, 42, 46, 47, 60, 61, 63, 68, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 89, 90, 92, 94, 95], "valid": [1, 2, 3, 4, 8, 10, 29, 31, 37, 38, 40, 41, 42, 44, 46, 51, 53, 56, 59, 61, 63, 64, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 91, 92, 93, 94, 95], "matric": [1, 3, 40, 82], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 31, 32, 36, 37, 40, 42, 45, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 33, 34, 35, 36, 37, 39, 41, 46, 49, 51, 53, 60, 62, 64, 67, 71, 73, 75, 76, 79, 80, 81, 83, 85, 86, 87, 91, 94], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "possibl": [1, 2, 3, 8, 31, 32, 36, 37, 39, 40, 42, 53, 54, 55, 56, 58, 59, 60, 61, 63, 69, 71, 72, 77, 82, 84, 86, 87, 88, 91, 92, 95], "noisi": [1, 2, 3, 8, 31, 33, 36, 37, 40, 46, 52, 53, 55, 61, 63, 64, 65, 67, 68, 74, 76, 77, 79, 80, 82, 85, 86], "given": [1, 2, 3, 8, 12, 26, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 45, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 31, 37, 39, 40, 43, 46, 47, 53, 56, 58, 59, 60, 61, 79, 88, 89], "trace": [1, 76, 77, 84, 86, 87], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 29, 31, 32, 33, 35, 36, 37, 39, 40, 42, 44, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "more": [1, 2, 3, 4, 5, 8, 11, 12, 14, 16, 22, 31, 32, 35, 36, 39, 42, 44, 46, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 64, 67, 68, 69, 71, 73, 75, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 92, 95], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 77, 81, 82, 84, 86, 87, 88, 92, 93, 94, 95], "noise_matrix": [1, 2, 3, 8, 40, 46, 76, 77, 84, 86, 87], "py": [1, 3, 28, 32, 33, 37, 40, 42, 75, 76, 77, 80, 82, 84, 86, 87, 94], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 37, 51, 52, 53, 58, 60, 61, 63, 65, 67, 68, 72, 76, 84, 86], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 41, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 75, 76, 77, 79, 80, 82, 83, 84, 86, 88, 89, 91, 92, 94], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72], "prior": [1, 2, 3, 31, 37, 40, 42], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 29, 31, 35, 37, 40, 43, 44, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "p": [1, 2, 3, 8, 31, 37, 39, 40, 46, 51, 59, 60, 61, 65, 79, 80, 84, 86, 95], "true_label": [1, 2, 3, 31, 40, 46, 84, 86], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 31, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 75, 76, 77, 82, 84, 86, 87, 88, 89, 92, 93, 95], "check": [1, 2, 4, 7, 8, 10, 14, 23, 29, 32, 35, 36, 41, 47, 50, 56, 59, 63, 73, 75, 76, 77, 82, 83, 84, 86, 87, 91, 93, 94], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 33, 36, 40, 42, 44, 58, 63, 77, 80, 82, 84, 86, 87, 88, 89, 91, 94], "achiev": [1, 2, 32, 33, 36, 63, 82, 86, 95], "better": [1, 4, 37, 51, 53, 61, 63, 64, 73, 75, 77, 79, 80, 82, 84, 87, 88, 89, 94, 95], "than": [1, 2, 3, 5, 8, 22, 24, 27, 31, 37, 46, 50, 51, 56, 58, 60, 61, 63, 67, 71, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 95], "random": [1, 2, 3, 5, 8, 16, 27, 35, 42, 51, 61, 63, 75, 76, 77, 79, 82, 83, 84, 86, 87, 89, 93], "perform": [1, 2, 5, 8, 22, 24, 27, 32, 36, 42, 59, 63, 73, 76, 82, 84, 86, 87, 90, 91, 93, 94], "averag": [1, 3, 8, 20, 24, 31, 32, 36, 42, 44, 51, 52, 59, 60, 61, 82, 86, 89], "amount": [1, 3, 83], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 77, 80, 83, 93, 94], "np": [1, 2, 3, 4, 5, 14, 16, 27, 31, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 71, 72, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 31, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 95], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 31, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "shape": [1, 2, 3, 4, 14, 16, 31, 33, 35, 37, 39, 40, 41, 42, 44, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 81, 82, 84, 87, 88, 89, 92, 95], "condit": [1, 2, 3, 40, 45, 46, 61, 83, 84, 95], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 31, 35, 36, 37, 39, 40, 42, 43, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 81, 82, 84, 85, 87, 88, 89, 92, 95], "k_": [1, 2, 3, 40, 46], "k_y": [1, 2, 3, 40, 46], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 35, 36, 37, 39, 40, 45, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94], "fraction": [1, 2, 3, 8, 18, 33, 40, 46, 51, 63, 79, 82], "exampl": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 86, 87, 88, 90, 91, 92, 93, 94, 95], "everi": [1, 2, 3, 4, 14, 32, 36, 37, 40, 45, 46, 53, 61, 63, 64, 75, 76, 77, 79, 80, 82, 83, 86, 88, 90, 92, 93, 95], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95], "other": [1, 2, 3, 4, 8, 14, 20, 23, 31, 32, 34, 35, 36, 37, 40, 43, 46, 47, 49, 51, 52, 55, 59, 60, 61, 63, 68, 75, 76, 77, 79, 80, 82, 83, 84, 87, 89, 92, 95], "assum": [1, 2, 3, 10, 37, 40, 45, 46, 61, 65, 68, 82, 87, 89, 91, 92, 95], "column": [1, 2, 3, 4, 8, 10, 11, 26, 31, 35, 37, 40, 42, 43, 45, 46, 51, 52, 53, 55, 56, 59, 60, 61, 63, 68, 69, 71, 72, 75, 76, 77, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "sum": [1, 2, 3, 22, 27, 31, 40, 42, 46, 52, 53, 55, 58, 63, 76, 77, 82, 83, 84, 86, 87, 92, 95], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 81, 82, 90], "each": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 18, 20, 21, 22, 27, 28, 31, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 40, 42, 45, 46, 47, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 87, 88, 91, 92, 93, 95], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 42, 45, 46, 51, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 72], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 32, 35, 36, 37, 46, 51, 52, 53, 55, 56, 72, 75, 77, 79, 80, 81, 82, 83, 84, 91, 94, 95], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 40, 42, 43, 44, 45, 46, 51, 53, 55, 58, 59, 60, 61, 63, 64, 69, 71, 72, 73, 75, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 92, 95], "perfect": [1, 2, 31, 63, 84, 88], "exactli": [1, 3, 8, 31, 32, 36, 37, 54, 60, 76, 77, 79, 80, 83, 84], "yield": [1, 32, 36], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 44, 49, 51, 52, 55, 58, 60, 61, 63, 64, 67, 71, 72, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "below": [1, 3, 4, 8, 31, 32, 35, 36, 37, 39, 42, 51, 52, 53, 58, 59, 67, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "we": [1, 2, 3, 4, 5, 8, 11, 20, 32, 35, 36, 37, 42, 46, 47, 51, 58, 59, 61, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "loop": [1, 3, 40, 46, 83, 88], "implement": [1, 2, 3, 4, 7, 12, 20, 32, 33, 35, 36, 40, 46, 63, 73, 75, 76, 79, 89, 90, 93], "what": [1, 4, 7, 8, 14, 28, 31, 33, 35, 37, 51, 52, 56, 58, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "doe": [1, 2, 3, 8, 35, 36, 37, 42, 47, 58, 59, 63, 65, 67, 71, 75, 76, 77, 79, 80, 83, 87, 91, 92, 94], "do": [1, 2, 4, 8, 31, 35, 36, 46, 47, 60, 61, 65, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "fast": 1, "explain": [1, 8], "python": [1, 2, 36, 50, 63, 75, 76, 77, 80, 81, 89, 94], "pseudocod": [1, 90], "happen": [1, 8, 37, 53, 80, 86, 92], "n": [1, 2, 3, 4, 5, 31, 32, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 75, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "without": [1, 2, 4, 8, 10, 12, 18, 32, 36, 55, 63, 73, 75, 80, 84, 88, 89, 94], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 35, 36, 37, 39, 41, 44, 45, 46, 50, 51, 53, 55, 56, 58, 59, 61, 63, 65, 67, 68, 73, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "distinct": [1, 16, 46, 95], "natur": [1, 8, 86, 89], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 92, 95], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "count_joint": 1, "len": [1, 2, 3, 5, 31, 35, 40, 45, 46, 47, 60, 61, 63, 76, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "y": [1, 2, 3, 4, 6, 16, 26, 27, 36, 40, 42, 46, 47, 50, 59, 63, 64, 75, 76, 77, 79, 82, 84, 86, 87, 89, 91, 94], "round": [1, 35, 37, 46, 63, 82, 91], "astyp": [1, 86], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 35, 36, 37, 42, 43, 44, 45, 46, 47, 52, 53, 55, 59, 60, 61, 63, 65, 67, 68, 69, 72, 75, 76, 83, 88, 89], "rang": [1, 3, 4, 5, 10, 40, 42, 44, 46, 59, 63, 64, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 95], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 31, 35, 37, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95], "pragma": 1, "cover": [1, 3, 74, 81], "choic": [1, 6, 37, 44, 82, 83, 87, 89], "replac": [1, 45, 50, 61, 76, 77, 80, 81, 82, 83, 86, 89, 93, 94], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 61, 75, 76, 77], "05": [1, 8, 22, 26, 45, 59, 63, 69, 71, 79, 81, 82, 84, 88, 92, 95], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 76, 77, 84, 86, 87], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 76, 77, 82, 83, 84, 86, 87, 92], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 34, 36, 42, 63, 75, 76, 77, 79, 81, 84, 86, 87, 93], "max_it": [1, 75, 80, 89, 94], "10000": [1, 35, 81, 82], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 32, 33, 36, 37, 39, 40, 42, 45, 46, 47, 50, 51, 53, 59, 60, 61, 63, 65, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 89, 91, 93, 94], "diagon": [1, 3, 4, 37, 40, 46], "equal": [1, 3, 8, 10, 53, 58, 68, 90], "creat": [1, 2, 7, 14, 16, 32, 35, 36, 37, 46, 63, 73, 75, 79, 80, 82, 83, 92, 94, 95], "impli": [1, 8, 31, 52, 59], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 44, 45, 46, 51, 52, 53, 55, 58, 59, 63, 67, 71, 75, 76, 77, 84, 86, 87], "entri": [1, 3, 4, 31, 32, 36, 37, 39, 43, 44, 46, 51, 52, 53, 56, 79, 80, 84, 87, 88, 91, 93, 94], "maximum": [1, 8, 60, 68, 72, 92], "minimum": [1, 6, 8, 18, 37, 39, 53, 58, 71], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 32, 36, 37, 58, 63, 76, 82, 84, 86, 88, 89], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 31, 32, 33, 35, 36, 37, 39, 40, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 76, 82, 83, 91, 92], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 29, 31, 32, 35, 36, 37, 39, 40, 42, 45, 46, 50, 51, 52, 53, 56, 58, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 31, 32, 34, 35, 36, 37, 40, 42, 46, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 68, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 31, 32, 35, 36, 37, 40, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "necessari": [1, 2, 3, 5, 8, 10, 45, 76], "In": [1, 2, 3, 8, 31, 32, 35, 36, 51, 52, 54, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 32, 36, 46, 51, 55, 59, 63, 68, 72, 73, 75, 77, 80, 82, 86, 87, 89, 91, 93, 94], "satisfi": [1, 3, 31], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 30, 32, 33, 34, 35, 36, 37, 40, 46, 49, 50, 53, 60, 61, 63, 65, 73, 74, 75, 81, 82, 84, 90], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 32, 35, 36, 37, 42, 47, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 67, 68, 69, 71, 77, 80, 81, 82, 83, 87, 88, 91, 94, 95], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 32, 36, 37, 40, 42, 46, 50, 53, 55, 56, 58, 60, 61, 63, 64, 76, 77, 79, 80, 83, 86, 90, 91, 92, 93, 94, 95], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 53, 56, 58, 59, 60, 61, 63, 65, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "rate": [1, 2, 3, 8, 33, 46, 75, 95], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 35, 36, 37, 41, 42, 44, 46, 50, 51, 53, 56, 58, 59, 60, 61, 63, 65, 67, 68, 76, 77, 79, 80, 82, 86, 87, 89, 90, 91, 92, 93, 94, 95], "note": [1, 2, 3, 5, 6, 8, 10, 23, 27, 29, 32, 35, 36, 37, 42, 46, 51, 56, 58, 59, 60, 61, 63, 64, 68, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "you": [1, 2, 3, 4, 5, 8, 12, 14, 31, 32, 34, 35, 36, 37, 42, 49, 50, 51, 53, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "high": [1, 2, 14, 35, 37, 46, 58, 61, 63, 76, 77, 81, 83, 84, 88, 91, 92, 93, 94, 95], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 31, 32, 34, 35, 36, 37, 40, 42, 46, 51, 52, 56, 58, 59, 60, 61, 63, 65, 68, 72, 74, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95], "imposs": [1, 8, 84], "also": [1, 2, 3, 4, 5, 8, 20, 29, 31, 32, 35, 36, 37, 42, 45, 50, 51, 60, 63, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "low": [1, 8, 46, 51, 73, 76, 77, 80, 84, 88, 92], "zero": [1, 3, 4, 32, 36, 39, 46, 47, 76, 83, 87, 88, 89], "forc": [1, 2, 3, 4, 36, 76, 95], "instead": [1, 2, 3, 8, 11, 14, 28, 31, 32, 35, 36, 37, 40, 46, 50, 51, 53, 55, 59, 60, 61, 63, 64, 67, 69, 71, 74, 75, 79, 80, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 95], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 31, 32, 35, 36, 37, 39, 40, 45, 46, 47, 50, 51, 60, 61, 63, 65, 67, 71, 72, 73, 75, 76, 77, 80, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95], "guarante": [1, 3, 4, 13, 19, 25, 32, 34, 36, 38, 40, 49, 74], "produc": [1, 2, 4, 8, 14, 42, 51, 61, 63, 65, 67, 73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95], "higher": [1, 4, 8, 31, 37, 39, 40, 42, 44, 51, 52, 63, 77, 80, 82, 88], "opposit": [1, 95], "occur": [1, 3, 8, 31, 45, 58, 76, 77, 82, 83, 89], "small": [1, 3, 8, 31, 35, 42, 46, 52, 59, 80, 81, 83, 87, 89, 94], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 35, 36, 42, 44, 45, 47, 50, 55, 58, 63, 64, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "max": [1, 37, 60, 61, 77, 83, 89], "tri": [1, 32, 36, 90], "befor": [1, 2, 3, 32, 36, 44, 46, 60, 63, 68, 80, 82, 84, 86, 89, 91, 93, 94], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 31, 32, 35, 36, 37, 40, 42, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 76, 77, 79, 82, 83, 84, 87, 91, 92, 93], "left": [1, 2, 37, 39, 44, 46, 53, 56, 59, 76, 77, 87, 88, 89, 92], "stochast": 1, "exceed": 1, "m": [1, 4, 32, 36, 41, 42, 51, 56, 58, 59, 60, 76, 77, 81, 86, 87, 88, 95], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 32, 36, 50, 82, 84, 92], "length": [1, 4, 10, 22, 23, 31, 33, 37, 46, 53, 56, 60, 61, 63, 65, 68, 72, 75, 87, 89, 92, 93, 95], "must": [1, 2, 3, 4, 14, 31, 32, 33, 34, 36, 37, 40, 42, 43, 46, 49, 50, 51, 52, 53, 60, 61, 63, 65, 67, 68, 69, 71, 72, 75, 86, 90, 92, 95], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 31, 35, 37, 43, 46, 47, 51, 53, 59, 65, 67, 68, 69, 71, 72, 75, 82, 86, 87, 88, 92, 93, 94, 95], "ball": [1, 81], "bin": [1, 3, 53, 76, 77, 89], "ensur": [1, 2, 8, 32, 36, 46, 47, 58, 61, 63, 75, 76, 77, 80, 82, 83, 84, 89, 90, 91, 93, 94], "most": [1, 3, 4, 5, 8, 14, 31, 35, 37, 42, 50, 51, 52, 53, 56, 58, 59, 60, 61, 64, 67, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94], "least": [1, 8, 16, 27, 31, 35, 51, 52, 58, 61, 71, 77, 82, 83, 86, 89, 92], "int_arrai": [1, 46], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 76, 79, 80, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95], "model": [2, 3, 4, 8, 14, 16, 26, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 74, 76, 77, 81, 85, 90, 92, 95], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 30, 31, 32, 35, 36, 37, 40, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 67, 69, 71, 72, 73, 75, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95], "regular": [2, 3, 35, 50], "multi": [2, 3, 8, 31, 32, 35, 36, 37, 41, 42, 43, 46, 47, 52, 53, 54, 55, 60, 61, 73, 82, 84, 85], "task": [2, 4, 5, 8, 9, 10, 12, 13, 14, 26, 28, 31, 35, 40, 42, 43, 44, 46, 51, 53, 61, 63, 73, 75, 80, 81, 82, 84, 87, 89, 91, 92, 94, 95], "cleanlearn": [2, 3, 8, 21, 26, 32, 46, 50, 62, 63, 64, 73, 74, 91, 93, 94], "wrap": [2, 32, 36, 50, 60, 63, 73, 76, 77, 79, 80, 84, 91, 93, 94], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 36, 42, 50, 59, 60, 63, 68, 75, 76, 77, 79, 80, 83, 84, 88, 93, 94], "sklearn": [2, 3, 4, 6, 8, 16, 27, 31, 36, 42, 46, 50, 60, 63, 64, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94], "classifi": [2, 3, 36, 42, 46, 51, 54, 60, 61, 73, 74, 75, 79, 80, 82, 86, 87, 89, 90, 92, 93, 94, 95], "adher": [2, 36, 63], "estim": [2, 3, 4, 7, 11, 20, 31, 35, 36, 37, 40, 46, 51, 52, 53, 58, 60, 63, 65, 67, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 95], "api": [2, 3, 12, 50, 56, 59, 60, 63, 74, 82, 91], "defin": [2, 3, 4, 5, 8, 12, 20, 31, 32, 33, 35, 36, 37, 61, 63, 65, 75, 76, 77, 79, 82, 86, 89, 95], "four": [2, 8, 81, 84, 95], "clf": [2, 3, 4, 42, 63, 73, 79, 82, 84, 87, 93], "fit": [2, 3, 4, 6, 8, 16, 34, 36, 49, 50, 60, 62, 63, 73, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 93, 94, 95], "sample_weight": [2, 36, 63, 84], "predict_proba": [2, 4, 31, 34, 36, 42, 49, 50, 75, 76, 77, 79, 80, 82, 84, 86, 87, 89, 93], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 29, 31, 34, 35, 36, 37, 39, 40, 42, 43, 45, 46, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 81, 82, 84, 85, 89, 91, 92, 94, 95], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 37, 39, 42, 44, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 89, 91, 93, 94], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 42, 43, 46, 49, 50, 51, 52, 53, 54, 58, 60, 61, 62, 63, 68, 69, 70, 71, 72, 74, 78, 83, 85, 90, 94], "e": [2, 3, 4, 8, 10, 20, 31, 32, 35, 36, 37, 40, 42, 43, 46, 47, 51, 52, 53, 54, 56, 59, 60, 61, 63, 65, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 42, 46, 60, 63, 73, 76, 77, 79, 80, 82, 84, 86, 87, 91, 93], "element": [2, 3, 4, 31, 37, 39, 46, 51, 53, 61, 68, 69, 71, 75, 80, 82, 94, 95], "first": [2, 4, 8, 15, 22, 23, 31, 35, 42, 46, 51, 52, 56, 59, 61, 63, 75, 76, 79, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "index": [2, 8, 22, 31, 37, 45, 46, 47, 52, 61, 63, 68, 71, 72, 75, 76, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 31, 32, 35, 36, 37, 39, 40, 42, 44, 45, 46, 50, 51, 52, 55, 56, 58, 59, 60, 61, 63, 64, 68, 69, 71, 72, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 31, 32, 35, 36, 37, 39, 40, 42, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 68, 69, 71, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 31, 32, 34, 35, 36, 37, 38, 42, 46, 47, 49, 51, 56, 58, 60, 63, 75, 76, 77, 79, 80, 83, 84, 86, 87, 89, 90, 91, 93], "sampl": [2, 3, 4, 6, 8, 14, 18, 37, 39, 42, 53, 56, 59, 61, 63, 64, 73, 74, 81, 82, 84, 85, 87, 88, 91, 92, 94, 95], "size": [2, 8, 27, 32, 35, 36, 37, 42, 53, 58, 59, 63, 65, 67, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94], "here": [2, 4, 5, 8, 12, 35, 37, 40, 50, 51, 52, 53, 55, 56, 59, 60, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "re": [2, 4, 32, 36, 45, 51, 63, 73, 75, 76, 79, 80, 82, 91, 92, 93, 94, 95], "weight": [2, 8, 32, 33, 36, 42, 51, 58, 61, 63, 75, 76, 77, 80, 94], "loss": [2, 33, 50, 61, 63, 83], "while": [2, 3, 8, 32, 35, 36, 41, 42, 46, 63, 73, 82, 83, 84, 86, 87, 91], "train": [2, 3, 4, 8, 14, 16, 32, 33, 34, 36, 42, 46, 50, 51, 56, 59, 60, 63, 64, 74, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 90, 92, 95], "support": [2, 3, 4, 10, 12, 28, 29, 35, 42, 46, 47, 60, 61, 71, 73, 74, 75, 76, 77, 82, 83], "your": [2, 3, 4, 7, 8, 14, 31, 32, 34, 35, 36, 37, 42, 46, 49, 50, 51, 52, 53, 55, 60, 61, 63, 64, 65, 67, 68, 74, 75, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "recommend": [2, 4, 8, 11, 14, 35, 37, 51, 76, 77, 82, 83, 90, 91], "furthermor": 2, "correctli": [2, 3, 8, 31, 32, 36, 37, 40, 47, 52, 53, 58, 59, 63, 65, 80, 82, 87, 88, 91, 92, 94], "clonabl": [2, 63], "via": [2, 4, 8, 11, 14, 16, 20, 31, 33, 35, 36, 42, 46, 51, 56, 59, 60, 61, 63, 64, 67, 71, 75, 76, 77, 79, 80, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 55, 58, 60, 61, 63, 64, 67, 69, 71, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 95], "clone": [2, 63, 87], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47, 55, 59, 63, 69, 74, 75, 76, 82, 84, 86, 87, 88, 89, 91, 95], "multipl": [2, 3, 4, 10, 11, 29, 31, 37, 45, 51, 52, 53, 55, 58, 59, 63, 73, 76, 77, 82, 83, 85, 87, 88, 91], "g": [2, 3, 4, 8, 10, 20, 31, 32, 36, 37, 43, 46, 53, 54, 56, 59, 60, 61, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94], "manual": [2, 63, 75, 82, 89, 90, 91, 93, 94, 95], "pytorch": [2, 32, 33, 36, 63, 73, 75, 82, 85, 87, 92], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 42, 46, 50, 60, 63, 75, 76, 77, 80, 82, 84, 87, 89, 90, 91, 92, 94, 95], "__init__": [2, 33, 63, 83], "independ": [2, 3, 8, 52, 63, 80, 90, 91, 95], "compat": [2, 32, 35, 36, 50, 63, 64, 67, 71, 73, 82, 90, 91, 93, 94], "neural": [2, 33, 50, 60, 63, 75, 82, 83, 87, 89, 91], "network": [2, 32, 33, 36, 50, 60, 63, 75, 80, 82, 83, 87, 89, 91, 94], "typic": [2, 32, 36, 60, 63, 75, 77, 79, 80, 83, 89, 90, 93, 94], "initi": [2, 3, 11, 16, 32, 36, 51, 63, 80, 82, 93], "insid": [2, 36, 63, 82, 84], "There": [2, 3, 73, 84, 86], "two": [2, 3, 8, 16, 22, 31, 32, 35, 36, 43, 46, 56, 58, 59, 74, 76, 77, 79, 80, 82, 83, 84, 87, 91, 92, 94, 95], "new": [2, 5, 12, 20, 32, 35, 36, 41, 45, 46, 51, 63, 75, 76, 80, 81, 82, 89, 90, 94, 95], "notion": 2, "confid": [2, 3, 8, 20, 31, 35, 37, 40, 42, 46, 51, 52, 53, 56, 58, 59, 60, 61, 63, 67, 71, 73, 79, 80, 83, 84, 86, 87, 88, 90, 92, 93, 95], "packag": [2, 4, 5, 7, 8, 9, 13, 30, 34, 37, 38, 46, 49, 56, 59, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "prune": [2, 3, 37, 53, 63, 74, 88], "everyth": [2, 59, 84], "els": [2, 59, 76, 81, 82, 83, 86, 87, 88], "mathemat": [2, 3, 8, 40, 87], "keep": [2, 11, 12, 46, 73, 76, 81, 82, 92], "belong": [2, 3, 8, 31, 37, 39, 40, 52, 53, 54, 55, 60, 61, 65, 69, 71, 72, 77, 83, 84, 87, 89, 92, 95], "2": [2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 50, 52, 53, 55, 56, 59, 60, 61, 63, 64, 68, 69, 71, 72, 81, 82, 90], "error": [2, 3, 4, 8, 32, 36, 37, 39, 40, 46, 52, 53, 55, 56, 58, 59, 61, 63, 65, 67, 68, 71, 74, 75, 76, 77, 79, 80, 81, 85, 93], "erron": [2, 3, 31, 37, 40, 46, 52, 53, 61, 63, 64, 65, 89, 91], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 35, 42, 44, 45, 51, 55, 58, 63, 64, 69, 71, 72, 73, 79, 80, 82, 87, 88, 89, 91, 92, 93, 94, 95], "linear_model": [2, 4, 31, 46, 63, 73, 75, 76, 77, 80, 82, 84, 86, 89, 94], "logisticregress": [2, 3, 4, 31, 46, 73, 75, 76, 77, 80, 82, 84, 86, 89, 94], "logreg": 2, "cl": [2, 12, 26, 63, 73, 82, 84, 91, 93, 94], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 32, 35, 36, 37, 41, 42, 46, 50, 51, 53, 60, 61, 63, 69, 73, 75, 76, 77, 80, 81, 82, 84, 86, 88, 89, 91, 94], "x_train": [2, 76, 77, 84, 86, 87, 91, 93], "labels_maybe_with_error": 2, "had": [2, 3, 63, 88], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 35, 36, 37, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 78, 85, 86, 90, 91, 94], "pred": [2, 37, 46, 90, 91, 93, 94], "x_test": [2, 76, 77, 84, 87, 91, 93], "might": [2, 51, 63, 68, 76, 77, 82, 83, 88, 93, 94], "case": [2, 3, 11, 31, 42, 51, 63, 75, 76, 77, 79, 81, 82, 83, 84, 89, 91, 93, 94, 95], "standard": [2, 3, 4, 26, 31, 37, 50, 52, 53, 55, 61, 63, 73, 76, 77, 79, 81, 84, 88, 93], "adapt": [2, 32, 34, 46, 49, 63, 89], "skorch": [2, 63, 73, 82], "kera": [2, 49, 56, 59, 63, 73, 82, 88], "scikera": [2, 50, 63, 82], "open": [2, 35, 81, 88, 95], "doesn": [2, 63, 73], "t": [2, 3, 8, 15, 23, 32, 33, 35, 36, 37, 42, 44, 45, 55, 60, 61, 63, 69, 71, 72, 73, 76, 77, 79, 80, 81, 83, 84, 87, 88, 91, 95], "alreadi": [2, 4, 8, 14, 32, 35, 36, 40, 50, 51, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 93, 94], "exist": [2, 4, 8, 10, 16, 32, 35, 36, 45, 50, 56, 58, 60, 63, 73, 74, 76, 77, 80, 86, 94, 95], "made": [2, 4, 14, 32, 36, 63, 80, 82, 83, 86, 88, 90, 91, 93, 94], "easi": [2, 40, 63, 76, 77, 81, 82, 84, 87], "inherit": [2, 5, 33, 63], "baseestim": [2, 36, 63], "yourmodel": [2, 63], "def": [2, 5, 12, 32, 36, 50, 63, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 94, 95], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 32, 33, 35, 36, 37, 42, 60, 61, 63, 76, 80, 81, 83, 87, 92, 93, 94, 95], "refer": [2, 8, 14, 32, 36, 52, 53, 55, 56, 58, 59, 63, 67, 68, 76, 77, 79, 80, 82, 83, 84, 87, 90, 91], "origin": [2, 4, 8, 36, 37, 45, 46, 50, 52, 53, 56, 59, 60, 63, 64, 67, 69, 71, 76, 79, 80, 82, 83, 84, 88, 89, 91, 93, 94, 95], "total": [2, 3, 31, 35, 46, 52, 72, 82, 83, 92], "state": [2, 3, 4, 32, 33, 36, 41, 63, 84, 87, 88, 95], "art": [2, 33, 84, 87], "northcutt": [2, 3, 31, 60, 61], "et": [2, 3, 31, 33, 60, 61], "al": [2, 3, 31, 33, 60, 61], "2021": [2, 3, 31, 60, 61], "weak": [2, 59], "supervis": [2, 8, 76, 77, 82, 86], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 31, 32, 34, 35, 36, 37, 41, 45, 46, 49, 56, 59, 60, 61, 63, 65, 69, 71, 74, 76, 85, 90], "uncertainti": [2, 8, 39, 60, 63, 82, 89, 91], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 29, 32, 36, 37, 40, 42, 51, 58, 59, 63, 73, 76, 77, 80, 82, 83, 84, 87, 90, 94], "work": [2, 3, 5, 8, 10, 26, 31, 32, 35, 36, 37, 40, 45, 46, 47, 50, 51, 61, 63, 73, 74, 76, 77, 81, 89, 91, 94], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 32, 34, 35, 36, 45, 46, 49, 51, 52, 55, 56, 60, 61, 63, 67, 68, 69, 71, 73, 74, 76, 77, 79, 80, 82, 83, 84, 87, 88, 89, 95], "deep": [2, 34, 36, 49, 50, 63, 80], "see": [2, 3, 4, 11, 12, 28, 31, 32, 35, 36, 37, 42, 46, 50, 52, 53, 55, 56, 59, 60, 61, 63, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "subfield": 2, "theori": [2, 84], "machin": [2, 4, 12, 14, 28, 34, 49, 63, 76, 77, 81, 86], "across": [2, 3, 4, 5, 8, 11, 20, 31, 35, 42, 52, 59, 60, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 90, 91], "varieti": [2, 82, 93, 94], "like": [2, 3, 4, 5, 8, 12, 31, 32, 35, 36, 37, 40, 46, 50, 51, 52, 55, 56, 58, 61, 63, 64, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "pu": [2, 46], "input": [2, 3, 4, 8, 14, 22, 31, 32, 35, 36, 40, 42, 45, 46, 47, 50, 59, 63, 73, 74, 75, 77, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 94, 95], "discret": [2, 29, 37, 40, 46, 60, 61, 65, 67, 68], "vector": [2, 3, 4, 8, 14, 37, 40, 42, 43, 46, 60, 61, 73, 75, 76, 77, 79, 80, 83, 84, 87, 88, 89, 92, 94, 95], "would": [2, 3, 4, 32, 35, 36, 37, 46, 53, 63, 73, 76, 82, 83, 84, 89, 91, 94, 95], "obtain": [2, 4, 6, 8, 14, 37, 51, 53, 56, 59, 61, 64, 75, 77, 80, 82, 86, 88, 90, 92, 95], "been": [2, 31, 37, 40, 45, 46, 51, 52, 56, 58, 60, 61, 63, 75, 76, 79, 82, 84, 86, 87, 88, 89, 92, 95], "dure": [2, 8, 14, 60, 63, 75, 79, 80, 82, 84, 87, 90, 91, 93, 94, 95], "denot": [2, 3, 40, 42, 46, 53, 60, 61, 71], "tild": 2, "paper": [2, 8, 51, 60, 69, 71, 81, 84, 86, 89, 91, 95], "cv_n_fold": [2, 3, 63, 94], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 36, 37, 39, 41, 42, 46, 51, 52, 55, 56, 59, 63, 64, 71, 76, 80, 81, 82, 87, 88, 89, 90, 92, 94, 95], "converge_latent_estim": [2, 3], "pulearn": [2, 46], "find_label_issues_kwarg": [2, 8, 63, 74, 82, 84], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 53, 69, 82], "clean": [2, 58, 61, 63, 64, 73, 76, 77, 81, 91, 93, 94], "even": [2, 3, 31, 35, 39, 40, 46, 63, 75, 82, 84, 86, 87, 88], "messi": [2, 63, 84], "ridden": [2, 63], "autom": [2, 63, 73, 77, 81, 82], "robust": [2, 40, 63, 77, 82], "prone": [2, 63], "out": [2, 3, 4, 8, 14, 24, 32, 36, 37, 42, 50, 53, 54, 56, 59, 60, 61, 63, 64, 72, 73, 74, 81, 82, 84, 85, 87, 88, 89, 91, 92, 94, 95], "current": [2, 3, 5, 8, 11, 12, 20, 32, 36, 37, 42, 51, 58, 63, 76, 77, 82, 86, 88], "intend": [2, 11, 12, 13, 14, 28, 29, 38, 51, 67, 71, 75, 76, 77, 80, 84], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 55, 58, 59, 60, 61, 63, 65, 67, 68, 72, 74, 75, 76, 79, 80, 81, 82, 83, 84, 86, 88, 90, 93, 94, 95], "follow": [2, 3, 8, 12, 26, 29, 31, 32, 35, 36, 42, 44, 51, 52, 56, 58, 59, 60, 63, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "experiment": [2, 32, 33, 35, 36, 53, 74, 82], "wrapper": [2, 4, 50, 75, 91, 93, 94], "around": [2, 4, 58, 76, 77, 88, 89, 95], "fasttext": [2, 49], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 60, 63, 79, 80, 81, 82, 92, 93, 94, 95], "along": [2, 42, 53, 71, 76, 77, 82, 83, 89], "dimens": [2, 46, 65, 68, 82, 83, 89, 92], "select": [2, 7, 8, 22, 51, 61, 82, 83, 86, 89], "split": [2, 3, 4, 8, 10, 35, 42, 45, 46, 63, 75, 76, 77, 79, 80, 81, 83, 84, 87, 90, 93, 95], "cross": [2, 3, 8, 31, 37, 40, 41, 42, 53, 56, 59, 61, 63, 64, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 87, 88, 91, 92, 93, 94, 95], "fold": [2, 3, 31, 37, 40, 63, 75, 79, 81, 82, 88, 92, 93], "By": [2, 31, 52, 53, 63, 76, 82, 92], "need": [2, 3, 8, 31, 32, 35, 36, 37, 52, 53, 55, 60, 63, 73, 75, 76, 77, 80, 82, 84, 86, 87, 88, 92, 94], "holdout": [2, 3, 63], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 46, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 65, 67, 73, 74, 76, 77, 81, 84, 85, 88, 89, 91, 92, 94], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 30, 32, 34, 35, 36, 37, 49, 51, 60, 63, 74, 76, 77, 79, 80, 82, 83, 86, 87, 89, 91, 92, 93, 94, 95], "numer": [2, 3, 4, 8, 11, 20, 26, 29, 42, 58, 60, 63, 68, 73, 74, 75, 76, 77, 78, 80, 83, 84, 86, 87, 89, 91, 93, 94], "consist": [2, 3, 32, 36, 46, 51, 92, 95], "latent": [2, 3, 40], "thei": [2, 3, 4, 13, 19, 22, 25, 32, 33, 34, 36, 37, 38, 44, 46, 50, 53, 58, 61, 63, 64, 67, 71, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, 94, 95], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 40, 46, 52, 63, 77, 80], "close": [2, 3, 8, 35, 40, 60, 75, 76, 77, 79, 80, 82, 83, 84, 88], "form": [2, 3, 8, 32, 33, 36, 40, 45, 46, 61, 63, 82], "equival": [2, 3, 32, 36, 40, 60, 89, 91], "iter": [2, 3, 31, 32, 36, 37, 46, 52, 53, 63, 82, 86, 92], "enforc": [2, 32, 36, 46], "perfectli": [2, 31, 52, 84], "certain": [2, 3, 4, 32, 36, 50, 59, 63, 76, 77, 81, 88, 89], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 35, 36, 37, 41, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 71, 76, 77, 82, 83, 95], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 32, 35, 36, 37, 39, 42, 45, 50, 51, 53, 60, 61, 63, 69, 71, 76], "filter": [2, 3, 8, 35, 45, 52, 54, 55, 57, 59, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 80, 81, 82, 83, 87, 88, 91, 92, 93, 94, 95], "find_label_issu": [2, 3, 8, 26, 35, 37, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 87, 88, 91, 92, 93, 94, 95], "particularli": [2, 73, 86, 89], "filter_bi": [2, 3, 35, 37, 53, 74, 82], "frac_nois": [2, 37, 53, 69, 82], "min_examples_per_class": [2, 37, 53, 77, 82, 84], "impact": [2, 8, 76, 77, 83], "ml": [2, 4, 8, 13, 63, 73, 76, 77, 79, 80, 83, 86, 87, 91, 93, 94], "accuraci": [2, 33, 61, 75, 82, 83, 84, 86, 89, 91, 92, 93, 94], "n_job": [2, 35, 37, 53, 65, 67, 69, 82, 89, 92], "disabl": [2, 32, 36, 37, 89], "process": [2, 3, 5, 11, 14, 32, 35, 36, 37, 45, 51, 53, 59, 65, 67, 69, 75, 76, 82, 86, 90, 94], "caus": [2, 37, 42, 76, 77, 82], "rank": [2, 3, 8, 31, 35, 37, 42, 52, 53, 54, 56, 57, 59, 60, 62, 66, 68, 69, 70, 72, 73, 74, 76, 77, 81, 82, 87, 88, 89, 92, 93, 94, 95], "get_label_quality_scor": [2, 35, 37, 38, 42, 51, 53, 54, 55, 56, 57, 58, 61, 62, 64, 66, 67, 69, 70, 71, 74, 84, 87, 88, 92, 95], "adjust_pred_prob": [2, 8, 55, 60, 61, 84], "control": [2, 4, 7, 8, 14, 35, 37, 51, 59, 60, 63, 69, 71, 76, 77, 81, 82], "how": [2, 3, 4, 8, 10, 11, 12, 14, 20, 31, 32, 33, 35, 36, 40, 46, 51, 52, 55, 56, 58, 60, 61, 63, 67, 71, 73, 76, 77, 79, 80, 81, 83, 88, 89, 90, 91, 92, 93, 94], "much": [2, 8, 31, 35, 37, 63, 82, 84, 86, 89], "output": [2, 3, 4, 8, 14, 32, 33, 36, 40, 46, 50, 51, 52, 56, 58, 59, 60, 63, 67, 68, 71, 72, 73, 74, 75, 76, 80, 81, 82, 83, 88, 89, 90, 91, 94], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 46, 51, 52, 53, 58, 60, 61, 63, 65, 67, 68, 72, 74, 75, 77, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "suppress": [2, 35, 51, 58, 60, 61, 63, 65, 67, 68, 92, 95], "statement": [2, 35, 51, 58, 60, 61, 63, 65, 67, 68], "big": [2, 35, 53, 59, 63, 84], "limit": [2, 4, 14, 35, 53, 88, 92, 95], "memori": [2, 32, 35, 36, 53, 59, 65, 67, 76, 92], "label_issues_batch": [2, 34, 53, 82], "find_label_issues_batch": [2, 34, 35, 53, 82], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 31, 35, 37, 39, 40, 41, 42, 43, 46, 47, 51, 52, 53, 55, 56, 59, 60, 61, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 91, 93, 94], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 35, 58, 59, 60, 61, 67, 71, 76, 88, 89, 92, 95], "inverse_noise_matrix": [2, 3, 8, 40, 46, 74, 84], "label_issu": [2, 35, 37, 53, 56, 63, 65, 74, 75, 80, 82, 83, 84, 87, 91, 93, 94], "clf_kwarg": [2, 3, 8, 63], "clf_final_kwarg": [2, 63], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 31, 35, 37, 39, 51, 52, 53, 55, 56, 58, 59, 61, 63, 64, 67, 71, 73, 75, 79, 80, 83, 84, 86, 88, 90, 91], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 35, 36, 37, 39, 44, 46, 53, 55, 56, 59, 61, 63, 64, 65, 67, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 91, 92, 93, 94, 95], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 31, 35, 37, 53, 56, 59, 61, 63, 64, 65, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 87, 89, 91, 92, 93, 94, 95], "final": [2, 8, 63, 79, 88, 90, 91, 93], "remain": [2, 63, 74, 83, 87, 91, 93, 94, 95], "datasetlik": [2, 46, 63], "beyond": [2, 4, 5, 7, 9, 30, 73, 91, 92], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 41, 50, 51, 52, 63, 71, 75, 76, 77, 79, 80, 82, 84, 86, 91, 93, 94, 95], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 46, 47, 50, 51, 52, 63, 68, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 91, 92, 94, 95], "scipi": [2, 4, 11, 46], "spars": [2, 4, 8, 11, 14, 16, 27, 46, 47, 79], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 32, 33, 36, 75, 80, 81, 83, 89, 94], "util": [2, 4, 8, 14, 28, 32, 33, 36, 38, 51, 56, 59, 63, 73, 74, 75, 76, 77, 82, 83, 84, 89], "tensorflow": [2, 46, 50, 73, 75, 82], "object": [2, 4, 8, 10, 11, 14, 28, 32, 33, 35, 36, 42, 46, 47, 50, 53, 56, 57, 58, 59, 60, 63, 71, 73, 75, 77, 79, 83, 84, 85, 87, 91, 94], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 35, 36, 37, 43, 45, 46, 47, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 67, 68, 69, 71, 72, 74, 75, 76, 77, 81, 82, 83, 84, 87, 88, 91, 94, 95], "index_list": 2, "subset": [2, 3, 4, 14, 31, 35, 37, 46, 61, 68, 72, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 93, 94, 95], "wa": [2, 3, 10, 12, 35, 46, 51, 52, 58, 60, 72, 75, 76, 77, 79, 80, 82, 84, 87, 88, 90, 92, 93, 94, 95], "abl": [2, 3, 8, 63, 75, 82, 84, 86, 87], "format": [2, 3, 4, 8, 10, 32, 35, 36, 37, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 75, 76, 77, 79, 81, 83, 86, 91, 92, 93, 95], "make": [2, 3, 16, 32, 35, 36, 42, 50, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "sure": [2, 35, 37, 42, 75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 93, 94], "shuffl": [2, 8, 46, 75, 80, 83, 87, 89], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 36, 40, 42, 45, 46, 51, 56, 58, 63, 69, 71, 72, 73, 75, 76, 77, 79, 80, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "batch": [2, 35, 46, 50, 51, 65, 67, 82, 83, 89], "order": [2, 4, 8, 29, 31, 32, 36, 37, 40, 41, 42, 46, 51, 52, 53, 56, 59, 60, 61, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 84, 88, 91, 92, 94, 95], "destroi": [2, 46], "oper": [2, 32, 35, 36, 46, 50, 61, 73, 80, 82, 89, 93, 94], "eg": [2, 8, 46, 56, 59, 76, 77, 82], "repeat": [2, 46, 51, 86, 89], "appli": [2, 32, 34, 36, 37, 42, 43, 45, 46, 55, 60, 69, 75, 76, 77, 79, 82, 83, 86, 87, 89, 90, 91, 92, 93, 94], "array_lik": [2, 3, 31, 37, 46, 53, 60, 64], "some": [2, 3, 4, 8, 12, 20, 31, 32, 34, 36, 37, 40, 45, 46, 49, 51, 52, 53, 55, 56, 59, 60, 61, 63, 65, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "seri": [2, 3, 35, 46, 47, 63, 71, 82], "row": [2, 3, 4, 8, 11, 23, 31, 35, 37, 39, 40, 46, 51, 52, 53, 55, 60, 61, 63, 68, 69, 71, 72, 75, 76, 79, 80, 81, 82, 83, 86, 87, 89, 93, 95], "rather": [2, 3, 22, 31, 46, 50, 51, 58, 67, 71, 86, 90, 91, 92, 94, 95], "leav": [2, 37], "per": [2, 3, 11, 31, 35, 37, 42, 45, 51, 52, 53, 55, 58, 59, 61, 64, 65, 67, 71, 77, 82, 88, 95], "determin": [2, 3, 8, 10, 14, 20, 22, 26, 31, 35, 37, 42, 46, 51, 53, 56, 58, 61, 67, 71, 76, 82, 86, 88, 89, 91], "cutoff": [2, 3, 89], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 31, 32, 36, 37, 46, 51, 58, 60, 61, 64, 67, 71, 75, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 94], "section": [2, 3, 5, 8, 74, 79, 83, 88], "3": [2, 3, 4, 5, 8, 29, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 46, 50, 53, 60, 61, 63, 64, 69, 71, 81, 82, 90], "equat": [2, 3, 40], "advanc": [2, 3, 4, 7, 8, 14, 58, 60, 71, 74, 77, 78, 84], "user": [2, 3, 4, 8, 12, 14, 23, 28, 29, 32, 36, 37, 58, 60, 61, 63, 67, 71, 84], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 32, 35, 36, 37, 42, 45, 51, 52, 53, 56, 58, 60, 61, 63, 64, 72, 74, 75, 77, 80, 83, 86, 88, 91, 94], "automat": [2, 3, 4, 22, 31, 73, 79, 80, 81, 82, 83, 86, 87, 88, 91, 92, 93, 94, 95], "greater": [2, 3, 4, 7, 8, 24, 35, 46, 58, 77, 81, 82, 95], "count": [2, 20, 22, 31, 35, 37, 40, 46, 52, 53, 59, 74, 82, 83, 88], "observ": [2, 3, 40, 75, 76, 77, 86, 89, 91], "mislabel": [2, 8, 31, 35, 37, 40, 51, 52, 53, 56, 58, 61, 67, 69, 71, 73, 75, 79, 80, 82, 83, 84, 88, 91, 93, 94], "one": [2, 3, 4, 8, 22, 31, 32, 35, 36, 37, 42, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 83, 86, 89, 90, 91, 93, 94, 95], "get_label_issu": [2, 34, 35, 62, 63, 84, 91, 93, 94], "either": [2, 3, 5, 8, 32, 35, 36, 37, 51, 53, 58, 60, 61, 65, 67, 77, 82, 87, 88], "boolean": [2, 5, 8, 20, 35, 37, 45, 51, 53, 56, 61, 63, 65, 67, 68, 73, 75, 77, 80, 82, 83, 88, 91, 92, 94], "label_issues_mask": [2, 37, 61, 63, 74], "indic": [2, 3, 4, 5, 8, 11, 20, 31, 35, 36, 37, 39, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 67, 69, 71, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "its": [2, 4, 7, 8, 14, 32, 35, 36, 37, 44, 45, 53, 56, 59, 60, 61, 63, 65, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 94, 95], "return_indices_ranked_bi": [2, 35, 37, 53, 69, 74, 82, 84, 93, 94], "significantli": [2, 83, 84, 86, 90], "reduc": [2, 35, 37, 46, 75, 82], "time": [2, 8, 32, 35, 36, 46, 51, 74, 76, 81, 82, 83, 84, 88, 89, 91, 92, 93, 94, 95], "take": [2, 4, 8, 31, 32, 36, 41, 42, 46, 50, 61, 79, 83, 86, 87, 88, 93, 95], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 30, 32, 35, 36, 63, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "skip": [2, 8, 32, 36, 63, 75, 82, 87, 95], "slow": [2, 3], "step": [2, 5, 22, 42, 59, 82, 83, 84, 86, 90], "caution": [2, 4, 82], "previous": [2, 4, 11, 46, 60, 63, 74, 75, 76, 79, 80, 86, 90, 93], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 41, 42, 46, 63, 76, 79, 82, 83, 91, 92, 93, 95], "individu": [2, 8, 11, 22, 32, 36, 51, 55, 58, 61, 63, 69, 71, 74, 77, 79, 82, 86, 87, 88, 93, 95], "still": [2, 35, 36, 46, 60, 75, 82, 83, 89, 93], "extra": [2, 32, 36, 46, 50, 51, 52, 63, 80, 82, 83, 86, 89], "receiv": [2, 8, 32, 36, 52, 55, 56, 63, 65, 69, 77, 88], "overwritten": [2, 63], "callabl": [2, 3, 32, 36, 42, 45, 50, 55, 82], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 35, 36, 38, 41, 45, 46, 59, 61, 63, 68, 75, 76, 77, 82, 83, 84, 87, 95], "appropri": [2, 8, 14, 53, 61, 76, 79, 87, 88], "earli": [2, 83], "stop": [2, 83], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 31, 46, 60, 76, 79, 83, 87, 91, 93, 95], "f": [2, 5, 75, 76, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "ignor": [2, 32, 36, 45, 50, 63, 68, 72, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "allow": [2, 31, 32, 35, 36, 39, 46, 51, 59, 60, 63, 65, 67, 75, 82, 83, 90, 92, 94], "access": [2, 8, 11, 32, 36, 63, 77, 80, 83, 87, 94], "hyperparamet": [2, 55, 60, 83], "purpos": [2, 76, 77, 82, 87, 91], "want": [2, 4, 8, 31, 35, 47, 51, 53, 63, 76, 80, 81, 83, 86, 88, 89, 90, 92, 94, 95], "explicitli": [2, 6, 8, 36, 63, 82], "yourself": [2, 4, 35, 77], "altern": [2, 5, 8, 42, 46, 50, 51, 61, 74, 75, 79, 80, 82, 83, 84, 86, 87, 89, 91, 94], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 32, 35, 36, 37, 46, 50, 51, 53, 60, 61, 63, 67, 68, 71, 72, 73, 76, 77, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 93, 94], "effect": [2, 8, 23, 32, 36, 51, 60, 63, 79, 80, 82, 83, 89], "offer": [2, 4, 75, 76, 77, 80, 82, 84, 87, 94], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 51, 63, 76, 80, 82, 83, 84, 86, 88, 89, 90, 91, 92, 94], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 32, 35, 36, 42, 60, 63, 76, 93], "label_issues_df": [2, 63, 83], "similar": [2, 8, 31, 32, 36, 46, 51, 55, 56, 58, 60, 63, 67, 71, 76, 77, 79, 80, 82, 83, 84, 88, 89, 92], "document": [2, 3, 4, 8, 12, 14, 31, 32, 35, 36, 37, 42, 45, 50, 52, 53, 55, 58, 59, 60, 63, 67, 68, 69, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 46, 56, 63, 76, 77], "were": [2, 3, 4, 31, 36, 52, 58, 71, 75, 79, 82, 84, 86, 88, 90, 92, 93], "present": [2, 3, 4, 8, 10, 11, 18, 31, 46, 60, 68, 73, 79, 82, 83, 89], "actual": [2, 3, 4, 31, 51, 52, 61, 77, 82, 84, 95], "num_class": [2, 31, 35, 46, 50, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 93, 94], "uniqu": [2, 27, 46, 68, 76, 82, 87, 89], "given_label": [2, 4, 26, 31, 40, 63, 68, 72, 75, 76, 77, 79, 80, 83, 84, 91, 92, 94, 95], "normal": [2, 3, 16, 22, 27, 37, 39, 42, 44, 45, 46, 61, 82, 84, 89], "trick": [2, 82], "distribut": [2, 3, 4, 8, 22, 24, 31, 36, 37, 41, 44, 51, 59, 60, 61, 73, 76, 77, 79, 80, 83, 88, 89], "account": [2, 31, 51, 55, 60, 61, 80, 82, 84, 86, 87, 89, 91, 94], "word": [2, 3, 45, 71, 72, 82], "remov": [2, 8, 27, 31, 32, 36, 37, 63, 73, 80, 81, 82, 83, 87, 89, 91, 93, 94], "so": [2, 3, 4, 5, 8, 12, 22, 31, 32, 35, 36, 37, 46, 51, 52, 58, 61, 63, 67, 71, 75, 76, 77, 80, 83, 84, 87, 89, 92], "proportion": [2, 8, 37], "just": [2, 3, 4, 8, 11, 31, 33, 35, 46, 50, 61, 63, 65, 73, 74, 75, 77, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93, 94], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 32, 33, 36, 37, 42, 45, 46, 51, 53, 55, 60, 61, 63, 64, 65, 73, 75, 80, 81, 82, 83, 84, 89, 90, 91, 93, 94], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 44, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 70, 73, 76, 78, 83, 85, 87, 91, 92, 93, 94, 95], "arg": [2, 10, 20, 23, 27, 32, 33, 36, 42, 46, 61, 63], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 42, 50, 63, 65, 67, 69, 82], "test": [2, 8, 22, 36, 42, 50, 63, 73, 76, 77, 79, 80, 83, 90, 91, 93, 94, 95], "expect": [2, 3, 32, 36, 37, 42, 51, 60, 61, 63, 82, 84, 86, 87, 88, 91, 93, 94, 95], "class_predict": 2, "evalu": [2, 8, 32, 33, 34, 35, 36, 59, 63, 75, 76, 77, 82, 83, 84, 86, 90, 91, 92, 93, 94], "simpli": [2, 31, 61, 76, 77, 79, 80, 82, 84, 87, 91, 92, 94, 95], "quantifi": [2, 4, 5, 8, 11, 37, 55, 60, 63, 73, 77, 79, 80, 83, 84, 88], "save_spac": [2, 8, 62, 63], "potenti": [2, 8, 31, 37, 45, 53, 56, 59, 61, 63, 65, 67, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 92, 93, 95], "cach": [2, 80, 94], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 46, 47, 50, 51, 52, 74, 75, 76, 77, 79, 80, 81, 82, 84, 86, 91, 92, 93, 94], "unlik": [2, 8, 37, 39, 42, 50, 52, 53, 55, 71, 76, 86, 87, 89, 91], "both": [2, 4, 8, 14, 22, 31, 32, 36, 37, 46, 51, 53, 61, 65, 67, 72, 73, 76, 82, 83, 84, 86, 95], "mask": [2, 35, 37, 45, 46, 53, 56, 61, 63, 65, 67, 68, 73, 81, 82, 86, 88, 92, 95], "prefer": [2, 61, 69, 87], "plan": 2, "subsequ": [2, 3, 32, 36, 80, 82, 84, 88, 94], "invok": [2, 32, 36, 84, 90], "scratch": [2, 63], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 30, 32, 35, 36, 37, 50, 51, 53, 55, 59, 60, 61, 63, 64, 65, 67, 73, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "share": [2, 61, 63], "mostli": [2, 46, 58, 63, 87, 91], "longer": [2, 29, 41, 42, 45, 63, 74, 80, 82, 88, 94], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 52, 63, 71, 76, 77, 81, 82, 95], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 35, 39, 51, 52, 55, 59, 63, 68, 71, 75, 76, 79, 80, 81, 82, 83, 84, 86, 89], "docstr": [2, 31, 32, 36, 46, 63, 81, 84], "unless": [2, 32, 36, 63, 82], "our": [2, 3, 8, 50, 51, 61, 63, 73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "is_label_issu": [2, 26, 63, 75, 76, 77, 79, 80, 83, 84, 87, 91, 94], "entir": [2, 8, 22, 35, 37, 40, 52, 53, 58, 61, 63, 65, 67, 68, 73, 76, 77, 82, 88, 89, 90, 92, 95], "accur": [2, 3, 4, 8, 14, 31, 35, 37, 51, 52, 53, 56, 59, 61, 63, 64, 65, 67, 68, 74, 77, 79, 80, 82, 83, 86, 91], "label_qu": [2, 51, 63, 84, 86, 91, 94], "measur": [2, 31, 51, 52, 63, 73, 81, 82, 84, 86, 87, 91, 92, 93, 95], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 31, 35, 37, 39, 42, 51, 52, 53, 55, 56, 58, 61, 63, 64, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 91, 93, 94], "lower": [2, 4, 5, 8, 11, 24, 35, 42, 44, 51, 52, 55, 58, 59, 61, 63, 64, 67, 71, 75, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 94, 95], "eas": 2, "comparison": [2, 32, 36, 59, 84, 86], "against": [2, 32, 36, 76, 79, 82, 86, 87], "predicted_label": [2, 4, 26, 63, 68, 72, 75, 76, 77, 79, 80, 83, 84, 91, 92, 94], "ad": [2, 32, 36, 77, 86, 91], "precis": [2, 53, 56, 59, 82, 84, 92, 95], "definit": [2, 5, 29, 42, 63, 79, 93], "accessor": [2, 63], "describ": [2, 8, 16, 51, 60, 61, 63, 69, 71, 84, 86, 87, 88, 90, 95], "precomput": [2, 4, 40, 63, 81], "clear": [2, 32, 36, 63, 80, 91, 94], "save": [2, 4, 14, 32, 35, 36, 59, 63, 82, 88, 92, 95], "space": [2, 8, 60, 63, 79, 81, 83], "place": [2, 32, 36, 46, 63, 86, 93], "larg": [2, 35, 63, 79, 80, 82, 83, 88, 89, 92, 95], "deploi": [2, 63, 79, 80, 82, 83], "care": [2, 8, 32, 36, 63, 80, 82, 84], "avail": [2, 4, 5, 10, 12, 28, 36, 63, 82, 84, 86, 88, 91], "cannot": [2, 4, 10, 12, 46, 90, 95], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 36, 42, 63], "__init_subclass__": [2, 34, 36, 62, 63], "set_": [2, 36, 63], "_request": [2, 36, 63], "pep": [2, 36, 63], "487": [2, 36, 63], "look": [2, 4, 5, 14, 32, 36, 46, 63, 68, 76, 77, 79, 80, 82, 84, 86, 87, 88, 89, 92, 93, 95], "inform": [2, 4, 5, 8, 11, 14, 28, 32, 36, 46, 51, 52, 56, 59, 63, 68, 71, 72, 73, 75, 76, 79, 80, 84, 86, 89, 92, 95], "__metadata_request__": [2, 36, 63], "infer": [2, 36, 46, 63, 68, 72, 83, 86, 87, 93, 94], "signatur": [2, 32, 36, 63], "accept": [2, 32, 36, 61, 63, 76, 77], "metadata": [2, 36, 63, 79, 80, 83, 95], "through": [2, 4, 5, 36, 63, 75, 77, 80, 81, 82, 86, 88, 89, 94], "develop": [2, 7, 36, 63, 82, 84, 95], "request": [2, 36, 63, 77, 80, 81, 87, 93, 94, 95], "those": [2, 3, 8, 35, 36, 37, 50, 51, 53, 59, 63, 67, 71, 72, 73, 75, 82, 83, 88, 92], "http": [2, 4, 5, 7, 8, 9, 16, 30, 32, 33, 35, 36, 39, 46, 56, 59, 60, 63, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "www": [2, 36, 63, 89], "org": [2, 16, 32, 33, 36, 46, 60, 63, 82, 84, 95], "dev": [2, 36, 63], "0487": [2, 36, 63], "get_metadata_rout": [2, 34, 36, 62, 63], "rout": [2, 36, 63], "pleas": [2, 32, 36, 50, 63, 73, 75, 76, 77, 80, 81, 82, 83, 84, 86, 87, 89, 91, 94, 95], "guid": [2, 5, 36, 63, 74, 83], "mechan": [2, 32, 36, 63], "metadatarequest": [2, 36, 63], "encapsul": [2, 14, 36, 58, 63], "get_param": [2, 34, 36, 49, 50, 62, 63], "subobject": [2, 36, 63], "param": [2, 8, 32, 36, 50, 60, 63, 82], "name": [2, 4, 5, 8, 10, 11, 29, 31, 32, 36, 41, 42, 46, 50, 51, 52, 59, 63, 68, 72, 75, 77, 80, 81, 82, 83, 84, 87, 91, 92, 94, 95], "set_fit_request": [2, 34, 36, 62, 63], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 35, 36, 37, 40, 42, 45, 46, 50, 51, 52, 56, 58, 59, 61, 63, 68, 72, 75, 76, 82, 86, 87, 88, 95], "unchang": [2, 32, 36, 63, 95], "relev": [2, 14, 22, 36, 63, 83], "enable_metadata_rout": [2, 36, 63], "set_config": [2, 36, 63], "meta": [2, 36, 63], "rais": [2, 4, 10, 11, 29, 32, 36, 39, 42, 63, 75, 82], "alia": [2, 32, 36, 63], "metadata_rout": [2, 36, 63], "retain": [2, 36, 46, 63], "chang": [2, 32, 35, 36, 39, 63, 71, 75, 76, 80, 82, 88, 89, 94, 95], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 30, 32, 34, 36, 38, 39, 46, 49, 50, 61, 63, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95], "sub": [2, 36, 58, 63], "pipelin": [2, 36, 63, 91], "otherwis": [2, 8, 29, 31, 32, 35, 36, 37, 43, 45, 46, 53, 60, 63, 65, 67, 68, 72, 80, 82, 94], "updat": [2, 11, 32, 35, 36, 63, 74, 76, 83], "set_param": [2, 34, 36, 49, 50, 62, 63], "simpl": [2, 32, 36, 37, 51, 61, 63, 76, 77, 79, 80, 83, 86, 89, 91, 93, 94], "well": [2, 3, 8, 32, 36, 39, 40, 51, 53, 59, 61, 63, 68, 71, 72, 74, 76, 77, 79, 80, 82, 83, 84, 86, 88, 89], "nest": [2, 32, 36, 47, 63, 69, 71, 72, 95], "latter": [2, 32, 36, 63, 89], "compon": [2, 36, 63], "__": [2, 36, 63], "set_score_request": [2, 62, 63], "structur": [3, 60, 79, 93], "unobserv": 3, "less": [3, 4, 8, 27, 35, 42, 51, 60, 61, 65, 67, 71, 77, 79, 81, 82, 83, 84, 88, 95], "channel": [3, 75, 84], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 31, 40, 46, 52, 77, 81, 94], "inv": 3, "confident_joint": [3, 20, 31, 37, 46, 52, 53, 74, 82, 84], "un": 3, "under": [3, 8, 32, 36, 52, 59, 60, 77, 89], "joint": [3, 31, 37, 40, 46, 52, 53, 81], "num_label_issu": [3, 35, 37, 53, 68, 72, 74], "estimation_method": [3, 35], "off_diagon": 3, "multi_label": [3, 31, 37, 46, 47, 53, 87], "don": [3, 73, 77, 79, 80, 83, 84, 88, 91], "statis": 3, "compute_confident_joint": [3, 31, 37, 46, 53, 84], "off": [3, 37, 46, 58, 83, 84, 88, 89], "j": [3, 4, 31, 32, 36, 37, 53, 56, 59, 60, 69, 71, 72, 76, 77, 84, 92, 95], "confident_learn": [3, 37, 53, 84], "off_diagonal_calibr": 3, "calibr": [3, 37, 46, 51, 86], "cj": [3, 40, 46], "axi": [3, 27, 40, 42, 44, 65, 68, 75, 76, 77, 82, 83, 84, 86, 87, 89, 91, 92], "bincount": [3, 76, 77, 84, 86, 87], "alwai": [3, 8, 32, 36, 46, 75, 84, 91, 93, 94], "estimate_issu": 3, "over": [3, 8, 32, 35, 36, 58, 59, 65, 67, 77, 79, 81, 82, 83, 84, 89, 91, 93], "As": [3, 5, 73, 76, 77, 80, 84, 91, 95], "add": [3, 4, 5, 10, 11, 32, 36, 50, 59, 75, 76, 77, 80, 82, 83, 84, 87, 94], "approach": [3, 31, 35, 37, 79, 84, 87, 89, 91, 93], "custom": [3, 5, 8, 9, 26, 32, 35, 36, 42, 45, 61, 77, 80, 84, 91, 94], "know": [3, 76, 77, 79, 80, 82, 83, 84, 86, 91], "cut": [3, 58, 73, 84], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 89, 95], "underestim": 3, "few": [3, 59, 73, 77, 82, 86, 87, 88, 89, 95], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 45, 55, 56, 58, 59, 61, 64, 71, 81, 82, 87, 92, 95], "detail": [3, 4, 8, 12, 14, 28, 31, 32, 36, 42, 46, 50, 51, 52, 53, 55, 56, 58, 59, 60, 67, 68, 69, 73, 74, 75, 87, 89, 95], "num_issu": [3, 5, 35, 75, 76, 77, 79, 80, 83, 84], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 37, 42, 51, 81, 82, 88, 91, 94, 95], "p_": [3, 31, 37], "pair": [3, 4, 8, 31, 37, 84], "v": [3, 8, 35, 52, 53, 55, 61, 76, 77, 87, 88, 89, 90], "rest": [3, 4, 5, 7, 8, 9, 30, 52, 53, 55, 63, 76, 77, 79, 80, 82, 83, 84, 86, 91, 93, 94], "fashion": [3, 4, 65, 93], "2x2": 3, "incorrectli": [3, 31, 52, 53, 56, 79, 95], "calibrated_cj": 3, "c": [3, 8, 45, 53, 61, 73, 75, 76, 77, 79, 80, 82, 84, 87, 88, 89, 90, 91, 93], "whose": [3, 4, 8, 24, 32, 36, 40, 45, 51, 55, 58, 64, 67, 71, 72, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 89, 92, 95], "truli": [3, 89, 92], "estimate_joint": [3, 31, 84], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 53, 59, 84, 88, 90, 92, 95], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 51, 52, 59, 68, 88, 89], "done": [3, 8, 63, 76, 82, 84, 87, 89, 90], "overfit": [3, 8, 56, 59, 75, 76, 77, 79, 80, 83, 90, 93], "classifict": 3, "singl": [3, 4, 10, 22, 31, 32, 36, 42, 43, 46, 51, 52, 58, 59, 60, 61, 71, 75, 76, 82, 84, 87, 88, 93], "baselin": [3, 32, 37, 89, 91, 94], "proxi": 3, "union": [3, 4, 10, 42, 46, 47, 53, 59, 63, 67, 71, 82], "tupl": [3, 27, 32, 36, 40, 41, 43, 45, 46, 51, 53, 59, 67, 69, 71, 72, 75, 95], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 35, 40, 51, 65, 67, 73, 82, 83, 92, 94], "practic": [3, 77, 83, 84, 89, 91, 93, 94], "complet": [3, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 91], "gist": 3, "cj_ish": 3, "guess": [3, 40, 84, 86], "8": [3, 4, 5, 6, 41, 42, 43, 45, 55, 69, 71, 75, 76, 77, 79, 80, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "parallel": [3, 37, 59, 69, 81], "again": [3, 50, 82, 89, 93], "simplifi": [3, 12], "understand": [3, 7, 31, 52, 59, 77, 84, 91, 92, 95], "100": [3, 32, 36, 61, 76, 77, 79, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95], "optim": [3, 32, 33, 36, 50, 83, 86], "speed": [3, 37, 81, 82, 91, 94], "dtype": [3, 21, 22, 27, 32, 36, 45, 46, 55, 71, 75, 88], "enumer": [3, 32, 36, 75, 76, 77, 83, 95], "s_label": 3, "confident_bin": 3, "6": [3, 4, 36, 42, 46, 71, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "num_confident_bin": 3, "argmax": [3, 37, 61, 65, 68, 75, 82, 84, 88, 89, 92], "elif": 3, "estimate_lat": 3, "py_method": [3, 40], "cnt": [3, 40], "1d": [3, 4, 10, 14, 35, 37, 42, 43, 46, 47, 55, 64, 75, 93], "eqn": [3, 40], "margin": [3, 37, 40, 42, 61], "marginal_p": [3, 40], "shorthand": [3, 11], "proport": [3, 8, 31, 52, 84, 90], "poorli": [3, 40, 93], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 84], "variabl": [3, 5, 12, 23, 46, 63, 64, 75, 76, 79, 84, 87, 91], "exact": [3, 40, 76, 77, 79, 83, 93], "within": [3, 4, 8, 13, 32, 33, 36, 38, 53, 58, 67, 69, 71, 76, 77, 82, 83, 88, 92], "percent": 3, "often": [3, 31, 40, 52, 82, 84, 90, 92], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 46, 47, 59, 75, 76, 79, 80, 82, 83, 87, 88, 89, 91, 94], "wai": [3, 4, 50, 73, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 90, 93, 94], "pro": 3, "con": 3, "pred_proba": [3, 90], "combin": [3, 31, 76, 81, 82, 83, 84, 90, 91], "becaus": [3, 40, 46, 58, 80, 82, 84, 86, 88], "littl": [3, 35, 81, 88, 95], "uniform": [3, 61, 81, 82, 84], "20": [3, 5, 72, 75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 95], "Such": [3, 83, 89], "bound": [3, 21, 32, 36, 45, 55, 56, 58, 59, 88], "reason": [3, 20, 32, 36], "comment": [3, 45, 95], "end": [3, 4, 32, 36, 59, 83, 89, 92, 95], "file": [3, 4, 10, 34, 35, 49, 59, 75, 76, 79, 80, 81, 82, 88, 89, 92, 93, 95], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 84], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 74, 76, 77, 79, 80, 83, 84, 92, 93, 95], "five": [3, 56, 59, 84, 88], "estimate_cv_predicted_prob": [3, 84], "estimate_noise_matric": 3, "get_confident_threshold": [3, 34, 35], "amongst": [3, 8, 88], "confident_threshold": [3, 8, 20, 35, 60], "unifi": 4, "audit": [4, 7, 10, 11, 14, 75, 78, 79, 80, 82, 83, 84, 87, 88, 91], "kind": [4, 5, 75, 76, 79, 80, 81, 83, 84], "addit": [4, 5, 7, 8, 9, 11, 28, 30, 32, 36, 42, 47, 51, 59, 69, 75, 76, 79, 80, 84, 86, 89, 90, 93, 94], "depend": [4, 5, 7, 8, 9, 10, 11, 30, 34, 37, 39, 46, 49, 53, 60, 63, 64, 73], "instal": [4, 5, 7, 8, 9, 30, 32, 34, 35, 36, 37, 49, 50, 65, 67], "pip": [4, 5, 7, 9, 30, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "development": [4, 5, 7, 9, 30], "git": [4, 5, 7, 9, 30, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "github": [4, 5, 7, 9, 30, 32, 33, 46, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "com": [4, 5, 7, 9, 30, 32, 33, 35, 39, 46, 60, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "egg": [4, 5, 7, 9, 30, 73, 81], "label_nam": [4, 5, 6, 8, 10, 16, 27, 73, 75, 76, 77, 79, 80, 82, 83, 84, 87, 88, 91], "image_kei": [4, 83], "interfac": [4, 73, 82, 84], "librari": [4, 8, 36, 56, 59, 60, 73, 76, 80, 81, 82, 94], "goal": [4, 91], "track": [4, 11, 12, 73, 76, 81, 82, 84], "intermedi": [4, 7, 77], "statist": [4, 8, 11, 20, 22, 31, 51, 52, 59, 77, 79, 80, 84], "convert": [4, 10, 29, 32, 36, 43, 44, 47, 51, 58, 67, 71, 74, 75, 80, 81, 82, 83, 86, 87, 88, 94], "hug": [4, 10, 83], "face": [4, 10, 14, 81, 83, 87], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 36, 42, 51, 52, 58, 60, 76, 77, 80, 82, 83, 84, 86, 88], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 36, 46, 51, 52, 64, 68, 71, 72, 79, 80, 82, 86, 87, 94, 95], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 32, 36, 41, 46, 51, 52, 55, 56, 58, 59, 76, 77, 79, 80, 84, 86, 87, 88], "path": [4, 10, 32, 35, 36, 59, 75, 76, 82, 88], "local": [4, 10, 32, 33, 36, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 42, 60, 69, 71, 72, 73, 76, 77, 78, 81, 82, 84, 85, 86, 89], "txt": [4, 10, 95], "csv": [4, 10, 79, 80, 91, 93, 94], "json": [4, 10], "hub": [4, 10], "multiclass": [4, 10, 13, 42, 46, 51, 87], "regress": [4, 5, 10, 12, 14, 19, 26, 29, 76, 77, 80, 85, 86, 89, 94], "multilabel": [4, 10, 12, 13, 29, 43, 87], "imag": [4, 7, 31, 36, 56, 58, 59, 60, 65, 67, 68, 73, 76, 77, 81, 82, 85, 86, 87, 88, 90, 92], "point": [4, 5, 8, 16, 22, 32, 36, 76, 77, 79, 80, 82, 83, 84, 86], "field": [4, 8, 32, 36], "themselv": [4, 91, 93, 94], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 45, 69, 71, 77, 83, 85, 87, 92], "load_dataset": [4, 10, 83], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 29, 32, 36], "has_label": [4, 10], "class_nam": [4, 10, 18, 31, 52, 59, 68, 72, 73, 81, 84, 88, 92, 95], "empti": [4, 10, 40, 51, 77, 82, 87], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 73, 75, 76, 77, 79, 80, 82, 83, 84, 87, 91], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 79], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 75, 76, 77, 79, 80, 82, 83, 84, 87, 91], "sort": [4, 14, 35, 37, 42, 51, 53, 56, 58, 59, 61, 67, 69, 71, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "common": [4, 11, 14, 77, 78, 81, 82, 84, 87, 88, 92], "real": [4, 14, 73, 76, 77, 82, 84, 86, 91, 92], "world": [4, 14, 73, 76, 77, 82, 84, 86, 91, 92], "interact": [4, 14, 80, 82], "embed": [4, 8, 14, 60, 73, 75, 76, 77, 79, 80, 84, 87, 91, 94], "thereof": [4, 14], "insight": [4, 14, 59, 86], "act": [4, 8, 58, 76], "issuefind": [4, 13, 14, 28], "logic": [4, 12, 35, 37, 65, 67], "best": [4, 14, 41, 51, 61, 76, 77, 79, 80, 82, 83, 86, 87, 89, 91, 93, 94, 95], "2d": [4, 14, 35, 42, 43, 45, 46, 51, 75, 87, 93], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 52, 75, 76, 77, 79, 80, 83, 84], "represent": [4, 8, 14, 29, 32, 36, 43, 53, 73, 75, 76, 77, 80, 82, 83, 84, 89, 94], "num_featur": [4, 14, 32, 36, 50], "distanc": [4, 8, 14, 16, 22, 24, 27, 44, 58, 60, 79, 89], "nearest": [4, 8, 14, 21, 22, 24, 44, 60, 77, 80, 89], "neighbor": [4, 8, 14, 16, 21, 22, 24, 44, 60, 76, 77, 79, 80, 82, 83, 89], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 46, 63, 81, 91], "csr": 4, "evenli": 4, "omit": [4, 58, 59, 83, 88], "itself": [4, 32, 36, 88], "three": [4, 8, 31, 51, 52, 63, 68, 75, 76, 77, 79, 81, 84, 86, 90, 91, 92, 93, 95], "indptr": 4, "wise": 4, "start": [4, 5, 8, 29, 32, 33, 36, 42, 73, 79, 87, 95], "th": [4, 41, 45, 46, 51, 53, 56, 58, 59, 60, 69, 71, 72, 80, 87, 88, 95], "ascend": [4, 31, 52, 83, 84], "segment": [4, 65, 67, 68, 85], "reflect": [4, 79, 80, 86, 88, 89, 91, 93, 94], "maintain": 4, "posit": [4, 32, 36, 44, 46, 59, 81, 89], "nearestneighbor": [4, 8, 16, 60, 79, 89], "kneighbors_graph": [4, 16, 79], "illustr": 4, "todens": 4, "second": [4, 42, 46, 59, 61, 76, 82, 84, 95], "duplic": [4, 7, 19, 20, 32, 36, 73, 76, 84, 91], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 32, 36, 42, 50], "neither": [4, 8, 12, 88], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 51, 82, 86, 95], "unspecifi": [4, 14, 37, 53], "interest": [4, 14, 20, 68, 72, 80, 84, 91, 92, 93, 94, 95], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 63, 64, 81, 91, 95], "random_st": [4, 75, 76, 77, 83, 84, 87, 89, 93], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 91], "comprehens": [4, 73, 83, 87, 91], "nbr": 4, "n_neighbor": [4, 8, 16, 60], "metric": [4, 8, 17, 22, 27, 46, 50, 59, 60, 75, 79, 80, 83, 84, 91, 93, 94], "euclidean": [4, 8, 58, 60, 79], "mode": [4, 16, 32, 35, 36, 89], "4x4": 4, "float64": [4, 22, 32, 36, 71], "compress": [4, 8, 46, 65, 67], "toarrai": 4, "NOT": [4, 35, 80], "23606798": 4, "41421356": 4, "configur": [4, 14, 42, 77], "suppos": [4, 8, 56, 89, 91, 93, 94], "who": [4, 58, 79, 84, 93, 95], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 76], "clean_learning_kwarg": [4, 8, 21, 26, 91], "labelissuemanag": [4, 8, 12, 19, 21], "prune_method": [4, 74], "prune_by_noise_r": [4, 37, 53, 84], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 52, 72, 73, 75, 76, 77, 79, 80, 84, 87, 91, 95], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "show_all_issu": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 49, 50, 52, 57, 66, 67, 69, 70, 71, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 91, 92, 95], "show": [4, 22, 32, 36, 41, 46, 59, 68, 72, 77, 79, 80, 81, 82, 83, 84, 86, 89, 91, 92, 93, 95], "top": [4, 8, 31, 35, 37, 46, 53, 56, 59, 61, 68, 72, 73, 75, 76, 77, 79, 80, 81, 82, 84, 88, 89, 91, 94, 95], "suffer": [4, 8, 11, 20, 53, 61, 72, 95], "onc": [4, 20, 31, 32, 36, 76, 82, 84, 87, 88, 93], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 42, 51, 52, 55, 58, 59, 63, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 88, 95], "sever": [4, 5, 8, 10, 11, 20, 32, 35, 36, 37, 55, 58, 60, 61, 67, 71, 73, 75, 76, 77, 79, 80, 81, 82, 84, 88, 89, 93, 94, 95], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 73, 75, 76, 77, 79, 80, 82, 83, 87, 89, 91, 93, 94, 95], "With": [4, 35, 80, 84, 86, 91, 92, 94, 95], "usag": [4, 35, 50], "issue_summari": [4, 8, 11, 76], "dataissu": [4, 11, 13, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 38, 61, 73, 76, 77, 84, 85, 91], "someth": [4, 5, 32, 36, 61, 88], "123": [4, 76, 77], "456": [4, 75, 93, 94], "nearest_neighbor": 4, "7": [4, 42, 43, 50, 69, 71, 75, 76, 77, 79, 80, 81, 82, 86, 87, 88, 89, 91, 92, 93, 94, 95], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 42, 43, 55, 69, 71, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "distance_to_nearest_neighbor": [4, 76, 77, 79, 80, 83, 84], "789": 4, "get_issu": [4, 8, 11, 75, 77, 79, 80, 82, 83, 87, 91], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76, 77], "focu": [4, 11, 80, 92, 95], "full": [4, 8, 11, 35, 59, 83, 95], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 52, 68, 72, 73, 92], "valueerror": [4, 10, 11, 29, 39, 42, 82], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 68, 77, 79, 80, 83, 84, 88], "lie": [4, 8, 60, 61, 75, 76, 77, 79, 80, 83, 84, 94], "directli": [4, 12, 14, 28, 29, 35, 50, 51, 77, 80, 87, 88, 91, 94], "compar": [4, 51, 60, 71, 76, 77, 79, 84, 88], "get_issue_summari": [4, 11, 77], "get_info": [4, 11, 77, 80], "yet": [4, 15, 19, 23, 81, 86], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 23, 32, 36, 76], "rtype": [4, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 75, 76, 83], "load": [4, 10, 35, 59, 81, 82, 83, 84, 88, 89, 92, 95], "futur": [4, 8, 20, 32, 36, 51, 73, 75, 76, 80, 82, 94], "overwrit": [4, 76], "separ": [4, 31, 42, 55, 76, 77, 82, 83, 88, 90], "static": 4, "rememb": [4, 80, 82, 84], "part": [4, 8, 32, 36, 37, 56, 58, 59, 75, 76, 81, 92, 95], "ident": [4, 8, 20, 46, 80], "walk": 5, "alongsid": [5, 32, 36, 76, 82], "pre": [5, 6, 8, 32, 36, 76, 77, 83, 91, 92, 95], "runtim": [5, 32, 35, 36, 63, 65, 67, 75, 82, 83], "issue_manager_factori": [5, 12, 76], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 42, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "thing": [5, 36, 84, 91, 94], "next": [5, 51, 73, 75, 79, 80, 82, 86, 88, 91, 93, 94, 95], "dummi": 5, "randint": [5, 27, 42, 76, 77, 82], "mark": [5, 8, 74, 88, 89, 91], "regard": [5, 77, 84], "rand": [5, 42, 76, 77], "is_": [5, 8, 76], "_issu": [5, 8, 76], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76], "whole": [5, 22, 32, 36, 77], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 76], "popul": [5, 77, 80], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "std": [5, 88], "raw_scor": 5, "bit": 5, "involv": [5, 35, 68, 72, 82, 87], "intermediate_arg": 5, "min": [5, 42, 58, 71, 76, 82, 89], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 76], "instanti": [5, 14, 35, 50, 60, 75, 77, 79, 94], "477762": 5, "286455": 5, "term": [5, 8, 40, 46, 59, 75, 76, 77, 79, 80, 83, 84], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 75, 76, 77, 79, 80, 81, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "003042": 5, "058117": 5, "11": [5, 50, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "121908": 5, "15": [5, 44, 63, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "169312": 5, "17": [5, 75, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 94, 95], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 76, 77, 81, 84], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 81, 88, 95], "dbscan": [6, 8, 27, 82], "hdbscan": [6, 82], "etc": [6, 8, 20, 32, 36, 40, 50, 51, 69, 73, 76, 77, 79, 80, 82, 84, 87, 91], "sensit": [6, 8, 44], "ep": [6, 27, 59], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 73, 75, 82, 83, 86, 91, 93, 94], "kmean": [6, 82], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 82], "cluster_id": [6, 8, 27, 82], "labels_": 6, "underperforming_group": [6, 8, 12, 19, 77, 79, 80, 82, 83, 84], "search": [7, 8, 18, 22, 23, 45, 63, 82, 90], "nondefault": 7, "Near": [7, 82], "iid": [7, 22, 79, 84], "imbal": [7, 19, 55, 60, 61, 77], "null": [7, 12, 19, 77, 80, 83, 84], "valuat": [7, 16], "togeth": [7, 8, 40, 76, 77, 79, 80, 83, 84, 91, 94, 95], "built": [7, 42], "own": [7, 32, 34, 36, 49, 55, 56, 59, 65, 69, 75, 77, 79, 80, 82, 83, 86, 87, 91, 92, 93, 94, 95], "prerequisit": 7, "basic": [7, 36, 50, 79, 80, 89], "page": [8, 77, 82, 84], "variou": [8, 11, 26, 34, 47, 49, 73, 76, 77, 79, 80, 81, 84, 86, 88, 93], "sai": [8, 32, 36, 87, 92], "why": [8, 80], "matter": [8, 31, 52, 80, 94], "_score": 8, "flag": [8, 20, 22, 37, 42, 52, 53, 56, 63, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 91, 92, 94], "badli": [8, 58, 95], "code": [8, 32, 36, 40, 46, 50, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "issue_scor": 8, "outlier_scor": [8, 24, 76, 77, 79, 80, 83, 84, 89], "atyp": [8, 60, 76, 77, 79, 80, 83, 84, 89], "datapoint": [8, 27, 37, 42, 46, 61, 64, 73, 75, 76, 77, 79, 80, 82, 90, 91, 93, 94], "is_issu": [8, 20], "is_outlier_issu": [8, 76, 77, 79, 80, 83, 84], "annot": [8, 31, 41, 51, 52, 53, 55, 56, 58, 59, 68, 71, 72, 73, 75, 76, 77, 79, 80, 82, 83, 84, 85, 88, 92], "transform": [8, 42, 44, 46, 60, 61, 77, 80, 83, 89, 93, 94, 95], "dissimilar": [8, 79, 80], "preced": 8, "cosin": [8, 60, 89], "incorrect": [8, 58, 61, 64, 75, 76, 77, 79, 80, 83, 84, 88, 91, 93], "due": [8, 35, 37, 61, 65, 67, 75, 76, 77, 79, 80, 83, 84, 91], "appear": [8, 31, 41, 52, 53, 56, 64, 77, 79, 80, 83, 91, 92], "likelihood": [8, 35, 37, 53, 58, 60, 61, 65, 69], "now": [8, 35, 74, 75, 77, 86, 88, 89, 91, 93, 94, 95], "u": [8, 75, 76, 79, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 95], "token": [8, 45, 67, 68, 69, 70, 71, 72, 82, 84, 85], "calcul": [8, 16, 22, 35, 42, 51, 55, 56, 58, 59, 60, 63, 67, 81, 83], "hamper": [8, 81, 83], "analyt": [8, 73, 82, 86], "lead": [8, 58, 61, 83, 88], "draw": [8, 76, 77], "conclus": [8, 80], "try": [8, 35, 37, 50, 51, 65, 67, 73, 77, 79, 80, 82, 83, 84, 92], "veri": [8, 31, 52, 56, 58, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, 94], "rare": [8, 37, 59, 76, 77, 79, 80, 82, 83, 84], "anomal": [8, 61, 76, 77, 79, 80, 83, 84], "articl": [8, 35, 82], "ai": [8, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95], "blog": 8, "unexpect": [8, 32, 36, 80], "consequ": 8, "inspect": [8, 75, 77, 83, 84, 88, 91, 94], "neg": [8, 58, 59, 76, 77, 81], "affect": [8, 32, 36, 65, 71, 80, 82], "extrem": [8, 76, 77, 79, 80, 82, 83, 84], "rel": [8, 31, 51, 52, 60, 76, 77, 79, 80, 83, 84, 89], "record": [8, 32, 36, 75, 79, 91], "abbrevi": 8, "misspel": 8, "typo": [8, 72], "resolut": 8, "video": [8, 81], "audio": [8, 76, 77, 82, 85], "minor": [8, 45], "variat": 8, "translat": 8, "d": [8, 44, 79, 80, 84, 87, 91, 93, 95], "constant": [8, 27, 63], "median": [8, 26, 44], "question": [8, 20, 73, 84], "nearli": [8, 20, 77, 79, 80, 83], "awar": [8, 74, 84], "presenc": [8, 84], "signific": [8, 79, 80, 84], "violat": [8, 79, 80, 84], "assumpt": [8, 79, 80, 84], "changepoint": [8, 79, 80, 84], "shift": [8, 79, 80, 84], "drift": [8, 77, 79, 84], "autocorrel": [8, 79, 80, 84], "almost": [8, 79, 80, 84], "adjac": [8, 79, 80, 84], "tend": [8, 31, 40, 79, 80, 84, 92, 95], "sequenti": [8, 32, 36, 50, 83], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 45, 46, 71, 79, 80, 81, 84, 90, 93, 95], "x1": [8, 56, 59, 88], "x2": [8, 56, 59, 88], "10th": 8, "100th": 8, "90": [8, 71, 79, 83, 84, 90, 91, 92, 93], "similarli": [8, 32, 36, 76, 79, 82, 83, 88], "math": [8, 83], "behind": [8, 60, 84], "fundament": 8, "proper": [8, 46, 51, 56, 59, 80, 83, 86, 88, 93], "closer": [8, 58, 88], "scenario": [8, 61, 76, 77], "underli": [8, 60, 69, 71, 95], "stem": [8, 60, 89], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 87, 89], "partit": [8, 90], "ahead": 8, "good": [8, 32, 36, 44, 50, 52, 58, 61, 65, 67, 68, 73, 79, 80, 83], "fix": [8, 51, 80, 84, 91, 94], "problem": [8, 35, 42, 68, 73, 76, 77, 80, 82, 83], "deploy": [8, 84, 91, 93, 94], "overlook": [8, 58, 88], "fact": 8, "thu": [8, 31, 36, 52, 75, 79, 80, 84, 90, 93, 95], "diagnos": [8, 77, 82], "rarest": [8, 77], "q": [8, 88], "fall": [8, 58, 67, 71, 84, 89], "subpar": 8, "special": [8, 45], "techniqu": [8, 88], "smote": 8, "asymmetr": [8, 31], "properli": [8, 35, 41, 46, 47, 65, 82, 87, 89, 91, 92], "too": [8, 37, 42, 60, 77, 82, 83, 88], "dark": [8, 92], "bright": [8, 95], "blurri": [8, 83], "abnorm": [8, 59, 83, 88], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 51, 59, 77, 82, 83, 86, 87, 88, 92], "get_self_confidence_for_each_label": [8, 42, 61], "power": [8, 79, 80, 81, 83, 84, 95], "r": [8, 35, 63, 76, 77, 91, 92], "tabular": [8, 73, 76, 77, 78, 82, 85, 86], "categor": [8, 60, 76, 77, 78, 82, 91, 93], "encod": [8, 43, 59, 65, 68, 79, 80, 82, 91, 92, 93, 94], "miss": [8, 23, 32, 36, 46, 56, 58, 79, 82, 88, 91], "pattern": 8, "contribut": [8, 16, 88], "isn": [8, 15, 23], "approxim": [8, 16, 35, 60, 86], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 60, 79, 89], "scalabl": 8, "sacrific": 8, "One": [8, 46, 60, 82], "quantif": 8, "exert": [8, 77], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 76, 77, 79, 80, 82, 83, 84], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 77, 79, 80, 83, 84], "non_iid_kwarg": 8, "class_imbal": [8, 12, 18, 77, 79, 80, 83, 84], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 26], "health_summari": [8, 21, 31, 73, 81], "health_summary_kwarg": 8, "tandem": [8, 81], "view": [8, 32, 36, 37, 67, 69, 71, 73, 75, 76, 77, 79, 80, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95], "ood_kwarg": 8, "outofdistribut": [8, 24, 60, 89], "outsid": [8, 87], "outlierissuemanag": [8, 12, 19, 24, 76], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 12, 18, 19], "underperforminggroupissuemanag": [8, 12, 19, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 19, 27], "clustering_kwarg": [8, 27], "faq": [8, 73, 77, 79, 80, 83, 85], "nullissuemanag": [8, 12, 19, 23], "data_valuation_kwarg": 8, "data_valu": [8, 12, 19], "datavaluationissuemanag": [8, 12, 16, 19], "codeblock": 8, "demonstr": [8, 35, 76, 77, 80, 82, 83, 84, 86, 87, 88, 91, 92], "howev": [8, 32, 36, 46, 75, 79, 80, 83, 86, 90, 92, 93, 94], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 75, 76, 81, 86, 88, 92], "fewer": [8, 37, 46, 88], "vice": [8, 52], "versa": [8, 52], "light": [8, 81, 83, 88, 92], "29": [8, 81, 83, 86, 87, 88, 92, 95], "low_inform": [8, 83], "odd_aspect_ratio": [8, 83], "35": [8, 76, 81, 83, 86, 87, 88, 92], "odd_siz": [8, 83], "10": [8, 16, 17, 21, 22, 27, 32, 33, 59, 60, 61, 72, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "doc": [8, 32, 36, 73, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "data_issu": [9, 13, 14, 28, 76], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 32, 36, 50, 61, 76, 77, 83, 86], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 28, 83, 86, 91], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "hold": 10, "associ": [10, 14, 32, 36, 59, 86], "sublist": 10, "map_to_int": 10, "abc": [10, 20], "is_avail": [10, 83], "serv": [11, 14, 86], "central": [11, 95], "repositori": 11, "strategi": [11, 42, 82], "being": [11, 31, 32, 36, 37, 42, 45, 46, 61, 79, 82, 84, 91, 92, 93], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 32, 35, 36, 37, 46, 53, 56, 59, 63, 65, 67, 76, 77, 82], "recomput": [11, 94], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 31, 52, 73], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 32, 36, 60, 76], "regressionlabelissuemanag": [12, 19, 25, 26], "multilabelissuemanag": 12, "from_str": [12, 29, 38, 42], "my_issu": 12, "stabl": [13, 19, 25, 34, 38, 46, 49, 60, 74], "unregist": 13, "instati": 14, "public": [14, 84, 88, 92, 95], "creation": [14, 36], "execut": [14, 32, 36, 76, 82, 88], "coordin": [14, 56, 58, 59, 88, 95], "behavior": [14, 31, 32, 36, 59, 82], "At": [14, 59, 82], "get_available_issue_typ": 14, "direct": [15, 23, 32, 36], "valuabl": 16, "vstack": [16, 46, 81, 82, 83, 84, 86, 87], "25": [16, 22, 32, 42, 44, 77, 81, 83, 84, 86, 87, 88, 92, 95], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 45, 46], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 32, 36, 46, 76, 77, 82, 83, 84, 86, 87], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 19, 24], "arxiv": [16, 84], "ab": [16, 84, 88], "1911": 16, "07128": 16, "larger": [16, 63, 65, 67, 80, 81, 82, 83], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 32, 36, 80, 89, 94], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 42, 45, 46, 75, 76, 81, 83, 84, 87, 93], "near_duplicate_set": [17, 19, 76, 77, 79, 80, 82, 83, 84], "occurr": [17, 18, 20, 22, 23, 24, 27, 45], "median_nn_dist": 17, "near_duplicate_scor": [17, 76, 77, 79, 80, 82, 83, 84], "class_imbalance_scor": [18, 77], "bleed": [19, 25, 34], "edg": [19, 25, 34, 58, 73, 84, 95], "sharp": [19, 25, 34], "get_health_summari": [19, 21], "ood": [19, 24, 60, 61, 76, 77, 80, 83, 84, 89], "simplified_kolmogorov_smirnov_test": [19, 22], "outlier_cluster_label": [19, 27], "no_underperforming_cluster_id": [19, 27], "set_knn_graph": [19, 27], "perform_clust": [19, 27], "get_worst_clust": [19, 27], "find_issues_with_predict": [19, 25, 26], "find_issues_with_featur": [19, 25, 26], "believ": [20, 92], "priori": [20, 84], "global": [20, 32, 36], "anoth": [20, 31, 35, 45, 58, 61, 79, 80, 82, 84, 86, 89, 94], "abstract": 20, "applic": [21, 51, 82, 84, 86, 95], "typevar": [21, 32, 36, 45, 55, 58, 59], "scalartyp": 21, "covari": [21, 63, 91], "summary_dict": 21, "label_scor": [21, 26, 75, 76, 77, 79, 80, 83, 84, 87, 91], "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 35, 42, 61, 65, 67, 88, 92], "empir": [22, 41, 51], "cumul": 22, "ecdf": 22, "histogram": [22, 79, 91], "absolut": [22, 26], "dimension": [22, 46, 75, 84, 89], "trial": 22, "non_iid_scor": [22, 77, 79, 80, 84], "null_track": 23, "extend": [23, 43, 83, 88, 89, 95], "superclass": 23, "arbitrari": [23, 31, 67, 71, 76, 89, 91], "prompt": 23, "address": [23, 76, 77, 80, 82, 94], "enabl": [23, 36], "null_scor": [23, 77], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "multipli": 26, "deleg": 26, "confus": [27, 31, 32, 36, 37, 46, 59, 94, 95], "50": [27, 36, 82, 84, 86, 88, 89, 91, 92], "keepdim": [27, 82], "signifi": 27, "absenc": 27, "find_issues_kwarg": 27, "int64": [27, 75, 86], "npt": 27, "int_": 27, "id": [27, 51, 76, 82, 83, 86], "unique_cluster_id": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": [27, 77], "datset": 28, "exclud": [28, 68, 72, 76, 82, 95], "get_report": 28, "qualnam": [29, 42], "boundari": [29, 42, 76, 77], "enum": [29, 42], "continu": [29, 80, 82, 83, 86, 88, 91, 93, 94, 95], "binari": [29, 42, 46, 53, 55, 84, 95], "simultan": [29, 91], "task_str": 29, "is_classif": 29, "__contains__": [29, 38, 42], "member": [29, 32, 36, 42, 76, 77], "typeerror": [29, 42], "12": [29, 42, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 95], "__getitem__": [29, 38, 42], "match": [29, 31, 32, 36, 37, 42, 51, 52, 61, 76, 77, 81, 83, 88, 90, 92], "__iter__": [29, 38, 42], "__len__": [29, 38, 42], "alias": [29, 42], "is_regress": 29, "is_multilabel": 29, "overview": [31, 75, 77, 79, 80, 83, 86, 88, 89, 91, 93, 94, 95], "modifi": [31, 32, 35, 36, 46, 82, 84], "help": [31, 32, 36, 59, 73, 74, 75, 76, 79, 80, 81, 82, 83, 86, 87, 91, 92, 93, 94, 95], "rank_classes_by_label_qu": [31, 77], "merg": [31, 45, 73, 81, 82, 95], "find_overlapping_class": [31, 82, 84], "problemat": [31, 52, 68, 72, 75, 88, 95], "unnorm": [31, 52, 84], "abov": [31, 32, 35, 36, 46, 51, 58, 59, 61, 67, 71, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95], "model_select": [31, 42, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 89, 91, 93, 94], "cross_val_predict": [31, 36, 75, 76, 77, 79, 80, 82, 84, 86, 90, 91, 93, 94], "get_data_labels_from_dataset": 31, "yourfavoritemodel": [31, 84], "cv": [31, 42, 75, 76, 77, 79, 84, 86, 93], "df": [31, 46, 72, 75, 82], "overall_label_qu": [31, 52], "col": 31, "prob": [31, 45, 84, 90], "divid": [31, 52, 61], "label_nois": [31, 52], "human": [31, 81, 92, 95], "clearli": [31, 61, 83, 88, 92], "num": [31, 52, 81, 84], "overlap": [31, 73, 81, 82, 84], "ontolog": 31, "publish": [31, 95], "therefor": [31, 61], "vehicl": [31, 81], "truck": [31, 81, 89, 92], "intuit": [31, 52], "car": [31, 81, 88, 92], "frequent": [31, 51, 79, 82, 91], "characterist": 31, "l": [31, 32, 36, 56, 58, 59], "class1": 31, "class2": 31, "relationship": 31, "dog": [31, 46, 52, 54, 68, 81, 82, 89, 90, 95], "cat": [31, 46, 52, 54, 81, 82, 89, 90], "captur": [31, 75, 88, 89, 92], "co": [31, 32, 33], "noisy_label": [31, 76, 77, 87], "overlapping_class": 31, "descend": [31, 32, 36, 42, 52, 59], "overall_label_health_scor": [31, 52, 84], "suggest": [31, 51, 52, 58, 80, 82, 83, 91, 94], "half": [31, 32, 34, 36, 52, 81, 95], "health_scor": [31, 52], "classes_by_label_qu": [31, 77], "cnn": [32, 34, 36, 83], "cifar": [32, 33, 81, 89], "teach": [32, 33], "bhanml": 32, "blob": 32, "master": [32, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "call_bn": [32, 34], "bn": 32, "input_channel": 32, "n_output": 32, "dropout_r": 32, "top_bn": 32, "architectur": [32, 36], "shown": [32, 59, 76, 82, 86, 89, 90, 92, 95], "forward": [32, 33, 34, 36, 83, 86], "overridden": [32, 36], "although": [32, 36, 60, 79, 93], "recip": [32, 36], "afterward": [32, 36], "sinc": [32, 36, 39, 47, 52, 59, 67, 71, 82, 86, 87, 88, 90, 95], "former": [32, 36], "hook": [32, 36, 81], "silent": [32, 35, 36], "t_destin": [32, 34, 36], "__call__": [32, 34, 36, 38, 42], "add_modul": [32, 34, 36], "child": [32, 36], "fn": [32, 36, 59], "recurs": [32, 36, 42], "submodul": [32, 36], "children": [32, 34, 36, 95], "nn": [32, 33, 36, 83], "init": [32, 36, 84], "no_grad": [32, 36, 83, 89], "init_weight": [32, 36], "linear": [32, 36, 80, 83, 94], "fill_": [32, 36], "net": [32, 36, 75, 81, 83], "in_featur": [32, 36], "out_featur": [32, 36], "bia": [32, 36, 83], "tensor": [32, 33, 36, 75, 80, 83, 89, 94], "requires_grad": [32, 36], "bfloat16": [32, 34, 36], "cast": [32, 36, 75], "buffer": [32, 34, 36], "datatyp": [32, 36], "xdoctest": [32, 36], "undefin": [32, 36], "var": [32, 36], "buf": [32, 36], "20l": [32, 36], "1l": [32, 36], "5l": [32, 36], "call_super_init": [32, 34, 36], "immedi": [32, 36, 89], "compil": [32, 34, 36, 50], "cpu": [32, 34, 36, 37, 75, 83], "move": [32, 36, 42, 74, 81], "cuda": [32, 34, 36, 75, 83], "devic": [32, 36, 75, 83], "gpu": [32, 36, 75, 80, 94], "live": [32, 36], "copi": [32, 36, 63, 75, 76, 77, 79, 82, 87, 90, 91, 93], "doubl": [32, 34, 36], "dump_patch": [32, 34, 36], "eval": [32, 34, 36, 83, 87, 89], "dropout": [32, 36], "batchnorm": [32, 36], "grad": [32, 36], "extra_repr": [32, 34, 36], "line": [32, 36, 73, 76, 81, 86, 89, 95], "get_buff": [32, 34, 36], "target": [32, 33, 36, 63, 64, 89, 91], "throw": [32, 36], "get_submodul": [32, 34, 36], "explan": [32, 36], "fulli": [32, 36, 50, 82], "qualifi": [32, 36], "referenc": [32, 36], "attributeerror": [32, 36], "invalid": [32, 36, 80], "resolv": [32, 36, 95], "get_extra_st": [32, 34, 36], "state_dict": [32, 34, 36], "set_extra_st": [32, 34, 36], "build": [32, 36, 83, 92], "picklabl": [32, 36], "serial": [32, 36], "backward": [32, 36, 83], "break": [32, 36, 83, 88], "pickl": [32, 36, 88], "get_paramet": [32, 34, 36], "let": [32, 36, 60, 61, 75, 77, 79, 80, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "net_b": [32, 36], "net_c": [32, 36], "conv": [32, 36], "conv2d": [32, 36, 83], "16": [32, 36, 42, 67, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 92, 94, 95], "33": [32, 36, 81, 88, 89, 92], "kernel_s": [32, 36], "stride": [32, 36], "200": [32, 36, 61, 81, 88, 95], "diagram": [32, 36, 90], "degre": [32, 36], "queri": [32, 36, 77, 82, 83, 87], "named_modul": [32, 34, 36], "o": [32, 36, 44, 45, 75, 76, 77, 81, 82, 84, 87, 88, 95], "transit": [32, 36], "ipu": [32, 34, 36], "load_state_dict": [32, 34, 36], "strict": [32, 36, 42], "persist": [32, 36], "strictli": [32, 36], "inplac": [32, 36, 86], "preserv": [32, 36, 46], "namedtupl": [32, 36], "missing_kei": [32, 36], "unexpected_kei": [32, 36], "runtimeerror": [32, 36], "idx": [32, 36, 46, 47, 59, 76, 82, 83, 84, 86, 88, 89], "named_buff": [32, 34, 36], "prefix": [32, 36, 75, 95], "remove_dupl": [32, 36], "prepend": [32, 36], "running_var": [32, 36], "named_children": [32, 34, 36], "conv4": [32, 36], "conv5": [32, 36], "memo": [32, 36], "named_paramet": [32, 34, 36], "register_backward_hook": [32, 34, 36], "deprec": [32, 36, 39, 75, 80, 82, 94], "favor": [32, 36], "register_full_backward_hook": [32, 34, 36], "removablehandl": [32, 36], "register_buff": [32, 34, 36], "running_mean": [32, 36], "register_forward_hook": [32, 34, 36], "with_kwarg": [32, 36], "always_cal": [32, 36], "won": [32, 36, 76, 77, 82, 87], "possibli": [32, 36, 79, 93], "fire": [32, 36, 81], "register_module_forward_hook": [32, 36], "regardless": [32, 36, 76, 77], "register_forward_pre_hook": [32, 34, 36], "And": [32, 36], "forward_pr": [32, 36], "register_module_forward_pre_hook": [32, 36], "gradient": [32, 36, 79, 83, 91], "respect": [32, 36, 56, 59, 84, 88], "grad_input": [32, 36], "grad_output": [32, 36], "technic": [32, 36], "caller": [32, 36], "register_module_full_backward_hook": [32, 36], "register_full_backward_pre_hook": [32, 34, 36], "backward_pr": [32, 36], "register_module_full_backward_pre_hook": [32, 36], "register_load_state_dict_post_hook": [32, 34, 36], "post": [32, 36], "incompatible_kei": [32, 36], "modif": [32, 36], "thrown": [32, 36], "register_modul": [32, 34, 36], "register_paramet": [32, 34, 36], "register_state_dict_pre_hook": [32, 34, 36], "keep_var": [32, 36], "requires_grad_": [32, 34, 36], "autograd": [32, 36], "freez": [32, 36, 75, 80, 94], "finetun": [32, 36], "gan": [32, 36], "share_memori": [32, 34, 36], "share_memory_": [32, 36], "destin": [32, 36], "shallow": [32, 36], "releas": [32, 36, 74, 75, 82], "design": [32, 36], "ordereddict": [32, 36], "detach": [32, 36, 83], "non_block": [32, 36], "memory_format": [32, 36], "channels_last": [32, 36], "Its": [32, 36, 42, 52, 58], "complex": [32, 36, 75], "integr": [32, 36, 73], "asynchron": [32, 36], "host": [32, 36], "pin": [32, 36, 80, 81, 94], "desir": [32, 36, 45, 59], "4d": [32, 36], "ignore_w": [32, 36], "determinist": [32, 36, 75], "1913": [32, 36], "3420": [32, 36], "5113": [32, 36], "2325": [32, 36], "env": [32, 36], "torch_doctest_cuda1": [32, 36], "gpu1": [32, 36], "1914": [32, 36], "5112": [32, 36], "2324": [32, 36], "float16": [32, 36], "cdoubl": [32, 36], "3741": [32, 36], "2382": [32, 36], "5593": [32, 36], "4443": [32, 36], "complex128": [32, 36], "6122": [32, 36], "1150": [32, 36], "to_empti": [32, 34, 36], "storag": [32, 36, 80, 94], "dst_type": [32, 36], "xpu": [32, 34, 36], "zero_grad": [32, 34, 36, 83], "set_to_non": [32, 36], "reset": [32, 36], "context": [32, 36, 88], "noisili": [33, 84], "han": 33, "2018": 33, "cifar_cnn": [33, 34], "loss_coteach": [33, 34], "y_1": 33, "y_2": 33, "forget_r": 33, "class_weight": 33, "logit": [33, 50, 83], "decim": [33, 46], "quickli": [33, 75, 79, 80, 82, 83, 87, 89, 92, 93, 95], "forget": [33, 42, 95], "rate_schedul": 33, "epoch": [33, 34, 36, 82, 83], "initialize_lr_schedul": [33, 34], "lr": [33, 34, 36], "001": [33, 61, 82], "250": [33, 76, 77, 84, 88, 95], "epoch_decay_start": 33, "80": [33, 79, 87, 91, 92, 93], "schedul": 33, "adjust": [33, 37, 55, 60, 61, 73, 84], "beta": 33, "adam": 33, "adjust_learning_r": [33, 34], "alpha_plan": 33, "beta1_plan": 33, "forget_rate_schedul": [33, 34], "num_gradu": 33, "expon": 33, "tell": [33, 80, 83, 84, 94], "train_load": [33, 36], "model1": [33, 84], "optimizer1": 33, "model2": [33, 84], "optimizer2": 33, "dataload": [33, 83, 89], "parser": 33, "parse_arg": 33, "num_iter_per_epoch": 33, "print_freq": 33, "topk": 33, "top1": 33, "top5": 33, "test_load": 33, "offici": [34, 49, 95], "wish": [34, 49, 89, 92, 95], "adj_confident_thresholds_shar": [34, 35], "labels_shar": [34, 35], "pred_probs_shar": [34, 35], "labelinspector": [34, 35, 82], "get_num_issu": [34, 35], "get_quality_scor": [34, 35], "update_confident_threshold": [34, 35], "score_label_qu": [34, 35], "split_arr": [34, 35], "mnist_pytorch": 34, "get_mnist_dataset": [34, 36], "get_sklearn_digits_dataset": [34, 36], "simplenet": [34, 36], "batch_siz": [34, 35, 36, 65, 67, 82, 83, 89, 92], "log_interv": [34, 36], "momentum": [34, 36], "no_cuda": [34, 36], "test_batch_s": [34, 36, 83], "loader": [34, 36, 83], "set_predict_proba_request": [34, 36], "set_predict_request": [34, 36], "coteach": [34, 74], "mini": [35, 65, 67, 82], "low_self_confid": [35, 37, 53], "self_confid": [35, 37, 38, 42, 53, 55, 61, 69, 71, 82, 84, 93, 94], "conveni": [35, 75, 80, 94], "script": 35, "labels_fil": [35, 82], "pred_probs_fil": [35, 82], "quality_score_kwarg": 35, "num_issue_kwarg": 35, "return_mask": 35, "variant": [35, 51, 92], "read": [35, 39, 77, 82, 84, 89, 95], "zarr": [35, 82], "memmap": [35, 92], "pythonspe": 35, "mmap": [35, 82], "hdf5": 35, "further": [35, 52, 53, 55, 58, 59, 67, 68, 75, 82], "yourfil": 35, "npy": [35, 81, 82, 92], "mmap_mod": [35, 92], "tip": [35, 37, 50, 82], "save_arrai": 35, "your_arrai": 35, "disk": [35, 81, 82], "npz": [35, 95], "maxim": [35, 51, 65, 67, 92], "multiprocess": [35, 37, 53, 65, 67, 82, 83], "linux": [35, 65, 67], "physic": [35, 37, 65, 67, 88], "psutil": [35, 37, 65, 67], "labels_arrai": [35, 47], "predprob": 35, "pred_probs_arrai": 35, "back": [35, 59, 76, 82, 88, 89], "store_result": 35, "becom": [35, 89], "verifi": [35, 82, 86, 89], "long": [35, 51, 60, 86], "enough": [35, 46, 82], "chunk": [35, 90], "ram": [35, 81], "faster": [35, 60, 63, 65, 67, 82, 84], "end_index": 35, "labels_batch": 35, "pred_probs_batch": 35, "batch_result": 35, "indices_of_examples_with_issu": [35, 82], "shortcut": 35, "encount": [35, 37, 65], "1000": [35, 75, 80, 82, 89], "aggreg": [35, 38, 42, 51, 55, 58, 61, 71, 82, 84, 86], "fetch": [35, 75, 77], "seen": [35, 82, 89, 95], "far": [35, 51], "label_quality_scor": [35, 55, 58, 61, 64, 84, 88], "method1": 35, "method2": 35, "normalized_margin": [35, 37, 38, 42, 53, 55, 61, 69, 71], "low_normalized_margin": [35, 37, 53], "issue_indic": [35, 58, 83], "update_num_issu": 35, "arr": [35, 82], "chunksiz": 35, "convnet": 36, "bespok": [36, 50], "download": [36, 75, 82, 89], "mnist": [36, 73, 75, 81], "handwritten": 36, "digit": [36, 75, 81], "last": [36, 42, 56, 59, 76, 77, 82, 86, 88, 95], "sklearn_digits_test_s": 36, "hard": [36, 81, 89], "64": [36, 79, 83, 84, 88, 92, 93], "01": [36, 61, 63, 75, 83, 84, 87, 88, 89, 92, 95], "templat": 36, "flexibli": 36, "among": [36, 51, 84], "test_set": 36, "Be": 36, "overrid": 36, "train_idx": [36, 46, 89], "train_label": [36, 89, 94], "scikit": [36, 46, 60, 73, 75, 76, 77, 79, 80, 82, 85, 91, 94], "encourag": [37, 53, 61, 64], "multilabel_classif": [37, 52, 53, 55, 61, 82, 87], "pred_probs_by_class": 37, "prune_count_matrix_col": 37, "rank_by_kwarg": [37, 53, 61, 84], "num_to_remove_per_class": [37, 53], "bad": [37, 53, 58, 61, 80, 82, 94], "seem": [37, 84, 87], "aren": 37, "confidence_weighted_entropi": [37, 38, 42, 53, 55, 61, 69, 71], "label_issues_idx": [37, 61], "entropi": [37, 39, 41, 42, 60, 61], "prune_by_class": [37, 53, 84], "predicted_neq_given": [37, 53, 84], "prune_counts_matrix": 37, "smallest": [37, 61], "unus": 37, "number_of_mislabeled_examples_in_class_k": 37, "delet": [37, 73, 82, 94], "thread": [37, 53], "window": [37, 75, 81], "shorter": [37, 56], "find_predicted_neq_given": 37, "find_label_issues_using_argmax_confusion_matrix": 37, "remove_noise_from_class": [38, 46], "clip_noise_r": [38, 46], "clip_valu": [38, 46], "value_count": [38, 46, 82], "value_counts_fill_missing_class": [38, 46], "get_missing_class": [38, 46], "round_preserving_sum": [38, 46], "round_preserving_row_tot": [38, 46], "estimate_pu_f1": [38, 46], "confusion_matrix": [38, 46], "print_square_matrix": [38, 46], "print_noise_matrix": [38, 46, 84], "print_inverse_noise_matrix": [38, 46], "print_joint_matrix": [38, 46, 84], "compress_int_arrai": [38, 46], "train_val_split": [38, 46], "subset_x_i": [38, 46], "subset_label": [38, 46], "subset_data": [38, 46], "extract_indices_tf": [38, 46], "unshuffle_tensorflow_dataset": [38, 46], "is_torch_dataset": [38, 46], "is_tensorflow_dataset": [38, 46], "csr_vstack": [38, 46], "append_extra_datapoint": [38, 46], "get_num_class": [38, 46], "num_unique_class": [38, 46], "get_unique_class": [38, 46], "format_label": [38, 46], "smart_display_datafram": [38, 46], "force_two_dimens": [38, 46], "latent_algebra": [38, 74], "compute_ps_py_inv_noise_matrix": [38, 40], "compute_py_inv_noise_matrix": [38, 40], "compute_inv_noise_matrix": [38, 40], "compute_noise_matrix_from_invers": [38, 40], "compute_pi": [38, 40], "compute_pyx": [38, 40], "label_quality_util": 38, "get_normalized_entropi": [38, 39], "multilabel_util": [38, 87], "stack_compl": [38, 43], "get_onehot_num_class": [38, 43], "int2onehot": [38, 43, 87], "onehot2int": [38, 43, 87], "multilabel_scor": [38, 55], "classlabelscor": [38, 42], "exponential_moving_averag": [38, 42, 55], "softmin": [38, 42, 55, 58, 67, 71], "possible_method": [38, 42], "multilabelscor": [38, 42], "get_class_label_quality_scor": [38, 42], "multilabel_pi": [38, 42], "get_cross_validated_multilabel_pred_prob": [38, 42], "transform_distances_to_scor": [38, 44], "token_classification_util": [38, 95], "get_sent": [38, 45, 95], "filter_sent": [38, 45, 95], "process_token": [38, 45], "merge_prob": [38, 45], "color_sent": [38, 45], "assert_valid_input": [38, 47], "assert_valid_class_label": [38, 47], "assert_nonempty_input": [38, 47], "assert_indexing_work": [38, 47], "labels_to_arrai": [38, 47], "labels_to_list_multilabel": [38, 47], "min_allowed_prob": 39, "wikipedia": 39, "activ": [39, 41, 51, 73, 86], "towardsdatasci": 39, "cheatsheet": 39, "ec57bc067c0b": 39, "clip": [39, 46, 75], "behav": 39, "unnecessari": [39, 82], "slightli": [39, 93, 94], "interv": [39, 42, 89], "herein": 40, "inexact": 40, "cours": 40, "propag": 40, "throughout": [40, 46, 63, 75, 86, 92, 95], "easili": [40, 74, 75, 77, 79, 80, 84, 86, 87, 89, 90, 91, 92, 93, 94], "increas": [40, 58, 60, 61, 75, 76, 82, 86, 87, 95], "dot": [40, 71, 82], "true_labels_class_count": 40, "pyx": 40, "multiannot": 41, "assert_valid_inputs_multiannot": 41, "labels_multiannot": [41, 51], "ensembl": [41, 42, 51, 61, 79, 82, 87, 89, 91, 93], "allow_single_label": 41, "annotator_id": 41, "assert_valid_pred_prob": 41, "pred_probs_unlabel": [41, 51], "format_multiannotator_label": [41, 51, 86], "lexicograph": [41, 46], "formatted_label": [41, 46], "old": [41, 46, 74, 75, 81], "check_consensus_label_class": 41, "consensus_label": [41, 51, 86], "consensus_method": [41, 51], "consensu": [41, 51, 73, 85, 95], "establish": [41, 91, 94], "compute_soft_cross_entropi": 41, "soft": [41, 81], "find_best_temp_scal": 41, "coarse_search_rang": [41, 63, 82], "fine_search_s": [41, 63, 82], "temperatur": [41, 42, 58, 67, 71], "scale": [41, 44, 81, 82, 89, 92, 93], "factor": [41, 42, 44, 65, 67], "minim": [41, 58, 89], "temp_scale_pred_prob": 41, "temp": 41, "sharpen": [41, 81], "smoothen": 41, "get_normalized_margin_for_each_label": [42, 61], "get_confidence_weighted_entropy_for_each_label": [42, 61], "75": [42, 76, 77, 81, 83, 86, 87, 88, 91, 92, 95], "scorer": 42, "alpha": [42, 55, 58, 76, 77, 84, 87, 91], "exponenti": 42, "ema": 42, "s_1": 42, "s_k": 42, "ema_k": 42, "accord": [42, 53, 79, 80, 84, 95], "formula": [42, 44], "_t": 42, "cdot": 42, "s_t": 42, "qquad": 42, "leq": 42, "_1": 42, "give": [42, 61, 84, 86, 92], "recent": [42, 95], "success": 42, "previou": [42, 82, 83, 88], "discount": 42, "s_ema": 42, "175": [42, 83, 84, 88], "underflow": 42, "nan": [42, 51, 79, 86, 91, 93], "aggregated_scor": 42, "base_scor": 42, "base_scorer_kwarg": 42, "aggregator_kwarg": [42, 55], "n_sampl": 42, "n_label": 42, "worst": [42, 86], "class_label_quality_scor": 42, "42": [42, 80, 81, 88, 92, 95], "452": 42, "new_scor": 42, "575": 42, "get_label_quality_scores_per_class": [42, 54, 55], "ml_scorer": 42, "binar": [42, 43], "reformat": [42, 75], "wider": 42, "splitter": 42, "kfold": [42, 83], "onevsrestclassifi": [42, 87], "randomforestclassifi": [42, 84, 87], "n_split": [42, 77, 83, 87], "pred_prob_slic": 43, "onehot": 43, "hot": [43, 53, 59, 65, 68, 79, 81, 82, 91, 92, 93], "onehot_matrix": 43, "avg_dist": 44, "scaling_factor": 44, "exp": [44, 60, 61, 76], "dt": 44, "right": [44, 56, 59, 80, 87, 88, 89, 94], "strength": [44, 59], "pronounc": 44, "differenti": 44, "ly": 44, "rule": [44, 45, 81], "thumb": 44, "ood_features_scor": [44, 60, 89], "88988177": 44, "80519832": 44, "token_classif": [45, 69, 71, 72, 82], "sentenc": [45, 69, 71, 72, 80, 94], "readabl": 45, "lambda": [45, 75, 76, 82, 86], "long_sent": 45, "headlin": 45, "charact": [45, 46], "s1": 45, "s2": 45, "processed_token": 45, "alecnlcb": 45, "entiti": [45, 73, 82, 95], "mapped_ent": 45, "unique_ident": 45, "loc": [45, 76, 77, 83, 95], "nbitbas": [45, 55], "probs_merg": 45, "55": [45, 81, 83, 88, 91, 92], "0125": [45, 71], "0375": 45, "075": 45, "025": 45, "color": [45, 68, 76, 77, 79, 84, 87, 89, 91, 92], "red": [45, 59, 76, 77, 81, 84, 87, 88, 89, 92], "colored_sent": 45, "termcolor": 45, "31msentenc": 45, "0m": 45, "ancillari": 46, "class_without_nois": 46, "any_other_class": 46, "choos": [46, 61, 79, 82, 84, 91, 93], "tradition": 46, "new_sum": 46, "fill": 46, "wherea": [46, 53, 90], "come": [46, 76, 77, 82, 83, 89, 92], "major": [46, 51, 74, 83, 89], "versu": [46, 84], "obviou": 46, "cgdeboer": 46, "iteround": 46, "reach": 46, "prob_s_eq_1": 46, "claesen": 46, "f1": [46, 59, 80, 84], "BE": 46, "left_nam": 46, "top_nam": 46, "titl": [46, 76, 77, 84, 87, 89], "short_titl": 46, "round_plac": 46, "pretti": [46, 84], "joint_matrix": 46, "num_possible_valu": 46, "holdout_idx": 46, "extract": [46, 60, 75, 80, 86, 89, 92, 94], "allow_shuffl": 46, "turn": [46, 73, 88], "shuffledataset": 46, "histori": 46, "pre_x": 46, "buffer_s": 46, "csr_matric": 46, "append": [46, 75, 81, 82, 83, 84, 86, 87, 88, 89, 95], "bottom": [46, 56, 59, 88], "to_data": 46, "from_data": 46, "taken": 46, "label_matrix": 46, "canon": 46, "displai": [46, 59, 68, 72, 75, 80, 84, 94, 95], "jupyt": [46, 75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "notebook": [46, 51, 75, 77, 81, 82, 84, 86, 87, 88, 92, 95], "consol": 46, "html": [46, 56, 59, 60, 79, 82, 84], "allow_missing_class": 47, "allow_one_class": 47, "length_x": 47, "labellik": 47, "labels_list": [47, 53], "keraswrappermodel": [49, 50, 73], "keraswrappersequenti": [49, 50], "tf": [50, 75], "legaci": 50, "lack": 50, "keraswrapp": 50, "huggingface_keras_imdb": 50, "unit": [50, 95], "model_kwarg": [50, 63], "compile_kwarg": 50, "sparsecategoricalcrossentropi": 50, "layer": [50, 75, 80, 89, 94], "dens": 50, "my_keras_model": 50, "from_logit": 50, "declar": 50, "apply_softmax": 50, "analysi": 51, "analyz": [51, 73, 84, 86, 87], "get_label_quality_multiannot": [51, 86], "vote": 51, "crowdsourc": [51, 73, 86], "dawid": [51, 86], "skene": [51, 86], "analog": [51, 81, 86], "chosen": [51, 61, 82, 86], "crowdlab": [51, 86], "unlabel": [51, 79, 80, 83, 86, 89, 92], "decid": [51, 80, 81, 86, 91, 94, 95], "get_active_learning_scor": [51, 86], "activelab": [51, 86], "priorit": [51, 58, 88, 92, 95], "showcas": 51, "main": 51, "best_qual": 51, "quality_method": 51, "calibrate_prob": 51, "return_detailed_qu": 51, "return_annotator_stat": 51, "return_weight": 51, "label_quality_score_kwarg": 51, "necessarili": [51, 59, 80, 84], "did": [51, 52, 75, 79, 84, 86, 91, 93, 94], "majority_vot": 51, "ti": 51, "broken": [51, 59, 81, 91], "highest": [51, 59, 76, 83, 90], "0th": 51, "consensus_quality_scor": [51, 86], "annotator_agr": [51, 86], "reman": 51, "1st": 51, "2nd": [51, 65], "3rd": 51, "consensus_label_suffix": 51, "consensus_quality_score_suffix": 51, "suffix": 51, "emsembl": 51, "weigh": [51, 81], "agreement": [51, 86], "agre": 51, "prevent": [51, 82], "overconfid": [51, 90], "wrong": [51, 56, 58, 74, 76, 77, 80, 82, 84, 88, 94], "detailed_label_qu": [51, 86], "annotator_stat": [51, 86], "model_weight": 51, "annotator_weight": 51, "warn": [51, 76, 77, 82], "labels_info": 51, "num_annot": [51, 86], "deriv": [51, 86], "quality_annotator_1": 51, "quality_annotator_2": 51, "quality_annotator_m": 51, "annotator_qu": [51, 86], "num_examples_label": [51, 86], "agreement_with_consensu": [51, 86], "worst_class": [51, 86], "trustworthi": [51, 86, 91], "get_label_quality_multiannotator_ensembl": 51, "weigtht": 51, "budget": 51, "retrain": [51, 91, 94], "active_learning_scor": 51, "improv": [51, 77, 81, 82, 83, 84, 91, 92, 93, 94], "active_learning_scores_unlabel": 51, "get_active_learning_scores_ensembl": 51, "henc": [51, 75, 76, 86], "get_majority_vote_label": [51, 86], "event": 51, "lastli": [51, 79], "convert_long_to_wide_dataset": 51, "labels_multiannotator_long": 51, "wide": [51, 75, 93, 94], "suitabl": [51, 79, 93], "labels_multiannotator_wid": 51, "common_multilabel_issu": [52, 54], "mutual": [52, 87], "exclus": [52, 87], "rank_classes_by_multilabel_qu": [52, 54], "overall_multilabel_health_scor": [52, 54], "multilabel_health_summari": [52, 54], "classes_by_multilabel_qu": 52, "inner": [53, 67], "find_multilabel_issues_per_class": [53, 54], "per_class_label_issu": 53, "label_issues_list": 53, "pred_probs_list": [53, 61, 83, 84], "anim": [54, 89], "rat": 54, "predat": 54, "pet": 54, "reptil": 54, "manner": [55, 86, 91, 93, 94], "box": [56, 58, 59, 81, 88], "object_detect": [56, 58, 59, 88], "return_indices_ranked_by_scor": [56, 88], "overlapping_label_check": [56, 58], "suboptim": [56, 58], "locat": [56, 58, 88, 92, 95], "bbox": [56, 59, 88], "image_nam": [56, 59], "y1": [56, 59, 88], "y2": [56, 59, 88], "later": [56, 59, 60, 94, 95], "corner": [56, 59, 88], "xyxi": [56, 59, 88], "io": [56, 59, 75, 81], "keras_cv": [56, 59], "bounding_box": [56, 59, 88], "detectron": [56, 59, 88], "detectron2": [56, 59, 88], "readthedoc": [56, 59], "en": [56, 59], "latest": [56, 59], "visual": [56, 57, 59, 76, 77, 83, 91, 93, 95], "draw_box": [56, 59], "mmdetect": [56, 59, 88], "swap": [56, 58, 68, 72], "penal": [56, 58], "concern": [56, 58, 73, 77], "issues_from_scor": [57, 58, 66, 67, 68, 70, 71, 72, 88, 92, 95], "compute_overlooked_box_scor": [57, 58], "compute_badloc_box_scor": [57, 58], "compute_swap_box_scor": [57, 58], "pool_box_scores_per_imag": [57, 58], "object_counts_per_imag": [57, 59, 88], "bounding_box_size_distribut": [57, 59, 88], "class_label_distribut": [57, 59, 88], "get_sorted_bbox_count_idx": [57, 59], "plot_class_size_distribut": [57, 59], "plot_class_distribut": [57, 59], "get_average_per_class_confusion_matrix": [57, 59], "calculate_per_class_metr": [57, 59], "aggregation_weight": 58, "imperfect": [58, 82], "chose": [58, 86, 88], "imperfectli": [58, 88], "dirti": [58, 61, 64, 91], "subtyp": 58, "badloc": 58, "nonneg": 58, "high_probability_threshold": 58, "auxiliary_input": [58, 59], "vari": [58, 77], "iou": [58, 59], "heavili": 58, "auxiliarytypesdict": 58, "pred_label": [58, 94], "pred_label_prob": 58, "pred_bbox": 58, "lab_label": 58, "lab_bbox": 58, "similarity_matrix": 58, "min_possible_similar": 58, "scores_overlook": 58, "low_probability_threshold": 58, "scores_badloc": 58, "accident": [58, 79, 80, 82, 94], "scores_swap": 58, "box_scor": 58, "image_scor": [58, 67, 92], "discov": [59, 77, 95], "auxiliari": [59, 89, 92], "_get_valid_inputs_for_compute_scor": 59, "object_count": 59, "down": 59, "bbox_siz": 59, "class_distribut": 59, "plot": [59, 76, 77, 84, 87, 89, 91, 92], "sorted_idx": [59, 89], "class_to_show": 59, "hidden": [59, 89], "max_class_to_show": 59, "prediction_threshold": 59, "overlai": [59, 88], "figsiz": [59, 76, 77, 83, 84, 87, 89], "save_path": [59, 88], "blue": [59, 81, 84, 88], "overlaid": 59, "side": [59, 81, 88], "figur": [59, 84, 87, 89, 91], "extens": [59, 84, 86], "png": [59, 88], "pdf": [59, 60], "svg": 59, "matplotlib": [59, 76, 77, 83, 84, 87, 88, 89, 91], "num_proc": [59, 83], "intersect": [59, 82], "tp": 59, "fp": 59, "ground": [59, 81, 84, 86, 91], "truth": [59, 84, 86, 91], "bias": 59, "avg_metr": 59, "distionari": 59, "95": [59, 69, 71, 79, 81, 84, 91, 92], "per_class_metr": 59, "Of": 60, "li": 60, "smaller": [60, 87, 88], "find_top_issu": [60, 61, 89], "reli": [60, 75, 76, 77, 80, 88, 89, 91, 94], "dist_metr": 60, "dim": [60, 83, 92], "subtract": [60, 61], "renorm": [60, 61, 82], "least_confid": 60, "sum_": 60, "log": [60, 61, 74], "softmax": [60, 67, 71, 83], "literatur": 60, "gen": 60, "liu": 60, "lochman": 60, "zach": 60, "openaccess": 60, "thecvf": 60, "content": [60, 75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "cvpr2023": 60, "liu_gen_pushing_the_limits_of_softmax": 60, "based_out": 60, "distribution_detection_cvpr_2023_pap": 60, "fit_scor": [60, 89], "ood_predictions_scor": 60, "pretrain": [60, 75, 80, 89, 94], "adjust_confident_threshold": 60, "probabilist": [60, 75, 76, 77, 79, 80, 89, 90, 93], "order_label_issu": [61, 74], "whichev": [61, 90], "argsort": [61, 80, 83, 84, 88, 89, 91, 94], "max_": 61, "get_label_quality_ensemble_scor": [61, 82, 84], "weight_ensemble_members_bi": 61, "custom_weight": 61, "log_loss_search_t_valu": 61, "0001": [61, 81], "scheme": 61, "log_loss_search": 61, "log_loss": [61, 80], "1e0": 61, "1e1": 61, "1e2": 61, "2e2": 61, "quality_scor": [61, 89], "forth": 61, "top_issue_indic": 61, "rank_bi": [61, 74], "weird": [61, 72], "minu": 61, "prob_label": 61, "max_prob_not_label": 61, "idea": [61, 88], "AND": [61, 80], "get_epistemic_uncertainti": [62, 63], "get_aleatoric_uncertainti": [62, 63], "corrupt": [63, 91], "linearregress": [63, 82, 91], "y_with_nois": 63, "n_boot": [63, 82], "include_aleatoric_uncertainti": [63, 82], "sole": [63, 76, 86, 89, 93], "bootstrap": [63, 82, 91], "resampl": [63, 75, 82], "epistem": [63, 82, 89, 91], "aleator": [63, 82, 91], "model_final_kwarg": 63, "coars": 63, "thorough": [63, 82], "fine": [63, 75, 80, 89, 94], "grain": 63, "grid": 63, "varianc": [63, 84], "epistemic_uncertainti": 63, "residu": [63, 64, 82], "deviat": [63, 88, 91], "ie": 63, "aleatoric_uncertainti": 63, "outr": 64, "contin": 64, "raw": [64, 73, 74, 77, 81, 83, 86, 88, 89, 91], "aka": [64, 75, 84, 88, 91, 95], "00323821": 64, "33692597": 64, "00191686": 64, "semant": [65, 67, 68, 85], "pixel": [65, 67, 68, 89, 92], "h": [65, 67, 68, 92], "height": [65, 67, 68, 92], "w": [65, 67, 68, 92], "width": [65, 67, 68, 92], "labels_one_hot": [65, 68, 92], "stream": [65, 89, 95], "downsampl": [65, 67, 92], "shrink": [65, 67], "divis": [65, 67, 76], "display_issu": [66, 67, 68, 69, 70, 71, 72, 92, 95], "common_label_issu": [66, 68, 70, 72, 92, 95], "filter_by_class": [66, 68, 92], "segmant": [67, 68], "num_pixel_issu": [67, 92], "product": [67, 82, 83], "pixel_scor": [67, 92], "highlight": [68, 72, 76, 77, 79, 92], "enter": 68, "legend": [68, 76, 77, 87, 88, 91, 92], "colormap": 68, "background": 68, "person": [68, 82, 88, 92, 95], "ambigu": [68, 72, 75, 80, 81, 84, 94, 95], "systemat": [68, 72, 86], "misunderstood": [68, 72], "issues_df": [68, 83], "class_index": 68, "issues_subset": [68, 72], "filter_by_token": [70, 72, 95], "token_score_method": 71, "sentence_score_method": 71, "sentence_score_kwarg": 71, "compris": [71, 72], "token_scor": [71, 95], "converg": 71, "toward": 71, "_softmin_sentence_scor": 71, "sentence_scor": [71, 95], "token_info": 71, "70": [71, 79, 83, 92], "02": [71, 76, 77, 83, 84, 88, 89, 92, 95], "03": [71, 79, 81, 83, 84, 88, 92, 95], "04": [71, 79, 83, 88, 92], "08": [71, 84, 88, 91, 92, 95], "commonli": [72, 74, 76, 77, 87, 95], "But": [72, 80, 84, 91, 95], "restrict": [72, 82], "reliabl": [73, 75, 82, 86, 92, 93], "thousand": 73, "imagenet": [73, 81], "popular": [73, 86, 88], "centric": [73, 79, 80, 83, 85], "capabl": 73, "minut": [73, 75, 79, 80, 81, 86, 87, 88, 91, 92, 93, 94, 95], "conda": 73, "feature_embed": [73, 89], "Then": [73, 82, 83, 93, 94], "your_dataset": [73, 75, 76, 77, 79, 80, 82, 83], "column_name_of_label": [73, 75, 76, 77, 79, 80, 83], "plagu": [73, 77], "untrain": 73, "\u30c4": 73, "label_issues_info": [73, 77], "sklearn_compatible_model": 73, "framework": [73, 87, 88], "complianc": 73, "tag": [73, 87, 95], "sequenc": 73, "recognit": [73, 75, 82, 95], "train_data": [73, 89, 91, 93, 94], "gotten": 73, "test_data": [73, 84, 87, 89, 91, 93, 94], "deal": [73, 77], "tutori": [73, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "feel": [73, 75, 77, 82], "free": [73, 75, 77, 79, 80, 82, 83, 84], "ask": [73, 82], "slack": [73, 82], "project": [73, 91], "welcom": 73, "commun": [73, 82], "guidelin": [73, 88], "piec": 73, "studio": [73, 77, 79, 80, 82, 83], "platform": [73, 79, 80, 82, 83], "automl": [73, 82], "foundat": 73, "smart": [73, 79, 80, 82, 83], "edit": [73, 82], "easier": [73, 84], "unreli": [73, 75, 79, 80, 93], "link": [73, 75, 81, 88], "older": 74, "outlin": 74, "substitut": 74, "v2": [74, 79, 93], "get_noise_indic": 74, "psx": 74, "sorted_index_method": 74, "order_label_error": 74, "label_errors_bool": 74, "latent_estim": 74, "num_label_error": 74, "learningwithnoisylabel": 74, "neatli": 74, "organ": [74, 79, 81, 93, 95], "reorgan": 74, "baseline_method": 74, "incorpor": [74, 84], "research": [74, 84], "polyplex": 74, "terminologi": 74, "label_error": 74, "quickstart": [75, 76, 77, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "spoken": 75, "500": [75, 89, 95], "english": [75, 81], "pronunci": 75, "wav": 75, "huggingfac": [75, 76, 77, 83], "voxceleb": 75, "speech": [75, 95], "your_pred_prob": [75, 76, 77, 79, 80], "tensorflow_io": 75, "huggingface_hub": 75, "branch": [75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 93, 94], "reproduc": [75, 79, 84, 86], "command": 75, "wget": [75, 88, 92, 95], "navig": 75, "browser": 75, "jakobovski": 75, "archiv": [75, 95], "v1": 75, "tar": [75, 89], "gz": [75, 89], "mkdir": [75, 95], "spoken_digit": 75, "xf": 75, "6_nicolas_32": 75, "data_path": 75, "listdir": 75, "nondeterminist": 75, "file_nam": 75, "endswith": 75, "file_path": 75, "join": [75, 82, 83], "39": [75, 76, 80, 81, 82, 83, 88, 91, 92, 94, 95], "7_george_26": 75, "0_nicolas_24": 75, "0_nicolas_6": 75, "listen": 75, "display_exampl": 75, "click": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "expand": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "pulldown": [75, 76, 77, 81, 83, 84, 86, 87, 89, 91, 95], "colab": [75, 76, 77, 81, 82, 83, 84, 86, 87, 89, 91, 95], "tfio": 75, "pathlib": 75, "ipython": 75, "load_wav_16k_mono": 75, "filenam": 75, "khz": 75, "file_cont": 75, "read_fil": 75, "sample_r": 75, "decode_wav": 75, "desired_channel": 75, "squeez": 75, "rate_in": 75, "rate_out": 75, "16000": 75, "wav_file_nam": 75, "audio_r": 75, "wav_file_exampl": 75, "plai": [75, 81, 82], "button": 75, "wav_file_name_exampl": 75, "7_jackson_43": 75, "hear": 75, "extractor": 75, "encoderclassifi": 75, "spkrec": 75, "xvect": 75, "feature_extractor": 75, "from_hparam": 75, "run_opt": 75, "uncom": 75, "ffmpeg": 75, "system": [75, 79, 80, 83, 92], "backend": 75, "wav_audio_file_path": 75, "head": [75, 77, 79, 80, 81, 83, 84, 86, 91, 93, 94], "torchaudio": 75, "extract_audio_embed": 75, "emb": [75, 83], "signal": 75, "encode_batch": 75, "embeddings_list": [75, 83], "embeddings_arrai": 75, "opt": [75, 77, 80, 94], "hostedtoolcach": [75, 77, 80, 94], "x64": [75, 77, 80, 94], "lib": [75, 77, 80, 94], "python3": [75, 77, 80, 94], "site": [75, 77, 80, 94], "650": 75, "userwarn": [75, 76, 77, 80, 94], "stft": 75, "return_complex": 75, "view_as_r": 75, "recov": 75, "trigger": 75, "aten": 75, "src": 75, "nativ": 75, "spectralop": 75, "cpp": 75, "863": [75, 94], "_vf": 75, "n_fft": 75, "hop_length": 75, "win_length": 75, "attr": 75, "512": [75, 83], "14": [75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "196311": 75, "319459": 75, "478975": 75, "2890875": 75, "8170238": 75, "89265": 75, "24": [75, 81, 84, 86, 88, 91, 92], "898056": 75, "256195": 75, "559641": 75, "559721": 75, "62067": 75, "285245": 75, "21": [75, 76, 81, 82, 83, 84, 88, 91, 92, 95], "709627": 75, "5033693": 75, "913803": 75, "819831": 75, "1831515": 75, "208763": 75, "084257": 75, "3210397": 75, "005453": 75, "216152": 75, "478235": 75, "6821785": 75, "053807": 75, "242471": 75, "091424": 75, "78334856": 75, "03954": 75, "23": [75, 81, 83, 84, 88, 91, 92], "569176": 75, "19": [75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 94, 95], "761097": 75, "1258295": 75, "753237": 75, "3508866": 75, "598274": 75, "23712": 75, "2500": 75, "leverag": [75, 80, 82, 84, 86, 94], "tune": [75, 80, 81, 89, 94], "computation": [75, 80, 94], "intens": [75, 80, 94], "held": [75, 79, 80, 81, 88, 89, 90, 93], "straightforward": [75, 79, 93], "benefit": [75, 90, 92, 93], "tol": 75, "num_crossval_fold": [75, 79, 86, 93], "decreas": [75, 82], "never": [75, 84, 87, 89, 90], "accuracy_scor": [75, 80, 84, 93, 94], "cv_accuraci": 75, "9708": 75, "probabilit": [75, 94], "9976": 75, "986": 75, "002161": 75, "176": [75, 81, 84, 87], "002483": 75, "2318": 75, "004411": 75, "1005": 75, "004857": 75, "1871": 75, "007494": 75, "investig": 75, "040587": 75, "999207": 75, "999377": 75, "975220": 75, "999367": 75, "18": [75, 80, 81, 82, 83, 84, 88, 89, 91, 92, 94], "identified_label_issu": [75, 80], "lowest_quality_label": [75, 80, 84, 91, 94], "sort_valu": [75, 77, 79, 80, 82, 83, 84, 86, 87, 91], "516": 75, "1946": 75, "469": 75, "2132": 75, "worth": [75, 84], "iloc": [75, 79, 80, 91, 93, 94], "6_yweweler_25": 75, "7_nicolas_43": 75, "6_theo_27": 75, "6_yweweler_36": 75, "6_yweweler_14": 75, "6_yweweler_35": 75, "6_nicolas_8": 75, "sound": 75, "quit": [75, 89], "22": [75, 76, 81, 83, 84, 87, 88, 92, 95], "blindli": [75, 82, 91, 93, 94], "trust": [75, 82, 84, 86, 90, 91, 93, 94], "underneath": 76, "hood": 76, "alert": 76, "introduct": 76, "mayb": [76, 77, 80], "examin": [76, 77, 79, 88, 93], "your_feature_matrix": [76, 77], "toi": [76, 77, 81, 83, 84, 86], "train_test_split": [76, 77, 89, 93, 94], "inf": [76, 77], "mid": [76, 77], "bins_map": [76, 77], "create_data": [76, 77], "y_bin": [76, 77], "y_i": [76, 77], "y_bin_idx": [76, 77], "y_train": [76, 77, 84, 91], "y_test": [76, 77, 84, 91], "y_train_idx": [76, 77], "y_test_idx": [76, 77], "test_siz": [76, 77, 93, 94], "slide": [76, 77, 81], "decis": [76, 77, 93], "frame": [76, 77], "x_out": [76, 77], "tini": [76, 77], "concaten": [76, 77, 82, 90], "y_out": [76, 77], "y_out_bin": [76, 77], "y_out_bin_idx": [76, 77], "exact_duplicate_idx": [76, 77], "x_duplic": [76, 77], "y_duplic": [76, 77], "y_duplicate_idx": [76, 77], "noisy_labels_idx": [76, 77, 87], "scatter": [76, 77, 84, 87, 91], "black": [76, 77, 81, 91], "cyan": [76, 77], "pyplot": [76, 77, 83, 84, 87, 89, 91], "plt": [76, 77, 83, 84, 87, 89, 91], "plot_data": [76, 77, 84, 87, 91], "fig": [76, 77, 81, 83, 89, 91], "ax": [76, 77, 83, 89, 91], "subplot": [76, 77, 83, 89], "set_titl": [76, 77, 83, 89], "set_xlabel": [76, 77], "x_1": [76, 77], "fontsiz": [76, 77, 83, 84, 87], "set_ylabel": [76, 77], "x_2": [76, 77], "set_xlim": [76, 77], "set_ylim": [76, 77], "linestyl": [76, 77], "circl": [76, 77, 84, 87], "misclassifi": [76, 77], "zip": [76, 77, 83, 88, 95], "label_err": [76, 77], "180": [76, 77, 88], "marker": [76, 77], "facecolor": [76, 77], "edgecolor": [76, 77], "linewidth": [76, 77, 89], "dup": [76, 77], "first_legend": [76, 77], "align": [76, 77], "title_fontproperti": [76, 77], "semibold": [76, 77], "second_legend": [76, 77], "45": [76, 77, 81, 83, 84, 88, 92], "gca": [76, 77], "add_artist": [76, 77], "tight_layout": [76, 77], "ideal": [76, 77], "logist": [76, 77, 80, 86, 89, 94], "remaind": 76, "modal": [76, 77, 82, 86], "132": [76, 77, 84, 88], "9318": 76, "77": [76, 77, 79, 88, 92, 93], "006940": 76, "007830": 76, "40": [76, 77, 80, 81, 83, 89, 92], "014828": 76, "107": [76, 77, 84, 87], "021241": 76, "120": [76, 77, 93], "026407": 76, "notic": [76, 84, 86, 88], "3558": [76, 77], "126": [76, 77, 84, 88], "006636": [76, 77], "130": [76, 77], "012571": [76, 77], "129": [76, 77], "127": [76, 77], "014909": [76, 77], "128": [76, 77, 83], "017443": [76, 77], "6160": [76, 77], "is_near_duplicate_issu": [76, 77, 79, 80, 82, 83, 84], "131": [76, 77, 92], "000000e": [76, 77], "00": [76, 77, 79, 81, 83, 89, 92, 93, 95], "000002": [76, 77], "463180e": [76, 77], "07": [76, 77, 79, 83, 84, 88, 91, 92, 95], "51": [76, 77, 79, 81, 83, 84, 88, 92], "161148": [76, 77], "859087e": [76, 77], "30": [76, 77, 81, 82, 83, 87, 92, 95], "3453": 76, "029542": 76, "031182": 76, "057961": 76, "058244": 76, "home": [76, 77, 80, 81, 94], "runner": [76, 77, 80, 94], "329": [76, 83, 88], "359": 76, "338": 76, "34": [76, 81, 84, 86, 88, 92, 95], "54": [76, 81, 83, 84, 88, 92], "039122": 76, "53": [76, 77, 79, 81, 83, 87, 88, 92, 93], "044598": 76, "105": [76, 88], "105196": 76, "133654": 76, "43": [76, 81, 84, 88, 92], "168033": 76, "125": 76, "101107": 76, "37": [76, 81, 83, 92], "183382": 76, "109": [76, 81, 88], "209259": 76, "211042": 76, "221316": 76, "average_ood_scor": 76, "34530442089193386": 76, "52": [76, 81, 83, 88, 89, 92, 95], "169820": 76, "087324e": 76, "89": [76, 79, 88, 91, 92, 94], "92": [76, 83, 84, 88, 92, 93], "259024": 76, "583757e": 76, "91": [76, 88, 89, 92], "346458": 76, "341292e": 76, "specfi": 76, "new_lab": 76, "scoring_funct": 76, "div": 76, "rem": 76, "inv_scal": 76, "49": [76, 81, 83, 84, 88, 92], "superstitionissuemanag": 76, "unlucki": 76, "superstit": 76, "to_seri": 76, "issues_mask": 76, "summary_scor": 76, "9242": 76, "is_superstition_issu": 76, "superstition_scor": 76, "26": [76, 81, 83, 84, 86, 88, 92], "047581": 76, "090635": 76, "129591": 76, "65": [76, 83, 88, 89, 92, 93], "164840": 76, "demo": [77, 79, 87, 93], "lurk": [77, 83, 84], "_split": 77, "737": 77, "thoroughli": 77, "preprocess": [77, 79, 89, 91, 93, 94], "904": 77, "review": [77, 79, 80, 81, 82, 84, 88, 91, 92, 93, 94, 95], "8561": 77, "001908": 77, "58": [77, 79, 81, 83, 84, 88, 92, 93], "003564": 77, "007331": 77, "008963": 77, "009664": 77, "0227": 77, "is_class_imbalance_issu": 77, "022727": 77, "86": [77, 79, 83, 84, 88, 91, 92, 93], "87": [77, 83, 88, 91, 92, 94, 95], "auto": [77, 81, 82, 91, 93, 94], "conceptu": 77, "856061": 77, "355772": 77, "616034": 77, "821750": 77, "901562": 77, "betweeen": 77, "is_null_issu": 77, "is_non_iid_issu": [77, 79, 80, 84], "is_underperforming_group_issu": 77, "859131": 77, "417707": 77, "664083": 77, "970324": 77, "816953": 77, "375317": 77, "641516": 77, "890575": 77, "531021": 77, "460593": 77, "601188": 77, "826147": 77, "752808": 77, "321635": 77, "562539": 77, "948362": 77, "090243": 77, "472909": 77, "746763": 77, "878267": 77, "examples_w_issu": [77, 82], "013445": 77, "025184": 77, "026376": 77, "inde": [77, 80], "miscellan": [77, 95], "428571": 77, "111111": 77, "571429": 77, "407407": 77, "592593": 77, "337838": 77, "092593": 77, "662162": 77, "333333": [77, 81], "952381": 77, "666667": 77, "portion": 77, "huge": [77, 84], "worri": [77, 80], "critic": 77, "highli": [77, 83], "sql": [79, 93], "databas": [79, 93], "excel": [79, 93], "parquet": [79, 93], "student": [79, 91, 93, 95], "grade": [79, 91, 93], "900": [79, 91, 93], "exam": [79, 91, 93], "letter": [79, 93, 95], "hundr": [79, 93], "histgradientboostingclassifi": 79, "standardscal": [79, 89, 93], "grades_data": [79, 93], "read_csv": [79, 80, 91, 93, 94], "stud_id": [79, 93], "exam_1": [79, 91, 93], "exam_2": [79, 91, 93], "exam_3": [79, 91, 93], "letter_grad": [79, 93], "f48f73": [79, 93], "0bd4e7": [79, 93], "81": [79, 80, 88, 91, 92, 93, 95], "great": [79, 81, 93], "particip": [79, 93], "cb9d7a": [79, 93], "61": [79, 83, 84, 88, 91, 92, 93], "94": [79, 81, 84, 88, 91, 92, 93], "78": [79, 81, 84, 88, 89, 91, 92, 93], "9acca4": [79, 93], "48": [79, 81, 84, 88, 92, 93], "x_raw": [79, 93], "cat_featur": 79, "x_encod": [79, 93], "get_dummi": [79, 91, 93], "drop_first": [79, 93], "numeric_featur": [79, 93], "scaler": [79, 89, 93], "x_process": [79, 93], "fit_transform": [79, 93], "bring": [79, 80, 83, 86, 91, 93, 94], "byod": [79, 80, 83, 86, 91, 93, 94], "boost": [79, 82, 86, 91], "xgboost": [79, 82, 91], "think": [79, 80, 82, 87, 92, 95], "carefulli": [79, 80, 83, 93], "nonzero": 79, "suspici": [79, 93], "tabl": [79, 81, 86, 93], "358": 79, "294": [79, 88], "46": [79, 81, 84, 88, 89, 92], "941": 79, "7109": 79, "000005": [79, 80, 91], "886": 79, "000059": 79, "709": 79, "000104": 79, "723": 79, "000169": 79, "689": 79, "000181": 79, "3590": 79, "051882e": 79, "683133e": 79, "536582e": 79, "406589e": 79, "324246e": 79, "6165": 79, "582": 79, "185": [79, 81, 88, 95], "187": [79, 81], "27": [79, 81, 84, 88, 89, 92, 95], "898": 79, "637": [79, 93], "0014": [79, 81], "595": 79, "702427": 79, "147": [79, 84, 88], "711186": 79, "157": [79, 84], "721394": 79, "771": 79, "731979": 79, "740335": 79, "0014153602099278074": 79, "issue_result": 79, "000842": 79, "555944": 79, "004374": 79, "sorted_issu": 79, "73": [79, 81, 87, 88, 91, 92, 95], "deserv": 79, "outlier_result": 79, "sorted_outli": 79, "56": [79, 81, 91, 92], "96": [79, 81, 84, 87, 88, 91, 92], "lt": [79, 80, 81, 83, 86, 89, 92], "style": [79, 92], "font": 79, "18px": 79, "ff00ff": 79, "bac": 79, "unintend": [79, 80], "mistak": [79, 80, 83, 93, 94], "duplicate_result": 79, "690": 79, "246": [79, 88], "perhap": [79, 84, 86], "twice": 79, "67": [79, 81, 83, 88, 91, 92], "wari": [79, 80, 82], "super": [79, 80, 83], "intent": [80, 94], "servic": [80, 82, 94], "onlin": [80, 94], "bank": [80, 81, 94], "banking77": [80, 94], "oo": [80, 94], "000": [80, 81, 83, 94, 95], "categori": [80, 83, 94], "scope": [80, 94], "dive": 80, "your_featur": 80, "sentence_transform": [80, 94], "sentencetransform": [80, 94], "payment": [80, 94], "cancel_transf": [80, 94], "transfer": [80, 94], "fund": [80, 94], "cancel": [80, 94], "transact": [80, 94], "my": [80, 94], "revert": [80, 94], "morn": [80, 94], "realis": [80, 94], "yesterdai": [80, 94], "rent": [80, 94], "realli": [80, 86, 92, 94], "tomorrow": [80, 94], "raw_text": [80, 94], "getting_spare_card": [80, 94], "change_pin": [80, 94], "supported_cards_and_curr": [80, 94], "visa_or_mastercard": [80, 94], "card_about_to_expir": [80, 94], "apple_pay_or_google_pai": [80, 94], "lost_or_stolen_phon": [80, 94], "beneficiary_not_allow": [80, 94], "card_payment_fee_charg": [80, 94], "utter": [80, 94], "suit": [80, 81, 82, 94], "electra": [80, 94], "discrimin": [80, 94], "googl": [80, 94], "text_embed": 80, "No": [80, 82, 94], "google_electra": [80, 94], "pool": [80, 82, 89, 94], "_util": [80, 94], "831": [80, 94], "typedstorag": [80, 94], "untypedstorag": [80, 94], "untyped_storag": [80, 94], "fget": [80, 94], "__get__": [80, 94], "owner": [80, 94], "400": [80, 94], "data_dict": [80, 84, 86], "85": [80, 88, 89, 92], "38": [80, 81, 83, 88, 92], "9710": 80, "981": 80, "974": 80, "000146": 80, "982": [80, 81], "000224": 80, "971": 80, "000507": 80, "980": [80, 81], "000960": 80, "3584": 80, "994": 80, "009642": 80, "999": 80, "013067": 80, "013841": 80, "433": 80, "014722": 80, "989": 80, "018224": 80, "6070": 80, "160": [80, 91], "095724": 80, "148": 80, "006237": 80, "546": 80, "099341": 80, "514": 80, "006485": 80, "481": 80, "123418": 80, "008165": 80, "0000": [80, 81, 84], "313": [80, 88], "564102": 80, "572258": 80, "28": [80, 81, 83, 84, 86, 92, 95], "574915": 80, "31": [80, 81, 84, 86, 88, 92], "575507": 80, "575874": 80, "792090": 80, "257611": 80, "698710": 80, "182121": 80, "771619": 80, "to_numpi": [80, 82, 91, 94], "data_with_suggested_label": 80, "suggested_label": 80, "charg": [80, 94], "cash": [80, 94], "holidai": [80, 94], "sent": [80, 94, 95], "card": [80, 81, 94], "mine": [80, 94], "expir": [80, 94], "me": [80, 94], "withdraw": 80, "monei": 80, "whoever": [80, 94], "outlier_issu": [80, 83], "lowest_quality_outli": 80, "OR": 80, "636c65616e6c616220697320617765736f6d6521": 80, "phone": [80, 81], "gone": 80, "gt": [80, 86, 95], "samp": 80, "br": 80, "press": [80, 95], "nonsens": 80, "sens": 80, "detriment": 80, "duplicate_issu": 80, "fee": 80, "pai": 80, "go": [80, 81, 84], "strongli": 80, "p_valu": 80, "benign": 80, "shortlist": [80, 91, 94], "curat": [80, 85], "mnist_test_set": 81, "imagenet_val_set": 81, "tench": 81, "goldfish": 81, "white": [81, 95], "shark": 81, "tiger": 81, "hammerhead": 81, "electr": 81, "rai": 81, "stingrai": 81, "cock": 81, "hen": 81, "ostrich": 81, "brambl": 81, "goldfinch": 81, "hous": 81, "finch": 81, "junco": 81, "indigo": 81, "bunt": 81, "american": [81, 95], "robin": 81, "bulbul": 81, "jai": 81, "magpi": 81, "chickade": 81, "dipper": 81, "kite": 81, "bald": 81, "eagl": 81, "vultur": 81, "grei": 81, "owl": 81, "salamand": 81, "smooth": 81, "newt": 81, "spot": [81, 88], "axolotl": 81, "bullfrog": 81, "tree": 81, "frog": [81, 89], "tail": 81, "loggerhead": 81, "sea": 81, "turtl": 81, "leatherback": 81, "mud": 81, "terrapin": 81, "band": 81, "gecko": 81, "green": [81, 95], "iguana": 81, "carolina": 81, "anol": 81, "desert": 81, "grassland": 81, "whiptail": 81, "lizard": 81, "agama": 81, "frill": 81, "neck": 81, "allig": 81, "gila": 81, "monster": 81, "european": 81, "chameleon": 81, "komodo": 81, "dragon": 81, "nile": 81, "crocodil": 81, "triceratop": 81, "worm": 81, "snake": 81, "ring": 81, "eastern": 81, "hog": 81, "nose": 81, "kingsnak": 81, "garter": 81, "water": 81, "vine": 81, "night": 81, "boa": 81, "constrictor": 81, "african": 81, "rock": 81, "indian": 81, "cobra": 81, "mamba": 81, "saharan": 81, "horn": 81, "viper": 81, "diamondback": 81, "rattlesnak": 81, "sidewind": 81, "trilobit": 81, "harvestman": 81, "scorpion": 81, "yellow": 81, "garden": 81, "spider": 81, "barn": 81, "southern": 81, "widow": 81, "tarantula": 81, "wolf": 81, "tick": 81, "centiped": 81, "grous": 81, "ptarmigan": 81, "ruf": 81, "prairi": 81, "peacock": 81, "quail": 81, "partridg": 81, "parrot": 81, "macaw": 81, "sulphur": 81, "crest": 81, "cockatoo": 81, "lorikeet": 81, "coucal": 81, "bee": 81, "eater": 81, "hornbil": 81, "hummingbird": 81, "jacamar": 81, "toucan": 81, "duck": [81, 94], "breast": 81, "mergans": 81, "goos": 81, "swan": 81, "tusker": 81, "echidna": 81, "platypu": 81, "wallabi": 81, "koala": 81, "wombat": 81, "jellyfish": 81, "anemon": 81, "brain": 81, "coral": 81, "flatworm": 81, "nematod": 81, "conch": 81, "snail": 81, "slug": 81, "chiton": 81, "chamber": 81, "nautilu": 81, "dung": 81, "crab": 81, "fiddler": 81, "king": 81, "lobster": 81, "spini": 81, "crayfish": 81, "hermit": 81, "isopod": 81, "stork": 81, "spoonbil": 81, "flamingo": 81, "heron": 81, "egret": 81, "bittern": 81, "crane": 81, "bird": [81, 89], "limpkin": 81, "gallinul": 81, "coot": 81, "bustard": 81, "ruddi": 81, "turnston": 81, "dunlin": 81, "redshank": 81, "dowitch": 81, "oystercatch": 81, "pelican": 81, "penguin": 81, "albatross": 81, "whale": 81, "killer": 81, "dugong": 81, "lion": 81, "chihuahua": 81, "japanes": 81, "chin": 81, "maltes": 81, "pekinges": 81, "shih": 81, "tzu": 81, "charl": 81, "spaniel": 81, "papillon": 81, "terrier": 81, "rhodesian": 81, "ridgeback": 81, "afghan": [81, 95], "hound": 81, "basset": 81, "beagl": 81, "bloodhound": 81, "bluetick": 81, "coonhound": 81, "tan": 81, "walker": 81, "foxhound": 81, "redbon": 81, "borzoi": 81, "irish": 81, "wolfhound": 81, "italian": 81, "greyhound": 81, "whippet": 81, "ibizan": 81, "norwegian": 81, "elkhound": 81, "otterhound": 81, "saluki": 81, "scottish": 81, "deerhound": 81, "weimaran": 81, "staffordshir": 81, "bull": 81, "bedlington": 81, "border": 81, "kerri": 81, "norfolk": 81, "norwich": 81, "yorkshir": 81, "wire": 81, "fox": 81, "lakeland": 81, "sealyham": 81, "airedal": 81, "cairn": 81, "australian": 81, "dandi": 81, "dinmont": 81, "boston": 81, "miniatur": 81, "schnauzer": 81, "giant": 81, "tibetan": 81, "silki": 81, "coat": [81, 83], "wheaten": 81, "west": 81, "highland": 81, "lhasa": 81, "apso": 81, "flat": 81, "retriev": 81, "curli": 81, "golden": 81, "labrador": 81, "chesapeak": 81, "bai": 81, "german": [81, 95], "shorthair": 81, "pointer": 81, "vizsla": 81, "setter": 81, "gordon": 81, "brittani": 81, "clumber": 81, "springer": 81, "welsh": 81, "cocker": 81, "sussex": 81, "kuvasz": 81, "schipperk": 81, "groenendael": 81, "malinoi": 81, "briard": 81, "kelpi": 81, "komondor": 81, "sheepdog": 81, "shetland": 81, "colli": 81, "bouvier": 81, "de": 81, "flandr": 81, "rottweil": 81, "shepherd": 81, "dobermann": 81, "pinscher": 81, "swiss": [81, 95], "mountain": 81, "bernes": 81, "appenzel": 81, "sennenhund": 81, "entlebuch": 81, "boxer": 81, "bullmastiff": 81, "mastiff": 81, "french": 81, "bulldog": 81, "dane": 81, "st": 81, "bernard": 81, "huski": 81, "alaskan": 81, "malamut": 81, "siberian": 81, "dalmatian": 81, "affenpinsch": 81, "basenji": 81, "pug": 81, "leonberg": 81, "newfoundland": 81, "pyrenean": 81, "samoi": 81, "pomeranian": 81, "chow": 81, "keeshond": 81, "griffon": 81, "bruxelloi": 81, "pembrok": 81, "corgi": 81, "cardigan": 81, "poodl": 81, "mexican": 81, "hairless": 81, "tundra": 81, "coyot": 81, "dingo": 81, "dhole": 81, "wild": 81, "hyena": 81, "kit": 81, "arctic": 81, "tabbi": 81, "persian": 81, "siames": 81, "egyptian": 81, "mau": 81, "cougar": 81, "lynx": 81, "leopard": 81, "snow": 81, "jaguar": 81, "cheetah": 81, "brown": [81, 92], "bear": 81, "polar": 81, "sloth": 81, "mongoos": 81, "meerkat": 81, "beetl": 81, "ladybug": 81, "longhorn": 81, "leaf": 81, "rhinocero": 81, "weevil": 81, "fly": 81, "ant": 81, "grasshopp": 81, "cricket": 81, "stick": 81, "insect": 81, "cockroach": 81, "manti": 81, "cicada": 81, "leafhopp": 81, "lacew": 81, "dragonfli": 81, "damselfli": 81, "admir": 81, "ringlet": 81, "monarch": 81, "butterfli": 81, "gossam": 81, "wing": 81, "starfish": 81, "urchin": 81, "cucumb": 81, "cottontail": 81, "rabbit": 81, "hare": 81, "angora": 81, "hamster": 81, "porcupin": 81, "squirrel": 81, "marmot": 81, "beaver": 81, "guinea": 81, "pig": 81, "sorrel": 81, "zebra": 81, "boar": 81, "warthog": 81, "hippopotamu": 81, "ox": 81, "buffalo": 81, "bison": 81, "bighorn": 81, "sheep": 81, "alpin": 81, "ibex": 81, "hartebeest": 81, "impala": 81, "gazel": 81, "dromedari": 81, "llama": 81, "weasel": 81, "mink": 81, "polecat": 81, "foot": 81, "ferret": 81, "otter": 81, "skunk": 81, "badger": 81, "armadillo": 81, "toed": 81, "orangutan": 81, "gorilla": 81, "chimpanze": 81, "gibbon": 81, "siamang": 81, "guenon": 81, "pata": 81, "monkei": 81, "baboon": 81, "macaqu": 81, "langur": 81, "colobu": 81, "probosci": 81, "marmoset": 81, "capuchin": 81, "howler": 81, "titi": 81, "geoffroi": 81, "lemur": 81, "indri": 81, "asian": 81, "eleph": 81, "bush": 81, "snoek": 81, "eel": 81, "coho": 81, "salmon": 81, "beauti": 81, "clownfish": 81, "sturgeon": 81, "garfish": 81, "lionfish": 81, "pufferfish": 81, "abacu": 81, "abaya": 81, "academ": 81, "gown": 81, "accordion": 81, "acoust": 81, "guitar": 81, "aircraft": 81, "carrier": 81, "airlin": 81, "airship": 81, "altar": 81, "ambul": 81, "amphibi": 81, "clock": [81, 95], "apiari": 81, "apron": 81, "wast": 81, "assault": 81, "rifl": 81, "backpack": 81, "bakeri": 81, "balanc": 81, "beam": 81, "balloon": 81, "ballpoint": 81, "pen": 81, "aid": 81, "banjo": 81, "balust": 81, "barbel": 81, "barber": 81, "chair": [81, 88], "barbershop": 81, "baromet": 81, "barrel": 81, "wheelbarrow": 81, "basebal": 81, "basketbal": 81, "bassinet": 81, "bassoon": 81, "swim": 81, "cap": 81, "bath": 81, "towel": 81, "bathtub": 81, "station": 81, "wagon": 81, "lighthous": 81, "beaker": 81, "militari": 81, "beer": 81, "bottl": 81, "glass": 81, "bell": 81, "cot": 81, "bib": 81, "bicycl": [81, 92], "bikini": 81, "binder": 81, "binocular": 81, "birdhous": 81, "boathous": 81, "bobsleigh": 81, "bolo": 81, "tie": 81, "poke": 81, "bonnet": 81, "bookcas": 81, "bookstor": 81, "bow": 81, "brass": 81, "bra": 81, "breakwat": 81, "breastplat": 81, "broom": 81, "bucket": 81, "buckl": 81, "bulletproof": 81, "vest": 81, "butcher": 81, "shop": 81, "taxicab": 81, "cauldron": 81, "candl": 81, "cannon": 81, "cano": 81, "mirror": [81, 88], "carousel": 81, "tool": [81, 84, 86], "carton": 81, "wheel": 81, "teller": 81, "cassett": 81, "player": 81, "castl": 81, "catamaran": 81, "cd": 81, "cello": 81, "mobil": [81, 95], "chain": 81, "fenc": [81, 92], "mail": 81, "chainsaw": 81, "chest": 81, "chiffoni": 81, "chime": 81, "china": 81, "cabinet": 81, "christma": 81, "stock": 81, "church": 81, "movi": 81, "theater": 81, "cleaver": 81, "cliff": 81, "dwell": 81, "cloak": 81, "clog": 81, "cocktail": 81, "shaker": 81, "coffe": 81, "mug": 81, "coffeemak": 81, "coil": 81, "lock": 81, "keyboard": 81, "confectioneri": 81, "ship": [81, 89], "corkscrew": 81, "cornet": 81, "cowboi": 81, "boot": 81, "hat": 81, "cradl": 81, "crash": 81, "helmet": 81, "crate": 81, "infant": 81, "bed": 81, "crock": 81, "pot": 81, "croquet": 81, "crutch": 81, "cuirass": 81, "dam": 81, "desk": 81, "desktop": 81, "rotari": 81, "dial": 81, "telephon": 81, "diaper": 81, "watch": 81, "dine": 81, "dishcloth": 81, "dishwash": 81, "disc": 81, "brake": 81, "dock": 81, "sled": 81, "dome": 81, "doormat": 81, "drill": 81, "rig": 81, "drum": 81, "drumstick": 81, "dumbbel": 81, "dutch": 81, "oven": 81, "fan": 81, "locomot": 81, "entertain": 81, "center": 81, "envelop": 81, "espresso": 81, "powder": 81, "feather": 81, "fireboat": 81, "engin": [81, 92], "screen": 81, "sheet": 81, "flagpol": 81, "flute": 81, "footbal": 81, "forklift": 81, "fountain": 81, "poster": 81, "freight": 81, "fry": 81, "pan": 81, "fur": 81, "garbag": 81, "ga": 81, "pump": 81, "goblet": 81, "kart": 81, "golf": 81, "cart": 81, "gondola": 81, "gong": 81, "grand": 81, "piano": 81, "greenhous": 81, "grill": 81, "groceri": 81, "guillotin": 81, "barrett": 81, "hair": 81, "sprai": 81, "hammer": 81, "dryer": 81, "hand": [81, 84], "handkerchief": 81, "drive": 81, "harmonica": 81, "harp": 81, "harvest": 81, "hatchet": 81, "holster": 81, "honeycomb": 81, "hoop": 81, "skirt": 81, "horizont": 81, "bar": 81, "hors": [81, 89, 94], "drawn": 81, "hourglass": 81, "ipod": 81, "cloth": 81, "iron": 81, "jack": 81, "lantern": 81, "jean": 81, "jeep": 81, "shirt": [81, 83], "jigsaw": 81, "puzzl": 81, "pull": 81, "rickshaw": 81, "joystick": 81, "kimono": 81, "knee": 81, "pad": 81, "knot": 81, "ladl": 81, "lampshad": 81, "laptop": 81, "lawn": 81, "mower": 81, "knife": 81, "lifeboat": 81, "lighter": 81, "limousin": 81, "ocean": 81, "liner": 81, "lipstick": 81, "slip": 81, "shoe": 81, "lotion": 81, "speaker": 81, "loup": 81, "sawmil": 81, "magnet": 81, "compass": 81, "bag": [81, 83, 89, 90], "mailbox": 81, "tight": 81, "tank": 81, "manhol": 81, "maraca": 81, "marimba": 81, "maypol": 81, "maze": 81, "cup": [81, 88], "medicin": 81, "megalith": 81, "microphon": 81, "microwav": 81, "milk": 81, "minibu": 81, "miniskirt": 81, "minivan": 81, "missil": 81, "mitten": 81, "mix": 81, "bowl": 81, "modem": 81, "monasteri": 81, "monitor": 81, "mope": 81, "mortar": 81, "mosqu": 81, "mosquito": 81, "scooter": 81, "bike": 81, "tent": 81, "mous": [81, 82], "mousetrap": 81, "van": 81, "muzzl": 81, "nail": 81, "brace": 81, "necklac": 81, "nippl": 81, "obelisk": 81, "obo": 81, "ocarina": 81, "odomet": 81, "oil": 81, "oscilloscop": 81, "overskirt": 81, "bullock": 81, "oxygen": 81, "packet": 81, "paddl": 81, "padlock": 81, "paintbrush": 81, "pajama": 81, "palac": [81, 95], "parachut": 81, "park": 81, "bench": 81, "meter": 81, "passeng": 81, "patio": 81, "payphon": 81, "pedest": 81, "pencil": 81, "perfum": 81, "petri": 81, "dish": 81, "photocopi": 81, "plectrum": 81, "pickelhaub": 81, "picket": 81, "pickup": 81, "pier": 81, "piggi": 81, "pill": 81, "pillow": 81, "ping": 81, "pong": 81, "pinwheel": 81, "pirat": 81, "pitcher": 81, "plane": 81, "planetarium": 81, "plastic": 81, "plate": 81, "rack": 81, "plow": 81, "plunger": 81, "polaroid": 81, "camera": 81, "pole": [81, 92], "polic": 81, "poncho": 81, "billiard": 81, "soda": 81, "potter": 81, "prayer": 81, "rug": 81, "printer": 81, "prison": 81, "projectil": 81, "projector": 81, "hockei": 81, "puck": 81, "punch": 81, "purs": 81, "quill": 81, "quilt": 81, "race": 81, "racket": 81, "radiat": 81, "radio": 81, "telescop": 81, "rain": 81, "recreat": 81, "reel": 81, "reflex": 81, "refriger": 81, "remot": 81, "restaur": 81, "revolv": 81, "rotisseri": 81, "eras": 81, "rugbi": 81, "ruler": 81, "safe": 81, "safeti": 81, "salt": 81, "sandal": [81, 83], "sarong": 81, "saxophon": 81, "scabbard": 81, "school": 81, "bu": [81, 92], "schooner": 81, "scoreboard": 81, "crt": 81, "screw": 81, "screwdriv": 81, "seat": 81, "belt": 81, "sew": 81, "shield": 81, "shoji": 81, "basket": 81, "shovel": 81, "shower": 81, "curtain": 81, "ski": 81, "sleep": 81, "door": 81, "slot": 81, "snorkel": 81, "snowmobil": 81, "snowplow": 81, "soap": 81, "dispens": 81, "soccer": [81, 95], "sock": 81, "solar": 81, "thermal": 81, "collector": 81, "sombrero": 81, "soup": 81, "heater": 81, "shuttl": 81, "spatula": 81, "motorboat": 81, "web": 81, "spindl": 81, "sport": [81, 95], "spotlight": 81, "stage": 81, "steam": 81, "arch": 81, "bridg": 81, "steel": 81, "stethoscop": 81, "scarf": 81, "stone": 81, "wall": [81, 92], "stopwatch": 81, "stove": 81, "strainer": 81, "tram": 81, "stretcher": 81, "couch": 81, "stupa": 81, "submarin": 81, "sundial": 81, "sunglass": 81, "sunscreen": 81, "suspens": 81, "mop": 81, "sweatshirt": 81, "swimsuit": 81, "swing": 81, "switch": 81, "syring": 81, "lamp": 81, "tape": 81, "teapot": 81, "teddi": 81, "televis": [81, 95], "tenni": 81, "thatch": 81, "roof": 81, "front": 81, "thimbl": 81, "thresh": 81, "throne": 81, "tile": 81, "toaster": 81, "tobacco": 81, "toilet": 81, "totem": 81, "tow": 81, "tractor": 81, "semi": 81, "trailer": 81, "trai": 81, "trench": 81, "tricycl": 81, "trimaran": 81, "tripod": 81, "triumphal": 81, "trolleybu": 81, "trombon": 81, "tub": 81, "turnstil": 81, "typewrit": 81, "umbrella": 81, "unicycl": 81, "upright": 81, "vacuum": 81, "cleaner": 81, "vase": 81, "vault": 81, "velvet": 81, "vend": 81, "vestment": 81, "viaduct": 81, "violin": 81, "volleybal": 81, "waffl": 81, "wallet": 81, "wardrob": 81, "sink": 81, "wash": 81, "jug": 81, "tower": 81, "whiskei": 81, "whistl": 81, "wig": 81, "shade": [81, 92], "windsor": 81, "wine": 81, "wok": 81, "wooden": 81, "spoon": 81, "wool": 81, "rail": 81, "shipwreck": 81, "yawl": 81, "yurt": 81, "websit": 81, "comic": 81, "book": 81, "crossword": 81, "traffic": [81, 88, 92], "sign": [81, 92, 95], "dust": 81, "jacket": [81, 88], "menu": 81, "guacamol": 81, "consomm": 81, "trifl": 81, "ic": 81, "cream": 81, "pop": 81, "baguett": 81, "bagel": 81, "pretzel": 81, "cheeseburg": 81, "mash": 81, "potato": 81, "cabbag": 81, "broccoli": 81, "cauliflow": 81, "zucchini": 81, "spaghetti": 81, "squash": 81, "acorn": 81, "butternut": 81, "artichok": 81, "pepper": 81, "cardoon": 81, "mushroom": 81, "granni": 81, "smith": 81, "strawberri": 81, "orang": 81, "lemon": 81, "pineappl": 81, "banana": 81, "jackfruit": 81, "custard": 81, "appl": 81, "pomegran": 81, "hai": 81, "carbonara": 81, "chocol": 81, "syrup": 81, "dough": 81, "meatloaf": 81, "pizza": 81, "pie": 81, "burrito": 81, "eggnog": 81, "alp": 81, "bubbl": 81, "reef": 81, "geyser": 81, "lakeshor": 81, "promontori": 81, "shoal": 81, "seashor": 81, "vallei": 81, "volcano": 81, "bridegroom": 81, "scuba": 81, "diver": 81, "rapese": 81, "daisi": 81, "ladi": 81, "slipper": 81, "corn": 81, "rose": 81, "hip": 81, "chestnut": 81, "fungu": 81, "agar": 81, "gyromitra": 81, "stinkhorn": 81, "earth": 81, "star": 81, "wood": 81, "bolet": 81, "ear": 81, "cifar10_test_set": 81, "airplan": [81, 89], "automobil": [81, 89], "deer": [81, 89], "cifar100_test_set": 81, "aquarium_fish": 81, "babi": 81, "boi": 81, "camel": 81, "caterpillar": 81, "cattl": [81, 95], "cloud": 81, "dinosaur": 81, "dolphin": 81, "flatfish": 81, "forest": 81, "girl": 81, "kangaroo": 81, "lawn_mow": 81, "man": 81, "maple_tre": 81, "motorcycl": [81, 92], "oak_tre": 81, "orchid": 81, "palm_tre": 81, "pear": 81, "pickup_truck": 81, "pine_tre": 81, "plain": 81, "poppi": 81, "possum": 81, "raccoon": 81, "road": [81, 92], "rocket": 81, "seal": 81, "shrew": 81, "skyscrap": 81, "streetcar": 81, "sunflow": 81, "sweet_pepp": 81, "trout": 81, "tulip": 81, "willow_tre": 81, "woman": [81, 88], "caltech256": 81, "ak47": 81, "bat": 81, "glove": 81, "birdbath": 81, "blimp": 81, "bonsai": 81, "boom": 81, "breadmak": 81, "buddha": 81, "bulldoz": 81, "cactu": 81, "cake": 81, "tire": 81, "cartman": 81, "cereal": 81, "chandeli": 81, "chess": 81, "board": 81, "chimp": 81, "chopstick": 81, "coffin": 81, "coin": 81, "comet": 81, "cormor": 81, "globe": 81, "diamond": 81, "dice": 81, "doorknob": 81, "drink": 81, "straw": 81, "dumb": 81, "eiffel": 81, "elk": 81, "ewer": 81, "eyeglass": 81, "fern": 81, "fighter": 81, "jet": [81, 91], "extinguish": 81, "hydrant": 81, "firework": 81, "flashlight": 81, "floppi": 81, "fri": 81, "frisbe": 81, "galaxi": 81, "giraff": 81, "goat": 81, "gate": 81, "grape": 81, "pick": [81, 82], "hamburg": 81, "hammock": 81, "harpsichord": 81, "hawksbil": 81, "helicopt": 81, "hibiscu": 81, "homer": 81, "simpson": 81, "horsesho": 81, "air": 81, "skeleton": 81, "ibi": 81, "cone": 81, "iri": 81, "jesu": 81, "christ": 81, "joi": 81, "kayak": 81, "ketch": 81, "ladder": 81, "lath": 81, "licens": 81, "lightbulb": 81, "lightn": 81, "mandolin": 81, "mar": 81, "mattress": 81, "megaphon": 81, "menorah": 81, "microscop": 81, "minaret": 81, "minotaur": 81, "motorbik": 81, "mussel": 81, "neckti": 81, "octopu": 81, "palm": 81, "pilot": 81, "paperclip": 81, "shredder": 81, "pci": 81, "peopl": [81, 88], "pez": 81, "picnic": 81, "pram": 81, "prai": 81, "pyramid": 81, "rainbow": 81, "roulett": 81, "saddl": 81, "saturn": 81, "segwai": 81, "propel": 81, "sextant": 81, "music": 81, "skateboard": 81, "smokestack": 81, "sneaker": 81, "boat": 81, "stain": 81, "steer": 81, "stirrup": 81, "superman": 81, "sushi": 81, "armi": [81, 95], "sword": 81, "tambourin": 81, "teepe": 81, "court": 81, "theodolit": 81, "tomato": 81, "tombston": 81, "tour": 81, "pisa": 81, "treadmil": 81, "fork": 81, "tweezer": 81, "unicorn": 81, "vcr": 81, "waterfal": 81, "watermelon": 81, "weld": 81, "windmil": 81, "xylophon": 81, "yarmulk": 81, "yo": 81, "toad": 81, "twenty_news_test_set": 81, "alt": 81, "atheism": 81, "comp": 81, "graphic": [81, 92], "misc": [81, 95], "sy": 81, "ibm": 81, "pc": 81, "hardwar": 81, "mac": 81, "forsal": 81, "rec": 81, "sci": 81, "crypt": 81, "electron": 81, "med": 81, "soc": 81, "religion": 81, "christian": [81, 95], "talk": [81, 95], "polit": 81, "gun": 81, "mideast": 81, "amazon": 81, "neutral": 81, "imdb_test_set": 81, "all_class": 81, "20news_test_set": 81, "_load_classes_predprobs_label": 81, "dataset_nam": 81, "labelerror": 81, "url_bas": 81, "5392f6c71473055060be3044becdde1cbc18284d": 81, "url_label": 81, "original_test_label": 81, "_original_label": 81, "url_prob": 81, "cross_validated_predicted_prob": 81, "_pyx": 81, "num_part": 81, "datatset": 81, "bytesio": 81, "allow_pickl": 81, "pred_probs_part": 81, "url": 81, "_of_": 81, "nload": 81, "imdb": 81, "ve": [81, 82, 84, 86, 88], "interpret": [81, 82, 84, 87, 91], "capit": 81, "29780": 81, "256": [81, 82, 88], "780": 81, "medic": [81, 95], "doctor": 81, "254": [81, 88], "359223": 81, "640777": 81, "184": [81, 84], "258427": 81, "341176": 81, "263158": 81, "658824": 81, "337349": 81, "246575": 81, "662651": 81, "248": 81, "330000": 81, "355769": 81, "670000": 81, "251": [81, 88], "167": [81, 84, 88], "252": 81, "112": 81, "253": [81, 88], "022989": 81, "255": [81, 83], "049505": 81, "190": [81, 84, 88], "66": [81, 92], "002216": 81, "000974": 81, "59": [81, 83, 88, 89, 92], "88": [81, 82, 83, 84, 87, 88, 91, 92], "000873": 81, "000739": 81, "79": [81, 88, 92, 93], "32635": 81, "32636": 81, "47": [81, 83, 88, 92], "32637": 81, "32638": 81, "32639": 81, "32640": 81, "051": 81, "93": [81, 88, 91, 92, 93, 95], "002242": 81, "997758": 81, "002088": 81, "001045": 81, "997912": 81, "002053": 81, "997947": 81, "001980": 81, "000991": 81, "998020": 81, "001946": 81, "002915": 81, "998054": 81, "001938": 81, "002904": 81, "998062": 81, "001020": 81, "998980": 81, "001018": 81, "002035": 81, "998982": 81, "999009": 81, "0003": 81, "0002": 81, "36": [81, 83, 92, 95], "41": [81, 83, 88, 91, 92], "44": [81, 87, 88, 92, 94], "71": [81, 84, 88, 91, 92], "071": 81, "067269": 81, "929": 81, "046": 81, "058243": 81, "954": 81, "035": 81, "032096": 81, "965": 81, "031": 81, "012232": 81, "969": 81, "022": 81, "025896": 81, "978": 81, "020": [81, 84], "013092": 81, "018": 81, "013065": 81, "016": 81, "030542": 81, "984": 81, "013": 81, "020833": 81, "987": 81, "012": 81, "010020": 81, "988": 81, "0073": 81, "0020": 81, "0016": 81, "0015": 81, "0013": 81, "0012": 81, "0010": 81, "0008": 81, "0007": 81, "0006": 81, "0005": 81, "0004": 81, "244": [81, 88], "98": [81, 82, 83, 89, 91, 92], "452381": 81, "459770": 81, "72": [81, 83, 84, 87, 89, 91, 92], "523364": 81, "460784": 81, "446602": 81, "57": [81, 83, 84, 92], "68": [81, 83, 84, 88, 92, 93], "103774": 81, "030612": 81, "97": [81, 82, 84, 88, 91, 92, 93, 95], "110092": 81, "049020": 81, "99": [81, 84, 92, 93], "0034": 81, "0032": 81, "0026": 81, "0025": 81, "4945": 81, "4946": 81, "4947": 81, "4948": 81, "4949": 81, "4950": 81, "846": 81, "82": [81, 84, 88, 91, 92], "7532": 81, "532": 81, "034483": 81, "009646": 81, "965517": 81, "030457": 81, "020513": 81, "969543": 81, "028061": 81, "035443": 81, "971939": 81, "025316": 81, "005168": 81, "974684": 81, "049751": 81, "979487": 81, "019920": 81, "042802": 81, "980080": 81, "017677": 81, "005115": 81, "982323": 81, "012987": 81, "005236": 81, "987013": 81, "012723": 81, "025126": 81, "987277": 81, "010989": 81, "008264": 81, "989011": 81, "010283": 81, "027778": 81, "989717": 81, "009677": 81, "990323": 81, "007614": 81, "010127": 81, "992386": 81, "005051": 81, "994949": 81, "005025": 81, "994975": 81, "005013": 81, "994987": 81, "001859": 81, "001328": 81, "000929": 81, "000664": 81, "186": [81, 84], "188": [81, 84, 87], "189": [81, 84], "snippet": 82, "nlp": [82, 95], "mind": [82, 84], "number_of_class": 82, "total_number_of_data_point": 82, "drop": [82, 86, 91, 94], "feed": 82, "alphabet": 82, "labels_proper_format": 82, "your_classifi": 82, "issues_datafram": 82, "class_predicted_for_flagged_exampl": 82, "class_predicted_for_all_exampl": 82, "grant": 82, "datataset": 82, "fair": [82, 84], "game": 82, "speedup": [82, 89], "flexibl": 82, "tempfil": 82, "mkdtemp": 82, "sped": 82, "anywai": 82, "pred_probs_merg": 82, "merge_rare_class": 82, "count_threshold": 82, "class_mapping_orig2new": 82, "heath_summari": 82, "num_examples_per_class": 82, "rare_class": 82, "num_classes_merg": 82, "other_class": 82, "labels_merg": 82, "new_c": 82, "merged_prob": 82, "hstack": [82, 83, 84, 86], "new_class": 82, "original_class": 82, "num_check": 82, "ones_array_ref": 82, "isclos": 82, "though": [82, 84, 95], "successfulli": 82, "meaning": [82, 89], "virtuou": [82, 86], "cycl": [82, 86], "jointli": 82, "junk": 82, "clutter": 82, "unknown": 82, "caltech": 82, "combined_boolean_mask": 82, "mask1": 82, "mask2": 82, "gradientboostingclassifi": [82, 84], "true_error": [82, 84, 87], "101": [82, 88], "102": [82, 87, 88], "104": [82, 84, 88], "model_to_find_error": 82, "model_to_return": 82, "cl0": 82, "randomizedsearchcv": 82, "expens": 82, "param_distribut": 82, "learning_r": [82, 84], "max_depth": [82, 84], "magnitud": 82, "coeffici": [82, 91], "optin": 82, "environ": [82, 84], "rerun": [82, 84], "cell": [82, 84], "On": [82, 84, 88], "unabl": [82, 84], "render": [82, 84], "nbviewer": [82, 84], "nbsp": [82, 84], "cleanlearninginot": [82, 84], "fittedcleanlearn": [82, 84], "linearregressionlinearregress": 82, "n_init": 82, "fit_predict": 82, "continuous_column": 82, "categorical_column": 82, "data_df": 82, "feature_a": 82, "feature_b": 82, "unexpectedli": 82, "emphas": 82, "especi": [82, 83, 91, 93, 94], "crucial": 82, "merge_duplicate_set": 82, "merge_kei": 82, "construct_group_kei": 82, "merged_set": 82, "consolidate_set": 82, "tolist": [82, 87], "issubset": 82, "frozenset": 82, "sets_list": 82, "mutabl": 82, "new_set": 82, "current_set": 82, "intersecting_set": 82, "lowest_score_strategi": 82, "sub_df": 82, "idxmin": 82, "filter_near_dupl": 82, "strategy_fn": 82, "strategy_kwarg": 82, "duplicate_row": 82, "group_kei": 82, "to_keep_indic": 82, "groupbi": 82, "explod": 82, "to_remov": 82, "isin": [82, 89], "kept": 82, "near_duplicate_issu": [82, 83], "ids_to_remove_seri": 82, "tmp": 82, "ipykernel_5764": 82, "1995098996": 82, "deprecationwarn": 82, "dataframegroupbi": 82, "include_group": 82, "silenc": 82, "assist": 82, "streamlin": 82, "ux": 82, "agpl": 82, "compani": 82, "commerci": 82, "alter": 82, "email": 82, "discuss": 82, "anywher": 82, "profession": 82, "expert": 82, "60": [83, 84, 91, 92], "excess": 83, "torchvis": [83, 89], "tensordataset": 83, "stratifiedkfold": [83, 87], "tqdm": 83, "fashion_mnist": 83, "num_row": 83, "60000": 83, "pil": 83, "transformed_dataset": 83, "with_format": 83, "unsqueez": 83, "cpu_count": 83, "torch_dataset": 83, "quick": [83, 87], "relu": 83, "batchnorm2d": 83, "maxpool2d": 83, "lazylinear": 83, "flatten": 83, "get_test_accuraci": 83, "testload": [83, 89], "energi": 83, "trainload": [83, 89], "n_epoch": 83, "patienc": 83, "criterion": 83, "crossentropyloss": 83, "adamw": 83, "best_test_accuraci": 83, "start_epoch": 83, "running_loss": 83, "best_epoch": 83, "end_epoch": 83, "3f": [83, 91], "acc": [83, 84], "time_taken": 83, "compute_embed": 83, "compute_pred_prob": 83, "train_batch_s": 83, "num_work": 83, "worker": [83, 95], "train_id_list": 83, "test_id_list": 83, "train_id": 83, "test_id": 83, "embeddings_model": 83, "ntrain": 83, "trainset": 83, "testset": 83, "pin_memori": 83, "fold_embed": 83, "fold_pred_prob": 83, "finish": 83, "482": 83, "720": 83, "773": 83, "195": 83, "440": 83, "stderr": [83, 89, 92], "sphinxverbatim": [83, 89, 92, 95], "48it": [83, 92], "14it": [83, 92], "36it": [83, 92], "75it": [83, 89, 92], "55it": [83, 92], "02it": [83, 92], "34it": [83, 92], "28it": [83, 92], "42it": [83, 92], "97it": [83, 92], "44it": [83, 92], "46it": [83, 92], "79it": [83, 89, 92], "50it": [83, 92], "493": 83, "060": 83, "625": 83, "330": [83, 88], "505": 83, "389": 83, "53it": [83, 92], "57it": [83, 92], "26it": [83, 89, 92], "37it": [83, 92], "41it": [83, 92], "07it": [83, 92], "33it": [83, 89, 92], "06it": [83, 92], "78it": [83, 92], "67it": [83, 89, 92], "09it": [83, 92], "88it": [83, 92], "476": 83, "340": 83, "594": 83, "328": [83, 88], "310": 83, "414": 83, "99it": [83, 92], "73it": [83, 92], "94it": [83, 89, 92], "62": [83, 84, 88, 91, 92], "43it": [83, 92], "69it": [83, 92], "52it": [83, 92], "56it": [83, 92], "15it": [83, 92], "29it": [83, 92], "00it": [83, 92], "08it": [83, 92], "49it": [83, 92], "reorder": 83, "vision": 83, "grayscal": 83, "exce": 83, "max_preval": 83, "7714": 83, "3772": 83, "3585": 83, "166": 83, "3651": 83, "27080": 83, "873833e": 83, "40378": 83, "915575e": 83, "25316": 83, "390277e": 83, "06": [83, 84, 88, 92, 95], "2090": 83, "751164e": 83, "14999": 83, "881301e": 83, "9569": 83, "11262": 83, "000003": 83, "19228": 83, "000010": 83, "dress": 83, "32657": 83, "000013": 83, "21282": 83, "000016": 83, "53564": 83, "000018": 83, "pullov": 83, "6321": 83, "30968": 83, "001267": 83, "30659": 83, "000022": [83, 95], "47824": 83, "001454": 83, "3370": 83, "000026": 83, "54565": 83, "001854": 83, "9762": 83, "258": 83, "47139": 83, "000033": 83, "166980": 83, "986195": 83, "997205": 83, "948781": 83, "999358": 83, "54078": 83, "17371": 83, "000025": 83, "plot_label_issue_exampl": 83, "ncol": [83, 89], "nrow": [83, 89], "ceil": 83, "axes_list": 83, "label_issue_indic": 83, "gl": 83, "sl": 83, "fontdict": 83, "imshow": [83, 89], "cmap": [83, 91], "grai": 83, "subplots_adjust": 83, "hspace": 83, "outsiz": 83, "outlier_issues_df": 83, "depict": [83, 87, 88, 89, 90, 92], "plot_outlier_issues_exampl": 83, "n_comparison_imag": 83, "sample_from_class": 83, "number_of_sampl": 83, "non_outlier_indic": 83, "isnul": 83, "non_outlier_indices_excluding_curr": 83, "sampled_indic": 83, "label_scores_of_sampl": 83, "top_score_indic": 83, "top_label_indic": 83, "sampled_imag": 83, "get_image_given_label_and_sampl": 83, "image_from_dataset": 83, "corresponding_label": 83, "comparison_imag": 83, "images_to_plot": 83, "idlist": 83, "iterrow": 83, "closest": 83, "counterpart": 83, "near_duplicate_issues_df": 83, "plot_near_duplicate_issue_exampl": 83, "seen_id_pair": 83, "get_image_and_given_label_and_predicted_label": 83, "duplicate_imag": 83, "nd_set": 83, "challeng": 83, "dark_issu": 83, "reveal": [83, 88, 92], "dark_scor": 83, "dark_issues_df": 83, "is_dark_issu": 83, "34848": 83, "203922": 83, "50270": 83, "204588": 83, "3936": 83, "213098": 83, "733": 83, "217686": 83, "8094": 83, "230118": 83, "plot_image_issue_exampl": 83, "difficult": 83, "disproportion": 83, "lowinfo_issu": 83, "low_information_scor": 83, "lowinfo_issues_df": 83, "is_low_information_issu": 83, "53050": 83, "067975": 83, "40875": 83, "089929": 83, "9594": 83, "092601": 83, "34825": 83, "107744": 83, "37530": 83, "108516": 83, "lot": 83, "depth": 84, "survei": [84, 95], "focus": [84, 86, 87, 91], "scienc": 84, "multivariate_norm": [84, 86, 87], "make_data": [84, 86], "cov": [84, 86, 87], "avg_trac": [84, 87], "test_label": [84, 87, 89, 94], "py_tru": 84, "noise_matrix_tru": 84, "noise_marix": 84, "s_test": 84, "noisy_test_label": 84, "purpl": 84, "val": 84, "namespac": 84, "exec": 84, "markerfacecolor": [84, 87], "markeredgecolor": [84, 87, 91], "markers": [84, 87, 91], "markeredgewidth": [84, 87, 91], "realist": 84, "7560": 84, "637318e": 84, "896262e": 84, "548391e": 84, "923417e": 84, "375075e": 84, "3454": 84, "014051": 84, "020451": 84, "249": [84, 88], "042594": 84, "043859": 84, "045954": 84, "6120": 84, "023714": 84, "007136": 84, "119": [84, 88], "107266": 84, "103": [84, 88], "033738": 84, "238": [84, 88], "119505": 84, "236": [84, 88], "037843": 84, "222": 84, "614915": 84, "122": [84, 88], "624422": 84, "625965": 84, "626079": 84, "118": 84, "627675": 84, "695223": 84, "323529": 84, "523015": 84, "013720": 84, "675727": 84, "646521": 84, "anyth": 84, "enhanc": [84, 86, 88], "magic": 84, "83": [84, 88, 91, 92, 93, 95], "liter": 84, "identif": 84, "x27": 84, "logisticregressionlogisticregress": 84, "ever": 84, "092": 84, "040": 84, "024": 84, "004": 84, "surpris": 84, "1705": 84, "01936": 84, "ton": 84, "yourfavoritemodel1": 84, "merged_label": 84, "merged_test_label": 84, "newli": [84, 86], "yourfavoritemodel2": 84, "yourfavoritemodel3": 84, "cl3": 84, "takeawai": 84, "That": [84, 87], "randomli": 84, "my_test_pred_prob": 84, "my_test_pr": 84, "issues_test": 84, "corrected_test_label": 84, "pretend": 84, "cl_test_pr": 84, "69": [84, 91, 92], "fairli": 84, "label_acc": 84, "percentag": 84, "offset": 84, "nquestion": 84, "overestim": 84, "answer": 84, "experienc": 84, "76": [84, 87, 88, 91, 92, 93], "knowledg": 84, "quantiti": [84, 91], "prioiri": 84, "known": 84, "versatil": 84, "label_issues_indic": 84, "213": [84, 88], "212": [84, 93], "218": [84, 88], "152": 84, "197": [84, 88], "196": [84, 88], "170": 84, "214": [84, 95], "164": [84, 87], "198": [84, 88], "191": [84, 88], "63": [84, 88, 91, 92], "121": [84, 94], "117": [84, 91], "206": [84, 88], "115": [84, 88], "193": 84, "194": 84, "201": [84, 88], "174": 84, "163": 84, "150": [84, 86, 88], "169": 84, "151": [84, 88], "168": 84, "precision_scor": 84, "recall_scor": 84, "f1_score": 84, "true_label_issu": 84, "filter_by_list": 84, "718750": [84, 86], "807018": 84, "912": 84, "733333": 84, "800000": 84, "721311": 84, "792793": 84, "908": 84, "676923": 84, "765217": 84, "892": 84, "567901": 84, "702290": 84, "844": 84, "gaug": 84, "label_issues_count": 84, "155": [84, 88], "156": 84, "172": [84, 87], "easiest": 84, "modular": 84, "penalti": 84, "l2": 84, "model3": 84, "n_estim": 84, "cv_pred_probs_1": 84, "cv_pred_probs_2": 84, "cv_pred_probs_3": 84, "label_quality_scores_best": 84, "cv_pred_probs_ensembl": 84, "label_quality_scores_bett": 84, "superior": [84, 90], "workflow": [85, 91], "speechbrain": 85, "timm": 85, "glad": 86, "multiannotator_label": 86, "300": [86, 95], "noisier": 86, "111": [86, 91], "local_data": [86, 87], "true_labels_train": [86, 87], "noise_matrix_bett": 86, "noise_matrix_wors": 86, "transpos": [86, 89], "dropna": 86, "zfill": 86, "row_na_check": 86, "notna": 86, "reset_index": 86, "a0001": 86, "a0002": 86, "a0003": 86, "a0004": 86, "a0005": 86, "a0006": 86, "a0007": 86, "a0008": 86, "a0009": 86, "a0010": 86, "a0041": 86, "a0042": 86, "a0043": 86, "a0044": 86, "a0045": 86, "a0046": 86, "a0047": 86, "a0048": 86, "a0049": 86, "a0050": 86, "na": 86, "60856743": 86, "41693214": 86, "40908785": 86, "87147629": 86, "64941785": 86, "10774851": 86, "0524466": 86, "71853246": 86, "37169848": 86, "66031048": 86, "multiannotator_util": 86, "crude": 86, "straight": 86, "majority_vote_label": 86, "736118": 86, "757751": 86, "782232": 86, "715565": 86, "824256": 86, "quality_annotator_a0001": 86, "quality_annotator_a0002": 86, "quality_annotator_a0003": 86, "quality_annotator_a0004": 86, "quality_annotator_a0005": 86, "quality_annotator_a0006": 86, "quality_annotator_a0007": 86, "quality_annotator_a0008": 86, "quality_annotator_a0009": 86, "quality_annotator_a0010": 86, "quality_annotator_a0041": 86, "quality_annotator_a0042": 86, "quality_annotator_a0043": 86, "quality_annotator_a0044": 86, "quality_annotator_a0045": 86, "quality_annotator_a0046": 86, "quality_annotator_a0047": 86, "quality_annotator_a0048": 86, "quality_annotator_a0049": 86, "quality_annotator_a0050": 86, "070564": 86, "216078": 86, "119188": 86, "alongisd": 86, "244981": 86, "208333": 86, "295979": 86, "294118": 86, "324197": 86, "310345": 86, "355316": 86, "346154": 86, "439732": 86, "480000": 86, "a0031": 86, "523205": 86, "580645": 86, "a0034": 86, "535313": 86, "607143": 86, "a0021": 86, "606999": 86, "a0015": 86, "609526": 86, "678571": 86, "a0011": 86, "621103": 86, "692308": 86, "wors": 86, "improved_consensus_label": 86, "majority_vote_accuraci": 86, "cleanlab_label_accuraci": 86, "8581081081081081": 86, "9797297297297297": 86, "besid": 86, "sorted_consensus_quality_scor": 86, "worst_qual": 86, "better_qu": 86, "worst_quality_accuraci": 86, "better_quality_accuraci": 86, "9893238434163701": 86, "improved_pred_prob": 86, "treat": [86, 87, 91, 95], "analzi": 86, "copyright": 87, "advertis": 87, "violenc": 87, "nsfw": 87, "suppli": [87, 88, 91], "celeba": 87, "make_multilabel_data": 87, "boxes_coordin": 87, "box_multilabel": 87, "make_multi": 87, "bx1": 87, "by1": 87, "bx2": 87, "by2": 87, "label_list": 87, "ur": 87, "upper": 87, "inidx": 87, "logical_and": 87, "inv_d": 87, "labels_idx": 87, "true_labels_test": 87, "dict_unique_label": 87, "get_color_arrai": 87, "dcolor": 87, "aa4400": 87, "55227f": 87, "55a100": 87, "00ff00": 87, "007f7f": 87, "386b55": 87, "0000ff": 87, "simplic": 87, "advis": 87, "y_onehot": 87, "single_class_label": 87, "stratifi": [87, 90], "kf": 87, "train_index": 87, "test_index": 87, "clf_cv": 87, "x_train_cv": 87, "x_test_cv": 87, "y_train_cv": 87, "y_test_cv": 87, "y_pred_cv": 87, "saw": 87, "num_to_displai": 87, "09": [87, 88, 89, 91, 92], "275": 87, "267": 87, "225": 87, "171": 87, "234": 87, "165": 87, "227": [87, 88], "262": [87, 88], "263": [87, 88], "266": [87, 88], "139": 87, "143": [87, 88], "216": [87, 88, 95], "265": 87, "159": [87, 88], "despit": [87, 95], "suspect": 87, "888": 87, "8224": 87, "9632": 87, "968": 87, "6512": 87, "0444": 87, "774": 87, "labels_binary_format": 87, "labels_list_format": 87, "surround": 88, "scene": 88, "coco": 88, "everydai": 88, "has_label_issu": 88, "insal": 88, "nc": [88, 92, 95], "s3": [88, 92, 95], "amazonaw": [88, 92, 95], "objectdetectionbenchmark": 88, "tutorial_obj": 88, "pkl": 88, "example_imag": 88, "unzip": [88, 95], "_separate_label": 88, "_separate_predict": 88, "begin": 88, "image_path": 88, "rb": 88, "image_to_visu": 88, "seg_map": 88, "334": 88, "float32": 88, "bboxes_ignor": 88, "290": 88, "286": 88, "285": 88, "224": 88, "231": 88, "293": 88, "235": 88, "289": 88, "282": 88, "74": [88, 91, 92, 93], "281": 88, "271": 88, "280": 88, "277": 88, "279": 88, "287": 88, "299": 88, "276": 88, "307": 88, "321": 88, "326": 88, "333": 88, "261": 88, "319": 88, "257": 88, "295": 88, "283": 88, "243": 88, "303": 88, "316": 88, "247": 88, "323": 88, "327": 88, "226": 88, "228": 88, "232": 88, "219": 88, "239": 88, "240": 88, "209": 88, "242": 88, "202": 88, "230": 88, "215": 88, "220": 88, "229": 88, "217": 88, "237": 88, "207": 88, "204": 88, "84": [88, 91, 92], "205": 88, "223": 88, "153": 88, "149": 88, "140": 88, "124": 88, "268": 88, "273": 88, "108": 88, "284": 88, "110": 88, "136": 88, "145": 88, "173": 88, "297": 88, "317": 88, "192": 88, "332": 88, "324": 88, "203": 88, "320": 88, "314": 88, "199": 88, "291": 88, "000000481413": 88, "jpg": 88, "42398": 88, "44503": 88, "337": [88, 94], "29968": 88, "336": 88, "21005": 88, "9978472": 88, "forgot": 88, "drew": 88, "label_issue_idx": 88, "num_examples_to_show": 88, "138": 88, "candid": 88, "97489622": 88, "70610878": 88, "98764951": 88, "88899237": 88, "99085805": 88, "issue_idx": 88, "95569726e": 88, "03354841e": 88, "57510169e": 88, "58447666e": 88, "39755858e": 88, "issue_to_visu": 88, "000000009483": 88, "95569726168054e": 88, "addition": [88, 92], "visibl": 88, "missmatch": 88, "likelei": 88, "agnost": 88, "vaidat": 88, "inconsist": 88, "000000395701": 88, "033548411774308e": 88, "armchair": 88, "tv": 88, "000000154004": 88, "38300759625496356": 88, "foreground": 88, "000000448410": 88, "0008575101690203273": 88, "crowd": 88, "alon": 88, "explor": [88, 89], "resembl": [88, 89], "000000499768": 88, "9748962231208227": 88, "000000521141": 88, "8889923658893665": 88, "000000143931": 88, "9876495074395956": 88, "bonu": 88, "uncov": 88, "irregular": 88, "anomali": 88, "unusu": [88, 89], "object_detection_util": 88, "calculate_bounding_box_area": 88, "num_imgs_to_show": 88, "lab_object_count": 88, "pred_object_count": 88, "000000430073": 88, "000000183709": 88, "000000189475": 88, "studi": 88, "label_norm": 88, "pred_norm": 88, "area": [88, 92], "assess": 88, "lab_area": 88, "pred_area": 88, "lab_area_mean": 88, "lab_area_std": 88, "max_deviation_valu": 88, "max_deviation_class": 88, "deviation_valu": 88, "deviation_class": 88, "mean_area": 88, "std_area": 88, "class_area": 88, "deviations_awai": 88, "max_deviation_index": 88, "num_imgs_to_show_per_class": 88, "class_num": 88, "sorted_indic": 88, "000000422886": 88, "000000341828": 88, "000000461009": 88, "train_feature_embed": 89, "ood_train_feature_scor": 89, "test_feature_embed": 89, "ood_test_feature_scor": 89, "ood_train_predictions_scor": 89, "train_pred_prob": 89, "ood_test_predictions_scor": 89, "test_pred_prob": 89, "pylab": 89, "rcparam": 89, "baggingclassifi": 89, "therebi": 89, "rescal": 89, "transform_norm": 89, "totensor": 89, "root": 89, "animal_class": 89, "non_animal_class": 89, "animal_idx": 89, "test_idx": 89, "toronto": 89, "edu": 89, "kriz": 89, "170498071": 89, "1802240": 89, "17420188": 89, "60it": [89, 92], "12910592": 89, "71718447": 89, "23134208": 89, "85392427": 89, "34504704": 89, "96420440": 89, "45547520": 89, "101432409": 89, "23it": [89, 92], "56328192": 89, "103567606": 89, "74it": [89, 92], "67469312": 89, "106043387": 89, "90it": [89, 92], "78643200": 89, "107789353": 89, "86it": [89, 92], "89456640": 89, "107728183": 89, "91it": [89, 92], "100663296": 89, "109001065": 89, "111640576": 89, "109224961": 89, "81it": [89, 92], "122585088": 89, "108681474": 89, "32it": [89, 92], "133660672": 89, "109260086": 89, "21it": [89, 92], "144703488": 89, "109581030": 89, "155680768": 89, "108983888": 89, "166920192": 89, "109943123": 89, "24it": [89, 92], "103685437": 89, "16it": [89, 92], "5000": 89, "plot_imag": 89, "visualize_outli": 89, "txt_class": 89, "img": [89, 91], "npimg": 89, "show_label": 89, "data_subset": 89, "resnet50": 89, "corpu": 89, "2048": 89, "embed_imag": 89, "create_model": 89, "strang": 89, "odd": 89, "train_ood_features_scor": 89, "top_train_ood_features_idx": 89, "fun": 89, "negat": 89, "homogen": 89, "bottom_train_ood_features_idx": 89, "test_ood_features_scor": 89, "top_ood_features_idx": 89, "inevit": 89, "trade": 89, "5th": 89, "percentil": 89, "fifth_percentil": 89, "plt_rang": 89, "hist": 89, "train_outlier_scor": 89, "ylabel": 89, "axvlin": 89, "test_outlier_scor": 89, "ood_features_indic": 89, "revisit": 89, "return_invers": 89, "train_feature_embeddings_sc": 89, "test_feature_embeddings_sc": 89, "train_pred_label": 89, "9702": 89, "train_ood_predictions_scor": 89, "test_ood_predictions_scor": 89, "mainli": [89, 95], "lost": 89, "unsuit": 90, "ok": [90, 95], "convention": 90, "aforement": 90, "hypothet": 90, "contrast": 90, "tradit": 90, "disjoint": 90, "out_of_sample_pred_probs_for_a": 90, "out_of_sample_pred_probs_for_b": 90, "out_of_sample_pred_probs_for_c": 90, "out_of_sample_pred_prob": 90, "price": 91, "incom": 91, "ag": 91, "sensor": 91, "histgradientboostingregressor": 91, "r2_score": 91, "student_grades_r": 91, "final_scor": 91, "true_final_scor": 91, "homework": 91, "3d": 91, "hue": 91, "mpl_toolkit": 91, "mplot3d": 91, "axes3d": 91, "errors_idx": 91, "add_subplot": 91, "z": 91, "colorbar": 91, "errors_mask": 91, "feature_column": 91, "predicted_column": 91, "x_train_raw": 91, "x_test_raw": 91, "categorical_featur": [91, 93], "randomforestregressor": 91, "636197": 91, "499503": 91, "843478": 91, "776647": 91, "350358": 91, "170547": 91, "706969": 91, "984759": 91, "812515": 91, "795928": 91, "identified_issu": [91, 94], "141": 91, "659": 91, "367": 91, "318": 91, "305": 91, "560": 91, "657": 91, "688": 91, "view_datapoint": 91, "concat": 91, "consum": [91, 94], "baseline_model": [91, 94], "preds_og": 91, "r2_og": 91, "838": 91, "robustli": [91, 93, 94], "acceler": [91, 94], "found_label_issu": 91, "preds_cl": 91, "r2_cl": 91, "926": 91, "effort": [91, 93, 94], "favorit": 91, "968627e": 91, "228799": 91, "646674e": 91, "402962": 91, "323818e": 91, "952758": 91, "422144e": 91, "456908": 91, "465815e": 91, "753968": 91, "110719": 91, "000044": 91, "670640": 91, "000060": 91, "749976": 91, "000066": 91, "947007": 91, "000314": 91, "648396": 91, "plu": 91, "synthia": 92, "imagesegment": 92, "given_mask": 92, "predicted_mask": 92, "set_printopt": [92, 95], "sky": 92, "sidewalk": 92, "veget": 92, "terrain": 92, "rider": 92, "pred_probs_filepath": 92, "1088": 92, "1920": 92, "label_filepath": 92, "synthia_class": 92, "maunal": 92, "100000": 92, "244800": 92, "leftmost": 92, "middl": [92, 95], "infact": 92, "rightmost": 92, "discrep": 92, "4997817": 92, "15119": 92, "151177": 92, "17it": 92, "30297": 92, "151525": 92, "45686": 92, "152603": 92, "60970": 92, "152692": 92, "22it": 92, "76340": 92, "153053": 92, "96it": 92, "91655": 92, "153084": 92, "18it": 92, "106964": 92, "153078": 92, "38it": 92, "122328": 92, "153255": 92, "137721": 92, "153464": 92, "153097": 92, "153554": 92, "82it": 92, "168480": 92, "153636": 92, "84it": 92, "183844": 92, "153630": 92, "199361": 92, "154093": 92, "214846": 92, "154319": 92, "83it": 92, "230278": 92, "154245": 92, "77it": 92, "245801": 92, "154540": 92, "261306": 92, "154692": 92, "276819": 92, "154823": 92, "292311": 92, "154849": 92, "20it": 92, "307814": 92, "154901": 92, "19it": 92, "323305": 92, "154700": 92, "85it": 92, "338816": 92, "154819": 92, "58it": 92, "354303": 92, "154832": 92, "369787": 92, "154628": 92, "385250": 92, "154058": 92, "35it": 92, "400657": 92, "153248": 92, "416027": 92, "153381": 92, "431366": 92, "153176": 92, "446731": 92, "153294": 92, "462102": 92, "153415": 92, "477444": 92, "153308": 92, "492870": 92, "153591": 92, "05it": 92, "508296": 92, "153788": 92, "98it": 92, "523685": 92, "153818": 92, "539067": 92, "153342": 92, "554402": 92, "150494": 92, "68it": 92, "569722": 92, "151293": 92, "585090": 92, "152000": 92, "600436": 92, "152434": 92, "31it": 92, "615785": 92, "152746": 92, "92it": 92, "631064": 92, "152708": 92, "646338": 92, "152501": 92, "661972": 92, "153645": 92, "95it": 92, "677339": 92, "153468": 92, "692687": 92, "153282": 92, "12it": 92, "708017": 92, "153137": 92, "723332": 92, "152901": 92, "40it": 92, "738648": 92, "152977": 92, "753947": 92, "152797": 92, "769366": 92, "153212": 92, "784799": 92, "153545": 92, "27it": 92, "800232": 92, "153778": 92, "39it": 92, "815668": 92, "153949": 92, "831064": 92, "153888": 92, "846453": 92, "153879": 92, "01it": 92, "861916": 92, "154102": 92, "877327": 92, "151166": 92, "65it": 92, "892851": 92, "152368": 92, "54it": 92, "908402": 92, "153299": 92, "924026": 92, "154174": 92, "939495": 92, "154324": 92, "955048": 92, "154682": 92, "64it": 92, "970661": 92, "155112": 92, "986306": 92, "155512": 92, "1001859": 92, "155423": 92, "1017505": 92, "155732": 92, "1033080": 92, "155458": 92, "1048627": 92, "155179": 92, "11it": 92, "1064150": 92, "155190": 92, "62it": 92, "1079760": 92, "155461": 92, "1095386": 92, "155698": 92, "1110957": 92, "155581": 92, "1126517": 92, "155585": 92, "71it": 92, "1142100": 92, "155657": 92, "1157666": 92, "155236": 92, "1173196": 92, "155252": 92, "13it": 92, "1188780": 92, "155425": 92, "1204323": 92, "155024": 92, "1219845": 92, "155079": 92, "1235430": 92, "155306": 92, "1250964": 92, "155314": 92, "1266496": 92, "155124": 92, "04it": 92, "1282009": 92, "154776": 92, "1297678": 92, "155346": 92, "1313253": 92, "155463": 92, "70it": 92, "1328876": 92, "155691": 92, "1344446": 92, "148842": 92, "1360012": 92, "150821": 92, "1375684": 92, "152550": 92, "1391414": 92, "153950": 92, "1407096": 92, "154800": 92, "1422727": 92, "155247": 92, "1438328": 92, "155474": 92, "25it": 92, "1453976": 92, "155773": 92, "1469562": 92, "155560": 92, "1485132": 92, "155597": 92, "51it": 92, "1500696": 92, "155554": 92, "1516314": 92, "155739": 92, "1531890": 92, "1547462": 92, "155234": 92, "1562987": 92, "154861": 92, "1578475": 92, "154725": 92, "80it": 92, "1593970": 92, "154790": 92, "1609450": 92, "154341": 92, "1624885": 92, "153914": 92, "1640319": 92, "154040": 92, "1655749": 92, "154117": 92, "1671162": 92, "153979": 92, "89it": 92, "1686604": 92, "154110": 92, "1702133": 92, "154461": 92, "1717772": 92, "155037": 92, "61it": 92, "1733276": 92, "154627": 92, "1748740": 92, "154451": 92, "1764186": 92, "154387": 92, "1779638": 92, "154425": 92, "1795081": 92, "154420": 92, "1810786": 92, "155206": 92, "1826307": 92, "149052": 92, "1841911": 92, "151085": 92, "1857538": 92, "152606": 92, "1873271": 92, "154000": 92, "59it": 92, "1888935": 92, "154783": 92, "1904519": 92, "155096": 92, "1920180": 92, "155545": 92, "1935847": 92, "155879": 92, "1951473": 92, "155991": 92, "1967104": 92, "156084": 92, "1982716": 92, "155874": 92, "1998306": 92, "155429": 92, "72it": 92, "2013883": 92, "155530": 92, "2029456": 92, "155588": 92, "2045045": 92, "155677": 92, "2060614": 92, "155639": 92, "2076179": 92, "155005": 92, "2091710": 92, "155094": 92, "2107221": 92, "154938": 92, "2122832": 92, "155287": 92, "2138362": 92, "155067": 92, "93it": 92, "2153870": 92, "154773": 92, "2169348": 92, "154454": 92, "2184794": 92, "154307": 92, "2200225": 92, "153836": 92, "66it": 92, "2215650": 92, "153947": 92, "2231067": 92, "154010": 92, "2246525": 92, "154178": 92, "63it": 92, "2261944": 92, "153710": 92, "2277359": 92, "153838": 92, "2292744": 92, "149984": 92, "2308094": 92, "151016": 92, "2323513": 92, "151953": 92, "2339051": 92, "152970": 92, "76it": 92, "2354572": 92, "153634": 92, "2370073": 92, "154043": 92, "2385576": 92, "154336": 92, "2401057": 92, "154474": 92, "2416508": 92, "154414": 92, "2432082": 92, "154810": 92, "2447565": 92, "153983": 92, "2462966": 92, "151617": 92, "2478498": 92, "152710": 92, "2493976": 92, "153322": 92, "2509432": 92, "153689": 92, "2524856": 92, "153852": 92, "03it": 92, "2540320": 92, "154087": 92, "2555775": 92, "154222": 92, "2571208": 92, "154253": 92, "2586635": 92, "154190": 92, "2602055": 92, "153740": 92, "2617430": 92, "147459": 92, "87it": 92, "2632820": 92, "149330": 92, "2648142": 92, "150465": 92, "2663803": 92, "152278": 92, "2679396": 92, "153360": 92, "2694891": 92, "153832": 92, "2710289": 92, "124505": 92, "2724685": 92, "129492": 92, "2738354": 92, "129954": 92, "2753723": 92, "136473": 92, "2769090": 92, "141318": 92, "2784610": 92, "145301": 92, "30it": 92, "2800097": 92, "148080": 92, "2815568": 92, "150022": 92, "2831053": 92, "151447": 92, "2846534": 92, "152443": 92, "2861980": 92, "153040": 92, "2877368": 92, "153287": 92, "2892824": 92, "153664": 92, "2908214": 92, "150555": 92, "2923649": 92, "151674": 92, "2939018": 92, "152270": 92, "2954298": 92, "152425": 92, "2969553": 92, "150724": 92, "2984638": 92, "147770": 92, "2999434": 92, "147091": 92, "10it": 92, "3014706": 92, "148744": 92, "3030139": 92, "150395": 92, "3045526": 92, "151425": 92, "3060677": 92, "151415": 92, "3076145": 92, "152386": 92, "3091569": 92, "152937": 92, "3107006": 92, "153365": 92, "3122464": 92, "153726": 92, "3137871": 92, "153826": 92, "3153294": 92, "153944": 92, "3168690": 92, "153711": 92, "3184156": 92, "153993": 92, "3199654": 92, "154285": 92, "3215093": 92, "154314": 92, "3230525": 92, "3245959": 92, "3261454": 92, "154437": 92, "3276999": 92, "154737": 92, "3292520": 92, "154877": 92, "3308072": 92, "3323660": 92, "155309": 92, "3339231": 92, "155426": 92, "3354774": 92, "155101": 92, "3370285": 92, "154946": 92, "3385780": 92, "154740": 92, "3401255": 92, "154633": 92, "3416771": 92, "154789": 92, "3432294": 92, "154919": 92, "3447787": 92, "154509": 92, "3463239": 92, "154158": 92, "3478657": 92, "154164": 92, "3494074": 92, "154109": 92, "3509486": 92, "153846": 92, "3524871": 92, "153779": 92, "3540250": 92, "150019": 92, "3555780": 92, "151573": 92, "3571388": 92, "152904": 92, "3587018": 92, "153912": 92, "3602592": 92, "154456": 92, "3618202": 92, "154943": 92, "3633867": 92, "155451": 92, "3649613": 92, "156050": 92, "3665222": 92, "155520": 92, "3680824": 92, "155667": 92, "3696436": 92, "155799": 92, "3712018": 92, "155626": 92, "3727582": 92, "155527": 92, "3743192": 92, "155697": 92, "3758864": 92, "156001": 92, "3774465": 92, "155942": 92, "3790060": 92, "155846": 92, "3805655": 92, "3821286": 92, "156002": 92, "3836896": 92, "156028": 92, "3852499": 92, "152987": 92, "3867811": 92, "152936": 92, "3883118": 92, "152974": 92, "3898474": 92, "153146": 92, "3913835": 92, "153283": 92, "47it": 92, "3929171": 92, "153303": 92, "3944504": 92, "153202": 92, "3959826": 92, "153109": 92, "3975139": 92, "152900": 92, "3990438": 92, "152926": 92, "4005732": 92, "152857": 92, "4021019": 92, "152542": 92, "4036305": 92, "152636": 92, "4051573": 92, "152648": 92, "4066839": 92, "152533": 92, "4082093": 92, "152336": 92, "4097327": 92, "152163": 92, "4112615": 92, "152376": 92, "4127853": 92, "152370": 92, "4143140": 92, "152517": 92, "4158392": 92, "152364": 92, "4173629": 92, "152185": 92, "4188848": 92, "151949": 92, "4204044": 92, "151851": 92, "4219254": 92, "151923": 92, "4234584": 92, "152332": 92, "4249983": 92, "152827": 92, "4265311": 92, "152960": 92, "4280651": 92, "153091": 92, "4296017": 92, "153259": 92, "4311408": 92, "153452": 92, "4326754": 92, "152548": 92, "4342011": 92, "146019": 92, "4356671": 92, "143165": 92, "4372052": 92, "146236": 92, "4387393": 92, "148328": 92, "4402842": 92, "150140": 92, "4418223": 92, "151224": 92, "4433607": 92, "152001": 92, "4449002": 92, "152579": 92, "4464272": 92, "152426": 92, "4479523": 92, "152428": 92, "4494806": 92, "152545": 92, "4510131": 92, "152754": 92, "4525561": 92, "153216": 92, "4540975": 92, "153489": 92, "4556343": 92, "153544": 92, "4571699": 92, "153344": 92, "4587137": 92, "153652": 92, "4602503": 92, "152544": 92, "4617815": 92, "152714": 92, "4633089": 92, "152619": 92, "4648352": 92, "152497": 92, "4663603": 92, "152136": 92, "4678818": 92, "152106": 92, "4694030": 92, "151854": 92, "4709280": 92, "152044": 92, "4724493": 92, "152068": 92, "4739701": 92, "151711": 92, "4754873": 92, "151651": 92, "4770039": 92, "151529": 92, "4785193": 92, "144986": 92, "4800427": 92, "147118": 92, "4815695": 92, "148746": 92, "4830915": 92, "149764": 92, "4846166": 92, "150577": 92, "4861567": 92, "151598": 92, "4877000": 92, "152411": 92, "4892397": 92, "152874": 92, "4907722": 92, "152985": 92, "4923092": 92, "153197": 92, "4938516": 92, "153507": 92, "4953976": 92, "153831": 92, "4969481": 92, "154193": 92, "45it": 92, "4985021": 92, "154553": 92, "153025": 92, "3263230": 92, "783379": 92, "275110": 92, "255792": 92, "78225": 92, "55990": 92, "54427": 92, "33591": 92, "24645": 92, "21308": 92, "15045": 92, "14171": 92, "13832": 92, "13498": 92, "11490": 92, "9164": 92, "8769": 92, "6999": 92, "6031": 92, "5011": 92, "mistakenli": 92, "class_issu": 92, "aim": [92, 95], "domin": 92, "extratreesclassifi": 93, "extratre": 93, "ranked_label_issu": [93, 94], "labelencod": [93, 94], "labels_raw": 93, "interg": [93, 94], "tress": 93, "827": 93, "cheat": 93, "0pt": 93, "233": 93, "labels_train": 93, "labels_test": 93, "acc_og": [93, 94], "783068783068783": 93, "acc_cl": [93, 94], "8095238095238095": 93, "earlier": [94, 95], "raw_label": 94, "raw_train_text": 94, "raw_test_text": 94, "raw_train_label": 94, "raw_test_label": 94, "encond": 94, "train_text": 94, "test_text": 94, "858371": 94, "547274": 94, "826228": 94, "966008": 94, "792449": 94, "646": 94, "390": 94, "628": 94, "702": 94, "135": 94, "735": 94, "print_as_df": 94, "inverse_transform": 94, "fight": 94, "bunch": 95, "conll": 95, "2003": 95, "love": 95, "n_i": 95, "optional_list_of_ordered_class_nam": 95, "deepai": 95, "conll2003": 95, "rm": 95, "tokenclassif": 95, "2024": 95, "2400": 95, "52e0": 95, "1a00": 95, "1067": 95, "connect": 95, "443": 95, "await": 95, "982975": 95, "960k": 95, "kb": 95, "959": 95, "94k": 95, "mb": 95, "directori": 95, "inflat": 95, "158": 95, "17045998": 95, "16m": 95, "octet": 95, "26m": 95, "9mb": 95, "bert": 95, "read_npz": 95, "filepath": 95, "corrsespond": 95, "iob2": 95, "given_ent": 95, "entity_map": 95, "readfil": 95, "sep": 95, "startswith": 95, "docstart": 95, "isalpha": 95, "isupp": 95, "indices_to_preview": 95, "nsentenc": 95, "eu": 95, "reject": 95, "boycott": 95, "british": 95, "lamb": 95, "00030412": 95, "00023826": 95, "99936208": 95, "00007009": 95, "00002545": 95, "99998795": 95, "00000401": 95, "00000218": 95, "00000455": 95, "00000131": 95, "00000749": 95, "99996115": 95, "00001371": 95, "0000087": 95, "00000895": 95, "99998936": 95, "00000382": 95, "00000178": 95, "00000366": 95, "00000137": 95, "99999101": 95, "00000266": 95, "00000174": 95, "0000035": 95, "00000109": 95, "99998768": 95, "00000482": 95, "00000202": 95, "00000438": 95, "0000011": 95, "00000465": 95, "99996392": 95, "00001105": 95, "0000116": 95, "00000878": 95, "99998671": 95, "00000364": 95, "00000213": 95, "00000472": 95, "00000281": 95, "99999073": 95, "00000211": 95, "00000159": 95, "00000442": 95, "00000115": 95, "peter": 95, "blackburn": 95, "00000358": 95, "00000529": 95, "99995623": 95, "0000129": 95, "0000024": 95, "00001812": 95, "99994141": 95, "00001645": 95, "00002162": 95, "brussel": 95, "1996": 95, "00001172": 95, "00000821": 95, "00004661": 95, "0000618": 95, "99987167": 95, "99999061": 95, "00000201": 95, "00000195": 95, "00000408": 95, "00000135": 95, "2254": 95, "2907": 95, "19392": 95, "9962": 95, "8904": 95, "19303": 95, "12918": 95, "9256": 95, "11855": 95, "18392": 95, "20426": 95, "19402": 95, "14744": 95, "19371": 95, "4645": 95, "10331": 95, "9430": 95, "6143": 95, "18367": 95, "12914": 95, "todai": 95, "weather": 95, "march": 95, "scalfaro": 95, "northern": 95, "himself": 95, "said": 95, "germani": 95, "nastja": 95, "rysich": 95, "north": 95, "spla": 95, "fought": 95, "khartoum": 95, "govern": 95, "south": 95, "1983": 95, "autonomi": 95, "animist": 95, "region": 95, "moslem": 95, "arabis": 95, "mayor": 95, "antonio": 95, "gonzalez": 95, "garcia": 95, "revolutionari": 95, "parti": 95, "wednesdai": 95, "troop": 95, "raid": 95, "farm": 95, "stole": 95, "rape": 95, "women": 95, "spring": 95, "chg": 95, "hrw": 95, "12pct": 95, "princ": 95, "photo": 95, "moment": 95, "spokeswoman": 95, "rainier": 95, "told": 95, "reuter": 95, "danila": 95, "carib": 95, "w224": 95, "equip": 95, "radiomet": 95, "earn": 95, "19996": 95, "london": 95, "denom": 95, "sale": 95, "uk": 95, "jp": 95, "fr": 95, "maccabi": 95, "hapoel": 95, "haifa": 95, "tel": 95, "aviv": 95, "hospit": 95, "rever": 95, "roman": 95, "cathol": 95, "nun": 95, "admit": 95, "calcutta": 95, "week": 95, "ago": 95, "fever": 95, "vomit": 95, "allianc": 95, "embattl": 95, "kabul": 95, "salang": 95, "highwai": 95, "mondai": 95, "tuesdai": 95, "suprem": 95, "council": 95, "led": 95, "jumbish": 95, "milli": 95, "movement": 95, "warlord": 95, "abdul": 95, "rashid": 95, "dostum": 95, "dollar": 95, "exchang": 95, "3570": 95, "12049": 95, "born": 95, "1937": 95, "provinc": 95, "anhui": 95, "dai": 95, "came": 95, "shanghai": 95, "citi": 95, "prolif": 95, "author": 95, "teacher": 95, "chines": 95, "16764": 95, "1990": 95, "historian": 95, "alan": 95, "john": 95, "percival": 95, "taylor": 95, "di": 95, "20446": 95, "pace": 95, "bowler": 95, "ian": 95, "harvei": 95, "claim": 95, "victoria": 95, "15514": 95, "cotti": 95, "osc": 95, "foreign": 95, "minist": 95, "7525": 95, "sultan": 95, "specter": 95, "met": 95, "crown": 95, "abdullah": 95, "defenc": 95, "aviat": 95, "jeddah": 95, "saudi": 95, "agenc": 95, "2288": 95, "hi": 95, "customari": 95, "outfit": 95, "champion": 95, "damp": 95, "scalp": 95, "canada": 95, "reign": 95, "olymp": 95, "donovan": 95, "bailei": 95, "1992": 95, "linford": 95, "christi": 95, "britain": 95, "1984": 95, "1988": 95, "carl": 95, "lewi": 95, "ambigi": 95, "punctuat": 95, "chicago": 95, "digest": 95, "philadelphia": 95, "usda": 95, "york": 95, "token_issu": 95, "471": 95, "kean": 95, "year": 95, "contract": 95, "manchest": 95, "19072": 95, "societi": 95, "million": 95, "bite": 95, "deliv": 95, "19910": 95, "father": 95, "clarenc": 95, "woolmer": 95, "renam": 95, "uttar": 95, "pradesh": 95, "india": 95, "ranji": 95, "trophi": 95, "nation": 95, "championship": 95, "captain": 95, "1949": 95, "15658": 95, "19879": 95, "iii": 95, "brian": 95, "shimer": 95, "randi": 95, "jone": 95, "19104": 95}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [31, 0, 0, "-", "dataset"], [34, 0, 0, "-", "experimental"], [37, 0, 0, "-", "filter"], [38, 0, 0, "-", "internal"], [49, 0, 0, "-", "models"], [51, 0, 0, "-", "multiannotator"], [54, 0, 0, "-", "multilabel_classification"], [57, 0, 0, "-", "object_detection"], [60, 0, 0, "-", "outlier"], [61, 0, 0, "-", "rank"], [62, 0, 0, "-", "regression"], [66, 0, 0, "-", "segmentation"], [70, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"], [29, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[29, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[29, 6, 1, "", "CLASSIFICATION"], [29, 6, 1, "", "MULTILABEL"], [29, 6, 1, "", "REGRESSION"], [29, 3, 1, "", "__contains__"], [29, 3, 1, "", "__getitem__"], [29, 3, 1, "", "__iter__"], [29, 3, 1, "", "__len__"], [29, 3, 1, "", "from_str"], [29, 4, 1, "", "is_classification"], [29, 4, 1, "", "is_multilabel"], [29, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[31, 1, 1, "", "find_overlapping_classes"], [31, 1, 1, "", "health_summary"], [31, 1, 1, "", "overall_label_health_score"], [31, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[32, 0, 0, "-", "cifar_cnn"], [33, 0, 0, "-", "coteaching"], [35, 0, 0, "-", "label_issues_batched"], [36, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[32, 2, 1, "", "CNN"], [32, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[32, 6, 1, "", "T_destination"], [32, 3, 1, "", "__call__"], [32, 3, 1, "", "add_module"], [32, 3, 1, "", "apply"], [32, 3, 1, "", "bfloat16"], [32, 3, 1, "", "buffers"], [32, 6, 1, "", "call_super_init"], [32, 3, 1, "", "children"], [32, 3, 1, "", "compile"], [32, 3, 1, "", "cpu"], [32, 3, 1, "", "cuda"], [32, 3, 1, "", "double"], [32, 6, 1, "", "dump_patches"], [32, 3, 1, "", "eval"], [32, 3, 1, "", "extra_repr"], [32, 3, 1, "", "float"], [32, 3, 1, "id0", "forward"], [32, 3, 1, "", "get_buffer"], [32, 3, 1, "", "get_extra_state"], [32, 3, 1, "", "get_parameter"], [32, 3, 1, "", "get_submodule"], [32, 3, 1, "", "half"], [32, 3, 1, "", "ipu"], [32, 3, 1, "", "load_state_dict"], [32, 3, 1, "", "modules"], [32, 3, 1, "", "named_buffers"], [32, 3, 1, "", "named_children"], [32, 3, 1, "", "named_modules"], [32, 3, 1, "", "named_parameters"], [32, 3, 1, "", "parameters"], [32, 3, 1, "", "register_backward_hook"], [32, 3, 1, "", "register_buffer"], [32, 3, 1, "", "register_forward_hook"], [32, 3, 1, "", "register_forward_pre_hook"], [32, 3, 1, "", "register_full_backward_hook"], [32, 3, 1, "", "register_full_backward_pre_hook"], [32, 3, 1, "", "register_load_state_dict_post_hook"], [32, 3, 1, "", "register_module"], [32, 3, 1, "", "register_parameter"], [32, 3, 1, "", "register_state_dict_pre_hook"], [32, 3, 1, "", "requires_grad_"], [32, 3, 1, "", "set_extra_state"], [32, 3, 1, "", "share_memory"], [32, 3, 1, "", "state_dict"], [32, 3, 1, "", "to"], [32, 3, 1, "", "to_empty"], [32, 3, 1, "", "train"], [32, 6, 1, "", "training"], [32, 3, 1, "", "type"], [32, 3, 1, "", "xpu"], [32, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[33, 1, 1, "", "adjust_learning_rate"], [33, 1, 1, "", "evaluate"], [33, 1, 1, "", "forget_rate_scheduler"], [33, 1, 1, "", "initialize_lr_scheduler"], [33, 1, 1, "", "loss_coteaching"], [33, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[35, 2, 1, "", "LabelInspector"], [35, 7, 1, "", "adj_confident_thresholds_shared"], [35, 1, 1, "", "find_label_issues_batched"], [35, 7, 1, "", "labels_shared"], [35, 7, 1, "", "pred_probs_shared"], [35, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[35, 3, 1, "", "get_confident_thresholds"], [35, 3, 1, "", "get_label_issues"], [35, 3, 1, "", "get_num_issues"], [35, 3, 1, "", "get_quality_scores"], [35, 3, 1, "", "score_label_quality"], [35, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[36, 2, 1, "", "CNN"], [36, 2, 1, "", "SimpleNet"], [36, 1, 1, "", "get_mnist_dataset"], [36, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[36, 3, 1, "", "__init_subclass__"], [36, 6, 1, "", "batch_size"], [36, 6, 1, "", "dataset"], [36, 6, 1, "", "epochs"], [36, 3, 1, "id0", "fit"], [36, 3, 1, "", "get_metadata_routing"], [36, 3, 1, "", "get_params"], [36, 6, 1, "", "loader"], [36, 6, 1, "", "log_interval"], [36, 6, 1, "", "lr"], [36, 6, 1, "", "momentum"], [36, 6, 1, "", "no_cuda"], [36, 3, 1, "id1", "predict"], [36, 3, 1, "id4", "predict_proba"], [36, 6, 1, "", "seed"], [36, 3, 1, "", "set_fit_request"], [36, 3, 1, "", "set_params"], [36, 3, 1, "", "set_predict_proba_request"], [36, 3, 1, "", "set_predict_request"], [36, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[36, 6, 1, "", "T_destination"], [36, 3, 1, "", "__call__"], [36, 3, 1, "", "add_module"], [36, 3, 1, "", "apply"], [36, 3, 1, "", "bfloat16"], [36, 3, 1, "", "buffers"], [36, 6, 1, "", "call_super_init"], [36, 3, 1, "", "children"], [36, 3, 1, "", "compile"], [36, 3, 1, "", "cpu"], [36, 3, 1, "", "cuda"], [36, 3, 1, "", "double"], [36, 6, 1, "", "dump_patches"], [36, 3, 1, "", "eval"], [36, 3, 1, "", "extra_repr"], [36, 3, 1, "", "float"], [36, 3, 1, "", "forward"], [36, 3, 1, "", "get_buffer"], [36, 3, 1, "", "get_extra_state"], [36, 3, 1, "", "get_parameter"], [36, 3, 1, "", "get_submodule"], [36, 3, 1, "", "half"], [36, 3, 1, "", "ipu"], [36, 3, 1, "", "load_state_dict"], [36, 3, 1, "", "modules"], [36, 3, 1, "", "named_buffers"], [36, 3, 1, "", "named_children"], [36, 3, 1, "", "named_modules"], [36, 3, 1, "", "named_parameters"], [36, 3, 1, "", "parameters"], [36, 3, 1, "", "register_backward_hook"], [36, 3, 1, "", "register_buffer"], [36, 3, 1, "", "register_forward_hook"], [36, 3, 1, "", "register_forward_pre_hook"], [36, 3, 1, "", "register_full_backward_hook"], [36, 3, 1, "", "register_full_backward_pre_hook"], [36, 3, 1, "", "register_load_state_dict_post_hook"], [36, 3, 1, "", "register_module"], [36, 3, 1, "", "register_parameter"], [36, 3, 1, "", "register_state_dict_pre_hook"], [36, 3, 1, "", "requires_grad_"], [36, 3, 1, "", "set_extra_state"], [36, 3, 1, "", "share_memory"], [36, 3, 1, "", "state_dict"], [36, 3, 1, "", "to"], [36, 3, 1, "", "to_empty"], [36, 3, 1, "", "train"], [36, 6, 1, "", "training"], [36, 3, 1, "", "type"], [36, 3, 1, "", "xpu"], [36, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[37, 1, 1, "", "find_label_issues"], [37, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [37, 1, 1, "", "find_predicted_neq_given"], [37, 7, 1, "", "pred_probs_by_class"], [37, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[39, 0, 0, "-", "label_quality_utils"], [40, 0, 0, "-", "latent_algebra"], [41, 0, 0, "-", "multiannotator_utils"], [42, 0, 0, "-", "multilabel_scorer"], [43, 0, 0, "-", "multilabel_utils"], [44, 0, 0, "-", "outlier"], [45, 0, 0, "-", "token_classification_utils"], [46, 0, 0, "-", "util"], [47, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[39, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[40, 1, 1, "", "compute_inv_noise_matrix"], [40, 1, 1, "", "compute_noise_matrix_from_inverse"], [40, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [40, 1, 1, "", "compute_py"], [40, 1, 1, "", "compute_py_inv_noise_matrix"], [40, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[41, 1, 1, "", "assert_valid_inputs_multiannotator"], [41, 1, 1, "", "assert_valid_pred_probs"], [41, 1, 1, "", "check_consensus_label_classes"], [41, 1, 1, "", "compute_soft_cross_entropy"], [41, 1, 1, "", "find_best_temp_scaler"], [41, 1, 1, "", "format_multiannotator_labels"], [41, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[42, 2, 1, "", "Aggregator"], [42, 2, 1, "", "ClassLabelScorer"], [42, 2, 1, "", "MultilabelScorer"], [42, 1, 1, "", "exponential_moving_average"], [42, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [42, 1, 1, "", "get_label_quality_scores"], [42, 1, 1, "", "multilabel_py"], [42, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[42, 3, 1, "", "__call__"], [42, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[42, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [42, 6, 1, "", "NORMALIZED_MARGIN"], [42, 6, 1, "", "SELF_CONFIDENCE"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "__contains__"], [42, 3, 1, "", "__getitem__"], [42, 3, 1, "", "__iter__"], [42, 3, 1, "", "__len__"], [42, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[42, 3, 1, "", "__call__"], [42, 3, 1, "", "aggregate"], [42, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[43, 1, 1, "", "get_onehot_num_classes"], [43, 1, 1, "", "int2onehot"], [43, 1, 1, "", "onehot2int"], [43, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[44, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[45, 1, 1, "", "color_sentence"], [45, 1, 1, "", "filter_sentence"], [45, 1, 1, "", "get_sentence"], [45, 1, 1, "", "mapping"], [45, 1, 1, "", "merge_probs"], [45, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[46, 1, 1, "", "append_extra_datapoint"], [46, 1, 1, "", "clip_noise_rates"], [46, 1, 1, "", "clip_values"], [46, 1, 1, "", "compress_int_array"], [46, 1, 1, "", "confusion_matrix"], [46, 1, 1, "", "csr_vstack"], [46, 1, 1, "", "estimate_pu_f1"], [46, 1, 1, "", "extract_indices_tf"], [46, 1, 1, "", "force_two_dimensions"], [46, 1, 1, "", "format_labels"], [46, 1, 1, "", "get_missing_classes"], [46, 1, 1, "", "get_num_classes"], [46, 1, 1, "", "get_unique_classes"], [46, 1, 1, "", "is_tensorflow_dataset"], [46, 1, 1, "", "is_torch_dataset"], [46, 1, 1, "", "num_unique_classes"], [46, 1, 1, "", "print_inverse_noise_matrix"], [46, 1, 1, "", "print_joint_matrix"], [46, 1, 1, "", "print_noise_matrix"], [46, 1, 1, "", "print_square_matrix"], [46, 1, 1, "", "remove_noise_from_class"], [46, 1, 1, "", "round_preserving_row_totals"], [46, 1, 1, "", "round_preserving_sum"], [46, 1, 1, "", "smart_display_dataframe"], [46, 1, 1, "", "subset_X_y"], [46, 1, 1, "", "subset_data"], [46, 1, 1, "", "subset_labels"], [46, 1, 1, "", "train_val_split"], [46, 1, 1, "", "unshuffle_tensorflow_dataset"], [46, 1, 1, "", "value_counts"], [46, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[47, 1, 1, "", "assert_indexing_works"], [47, 1, 1, "", "assert_nonempty_input"], [47, 1, 1, "", "assert_valid_class_labels"], [47, 1, 1, "", "assert_valid_inputs"], [47, 1, 1, "", "labels_to_array"], [47, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[50, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[50, 2, 1, "", "KerasWrapperModel"], [50, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[50, 3, 1, "", "fit"], [50, 3, 1, "", "get_params"], [50, 3, 1, "", "predict"], [50, 3, 1, "", "predict_proba"], [50, 3, 1, "", "set_params"], [50, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[50, 3, 1, "", "fit"], [50, 3, 1, "", "get_params"], [50, 3, 1, "", "predict"], [50, 3, 1, "", "predict_proba"], [50, 3, 1, "", "set_params"], [50, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[51, 1, 1, "", "convert_long_to_wide_dataset"], [51, 1, 1, "", "get_active_learning_scores"], [51, 1, 1, "", "get_active_learning_scores_ensemble"], [51, 1, 1, "", "get_label_quality_multiannotator"], [51, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [51, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[52, 0, 0, "-", "dataset"], [53, 0, 0, "-", "filter"], [55, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[52, 1, 1, "", "common_multilabel_issues"], [52, 1, 1, "", "multilabel_health_summary"], [52, 1, 1, "", "overall_multilabel_health_score"], [52, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[53, 1, 1, "", "find_label_issues"], [53, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[55, 1, 1, "", "get_label_quality_scores"], [55, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[56, 0, 0, "-", "filter"], [58, 0, 0, "-", "rank"], [59, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[56, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[58, 1, 1, "", "compute_badloc_box_scores"], [58, 1, 1, "", "compute_overlooked_box_scores"], [58, 1, 1, "", "compute_swap_box_scores"], [58, 1, 1, "", "get_label_quality_scores"], [58, 1, 1, "", "issues_from_scores"], [58, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[59, 1, 1, "", "bounding_box_size_distribution"], [59, 1, 1, "", "calculate_per_class_metrics"], [59, 1, 1, "", "class_label_distribution"], [59, 1, 1, "", "get_average_per_class_confusion_matrix"], [59, 1, 1, "", "get_sorted_bbox_count_idxs"], [59, 1, 1, "", "object_counts_per_image"], [59, 1, 1, "", "plot_class_distribution"], [59, 1, 1, "", "plot_class_size_distributions"], [59, 1, 1, "", "visualize"]], "cleanlab.outlier": [[60, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "fit_score"], [60, 3, 1, "", "score"]], "cleanlab.rank": [[61, 1, 1, "", "find_top_issues"], [61, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [61, 1, 1, "", "get_label_quality_ensemble_scores"], [61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_normalized_margin_for_each_label"], [61, 1, 1, "", "get_self_confidence_for_each_label"], [61, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[63, 0, 0, "-", "learn"], [64, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[63, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[63, 3, 1, "", "__init_subclass__"], [63, 3, 1, "", "find_label_issues"], [63, 3, 1, "", "fit"], [63, 3, 1, "", "get_aleatoric_uncertainty"], [63, 3, 1, "", "get_epistemic_uncertainty"], [63, 3, 1, "", "get_label_issues"], [63, 3, 1, "", "get_metadata_routing"], [63, 3, 1, "", "get_params"], [63, 3, 1, "", "predict"], [63, 3, 1, "", "save_space"], [63, 3, 1, "", "score"], [63, 3, 1, "", "set_fit_request"], [63, 3, 1, "", "set_params"], [63, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[64, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[65, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[68, 1, 1, "", "common_label_issues"], [68, 1, 1, "", "display_issues"], [68, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[69, 0, 0, "-", "filter"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[69, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[72, 1, 1, "", "common_label_issues"], [72, 1, 1, "", "display_issues"], [72, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 75, 79, 80, 82, 83, 84, 87, 93, 94, 95], "count": [3, 84], "datalab": [4, 5, 7, 8, 9, 76, 77, 78, 79, 80, 84, 87], "creat": [5, 76, 77, 84, 86], "your": [5, 73, 76, 77, 80, 82, 84], "own": 5, "issu": [5, 7, 8, 19, 26, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 87, 88, 92, 93, 95], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 76], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 76], "us": [5, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "gener": 6, "cluster": [6, 82], "id": 6, "guid": [7, 9], "type": [7, 8, 84], "custom": [7, 76], "can": [8, 77, 81, 82, 84, 86], "detect": [8, 77, 79, 80, 82, 84, 88, 89], "estim": [8, 84, 86, 87], "each": 8, "label": [8, 21, 26, 73, 75, 77, 79, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95], "outlier": [8, 24, 44, 60, 79, 80, 83, 87, 89], "Near": [8, 77, 79, 80, 83], "duplic": [8, 17, 77, 79, 80, 82, 83, 87], "non": [8, 80], "iid": [8, 80], "class": [8, 74, 84, 92], "imbal": [8, 18], "imag": [8, 83, 89], "specif": [8, 19, 92], "underperform": [8, 82], "group": [8, 82], "null": [8, 23], "data": [8, 10, 73, 75, 76, 77, 79, 80, 81, 82, 84, 86, 87, 88, 89, 91, 92, 93, 95], "valuat": 8, "option": 8, "paramet": [8, 84], "get": [9, 76, 77, 86, 87, 88, 92, 95], "start": [9, 81], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 38], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 82, 84], "task": [19, 29], "noniid": 22, "regress": [25, 62, 63, 64, 82, 91], "prioriti": 26, "order": 26, "find": [26, 73, 75, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "underperforming_group": 27, "report": [28, 83], "dataset": [31, 52, 73, 77, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 94, 95], "cifar_cnn": 32, "coteach": 33, "experiment": 34, "label_issues_batch": 35, "mnist_pytorch": 36, "filter": [37, 53, 56, 65, 69, 84], "label_quality_util": 39, "latent_algebra": 40, "multiannotator_util": 41, "multilabel_scor": 42, "multilabel_util": 43, "token_classification_util": 45, "util": 46, "valid": [47, 83, 90], "fasttext": 48, "model": [49, 73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94], "kera": 50, "multiannot": [51, 86], "multilabel_classif": 54, "rank": [55, 58, 61, 64, 67, 71, 84], "object_detect": 57, "summari": [59, 68, 72], "learn": [63, 77, 82, 84, 93], "segment": [66, 92], "token_classif": [70, 95], "cleanlab": [73, 75, 79, 80, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "open": [73, 82], "sourc": [73, 82], "document": 73, "quickstart": 73, "1": [73, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "instal": [73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "2": [73, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "common": [73, 74, 95], "3": [73, 75, 76, 77, 79, 80, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "handl": [73, 82], "error": [73, 82, 83, 84, 86, 87, 88, 91, 92, 94, 95], "train": [73, 75, 82, 89, 91, 93, 94], "robust": [73, 84, 91, 93, 94], "noisi": [73, 84, 91, 93, 94], "4": [73, 75, 76, 77, 79, 80, 83, 84, 86, 88, 89, 91, 93, 94], "curat": [73, 81], "fix": [73, 82], "level": [73, 81, 84, 95], "5": [73, 75, 77, 79, 83, 84, 86, 91, 93], "improv": [73, 86], "via": [73, 84, 86], "mani": [73, 84], "other": [73, 86, 88, 91], "techniqu": 73, "contribut": 73, "easi": [73, 79, 80, 83], "mode": [73, 79, 80, 83], "how": [74, 82, 84, 86, 87, 95], "migrat": 74, "version": 74, "0": 74, "from": [74, 76, 77, 84, 91, 93, 94], "pre": [74, 75, 82, 89], "function": [74, 76], "name": 74, "chang": 74, "modul": [74, 84], "new": 74, "remov": 74, "argument": [74, 76], "variabl": 74, "audio": 75, "speechbrain": 75, "depend": [75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95], "import": [75, 76, 77, 81, 83, 84, 86], "them": [75, 81, 84], "load": [75, 76, 77, 79, 80, 91, 93, 94], "featur": [75, 83, 89], "fit": 75, "linear": 75, "comput": [75, 79, 80, 82, 83, 86, 90, 93], "out": [75, 76, 77, 79, 80, 83, 86, 90, 93], "sampl": [75, 76, 77, 79, 80, 83, 86, 90, 93], "predict": [75, 76, 77, 79, 80, 83, 86, 87, 88, 90, 93], "probabl": [75, 76, 77, 79, 80, 83, 86, 90, 93], "workflow": [76, 84], "audit": [76, 77], "requir": [76, 77, 79, 80, 83, 86, 87, 88, 89, 91, 92, 93, 94, 95], "classifi": [76, 77], "instanti": 76, "object": [76, 88], "increment": 76, "search": 76, "specifi": [76, 82], "nondefault": 76, "save": 76, "ad": 76, "A": 77, "unifi": 77, "all": [77, 84], "kind": [77, 88], "skip": [77, 81, 84, 86], "detail": [77, 81, 84, 86], "more": [77, 84, 91, 93, 94], "about": 77, "addit": 77, "inform": [77, 83], "tutori": [78, 81, 85], "tabular": [79, 93], "numer": 79, "categor": 79, "column": 79, "process": [79, 89, 91, 93], "select": [79, 93], "construct": 79, "k": [79, 83, 90], "nearest": 79, "neighbour": 79, "graph": 79, "text": [80, 94, 95], "format": [80, 82, 87, 88, 94], "defin": [80, 83, 91, 94], "drift": [80, 87], "fetch": [81, 83], "evalu": 81, "health": [81, 84], "8": [81, 84], "popular": 81, "faq": 82, "what": [82, 84, 90], "do": [82, 84], "i": [82, 84, 90], "infer": 82, "correct": 82, "exampl": [82, 83, 84, 89], "ha": 82, "flag": 82, "should": 82, "v": 82, "test": [82, 84, 89], "big": 82, "limit": 82, "memori": 82, "why": 82, "isn": 82, "t": 82, "cleanlearn": [82, 84], "work": [82, 84, 86, 95], "me": 82, "differ": [82, 88], "clean": [82, 84], "final": 82, "hyperparamet": 82, "tune": 82, "onli": 82, "one": [82, 84, 87, 92], "doe": [82, 86, 95], "take": 82, "so": 82, "long": 82, "slice": 82, "when": [82, 84], "identifi": [82, 88], "run": 82, "licens": 82, "under": 82, "an": 82, "answer": 82, "question": 82, "pytorch": [83, 89], "normal": 83, "fashion": 83, "mnist": 83, "prepar": 83, "fold": [83, 90], "cross": [83, 90], "embed": [83, 89], "7": [83, 84], "view": 83, "most": [83, 95], "like": 83, "sever": 83, "set": [83, 84], "dark": 83, "top": [83, 92], "low": 83, "The": 84, "centric": 84, "ai": 84, "machin": 84, "find_label_issu": 84, "line": 84, "code": 84, "visual": [84, 88, 89, 92], "twenti": 84, "lowest": 84, "qualiti": [84, 86, 87, 88, 92, 95], "see": 84, "now": 84, "let": 84, "": 84, "happen": 84, "we": 84, "merg": 84, "seafoam": 84, "green": 84, "yellow": 84, "too": 84, "you": 84, "re": 84, "6": 84, "One": 84, "score": [84, 86, 87, 88, 92, 95], "rule": 84, "overal": [84, 92], "accur": 84, "thi": 84, "directli": 84, "fulli": 84, "character": 84, "nois": 84, "matrix": [84, 87], "joint": 84, "prior": 84, "true": 84, "distribut": 84, "flip": 84, "rate": 84, "ani": 84, "again": 84, "support": 84, "lot": 84, "method": 84, "filter_bi": 84, "automat": 84, "everi": 84, "uniqu": 84, "num_label_issu": 84, "threshold": 84, "found": 84, "Not": 84, "sure": 84, "ensembl": 84, "multipl": [84, 86], "predictor": 84, "consensu": 86, "annot": 86, "initi": 86, "major": 86, "vote": 86, "better": 86, "statist": 86, "compar": 86, "inspect": 86, "potenti": [86, 91, 94], "retrain": 86, "further": 86, "multi": 87, "beyond": 87, "mislabel": [87, 92, 95], "given": 87, "hot": 87, "binari": 87, "without": 87, "applic": 87, "real": 87, "download": [88, 92, 95], "objectlab": 88, "exploratori": 88, "analysi": 88, "timm": 89, "cifar10": 89, "some": 89, "pred_prob": [89, 92, 95], "wai": 91, "semant": 92, "which": 92, "ar": 92, "commonli": 92, "focus": 92, "scikit": 93, "token": 95, "word": 95, "sentenc": 95, "contain": 95, "particular": 95}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [38, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[23, "null"]], "outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [44, "module-cleanlab.internal.outlier"], [60, "module-cleanlab.outlier"]], "regression": [[25, "regression"], [62, "regression"]], "Priority Order for finding issues:": [[26, null]], "underperforming_group": [[27, "underperforming-group"]], "report": [[28, "report"]], "task": [[29, "task"]], "dataset": [[31, "module-cleanlab.dataset"], [52, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[32, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[33, "module-cleanlab.experimental.coteaching"]], "experimental": [[34, "experimental"]], "label_issues_batched": [[35, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[36, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[37, "module-cleanlab.filter"], [53, "module-cleanlab.multilabel_classification.filter"], [56, "filter"], [65, "filter"], [69, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[39, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[40, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[41, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[42, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[43, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[45, "module-cleanlab.internal.token_classification_utils"]], "util": [[46, "module-cleanlab.internal.util"]], "validation": [[47, "module-cleanlab.internal.validation"]], "fasttext": [[48, "fasttext"]], "models": [[49, "models"]], "keras": [[50, "module-cleanlab.models.keras"]], "multiannotator": [[51, "module-cleanlab.multiannotator"]], "multilabel_classification": [[54, "multilabel-classification"]], "rank": [[55, "module-cleanlab.multilabel_classification.rank"], [58, "module-cleanlab.object_detection.rank"], [61, "module-cleanlab.rank"], [67, "module-cleanlab.segmentation.rank"], [71, "module-cleanlab.token_classification.rank"]], "object_detection": [[57, "object-detection"]], "summary": [[59, "summary"], [68, "module-cleanlab.segmentation.summary"], [72, "module-cleanlab.token_classification.summary"]], "regression.learn": [[63, "module-cleanlab.regression.learn"]], "regression.rank": [[64, "module-cleanlab.regression.rank"]], "segmentation": [[66, "segmentation"]], "token_classification": [[70, "token-classification"]], "cleanlab open-source documentation": [[73, "cleanlab-open-source-documentation"]], "Quickstart": [[73, "quickstart"]], "1. Install cleanlab": [[73, "install-cleanlab"]], "2. Find common issues in your data": [[73, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[73, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[73, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[73, "improve-your-data-via-many-other-techniques"]], "Contributing": [[73, "contributing"]], "Easy Mode": [[73, "easy-mode"], [79, "Easy-Mode"], [80, "Easy-Mode"], [83, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[74, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[74, "function-and-class-name-changes"]], "Module name changes": [[74, "module-name-changes"]], "New modules": [[74, "new-modules"]], "Removed modules": [[74, "removed-modules"]], "Common argument and variable name changes": [[74, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[75, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[75, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[75, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[75, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[75, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[75, "5.-Use-cleanlab-to-find-label-issues"], [79, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[76, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[76, "Install-and-import-required-dependencies"]], "Create and load the data": [[76, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[76, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[76, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[76, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[76, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[76, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[76, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[77, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[77, "1.-Install-and-import-required-dependencies"], [83, "1.-Install-and-import-required-dependencies"], [86, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[77, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[77, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[77, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[77, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[77, "Get-additional-information"]], "Near duplicate issues": [[77, "Near-duplicate-issues"], [83, "Near-duplicate-issues"]], "Datalab Tutorials": [[78, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[79, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[79, "1.-Install-required-dependencies"], [80, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"]], "2. Load and process the data": [[79, "2.-Load-and-process-the-data"], [91, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[79, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[79, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[79, "Label-issues"], [80, "Label-issues"], [83, "Label-issues"]], "Outlier issues": [[79, "Outlier-issues"], [80, "Outlier-issues"], [83, "Outlier-issues"]], "Near-duplicate issues": [[79, "Near-duplicate-issues"], [80, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[80, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[80, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[80, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[80, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[80, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[81, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[81, "Install-dependencies-and-import-them"], [84, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[81, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[81, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[82, "FAQ"]], "What data can cleanlab detect issues in?": [[82, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[82, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[82, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[82, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[82, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[82, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[82, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[82, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[82, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[82, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[82, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[82, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[82, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[82, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[83, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[83, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[83, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[83, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[83, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[83, "7.-Use-cleanlab-to-find-issues"]], "View report": [[83, "View-report"]], "View most likely examples with label errors": [[83, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[83, "View-most-severe-outliers"]], "View sets of near duplicate images": [[83, "View-sets-of-near-duplicate-images"]], "Dark images": [[83, "Dark-images"]], "View top examples of dark images": [[83, "View-top-examples-of-dark-images"]], "Low information images": [[83, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[84, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[84, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[84, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[84, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[84, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[84, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[84, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[84, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[84, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[84, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[84, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[84, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[84, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[84, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[84, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[84, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[84, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[84, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[84, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[84, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[84, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[84, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[85, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[86, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[86, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[86, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[86, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[86, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[86, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[86, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[86, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[86, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[87, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[87, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[87, "2.-Format-data,-labels,-and-model-predictions"], [88, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[87, "3.-Use-cleanlab-to-find-label-issues"], [88, "3.-Use-cleanlab-to-find-label-issues"], [92, "3.-Use-cleanlab-to-find-label-issues"], [95, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[87, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[87, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[87, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[87, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[87, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[88, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[88, "1.-Install-required-dependencies-and-download-data"], [92, "1.-Install-required-dependencies-and-download-data"], [95, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[88, "Get-label-quality-scores"], [92, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[88, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[88, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[88, "Other-uses-of-visualize"]], "Exploratory data analysis": [[88, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[89, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[89, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[89, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[89, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[89, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[89, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[90, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[90, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[90, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[91, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[91, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[91, "4.-Train-a-more-robust-model-from-noisy-labels"], [94, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[91, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[92, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[92, "2.-Get-data,-labels,-and-pred_probs"], [95, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[92, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[92, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[92, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[93, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[93, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[93, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[94, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[94, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[95, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[95, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[95, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[95, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[95, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [22, "module-cleanlab.datalab.internal.issue_manager.noniid"], [23, "module-cleanlab.datalab.internal.issue_manager.null"], [24, "module-cleanlab.datalab.internal.issue_manager.outlier"], [26, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [28, "module-cleanlab.datalab.internal.report"], [29, "module-cleanlab.datalab.internal.task"], [31, "module-cleanlab.dataset"], [32, "module-cleanlab.experimental.cifar_cnn"], [33, "module-cleanlab.experimental.coteaching"], [34, "module-cleanlab.experimental"], [35, "module-cleanlab.experimental.label_issues_batched"], [36, "module-cleanlab.experimental.mnist_pytorch"], [37, "module-cleanlab.filter"], [38, "module-cleanlab.internal"], [39, "module-cleanlab.internal.label_quality_utils"], [40, "module-cleanlab.internal.latent_algebra"], [41, "module-cleanlab.internal.multiannotator_utils"], [42, "module-cleanlab.internal.multilabel_scorer"], [43, "module-cleanlab.internal.multilabel_utils"], [44, "module-cleanlab.internal.outlier"], [45, "module-cleanlab.internal.token_classification_utils"], [46, "module-cleanlab.internal.util"], [47, "module-cleanlab.internal.validation"], [49, "module-cleanlab.models"], [50, "module-cleanlab.models.keras"], [51, "module-cleanlab.multiannotator"], [52, "module-cleanlab.multilabel_classification.dataset"], [53, "module-cleanlab.multilabel_classification.filter"], [54, "module-cleanlab.multilabel_classification"], [55, "module-cleanlab.multilabel_classification.rank"], [56, "module-cleanlab.object_detection.filter"], [57, "module-cleanlab.object_detection"], [58, "module-cleanlab.object_detection.rank"], [59, "module-cleanlab.object_detection.summary"], [60, "module-cleanlab.outlier"], [61, "module-cleanlab.rank"], [62, "module-cleanlab.regression"], [63, "module-cleanlab.regression.learn"], [64, "module-cleanlab.regression.rank"], [65, "module-cleanlab.segmentation.filter"], [66, "module-cleanlab.segmentation"], [67, "module-cleanlab.segmentation.rank"], [68, "module-cleanlab.segmentation.summary"], [69, "module-cleanlab.token_classification.filter"], [70, "module-cleanlab.token_classification"], [71, "module-cleanlab.token_classification.rank"], [72, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[23, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[28, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[28, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[28, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[29, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[29, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[29, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[29, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[29, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[31, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[31, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[32, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[32, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[32, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.forward"], [32, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[32, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[32, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[33, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[33, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[34, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[35, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[35, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[35, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[36, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [36, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[36, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [36, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [36, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[36, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[36, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[37, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[37, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[37, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[37, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[38, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[39, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[39, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[40, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[40, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[41, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[41, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[42, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[42, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[42, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[42, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[42, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[43, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[43, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[44, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[44, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[45, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[45, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[46, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[46, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[47, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[47, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[49, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[50, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[50, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[50, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[50, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[50, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[51, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[51, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[52, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[52, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[53, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[53, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[53, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[54, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[55, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[55, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[55, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[56, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[56, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[57, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[58, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[58, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[59, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[59, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[60, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[60, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[60, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[61, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[61, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[61, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[61, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[62, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[63, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[63, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[63, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[63, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[64, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[64, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[65, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[65, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[66, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[67, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[67, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[67, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[68, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[68, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[69, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[69, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[70, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[71, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[71, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[71, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[72, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[72, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html
index 5e5b16b62..e4566892b 100644
--- a/master/tutorials/audio.html
+++ b/master/tutorials/audio.html
@@ -1275,7 +1275,7 @@ 5. Use cleanlab to find label issues
34848 |
- 0.203922 |
True |
+ 0.203922 |
50270 |
- 0.204588 |
True |
+ 0.204588 |
3936 |
- 0.213098 |
True |
+ 0.213098 |
733 |
- 0.217686 |
True |
+ 0.217686 |
8094 |
- 0.230118 |
True |
+ 0.230118 |
@@ -3261,7 +3287,7 @@
Easy Mode which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data
issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!
diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb
index 69ce591e4..1f800a1d6 100644
--- a/master/tutorials/image.ipynb
+++ b/master/tutorials/image.ipynb
@@ -71,10 +71,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:19.284884Z",
- "iopub.status.busy": "2024-02-12T22:44:19.284345Z",
- "iopub.status.idle": "2024-02-12T22:44:22.098536Z",
- "shell.execute_reply": "2024-02-12T22:44:22.097883Z"
+ "iopub.execute_input": "2024-02-12T23:51:17.543638Z",
+ "iopub.status.busy": "2024-02-12T23:51:17.543236Z",
+ "iopub.status.idle": "2024-02-12T23:51:20.266342Z",
+ "shell.execute_reply": "2024-02-12T23:51:20.265795Z"
},
"nbsphinx": "hidden"
},
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:22.101326Z",
- "iopub.status.busy": "2024-02-12T22:44:22.100881Z",
- "iopub.status.idle": "2024-02-12T22:44:22.104420Z",
- "shell.execute_reply": "2024-02-12T22:44:22.103951Z"
+ "iopub.execute_input": "2024-02-12T23:51:20.268825Z",
+ "iopub.status.busy": "2024-02-12T23:51:20.268396Z",
+ "iopub.status.idle": "2024-02-12T23:51:20.271910Z",
+ "shell.execute_reply": "2024-02-12T23:51:20.271396Z"
}
},
"outputs": [],
@@ -152,17 +152,17 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:22.106329Z",
- "iopub.status.busy": "2024-02-12T22:44:22.106067Z",
- "iopub.status.idle": "2024-02-12T22:44:25.912755Z",
- "shell.execute_reply": "2024-02-12T22:44:25.912269Z"
+ "iopub.execute_input": "2024-02-12T23:51:20.274022Z",
+ "iopub.status.busy": "2024-02-12T23:51:20.273681Z",
+ "iopub.status.idle": "2024-02-12T23:51:22.670819Z",
+ "shell.execute_reply": "2024-02-12T23:51:22.670272Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "f52ce44d13004a27827b9ca93535fcd6",
+ "model_id": "49444ac3669a4b7db5936fb36da40a4a",
"version_major": 2,
"version_minor": 0
},
@@ -176,7 +176,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7ac64f420608407d8d80a7af78490e1f",
+ "model_id": "4c9a7feaa41d423588db9de703b40909",
"version_major": 2,
"version_minor": 0
},
@@ -190,7 +190,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4a5148a28d904f3194b1f4fa99f5fb1b",
+ "model_id": "1bc0d0483cf54ad9b740813c2b40012f",
"version_major": 2,
"version_minor": 0
},
@@ -204,7 +204,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "fa2e9c9fd9864adaa999004e25b0de4e",
+ "model_id": "d00b19cf3e0644ceb1ea4ddf852375d9",
"version_major": 2,
"version_minor": 0
},
@@ -246,10 +246,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:25.914832Z",
- "iopub.status.busy": "2024-02-12T22:44:25.914562Z",
- "iopub.status.idle": "2024-02-12T22:44:25.918478Z",
- "shell.execute_reply": "2024-02-12T22:44:25.917997Z"
+ "iopub.execute_input": "2024-02-12T23:51:22.672825Z",
+ "iopub.status.busy": "2024-02-12T23:51:22.672621Z",
+ "iopub.status.idle": "2024-02-12T23:51:22.676150Z",
+ "shell.execute_reply": "2024-02-12T23:51:22.675719Z"
}
},
"outputs": [
@@ -274,17 +274,17 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:25.920642Z",
- "iopub.status.busy": "2024-02-12T22:44:25.920219Z",
- "iopub.status.idle": "2024-02-12T22:44:36.822079Z",
- "shell.execute_reply": "2024-02-12T22:44:36.821426Z"
+ "iopub.execute_input": "2024-02-12T23:51:22.678185Z",
+ "iopub.status.busy": "2024-02-12T23:51:22.677800Z",
+ "iopub.status.idle": "2024-02-12T23:51:33.488887Z",
+ "shell.execute_reply": "2024-02-12T23:51:33.488380Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "fcd65dab45b140d2be0244abfb708e0d",
+ "model_id": "9005032e78ae418baf5419ccfb813e17",
"version_major": 2,
"version_minor": 0
},
@@ -322,10 +322,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:36.824910Z",
- "iopub.status.busy": "2024-02-12T22:44:36.824373Z",
- "iopub.status.idle": "2024-02-12T22:44:55.134865Z",
- "shell.execute_reply": "2024-02-12T22:44:55.134311Z"
+ "iopub.execute_input": "2024-02-12T23:51:33.491504Z",
+ "iopub.status.busy": "2024-02-12T23:51:33.491029Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.925430Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.924840Z"
}
},
"outputs": [],
@@ -358,10 +358,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.137385Z",
- "iopub.status.busy": "2024-02-12T22:44:55.137025Z",
- "iopub.status.idle": "2024-02-12T22:44:55.142925Z",
- "shell.execute_reply": "2024-02-12T22:44:55.142476Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.928132Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.927730Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.932661Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.932126Z"
}
},
"outputs": [],
@@ -399,10 +399,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.144862Z",
- "iopub.status.busy": "2024-02-12T22:44:55.144531Z",
- "iopub.status.idle": "2024-02-12T22:44:55.148291Z",
- "shell.execute_reply": "2024-02-12T22:44:55.147871Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.934747Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.934444Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.938661Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.938252Z"
},
"nbsphinx": "hidden"
},
@@ -539,10 +539,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.150384Z",
- "iopub.status.busy": "2024-02-12T22:44:55.150076Z",
- "iopub.status.idle": "2024-02-12T22:44:55.158633Z",
- "shell.execute_reply": "2024-02-12T22:44:55.158186Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.940534Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.940366Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.949071Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.948610Z"
},
"nbsphinx": "hidden"
},
@@ -667,10 +667,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.160561Z",
- "iopub.status.busy": "2024-02-12T22:44:55.160241Z",
- "iopub.status.idle": "2024-02-12T22:44:55.188128Z",
- "shell.execute_reply": "2024-02-12T22:44:55.187663Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.951083Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.950765Z",
+ "iopub.status.idle": "2024-02-12T23:51:51.978497Z",
+ "shell.execute_reply": "2024-02-12T23:51:51.978013Z"
}
},
"outputs": [],
@@ -707,10 +707,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:44:55.190217Z",
- "iopub.status.busy": "2024-02-12T22:44:55.189887Z",
- "iopub.status.idle": "2024-02-12T22:45:27.674436Z",
- "shell.execute_reply": "2024-02-12T22:45:27.673664Z"
+ "iopub.execute_input": "2024-02-12T23:51:51.980815Z",
+ "iopub.status.busy": "2024-02-12T23:51:51.980446Z",
+ "iopub.status.idle": "2024-02-12T23:52:23.493148Z",
+ "shell.execute_reply": "2024-02-12T23:52:23.492408Z"
}
},
"outputs": [
@@ -726,14 +726,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.817\n"
+ "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.773\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.679\n",
+ "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.440\n",
"Computing feature embeddings ...\n"
]
},
@@ -750,7 +750,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.46it/s]"
+ " 5%|▌ | 2/40 [00:00<00:01, 19.48it/s]"
]
},
{
@@ -758,7 +758,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 8/40 [00:00<00:00, 43.33it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 47.14it/s]"
]
},
{
@@ -766,7 +766,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 15/40 [00:00<00:00, 54.87it/s]"
+ " 40%|████ | 16/40 [00:00<00:00, 54.36it/s]"
]
},
{
@@ -774,7 +774,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 22/40 [00:00<00:00, 59.81it/s]"
+ " 57%|█████▊ | 23/40 [00:00<00:00, 57.75it/s]"
]
},
{
@@ -782,7 +782,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|███████ | 28/40 [00:00<00:00, 59.64it/s]"
+ " 72%|███████▎ | 29/40 [00:00<00:00, 53.55it/s]"
]
},
{
@@ -790,7 +790,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 58.52it/s]"
+ " 88%|████████▊ | 35/40 [00:00<00:00, 54.02it/s]"
]
},
{
@@ -798,7 +798,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 55.48it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 52.34it/s]"
]
},
{
@@ -828,7 +828,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 17.07it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 17.28it/s]"
]
},
{
@@ -836,7 +836,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 8/40 [00:00<00:00, 38.52it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 45.42it/s]"
]
},
{
@@ -844,7 +844,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▌ | 14/40 [00:00<00:00, 47.54it/s]"
+ " 38%|███▊ | 15/40 [00:00<00:00, 49.97it/s]"
]
},
{
@@ -852,7 +852,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|█████ | 20/40 [00:00<00:00, 51.10it/s]"
+ " 52%|█████▎ | 21/40 [00:00<00:00, 51.44it/s]"
]
},
{
@@ -860,7 +860,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 53.01it/s]"
+ " 70%|███████ | 28/40 [00:00<00:00, 55.46it/s]"
]
},
{
@@ -868,7 +868,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 59.73it/s]"
+ " 90%|█████████ | 36/40 [00:00<00:00, 61.79it/s]"
]
},
{
@@ -876,36 +876,36 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 54.24it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 55.50it/s]"
]
},
{
- "name": "stderr",
+ "name": "stdout",
"output_type": "stream",
"text": [
- "\n"
+ "\n",
+ "Training on fold: 2 ...\n"
]
},
{
- "name": "stdout",
+ "name": "stderr",
"output_type": "stream",
"text": [
- "\n",
- "Training on fold: 2 ...\n"
+ "\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.830\n"
+ "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.625\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.590\n",
+ "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.389\n",
"Computing feature embeddings ...\n"
]
},
@@ -922,7 +922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 17.68it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 8.53it/s]"
]
},
{
@@ -930,7 +930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 45.30it/s]"
+ " 20%|██ | 8/40 [00:00<00:00, 41.57it/s]"
]
},
{
@@ -938,7 +938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 15/40 [00:00<00:00, 49.10it/s]"
+ " 38%|███▊ | 15/40 [00:00<00:00, 53.26it/s]"
]
},
{
@@ -946,7 +946,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 22/40 [00:00<00:00, 56.35it/s]"
+ " 55%|█████▌ | 22/40 [00:00<00:00, 59.37it/s]"
]
},
{
@@ -954,7 +954,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▎ | 29/40 [00:00<00:00, 59.56it/s]"
+ " 72%|███████▎ | 29/40 [00:00<00:00, 60.26it/s]"
]
},
{
@@ -962,7 +962,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▎| 37/40 [00:00<00:00, 65.68it/s]"
+ " 92%|█████████▎| 37/40 [00:00<00:00, 65.41it/s]"
]
},
{
@@ -970,7 +970,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 57.72it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 57.75it/s]"
]
},
{
@@ -1000,7 +1000,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.37it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.07it/s]"
]
},
{
@@ -1008,7 +1008,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 8/40 [00:00<00:00, 42.97it/s]"
+ " 18%|█▊ | 7/40 [00:00<00:00, 36.33it/s]"
]
},
{
@@ -1016,7 +1016,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 15/40 [00:00<00:00, 54.41it/s]"
+ " 35%|███▌ | 14/40 [00:00<00:00, 49.06it/s]"
]
},
{
@@ -1024,7 +1024,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 22/40 [00:00<00:00, 57.80it/s]"
+ " 55%|█████▌ | 22/40 [00:00<00:00, 57.78it/s]"
]
},
{
@@ -1032,7 +1032,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▎ | 29/40 [00:00<00:00, 61.20it/s]"
+ " 72%|███████▎ | 29/40 [00:00<00:00, 61.67it/s]"
]
},
{
@@ -1040,7 +1040,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|█████████ | 36/40 [00:00<00:00, 61.98it/s]"
+ " 92%|█████████▎| 37/40 [00:00<00:00, 67.09it/s]"
]
},
{
@@ -1048,7 +1048,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 56.32it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 57.88it/s]"
]
},
{
@@ -1070,14 +1070,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.789\n"
+ "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.594\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.561\n",
+ "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.414\n",
"Computing feature embeddings ...\n"
]
},
@@ -1094,7 +1094,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:01, 19.87it/s]"
+ " 2%|▎ | 1/40 [00:00<00:03, 9.99it/s]"
]
},
{
@@ -1102,7 +1102,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 46.53it/s]"
+ " 20%|██ | 8/40 [00:00<00:00, 40.73it/s]"
]
},
{
@@ -1110,7 +1110,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 54.23it/s]"
+ " 38%|███▊ | 15/40 [00:00<00:00, 52.94it/s]"
]
},
{
@@ -1118,7 +1118,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▊ | 23/40 [00:00<00:00, 59.21it/s]"
+ " 55%|█████▌ | 22/40 [00:00<00:00, 57.73it/s]"
]
},
{
@@ -1126,7 +1126,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▌ | 30/40 [00:00<00:00, 62.39it/s]"
+ " 75%|███████▌ | 30/40 [00:00<00:00, 62.43it/s]"
]
},
{
@@ -1134,7 +1134,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▌| 38/40 [00:00<00:00, 67.73it/s]"
+ " 98%|█████████▊| 39/40 [00:00<00:00, 68.69it/s]"
]
},
{
@@ -1142,7 +1142,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 59.92it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 58.99it/s]"
]
},
{
@@ -1172,7 +1172,15 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 17.92it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.52it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 18%|█▊ | 7/40 [00:00<00:00, 38.56it/s]"
]
},
{
@@ -1180,7 +1188,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 45.93it/s]"
+ " 35%|███▌ | 14/40 [00:00<00:00, 51.15it/s]"
]
},
{
@@ -1188,7 +1196,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 56.44it/s]"
+ " 52%|█████▎ | 21/40 [00:00<00:00, 57.29it/s]"
]
},
{
@@ -1196,7 +1204,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▊ | 23/40 [00:00<00:00, 60.90it/s]"
+ " 70%|███████ | 28/40 [00:00<00:00, 60.00it/s]"
]
},
{
@@ -1204,7 +1212,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 64.93it/s]"
+ " 90%|█████████ | 36/40 [00:00<00:00, 65.08it/s]"
]
},
{
@@ -1212,7 +1220,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 61.40it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 57.49it/s]"
]
},
{
@@ -1289,10 +1297,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:45:27.676800Z",
- "iopub.status.busy": "2024-02-12T22:45:27.676560Z",
- "iopub.status.idle": "2024-02-12T22:45:27.692250Z",
- "shell.execute_reply": "2024-02-12T22:45:27.691828Z"
+ "iopub.execute_input": "2024-02-12T23:52:23.495654Z",
+ "iopub.status.busy": "2024-02-12T23:52:23.495270Z",
+ "iopub.status.idle": "2024-02-12T23:52:23.510571Z",
+ "shell.execute_reply": "2024-02-12T23:52:23.510158Z"
}
},
"outputs": [],
@@ -1317,10 +1325,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:45:27.694364Z",
- "iopub.status.busy": "2024-02-12T22:45:27.693983Z",
- "iopub.status.idle": "2024-02-12T22:45:28.161031Z",
- "shell.execute_reply": "2024-02-12T22:45:28.160543Z"
+ "iopub.execute_input": "2024-02-12T23:52:23.512509Z",
+ "iopub.status.busy": "2024-02-12T23:52:23.512207Z",
+ "iopub.status.idle": "2024-02-12T23:52:23.943697Z",
+ "shell.execute_reply": "2024-02-12T23:52:23.943177Z"
}
},
"outputs": [],
@@ -1340,10 +1348,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:45:28.163357Z",
- "iopub.status.busy": "2024-02-12T22:45:28.163177Z",
- "iopub.status.idle": "2024-02-12T22:48:54.291763Z",
- "shell.execute_reply": "2024-02-12T22:48:54.291105Z"
+ "iopub.execute_input": "2024-02-12T23:52:23.946059Z",
+ "iopub.status.busy": "2024-02-12T23:52:23.945723Z",
+ "iopub.status.idle": "2024-02-12T23:55:47.777354Z",
+ "shell.execute_reply": "2024-02-12T23:55:47.776802Z"
}
},
"outputs": [
@@ -1389,7 +1397,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7eeea8c1775c427982135e3e26276a66",
+ "model_id": "c44a3a93af7b497c8dd54e04f2398ff3",
"version_major": 2,
"version_minor": 0
},
@@ -1428,10 +1436,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:54.294606Z",
- "iopub.status.busy": "2024-02-12T22:48:54.293842Z",
- "iopub.status.idle": "2024-02-12T22:48:54.982960Z",
- "shell.execute_reply": "2024-02-12T22:48:54.982388Z"
+ "iopub.execute_input": "2024-02-12T23:55:47.780109Z",
+ "iopub.status.busy": "2024-02-12T23:55:47.779325Z",
+ "iopub.status.idle": "2024-02-12T23:55:48.450450Z",
+ "shell.execute_reply": "2024-02-12T23:55:48.449924Z"
}
},
"outputs": [
@@ -1580,10 +1588,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:54.985630Z",
- "iopub.status.busy": "2024-02-12T22:48:54.985124Z",
- "iopub.status.idle": "2024-02-12T22:48:55.031830Z",
- "shell.execute_reply": "2024-02-12T22:48:55.031185Z"
+ "iopub.execute_input": "2024-02-12T23:55:48.453200Z",
+ "iopub.status.busy": "2024-02-12T23:55:48.452700Z",
+ "iopub.status.idle": "2024-02-12T23:55:48.513844Z",
+ "shell.execute_reply": "2024-02-12T23:55:48.513231Z"
}
},
"outputs": [
@@ -1687,10 +1695,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.034085Z",
- "iopub.status.busy": "2024-02-12T22:48:55.033900Z",
- "iopub.status.idle": "2024-02-12T22:48:55.042902Z",
- "shell.execute_reply": "2024-02-12T22:48:55.042316Z"
+ "iopub.execute_input": "2024-02-12T23:55:48.516272Z",
+ "iopub.status.busy": "2024-02-12T23:55:48.516008Z",
+ "iopub.status.idle": "2024-02-12T23:55:48.524298Z",
+ "shell.execute_reply": "2024-02-12T23:55:48.523789Z"
}
},
"outputs": [
@@ -1820,10 +1828,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.045048Z",
- "iopub.status.busy": "2024-02-12T22:48:55.044874Z",
- "iopub.status.idle": "2024-02-12T22:48:55.049643Z",
- "shell.execute_reply": "2024-02-12T22:48:55.048973Z"
+ "iopub.execute_input": "2024-02-12T23:55:48.526308Z",
+ "iopub.status.busy": "2024-02-12T23:55:48.525983Z",
+ "iopub.status.idle": "2024-02-12T23:55:48.530423Z",
+ "shell.execute_reply": "2024-02-12T23:55:48.529990Z"
},
"nbsphinx": "hidden"
},
@@ -1869,10 +1877,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.051986Z",
- "iopub.status.busy": "2024-02-12T22:48:55.051507Z",
- "iopub.status.idle": "2024-02-12T22:48:55.531274Z",
- "shell.execute_reply": "2024-02-12T22:48:55.530776Z"
+ "iopub.execute_input": "2024-02-12T23:55:48.532364Z",
+ "iopub.status.busy": "2024-02-12T23:55:48.532044Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.032753Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.032135Z"
}
},
"outputs": [
@@ -1907,10 +1915,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.533264Z",
- "iopub.status.busy": "2024-02-12T22:48:55.533086Z",
- "iopub.status.idle": "2024-02-12T22:48:55.541235Z",
- "shell.execute_reply": "2024-02-12T22:48:55.540803Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.035187Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.034765Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.043186Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.042756Z"
}
},
"outputs": [
@@ -2077,10 +2085,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.543398Z",
- "iopub.status.busy": "2024-02-12T22:48:55.543079Z",
- "iopub.status.idle": "2024-02-12T22:48:55.550044Z",
- "shell.execute_reply": "2024-02-12T22:48:55.549626Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.045323Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.044909Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.052058Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.051606Z"
},
"nbsphinx": "hidden"
},
@@ -2156,10 +2164,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:55.551945Z",
- "iopub.status.busy": "2024-02-12T22:48:55.551628Z",
- "iopub.status.idle": "2024-02-12T22:48:55.998382Z",
- "shell.execute_reply": "2024-02-12T22:48:55.997804Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.054137Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.053664Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.495796Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.495211Z"
}
},
"outputs": [
@@ -2196,10 +2204,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.000477Z",
- "iopub.status.busy": "2024-02-12T22:48:56.000147Z",
- "iopub.status.idle": "2024-02-12T22:48:56.017045Z",
- "shell.execute_reply": "2024-02-12T22:48:56.016503Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.498021Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.497714Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.513142Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.512658Z"
}
},
"outputs": [
@@ -2356,10 +2364,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.019335Z",
- "iopub.status.busy": "2024-02-12T22:48:56.018963Z",
- "iopub.status.idle": "2024-02-12T22:48:56.025855Z",
- "shell.execute_reply": "2024-02-12T22:48:56.025360Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.515375Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.514993Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.520435Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.519933Z"
},
"nbsphinx": "hidden"
},
@@ -2404,10 +2412,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.027870Z",
- "iopub.status.busy": "2024-02-12T22:48:56.027691Z",
- "iopub.status.idle": "2024-02-12T22:48:56.499740Z",
- "shell.execute_reply": "2024-02-12T22:48:56.499195Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.522377Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.522207Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.985456Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.984854Z"
}
},
"outputs": [
@@ -2489,10 +2497,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.502563Z",
- "iopub.status.busy": "2024-02-12T22:48:56.502261Z",
- "iopub.status.idle": "2024-02-12T22:48:56.515634Z",
- "shell.execute_reply": "2024-02-12T22:48:56.515111Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.988051Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.987761Z",
+ "iopub.status.idle": "2024-02-12T23:55:49.996872Z",
+ "shell.execute_reply": "2024-02-12T23:55:49.996285Z"
}
},
"outputs": [
@@ -2517,47 +2525,47 @@
" \n",
" \n",
" | \n",
- " dark_score | \n",
" is_dark_issue | \n",
+ " dark_score | \n",
"
\n",
" \n",
" \n",
" \n",
" 34848 | \n",
- " 0.203922 | \n",
" True | \n",
+ " 0.203922 | \n",
"
\n",
" \n",
" 50270 | \n",
- " 0.204588 | \n",
" True | \n",
+ " 0.204588 | \n",
"
\n",
" \n",
" 3936 | \n",
- " 0.213098 | \n",
" True | \n",
+ " 0.213098 | \n",
"
\n",
" \n",
" 733 | \n",
- " 0.217686 | \n",
" True | \n",
+ " 0.217686 | \n",
"
\n",
" \n",
" 8094 | \n",
- " 0.230118 | \n",
" True | \n",
+ " 0.230118 | \n",
"
\n",
" \n",
"\n",
"
"
],
"text/plain": [
- " dark_score is_dark_issue\n",
- "34848 0.203922 True\n",
- "50270 0.204588 True\n",
- "3936 0.213098 True\n",
- "733 0.217686 True\n",
- "8094 0.230118 True"
+ " is_dark_issue dark_score\n",
+ "34848 True 0.203922\n",
+ "50270 True 0.204588\n",
+ "3936 True 0.213098\n",
+ "733 True 0.217686\n",
+ "8094 True 0.230118"
]
},
"execution_count": 26,
@@ -2620,10 +2628,10 @@
"execution_count": 27,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.518466Z",
- "iopub.status.busy": "2024-02-12T22:48:56.518111Z",
- "iopub.status.idle": "2024-02-12T22:48:56.525043Z",
- "shell.execute_reply": "2024-02-12T22:48:56.524527Z"
+ "iopub.execute_input": "2024-02-12T23:55:49.999329Z",
+ "iopub.status.busy": "2024-02-12T23:55:49.999133Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.006113Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.005539Z"
},
"nbsphinx": "hidden"
},
@@ -2660,10 +2668,10 @@
"execution_count": 28,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.527376Z",
- "iopub.status.busy": "2024-02-12T22:48:56.527033Z",
- "iopub.status.idle": "2024-02-12T22:48:56.735810Z",
- "shell.execute_reply": "2024-02-12T22:48:56.735245Z"
+ "iopub.execute_input": "2024-02-12T23:55:50.008923Z",
+ "iopub.status.busy": "2024-02-12T23:55:50.008583Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.210129Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.209624Z"
}
},
"outputs": [
@@ -2705,10 +2713,10 @@
"execution_count": 29,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.738025Z",
- "iopub.status.busy": "2024-02-12T22:48:56.737691Z",
- "iopub.status.idle": "2024-02-12T22:48:56.745625Z",
- "shell.execute_reply": "2024-02-12T22:48:56.745067Z"
+ "iopub.execute_input": "2024-02-12T23:55:50.212155Z",
+ "iopub.status.busy": "2024-02-12T23:55:50.211986Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.219576Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.219136Z"
}
},
"outputs": [
@@ -2794,10 +2802,10 @@
"execution_count": 30,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.747644Z",
- "iopub.status.busy": "2024-02-12T22:48:56.747336Z",
- "iopub.status.idle": "2024-02-12T22:48:56.946903Z",
- "shell.execute_reply": "2024-02-12T22:48:56.946319Z"
+ "iopub.execute_input": "2024-02-12T23:55:50.221513Z",
+ "iopub.status.busy": "2024-02-12T23:55:50.221277Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.417109Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.416621Z"
}
},
"outputs": [
@@ -2837,10 +2845,10 @@
"execution_count": 31,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:48:56.949238Z",
- "iopub.status.busy": "2024-02-12T22:48:56.948902Z",
- "iopub.status.idle": "2024-02-12T22:48:56.953326Z",
- "shell.execute_reply": "2024-02-12T22:48:56.952778Z"
+ "iopub.execute_input": "2024-02-12T23:55:50.419231Z",
+ "iopub.status.busy": "2024-02-12T23:55:50.419048Z",
+ "iopub.status.idle": "2024-02-12T23:55:50.423409Z",
+ "shell.execute_reply": "2024-02-12T23:55:50.422978Z"
},
"nbsphinx": "hidden"
},
@@ -2877,115 +2885,60 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "03e1112c1c1947b485f61fcf1c31bac0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_0c398ad7386f4244a5ef32858ff05e49",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9b402dc36b6b43e5b2bff1fc495afcad",
- "tabbable": null,
- "tooltip": null,
- "value": 60000.0
- }
- },
- "0411e85d1c6c494688ded4a849e3e349": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "0581d052d09b45b09b85b09a70890239": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_d1167f3318f64da59ad78f10a5e80234",
- "placeholder": "",
- "style": "IPY_MODEL_7c2c2699a3b0492fb79e5d40dda65e77",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:00<00:00, 940019.42 examples/s]"
- }
- },
- "09d9439722cc441fb0feae0271106f17": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_5c03bf666dcd45f4b0cb1abe912a7260",
- "placeholder": "",
- "style": "IPY_MODEL_7752c29e622f4e2fb78f3b394f8e7b66",
- "tabbable": null,
- "tooltip": null,
- "value": " 10000/10000 [00:00<00:00, 671711.99 examples/s]"
- }
- },
- "0a5cd3e27c764b77aa59f033076b98dc": {
- "model_module": "@jupyter-widgets/controls",
+ "00ba701378704e378518cfc9cd9ac1fe": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "0b1453a34968449dbb75d7a69288bf0e": {
+ "00f8338cd9aa4d588ec1f06fb59f02f4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3038,7 +2991,48 @@
"width": null
}
},
- "0c398ad7386f4244a5ef32858ff05e49": {
+ "02d633541d2d4fb18b517409e7f65fd1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cce039caae1742479d51c4b2ac5e8421",
+ "placeholder": "",
+ "style": "IPY_MODEL_2f3c92e749ae490d8e1f2b5fd5adc7df",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating train split: 100%"
+ }
+ },
+ "03e46e048a0146b593bc738d11494b15": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "063c7dfbcb0b4f6197e12b92dc3aff4c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3091,7 +3085,7 @@
"width": null
}
},
- "1069e0bb4e6548d5a1883737621d97ea": {
+ "08a74e17a4ac45949ebae406dfd05251": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3144,7 +3138,23 @@
"width": null
}
},
- "14372a011b8c4b8ab00670fc03e5b5b2": {
+ "0b4c101a7f6e46848edbef1597422682": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0d30740987e3448ea761721f201fd306": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -3159,15 +3169,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_c74b5ad3cf884b47bfd6db73251256bc",
+ "layout": "IPY_MODEL_2617ff545f9541809b742f122a1901c9",
"placeholder": "",
- "style": "IPY_MODEL_18cbee11368d4992abc8ae0f24d86834",
+ "style": "IPY_MODEL_73ba1a65a7b141d4a3f4cc8ead2bf28b",
"tabbable": null,
"tooltip": null,
- "value": "Generating train split: 100%"
+ "value": " 60000/60000 [00:10<00:00, 7397.36 examples/s]"
}
},
- "18cbee11368d4992abc8ae0f24d86834": {
+ "1043375dfd374096a15e8567a20c594f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3185,25 +3195,33 @@
"text_color": null
}
},
- "198d5739f1dc442da99d2e5b0ac70da0": {
+ "1168ea19eb6c4dcfb75a4fd777b03e74": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cf7e56c89e9e44c6ac44dfc7e99577a3",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_acfec9ea8d1346a3a57538fa4c9c1a2f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 60000.0
}
},
- "24f025a8f17946fea6d98d528d8e2522": {
+ "132daea313c246d9a165657433d5802a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3256,30 +3274,88 @@
"width": null
}
},
- "256dbc32c2b145649d09487d9b0ba0b8": {
- "model_module": "@jupyter-widgets/base",
+ "15919b2a7e89404eab85f75b8444d361": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "19df4da09271453183a0c7442667ff80": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1a248332df5e401eafc3bd11daab7ad6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7d16870c10bc4462bce6d85dd2108a21",
+ "max": 10000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1c24d3c192584eb496b9f59b8402ad4a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 10000.0
+ }
+ },
+ "1af15514bb5c4b7d9d94faf4d7a02829": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
@@ -3309,7 +3385,47 @@
"width": null
}
},
- "277ae682a79a436fbddc5a33718d59ae": {
+ "1bc0d0483cf54ad9b740813c2b40012f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_02d633541d2d4fb18b517409e7f65fd1",
+ "IPY_MODEL_2d3a6a6c81d94d8c95efc420e26aab59",
+ "IPY_MODEL_81ab3d18d02d4b22bdd1364a3e2c67c8"
+ ],
+ "layout": "IPY_MODEL_9e5bf703fe794f5eb178adb37d8aa1ba",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "1c24d3c192584eb496b9f59b8402ad4a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1e204caf2f104dada914a5c75208b661": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3362,7 +3478,30 @@
"width": null
}
},
- "3d152f25eb1e41d7b2d02f8e24ff9d8c": {
+ "1f5a909d647e495ca7fe1290e7ac5b90": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d6170e03528545b8a1ea345d9bd04f9d",
+ "placeholder": "",
+ "style": "IPY_MODEL_6d28384e365f4951a48d6cdbcece77ec",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating test split: 100%"
+ }
+ },
+ "2617ff545f9541809b742f122a1901c9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3415,7 +3554,7 @@
"width": null
}
},
- "3ed89d7d1f384e3099ce700826fbd45e": {
+ "2b56696914bf496482c85356023bfdc0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3468,80 +3607,7 @@
"width": null
}
},
- "4a5148a28d904f3194b1f4fa99f5fb1b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_14372a011b8c4b8ab00670fc03e5b5b2",
- "IPY_MODEL_f9dba5827560474e90d100a225e69c39",
- "IPY_MODEL_0581d052d09b45b09b85b09a70890239"
- ],
- "layout": "IPY_MODEL_652fb6b4cc8b4c5e85c767e3ef6dfb24",
- "tabbable": null,
- "tooltip": null
- }
- },
- "4b5c3fffb2ff4350920c1f9943b92b02": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b75958ade3a1489982759d599fca2fc1",
- "max": 5175617.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d1d8fd559fef4ed2a1c0db0f1c8b62e9",
- "tabbable": null,
- "tooltip": null,
- "value": 5175617.0
- }
- },
- "4cbbc2876da645eb94cfd627d5f024cd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_3ed89d7d1f384e3099ce700826fbd45e",
- "placeholder": "",
- "style": "IPY_MODEL_c0dfe9a56d874e679b0f950b3a8b612c",
- "tabbable": null,
- "tooltip": null,
- "value": " 5.18M/5.18M [00:00<00:00, 37.3MB/s]"
- }
- },
- "514f6ffe7cea4fa5bc280cc0556d851d": {
+ "2caeebe76700433faf6320697fd12f06": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3594,7 +3660,33 @@
"width": null
}
},
- "51ca526941124466bf7ade05b775221e": {
+ "2d3a6a6c81d94d8c95efc420e26aab59": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_88d04a9e668a4b19a7559cc558944f3c",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b37b96fba4bc45dd8967ee83271dfc82",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 60000.0
+ }
+ },
+ "2f3c92e749ae490d8e1f2b5fd5adc7df": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3612,7 +3704,7 @@
"text_color": null
}
},
- "573369fdc7e541ce962aa06d56f287ae": {
+ "2fd64d954d784b03838577f8f14c36cc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3630,7 +3722,56 @@
"text_color": null
}
},
- "5af1051454c9460593b95ed6b9376707": {
+ "30e5bcf86de240aca326feb96727dba9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a9e69b8d0db84aa39758d3d1d767f854",
+ "max": 2.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0b4c101a7f6e46848edbef1597422682",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 2.0
+ }
+ },
+ "310b58da57fd42389105173d7638049d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_38dca7ea53c3493cb06e22e7d24906ab",
+ "placeholder": "",
+ "style": "IPY_MODEL_d67e2a26ec31489f9c92ad823ec2f89e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 2/2 [00:00<00:00, 657.93it/s]"
+ }
+ },
+ "38dca7ea53c3493cb06e22e7d24906ab": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3683,7 +3824,7 @@
"width": null
}
},
- "5c03bf666dcd45f4b0cb1abe912a7260": {
+ "3f531c123b90444194a701a233f725ec": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3736,7 +3877,7 @@
"width": null
}
},
- "5e246fcd65934ca6837e949024263b4b": {
+ "41a34ea0ee32424c97c3420800fa3909": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3789,60 +3930,30 @@
"width": null
}
},
- "619985bbbc694c5994ca2af31e36ed46": {
- "model_module": "@jupyter-widgets/base",
+ "43d7d89665ff44ed8d6584eec78426d2": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cb8bf9dd371043f8a34ecc974c5a2bbd",
+ "placeholder": "",
+ "style": "IPY_MODEL_2fd64d954d784b03838577f8f14c36cc",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 10000/10000 [00:00<00:00, 647069.42 examples/s]"
}
},
- "64c3b67342654487ab72f12cc4480c2b": {
+ "466ce29fc5834c8f96104974db316c3c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3860,7 +3971,130 @@
"text_color": null
}
},
- "652fb6b4cc8b4c5e85c767e3ef6dfb24": {
+ "49444ac3669a4b7db5936fb36da40a4a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_cd9108f865244e498a9af5a123fd3a8b",
+ "IPY_MODEL_fa4d3b38eacc4a56963051b21f1f6ba1",
+ "IPY_MODEL_d109e89ea29a494dbf2093031912d023"
+ ],
+ "layout": "IPY_MODEL_6e03f71c926a47e3a091c577f881f449",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "4c626fb816c94daa978ae85d8eddb3a7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_3f531c123b90444194a701a233f725ec",
+ "placeholder": "",
+ "style": "IPY_MODEL_466ce29fc5834c8f96104974db316c3c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 5.18M/5.18M [00:00<00:00, 11.0MB/s]"
+ }
+ },
+ "4c9a7feaa41d423588db9de703b40909": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b2f748b56e1c4f3db4d4b68096af50bd",
+ "IPY_MODEL_a3414fc08f764afaa977c37952c1ee0a",
+ "IPY_MODEL_4c626fb816c94daa978ae85d8eddb3a7"
+ ],
+ "layout": "IPY_MODEL_08a74e17a4ac45949ebae406dfd05251",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "55c7624faa0849868d643f64a86e60c8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "690c569d0aea414598c08bd25bfe4ed0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "6d28384e365f4951a48d6cdbcece77ec": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "6e03f71c926a47e3a091c577f881f449": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3913,23 +4147,7 @@
"width": null
}
},
- "6be9f53a62d8401193fdcd84b132c0d8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "6c007c5895214b5d80b5f66056ce1689": {
+ "70d78a7fead541728d996199b525cc53": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3982,30 +4200,25 @@
"width": null
}
},
- "6d72c7d8ce794979a928a93df2986302": {
+ "73ba1a65a7b141d4a3f4cc8ead2bf28b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_619985bbbc694c5994ca2af31e36ed46",
- "placeholder": "",
- "style": "IPY_MODEL_0411e85d1c6c494688ded4a849e3e349",
- "tabbable": null,
- "tooltip": null,
- "value": "Downloading data: 100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "75ed2253d3e84140b09f6b4ef3fcceb7": {
+ "7d16870c10bc4462bce6d85dd2108a21": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4058,67 +4271,7 @@
"width": null
}
},
- "7752c29e622f4e2fb78f3b394f8e7b66": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "7ac64f420608407d8d80a7af78490e1f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e7e1a63b50304089a0c52e8e3169a7e8",
- "IPY_MODEL_4b5c3fffb2ff4350920c1f9943b92b02",
- "IPY_MODEL_4cbbc2876da645eb94cfd627d5f024cd"
- ],
- "layout": "IPY_MODEL_24f025a8f17946fea6d98d528d8e2522",
- "tabbable": null,
- "tooltip": null
- }
- },
- "7c2c2699a3b0492fb79e5d40dda65e77": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "7cb09f07cc6544f7a35c94cddeb810a9": {
+ "81ab3d18d02d4b22bdd1364a3e2c67c8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4126,98 +4279,22 @@
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b5beb944d19843779b46def805e6c07a",
- "placeholder": "",
- "style": "IPY_MODEL_51ca526941124466bf7ade05b775221e",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:36<00:00, 1558.88it/s]"
- }
- },
- "7eeea8c1775c427982135e3e26276a66": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e7358c2b0eae4b6b9f88153f6b4a987e",
- "IPY_MODEL_c5326b588c6542fa94a34e1e115ade16",
- "IPY_MODEL_7cb09f07cc6544f7a35c94cddeb810a9"
- ],
- "layout": "IPY_MODEL_5af1051454c9460593b95ed6b9376707",
- "tabbable": null,
- "tooltip": null
- }
- },
- "8821281212024a5a8296b14f1beca713": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_3d152f25eb1e41d7b2d02f8e24ff9d8c",
- "max": 30931277.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d18b9814f2bb49ed925e6a01a32bdd84",
- "tabbable": null,
- "tooltip": null,
- "value": 30931277.0
- }
- },
- "8d609b55a9cf4709b1bddd6986b8821d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_514f6ffe7cea4fa5bc280cc0556d851d",
- "max": 2.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_ae48c28296754b1ab63b07679c18a643",
+ "layout": "IPY_MODEL_41a34ea0ee32424c97c3420800fa3909",
+ "placeholder": "",
+ "style": "IPY_MODEL_03e46e048a0146b593bc738d11494b15",
"tabbable": null,
"tooltip": null,
- "value": 2.0
+ "value": " 60000/60000 [00:00<00:00, 837665.73 examples/s]"
}
},
- "91adc4ed96704020b95e65eb661a0c4f": {
+ "88d04a9e668a4b19a7559cc558944f3c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4270,7 +4347,7 @@
"width": null
}
},
- "99f4ace301054d228e0cf464bb15f99c": {
+ "9005032e78ae418baf5419ccfb813e17": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -4285,32 +4362,16 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_fc4c22de60394f1c95acf596fcf1c1c5",
- "IPY_MODEL_8d609b55a9cf4709b1bddd6986b8821d",
- "IPY_MODEL_b71a25664f484763bd3d175917c9fcbe"
+ "IPY_MODEL_a7056113865747e080b5c3c166c466b2",
+ "IPY_MODEL_b8e3516af7e848a6ace724ce0521f55f",
+ "IPY_MODEL_0d30740987e3448ea761721f201fd306"
],
- "layout": "IPY_MODEL_ec6eb2a130dd443c8d8e5f429b5692ef",
+ "layout": "IPY_MODEL_f65d64c208cc4b3786e7f68927d0a6a9",
"tabbable": null,
"tooltip": null
}
},
- "9b402dc36b6b43e5b2bff1fc495afcad": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "9e289ff8041743608a680f0a4b583b1c": {
+ "94459cbd07a2487dbbc854f5df8397e1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4363,7 +4424,31 @@
"width": null
}
},
- "a039bce3ef044f94a3322f098c6c008a": {
+ "9d85276285e1461582877e3ada98c31e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_dea0e8c245bd444c9dd46bb1f71ecbb8",
+ "IPY_MODEL_30e5bcf86de240aca326feb96727dba9",
+ "IPY_MODEL_310b58da57fd42389105173d7638049d"
+ ],
+ "layout": "IPY_MODEL_c3f8212e6da349c4a7449c5b369c026d",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "9e5bf703fe794f5eb178adb37d8aa1ba": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4416,80 +4501,56 @@
"width": null
}
},
- "a9d3ac20b8d6484ebc511d547100aaca": {
+ "a3414fc08f764afaa977c37952c1ee0a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_dbb5829c8cc74cdc855ae4c74b8e80ae",
- "placeholder": "",
- "style": "IPY_MODEL_64c3b67342654487ab72f12cc4480c2b",
+ "layout": "IPY_MODEL_1af15514bb5c4b7d9d94faf4d7a02829",
+ "max": 5175617.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_55c7624faa0849868d643f64a86e60c8",
"tabbable": null,
"tooltip": null,
- "value": "Map (num_proc=4): 100%"
- }
- },
- "ab39dcedfccf490f9a7d2d633fbd7c8a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ae48c28296754b1ab63b07679c18a643": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": 5175617.0
}
},
- "b25fc3b878fb43e599ebfa03c75bfd98": {
+ "a7056113865747e080b5c3c166c466b2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2b56696914bf496482c85356023bfdc0",
+ "placeholder": "",
+ "style": "IPY_MODEL_d7aaed42000b49e78b3ff8b77f505687",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Map (num_proc=4): 100%"
}
},
- "b5beb944d19843779b46def805e6c07a": {
+ "a9e69b8d0db84aa39758d3d1d767f854": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4542,7 +4603,23 @@
"width": null
}
},
- "b71a25664f484763bd3d175917c9fcbe": {
+ "acfec9ea8d1346a3a57538fa4c9c1a2f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "af1a8a030e8549f1a5934f3113bb2849": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4557,68 +4634,54 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_9e289ff8041743608a680f0a4b583b1c",
+ "layout": "IPY_MODEL_70d78a7fead541728d996199b525cc53",
"placeholder": "",
- "style": "IPY_MODEL_b25fc3b878fb43e599ebfa03c75bfd98",
+ "style": "IPY_MODEL_690c569d0aea414598c08bd25bfe4ed0",
"tabbable": null,
"tooltip": null,
- "value": " 2/2 [00:00<00:00, 644.98it/s]"
+ "value": "100%"
}
},
- "b75958ade3a1489982759d599fca2fc1": {
- "model_module": "@jupyter-widgets/base",
+ "b2f748b56e1c4f3db4d4b68096af50bd": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_94459cbd07a2487dbbc854f5df8397e1",
+ "placeholder": "",
+ "style": "IPY_MODEL_1043375dfd374096a15e8567a20c594f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
+ }
+ },
+ "b37b96fba4bc45dd8967ee83271dfc82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "c0dfe9a56d874e679b0f950b3a8b612c": {
+ "b6da4a05e58e4db0ab7e83bdf9c14aa4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -4636,7 +4699,7 @@
"text_color": null
}
},
- "c5326b588c6542fa94a34e1e115ade16": {
+ "b8e3516af7e848a6ace724ce0521f55f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -4652,17 +4715,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_5e246fcd65934ca6837e949024263b4b",
+ "layout": "IPY_MODEL_00f8338cd9aa4d588ec1f06fb59f02f4",
"max": 60000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_ab39dcedfccf490f9a7d2d633fbd7c8a",
+ "style": "IPY_MODEL_19df4da09271453183a0c7442667ff80",
"tabbable": null,
"tooltip": null,
"value": 60000.0
}
},
- "c7038c929ce345bab52fe4f4801afb33": {
+ "b9d664576f9045a59f6a14bac275d4c0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4677,15 +4740,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_75ed2253d3e84140b09f6b4ef3fcceb7",
+ "layout": "IPY_MODEL_2caeebe76700433faf6320697fd12f06",
"placeholder": "",
- "style": "IPY_MODEL_573369fdc7e541ce962aa06d56f287ae",
+ "style": "IPY_MODEL_ccaa3ee9237d414d9f4b417b938e34ee",
"tabbable": null,
"tooltip": null,
- "value": "Generating test split: 100%"
+ "value": " 60000/60000 [00:35<00:00, 1759.49it/s]"
}
},
- "c74b5ad3cf884b47bfd6db73251256bc": {
+ "c3f8212e6da349c4a7449c5b369c026d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4738,25 +4801,31 @@
"width": null
}
},
- "cb352467e0e541e393b6377e35c6e8e9": {
+ "c44a3a93af7b497c8dd54e04f2398ff3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_af1a8a030e8549f1a5934f3113bb2849",
+ "IPY_MODEL_1168ea19eb6c4dcfb75a4fd777b03e74",
+ "IPY_MODEL_b9d664576f9045a59f6a14bac275d4c0"
+ ],
+ "layout": "IPY_MODEL_132daea313c246d9a165657433d5802a",
+ "tabbable": null,
+ "tooltip": null
}
},
- "d1167f3318f64da59ad78f10a5e80234": {
+ "cb8bf9dd371043f8a34ecc974c5a2bbd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4809,39 +4878,25 @@
"width": null
}
},
- "d18b9814f2bb49ed925e6a01a32bdd84": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "d1d8fd559fef4ed2a1c0db0f1c8b62e9": {
+ "ccaa3ee9237d414d9f4b417b938e34ee": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "dbb5829c8cc74cdc855ae4c74b8e80ae": {
+ "cce039caae1742479d51c4b2ac5e8421": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4890,47 +4945,34 @@
"padding": null,
"right": null,
"top": null,
- "visibility": null,
- "width": null
- }
- },
- "dfa39c3954554700a6257dd5506b2800": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "visibility": null,
+ "width": null
}
},
- "dfcf7973eccc416389166130f1dc1244": {
+ "cd9108f865244e498a9af5a123fd3a8b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_1e204caf2f104dada914a5c75208b661",
+ "placeholder": "",
+ "style": "IPY_MODEL_b6da4a05e58e4db0ab7e83bdf9c14aa4",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
}
},
- "e0410516962745c3afcfe3ec64a86da5": {
+ "cf7e56c89e9e44c6ac44dfc7e99577a3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4983,56 +5025,31 @@
"width": null
}
},
- "e4d6d9f83e7f4431ab93880ff97a097d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_91adc4ed96704020b95e65eb661a0c4f",
- "max": 10000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6be9f53a62d8401193fdcd84b132c0d8",
- "tabbable": null,
- "tooltip": null,
- "value": 10000.0
- }
- },
- "e7358c2b0eae4b6b9f88153f6b4a987e": {
+ "d00b19cf3e0644ceb1ea4ddf852375d9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_a039bce3ef044f94a3322f098c6c008a",
- "placeholder": "",
- "style": "IPY_MODEL_198d5739f1dc442da99d2e5b0ac70da0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1f5a909d647e495ca7fe1290e7ac5b90",
+ "IPY_MODEL_1a248332df5e401eafc3bd11daab7ad6",
+ "IPY_MODEL_43d7d89665ff44ed8d6584eec78426d2"
+ ],
+ "layout": "IPY_MODEL_00ba701378704e378518cfc9cd9ac1fe",
"tabbable": null,
- "tooltip": null,
- "value": "100%"
+ "tooltip": null
}
},
- "e7e1a63b50304089a0c52e8e3169a7e8": {
+ "d109e89ea29a494dbf2093031912d023": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -5047,54 +5064,68 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_6c007c5895214b5d80b5f66056ce1689",
+ "layout": "IPY_MODEL_063c7dfbcb0b4f6197e12b92dc3aff4c",
"placeholder": "",
- "style": "IPY_MODEL_0a5cd3e27c764b77aa59f033076b98dc",
+ "style": "IPY_MODEL_e304882d3b8f4f17be0bebcc0e3e16ce",
"tabbable": null,
"tooltip": null,
- "value": "Downloading data: 100%"
+ "value": " 30.9M/30.9M [00:00<00:00, 63.4MB/s]"
}
},
- "e83a549069a34c089e17807f4050c329": {
- "model_module": "@jupyter-widgets/controls",
+ "d58c19b1b3c0441f81cd7c70d97d66c2": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ec6a854658214e7fbead2e735f30ad7e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f88c5998f3d74afd927bf9a11bb16d63",
- "placeholder": "",
- "style": "IPY_MODEL_dfa39c3954554700a6257dd5506b2800",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:10<00:00, 5373.56 examples/s]"
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "ec6eb2a130dd443c8d8e5f429b5692ef": {
+ "d6170e03528545b8a1ea345d9bd04f9d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5147,31 +5178,43 @@
"width": null
}
},
- "f52ce44d13004a27827b9ca93535fcd6": {
+ "d67e2a26ec31489f9c92ad823ec2f89e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_6d72c7d8ce794979a928a93df2986302",
- "IPY_MODEL_8821281212024a5a8296b14f1beca713",
- "IPY_MODEL_f66eb3e358484069a54a66d5c72a0230"
- ],
- "layout": "IPY_MODEL_fa2b5dfa903b41beb8e2a28ef7ecfa5c",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "d7aaed42000b49e78b3ff8b77f505687": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "f66eb3e358484069a54a66d5c72a0230": {
+ "dea0e8c245bd444c9dd46bb1f71ecbb8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -5186,15 +5229,33 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_256dbc32c2b145649d09487d9b0ba0b8",
+ "layout": "IPY_MODEL_d58c19b1b3c0441f81cd7c70d97d66c2",
"placeholder": "",
- "style": "IPY_MODEL_cb352467e0e541e393b6377e35c6e8e9",
+ "style": "IPY_MODEL_ff923e82e9414ac0a7ab29acb7fc43e3",
"tabbable": null,
"tooltip": null,
- "value": " 30.9M/30.9M [00:00<00:00, 58.6MB/s]"
+ "value": "Computing checksums: 100%"
+ }
+ },
+ "e304882d3b8f4f17be0bebcc0e3e16ce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "f88c5998f3d74afd927bf9a11bb16d63": {
+ "f1fc2110b5e0474b906b22da9cfc9b3d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5247,33 +5308,7 @@
"width": null
}
},
- "f9dba5827560474e90d100a225e69c39": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_1069e0bb4e6548d5a1883737621d97ea",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e83a549069a34c089e17807f4050c329",
- "tabbable": null,
- "tooltip": null,
- "value": 60000.0
- }
- },
- "fa2b5dfa903b41beb8e2a28ef7ecfa5c": {
+ "f65d64c208cc4b3786e7f68927d0a6a9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5326,75 +5361,48 @@
"width": null
}
},
- "fa2e9c9fd9864adaa999004e25b0de4e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c7038c929ce345bab52fe4f4801afb33",
- "IPY_MODEL_e4d6d9f83e7f4431ab93880ff97a097d",
- "IPY_MODEL_09d9439722cc441fb0feae0271106f17"
- ],
- "layout": "IPY_MODEL_277ae682a79a436fbddc5a33718d59ae",
- "tabbable": null,
- "tooltip": null
- }
- },
- "fc4c22de60394f1c95acf596fcf1c1c5": {
+ "fa4d3b38eacc4a56963051b21f1f6ba1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_e0410516962745c3afcfe3ec64a86da5",
- "placeholder": "",
- "style": "IPY_MODEL_dfcf7973eccc416389166130f1dc1244",
+ "layout": "IPY_MODEL_f1fc2110b5e0474b906b22da9cfc9b3d",
+ "max": 30931277.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_15919b2a7e89404eab85f75b8444d361",
"tabbable": null,
"tooltip": null,
- "value": "Computing checksums: 100%"
+ "value": 30931277.0
}
},
- "fcd65dab45b140d2be0244abfb708e0d": {
+ "ff923e82e9414ac0a7ab29acb7fc43e3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a9d3ac20b8d6484ebc511d547100aaca",
- "IPY_MODEL_03e1112c1c1947b485f61fcf1c31bac0",
- "IPY_MODEL_ec6a854658214e7fbead2e735f30ad7e"
- ],
- "layout": "IPY_MODEL_0b1453a34968449dbb75d7a69288bf0e",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
}
},
diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb
index aaaa6b078..c7ccb86c3 100644
--- a/master/tutorials/indepth_overview.ipynb
+++ b/master/tutorials/indepth_overview.ipynb
@@ -53,10 +53,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:00.610077Z",
- "iopub.status.busy": "2024-02-12T22:49:00.609912Z",
- "iopub.status.idle": "2024-02-12T22:49:01.712997Z",
- "shell.execute_reply": "2024-02-12T22:49:01.712384Z"
+ "iopub.execute_input": "2024-02-12T23:55:54.087725Z",
+ "iopub.status.busy": "2024-02-12T23:55:54.087559Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.178378Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.177829Z"
},
"nbsphinx": "hidden"
},
@@ -68,7 +68,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -95,10 +95,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:01.715838Z",
- "iopub.status.busy": "2024-02-12T22:49:01.715329Z",
- "iopub.status.idle": "2024-02-12T22:49:01.894754Z",
- "shell.execute_reply": "2024-02-12T22:49:01.894257Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.180886Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.180607Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.356836Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.356299Z"
},
"id": "avXlHJcXjruP"
},
@@ -234,10 +234,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:01.897328Z",
- "iopub.status.busy": "2024-02-12T22:49:01.896970Z",
- "iopub.status.idle": "2024-02-12T22:49:01.908719Z",
- "shell.execute_reply": "2024-02-12T22:49:01.908293Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.359426Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.359033Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.370398Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.369839Z"
},
"nbsphinx": "hidden"
},
@@ -340,10 +340,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:01.910563Z",
- "iopub.status.busy": "2024-02-12T22:49:01.910373Z",
- "iopub.status.idle": "2024-02-12T22:49:02.147141Z",
- "shell.execute_reply": "2024-02-12T22:49:02.146584Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.372618Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.372226Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.578316Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.577704Z"
}
},
"outputs": [
@@ -393,10 +393,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:02.149358Z",
- "iopub.status.busy": "2024-02-12T22:49:02.149033Z",
- "iopub.status.idle": "2024-02-12T22:49:02.176810Z",
- "shell.execute_reply": "2024-02-12T22:49:02.176231Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.580602Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.580408Z",
+ "iopub.status.idle": "2024-02-12T23:55:55.607573Z",
+ "shell.execute_reply": "2024-02-12T23:55:55.607109Z"
}
},
"outputs": [],
@@ -427,10 +427,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:02.179209Z",
- "iopub.status.busy": "2024-02-12T22:49:02.178889Z",
- "iopub.status.idle": "2024-02-12T22:49:03.859070Z",
- "shell.execute_reply": "2024-02-12T22:49:03.858397Z"
+ "iopub.execute_input": "2024-02-12T23:55:55.609469Z",
+ "iopub.status.busy": "2024-02-12T23:55:55.609294Z",
+ "iopub.status.idle": "2024-02-12T23:55:57.237839Z",
+ "shell.execute_reply": "2024-02-12T23:55:57.237205Z"
}
},
"outputs": [
@@ -474,10 +474,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:03.861746Z",
- "iopub.status.busy": "2024-02-12T22:49:03.860991Z",
- "iopub.status.idle": "2024-02-12T22:49:03.876970Z",
- "shell.execute_reply": "2024-02-12T22:49:03.876507Z"
+ "iopub.execute_input": "2024-02-12T23:55:57.240636Z",
+ "iopub.status.busy": "2024-02-12T23:55:57.239978Z",
+ "iopub.status.idle": "2024-02-12T23:55:57.255920Z",
+ "shell.execute_reply": "2024-02-12T23:55:57.255468Z"
},
"scrolled": true
},
@@ -605,10 +605,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:03.879202Z",
- "iopub.status.busy": "2024-02-12T22:49:03.878865Z",
- "iopub.status.idle": "2024-02-12T22:49:05.289171Z",
- "shell.execute_reply": "2024-02-12T22:49:05.288522Z"
+ "iopub.execute_input": "2024-02-12T23:55:57.257954Z",
+ "iopub.status.busy": "2024-02-12T23:55:57.257611Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.663580Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.663012Z"
},
"id": "AaHC5MRKjruT"
},
@@ -727,10 +727,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.291686Z",
- "iopub.status.busy": "2024-02-12T22:49:05.291116Z",
- "iopub.status.idle": "2024-02-12T22:49:05.305038Z",
- "shell.execute_reply": "2024-02-12T22:49:05.304497Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.666177Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.665565Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.679124Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.678647Z"
},
"id": "Wy27rvyhjruU"
},
@@ -779,10 +779,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.307029Z",
- "iopub.status.busy": "2024-02-12T22:49:05.306774Z",
- "iopub.status.idle": "2024-02-12T22:49:05.380772Z",
- "shell.execute_reply": "2024-02-12T22:49:05.380174Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.681314Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.680885Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.753379Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.752708Z"
},
"id": "Db8YHnyVjruU"
},
@@ -889,10 +889,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.383078Z",
- "iopub.status.busy": "2024-02-12T22:49:05.382857Z",
- "iopub.status.idle": "2024-02-12T22:49:05.593726Z",
- "shell.execute_reply": "2024-02-12T22:49:05.593031Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.755871Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.755432Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.962038Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.961464Z"
},
"id": "iJqAHuS2jruV"
},
@@ -929,10 +929,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.596024Z",
- "iopub.status.busy": "2024-02-12T22:49:05.595626Z",
- "iopub.status.idle": "2024-02-12T22:49:05.612522Z",
- "shell.execute_reply": "2024-02-12T22:49:05.612077Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.964265Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.963929Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.980448Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.979929Z"
},
"id": "PcPTZ_JJG3Cx"
},
@@ -1398,10 +1398,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.614308Z",
- "iopub.status.busy": "2024-02-12T22:49:05.614153Z",
- "iopub.status.idle": "2024-02-12T22:49:05.623602Z",
- "shell.execute_reply": "2024-02-12T22:49:05.623174Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.982444Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.982140Z",
+ "iopub.status.idle": "2024-02-12T23:55:58.991902Z",
+ "shell.execute_reply": "2024-02-12T23:55:58.991458Z"
},
"id": "0lonvOYvjruV"
},
@@ -1548,10 +1548,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.625501Z",
- "iopub.status.busy": "2024-02-12T22:49:05.625327Z",
- "iopub.status.idle": "2024-02-12T22:49:05.710943Z",
- "shell.execute_reply": "2024-02-12T22:49:05.710323Z"
+ "iopub.execute_input": "2024-02-12T23:55:58.993954Z",
+ "iopub.status.busy": "2024-02-12T23:55:58.993646Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.073809Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.073168Z"
},
"id": "MfqTCa3kjruV"
},
@@ -1632,10 +1632,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.713363Z",
- "iopub.status.busy": "2024-02-12T22:49:05.713024Z",
- "iopub.status.idle": "2024-02-12T22:49:05.839351Z",
- "shell.execute_reply": "2024-02-12T22:49:05.838695Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.076295Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.075923Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.201155Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.200545Z"
},
"id": "9ZtWAYXqMAPL"
},
@@ -1695,10 +1695,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.841599Z",
- "iopub.status.busy": "2024-02-12T22:49:05.841367Z",
- "iopub.status.idle": "2024-02-12T22:49:05.845182Z",
- "shell.execute_reply": "2024-02-12T22:49:05.844645Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.203389Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.203174Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.206879Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.206332Z"
},
"id": "0rXP3ZPWjruW"
},
@@ -1736,10 +1736,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.847194Z",
- "iopub.status.busy": "2024-02-12T22:49:05.846811Z",
- "iopub.status.idle": "2024-02-12T22:49:05.850643Z",
- "shell.execute_reply": "2024-02-12T22:49:05.850097Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.208887Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.208621Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.212375Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.211842Z"
},
"id": "-iRPe8KXjruW"
},
@@ -1794,10 +1794,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.852567Z",
- "iopub.status.busy": "2024-02-12T22:49:05.852314Z",
- "iopub.status.idle": "2024-02-12T22:49:05.889443Z",
- "shell.execute_reply": "2024-02-12T22:49:05.888870Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.214448Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.214122Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.250504Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.250029Z"
},
"id": "ZpipUliyjruW"
},
@@ -1848,10 +1848,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.891645Z",
- "iopub.status.busy": "2024-02-12T22:49:05.891221Z",
- "iopub.status.idle": "2024-02-12T22:49:05.933189Z",
- "shell.execute_reply": "2024-02-12T22:49:05.932608Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.252341Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.252167Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.293709Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.293229Z"
},
"id": "SLq-3q4xjruX"
},
@@ -1920,10 +1920,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:05.935223Z",
- "iopub.status.busy": "2024-02-12T22:49:05.935045Z",
- "iopub.status.idle": "2024-02-12T22:49:06.027588Z",
- "shell.execute_reply": "2024-02-12T22:49:06.026989Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.295651Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.295479Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.383183Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.382631Z"
},
"id": "g5LHhhuqFbXK"
},
@@ -1955,10 +1955,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.030120Z",
- "iopub.status.busy": "2024-02-12T22:49:06.029768Z",
- "iopub.status.idle": "2024-02-12T22:49:06.121246Z",
- "shell.execute_reply": "2024-02-12T22:49:06.120701Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.385763Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.385390Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.467070Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.466528Z"
},
"id": "p7w8F8ezBcet"
},
@@ -2015,10 +2015,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.123460Z",
- "iopub.status.busy": "2024-02-12T22:49:06.123177Z",
- "iopub.status.idle": "2024-02-12T22:49:06.331328Z",
- "shell.execute_reply": "2024-02-12T22:49:06.330898Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.469288Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.469050Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.675895Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.675346Z"
},
"id": "WETRL74tE_sU"
},
@@ -2053,10 +2053,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.333585Z",
- "iopub.status.busy": "2024-02-12T22:49:06.333155Z",
- "iopub.status.idle": "2024-02-12T22:49:06.514172Z",
- "shell.execute_reply": "2024-02-12T22:49:06.513534Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.678037Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.677856Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.842655Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.842038Z"
},
"id": "kCfdx2gOLmXS"
},
@@ -2218,10 +2218,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.516462Z",
- "iopub.status.busy": "2024-02-12T22:49:06.516269Z",
- "iopub.status.idle": "2024-02-12T22:49:06.522329Z",
- "shell.execute_reply": "2024-02-12T22:49:06.521896Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.845039Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.844653Z",
+ "iopub.status.idle": "2024-02-12T23:55:59.850413Z",
+ "shell.execute_reply": "2024-02-12T23:55:59.849954Z"
},
"id": "-uogYRWFYnuu"
},
@@ -2275,10 +2275,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.524470Z",
- "iopub.status.busy": "2024-02-12T22:49:06.524170Z",
- "iopub.status.idle": "2024-02-12T22:49:06.740727Z",
- "shell.execute_reply": "2024-02-12T22:49:06.740021Z"
+ "iopub.execute_input": "2024-02-12T23:55:59.852474Z",
+ "iopub.status.busy": "2024-02-12T23:55:59.852080Z",
+ "iopub.status.idle": "2024-02-12T23:56:00.071774Z",
+ "shell.execute_reply": "2024-02-12T23:56:00.071205Z"
},
"id": "pG-ljrmcYp9Q"
},
@@ -2325,10 +2325,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:06.743180Z",
- "iopub.status.busy": "2024-02-12T22:49:06.742849Z",
- "iopub.status.idle": "2024-02-12T22:49:07.830568Z",
- "shell.execute_reply": "2024-02-12T22:49:07.829930Z"
+ "iopub.execute_input": "2024-02-12T23:56:00.074077Z",
+ "iopub.status.busy": "2024-02-12T23:56:00.073754Z",
+ "iopub.status.idle": "2024-02-12T23:56:01.156090Z",
+ "shell.execute_reply": "2024-02-12T23:56:01.155450Z"
},
"id": "wL3ngCnuLEWd"
},
diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb
index a8731c237..707556a1f 100644
--- a/master/tutorials/multiannotator.ipynb
+++ b/master/tutorials/multiannotator.ipynb
@@ -89,10 +89,10 @@
"id": "a3ddc95f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:11.327098Z",
- "iopub.status.busy": "2024-02-12T22:49:11.326930Z",
- "iopub.status.idle": "2024-02-12T22:49:12.371035Z",
- "shell.execute_reply": "2024-02-12T22:49:12.370449Z"
+ "iopub.execute_input": "2024-02-12T23:56:04.538038Z",
+ "iopub.status.busy": "2024-02-12T23:56:04.537630Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.578886Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.578336Z"
},
"nbsphinx": "hidden"
},
@@ -102,7 +102,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -136,10 +136,10 @@
"id": "c4efd119",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.373689Z",
- "iopub.status.busy": "2024-02-12T22:49:12.373162Z",
- "iopub.status.idle": "2024-02-12T22:49:12.376283Z",
- "shell.execute_reply": "2024-02-12T22:49:12.375854Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.581551Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.581138Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.584685Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.584263Z"
}
},
"outputs": [],
@@ -264,10 +264,10 @@
"id": "c37c0a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.378463Z",
- "iopub.status.busy": "2024-02-12T22:49:12.378020Z",
- "iopub.status.idle": "2024-02-12T22:49:12.385700Z",
- "shell.execute_reply": "2024-02-12T22:49:12.385291Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.586771Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.586447Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.594060Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.593629Z"
},
"nbsphinx": "hidden"
},
@@ -351,10 +351,10 @@
"id": "99f69523",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.387657Z",
- "iopub.status.busy": "2024-02-12T22:49:12.387343Z",
- "iopub.status.idle": "2024-02-12T22:49:12.433505Z",
- "shell.execute_reply": "2024-02-12T22:49:12.432990Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.595992Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.595672Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.642907Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.642415Z"
}
},
"outputs": [],
@@ -380,10 +380,10 @@
"id": "8f241c16",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.435717Z",
- "iopub.status.busy": "2024-02-12T22:49:12.435537Z",
- "iopub.status.idle": "2024-02-12T22:49:12.452948Z",
- "shell.execute_reply": "2024-02-12T22:49:12.452435Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.645075Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.644741Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.661843Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.661343Z"
}
},
"outputs": [
@@ -598,10 +598,10 @@
"id": "4f0819ba",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.454912Z",
- "iopub.status.busy": "2024-02-12T22:49:12.454742Z",
- "iopub.status.idle": "2024-02-12T22:49:12.458402Z",
- "shell.execute_reply": "2024-02-12T22:49:12.457979Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.663789Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.663465Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.667196Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.666678Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "d009f347",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.460570Z",
- "iopub.status.busy": "2024-02-12T22:49:12.460187Z",
- "iopub.status.idle": "2024-02-12T22:49:12.490002Z",
- "shell.execute_reply": "2024-02-12T22:49:12.489582Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.669251Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.668941Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.695637Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.695211Z"
}
},
"outputs": [],
@@ -699,10 +699,10 @@
"id": "cbd1e415",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.492004Z",
- "iopub.status.busy": "2024-02-12T22:49:12.491823Z",
- "iopub.status.idle": "2024-02-12T22:49:12.517574Z",
- "shell.execute_reply": "2024-02-12T22:49:12.517147Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.697621Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.697287Z",
+ "iopub.status.idle": "2024-02-12T23:56:05.723892Z",
+ "shell.execute_reply": "2024-02-12T23:56:05.723447Z"
}
},
"outputs": [],
@@ -739,10 +739,10 @@
"id": "6ca92617",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:12.519566Z",
- "iopub.status.busy": "2024-02-12T22:49:12.519393Z",
- "iopub.status.idle": "2024-02-12T22:49:14.258314Z",
- "shell.execute_reply": "2024-02-12T22:49:14.257760Z"
+ "iopub.execute_input": "2024-02-12T23:56:05.726040Z",
+ "iopub.status.busy": "2024-02-12T23:56:05.725708Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.441080Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.440542Z"
}
},
"outputs": [],
@@ -772,10 +772,10 @@
"id": "bf945113",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.260696Z",
- "iopub.status.busy": "2024-02-12T22:49:14.260402Z",
- "iopub.status.idle": "2024-02-12T22:49:14.267174Z",
- "shell.execute_reply": "2024-02-12T22:49:14.266719Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.443609Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.443156Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.449967Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.449505Z"
},
"scrolled": true
},
@@ -886,10 +886,10 @@
"id": "14251ee0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.269182Z",
- "iopub.status.busy": "2024-02-12T22:49:14.269013Z",
- "iopub.status.idle": "2024-02-12T22:49:14.281566Z",
- "shell.execute_reply": "2024-02-12T22:49:14.281123Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.451895Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.451573Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.464138Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.463588Z"
}
},
"outputs": [
@@ -1139,10 +1139,10 @@
"id": "efe16638",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.283654Z",
- "iopub.status.busy": "2024-02-12T22:49:14.283391Z",
- "iopub.status.idle": "2024-02-12T22:49:14.289606Z",
- "shell.execute_reply": "2024-02-12T22:49:14.289172Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.465960Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.465790Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.472235Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.471788Z"
},
"scrolled": true
},
@@ -1316,10 +1316,10 @@
"id": "abd0fb0b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.291635Z",
- "iopub.status.busy": "2024-02-12T22:49:14.291386Z",
- "iopub.status.idle": "2024-02-12T22:49:14.294083Z",
- "shell.execute_reply": "2024-02-12T22:49:14.293677Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.474190Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.473885Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.476603Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.476049Z"
}
},
"outputs": [],
@@ -1341,10 +1341,10 @@
"id": "cdf061df",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.296112Z",
- "iopub.status.busy": "2024-02-12T22:49:14.295801Z",
- "iopub.status.idle": "2024-02-12T22:49:14.299071Z",
- "shell.execute_reply": "2024-02-12T22:49:14.298561Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.478499Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.478209Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.481667Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.481127Z"
},
"scrolled": true
},
@@ -1396,10 +1396,10 @@
"id": "08949890",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.301134Z",
- "iopub.status.busy": "2024-02-12T22:49:14.300817Z",
- "iopub.status.idle": "2024-02-12T22:49:14.303249Z",
- "shell.execute_reply": "2024-02-12T22:49:14.302831Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.483781Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.483461Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.485919Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.485483Z"
}
},
"outputs": [],
@@ -1423,10 +1423,10 @@
"id": "6948b073",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.305180Z",
- "iopub.status.busy": "2024-02-12T22:49:14.304871Z",
- "iopub.status.idle": "2024-02-12T22:49:14.309081Z",
- "shell.execute_reply": "2024-02-12T22:49:14.308563Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.488011Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.487693Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.491554Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.491034Z"
}
},
"outputs": [
@@ -1481,10 +1481,10 @@
"id": "6f8e6914",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.311113Z",
- "iopub.status.busy": "2024-02-12T22:49:14.310799Z",
- "iopub.status.idle": "2024-02-12T22:49:14.339130Z",
- "shell.execute_reply": "2024-02-12T22:49:14.338700Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.493639Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.493306Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.522407Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.521930Z"
}
},
"outputs": [],
@@ -1527,10 +1527,10 @@
"id": "b806d2ea",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:14.341393Z",
- "iopub.status.busy": "2024-02-12T22:49:14.341075Z",
- "iopub.status.idle": "2024-02-12T22:49:14.345755Z",
- "shell.execute_reply": "2024-02-12T22:49:14.345217Z"
+ "iopub.execute_input": "2024-02-12T23:56:07.524554Z",
+ "iopub.status.busy": "2024-02-12T23:56:07.524222Z",
+ "iopub.status.idle": "2024-02-12T23:56:07.528683Z",
+ "shell.execute_reply": "2024-02-12T23:56:07.528255Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb
index 57e7ea255..25d4e4304 100644
--- a/master/tutorials/multilabel_classification.ipynb
+++ b/master/tutorials/multilabel_classification.ipynb
@@ -64,10 +64,10 @@
"id": "7383d024-8273-4039-bccd-aab3020d331f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:17.137846Z",
- "iopub.status.busy": "2024-02-12T22:49:17.137670Z",
- "iopub.status.idle": "2024-02-12T22:49:18.258972Z",
- "shell.execute_reply": "2024-02-12T22:49:18.258419Z"
+ "iopub.execute_input": "2024-02-12T23:56:10.240468Z",
+ "iopub.status.busy": "2024-02-12T23:56:10.240301Z",
+ "iopub.status.idle": "2024-02-12T23:56:11.320917Z",
+ "shell.execute_reply": "2024-02-12T23:56:11.320373Z"
},
"nbsphinx": "hidden"
},
@@ -79,7 +79,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -105,10 +105,10 @@
"id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:18.261671Z",
- "iopub.status.busy": "2024-02-12T22:49:18.261219Z",
- "iopub.status.idle": "2024-02-12T22:49:18.457380Z",
- "shell.execute_reply": "2024-02-12T22:49:18.456833Z"
+ "iopub.execute_input": "2024-02-12T23:56:11.323289Z",
+ "iopub.status.busy": "2024-02-12T23:56:11.323027Z",
+ "iopub.status.idle": "2024-02-12T23:56:11.513590Z",
+ "shell.execute_reply": "2024-02-12T23:56:11.513001Z"
}
},
"outputs": [],
@@ -268,10 +268,10 @@
"id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:18.460133Z",
- "iopub.status.busy": "2024-02-12T22:49:18.459571Z",
- "iopub.status.idle": "2024-02-12T22:49:18.472669Z",
- "shell.execute_reply": "2024-02-12T22:49:18.472164Z"
+ "iopub.execute_input": "2024-02-12T23:56:11.516308Z",
+ "iopub.status.busy": "2024-02-12T23:56:11.515954Z",
+ "iopub.status.idle": "2024-02-12T23:56:11.528800Z",
+ "shell.execute_reply": "2024-02-12T23:56:11.528260Z"
},
"nbsphinx": "hidden"
},
@@ -407,10 +407,10 @@
"id": "dac65d3b-51e8-4682-b829-beab610b56d6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:18.474828Z",
- "iopub.status.busy": "2024-02-12T22:49:18.474498Z",
- "iopub.status.idle": "2024-02-12T22:49:21.113443Z",
- "shell.execute_reply": "2024-02-12T22:49:21.112936Z"
+ "iopub.execute_input": "2024-02-12T23:56:11.531020Z",
+ "iopub.status.busy": "2024-02-12T23:56:11.530698Z",
+ "iopub.status.idle": "2024-02-12T23:56:14.158976Z",
+ "shell.execute_reply": "2024-02-12T23:56:14.158514Z"
}
},
"outputs": [
@@ -452,10 +452,10 @@
"id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:21.115686Z",
- "iopub.status.busy": "2024-02-12T22:49:21.115348Z",
- "iopub.status.idle": "2024-02-12T22:49:22.470789Z",
- "shell.execute_reply": "2024-02-12T22:49:22.470212Z"
+ "iopub.execute_input": "2024-02-12T23:56:14.161097Z",
+ "iopub.status.busy": "2024-02-12T23:56:14.160804Z",
+ "iopub.status.idle": "2024-02-12T23:56:15.499117Z",
+ "shell.execute_reply": "2024-02-12T23:56:15.498486Z"
}
},
"outputs": [],
@@ -497,10 +497,10 @@
"id": "ac1a60df",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:22.473099Z",
- "iopub.status.busy": "2024-02-12T22:49:22.472794Z",
- "iopub.status.idle": "2024-02-12T22:49:22.476749Z",
- "shell.execute_reply": "2024-02-12T22:49:22.476196Z"
+ "iopub.execute_input": "2024-02-12T23:56:15.501657Z",
+ "iopub.status.busy": "2024-02-12T23:56:15.501305Z",
+ "iopub.status.idle": "2024-02-12T23:56:15.505246Z",
+ "shell.execute_reply": "2024-02-12T23:56:15.504700Z"
}
},
"outputs": [
@@ -542,10 +542,10 @@
"id": "d09115b6-ad44-474f-9c8a-85a459586439",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:22.478756Z",
- "iopub.status.busy": "2024-02-12T22:49:22.478452Z",
- "iopub.status.idle": "2024-02-12T22:49:24.288753Z",
- "shell.execute_reply": "2024-02-12T22:49:24.288102Z"
+ "iopub.execute_input": "2024-02-12T23:56:15.507214Z",
+ "iopub.status.busy": "2024-02-12T23:56:15.506912Z",
+ "iopub.status.idle": "2024-02-12T23:56:17.247126Z",
+ "shell.execute_reply": "2024-02-12T23:56:17.246558Z"
}
},
"outputs": [
@@ -592,10 +592,10 @@
"id": "c18dd83b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:24.291487Z",
- "iopub.status.busy": "2024-02-12T22:49:24.290920Z",
- "iopub.status.idle": "2024-02-12T22:49:24.298783Z",
- "shell.execute_reply": "2024-02-12T22:49:24.298297Z"
+ "iopub.execute_input": "2024-02-12T23:56:17.249916Z",
+ "iopub.status.busy": "2024-02-12T23:56:17.249208Z",
+ "iopub.status.idle": "2024-02-12T23:56:17.256754Z",
+ "shell.execute_reply": "2024-02-12T23:56:17.256235Z"
}
},
"outputs": [
@@ -631,10 +631,10 @@
"id": "fffa88f6-84d7-45fe-8214-0e22079a06d1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:24.300968Z",
- "iopub.status.busy": "2024-02-12T22:49:24.300576Z",
- "iopub.status.idle": "2024-02-12T22:49:26.891347Z",
- "shell.execute_reply": "2024-02-12T22:49:26.890823Z"
+ "iopub.execute_input": "2024-02-12T23:56:17.258904Z",
+ "iopub.status.busy": "2024-02-12T23:56:17.258582Z",
+ "iopub.status.idle": "2024-02-12T23:56:19.821797Z",
+ "shell.execute_reply": "2024-02-12T23:56:19.821210Z"
}
},
"outputs": [
@@ -669,10 +669,10 @@
"id": "c1198575",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:26.893420Z",
- "iopub.status.busy": "2024-02-12T22:49:26.893225Z",
- "iopub.status.idle": "2024-02-12T22:49:26.896998Z",
- "shell.execute_reply": "2024-02-12T22:49:26.896539Z"
+ "iopub.execute_input": "2024-02-12T23:56:19.823998Z",
+ "iopub.status.busy": "2024-02-12T23:56:19.823698Z",
+ "iopub.status.idle": "2024-02-12T23:56:19.827135Z",
+ "shell.execute_reply": "2024-02-12T23:56:19.826622Z"
}
},
"outputs": [
@@ -719,10 +719,10 @@
"id": "49161b19-7625-4fb7-add9-607d91a7eca1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:26.898924Z",
- "iopub.status.busy": "2024-02-12T22:49:26.898746Z",
- "iopub.status.idle": "2024-02-12T22:49:26.902892Z",
- "shell.execute_reply": "2024-02-12T22:49:26.902428Z"
+ "iopub.execute_input": "2024-02-12T23:56:19.829148Z",
+ "iopub.status.busy": "2024-02-12T23:56:19.828830Z",
+ "iopub.status.idle": "2024-02-12T23:56:19.832857Z",
+ "shell.execute_reply": "2024-02-12T23:56:19.832422Z"
}
},
"outputs": [],
@@ -750,10 +750,10 @@
"id": "d1a2c008",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:26.904728Z",
- "iopub.status.busy": "2024-02-12T22:49:26.904551Z",
- "iopub.status.idle": "2024-02-12T22:49:26.907736Z",
- "shell.execute_reply": "2024-02-12T22:49:26.907290Z"
+ "iopub.execute_input": "2024-02-12T23:56:19.834802Z",
+ "iopub.status.busy": "2024-02-12T23:56:19.834481Z",
+ "iopub.status.idle": "2024-02-12T23:56:19.837391Z",
+ "shell.execute_reply": "2024-02-12T23:56:19.836962Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb
index 780640890..e80a8f1e8 100644
--- a/master/tutorials/object_detection.ipynb
+++ b/master/tutorials/object_detection.ipynb
@@ -70,10 +70,10 @@
"id": "0ba0dc70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:29.412355Z",
- "iopub.status.busy": "2024-02-12T22:49:29.412182Z",
- "iopub.status.idle": "2024-02-12T22:49:30.526526Z",
- "shell.execute_reply": "2024-02-12T22:49:30.525887Z"
+ "iopub.execute_input": "2024-02-12T23:56:22.140899Z",
+ "iopub.status.busy": "2024-02-12T23:56:22.140709Z",
+ "iopub.status.idle": "2024-02-12T23:56:23.228656Z",
+ "shell.execute_reply": "2024-02-12T23:56:23.228102Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bc22a6a4a967464be8c6133854b75af6acc10f7b\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b25d54f3802a5ca6f34c12f616928f1f7cde206d\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -109,10 +109,10 @@
"id": "c90449c8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:30.528990Z",
- "iopub.status.busy": "2024-02-12T22:49:30.528713Z",
- "iopub.status.idle": "2024-02-12T22:49:33.180612Z",
- "shell.execute_reply": "2024-02-12T22:49:33.179832Z"
+ "iopub.execute_input": "2024-02-12T23:56:23.231351Z",
+ "iopub.status.busy": "2024-02-12T23:56:23.230862Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.303894Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.303203Z"
}
},
"outputs": [],
@@ -130,10 +130,10 @@
"id": "df8be4c6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.183324Z",
- "iopub.status.busy": "2024-02-12T22:49:33.183127Z",
- "iopub.status.idle": "2024-02-12T22:49:33.186465Z",
- "shell.execute_reply": "2024-02-12T22:49:33.185898Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.306476Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.306007Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.309229Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.308792Z"
}
},
"outputs": [],
@@ -169,10 +169,10 @@
"id": "2e9ffd6f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.188663Z",
- "iopub.status.busy": "2024-02-12T22:49:33.188286Z",
- "iopub.status.idle": "2024-02-12T22:49:33.194879Z",
- "shell.execute_reply": "2024-02-12T22:49:33.194329Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.311203Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.311026Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.317765Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.317326Z"
}
},
"outputs": [],
@@ -198,10 +198,10 @@
"id": "56705562",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.196918Z",
- "iopub.status.busy": "2024-02-12T22:49:33.196600Z",
- "iopub.status.idle": "2024-02-12T22:49:33.683030Z",
- "shell.execute_reply": "2024-02-12T22:49:33.682447Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.319762Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.319435Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.802961Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.802339Z"
},
"scrolled": true
},
@@ -242,10 +242,10 @@
"id": "b08144d7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.685697Z",
- "iopub.status.busy": "2024-02-12T22:49:33.685346Z",
- "iopub.status.idle": "2024-02-12T22:49:33.690668Z",
- "shell.execute_reply": "2024-02-12T22:49:33.690108Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.805323Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.804884Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.810173Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.809617Z"
}
},
"outputs": [
@@ -497,10 +497,10 @@
"id": "3d70bec6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.692667Z",
- "iopub.status.busy": "2024-02-12T22:49:33.692303Z",
- "iopub.status.idle": "2024-02-12T22:49:33.696167Z",
- "shell.execute_reply": "2024-02-12T22:49:33.695665Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.812189Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.812028Z",
+ "iopub.status.idle": "2024-02-12T23:56:24.815640Z",
+ "shell.execute_reply": "2024-02-12T23:56:24.815111Z"
}
},
"outputs": [
@@ -557,10 +557,10 @@
"id": "4caa635d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:33.698014Z",
- "iopub.status.busy": "2024-02-12T22:49:33.697830Z",
- "iopub.status.idle": "2024-02-12T22:49:34.370682Z",
- "shell.execute_reply": "2024-02-12T22:49:34.370018Z"
+ "iopub.execute_input": "2024-02-12T23:56:24.817678Z",
+ "iopub.status.busy": "2024-02-12T23:56:24.817338Z",
+ "iopub.status.idle": "2024-02-12T23:56:25.518766Z",
+ "shell.execute_reply": "2024-02-12T23:56:25.518129Z"
}
},
"outputs": [
@@ -616,10 +616,10 @@
"id": "a9b4c590",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:34.372860Z",
- "iopub.status.busy": "2024-02-12T22:49:34.372665Z",
- "iopub.status.idle": "2024-02-12T22:49:34.541716Z",
- "shell.execute_reply": "2024-02-12T22:49:34.541246Z"
+ "iopub.execute_input": "2024-02-12T23:56:25.521164Z",
+ "iopub.status.busy": "2024-02-12T23:56:25.520797Z",
+ "iopub.status.idle": "2024-02-12T23:56:25.667693Z",
+ "shell.execute_reply": "2024-02-12T23:56:25.667126Z"
}
},
"outputs": [
@@ -660,10 +660,10 @@
"id": "ffd9ebcc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:34.543729Z",
- "iopub.status.busy": "2024-02-12T22:49:34.543542Z",
- "iopub.status.idle": "2024-02-12T22:49:34.547818Z",
- "shell.execute_reply": "2024-02-12T22:49:34.547385Z"
+ "iopub.execute_input": "2024-02-12T23:56:25.669798Z",
+ "iopub.status.busy": "2024-02-12T23:56:25.669479Z",
+ "iopub.status.idle": "2024-02-12T23:56:25.673810Z",
+ "shell.execute_reply": "2024-02-12T23:56:25.673249Z"
}
},
"outputs": [
@@ -700,10 +700,10 @@
"id": "4dd46d67",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:34.549616Z",
- "iopub.status.busy": "2024-02-12T22:49:34.549442Z",
- "iopub.status.idle": "2024-02-12T22:49:35.003592Z",
- "shell.execute_reply": "2024-02-12T22:49:35.003069Z"
+ "iopub.execute_input": "2024-02-12T23:56:25.675766Z",
+ "iopub.status.busy": "2024-02-12T23:56:25.675467Z",
+ "iopub.status.idle": "2024-02-12T23:56:26.120953Z",
+ "shell.execute_reply": "2024-02-12T23:56:26.120360Z"
}
},
"outputs": [
@@ -762,10 +762,10 @@
"id": "ceec2394",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:35.005867Z",
- "iopub.status.busy": "2024-02-12T22:49:35.005681Z",
- "iopub.status.idle": "2024-02-12T22:49:35.340134Z",
- "shell.execute_reply": "2024-02-12T22:49:35.339527Z"
+ "iopub.execute_input": "2024-02-12T23:56:26.123845Z",
+ "iopub.status.busy": "2024-02-12T23:56:26.123481Z",
+ "iopub.status.idle": "2024-02-12T23:56:26.454695Z",
+ "shell.execute_reply": "2024-02-12T23:56:26.454102Z"
}
},
"outputs": [
@@ -812,10 +812,10 @@
"id": "94f82b0d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:35.342655Z",
- "iopub.status.busy": "2024-02-12T22:49:35.342175Z",
- "iopub.status.idle": "2024-02-12T22:49:35.687614Z",
- "shell.execute_reply": "2024-02-12T22:49:35.687041Z"
+ "iopub.execute_input": "2024-02-12T23:56:26.457118Z",
+ "iopub.status.busy": "2024-02-12T23:56:26.456922Z",
+ "iopub.status.idle": "2024-02-12T23:56:26.818521Z",
+ "shell.execute_reply": "2024-02-12T23:56:26.817933Z"
}
},
"outputs": [
@@ -862,10 +862,10 @@
"id": "1ea18c5d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:35.689838Z",
- "iopub.status.busy": "2024-02-12T22:49:35.689432Z",
- "iopub.status.idle": "2024-02-12T22:49:36.105407Z",
- "shell.execute_reply": "2024-02-12T22:49:36.104863Z"
+ "iopub.execute_input": "2024-02-12T23:56:26.821330Z",
+ "iopub.status.busy": "2024-02-12T23:56:26.820948Z",
+ "iopub.status.idle": "2024-02-12T23:56:27.236356Z",
+ "shell.execute_reply": "2024-02-12T23:56:27.235774Z"
}
},
"outputs": [
@@ -925,10 +925,10 @@
"id": "7e770d23",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.109633Z",
- "iopub.status.busy": "2024-02-12T22:49:36.109271Z",
- "iopub.status.idle": "2024-02-12T22:49:36.557639Z",
- "shell.execute_reply": "2024-02-12T22:49:36.557070Z"
+ "iopub.execute_input": "2024-02-12T23:56:27.240859Z",
+ "iopub.status.busy": "2024-02-12T23:56:27.240397Z",
+ "iopub.status.idle": "2024-02-12T23:56:27.662840Z",
+ "shell.execute_reply": "2024-02-12T23:56:27.662274Z"
}
},
"outputs": [
@@ -971,10 +971,10 @@
"id": "57e84a27",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.560788Z",
- "iopub.status.busy": "2024-02-12T22:49:36.560443Z",
- "iopub.status.idle": "2024-02-12T22:49:36.777646Z",
- "shell.execute_reply": "2024-02-12T22:49:36.777086Z"
+ "iopub.execute_input": "2024-02-12T23:56:27.665109Z",
+ "iopub.status.busy": "2024-02-12T23:56:27.664778Z",
+ "iopub.status.idle": "2024-02-12T23:56:27.878959Z",
+ "shell.execute_reply": "2024-02-12T23:56:27.878412Z"
}
},
"outputs": [
@@ -1017,10 +1017,10 @@
"id": "0302818a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.779941Z",
- "iopub.status.busy": "2024-02-12T22:49:36.779591Z",
- "iopub.status.idle": "2024-02-12T22:49:36.978942Z",
- "shell.execute_reply": "2024-02-12T22:49:36.978426Z"
+ "iopub.execute_input": "2024-02-12T23:56:27.881237Z",
+ "iopub.status.busy": "2024-02-12T23:56:27.880881Z",
+ "iopub.status.idle": "2024-02-12T23:56:28.080478Z",
+ "shell.execute_reply": "2024-02-12T23:56:28.079892Z"
}
},
"outputs": [
@@ -1067,10 +1067,10 @@
"id": "5cacec81-2adf-46a8-82c5-7ec0185d4356",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.981446Z",
- "iopub.status.busy": "2024-02-12T22:49:36.981110Z",
- "iopub.status.idle": "2024-02-12T22:49:36.983896Z",
- "shell.execute_reply": "2024-02-12T22:49:36.983476Z"
+ "iopub.execute_input": "2024-02-12T23:56:28.083155Z",
+ "iopub.status.busy": "2024-02-12T23:56:28.082956Z",
+ "iopub.status.idle": "2024-02-12T23:56:28.086231Z",
+ "shell.execute_reply": "2024-02-12T23:56:28.085665Z"
}
},
"outputs": [],
@@ -1090,10 +1090,10 @@
"id": "3335b8a3-d0b4-415a-a97d-c203088a124e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:36.985865Z",
- "iopub.status.busy": "2024-02-12T22:49:36.985551Z",
- "iopub.status.idle": "2024-02-12T22:49:37.936717Z",
- "shell.execute_reply": "2024-02-12T22:49:37.936159Z"
+ "iopub.execute_input": "2024-02-12T23:56:28.088300Z",
+ "iopub.status.busy": "2024-02-12T23:56:28.087899Z",
+ "iopub.status.idle": "2024-02-12T23:56:28.970362Z",
+ "shell.execute_reply": "2024-02-12T23:56:28.969773Z"
}
},
"outputs": [
@@ -1172,10 +1172,10 @@
"id": "9d4b7677-6ebd-447d-b0a1-76e094686628",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:37.939245Z",
- "iopub.status.busy": "2024-02-12T22:49:37.938917Z",
- "iopub.status.idle": "2024-02-12T22:49:38.135881Z",
- "shell.execute_reply": "2024-02-12T22:49:38.135304Z"
+ "iopub.execute_input": "2024-02-12T23:56:28.972655Z",
+ "iopub.status.busy": "2024-02-12T23:56:28.972226Z",
+ "iopub.status.idle": "2024-02-12T23:56:29.148666Z",
+ "shell.execute_reply": "2024-02-12T23:56:29.148176Z"
}
},
"outputs": [
@@ -1214,10 +1214,10 @@
"id": "59d7ee39-3785-434b-8680-9133014851cd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:38.137933Z",
- "iopub.status.busy": "2024-02-12T22:49:38.137744Z",
- "iopub.status.idle": "2024-02-12T22:49:38.327707Z",
- "shell.execute_reply": "2024-02-12T22:49:38.327186Z"
+ "iopub.execute_input": "2024-02-12T23:56:29.150860Z",
+ "iopub.status.busy": "2024-02-12T23:56:29.150472Z",
+ "iopub.status.idle": "2024-02-12T23:56:29.282035Z",
+ "shell.execute_reply": "2024-02-12T23:56:29.281540Z"
}
},
"outputs": [],
@@ -1266,10 +1266,10 @@
"id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:38.329962Z",
- "iopub.status.busy": "2024-02-12T22:49:38.329554Z",
- "iopub.status.idle": "2024-02-12T22:49:39.006742Z",
- "shell.execute_reply": "2024-02-12T22:49:39.006151Z"
+ "iopub.execute_input": "2024-02-12T23:56:29.284124Z",
+ "iopub.status.busy": "2024-02-12T23:56:29.283813Z",
+ "iopub.status.idle": "2024-02-12T23:56:29.941641Z",
+ "shell.execute_reply": "2024-02-12T23:56:29.941084Z"
}
},
"outputs": [
@@ -1351,10 +1351,10 @@
"id": "8ce74938",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-02-12T22:49:39.008876Z",
- "iopub.status.busy": "2024-02-12T22:49:39.008488Z",
- "iopub.status.idle": "2024-02-12T22:49:39.012205Z",
- "shell.execute_reply": "2024-02-12T22:49:39.011666Z"
+ "iopub.execute_input": "2024-02-12T23:56:29.943939Z",
+ "iopub.status.busy": "2024-02-12T23:56:29.943614Z",
+ "iopub.status.idle": "2024-02-12T23:56:29.947267Z",
+ "shell.execute_reply": "2024-02-12T23:56:29.946713Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html
index 94a3f2528..dbda754b3 100644
--- a/master/tutorials/outliers.html
+++ b/master/tutorials/outliers.html
@@ -731,16 +731,16 @@ 2. Pre-process the Cifar10 dataset