diff --git a/master/.buildinfo b/master/.buildinfo
index 13c64cd16..4637be9eb 100644
--- a/master/.buildinfo
+++ b/master/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 1a9ec9b1fb3db5ec20993243b97d8c3e
+config: 95c1883cd651f6b351bb64af65af136d
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree
index fd1986749..c06779873 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ
diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree
index c054e3258..5f442f168 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ
diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree
index fb0a78449..e156273f9 100644
Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ
diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree
index 2fca22405..3ec73e7e3 100644
Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree
index 559db13b5..c6d47ea87 100644
Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree
index eb1c54771..eadc00f39 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree
index 14641776b..07d38b6b3 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree
index 942502508..11ec03a48 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree
index fa2158a7a..49bd9503e 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree
index 63006c121..8b2e735bd 100644
Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree
index d71a2e598..fab4fd57c 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree
index 4d7512b54..8583cbd4d 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree
index c9c9c1253..9cf5f8823 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree
index bc3973e54..479c8f042 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree
index 58884353d..d24e4326b 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree
index 1b4606880..5b028af1b 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree
index f8c5998ea..79f1664e2 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree
index 80a1f5355..8ae4b4b6f 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree
index 7baeec637..e2ac19060 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree
index 2b3a8626a..5dd101814 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree
index f763dcc4e..ff07086c4 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree
index 9418293d5..1e1ae9693 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree
index 92a0058ef..d80f02a04 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree
index 93fdff4cc..7cbe91fc1 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree
index 99f0d3bd5..75174f825 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree
index 308eaf6c6..a3acaa2c6 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree
index 3eefc45c7..d5c6edd4e 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree
index 947aff826..e0c8428d8 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree
index 13951d177..b68505464 100644
Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ
diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree
index 0a43f294c..e9d07c9e5 100644
Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree
index 7d534911e..0123e4ee9 100644
Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree
index 7070114bf..0ecfde7f7 100644
Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree
index 4ce94f735..00d752805 100644
Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree
index da3b65dfe..e8d15f875 100644
Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree
index e11cd8b75..e6f531e13 100644
Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ
diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree
index 51398f40f..f991eb374 100644
Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree
index 3da02bb10..9c54b6d4e 100644
Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree
index b0cb51f8c..b6d9e5d0a 100644
Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree
index 2ac9eca48..18d4f38e0 100644
Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree
index ac0e9499a..ff1fce90c 100644
Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree
index e5d483042..058a5016a 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree
index 1c27f79fd..ddb8ac84e 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree
index 3fb57dbad..6577a320c 100644
Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree
index 18c86b99e..70c847a36 100644
Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree
index be97fa9c2..293a829b4 100644
Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree
index a5006aa3d..0d0811052 100644
Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ
diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree
index ef8cf5a8d..b6b03c307 100644
Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ
diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree
index 667e8e99d..1c8c2cfd6 100644
Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ
diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree
index 7e42ec90e..6b0a562ed 100644
Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ
diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree
index 0adf0e829..3fd3c3346 100644
Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree
index 4deb67415..54e169b5c 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree
index 6f76d1a3c..a2d16f55b 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree
index 0f05f8712..4274f62bb 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree
index 5eb85b21d..4a21e3724 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree
index 40cd11001..d979675e6 100644
Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree
index 40f9384fe..acffde111 100644
Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree
index 74c7b1040..5345acb83 100644
Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree
index 5b7019a74..2be7133b4 100644
Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree
index 1c4465a33..c27a06134 100644
Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree
index 0787df961..24273cb5b 100644
Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree
index db79df267..dd40133c0 100644
Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree
index 44986a549..8a264d11a 100644
Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree
index cc3ade4eb..971657627 100644
Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree
index df3a14426..979a711fc 100644
Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree
index c4a850710..2587b4932 100644
Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree
index 7de98c59e..b05870d3c 100644
Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree
index c836e9ef6..7131ab6d3 100644
Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree
index d71eabe99..346c8949d 100644
Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree
index a808a570f..5139cad24 100644
Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree
index 0975bc11a..e00d4d569 100644
Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree
index ea066c43b..bd2dcd9c2 100644
Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ
diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle
index 19bcc8869..6ae4b6954 100644
Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ
diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree
index 59c97dcd7..e8763b6dd 100644
Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ
diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree
index 56164f8bf..85667af93 100644
Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ
diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
index f897d9e1d..a22748c45 100644
--- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:53.940965Z",
- "iopub.status.busy": "2024-01-08T11:33:53.940747Z",
- "iopub.status.idle": "2024-01-08T11:33:57.298968Z",
- "shell.execute_reply": "2024-01-08T11:33:57.298180Z"
+ "iopub.execute_input": "2024-01-09T02:26:27.022029Z",
+ "iopub.status.busy": "2024-01-09T02:26:27.021835Z",
+ "iopub.status.idle": "2024-01-09T02:26:30.263735Z",
+ "shell.execute_reply": "2024-01-09T02:26:30.263126Z"
},
"nbsphinx": "hidden"
},
@@ -97,7 +97,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -131,10 +131,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:57.302743Z",
- "iopub.status.busy": "2024-01-08T11:33:57.301845Z",
- "iopub.status.idle": "2024-01-08T11:33:57.306059Z",
- "shell.execute_reply": "2024-01-08T11:33:57.305393Z"
+ "iopub.execute_input": "2024-01-09T02:26:30.266671Z",
+ "iopub.status.busy": "2024-01-09T02:26:30.266201Z",
+ "iopub.status.idle": "2024-01-09T02:26:30.269646Z",
+ "shell.execute_reply": "2024-01-09T02:26:30.269137Z"
},
"id": "LaEiwXUiVHCS"
},
@@ -157,10 +157,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:57.308831Z",
- "iopub.status.busy": "2024-01-08T11:33:57.308359Z",
- "iopub.status.idle": "2024-01-08T11:33:57.313604Z",
- "shell.execute_reply": "2024-01-08T11:33:57.312981Z"
+ "iopub.execute_input": "2024-01-09T02:26:30.271907Z",
+ "iopub.status.busy": "2024-01-09T02:26:30.271549Z",
+ "iopub.status.idle": "2024-01-09T02:26:30.277702Z",
+ "shell.execute_reply": "2024-01-09T02:26:30.277134Z"
},
"nbsphinx": "hidden"
},
@@ -208,10 +208,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:57.316546Z",
- "iopub.status.busy": "2024-01-08T11:33:57.316028Z",
- "iopub.status.idle": "2024-01-08T11:33:59.250582Z",
- "shell.execute_reply": "2024-01-08T11:33:59.249701Z"
+ "iopub.execute_input": "2024-01-09T02:26:30.280176Z",
+ "iopub.status.busy": "2024-01-09T02:26:30.279775Z",
+ "iopub.status.idle": "2024-01-09T02:26:31.713482Z",
+ "shell.execute_reply": "2024-01-09T02:26:31.712701Z"
},
"id": "GRDPEg7-VOQe",
"outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6"
@@ -242,10 +242,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:59.254145Z",
- "iopub.status.busy": "2024-01-08T11:33:59.253526Z",
- "iopub.status.idle": "2024-01-08T11:33:59.269467Z",
- "shell.execute_reply": "2024-01-08T11:33:59.268735Z"
+ "iopub.execute_input": "2024-01-09T02:26:31.716641Z",
+ "iopub.status.busy": "2024-01-09T02:26:31.716199Z",
+ "iopub.status.idle": "2024-01-09T02:26:31.728685Z",
+ "shell.execute_reply": "2024-01-09T02:26:31.728070Z"
},
"id": "FDA5sGZwUSur",
"outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895"
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:59.304126Z",
- "iopub.status.busy": "2024-01-08T11:33:59.303590Z",
- "iopub.status.idle": "2024-01-08T11:33:59.309602Z",
- "shell.execute_reply": "2024-01-08T11:33:59.308999Z"
+ "iopub.execute_input": "2024-01-09T02:26:31.761839Z",
+ "iopub.status.busy": "2024-01-09T02:26:31.761426Z",
+ "iopub.status.idle": "2024-01-09T02:26:31.766975Z",
+ "shell.execute_reply": "2024-01-09T02:26:31.766417Z"
},
"nbsphinx": "hidden"
},
@@ -380,10 +380,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:59.312333Z",
- "iopub.status.busy": "2024-01-08T11:33:59.311849Z",
- "iopub.status.idle": "2024-01-08T11:34:00.020293Z",
- "shell.execute_reply": "2024-01-08T11:34:00.019590Z"
+ "iopub.execute_input": "2024-01-09T02:26:31.769180Z",
+ "iopub.status.busy": "2024-01-09T02:26:31.768981Z",
+ "iopub.status.idle": "2024-01-09T02:26:32.452239Z",
+ "shell.execute_reply": "2024-01-09T02:26:32.451572Z"
},
"id": "dLBvUZLlII5w",
"outputId": "c6a4917f-4a82-4a89-9193-415072e45550"
@@ -435,10 +435,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:00.023055Z",
- "iopub.status.busy": "2024-01-08T11:34:00.022633Z",
- "iopub.status.idle": "2024-01-08T11:34:02.395152Z",
- "shell.execute_reply": "2024-01-08T11:34:02.394516Z"
+ "iopub.execute_input": "2024-01-09T02:26:32.454750Z",
+ "iopub.status.busy": "2024-01-09T02:26:32.454545Z",
+ "iopub.status.idle": "2024-01-09T02:26:33.352119Z",
+ "shell.execute_reply": "2024-01-09T02:26:33.351556Z"
},
"id": "vL9lkiKsHvKr"
},
@@ -472,10 +472,10 @@
"height": 143
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:02.398095Z",
- "iopub.status.busy": "2024-01-08T11:34:02.397700Z",
- "iopub.status.idle": "2024-01-08T11:34:02.420929Z",
- "shell.execute_reply": "2024-01-08T11:34:02.420376Z"
+ "iopub.execute_input": "2024-01-09T02:26:33.355016Z",
+ "iopub.status.busy": "2024-01-09T02:26:33.354628Z",
+ "iopub.status.idle": "2024-01-09T02:26:33.376746Z",
+ "shell.execute_reply": "2024-01-09T02:26:33.376109Z"
},
"id": "obQYDKdLiUU6",
"outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4"
@@ -555,10 +555,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:02.423575Z",
- "iopub.status.busy": "2024-01-08T11:34:02.423152Z",
- "iopub.status.idle": "2024-01-08T11:34:02.426626Z",
- "shell.execute_reply": "2024-01-08T11:34:02.425997Z"
+ "iopub.execute_input": "2024-01-09T02:26:33.378977Z",
+ "iopub.status.busy": "2024-01-09T02:26:33.378770Z",
+ "iopub.status.idle": "2024-01-09T02:26:33.382088Z",
+ "shell.execute_reply": "2024-01-09T02:26:33.381584Z"
},
"id": "I8JqhOZgi94g"
},
@@ -580,10 +580,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:02.429008Z",
- "iopub.status.busy": "2024-01-08T11:34:02.428639Z",
- "iopub.status.idle": "2024-01-08T11:34:22.063114Z",
- "shell.execute_reply": "2024-01-08T11:34:22.062346Z"
+ "iopub.execute_input": "2024-01-09T02:26:33.384452Z",
+ "iopub.status.busy": "2024-01-09T02:26:33.384077Z",
+ "iopub.status.idle": "2024-01-09T02:26:51.740302Z",
+ "shell.execute_reply": "2024-01-09T02:26:51.739676Z"
},
"id": "2FSQ2GR9R_YA"
},
@@ -615,10 +615,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:22.066321Z",
- "iopub.status.busy": "2024-01-08T11:34:22.065877Z",
- "iopub.status.idle": "2024-01-08T11:34:22.070076Z",
- "shell.execute_reply": "2024-01-08T11:34:22.069418Z"
+ "iopub.execute_input": "2024-01-09T02:26:51.743521Z",
+ "iopub.status.busy": "2024-01-09T02:26:51.743049Z",
+ "iopub.status.idle": "2024-01-09T02:26:51.747245Z",
+ "shell.execute_reply": "2024-01-09T02:26:51.746598Z"
},
"id": "kAkY31IVXyr8",
"outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632"
@@ -677,10 +677,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:22.072790Z",
- "iopub.status.busy": "2024-01-08T11:34:22.072407Z",
- "iopub.status.idle": "2024-01-08T11:34:27.536779Z",
- "shell.execute_reply": "2024-01-08T11:34:27.536085Z"
+ "iopub.execute_input": "2024-01-09T02:26:51.749701Z",
+ "iopub.status.busy": "2024-01-09T02:26:51.749349Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.306478Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.305788Z"
},
"id": "i_drkY9YOcw4"
},
@@ -714,10 +714,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.540334Z",
- "iopub.status.busy": "2024-01-08T11:34:27.539853Z",
- "iopub.status.idle": "2024-01-08T11:34:27.545932Z",
- "shell.execute_reply": "2024-01-08T11:34:27.545297Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.310568Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.310015Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.316162Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.315570Z"
},
"id": "_b-AQeoXOc7q",
"outputId": "15ae534a-f517-4906-b177-ca91931a8954"
@@ -764,10 +764,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.550154Z",
- "iopub.status.busy": "2024-01-08T11:34:27.548816Z",
- "iopub.status.idle": "2024-01-08T11:34:27.658169Z",
- "shell.execute_reply": "2024-01-08T11:34:27.657359Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.320209Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.318922Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.415188Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.414534Z"
}
},
"outputs": [
@@ -804,10 +804,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.661546Z",
- "iopub.status.busy": "2024-01-08T11:34:27.660997Z",
- "iopub.status.idle": "2024-01-08T11:34:27.671888Z",
- "shell.execute_reply": "2024-01-08T11:34:27.671212Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.418377Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.417933Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.428186Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.427516Z"
},
"scrolled": true
},
@@ -862,10 +862,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.674519Z",
- "iopub.status.busy": "2024-01-08T11:34:27.674037Z",
- "iopub.status.idle": "2024-01-08T11:34:27.682843Z",
- "shell.execute_reply": "2024-01-08T11:34:27.682151Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.430598Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.430267Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.438556Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.437949Z"
}
},
"outputs": [
@@ -969,10 +969,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.685480Z",
- "iopub.status.busy": "2024-01-08T11:34:27.684991Z",
- "iopub.status.idle": "2024-01-08T11:34:27.689889Z",
- "shell.execute_reply": "2024-01-08T11:34:27.689217Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.441060Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.440688Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.445142Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.444507Z"
}
},
"outputs": [
@@ -1010,10 +1010,10 @@
"height": 237
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.692557Z",
- "iopub.status.busy": "2024-01-08T11:34:27.692176Z",
- "iopub.status.idle": "2024-01-08T11:34:27.698528Z",
- "shell.execute_reply": "2024-01-08T11:34:27.697877Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.447641Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.447263Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.453304Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.452671Z"
},
"id": "FQwRHgbclpsO",
"outputId": "fee5c335-c00e-4fcc-f22b-718705e93182"
@@ -1133,10 +1133,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.701184Z",
- "iopub.status.busy": "2024-01-08T11:34:27.700778Z",
- "iopub.status.idle": "2024-01-08T11:34:27.825357Z",
- "shell.execute_reply": "2024-01-08T11:34:27.824631Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.455823Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.455456Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.570447Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.569797Z"
},
"id": "ff1NFVlDoysO",
"outputId": "8141a036-44c1-4349-c338-880432513e37"
@@ -1190,10 +1190,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.827978Z",
- "iopub.status.busy": "2024-01-08T11:34:27.827752Z",
- "iopub.status.idle": "2024-01-08T11:34:27.938048Z",
- "shell.execute_reply": "2024-01-08T11:34:27.937384Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.573030Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.572718Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.680113Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.679434Z"
},
"id": "GZgovGkdiaiP",
"outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7"
@@ -1238,10 +1238,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.940698Z",
- "iopub.status.busy": "2024-01-08T11:34:27.940289Z",
- "iopub.status.idle": "2024-01-08T11:34:28.051099Z",
- "shell.execute_reply": "2024-01-08T11:34:28.050430Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.682534Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.682326Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.788271Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.787708Z"
},
"id": "lfa2eHbMwG8R",
"outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c"
@@ -1282,10 +1282,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:28.053701Z",
- "iopub.status.busy": "2024-01-08T11:34:28.053466Z",
- "iopub.status.idle": "2024-01-08T11:34:28.166067Z",
- "shell.execute_reply": "2024-01-08T11:34:28.165377Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.790966Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.790585Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.895931Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.895309Z"
}
},
"outputs": [
@@ -1333,10 +1333,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:28.168635Z",
- "iopub.status.busy": "2024-01-08T11:34:28.168404Z",
- "iopub.status.idle": "2024-01-08T11:34:28.172213Z",
- "shell.execute_reply": "2024-01-08T11:34:28.171590Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.898301Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.898098Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.901458Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.900903Z"
},
"nbsphinx": "hidden"
},
@@ -1377,29 +1377,28 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "014241d1df6541b494c9552089c5d91b": {
+ "074162d16a204956a58163b7ed2fc38f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f8680a078d734c09944d7bd8c6142252",
- "IPY_MODEL_f327926ff31c4299a2800a75539a9db4",
- "IPY_MODEL_23578704abc8480d95b34b87959deb24"
- ],
- "layout": "IPY_MODEL_9be46107b93445a1829536b8ce31e961"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f24fc43092994ee48322ffb18431210d",
+ "placeholder": "",
+ "style": "IPY_MODEL_4386d2d14ff340bebfd014e0a3457dab",
+ "value": "embedding_model.ckpt: 100%"
}
},
- "04a0e3571050433ea7dce2da14374824": {
+ "0906ffbbadf2475aa122ed1881bc7d6b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1451,28 +1450,29 @@
"width": null
}
},
- "0a0fc008fa2f4721b225a2c8b2912616": {
+ "0bf82104150440e58d5d307849cb8530": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1daff477050645d292712ef350261387",
- "placeholder": "",
- "style": "IPY_MODEL_4b0c006e9507441483d80353f9c4952e",
- "value": " 2.04k/2.04k [00:00<00:00, 316kB/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e5eaafbb7d694737a0802f3ca4b32cdc",
+ "IPY_MODEL_3ee18ff0722b47748522ada0dd486588",
+ "IPY_MODEL_9b1808c4d27c469f92d3b79c5001654f"
+ ],
+ "layout": "IPY_MODEL_39e3eac6651b41a0a8507899dfba6291"
}
},
- "1521ff8a83b84bc1a4bd981a48365148": {
+ "0c75ced7da7e47ef91ce46b03af3b641": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1524,31 +1524,29 @@
"width": null
}
},
- "181e6075ca754e248e0b3c04ab5e84da": {
+ "148c405ab5344da1bf45117d46fc1e4b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ca978915848d4fdda2e52e947cc173d2",
- "max": 3201.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b1e511fc5bc5456186268f27c80e60c9",
- "value": 3201.0
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_074162d16a204956a58163b7ed2fc38f",
+ "IPY_MODEL_ec8650aebb9848d188ebcd39c2ae7412",
+ "IPY_MODEL_d0afa7a5cdd44e27addb91cee44e48f6"
+ ],
+ "layout": "IPY_MODEL_23267d69370540c284956a78d45094d3"
}
},
- "19a233faf08a4b71bf021f74e724d60d": {
+ "23267d69370540c284956a78d45094d3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1600,7 +1598,44 @@
"width": null
}
},
- "1daff477050645d292712ef350261387": {
+ "2aa8344e2ac14266acebf5becc50f27c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d20fdd8c04ce452ba5357150afd8dace",
+ "placeholder": "",
+ "style": "IPY_MODEL_b5eb24d8e19543d68522a8a50b4b5185",
+ "value": "hyperparams.yaml: 100%"
+ }
+ },
+ "35dc0bc0e98e453385c5e9200631183c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "39e3eac6651b41a0a8507899dfba6291": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1652,28 +1687,31 @@
"width": null
}
},
- "23578704abc8480d95b34b87959deb24": {
+ "3ee18ff0722b47748522ada0dd486588": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ddfe327d2855488db20ee1f6a7393801",
- "placeholder": "",
- "style": "IPY_MODEL_fbf59cda17394ee2a5a96b66fa586d02",
- "value": " 16.9M/16.9M [00:00<00:00, 48.5MB/s]"
+ "layout": "IPY_MODEL_6279eedd19ac4aa69e7237c1daee38ba",
+ "max": 15856877.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d1967103ae21421bb06de072dc7024cf",
+ "value": 15856877.0
}
},
- "237e45c4ab7b4ba382121890a7fb00dd": {
+ "42965a973a994ed3bfb2b8c8bfc97033": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1688,31 +1726,7 @@
"description_width": ""
}
},
- "2910cf57e3194ffb89df0f71dc83d354": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_93e009396d8042c29a21037dd236b86a",
- "max": 15856877.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c17541fb89e447dc92dda72cfc0688fe",
- "value": 15856877.0
- }
- },
- "2b17fd9f28464c6d8db3154c2c595c78": {
+ "4386d2d14ff340bebfd014e0a3457dab": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1727,7 +1741,7 @@
"description_width": ""
}
},
- "36db81671365485b8ebb5a0fb170a1f2": {
+ "455d438a64064a0a8ba13fbe2dc8ea4b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1779,7 +1793,23 @@
"width": null
}
},
- "3750c3bb13fd4b7891b2edf9e9528bf3": {
+ "52f99ac78c814eb4af3805a5ab20aa67": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6279eedd19ac4aa69e7237c1daee38ba": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1831,7 +1861,7 @@
"width": null
}
},
- "38346ba055094159b9ee7fff390710e8": {
+ "64dd0f3ddf4349e98e02d4de795cbd2c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1883,7 +1913,7 @@
"width": null
}
},
- "3bf58ef2af3649e4aa31728845068d4c": {
+ "676548bea73042c7b45afcf1d579ec7f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1935,29 +1965,38 @@
"width": null
}
},
- "3f3b3073993748aaa1b31d3a782c83dd": {
+ "6f93ae37ef664f6b9b4c40b8585aa9aa": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_565e15799797419097ff4ffb7c15b6de",
- "IPY_MODEL_2910cf57e3194ffb89df0f71dc83d354",
- "IPY_MODEL_5075510f233d49868ea04270daf647a0"
- ],
- "layout": "IPY_MODEL_c449c2bea33648588764620782fb42ba"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "77bf5a408bd74660a66334bbbfa11597": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "4b0c006e9507441483d80353f9c4952e": {
+ "7904dccd7f2f4ae78a71834661345755": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1972,7 +2011,23 @@
"description_width": ""
}
},
- "5011acc148994d098e9f0f286e31f7c0": {
+ "7c321e7024224d0e929145a821345bd5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "830eb310a3234b8d99f39b782751ec14": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2024,64 +2079,29 @@
"width": null
}
},
- "5075510f233d49868ea04270daf647a0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fda1816f838a4c2a8791f2b17afad892",
- "placeholder": "",
- "style": "IPY_MODEL_9dd3746c4bdf4da1998bd16e5fb8324b",
- "value": " 15.9M/15.9M [00:00<00:00, 25.5MB/s]"
- }
- },
- "565e15799797419097ff4ffb7c15b6de": {
+ "8501476ac7454d7ba6881f2af7a59298": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3bf58ef2af3649e4aa31728845068d4c",
- "placeholder": "",
- "style": "IPY_MODEL_5ba0acae90cd4fc790ab18a4e22d90ce",
- "value": "classifier.ckpt: 100%"
- }
- },
- "5ba0acae90cd4fc790ab18a4e22d90ce": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ae75e488acf04e9e9a40b95aa335937d",
+ "IPY_MODEL_f92a351c28d145e78749037598116d02",
+ "IPY_MODEL_c75a8ca9cbac45b49aa1d7fdb5d9322a"
+ ],
+ "layout": "IPY_MODEL_fbe9385b05ae48f3bad319cc10b998f2"
}
},
- "5c2d0125d75c49619c022f156aad8d96": {
+ "87c765a11313429dbc1439ee8c6fee48": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2133,60 +2153,65 @@
"width": null
}
},
- "5da8fee63fd746f4a727f89bd324596f": {
+ "87fdf9ab141b491fb75725019fdc89f2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "5f88d91fa31d4eea89344a77025a0121": {
+ "8f2acd0d2986481cb93ce93b721793c3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_fe3a33a703cb436d9c5088cd3f3d46b6",
- "IPY_MODEL_cfaeec8713bb469181d52c87b8126f78",
- "IPY_MODEL_6ebb12165ac044c6a797778a67dc3dc1"
- ],
- "layout": "IPY_MODEL_c05bdb67832b43c397ce064fb77e4ecf"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_feb66c7a251a4f1da48adef810a26b63",
+ "placeholder": "",
+ "style": "IPY_MODEL_87fdf9ab141b491fb75725019fdc89f2",
+ "value": " 129k/129k [00:00<00:00, 7.56MB/s]"
}
},
- "65ffeb36704e4c24927a9cece1cba669": {
+ "9a2cb058ea1f48958e7369b4fc5bffae": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a4b67b1b62354f4285bdc563ffd1f6fe",
+ "IPY_MODEL_a0cbebed32b54286a8de95e836e9dcd6",
+ "IPY_MODEL_8f2acd0d2986481cb93ce93b721793c3"
+ ],
+ "layout": "IPY_MODEL_830eb310a3234b8d99f39b782751ec14"
}
},
- "66f832a838ad4ae98ae1607f44e20402": {
+ "9b1808c4d27c469f92d3b79c5001654f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2201,13 +2226,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_98fe1753a3684d4b891e012b724acc54",
+ "layout": "IPY_MODEL_b2430b1735ff4e908e0d43db76a98503",
"placeholder": "",
- "style": "IPY_MODEL_237e45c4ab7b4ba382121890a7fb00dd",
- "value": "mean_var_norm_emb.ckpt: 100%"
+ "style": "IPY_MODEL_42965a973a994ed3bfb2b8c8bfc97033",
+ "value": " 15.9M/15.9M [00:00<00:00, 260MB/s]"
}
},
- "6d3fa693e91349ba9a156a153d4f61ea": {
+ "9cf9e20155d04f629b663265053d39cc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -2222,35 +2247,38 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_731bcc4a303c44a5ae86ffb1ad0a00b0",
- "IPY_MODEL_bcb8b268e2cb47f3bb8892761ee0623c",
- "IPY_MODEL_0a0fc008fa2f4721b225a2c8b2912616"
+ "IPY_MODEL_2aa8344e2ac14266acebf5becc50f27c",
+ "IPY_MODEL_bd8e9ef99d6046d994219a87519157b0",
+ "IPY_MODEL_b3ade771edd74c4abd845cc959413ef3"
],
- "layout": "IPY_MODEL_38346ba055094159b9ee7fff390710e8"
+ "layout": "IPY_MODEL_87c765a11313429dbc1439ee8c6fee48"
}
},
- "6ebb12165ac044c6a797778a67dc3dc1": {
+ "a0cbebed32b54286a8de95e836e9dcd6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5c2d0125d75c49619c022f156aad8d96",
- "placeholder": "",
- "style": "IPY_MODEL_f7401993c52b49cdac63cb10b9ec46ea",
- "value": " 129k/129k [00:00<00:00, 1.00MB/s]"
+ "layout": "IPY_MODEL_c3e52b00e156405ab5cc4f7ea6955fdf",
+ "max": 128619.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_52f99ac78c814eb4af3805a5ab20aa67",
+ "value": 128619.0
}
},
- "72c4e5ef5a544d11a4851b6f9dd2a414": {
+ "a33aff2e3aaa4fa989b9b85fd1c20315": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2302,7 +2330,7 @@
"width": null
}
},
- "731bcc4a303c44a5ae86ffb1ad0a00b0": {
+ "a4b67b1b62354f4285bdc563ffd1f6fe": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2317,13 +2345,34 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1521ff8a83b84bc1a4bd981a48365148",
+ "layout": "IPY_MODEL_f7265cd7bb2b4a54bde9ab01c77de4c1",
"placeholder": "",
- "style": "IPY_MODEL_2b17fd9f28464c6d8db3154c2c595c78",
- "value": "hyperparams.yaml: 100%"
+ "style": "IPY_MODEL_f1be1919ca5c4bed989da2aaf7719921",
+ "value": "label_encoder.txt: 100%"
}
},
- "93e009396d8042c29a21037dd236b86a": {
+ "ae75e488acf04e9e9a40b95aa335937d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0c75ced7da7e47ef91ce46b03af3b641",
+ "placeholder": "",
+ "style": "IPY_MODEL_ba4bde1f28454d6790ac9191769b7323",
+ "value": "mean_var_norm_emb.ckpt: 100%"
+ }
+ },
+ "b2430b1735ff4e908e0d43db76a98503": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2375,7 +2424,82 @@
"width": null
}
},
- "98fe1753a3684d4b891e012b724acc54": {
+ "b3ade771edd74c4abd845cc959413ef3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0906ffbbadf2475aa122ed1881bc7d6b",
+ "placeholder": "",
+ "style": "IPY_MODEL_6f93ae37ef664f6b9b4c40b8585aa9aa",
+ "value": " 2.04k/2.04k [00:00<00:00, 341kB/s]"
+ }
+ },
+ "b5eb24d8e19543d68522a8a50b4b5185": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ba4bde1f28454d6790ac9191769b7323": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "bd8e9ef99d6046d994219a87519157b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_455d438a64064a0a8ba13fbe2dc8ea4b",
+ "max": 2041.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_77bf5a408bd74660a66334bbbfa11597",
+ "value": 2041.0
+ }
+ },
+ "c3e52b00e156405ab5cc4f7ea6955fdf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2427,7 +2551,80 @@
"width": null
}
},
- "9be46107b93445a1829536b8ce31e961": {
+ "c75a8ca9cbac45b49aa1d7fdb5d9322a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_676548bea73042c7b45afcf1d579ec7f",
+ "placeholder": "",
+ "style": "IPY_MODEL_7904dccd7f2f4ae78a71834661345755",
+ "value": " 3.20k/3.20k [00:00<00:00, 590kB/s]"
+ }
+ },
+ "d0afa7a5cdd44e27addb91cee44e48f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_64dd0f3ddf4349e98e02d4de795cbd2c",
+ "placeholder": "",
+ "style": "IPY_MODEL_d11326a8abb7410995defc11e8e9a951",
+ "value": " 16.9M/16.9M [00:00<00:00, 63.1MB/s]"
+ }
+ },
+ "d11326a8abb7410995defc11e8e9a951": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d1967103ae21421bb06de072dc7024cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "d20fdd8c04ce452ba5357150afd8dace": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2479,7 +2676,7 @@
"width": null
}
},
- "9dd3746c4bdf4da1998bd16e5fb8324b": {
+ "d3bc0049b5f34f94aaccb07dbd9dcd0a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2494,22 +2691,7 @@
"description_width": ""
}
},
- "a756acf6dbdd469595b5c32ef5bf7c69": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a9eb780a6f9445c9932510579b76f37f": {
+ "df3338f41d134ca9a4319f0342140832": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2561,7 +2743,7 @@
"width": null
}
},
- "ab96d49f9fd24e82979a6c5516574d79": {
+ "e5eaafbb7d694737a0802f3ca4b32cdc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2576,68 +2758,52 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a9eb780a6f9445c9932510579b76f37f",
+ "layout": "IPY_MODEL_f2137ff043f649929818511eda4d58f2",
"placeholder": "",
- "style": "IPY_MODEL_65ffeb36704e4c24927a9cece1cba669",
- "value": " 3.20k/3.20k [00:00<00:00, 522kB/s]"
+ "style": "IPY_MODEL_d3bc0049b5f34f94aaccb07dbd9dcd0a",
+ "value": "classifier.ckpt: 100%"
}
},
- "aee237a7a9e748f4abd1bf21856465ac": {
+ "ec8650aebb9848d188ebcd39c2ae7412": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_df3338f41d134ca9a4319f0342140832",
+ "max": 16887676.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_35dc0bc0e98e453385c5e9200631183c",
+ "value": 16887676.0
}
},
- "b1e511fc5bc5456186268f27c80e60c9": {
+ "f1be1919ca5c4bed989da2aaf7719921": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "bcb8b268e2cb47f3bb8892761ee0623c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3750c3bb13fd4b7891b2edf9e9528bf3",
- "max": 2041.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_da6ed8bc9c6845ae8bd787e3a2284e1e",
- "value": 2041.0
- }
- },
- "c05bdb67832b43c397ce064fb77e4ecf": {
+ "f2137ff043f649929818511eda4d58f2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2689,23 +2855,7 @@
"width": null
}
},
- "c17541fb89e447dc92dda72cfc0688fe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c449c2bea33648588764620782fb42ba": {
+ "f24fc43092994ee48322ffb18431210d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2757,23 +2907,7 @@
"width": null
}
},
- "c60fc74b4fe64238aef461969d090cee": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ca978915848d4fdda2e52e947cc173d2": {
+ "f7265cd7bb2b4a54bde9ab01c77de4c1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2825,7 +2959,7 @@
"width": null
}
},
- "cfaeec8713bb469181d52c87b8126f78": {
+ "f92a351c28d145e78749037598116d02": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -2841,31 +2975,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5011acc148994d098e9f0f286e31f7c0",
- "max": 128619.0,
+ "layout": "IPY_MODEL_a33aff2e3aaa4fa989b9b85fd1c20315",
+ "max": 3201.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_c60fc74b4fe64238aef461969d090cee",
- "value": 128619.0
- }
- },
- "da6ed8bc9c6845ae8bd787e3a2284e1e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "style": "IPY_MODEL_7c321e7024224d0e929145a821345bd5",
+ "value": 3201.0
}
},
- "ddfe327d2855488db20ee1f6a7393801": {
+ "fbe9385b05ae48f3bad319cc10b998f2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2917,104 +3035,7 @@
"width": null
}
},
- "e6fc3c34dabe4e1da78193c456f3a546": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_66f832a838ad4ae98ae1607f44e20402",
- "IPY_MODEL_181e6075ca754e248e0b3c04ab5e84da",
- "IPY_MODEL_ab96d49f9fd24e82979a6c5516574d79"
- ],
- "layout": "IPY_MODEL_72c4e5ef5a544d11a4851b6f9dd2a414"
- }
- },
- "f327926ff31c4299a2800a75539a9db4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_04a0e3571050433ea7dce2da14374824",
- "max": 16887676.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5da8fee63fd746f4a727f89bd324596f",
- "value": 16887676.0
- }
- },
- "f7401993c52b49cdac63cb10b9ec46ea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f8680a078d734c09944d7bd8c6142252": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_19a233faf08a4b71bf021f74e724d60d",
- "placeholder": "",
- "style": "IPY_MODEL_a756acf6dbdd469595b5c32ef5bf7c69",
- "value": "embedding_model.ckpt: 100%"
- }
- },
- "fbf59cda17394ee2a5a96b66fa586d02": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "fda1816f838a4c2a8791f2b17afad892": {
+ "feb66c7a251a4f1da48adef810a26b63": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3065,27 +3086,6 @@
"visibility": null,
"width": null
}
- },
- "fe3a33a703cb436d9c5088cd3f3d46b6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_36db81671365485b8ebb5a0fb170a1f2",
- "placeholder": "",
- "style": "IPY_MODEL_aee237a7a9e748f4abd1bf21856465ac",
- "value": "label_encoder.txt: 100%"
- }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
index b3f918658..62920430a 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
@@ -80,10 +80,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:33.146796Z",
- "iopub.status.busy": "2024-01-08T11:34:33.146580Z",
- "iopub.status.idle": "2024-01-08T11:34:34.279914Z",
- "shell.execute_reply": "2024-01-08T11:34:34.279276Z"
+ "iopub.execute_input": "2024-01-09T02:27:03.246496Z",
+ "iopub.status.busy": "2024-01-09T02:27:03.246312Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.312637Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.312040Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -118,10 +118,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.283299Z",
- "iopub.status.busy": "2024-01-08T11:34:34.282663Z",
- "iopub.status.idle": "2024-01-08T11:34:34.286062Z",
- "shell.execute_reply": "2024-01-08T11:34:34.285449Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.315605Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.315202Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.318390Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.317806Z"
}
},
"outputs": [],
@@ -252,10 +252,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.288753Z",
- "iopub.status.busy": "2024-01-08T11:34:34.288408Z",
- "iopub.status.idle": "2024-01-08T11:34:34.298085Z",
- "shell.execute_reply": "2024-01-08T11:34:34.297428Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.320759Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.320563Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.329862Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.329341Z"
},
"nbsphinx": "hidden"
},
@@ -353,10 +353,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.300808Z",
- "iopub.status.busy": "2024-01-08T11:34:34.300334Z",
- "iopub.status.idle": "2024-01-08T11:34:34.305564Z",
- "shell.execute_reply": "2024-01-08T11:34:34.305053Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.332010Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.331820Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.336559Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.336031Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.308143Z",
- "iopub.status.busy": "2024-01-08T11:34:34.307763Z",
- "iopub.status.idle": "2024-01-08T11:34:34.600255Z",
- "shell.execute_reply": "2024-01-08T11:34:34.599599Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.338848Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.338658Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.610353Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.609739Z"
},
"nbsphinx": "hidden"
},
@@ -517,10 +517,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.603364Z",
- "iopub.status.busy": "2024-01-08T11:34:34.602935Z",
- "iopub.status.idle": "2024-01-08T11:34:34.983088Z",
- "shell.execute_reply": "2024-01-08T11:34:34.982356Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.612956Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.612745Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.932586Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.931909Z"
}
},
"outputs": [
@@ -568,10 +568,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.985879Z",
- "iopub.status.busy": "2024-01-08T11:34:34.985483Z",
- "iopub.status.idle": "2024-01-08T11:34:35.010687Z",
- "shell.execute_reply": "2024-01-08T11:34:35.010126Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.935114Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.934891Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.959378Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.958886Z"
}
},
"outputs": [],
@@ -607,10 +607,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:35.013506Z",
- "iopub.status.busy": "2024-01-08T11:34:35.013145Z",
- "iopub.status.idle": "2024-01-08T11:34:35.025383Z",
- "shell.execute_reply": "2024-01-08T11:34:35.024728Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.961623Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.961422Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.972782Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.972297Z"
}
},
"outputs": [],
@@ -641,10 +641,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:35.028417Z",
- "iopub.status.busy": "2024-01-08T11:34:35.027920Z",
- "iopub.status.idle": "2024-01-08T11:34:36.408854Z",
- "shell.execute_reply": "2024-01-08T11:34:36.408094Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.975044Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.974849Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.234140Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.233377Z"
}
},
"outputs": [
@@ -708,10 +708,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.411792Z",
- "iopub.status.busy": "2024-01-08T11:34:36.411308Z",
- "iopub.status.idle": "2024-01-08T11:34:36.438973Z",
- "shell.execute_reply": "2024-01-08T11:34:36.438145Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.237045Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.236482Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.258845Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.258222Z"
}
},
"outputs": [
@@ -820,10 +820,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.441779Z",
- "iopub.status.busy": "2024-01-08T11:34:36.441554Z",
- "iopub.status.idle": "2024-01-08T11:34:36.464948Z",
- "shell.execute_reply": "2024-01-08T11:34:36.464225Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.261485Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.260947Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.281898Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.281279Z"
}
},
"outputs": [
@@ -909,7 +909,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n",
+ "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n",
" warnings.warn(\n",
"/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:330: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n",
" warnings.warn(\n",
@@ -935,10 +935,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.467930Z",
- "iopub.status.busy": "2024-01-08T11:34:36.467490Z",
- "iopub.status.idle": "2024-01-08T11:34:36.483386Z",
- "shell.execute_reply": "2024-01-08T11:34:36.482690Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.284383Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.283931Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.299025Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.298425Z"
}
},
"outputs": [
@@ -1068,17 +1068,17 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.486338Z",
- "iopub.status.busy": "2024-01-08T11:34:36.485861Z",
- "iopub.status.idle": "2024-01-08T11:34:36.509477Z",
- "shell.execute_reply": "2024-01-08T11:34:36.508746Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.301493Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.301290Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.323030Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.322343Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ec705183cd6a441f97cc4ce0bd78bbfc",
+ "model_id": "c04978b64e7d4ea98b71d1a4a610e60d",
"version_major": 2,
"version_minor": 0
},
@@ -1114,10 +1114,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.513090Z",
- "iopub.status.busy": "2024-01-08T11:34:36.512758Z",
- "iopub.status.idle": "2024-01-08T11:34:36.529061Z",
- "shell.execute_reply": "2024-01-08T11:34:36.528400Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.325817Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.325468Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.340691Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.340079Z"
}
},
"outputs": [
@@ -1235,10 +1235,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.531806Z",
- "iopub.status.busy": "2024-01-08T11:34:36.531483Z",
- "iopub.status.idle": "2024-01-08T11:34:36.538282Z",
- "shell.execute_reply": "2024-01-08T11:34:36.537717Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.343042Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.342698Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.348865Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.348263Z"
}
},
"outputs": [],
@@ -1295,10 +1295,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.540674Z",
- "iopub.status.busy": "2024-01-08T11:34:36.540423Z",
- "iopub.status.idle": "2024-01-08T11:34:36.560392Z",
- "shell.execute_reply": "2024-01-08T11:34:36.559698Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.351121Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.350767Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.368855Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.368310Z"
}
},
"outputs": [
@@ -1430,7 +1430,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "01ccacddae2b495ea776e64a7346015c": {
+ "07966514fa3d4d8eae604ebb6aff59c0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1482,7 +1482,7 @@
"width": null
}
},
- "05447487ad404ad1a1956734bbbf67ab": {
+ "1a2de10699ec427e96d5ebe777fa9fb2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1534,38 +1534,31 @@
"width": null
}
},
- "1b9c20b3efe84341b391d1b6b03bde4c": {
+ "8184f847a410422aa84e170085668978": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "442abb8b0187458db381c233eafbc3e3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1a2de10699ec427e96d5ebe777fa9fb2",
+ "max": 132.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f3190254257e4d6ca04a259fce77519a",
+ "value": 132.0
}
},
- "58766d09610d40998368500a3fddb812": {
+ "9d8260991a684c089bdcb850426cf784": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1617,7 +1610,86 @@
"width": null
}
},
- "6ac3b81577c14190bb97448002f1c800": {
+ "c04978b64e7d4ea98b71d1a4a610e60d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c8d8233ab22a4ce4a2b56b4efade5228",
+ "IPY_MODEL_8184f847a410422aa84e170085668978",
+ "IPY_MODEL_d90f6a41bd314d4e891bb3d16cd0028e"
+ ],
+ "layout": "IPY_MODEL_07966514fa3d4d8eae604ebb6aff59c0"
+ }
+ },
+ "c698eab8c4734d3495cbd2282070e85a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c8d8233ab22a4ce4a2b56b4efade5228": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_db6bfdcd197c4e1882d803554195cadc",
+ "placeholder": "",
+ "style": "IPY_MODEL_fec99cd0ee204cf9a014604ad6b883d9",
+ "value": "Saving the dataset (1/1 shards): 100%"
+ }
+ },
+ "d90f6a41bd314d4e891bb3d16cd0028e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9d8260991a684c089bdcb850426cf784",
+ "placeholder": "",
+ "style": "IPY_MODEL_c698eab8c4734d3495cbd2282070e85a",
+ "value": " 132/132 [00:00<00:00, 11164.74 examples/s]"
+ }
+ },
+ "db6bfdcd197c4e1882d803554195cadc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1669,95 +1741,23 @@
"width": null
}
},
- "7b9a02d5ff47412684a768f4ab1d6f42": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6ac3b81577c14190bb97448002f1c800",
- "placeholder": "",
- "style": "IPY_MODEL_1b9c20b3efe84341b391d1b6b03bde4c",
- "value": "Saving the dataset (1/1 shards): 100%"
- }
- },
- "87dc49e0eca246e395085ffacf7b72a2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_58766d09610d40998368500a3fddb812",
- "placeholder": "",
- "style": "IPY_MODEL_ef5ec58639e046c9832280ca3b2c87fe",
- "value": " 132/132 [00:00<00:00, 10307.91 examples/s]"
- }
- },
- "8b7e54de05f047d188e8503333712b15": {
+ "f3190254257e4d6ca04a259fce77519a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_01ccacddae2b495ea776e64a7346015c",
- "max": 132.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_442abb8b0187458db381c233eafbc3e3",
- "value": 132.0
- }
- },
- "ec705183cd6a441f97cc4ce0bd78bbfc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7b9a02d5ff47412684a768f4ab1d6f42",
- "IPY_MODEL_8b7e54de05f047d188e8503333712b15",
- "IPY_MODEL_87dc49e0eca246e395085ffacf7b72a2"
- ],
- "layout": "IPY_MODEL_05447487ad404ad1a1956734bbbf67ab"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "ef5ec58639e046c9832280ca3b2c87fe": {
+ "fec99cd0ee204cf9a014604ad6b883d9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
index 594682e36..33a753919 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:41.399374Z",
- "iopub.status.busy": "2024-01-08T11:34:41.398891Z",
- "iopub.status.idle": "2024-01-08T11:34:42.575705Z",
- "shell.execute_reply": "2024-01-08T11:34:42.574932Z"
+ "iopub.execute_input": "2024-01-09T02:27:11.322063Z",
+ "iopub.status.busy": "2024-01-09T02:27:11.321519Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.412043Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.411447Z"
},
"nbsphinx": "hidden"
},
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -116,10 +116,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.579261Z",
- "iopub.status.busy": "2024-01-08T11:34:42.578625Z",
- "iopub.status.idle": "2024-01-08T11:34:42.582725Z",
- "shell.execute_reply": "2024-01-08T11:34:42.582225Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.414884Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.414479Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.417704Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.417174Z"
}
},
"outputs": [],
@@ -250,10 +250,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.585379Z",
- "iopub.status.busy": "2024-01-08T11:34:42.585005Z",
- "iopub.status.idle": "2024-01-08T11:34:42.595035Z",
- "shell.execute_reply": "2024-01-08T11:34:42.594337Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.420267Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.419952Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.429962Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.429473Z"
},
"nbsphinx": "hidden"
},
@@ -356,10 +356,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.597515Z",
- "iopub.status.busy": "2024-01-08T11:34:42.597143Z",
- "iopub.status.idle": "2024-01-08T11:34:42.602135Z",
- "shell.execute_reply": "2024-01-08T11:34:42.601636Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.432318Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.431950Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.436921Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.436437Z"
}
},
"outputs": [],
@@ -448,10 +448,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.604738Z",
- "iopub.status.busy": "2024-01-08T11:34:42.604358Z",
- "iopub.status.idle": "2024-01-08T11:34:42.905667Z",
- "shell.execute_reply": "2024-01-08T11:34:42.905002Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.439558Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.439194Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.710837Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.710218Z"
},
"nbsphinx": "hidden"
},
@@ -520,10 +520,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.909137Z",
- "iopub.status.busy": "2024-01-08T11:34:42.908667Z",
- "iopub.status.idle": "2024-01-08T11:34:43.293081Z",
- "shell.execute_reply": "2024-01-08T11:34:43.292407Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.713848Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.713461Z",
+ "iopub.status.idle": "2024-01-09T02:27:13.086755Z",
+ "shell.execute_reply": "2024-01-09T02:27:13.086057Z"
}
},
"outputs": [
@@ -559,10 +559,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:43.296095Z",
- "iopub.status.busy": "2024-01-08T11:34:43.295683Z",
- "iopub.status.idle": "2024-01-08T11:34:43.298675Z",
- "shell.execute_reply": "2024-01-08T11:34:43.298100Z"
+ "iopub.execute_input": "2024-01-09T02:27:13.089325Z",
+ "iopub.status.busy": "2024-01-09T02:27:13.088980Z",
+ "iopub.status.idle": "2024-01-09T02:27:13.091992Z",
+ "shell.execute_reply": "2024-01-09T02:27:13.091474Z"
}
},
"outputs": [],
@@ -601,10 +601,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:43.301134Z",
- "iopub.status.busy": "2024-01-08T11:34:43.300755Z",
- "iopub.status.idle": "2024-01-08T11:34:43.340277Z",
- "shell.execute_reply": "2024-01-08T11:34:43.339467Z"
+ "iopub.execute_input": "2024-01-09T02:27:13.094408Z",
+ "iopub.status.busy": "2024-01-09T02:27:13.094038Z",
+ "iopub.status.idle": "2024-01-09T02:27:13.131635Z",
+ "shell.execute_reply": "2024-01-09T02:27:13.131023Z"
}
},
"outputs": [
@@ -646,10 +646,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:43.343085Z",
- "iopub.status.busy": "2024-01-08T11:34:43.342639Z",
- "iopub.status.idle": "2024-01-08T11:34:44.800588Z",
- "shell.execute_reply": "2024-01-08T11:34:44.799838Z"
+ "iopub.execute_input": "2024-01-09T02:27:13.134085Z",
+ "iopub.status.busy": "2024-01-09T02:27:13.133711Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.421819Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.421052Z"
}
},
"outputs": [
@@ -701,10 +701,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.803855Z",
- "iopub.status.busy": "2024-01-08T11:34:44.803273Z",
- "iopub.status.idle": "2024-01-08T11:34:44.830962Z",
- "shell.execute_reply": "2024-01-08T11:34:44.830255Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.424472Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.424133Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.449895Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.449334Z"
}
},
"outputs": [
@@ -878,10 +878,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.833734Z",
- "iopub.status.busy": "2024-01-08T11:34:44.833392Z",
- "iopub.status.idle": "2024-01-08T11:34:44.841059Z",
- "shell.execute_reply": "2024-01-08T11:34:44.840429Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.452288Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.452087Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.458950Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.458325Z"
}
},
"outputs": [
@@ -985,10 +985,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.843594Z",
- "iopub.status.busy": "2024-01-08T11:34:44.843221Z",
- "iopub.status.idle": "2024-01-08T11:34:44.850295Z",
- "shell.execute_reply": "2024-01-08T11:34:44.849662Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.461165Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.460964Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.467181Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.466583Z"
}
},
"outputs": [
@@ -1055,10 +1055,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.852715Z",
- "iopub.status.busy": "2024-01-08T11:34:44.852497Z",
- "iopub.status.idle": "2024-01-08T11:34:44.865433Z",
- "shell.execute_reply": "2024-01-08T11:34:44.864679Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.469479Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.469089Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.479591Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.478950Z"
}
},
"outputs": [
@@ -1231,10 +1231,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.868474Z",
- "iopub.status.busy": "2024-01-08T11:34:44.868214Z",
- "iopub.status.idle": "2024-01-08T11:34:44.879916Z",
- "shell.execute_reply": "2024-01-08T11:34:44.879313Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.482039Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.481681Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.490635Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.490031Z"
}
},
"outputs": [
@@ -1350,10 +1350,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.882460Z",
- "iopub.status.busy": "2024-01-08T11:34:44.882229Z",
- "iopub.status.idle": "2024-01-08T11:34:44.890995Z",
- "shell.execute_reply": "2024-01-08T11:34:44.890353Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.493054Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.492613Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.500079Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.499480Z"
},
"scrolled": true
},
@@ -1478,10 +1478,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.893552Z",
- "iopub.status.busy": "2024-01-08T11:34:44.893324Z",
- "iopub.status.idle": "2024-01-08T11:34:44.904463Z",
- "shell.execute_reply": "2024-01-08T11:34:44.903901Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.502264Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.502064Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.512094Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.511557Z"
}
},
"outputs": [
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
index 42b44f2b2..cd1a07a8b 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
@@ -74,10 +74,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:50.505775Z",
- "iopub.status.busy": "2024-01-08T11:34:50.505591Z",
- "iopub.status.idle": "2024-01-08T11:34:51.624934Z",
- "shell.execute_reply": "2024-01-08T11:34:51.624296Z"
+ "iopub.execute_input": "2024-01-09T02:27:19.382666Z",
+ "iopub.status.busy": "2024-01-09T02:27:19.382144Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.391166Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.390567Z"
},
"nbsphinx": "hidden"
},
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.628068Z",
- "iopub.status.busy": "2024-01-08T11:34:51.627532Z",
- "iopub.status.idle": "2024-01-08T11:34:51.644887Z",
- "shell.execute_reply": "2024-01-08T11:34:51.644329Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.394273Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.393784Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.409973Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.409482Z"
}
},
"outputs": [],
@@ -155,10 +155,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.647750Z",
- "iopub.status.busy": "2024-01-08T11:34:51.647515Z",
- "iopub.status.idle": "2024-01-08T11:34:51.903125Z",
- "shell.execute_reply": "2024-01-08T11:34:51.902263Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.412427Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.412061Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.593887Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.593272Z"
}
},
"outputs": [
@@ -265,10 +265,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.906006Z",
- "iopub.status.busy": "2024-01-08T11:34:51.905761Z",
- "iopub.status.idle": "2024-01-08T11:34:51.909950Z",
- "shell.execute_reply": "2024-01-08T11:34:51.909417Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.596176Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.595974Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.599775Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.599267Z"
}
},
"outputs": [],
@@ -289,10 +289,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.912363Z",
- "iopub.status.busy": "2024-01-08T11:34:51.912147Z",
- "iopub.status.idle": "2024-01-08T11:34:51.920575Z",
- "shell.execute_reply": "2024-01-08T11:34:51.920067Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.602113Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.601789Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.610049Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.609444Z"
}
},
"outputs": [],
@@ -337,10 +337,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.923373Z",
- "iopub.status.busy": "2024-01-08T11:34:51.922885Z",
- "iopub.status.idle": "2024-01-08T11:34:51.925875Z",
- "shell.execute_reply": "2024-01-08T11:34:51.925328Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.612621Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.612301Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.614994Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.614457Z"
}
},
"outputs": [],
@@ -362,10 +362,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.928459Z",
- "iopub.status.busy": "2024-01-08T11:34:51.927965Z",
- "iopub.status.idle": "2024-01-08T11:34:55.638056Z",
- "shell.execute_reply": "2024-01-08T11:34:55.637320Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.617374Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.617044Z",
+ "iopub.status.idle": "2024-01-09T02:27:24.216876Z",
+ "shell.execute_reply": "2024-01-09T02:27:24.216187Z"
}
},
"outputs": [],
@@ -401,10 +401,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:55.641861Z",
- "iopub.status.busy": "2024-01-08T11:34:55.641241Z",
- "iopub.status.idle": "2024-01-08T11:34:55.651431Z",
- "shell.execute_reply": "2024-01-08T11:34:55.650761Z"
+ "iopub.execute_input": "2024-01-09T02:27:24.220116Z",
+ "iopub.status.busy": "2024-01-09T02:27:24.219896Z",
+ "iopub.status.idle": "2024-01-09T02:27:24.229801Z",
+ "shell.execute_reply": "2024-01-09T02:27:24.229301Z"
}
},
"outputs": [],
@@ -436,10 +436,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:55.654276Z",
- "iopub.status.busy": "2024-01-08T11:34:55.653905Z",
- "iopub.status.idle": "2024-01-08T11:34:57.120571Z",
- "shell.execute_reply": "2024-01-08T11:34:57.119831Z"
+ "iopub.execute_input": "2024-01-09T02:27:24.232123Z",
+ "iopub.status.busy": "2024-01-09T02:27:24.231924Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.546330Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.545531Z"
}
},
"outputs": [
@@ -475,10 +475,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.124312Z",
- "iopub.status.busy": "2024-01-08T11:34:57.123643Z",
- "iopub.status.idle": "2024-01-08T11:34:57.150064Z",
- "shell.execute_reply": "2024-01-08T11:34:57.149408Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.550890Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.549531Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.577583Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.576967Z"
},
"scrolled": true
},
@@ -624,10 +624,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.153434Z",
- "iopub.status.busy": "2024-01-08T11:34:57.152923Z",
- "iopub.status.idle": "2024-01-08T11:34:57.163985Z",
- "shell.execute_reply": "2024-01-08T11:34:57.163337Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.581876Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.580728Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.593229Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.592648Z"
}
},
"outputs": [
@@ -731,10 +731,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.167110Z",
- "iopub.status.busy": "2024-01-08T11:34:57.166645Z",
- "iopub.status.idle": "2024-01-08T11:34:57.179525Z",
- "shell.execute_reply": "2024-01-08T11:34:57.178870Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.597462Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.596322Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.610741Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.610155Z"
}
},
"outputs": [
@@ -863,10 +863,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.183833Z",
- "iopub.status.busy": "2024-01-08T11:34:57.182608Z",
- "iopub.status.idle": "2024-01-08T11:34:57.196844Z",
- "shell.execute_reply": "2024-01-08T11:34:57.196207Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.614994Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.613883Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.626482Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.625904Z"
}
},
"outputs": [
@@ -980,10 +980,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.201537Z",
- "iopub.status.busy": "2024-01-08T11:34:57.200372Z",
- "iopub.status.idle": "2024-01-08T11:34:57.216002Z",
- "shell.execute_reply": "2024-01-08T11:34:57.215445Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.630730Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.629615Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.642892Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.642365Z"
}
},
"outputs": [
@@ -1094,10 +1094,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.219860Z",
- "iopub.status.busy": "2024-01-08T11:34:57.218916Z",
- "iopub.status.idle": "2024-01-08T11:34:57.228253Z",
- "shell.execute_reply": "2024-01-08T11:34:57.227745Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.645341Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.645060Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.652298Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.651726Z"
}
},
"outputs": [
@@ -1181,10 +1181,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.232001Z",
- "iopub.status.busy": "2024-01-08T11:34:57.231042Z",
- "iopub.status.idle": "2024-01-08T11:34:57.240468Z",
- "shell.execute_reply": "2024-01-08T11:34:57.239924Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.654712Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.654256Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.660999Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.660399Z"
}
},
"outputs": [
@@ -1277,10 +1277,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.243254Z",
- "iopub.status.busy": "2024-01-08T11:34:57.242852Z",
- "iopub.status.idle": "2024-01-08T11:34:57.251094Z",
- "shell.execute_reply": "2024-01-08T11:34:57.250364Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.663447Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.663113Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.669905Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.669353Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
index c40523abe..55361d300 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
@@ -75,10 +75,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:02.701760Z",
- "iopub.status.busy": "2024-01-08T11:35:02.701559Z",
- "iopub.status.idle": "2024-01-08T11:35:05.299118Z",
- "shell.execute_reply": "2024-01-08T11:35:05.298475Z"
+ "iopub.execute_input": "2024-01-09T02:27:30.520957Z",
+ "iopub.status.busy": "2024-01-09T02:27:30.520573Z",
+ "iopub.status.idle": "2024-01-09T02:27:32.817344Z",
+ "shell.execute_reply": "2024-01-09T02:27:32.816697Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "5646c7d23d5747f6a0669e69c6d75ebf",
+ "model_id": "53a9765c969b4386b2cc621f8ccd0ace",
"version_major": 2,
"version_minor": 0
},
@@ -118,7 +118,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -143,10 +143,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:05.302272Z",
- "iopub.status.busy": "2024-01-08T11:35:05.301717Z",
- "iopub.status.idle": "2024-01-08T11:35:05.305240Z",
- "shell.execute_reply": "2024-01-08T11:35:05.304684Z"
+ "iopub.execute_input": "2024-01-09T02:27:32.820291Z",
+ "iopub.status.busy": "2024-01-09T02:27:32.819968Z",
+ "iopub.status.idle": "2024-01-09T02:27:32.823399Z",
+ "shell.execute_reply": "2024-01-09T02:27:32.822858Z"
}
},
"outputs": [],
@@ -167,10 +167,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:05.307611Z",
- "iopub.status.busy": "2024-01-08T11:35:05.307256Z",
- "iopub.status.idle": "2024-01-08T11:35:05.310631Z",
- "shell.execute_reply": "2024-01-08T11:35:05.310095Z"
+ "iopub.execute_input": "2024-01-09T02:27:32.825711Z",
+ "iopub.status.busy": "2024-01-09T02:27:32.825508Z",
+ "iopub.status.idle": "2024-01-09T02:27:32.828695Z",
+ "shell.execute_reply": "2024-01-09T02:27:32.828174Z"
},
"nbsphinx": "hidden"
},
@@ -200,10 +200,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:05.312877Z",
- "iopub.status.busy": "2024-01-08T11:35:05.312670Z",
- "iopub.status.idle": "2024-01-08T11:35:05.459480Z",
- "shell.execute_reply": "2024-01-08T11:35:05.458803Z"
+ "iopub.execute_input": "2024-01-09T02:27:32.831066Z",
+ "iopub.status.busy": "2024-01-09T02:27:32.830631Z",
+ "iopub.status.idle": "2024-01-09T02:27:32.900066Z",
+ "shell.execute_reply": "2024-01-09T02:27:32.899413Z"
}
},
"outputs": [
@@ -293,10 +293,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:05.461892Z",
- "iopub.status.busy": "2024-01-08T11:35:05.461654Z",
- "iopub.status.idle": "2024-01-08T11:35:05.466409Z",
- "shell.execute_reply": "2024-01-08T11:35:05.465864Z"
+ "iopub.execute_input": "2024-01-09T02:27:32.902455Z",
+ "iopub.status.busy": "2024-01-09T02:27:32.902215Z",
+ "iopub.status.idle": "2024-01-09T02:27:32.906671Z",
+ "shell.execute_reply": "2024-01-09T02:27:32.906129Z"
}
},
"outputs": [
@@ -305,7 +305,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'cancel_transfer', 'visa_or_mastercard', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire'}\n"
+ "Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_about_to_expire', 'getting_spare_card', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer'}\n"
]
}
],
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:05.468749Z",
- "iopub.status.busy": "2024-01-08T11:35:05.468540Z",
- "iopub.status.idle": "2024-01-08T11:35:05.472474Z",
- "shell.execute_reply": "2024-01-08T11:35:05.471938Z"
+ "iopub.execute_input": "2024-01-09T02:27:32.909128Z",
+ "iopub.status.busy": "2024-01-09T02:27:32.908669Z",
+ "iopub.status.idle": "2024-01-09T02:27:32.912291Z",
+ "shell.execute_reply": "2024-01-09T02:27:32.911690Z"
}
},
"outputs": [
@@ -387,17 +387,17 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:05.474982Z",
- "iopub.status.busy": "2024-01-08T11:35:05.474605Z",
- "iopub.status.idle": "2024-01-08T11:35:16.079010Z",
- "shell.execute_reply": "2024-01-08T11:35:16.078271Z"
+ "iopub.execute_input": "2024-01-09T02:27:32.914931Z",
+ "iopub.status.busy": "2024-01-09T02:27:32.914450Z",
+ "iopub.status.idle": "2024-01-09T02:27:42.016136Z",
+ "shell.execute_reply": "2024-01-09T02:27:42.015496Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e555ba7f08104ae7bb2f9bf45c0c3f1a",
+ "model_id": "777eaa26556944efa257fbb284335e8c",
"version_major": 2,
"version_minor": 0
},
@@ -411,7 +411,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "c8f8ae2946a645a1ac5c7ad40c1dce23",
+ "model_id": "fce30ad9567147ac8828341562b67130",
"version_major": 2,
"version_minor": 0
},
@@ -425,7 +425,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "dd16d0591aac43169eee72660e3bc532",
+ "model_id": "0543bc19e972412e9b20a0c33144f5e9",
"version_major": 2,
"version_minor": 0
},
@@ -439,7 +439,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9e7bcf1455a84d31942968f61a5039ee",
+ "model_id": "08a8779bd75044fab2ed0f3c516b0053",
"version_major": 2,
"version_minor": 0
},
@@ -453,7 +453,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "8e153220d1cf4195ae6b2b45561a94e1",
+ "model_id": "d3f81e2272f14faab76e29c5b2df3c9c",
"version_major": 2,
"version_minor": 0
},
@@ -467,7 +467,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "05c2d56d09604808ae3927f801ecfd4a",
+ "model_id": "8785baaad9ba43dd8e32309ea823a8c3",
"version_major": 2,
"version_minor": 0
},
@@ -481,7 +481,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "fb30149804554afba704e669de938e13",
+ "model_id": "5ba4a6c6654e47a1b378e7122f303c94",
"version_major": 2,
"version_minor": 0
},
@@ -535,10 +535,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:16.082373Z",
- "iopub.status.busy": "2024-01-08T11:35:16.081949Z",
- "iopub.status.idle": "2024-01-08T11:35:17.255553Z",
- "shell.execute_reply": "2024-01-08T11:35:17.254825Z"
+ "iopub.execute_input": "2024-01-09T02:27:42.019467Z",
+ "iopub.status.busy": "2024-01-09T02:27:42.019014Z",
+ "iopub.status.idle": "2024-01-09T02:27:43.201769Z",
+ "shell.execute_reply": "2024-01-09T02:27:43.201082Z"
},
"scrolled": true
},
@@ -570,10 +570,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:17.259327Z",
- "iopub.status.busy": "2024-01-08T11:35:17.258688Z",
- "iopub.status.idle": "2024-01-08T11:35:17.262029Z",
- "shell.execute_reply": "2024-01-08T11:35:17.261456Z"
+ "iopub.execute_input": "2024-01-09T02:27:43.205379Z",
+ "iopub.status.busy": "2024-01-09T02:27:43.204908Z",
+ "iopub.status.idle": "2024-01-09T02:27:43.208054Z",
+ "shell.execute_reply": "2024-01-09T02:27:43.207489Z"
}
},
"outputs": [],
@@ -593,10 +593,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:17.265034Z",
- "iopub.status.busy": "2024-01-08T11:35:17.264608Z",
- "iopub.status.idle": "2024-01-08T11:35:18.689760Z",
- "shell.execute_reply": "2024-01-08T11:35:18.688972Z"
+ "iopub.execute_input": "2024-01-09T02:27:43.211922Z",
+ "iopub.status.busy": "2024-01-09T02:27:43.210633Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.531130Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.530400Z"
},
"scrolled": true
},
@@ -640,10 +640,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.693453Z",
- "iopub.status.busy": "2024-01-08T11:35:18.692804Z",
- "iopub.status.idle": "2024-01-08T11:35:18.729794Z",
- "shell.execute_reply": "2024-01-08T11:35:18.729136Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.534607Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.533945Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.568427Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.567844Z"
},
"scrolled": true
},
@@ -808,10 +808,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.733093Z",
- "iopub.status.busy": "2024-01-08T11:35:18.732718Z",
- "iopub.status.idle": "2024-01-08T11:35:18.744079Z",
- "shell.execute_reply": "2024-01-08T11:35:18.743454Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.571512Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.571114Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.581734Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.581141Z"
},
"scrolled": true
},
@@ -921,10 +921,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.746669Z",
- "iopub.status.busy": "2024-01-08T11:35:18.746454Z",
- "iopub.status.idle": "2024-01-08T11:35:18.751464Z",
- "shell.execute_reply": "2024-01-08T11:35:18.750799Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.584874Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.584498Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.589588Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.589112Z"
}
},
"outputs": [
@@ -962,10 +962,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.753979Z",
- "iopub.status.busy": "2024-01-08T11:35:18.753582Z",
- "iopub.status.idle": "2024-01-08T11:35:18.762544Z",
- "shell.execute_reply": "2024-01-08T11:35:18.761952Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.591822Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.591477Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.597780Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.597326Z"
}
},
"outputs": [
@@ -1082,10 +1082,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.765184Z",
- "iopub.status.busy": "2024-01-08T11:35:18.764796Z",
- "iopub.status.idle": "2024-01-08T11:35:18.772358Z",
- "shell.execute_reply": "2024-01-08T11:35:18.771739Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.599990Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.599659Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.605745Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.605292Z"
}
},
"outputs": [
@@ -1168,10 +1168,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.774944Z",
- "iopub.status.busy": "2024-01-08T11:35:18.774540Z",
- "iopub.status.idle": "2024-01-08T11:35:18.781701Z",
- "shell.execute_reply": "2024-01-08T11:35:18.781036Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.607870Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.607536Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.613204Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.612752Z"
}
},
"outputs": [
@@ -1279,10 +1279,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.784328Z",
- "iopub.status.busy": "2024-01-08T11:35:18.784087Z",
- "iopub.status.idle": "2024-01-08T11:35:18.795282Z",
- "shell.execute_reply": "2024-01-08T11:35:18.794570Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.615420Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.615083Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.623743Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.623207Z"
}
},
"outputs": [
@@ -1393,10 +1393,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.797995Z",
- "iopub.status.busy": "2024-01-08T11:35:18.797604Z",
- "iopub.status.idle": "2024-01-08T11:35:18.804267Z",
- "shell.execute_reply": "2024-01-08T11:35:18.803583Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.626033Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.625832Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.789347Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.788745Z"
}
},
"outputs": [
@@ -1464,10 +1464,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.806814Z",
- "iopub.status.busy": "2024-01-08T11:35:18.806390Z",
- "iopub.status.idle": "2024-01-08T11:35:18.813054Z",
- "shell.execute_reply": "2024-01-08T11:35:18.812345Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.791900Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.791502Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.797687Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.797148Z"
}
},
"outputs": [
@@ -1546,10 +1546,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.815857Z",
- "iopub.status.busy": "2024-01-08T11:35:18.815445Z",
- "iopub.status.idle": "2024-01-08T11:35:18.819766Z",
- "shell.execute_reply": "2024-01-08T11:35:18.819179Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.800181Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.799793Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.803783Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.803162Z"
}
},
"outputs": [
@@ -1597,10 +1597,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:18.822387Z",
- "iopub.status.busy": "2024-01-08T11:35:18.821949Z",
- "iopub.status.idle": "2024-01-08T11:35:18.828023Z",
- "shell.execute_reply": "2024-01-08T11:35:18.827350Z"
+ "iopub.execute_input": "2024-01-09T02:27:44.806438Z",
+ "iopub.status.busy": "2024-01-09T02:27:44.805977Z",
+ "iopub.status.idle": "2024-01-09T02:27:44.811642Z",
+ "shell.execute_reply": "2024-01-09T02:27:44.811137Z"
},
"nbsphinx": "hidden"
},
@@ -1650,7 +1650,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "00ce7416690d4a3a8ab1ff2e228a216f": {
+ "0039ec8223b94cb78bf24e45eaa9663e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1702,59 +1702,29 @@
"width": null
}
},
- "020dc8eae97e46eca98ac6fa3add9547": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "0543bc19e972412e9b20a0c33144f5e9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_422b67d5e7ff431cb977ec27979a2738",
+ "IPY_MODEL_28a32fef92c54f6393807c9545a1b9a3",
+ "IPY_MODEL_340697f5333847eda9c1629cf5ac1913"
+ ],
+ "layout": "IPY_MODEL_97a3d8b346744a8c84995719a99ddc75"
}
},
- "05c2d56d09604808ae3927f801ecfd4a": {
+ "08a8779bd75044fab2ed0f3c516b0053": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -1769,14 +1739,38 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_57cc416a8e544699a7b7c0131cebff7e",
- "IPY_MODEL_e972d77e5a314885a56735ad41b2219c",
- "IPY_MODEL_8c64187d6bf14ab6844dbf0145cbc9c4"
+ "IPY_MODEL_6fd8a035cfbf4500a631940fca1d00fb",
+ "IPY_MODEL_bb9292a7e5d54f25b7c21c9f142d80c0",
+ "IPY_MODEL_cc119e65f7a14065bf6ab62f5d33c3d9"
],
- "layout": "IPY_MODEL_fe6ea06892974b21badbeb0f9a4980c6"
+ "layout": "IPY_MODEL_fb00d77f22474d9caaf4410ff7fac667"
+ }
+ },
+ "0d055a4bd3d14a5a8f0c0003188066a6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_43441d9c4c7e45bfbec4fedeb5dd01dd",
+ "max": 466062.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_dca93abeaef04006b0784a0e6b83a93d",
+ "value": 466062.0
}
},
- "06b4aa69e1524271871cd80f39c3daea": {
+ "12ae16b4c8bb4d6391e37ffa65740dc5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1828,59 +1822,7 @@
"width": null
}
},
- "081a76836490496eb3c2aec9cdffc73d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0e035c4d94a54edfb461320bff4e339c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "14be2e9f57f64ba889d3411b7a62c99d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2f27ca17a42748ad8b1ec67d4a679ba6",
- "placeholder": "",
- "style": "IPY_MODEL_821ef424952e4c0288e11679dc5599a7",
- "value": "vocab.txt: 100%"
- }
- },
- "19aa13e88e1d4bf3866f279d436f550c": {
+ "1855661cd4b84da98432669dc3342f65": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1932,22 +1874,7 @@
"width": null
}
},
- "1b321cdfedd943ff843cd0a140a89591": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "1c3fb763932a4433940af3e6f99e739b": {
+ "1b3f4be714a14ed692037e79453dff21": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1999,7 +1926,7 @@
"width": null
}
},
- "1d4316c0b20b45ee8f7bf7df229fa271": {
+ "1c93b6436c55496e9f0b91913bb0fd58": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -2015,7 +1942,7 @@
"description_width": ""
}
},
- "20c609851eac42b2b61d572def6bbb9b": {
+ "1d681538cfad4aec88c0cd424fedcb53": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2030,7 +1957,7 @@
"description_width": ""
}
},
- "258aa79acce54b83bd5b686d25933f86": {
+ "24bd62733ca84a849b2223f4dc4ff108": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2045,7 +1972,7 @@
"description_width": ""
}
},
- "2f27ca17a42748ad8b1ec67d4a679ba6": {
+ "2598de508fe84f339d86a9566a61ea39": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2097,23 +2024,28 @@
"width": null
}
},
- "306e29affcad4037abeee067caa3a233": {
+ "26b2b821697046608299526d1425f7d7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b708fbd342874c479ba61467f2c777b5",
+ "placeholder": "",
+ "style": "IPY_MODEL_8918aabaa0d541d0bf8726da0c7ba76e",
+ "value": ""
}
},
- "30a19afa42d0484886ff5ba2a7f01de4": {
+ "283066d598594e5385cecdf8bfd46384": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2165,53 +2097,31 @@
"width": null
}
},
- "30b725f033fe4535923ca8e80cbaf78a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "32ce6f79ca934522b681439c1e45dde3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "358c7424954744fdbd9a9bb37bc5232e": {
+ "28a32fef92c54f6393807c9545a1b9a3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f8d09c65afca4c58a3df24ed4be0565e",
+ "max": 665.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_cd8818510d3244f0b2c9ab283f05ad58",
+ "value": 665.0
}
},
- "3a0154afa58041e0b5aae6603dbd706c": {
+ "29bd49071f5b4c82898efbecd28e7cb0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2263,22 +2173,7 @@
"width": null
}
},
- "3b3c4b3cc1cb4c6a87eaab059123b0a2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "4124efb9897a49539e65c48b1d78e380": {
+ "2ad0903f3594420b8b764571f37a0851": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2330,7 +2225,7 @@
"width": null
}
},
- "4265bae1218c4605ad071f322a1d2e25": {
+ "305c14fb418a4592a3dfabcf78763be6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2345,99 +2240,64 @@
"description_width": ""
}
},
- "4460e5acef824d579f91a8d0285c1cf1": {
+ "340697f5333847eda9c1629cf5ac1913": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5884307f6d0346eeb532e7fe183665a0",
- "max": 665.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_effc4864e3244e76beda97ba59580c37",
- "value": 665.0
+ "layout": "IPY_MODEL_e47fb97325be4849921f770b41c941ee",
+ "placeholder": "",
+ "style": "IPY_MODEL_96de1fa1810747768bf0dcb627df5cd0",
+ "value": " 665/665 [00:00<00:00, 85.9kB/s]"
}
},
- "44a5db2f0de44095b45e2375697ac324": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "3636984b297f486eb1b143c51e5d9baf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2598de508fe84f339d86a9566a61ea39",
+ "placeholder": "",
+ "style": "IPY_MODEL_60644673b8ac42ea811c507a3851ce97",
+ "value": "tokenizer.json: 100%"
}
},
- "4b1d40180fb94bd2bc6cfc60b338efa7": {
+ "3b294622520640999e40e302bdbdb020": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "4e550b4a66b44d2f8a09c6c21c045aae": {
+ "3df37cefde54499e9ed426bec00d7112": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2452,7 +2312,28 @@
"description_width": ""
}
},
- "5437f9ec80474a00a4cdb36a2c3f5052": {
+ "422b67d5e7ff431cb977ec27979a2738": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7c9bfb9bb64643ce9095e2b766956916",
+ "placeholder": "",
+ "style": "IPY_MODEL_305c14fb418a4592a3dfabcf78763be6",
+ "value": "config.json: 100%"
+ }
+ },
+ "43441d9c4c7e45bfbec4fedeb5dd01dd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2504,29 +2385,31 @@
"width": null
}
},
- "5646c7d23d5747f6a0669e69c6d75ebf": {
+ "4563e189590844fa9b40788af474c982": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e3fc6cc9f6e848dfa9f6cf8e4cbf13ae",
- "IPY_MODEL_a23fb96783ef41318acad8ba7c4828ab",
- "IPY_MODEL_891e6a9730ab46f3b4535e401b3e002b"
- ],
- "layout": "IPY_MODEL_3a0154afa58041e0b5aae6603dbd706c"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_776ea3a44cec4feaa62e16702b18c08d",
+ "max": 1.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_8c913a1ca54241c8a02834549c90e2aa",
+ "value": 0.0
}
},
- "5777b7bb553147f19f49d1137c0e91ca": {
+ "477fa88c2a4a406baa0fa1ce26ba68f5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2541,86 +2424,89 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6a427c26e0c9479b8a39aaf8731da143",
+ "layout": "IPY_MODEL_d8d2b83ea5424f9b8848e183f1e7f4c3",
"placeholder": "",
- "style": "IPY_MODEL_20c609851eac42b2b61d572def6bbb9b",
- "value": " 466k/466k [00:00<00:00, 5.18MB/s]"
+ "style": "IPY_MODEL_573de866824347f3a4e4ecc5176030c8",
+ "value": " 29.0/29.0 [00:00<00:00, 3.95kB/s]"
}
},
- "57cc416a8e544699a7b7c0131cebff7e": {
+ "493c732ddf5a4c02b5e690b8c08a0fce": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "49a8b449a2a047c1b2d737d13f57abac": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4b5d57c4fcf2430b8dddf44bf0f7c9cc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_eb59fe739d72455ca7bd27f68628c488",
- "placeholder": "",
- "style": "IPY_MODEL_624e1ac543724bcdab3394d0d1d42618",
- "value": "tokenizer_config.json: 100%"
+ "layout": "IPY_MODEL_2ad0903f3594420b8b764571f37a0851",
+ "max": 2211.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_e0a7f12ab3db4eb0b0f95d11b4ce3cce",
+ "value": 2211.0
}
},
- "5884307f6d0346eeb532e7fe183665a0": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "53a9765c969b4386b2cc621f8ccd0ace": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_26b2b821697046608299526d1425f7d7",
+ "IPY_MODEL_4563e189590844fa9b40788af474c982",
+ "IPY_MODEL_7966f69d0a444c09b775a9286a7a4222"
+ ],
+ "layout": "IPY_MODEL_5cf7a852358945678b5023f0533bd0ab"
}
},
- "61fb280fc63f4ae08dfc5b82beb0f723": {
+ "548b991bb729428e93f572c9dabebe5b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2672,7 +2558,28 @@
"width": null
}
},
- "624e1ac543724bcdab3394d0d1d42618": {
+ "5737b0635b8e4eadae2164c2cc133653": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_83ba74db52914d59b34cdf6d289904a0",
+ "placeholder": "",
+ "style": "IPY_MODEL_b0997a51319643b6b900fddf2b005584",
+ "value": " 466k/466k [00:00<00:00, 13.7MB/s]"
+ }
+ },
+ "573de866824347f3a4e4ecc5176030c8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2687,7 +2594,29 @@
"description_width": ""
}
},
- "6a427c26e0c9479b8a39aaf8731da143": {
+ "5ba4a6c6654e47a1b378e7122f303c94": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a40ad1a9a38948b1934207c1c21558dc",
+ "IPY_MODEL_e3fd31fb6a2f44a2a87411982e3b9212",
+ "IPY_MODEL_c51177338e9447ec982ecb139dc63aef"
+ ],
+ "layout": "IPY_MODEL_9885c1d4f5de44af8903bebef30f80d4"
+ }
+ },
+ "5cf7a852358945678b5023f0533bd0ab": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2739,67 +2668,59 @@
"width": null
}
},
- "7273f921a5a7494db6596ffc66112caf": {
+ "6023a3dddd0249dc8c140e5fd4145ab3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d072163a84634c44b40e9231ba92c4c4",
- "placeholder": "",
- "style": "IPY_MODEL_75e446a6e0024bd08f591d255dd5c52b",
- "value": " 665/665 [00:00<00:00, 80.0kB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "731420f45f18496da00bfbe6250c64cf": {
+ "60644673b8ac42ea811c507a3851ce97": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c2314761219d4922bb065bf5597d1fb3",
- "max": 2211.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0e035c4d94a54edfb461320bff4e339c",
- "value": 2211.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "75e446a6e0024bd08f591d255dd5c52b": {
+ "63a649deb0dd4ad981c6d14706661825": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_283066d598594e5385cecdf8bfd46384",
+ "placeholder": "",
+ "style": "IPY_MODEL_3b294622520640999e40e302bdbdb020",
+ "value": ".gitattributes: 100%"
}
},
- "7992234925d44a3c882a5625e5abf368": {
+ "65587f6f52d3418f85ea9edcfcfc8507": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2851,7 +2772,7 @@
"width": null
}
},
- "7a0fd86eb85847ce98a60d81687f86bc": {
+ "6f6cbe973e4948109deae3ee1b5ed968": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2903,22 +2824,28 @@
"width": null
}
},
- "7a9213a6d9674ffb84a933f8453a5331": {
+ "6fd8a035cfbf4500a631940fca1d00fb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_baa8fa619a644551a603b954fce3330a",
+ "placeholder": "",
+ "style": "IPY_MODEL_493c732ddf5a4c02b5e690b8c08a0fce",
+ "value": "pytorch_model.bin: 100%"
}
},
- "7d51968e3ee34a79a75213230706d09b": {
+ "776ea3a44cec4feaa62e16702b18c08d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2967,46 +2894,32 @@
"right": null,
"top": null,
"visibility": null,
- "width": null
- }
- },
- "821ef424952e4c0288e11679dc5599a7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "width": "20px"
}
},
- "88f05112107b43ccada6a928b60c8fa4": {
+ "777eaa26556944efa257fbb284335e8c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5437f9ec80474a00a4cdb36a2c3f5052",
- "placeholder": "",
- "style": "IPY_MODEL_a39d1f9aa7b74e18b08128ebc69a3c5c",
- "value": " 232k/232k [00:00<00:00, 3.33MB/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_63a649deb0dd4ad981c6d14706661825",
+ "IPY_MODEL_c96f69a063984e93bffdaba1b5af6583",
+ "IPY_MODEL_944a90845f354035a37090dbd9570a73"
+ ],
+ "layout": "IPY_MODEL_9f7a78b7dd974f029c875da85c4d7558"
}
},
- "891e6a9730ab46f3b4535e401b3e002b": {
+ "7966f69d0a444c09b775a9286a7a4222": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3021,13 +2934,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_df140300b5624951b7197c6691694ecb",
+ "layout": "IPY_MODEL_a84ebd2b433d429c86c3f2d7d7887d4e",
"placeholder": "",
- "style": "IPY_MODEL_081a76836490496eb3c2aec9cdffc73d",
+ "style": "IPY_MODEL_3df37cefde54499e9ed426bec00d7112",
"value": " 0/0 [00:00<?, ?it/s]"
}
},
- "8c64187d6bf14ab6844dbf0145cbc9c4": {
+ "7b7a2209179a402e9b88f7a463844fb1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3042,56 +2955,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1c3fb763932a4433940af3e6f99e739b",
+ "layout": "IPY_MODEL_548b991bb729428e93f572c9dabebe5b",
"placeholder": "",
- "style": "IPY_MODEL_4265bae1218c4605ad071f322a1d2e25",
- "value": " 29.0/29.0 [00:00<00:00, 3.66kB/s]"
+ "style": "IPY_MODEL_b40891c4e47c47688bd6f566f38239bf",
+ "value": " 2.21k/2.21k [00:00<00:00, 292kB/s]"
}
},
- "8e153220d1cf4195ae6b2b45561a94e1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a7d7c4d3701e4296ad24639ab761be86",
- "IPY_MODEL_ab25a8b05d09449991777deb4ccc322e",
- "IPY_MODEL_5777b7bb553147f19f49d1137c0e91ca"
- ],
- "layout": "IPY_MODEL_020dc8eae97e46eca98ac6fa3add9547"
- }
- },
- "9340f6dfe5a64890ab361bc921cdeec7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fcd0d925d6994d569160c67d2ce93402",
- "placeholder": "",
- "style": "IPY_MODEL_32ce6f79ca934522b681439c1e45dde3",
- "value": " 54.2M/54.2M [00:00<00:00, 106MB/s]"
- }
- },
- "9882964928d64045adc9a4a0f829e7f3": {
+ "7c9bfb9bb64643ce9095e2b766956916": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3143,28 +3013,59 @@
"width": null
}
},
- "9899d65eaa9f44fc8fac307fb8d331cb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "83ba74db52914d59b34cdf6d289904a0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_dbdbb6adaf0f4d1697dfb3fbcc155053",
- "placeholder": "",
- "style": "IPY_MODEL_e302f0ac75174ee8897e9930e2922ee2",
- "value": "config.json: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "9e7bcf1455a84d31942968f61a5039ee": {
+ "8785baaad9ba43dd8e32309ea823a8c3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -3179,53 +3080,45 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_b4edbfddea214258ac186d52e606186c",
- "IPY_MODEL_f6af7c5e86ca4de89f583e9bdf29cd55",
- "IPY_MODEL_9340f6dfe5a64890ab361bc921cdeec7"
+ "IPY_MODEL_a673710efb5b40f3bf0ce224cefb24fe",
+ "IPY_MODEL_e4368bbb9ea6440a9a3c6fca682f0c71",
+ "IPY_MODEL_477fa88c2a4a406baa0fa1ce26ba68f5"
],
- "layout": "IPY_MODEL_7d51968e3ee34a79a75213230706d09b"
+ "layout": "IPY_MODEL_1855661cd4b84da98432669dc3342f65"
}
},
- "a23fb96783ef41318acad8ba7c4828ab": {
+ "8918aabaa0d541d0bf8726da0c7ba76e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c2525a63cea141c09d9da07d4b02917b",
- "max": 1.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_1d4316c0b20b45ee8f7bf7df229fa271",
- "value": 0.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "a39d1f9aa7b74e18b08128ebc69a3c5c": {
+ "8c913a1ca54241c8a02834549c90e2aa": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "a7d7c4d3701e4296ad24639ab761be86": {
+ "944a90845f354035a37090dbd9570a73": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3240,58 +3133,28 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d01d9a0b9f2e405f850298ba0dfdc099",
+ "layout": "IPY_MODEL_1b3f4be714a14ed692037e79453dff21",
"placeholder": "",
- "style": "IPY_MODEL_7a9213a6d9674ffb84a933f8453a5331",
- "value": "tokenizer.json: 100%"
- }
- },
- "ab25a8b05d09449991777deb4ccc322e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7a0fd86eb85847ce98a60d81687f86bc",
- "max": 466062.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_efa315fbbad34057a36c2de12c7672c2",
- "value": 466062.0
+ "style": "IPY_MODEL_1d681538cfad4aec88c0cd424fedcb53",
+ "value": " 391/391 [00:00<00:00, 50.0kB/s]"
}
},
- "b4edbfddea214258ac186d52e606186c": {
+ "96de1fa1810747768bf0dcb627df5cd0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_06b4aa69e1524271871cd80f39c3daea",
- "placeholder": "",
- "style": "IPY_MODEL_4e550b4a66b44d2f8a09c6c21c045aae",
- "value": "pytorch_model.bin: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "bb2ce4adeceb4ec593bc3514aa1d11f5": {
+ "97a3d8b346744a8c84995719a99ddc75": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3343,43 +3206,7 @@
"width": null
}
},
- "be52334b5cd74c31822ec8a75da86454": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_44a5db2f0de44095b45e2375697ac324",
- "placeholder": "",
- "style": "IPY_MODEL_3b3c4b3cc1cb4c6a87eaab059123b0a2",
- "value": " 2.21k/2.21k [00:00<00:00, 270kB/s]"
- }
- },
- "bfecd6cf0269459ea68ad832c90e1173": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "c2314761219d4922bb065bf5597d1fb3": {
+ "9885c1d4f5de44af8903bebef30f80d4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3431,7 +3258,7 @@
"width": null
}
},
- "c2525a63cea141c09d9da07d4b02917b": {
+ "9f7a78b7dd974f029c875da85c4d7558": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3480,48 +3307,119 @@
"right": null,
"top": null,
"visibility": null,
- "width": "20px"
+ "width": null
}
},
- "c8f8ae2946a645a1ac5c7ad40c1dce23": {
+ "9fcaebcb9369414c8d08cae4fe9e5f88": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a40ad1a9a38948b1934207c1c21558dc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d5f1ff5388db47a48cfc738358d8b0d6",
- "IPY_MODEL_731420f45f18496da00bfbe6250c64cf",
- "IPY_MODEL_be52334b5cd74c31822ec8a75da86454"
- ],
- "layout": "IPY_MODEL_f4fef801d97d49a9873cc1a4ed7f05e3"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_be0562ecdb204440b122f2f7ae4e4b37",
+ "placeholder": "",
+ "style": "IPY_MODEL_24bd62733ca84a849b2223f4dc4ff108",
+ "value": "vocab.txt: 100%"
}
},
- "cddee49db2f447a7b86c7566d9e86ca3": {
+ "a673710efb5b40f3bf0ce224cefb24fe": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c3a20710e89d4506a2853db415daa787",
+ "placeholder": "",
+ "style": "IPY_MODEL_d7438ceb117d4606b9a26997bd6e12de",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "a84ebd2b433d429c86c3f2d7d7887d4e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "ce5169d7511f469d92bf4b1843792638": {
+ "aee6b936ba8048e6ab6e81abcf4ee47f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3573,7 +3471,58 @@
"width": null
}
},
- "d01d9a0b9f2e405f850298ba0dfdc099": {
+ "b0997a51319643b6b900fddf2b005584": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b40891c4e47c47688bd6f566f38239bf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b68f6935188447f289c523c653b49158": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0039ec8223b94cb78bf24e45eaa9663e",
+ "placeholder": "",
+ "style": "IPY_MODEL_9fcaebcb9369414c8d08cae4fe9e5f88",
+ "value": "README.md: 100%"
+ }
+ },
+ "b708fbd342874c479ba61467f2c777b5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3625,7 +3574,7 @@
"width": null
}
},
- "d072163a84634c44b40e9231ba92c4c4": {
+ "baa8fa619a644551a603b954fce3330a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3677,28 +3626,31 @@
"width": null
}
},
- "d5f1ff5388db47a48cfc738358d8b0d6": {
+ "bb9292a7e5d54f25b7c21c9f142d80c0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_00ce7416690d4a3a8ab1ff2e228a216f",
- "placeholder": "",
- "style": "IPY_MODEL_bfecd6cf0269459ea68ad832c90e1173",
- "value": "README.md: 100%"
+ "layout": "IPY_MODEL_ece3d9db7b9b4c5eac948f6c0e9098d4",
+ "max": 54245363.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f87d0be002ff4e7f8e8c14253c0d64fe",
+ "value": 54245363.0
}
},
- "dbdbb6adaf0f4d1697dfb3fbcc155053": {
+ "be0562ecdb204440b122f2f7ae4e4b37": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3750,29 +3702,22 @@
"width": null
}
},
- "dd16d0591aac43169eee72660e3bc532": {
+ "c38276c0199741f3b36ee90c751fffe1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9899d65eaa9f44fc8fac307fb8d331cb",
- "IPY_MODEL_4460e5acef824d579f91a8d0285c1cf1",
- "IPY_MODEL_7273f921a5a7494db6596ffc66112caf"
- ],
- "layout": "IPY_MODEL_f2408564d77e46b49ceab3e8a1936685"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "df140300b5624951b7197c6691694ecb": {
+ "c3a20710e89d4506a2853db415daa787": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3824,22 +3769,7 @@
"width": null
}
},
- "e302f0ac75174ee8897e9930e2922ee2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "e3fc6cc9f6e848dfa9f6cf8e4cbf13ae": {
+ "c51177338e9447ec982ecb139dc63aef": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3854,35 +3784,29 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_f00bfe0b700b4a339a2c1d3504e7026d",
+ "layout": "IPY_MODEL_aee6b936ba8048e6ab6e81abcf4ee47f",
"placeholder": "",
- "style": "IPY_MODEL_258aa79acce54b83bd5b686d25933f86",
- "value": ""
+ "style": "IPY_MODEL_49a8b449a2a047c1b2d737d13f57abac",
+ "value": " 232k/232k [00:00<00:00, 28.3MB/s]"
}
},
- "e555ba7f08104ae7bb2f9bf45c0c3f1a": {
+ "c80db81686f448f1ab5acccd044c12f1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_eaa6a26a9727459ba846aaf33fc7b3c5",
- "IPY_MODEL_e82288c6cf304c77afc4274b34128c60",
- "IPY_MODEL_eb16af60fb0244349137b9197cdb68e8"
- ],
- "layout": "IPY_MODEL_7992234925d44a3c882a5625e5abf368"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "e82288c6cf304c77afc4274b34128c60": {
+ "c96f69a063984e93bffdaba1b5af6583": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -3898,105 +3822,141 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_30a19afa42d0484886ff5ba2a7f01de4",
+ "layout": "IPY_MODEL_29bd49071f5b4c82898efbecd28e7cb0",
"max": 391.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_4b1d40180fb94bd2bc6cfc60b338efa7",
+ "style": "IPY_MODEL_6023a3dddd0249dc8c140e5fd4145ab3",
"value": 391.0
}
},
- "e87b611d47f64e719c76047f4fc57d1e": {
+ "cc119e65f7a14065bf6ab62f5d33c3d9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4124efb9897a49539e65c48b1d78e380",
- "max": 231508.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_cddee49db2f447a7b86c7566d9e86ca3",
- "value": 231508.0
+ "layout": "IPY_MODEL_eb8fb7a6c5da45f6b202ac017a064f6a",
+ "placeholder": "",
+ "style": "IPY_MODEL_c38276c0199741f3b36ee90c751fffe1",
+ "value": " 54.2M/54.2M [00:00<00:00, 147MB/s]"
}
},
- "e972d77e5a314885a56735ad41b2219c": {
+ "cd8818510d3244f0b2c9ab283f05ad58": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_19aa13e88e1d4bf3866f279d436f550c",
- "max": 29.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_30b725f033fe4535923ca8e80cbaf78a",
- "value": 29.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "eaa6a26a9727459ba846aaf33fc7b3c5": {
+ "d3f81e2272f14faab76e29c5b2df3c9c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9882964928d64045adc9a4a0f829e7f3",
- "placeholder": "",
- "style": "IPY_MODEL_358c7424954744fdbd9a9bb37bc5232e",
- "value": ".gitattributes: 100%"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_3636984b297f486eb1b143c51e5d9baf",
+ "IPY_MODEL_0d055a4bd3d14a5a8f0c0003188066a6",
+ "IPY_MODEL_5737b0635b8e4eadae2164c2cc133653"
+ ],
+ "layout": "IPY_MODEL_6f6cbe973e4948109deae3ee1b5ed968"
+ }
+ },
+ "d7356af0eb4844e8b6aae3ab08e80849": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "eb16af60fb0244349137b9197cdb68e8": {
+ "d7438ceb117d4606b9a26997bd6e12de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_61fb280fc63f4ae08dfc5b82beb0f723",
- "placeholder": "",
- "style": "IPY_MODEL_1b321cdfedd943ff843cd0a140a89591",
- "value": " 391/391 [00:00<00:00, 47.5kB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "eb59fe739d72455ca7bd27f68628c488": {
+ "d8d2b83ea5424f9b8848e183f1e7f4c3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4048,7 +4008,7 @@
"width": null
}
},
- "efa315fbbad34057a36c2de12c7672c2": {
+ "dca93abeaef04006b0784a0e6b83a93d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -4064,7 +4024,7 @@
"description_width": ""
}
},
- "effc4864e3244e76beda97ba59580c37": {
+ "e0a7f12ab3db4eb0b0f95d11b4ce3cce": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -4080,7 +4040,55 @@
"description_width": ""
}
},
- "f00bfe0b700b4a339a2c1d3504e7026d": {
+ "e3fd31fb6a2f44a2a87411982e3b9212": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d7356af0eb4844e8b6aae3ab08e80849",
+ "max": 231508.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1c93b6436c55496e9f0b91913bb0fd58",
+ "value": 231508.0
+ }
+ },
+ "e4368bbb9ea6440a9a3c6fca682f0c71": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_65587f6f52d3418f85ea9edcfcfc8507",
+ "max": 29.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c80db81686f448f1ab5acccd044c12f1",
+ "value": 29.0
+ }
+ },
+ "e47fb97325be4849921f770b41c941ee": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4132,7 +4140,7 @@
"width": null
}
},
- "f2408564d77e46b49ceab3e8a1936685": {
+ "eb8fb7a6c5da45f6b202ac017a064f6a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4184,7 +4192,7 @@
"width": null
}
},
- "f4fef801d97d49a9873cc1a4ed7f05e3": {
+ "ece3d9db7b9b4c5eac948f6c0e9098d4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4236,53 +4244,23 @@
"width": null
}
},
- "f6af7c5e86ca4de89f583e9bdf29cd55": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bb2ce4adeceb4ec593bc3514aa1d11f5",
- "max": 54245363.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_306e29affcad4037abeee067caa3a233",
- "value": 54245363.0
- }
- },
- "fb30149804554afba704e669de938e13": {
+ "f87d0be002ff4e7f8e8c14253c0d64fe": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_14be2e9f57f64ba889d3411b7a62c99d",
- "IPY_MODEL_e87b611d47f64e719c76047f4fc57d1e",
- "IPY_MODEL_88f05112107b43ccada6a928b60c8fa4"
- ],
- "layout": "IPY_MODEL_ce5169d7511f469d92bf4b1843792638"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "fcd0d925d6994d569160c67d2ce93402": {
+ "f8d09c65afca4c58a3df24ed4be0565e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4334,7 +4312,7 @@
"width": null
}
},
- "fe6ea06892974b21badbeb0f9a4980c6": {
+ "fb00d77f22474d9caaf4410ff7fac667": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4385,6 +4363,28 @@
"visibility": null,
"width": null
}
+ },
+ "fce30ad9567147ac8828341562b67130": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b68f6935188447f289c523c653b49158",
+ "IPY_MODEL_4b5d57c4fcf2430b8dddf44bf0f7c9cc",
+ "IPY_MODEL_7b7a2209179a402e9b88f7a463844fb1"
+ ],
+ "layout": "IPY_MODEL_12ae16b4c8bb4d6391e37ffa65740dc5"
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
index 5ff7d4778..2635c1b7f 100644
--- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
@@ -68,10 +68,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:23.833250Z",
- "iopub.status.busy": "2024-01-08T11:35:23.833042Z",
- "iopub.status.idle": "2024-01-08T11:35:24.912954Z",
- "shell.execute_reply": "2024-01-08T11:35:24.912299Z"
+ "iopub.execute_input": "2024-01-09T02:27:49.686011Z",
+ "iopub.status.busy": "2024-01-09T02:27:49.685830Z",
+ "iopub.status.idle": "2024-01-09T02:27:50.683378Z",
+ "shell.execute_reply": "2024-01-09T02:27:50.682774Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -108,10 +108,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:24.916049Z",
- "iopub.status.busy": "2024-01-08T11:35:24.915703Z",
- "iopub.status.idle": "2024-01-08T11:35:24.918789Z",
- "shell.execute_reply": "2024-01-08T11:35:24.918202Z"
+ "iopub.execute_input": "2024-01-09T02:27:50.686487Z",
+ "iopub.status.busy": "2024-01-09T02:27:50.685995Z",
+ "iopub.status.idle": "2024-01-09T02:27:50.689135Z",
+ "shell.execute_reply": "2024-01-09T02:27:50.688531Z"
},
"id": "_UvI80l42iyi"
},
@@ -201,10 +201,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:24.921312Z",
- "iopub.status.busy": "2024-01-08T11:35:24.921093Z",
- "iopub.status.idle": "2024-01-08T11:35:24.934552Z",
- "shell.execute_reply": "2024-01-08T11:35:24.933978Z"
+ "iopub.execute_input": "2024-01-09T02:27:50.691623Z",
+ "iopub.status.busy": "2024-01-09T02:27:50.691438Z",
+ "iopub.status.idle": "2024-01-09T02:27:50.704018Z",
+ "shell.execute_reply": "2024-01-09T02:27:50.703547Z"
},
"nbsphinx": "hidden"
},
@@ -283,10 +283,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:24.937327Z",
- "iopub.status.busy": "2024-01-08T11:35:24.936939Z",
- "iopub.status.idle": "2024-01-08T11:35:30.890637Z",
- "shell.execute_reply": "2024-01-08T11:35:30.890038Z"
+ "iopub.execute_input": "2024-01-09T02:27:50.706546Z",
+ "iopub.status.busy": "2024-01-09T02:27:50.706187Z",
+ "iopub.status.idle": "2024-01-09T02:27:53.963978Z",
+ "shell.execute_reply": "2024-01-09T02:27:53.963423Z"
},
"id": "dhTHOg8Pyv5G"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
index 14155292f..f46db1caf 100644
--- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
@@ -18,10 +18,10 @@
"id": "2a4efdde",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:35.486537Z",
- "iopub.status.busy": "2024-01-08T11:35:35.486354Z",
- "iopub.status.idle": "2024-01-08T11:35:36.564043Z",
- "shell.execute_reply": "2024-01-08T11:35:36.563392Z"
+ "iopub.execute_input": "2024-01-09T02:27:58.280061Z",
+ "iopub.status.busy": "2024-01-09T02:27:58.279871Z",
+ "iopub.status.idle": "2024-01-09T02:27:59.290453Z",
+ "shell.execute_reply": "2024-01-09T02:27:59.289794Z"
},
"nbsphinx": "hidden"
},
@@ -97,10 +97,10 @@
"id": "239d5ee7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:36.567337Z",
- "iopub.status.busy": "2024-01-08T11:35:36.566796Z",
- "iopub.status.idle": "2024-01-08T11:35:36.570513Z",
- "shell.execute_reply": "2024-01-08T11:35:36.569974Z"
+ "iopub.execute_input": "2024-01-09T02:27:59.293894Z",
+ "iopub.status.busy": "2024-01-09T02:27:59.293069Z",
+ "iopub.status.idle": "2024-01-09T02:27:59.297587Z",
+ "shell.execute_reply": "2024-01-09T02:27:59.296960Z"
}
},
"outputs": [],
@@ -136,10 +136,10 @@
"id": "28b324aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:36.572976Z",
- "iopub.status.busy": "2024-01-08T11:35:36.572596Z",
- "iopub.status.idle": "2024-01-08T11:35:38.726526Z",
- "shell.execute_reply": "2024-01-08T11:35:38.725792Z"
+ "iopub.execute_input": "2024-01-09T02:27:59.300555Z",
+ "iopub.status.busy": "2024-01-09T02:27:59.300062Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.270440Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.269755Z"
}
},
"outputs": [],
@@ -162,10 +162,10 @@
"id": "28b324ab",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.730053Z",
- "iopub.status.busy": "2024-01-08T11:35:38.729308Z",
- "iopub.status.idle": "2024-01-08T11:35:38.774262Z",
- "shell.execute_reply": "2024-01-08T11:35:38.773447Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.273667Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.273026Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.313002Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.312280Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "90c10e18",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.777613Z",
- "iopub.status.busy": "2024-01-08T11:35:38.777187Z",
- "iopub.status.idle": "2024-01-08T11:35:38.819363Z",
- "shell.execute_reply": "2024-01-08T11:35:38.818509Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.316219Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.315836Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.351185Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.350530Z"
}
},
"outputs": [],
@@ -213,10 +213,10 @@
"id": "88839519",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.822599Z",
- "iopub.status.busy": "2024-01-08T11:35:38.822289Z",
- "iopub.status.idle": "2024-01-08T11:35:38.825674Z",
- "shell.execute_reply": "2024-01-08T11:35:38.825052Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.354452Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.353938Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.357084Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.356559Z"
}
},
"outputs": [],
@@ -238,10 +238,10 @@
"id": "558490c2",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.828474Z",
- "iopub.status.busy": "2024-01-08T11:35:38.827949Z",
- "iopub.status.idle": "2024-01-08T11:35:38.831306Z",
- "shell.execute_reply": "2024-01-08T11:35:38.830619Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.359792Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.359246Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.362161Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.361643Z"
}
},
"outputs": [],
@@ -298,10 +298,10 @@
"id": "41714b51",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.833922Z",
- "iopub.status.busy": "2024-01-08T11:35:38.833537Z",
- "iopub.status.idle": "2024-01-08T11:35:38.863514Z",
- "shell.execute_reply": "2024-01-08T11:35:38.862726Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.364714Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.364218Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.393390Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.392701Z"
}
},
"outputs": [
@@ -315,7 +315,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "67e6311c3f3a4bb78d16266f0276c0c5",
+ "model_id": "64e457c5767e4efba691231abd1e2522",
"version_major": 2,
"version_minor": 0
},
@@ -329,7 +329,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "3974ef91806f4833a20926c881ed812f",
+ "model_id": "a78097866a7f46569e5d5bf2a817d034",
"version_major": 2,
"version_minor": 0
},
@@ -387,10 +387,10 @@
"id": "20476c70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.872001Z",
- "iopub.status.busy": "2024-01-08T11:35:38.871753Z",
- "iopub.status.idle": "2024-01-08T11:35:38.879921Z",
- "shell.execute_reply": "2024-01-08T11:35:38.879230Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.401717Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.401129Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.408115Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.407486Z"
},
"nbsphinx": "hidden"
},
@@ -421,10 +421,10 @@
"id": "6983cdad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.882743Z",
- "iopub.status.busy": "2024-01-08T11:35:38.882273Z",
- "iopub.status.idle": "2024-01-08T11:35:38.886289Z",
- "shell.execute_reply": "2024-01-08T11:35:38.885643Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.410811Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.410319Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.414105Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.413498Z"
},
"nbsphinx": "hidden"
},
@@ -447,10 +447,10 @@
"id": "9092b8a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.888766Z",
- "iopub.status.busy": "2024-01-08T11:35:38.888379Z",
- "iopub.status.idle": "2024-01-08T11:35:38.895620Z",
- "shell.execute_reply": "2024-01-08T11:35:38.895064Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.416552Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.416074Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.422879Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.422326Z"
}
},
"outputs": [],
@@ -500,10 +500,10 @@
"id": "b0a01109",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.897997Z",
- "iopub.status.busy": "2024-01-08T11:35:38.897631Z",
- "iopub.status.idle": "2024-01-08T11:35:38.947429Z",
- "shell.execute_reply": "2024-01-08T11:35:38.946566Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.425108Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.424901Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.460597Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.459941Z"
}
},
"outputs": [],
@@ -520,10 +520,10 @@
"id": "8b1da032",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:38.950970Z",
- "iopub.status.busy": "2024-01-08T11:35:38.950396Z",
- "iopub.status.idle": "2024-01-08T11:35:38.998894Z",
- "shell.execute_reply": "2024-01-08T11:35:38.998053Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.463595Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.463142Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.498562Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.497868Z"
},
"nbsphinx": "hidden"
},
@@ -602,10 +602,10 @@
"id": "4c9e9030",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:39.002249Z",
- "iopub.status.busy": "2024-01-08T11:35:39.001884Z",
- "iopub.status.idle": "2024-01-08T11:35:39.132965Z",
- "shell.execute_reply": "2024-01-08T11:35:39.132164Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.501795Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.501350Z",
+ "iopub.status.idle": "2024-01-09T02:28:01.618625Z",
+ "shell.execute_reply": "2024-01-09T02:28:01.617863Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "8751619e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:39.136688Z",
- "iopub.status.busy": "2024-01-08T11:35:39.136123Z",
- "iopub.status.idle": "2024-01-08T11:35:41.716776Z",
- "shell.execute_reply": "2024-01-08T11:35:41.715994Z"
+ "iopub.execute_input": "2024-01-09T02:28:01.621219Z",
+ "iopub.status.busy": "2024-01-09T02:28:01.621006Z",
+ "iopub.status.idle": "2024-01-09T02:28:04.108067Z",
+ "shell.execute_reply": "2024-01-09T02:28:04.107347Z"
}
},
"outputs": [
@@ -761,10 +761,10 @@
"id": "623df36d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:41.719979Z",
- "iopub.status.busy": "2024-01-08T11:35:41.719511Z",
- "iopub.status.idle": "2024-01-08T11:35:41.780415Z",
- "shell.execute_reply": "2024-01-08T11:35:41.779696Z"
+ "iopub.execute_input": "2024-01-09T02:28:04.110780Z",
+ "iopub.status.busy": "2024-01-09T02:28:04.110568Z",
+ "iopub.status.idle": "2024-01-09T02:28:04.169157Z",
+ "shell.execute_reply": "2024-01-09T02:28:04.168518Z"
}
},
"outputs": [
@@ -802,7 +802,7 @@
},
{
"cell_type": "markdown",
- "id": "bd3d2ad1",
+ "id": "f939836e",
"metadata": {},
"source": [
"### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?"
@@ -810,7 +810,7 @@
},
{
"cell_type": "markdown",
- "id": "274bb4a5",
+ "id": "37301838",
"metadata": {},
"source": [
"When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n",
@@ -823,13 +823,13 @@
{
"cell_type": "code",
"execution_count": 17,
- "id": "f300d163",
+ "id": "c6dc0c71",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:41.783457Z",
- "iopub.status.busy": "2024-01-08T11:35:41.783021Z",
- "iopub.status.idle": "2024-01-08T11:35:41.900330Z",
- "shell.execute_reply": "2024-01-08T11:35:41.899491Z"
+ "iopub.execute_input": "2024-01-09T02:28:04.171706Z",
+ "iopub.status.busy": "2024-01-09T02:28:04.171504Z",
+ "iopub.status.idle": "2024-01-09T02:28:04.277960Z",
+ "shell.execute_reply": "2024-01-09T02:28:04.277231Z"
}
},
"outputs": [
@@ -870,7 +870,7 @@
},
{
"cell_type": "markdown",
- "id": "2395d0d4",
+ "id": "1a8f3f86",
"metadata": {},
"source": [
"For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:"
@@ -879,13 +879,13 @@
{
"cell_type": "code",
"execution_count": 18,
- "id": "2968ffda",
+ "id": "915aaa1d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:41.904817Z",
- "iopub.status.busy": "2024-01-08T11:35:41.903535Z",
- "iopub.status.idle": "2024-01-08T11:35:41.969790Z",
- "shell.execute_reply": "2024-01-08T11:35:41.968719Z"
+ "iopub.execute_input": "2024-01-09T02:28:04.281592Z",
+ "iopub.status.busy": "2024-01-09T02:28:04.280730Z",
+ "iopub.status.idle": "2024-01-09T02:28:04.360854Z",
+ "shell.execute_reply": "2024-01-09T02:28:04.360379Z"
}
},
"outputs": [
@@ -921,7 +921,7 @@
},
{
"cell_type": "markdown",
- "id": "5eb159d5",
+ "id": "c86eea2b",
"metadata": {},
"source": [
"### How to handle near-duplicate data identified by cleanlab?\n",
@@ -932,13 +932,13 @@
{
"cell_type": "code",
"execution_count": 19,
- "id": "f63c2e67",
+ "id": "1b5982a5",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:41.972752Z",
- "iopub.status.busy": "2024-01-08T11:35:41.972520Z",
- "iopub.status.idle": "2024-01-08T11:35:41.981698Z",
- "shell.execute_reply": "2024-01-08T11:35:41.980995Z"
+ "iopub.execute_input": "2024-01-09T02:28:04.363278Z",
+ "iopub.status.busy": "2024-01-09T02:28:04.362935Z",
+ "iopub.status.idle": "2024-01-09T02:28:04.370814Z",
+ "shell.execute_reply": "2024-01-09T02:28:04.370364Z"
}
},
"outputs": [],
@@ -1040,7 +1040,7 @@
},
{
"cell_type": "markdown",
- "id": "d7a221e9",
+ "id": "54f12717",
"metadata": {},
"source": [
"The functions above collect sets of near-duplicate examples. Within each\n",
@@ -1055,13 +1055,13 @@
{
"cell_type": "code",
"execution_count": 20,
- "id": "34161edc",
+ "id": "80b75ed3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:41.984398Z",
- "iopub.status.busy": "2024-01-08T11:35:41.984182Z",
- "iopub.status.idle": "2024-01-08T11:35:42.004433Z",
- "shell.execute_reply": "2024-01-08T11:35:42.003763Z"
+ "iopub.execute_input": "2024-01-09T02:28:04.373333Z",
+ "iopub.status.busy": "2024-01-09T02:28:04.372866Z",
+ "iopub.status.idle": "2024-01-09T02:28:04.391508Z",
+ "shell.execute_reply": "2024-01-09T02:28:04.390977Z"
}
},
"outputs": [
@@ -1104,13 +1104,13 @@
{
"cell_type": "code",
"execution_count": 21,
- "id": "19e796f4",
+ "id": "7dd85346",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:42.006927Z",
- "iopub.status.busy": "2024-01-08T11:35:42.006688Z",
- "iopub.status.idle": "2024-01-08T11:35:42.011162Z",
- "shell.execute_reply": "2024-01-08T11:35:42.010502Z"
+ "iopub.execute_input": "2024-01-09T02:28:04.393831Z",
+ "iopub.status.busy": "2024-01-09T02:28:04.393464Z",
+ "iopub.status.idle": "2024-01-09T02:28:04.397822Z",
+ "shell.execute_reply": "2024-01-09T02:28:04.397298Z"
}
},
"outputs": [
@@ -1205,28 +1205,22 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "001912989fe34237a71fe4667f3839cd": {
+ "1a7c102cc40f4a37ad6258949acbfb5e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b78d2f29760049b0ba78d28dfb49f31a",
- "placeholder": "",
- "style": "IPY_MODEL_477e60814773425d82cf336a9c4be9d2",
- "value": " 10000/? [00:00<00:00, 1114380.15it/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "04190550f4f34ed5b35ecc0afd67b07c": {
+ "20a7812dae4f4175a0912da7aed0832e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1278,7 +1272,98 @@
"width": null
}
},
- "26082f08d86a4c8ba7efe1ac8357b98f": {
+ "2f29fd9ff5f94c6ab075eeb0e139b361": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "489f0ea4d47c4dcf87c2449185b747eb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_64ca2970a27b42f6965aa49021ff0f71",
+ "placeholder": "",
+ "style": "IPY_MODEL_2f29fd9ff5f94c6ab075eeb0e139b361",
+ "value": " 10000/? [00:00<00:00, 913453.41it/s]"
+ }
+ },
+ "4abd8dda6f3e4d579d240ef3fbd6f422": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5674e51bc30842f69ea22f2fb0040363": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "596113272a114d4c9ca7933d486b2046": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b52935a0da1b4e20b94088816593beec",
+ "max": 50.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5674e51bc30842f69ea22f2fb0040363",
+ "value": 50.0
+ }
+ },
+ "5bee24b5319141aea518ec2421c88ade": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1330,22 +1415,7 @@
"width": null
}
},
- "2f13aa0fc55f4c86af85bb81745edc4f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "32f769eb7de147339ef00a8dfe79aa63": {
+ "64ca2970a27b42f6965aa49021ff0f71": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1397,31 +1467,7 @@
"width": null
}
},
- "39260aebdfba483691d945f1911bf6e5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6825570ae90f44c4ad37287b38dc09f3",
- "max": 50.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_7e3f1fca9cc246f2bf792a20e6730f45",
- "value": 50.0
- }
- },
- "3974ef91806f4833a20926c881ed812f": {
+ "64e457c5767e4efba691231abd1e2522": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -1436,45 +1482,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_49bde6cdceff4620bb09802b6ad8636a",
- "IPY_MODEL_39260aebdfba483691d945f1911bf6e5",
- "IPY_MODEL_001912989fe34237a71fe4667f3839cd"
+ "IPY_MODEL_745a6fa23f3941799823a62b9aa21664",
+ "IPY_MODEL_82341d244ac644c193e27d582893cac3",
+ "IPY_MODEL_489f0ea4d47c4dcf87c2449185b747eb"
],
- "layout": "IPY_MODEL_67e9d8d774134211a80252a599714ea7"
- }
- },
- "474ace231b9847ba9896076ef53ad313": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "477e60814773425d82cf336a9c4be9d2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "layout": "IPY_MODEL_e20d8f0fc64145768b5b86258acc03d6"
}
},
- "49bde6cdceff4620bb09802b6ad8636a": {
+ "745a6fa23f3941799823a62b9aa21664": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1489,35 +1504,37 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_c892bf17b03340d49aee29ccaa50c94f",
+ "layout": "IPY_MODEL_94e7be38c13043b9a36d4c70f0ca2224",
"placeholder": "",
- "style": "IPY_MODEL_2f13aa0fc55f4c86af85bb81745edc4f",
- "value": "number of examples processed for checking labels: "
+ "style": "IPY_MODEL_4abd8dda6f3e4d579d240ef3fbd6f422",
+ "value": "number of examples processed for estimating thresholds: "
}
},
- "67e6311c3f3a4bb78d16266f0276c0c5": {
+ "82341d244ac644c193e27d582893cac3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f9c8f94f9b1e4bf98d0b71a8dfc33983",
- "IPY_MODEL_e10736660ea847a39b7d1fd28c4016b6",
- "IPY_MODEL_9be768e030964af3a832174c50338617"
- ],
- "layout": "IPY_MODEL_26082f08d86a4c8ba7efe1ac8357b98f"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_20a7812dae4f4175a0912da7aed0832e",
+ "max": 50.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d9660b85ef4a49c0a4c081a6c550e73f",
+ "value": 50.0
}
},
- "67e9d8d774134211a80252a599714ea7": {
+ "8436e23219474634b40fd4fdb29c4c3b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1569,7 +1586,49 @@
"width": null
}
},
- "6825570ae90f44c4ad37287b38dc09f3": {
+ "8a41f484737143ebb3721097e0122899": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5bee24b5319141aea518ec2421c88ade",
+ "placeholder": "",
+ "style": "IPY_MODEL_b904e37383994cf5aede218136657536",
+ "value": "number of examples processed for checking labels: "
+ }
+ },
+ "91c859bfbc374df28073aae3a0032c51": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ff5f6e3618374ecb8c4c9774fdd8b949",
+ "placeholder": "",
+ "style": "IPY_MODEL_1a7c102cc40f4a37ad6258949acbfb5e",
+ "value": " 10000/? [00:00<00:00, 1133044.46it/s]"
+ }
+ },
+ "94e7be38c13043b9a36d4c70f0ca2224": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1621,7 +1680,29 @@
"width": null
}
},
- "6f05321a447d4599a9a4541f1a61c40a": {
+ "a78097866a7f46569e5d5bf2a817d034": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_8a41f484737143ebb3721097e0122899",
+ "IPY_MODEL_596113272a114d4c9ca7933d486b2046",
+ "IPY_MODEL_91c859bfbc374df28073aae3a0032c51"
+ ],
+ "layout": "IPY_MODEL_8436e23219474634b40fd4fdb29c4c3b"
+ }
+ },
+ "b52935a0da1b4e20b94088816593beec": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1673,59 +1754,38 @@
"width": null
}
},
- "7e3f1fca9cc246f2bf792a20e6730f45": {
+ "b904e37383994cf5aede218136657536": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "9be768e030964af3a832174c50338617": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_04190550f4f34ed5b35ecc0afd67b07c",
- "placeholder": "",
- "style": "IPY_MODEL_ebe6cbf6ffd745c98b5e093e1276e0d9",
- "value": " 10000/? [00:00<00:00, 870657.20it/s]"
- }
- },
- "aaf46d3f33554189a0db3e3e83fc66d4": {
+ "d9660b85ef4a49c0a4c081a6c550e73f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "b78d2f29760049b0ba78d28dfb49f31a": {
+ "e20d8f0fc64145768b5b86258acc03d6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1777,7 +1837,7 @@
"width": null
}
},
- "c892bf17b03340d49aee29ccaa50c94f": {
+ "ff5f6e3618374ecb8c4c9774fdd8b949": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1828,66 +1888,6 @@
"visibility": null,
"width": null
}
- },
- "e10736660ea847a39b7d1fd28c4016b6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6f05321a447d4599a9a4541f1a61c40a",
- "max": 50.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_474ace231b9847ba9896076ef53ad313",
- "value": 50.0
- }
- },
- "ebe6cbf6ffd745c98b5e093e1276e0d9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f9c8f94f9b1e4bf98d0b71a8dfc33983": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_32f769eb7de147339ef00a8dfe79aa63",
- "placeholder": "",
- "style": "IPY_MODEL_aaf46d3f33554189a0db3e3e83fc66d4",
- "value": "number of examples processed for estimating thresholds: "
- }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb
index 528e305c4..1e1d617d7 100644
--- a/master/.doctrees/nbsphinx/tutorials/image.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb
@@ -71,10 +71,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:46.919913Z",
- "iopub.status.busy": "2024-01-08T11:35:46.919713Z",
- "iopub.status.idle": "2024-01-08T11:35:49.250712Z",
- "shell.execute_reply": "2024-01-08T11:35:49.250072Z"
+ "iopub.execute_input": "2024-01-09T02:28:09.535377Z",
+ "iopub.status.busy": "2024-01-09T02:28:09.534938Z",
+ "iopub.status.idle": "2024-01-09T02:28:11.636928Z",
+ "shell.execute_reply": "2024-01-09T02:28:11.636315Z"
},
"nbsphinx": "hidden"
},
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:49.253877Z",
- "iopub.status.busy": "2024-01-08T11:35:49.253289Z",
- "iopub.status.idle": "2024-01-08T11:35:49.257222Z",
- "shell.execute_reply": "2024-01-08T11:35:49.256642Z"
+ "iopub.execute_input": "2024-01-09T02:28:11.639826Z",
+ "iopub.status.busy": "2024-01-09T02:28:11.639394Z",
+ "iopub.status.idle": "2024-01-09T02:28:11.643148Z",
+ "shell.execute_reply": "2024-01-09T02:28:11.642586Z"
}
},
"outputs": [],
@@ -152,17 +152,17 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:49.259576Z",
- "iopub.status.busy": "2024-01-08T11:35:49.259367Z",
- "iopub.status.idle": "2024-01-08T11:35:53.438456Z",
- "shell.execute_reply": "2024-01-08T11:35:53.437809Z"
+ "iopub.execute_input": "2024-01-09T02:28:11.645514Z",
+ "iopub.status.busy": "2024-01-09T02:28:11.645136Z",
+ "iopub.status.idle": "2024-01-09T02:28:13.663656Z",
+ "shell.execute_reply": "2024-01-09T02:28:13.663124Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "19581feccaf44fe0ab05b81305c9956a",
+ "model_id": "a0831aa248ef416aa8248bce37fa569e",
"version_major": 2,
"version_minor": 0
},
@@ -176,7 +176,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "574cdfe163d04905b985dc7e958b07d0",
+ "model_id": "730b861c3b2144e4a74d7957eb886dc4",
"version_major": 2,
"version_minor": 0
},
@@ -190,7 +190,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4676db2869c4477781fa5b01b14647bd",
+ "model_id": "9e136e2596e94532bce94a5cbedb1abe",
"version_major": 2,
"version_minor": 0
},
@@ -204,7 +204,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a10a6450fea44c83a4e75a0fa58e34f7",
+ "model_id": "f0b93eadd5b543648c2086096fb9d44e",
"version_major": 2,
"version_minor": 0
},
@@ -246,10 +246,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:53.440982Z",
- "iopub.status.busy": "2024-01-08T11:35:53.440759Z",
- "iopub.status.idle": "2024-01-08T11:35:53.445222Z",
- "shell.execute_reply": "2024-01-08T11:35:53.444653Z"
+ "iopub.execute_input": "2024-01-09T02:28:13.666328Z",
+ "iopub.status.busy": "2024-01-09T02:28:13.665945Z",
+ "iopub.status.idle": "2024-01-09T02:28:13.669973Z",
+ "shell.execute_reply": "2024-01-09T02:28:13.669387Z"
}
},
"outputs": [
@@ -274,17 +274,17 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:35:53.447884Z",
- "iopub.status.busy": "2024-01-08T11:35:53.447490Z",
- "iopub.status.idle": "2024-01-08T11:36:05.903569Z",
- "shell.execute_reply": "2024-01-08T11:36:05.902814Z"
+ "iopub.execute_input": "2024-01-09T02:28:13.672284Z",
+ "iopub.status.busy": "2024-01-09T02:28:13.671936Z",
+ "iopub.status.idle": "2024-01-09T02:28:25.780291Z",
+ "shell.execute_reply": "2024-01-09T02:28:25.779714Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9a1b24aabc7a44e4987326fcb9b7ba73",
+ "model_id": "65f5aa20eda344619fb5f785fcdcf0be",
"version_major": 2,
"version_minor": 0
},
@@ -322,10 +322,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:05.906687Z",
- "iopub.status.busy": "2024-01-08T11:36:05.906263Z",
- "iopub.status.idle": "2024-01-08T11:36:27.385289Z",
- "shell.execute_reply": "2024-01-08T11:36:27.384391Z"
+ "iopub.execute_input": "2024-01-09T02:28:25.782985Z",
+ "iopub.status.busy": "2024-01-09T02:28:25.782735Z",
+ "iopub.status.idle": "2024-01-09T02:28:47.162401Z",
+ "shell.execute_reply": "2024-01-09T02:28:47.161712Z"
}
},
"outputs": [],
@@ -358,10 +358,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:27.389359Z",
- "iopub.status.busy": "2024-01-08T11:36:27.389106Z",
- "iopub.status.idle": "2024-01-08T11:36:27.395060Z",
- "shell.execute_reply": "2024-01-08T11:36:27.394332Z"
+ "iopub.execute_input": "2024-01-09T02:28:47.165562Z",
+ "iopub.status.busy": "2024-01-09T02:28:47.165167Z",
+ "iopub.status.idle": "2024-01-09T02:28:47.170308Z",
+ "shell.execute_reply": "2024-01-09T02:28:47.169725Z"
}
},
"outputs": [],
@@ -399,10 +399,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:27.397414Z",
- "iopub.status.busy": "2024-01-08T11:36:27.397204Z",
- "iopub.status.idle": "2024-01-08T11:36:27.402940Z",
- "shell.execute_reply": "2024-01-08T11:36:27.402154Z"
+ "iopub.execute_input": "2024-01-09T02:28:47.172578Z",
+ "iopub.status.busy": "2024-01-09T02:28:47.172375Z",
+ "iopub.status.idle": "2024-01-09T02:28:47.176671Z",
+ "shell.execute_reply": "2024-01-09T02:28:47.176207Z"
},
"nbsphinx": "hidden"
},
@@ -539,10 +539,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:27.405473Z",
- "iopub.status.busy": "2024-01-08T11:36:27.405263Z",
- "iopub.status.idle": "2024-01-08T11:36:27.415469Z",
- "shell.execute_reply": "2024-01-08T11:36:27.414743Z"
+ "iopub.execute_input": "2024-01-09T02:28:47.179060Z",
+ "iopub.status.busy": "2024-01-09T02:28:47.178710Z",
+ "iopub.status.idle": "2024-01-09T02:28:47.188258Z",
+ "shell.execute_reply": "2024-01-09T02:28:47.187733Z"
},
"nbsphinx": "hidden"
},
@@ -667,10 +667,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:27.417916Z",
- "iopub.status.busy": "2024-01-08T11:36:27.417703Z",
- "iopub.status.idle": "2024-01-08T11:36:27.446310Z",
- "shell.execute_reply": "2024-01-08T11:36:27.445727Z"
+ "iopub.execute_input": "2024-01-09T02:28:47.190633Z",
+ "iopub.status.busy": "2024-01-09T02:28:47.190292Z",
+ "iopub.status.idle": "2024-01-09T02:28:47.219889Z",
+ "shell.execute_reply": "2024-01-09T02:28:47.219346Z"
}
},
"outputs": [],
@@ -707,10 +707,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:27.449012Z",
- "iopub.status.busy": "2024-01-08T11:36:27.448785Z",
- "iopub.status.idle": "2024-01-08T11:36:58.509049Z",
- "shell.execute_reply": "2024-01-08T11:36:58.508206Z"
+ "iopub.execute_input": "2024-01-09T02:28:47.222567Z",
+ "iopub.status.busy": "2024-01-09T02:28:47.222187Z",
+ "iopub.status.idle": "2024-01-09T02:29:17.945372Z",
+ "shell.execute_reply": "2024-01-09T02:29:17.944505Z"
}
},
"outputs": [
@@ -726,14 +726,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.704\n"
+ "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.662\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.430\n",
+ "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.346\n",
"Computing feature embeddings ...\n"
]
},
@@ -750,7 +750,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 18.71it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 17.83it/s]"
]
},
{
@@ -758,7 +758,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 50.74it/s]"
+ " 20%|██ | 8/40 [00:00<00:00, 39.13it/s]"
]
},
{
@@ -766,7 +766,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 56.57it/s]"
+ " 38%|███▊ | 15/40 [00:00<00:00, 50.96it/s]"
]
},
{
@@ -774,7 +774,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▎ | 25/40 [00:00<00:00, 63.49it/s]"
+ " 57%|█████▊ | 23/40 [00:00<00:00, 59.37it/s]"
]
},
{
@@ -782,7 +782,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▎ | 33/40 [00:00<00:00, 68.33it/s]"
+ " 78%|███████▊ | 31/40 [00:00<00:00, 64.45it/s]"
]
},
{
@@ -790,7 +790,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 63.50it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 60.51it/s]"
]
},
{
@@ -820,7 +820,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.68it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 17.90it/s]"
]
},
{
@@ -828,7 +828,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 48.66it/s]"
+ " 25%|██▌ | 10/40 [00:00<00:00, 50.56it/s]"
]
},
{
@@ -836,7 +836,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 60.89it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 61.68it/s]"
]
},
{
@@ -844,7 +844,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|██████ | 24/40 [00:00<00:00, 63.65it/s]"
+ " 65%|██████▌ | 26/40 [00:00<00:00, 66.82it/s]"
]
},
{
@@ -852,7 +852,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 32/40 [00:00<00:00, 67.73it/s]"
+ " 85%|████████▌ | 34/40 [00:00<00:00, 68.53it/s]"
]
},
{
@@ -860,7 +860,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 63.85it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 64.04it/s]"
]
},
{
@@ -882,14 +882,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.722\n"
+ "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.626\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.465\n",
+ "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.357\n",
"Computing feature embeddings ...\n"
]
},
@@ -906,7 +906,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:01, 19.27it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 8.98it/s]"
]
},
{
@@ -914,7 +914,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 50.68it/s]"
+ " 20%|██ | 8/40 [00:00<00:00, 41.08it/s]"
]
},
{
@@ -922,7 +922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 59.08it/s]"
+ " 40%|████ | 16/40 [00:00<00:00, 56.22it/s]"
]
},
{
@@ -930,7 +930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|██████ | 24/40 [00:00<00:00, 60.62it/s]"
+ " 60%|██████ | 24/40 [00:00<00:00, 63.71it/s]"
]
},
{
@@ -938,7 +938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 31/40 [00:00<00:00, 63.60it/s]"
+ " 80%|████████ | 32/40 [00:00<00:00, 68.17it/s]"
]
},
{
@@ -946,7 +946,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 62.00it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 62.74it/s]"
]
},
{
@@ -976,7 +976,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 18.42it/s]"
+ " 5%|▌ | 2/40 [00:00<00:01, 19.56it/s]"
]
},
{
@@ -984,7 +984,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 52.14it/s]"
+ " 25%|██▌ | 10/40 [00:00<00:00, 51.06it/s]"
]
},
{
@@ -992,7 +992,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 18/40 [00:00<00:00, 62.75it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 62.52it/s]"
]
},
{
@@ -1000,7 +1000,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 67.50it/s]"
+ " 65%|██████▌ | 26/40 [00:00<00:00, 68.08it/s]"
]
},
{
@@ -1008,7 +1008,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 70.88it/s]"
+ " 85%|████████▌ | 34/40 [00:00<00:00, 70.97it/s]"
]
},
{
@@ -1016,7 +1016,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 65.36it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 65.96it/s]"
]
},
{
@@ -1038,14 +1038,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.677\n"
+ "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.688\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.306\n",
+ "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.257\n",
"Computing feature embeddings ...\n"
]
},
@@ -1062,7 +1062,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:01, 19.36it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 18.88it/s]"
]
},
{
@@ -1070,7 +1070,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 53.18it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 47.75it/s]"
]
},
{
@@ -1078,7 +1078,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 18/40 [00:00<00:00, 63.86it/s]"
+ " 42%|████▎ | 17/40 [00:00<00:00, 60.15it/s]"
]
},
{
@@ -1086,7 +1086,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 68.79it/s]"
+ " 62%|██████▎ | 25/40 [00:00<00:00, 65.67it/s]"
]
},
{
@@ -1094,7 +1094,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 35/40 [00:00<00:00, 73.52it/s]"
+ " 82%|████████▎ | 33/40 [00:00<00:00, 70.23it/s]"
]
},
{
@@ -1102,7 +1102,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 67.63it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 65.21it/s]"
]
},
{
@@ -1132,7 +1132,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.52it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.65it/s]"
]
},
{
@@ -1140,7 +1140,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 48.92it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 49.53it/s]"
]
},
{
@@ -1148,7 +1148,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 61.29it/s]"
+ " 42%|████▎ | 17/40 [00:00<00:00, 61.98it/s]"
]
},
{
@@ -1156,7 +1156,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▎ | 25/40 [00:00<00:00, 67.86it/s]"
+ " 62%|██████▎ | 25/40 [00:00<00:00, 68.32it/s]"
]
},
{
@@ -1164,7 +1164,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▎ | 33/40 [00:00<00:00, 70.25it/s]"
+ " 82%|████████▎ | 33/40 [00:00<00:00, 72.36it/s]"
]
},
{
@@ -1172,21 +1172,21 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 65.66it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 66.05it/s]"
]
},
{
- "name": "stderr",
+ "name": "stdout",
"output_type": "stream",
"text": [
- "\n"
+ "Finished Training\n"
]
},
{
- "name": "stdout",
+ "name": "stderr",
"output_type": "stream",
"text": [
- "Finished Training\n"
+ "\n"
]
}
],
@@ -1249,10 +1249,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:58.512380Z",
- "iopub.status.busy": "2024-01-08T11:36:58.511828Z",
- "iopub.status.idle": "2024-01-08T11:36:58.526921Z",
- "shell.execute_reply": "2024-01-08T11:36:58.526405Z"
+ "iopub.execute_input": "2024-01-09T02:29:17.948198Z",
+ "iopub.status.busy": "2024-01-09T02:29:17.947935Z",
+ "iopub.status.idle": "2024-01-09T02:29:17.963602Z",
+ "shell.execute_reply": "2024-01-09T02:29:17.962992Z"
}
},
"outputs": [],
@@ -1277,10 +1277,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:58.529380Z",
- "iopub.status.busy": "2024-01-08T11:36:58.528928Z",
- "iopub.status.idle": "2024-01-08T11:36:58.958858Z",
- "shell.execute_reply": "2024-01-08T11:36:58.958222Z"
+ "iopub.execute_input": "2024-01-09T02:29:17.966145Z",
+ "iopub.status.busy": "2024-01-09T02:29:17.965839Z",
+ "iopub.status.idle": "2024-01-09T02:29:18.394039Z",
+ "shell.execute_reply": "2024-01-09T02:29:18.393409Z"
}
},
"outputs": [],
@@ -1300,10 +1300,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:36:58.961473Z",
- "iopub.status.busy": "2024-01-08T11:36:58.961264Z",
- "iopub.status.idle": "2024-01-08T11:40:19.328258Z",
- "shell.execute_reply": "2024-01-08T11:40:19.327545Z"
+ "iopub.execute_input": "2024-01-09T02:29:18.396725Z",
+ "iopub.status.busy": "2024-01-09T02:29:18.396512Z",
+ "iopub.status.idle": "2024-01-09T02:32:37.422119Z",
+ "shell.execute_reply": "2024-01-09T02:32:37.421436Z"
}
},
"outputs": [
@@ -1342,7 +1342,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "010dbb8b35fb48b3b7e309822613b68c",
+ "model_id": "53b3fd09ba384882a1ac49803355b4f2",
"version_major": 2,
"version_minor": 0
},
@@ -1381,10 +1381,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:19.331035Z",
- "iopub.status.busy": "2024-01-08T11:40:19.330587Z",
- "iopub.status.idle": "2024-01-08T11:40:19.864080Z",
- "shell.execute_reply": "2024-01-08T11:40:19.863394Z"
+ "iopub.execute_input": "2024-01-09T02:32:37.425050Z",
+ "iopub.status.busy": "2024-01-09T02:32:37.424434Z",
+ "iopub.status.idle": "2024-01-09T02:32:37.936289Z",
+ "shell.execute_reply": "2024-01-09T02:32:37.935650Z"
}
},
"outputs": [
@@ -1596,10 +1596,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:19.867479Z",
- "iopub.status.busy": "2024-01-08T11:40:19.866993Z",
- "iopub.status.idle": "2024-01-08T11:40:19.929953Z",
- "shell.execute_reply": "2024-01-08T11:40:19.929309Z"
+ "iopub.execute_input": "2024-01-09T02:32:37.939639Z",
+ "iopub.status.busy": "2024-01-09T02:32:37.939079Z",
+ "iopub.status.idle": "2024-01-09T02:32:38.002196Z",
+ "shell.execute_reply": "2024-01-09T02:32:38.001581Z"
}
},
"outputs": [
@@ -1703,10 +1703,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:19.932723Z",
- "iopub.status.busy": "2024-01-08T11:40:19.932329Z",
- "iopub.status.idle": "2024-01-08T11:40:19.941959Z",
- "shell.execute_reply": "2024-01-08T11:40:19.941431Z"
+ "iopub.execute_input": "2024-01-09T02:32:38.004803Z",
+ "iopub.status.busy": "2024-01-09T02:32:38.004432Z",
+ "iopub.status.idle": "2024-01-09T02:32:38.013564Z",
+ "shell.execute_reply": "2024-01-09T02:32:38.013080Z"
}
},
"outputs": [
@@ -1836,10 +1836,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:19.944424Z",
- "iopub.status.busy": "2024-01-08T11:40:19.944059Z",
- "iopub.status.idle": "2024-01-08T11:40:19.949266Z",
- "shell.execute_reply": "2024-01-08T11:40:19.948634Z"
+ "iopub.execute_input": "2024-01-09T02:32:38.016023Z",
+ "iopub.status.busy": "2024-01-09T02:32:38.015562Z",
+ "iopub.status.idle": "2024-01-09T02:32:38.020499Z",
+ "shell.execute_reply": "2024-01-09T02:32:38.019906Z"
},
"nbsphinx": "hidden"
},
@@ -1885,10 +1885,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:19.951924Z",
- "iopub.status.busy": "2024-01-08T11:40:19.951393Z",
- "iopub.status.idle": "2024-01-08T11:40:20.449847Z",
- "shell.execute_reply": "2024-01-08T11:40:20.449135Z"
+ "iopub.execute_input": "2024-01-09T02:32:38.022881Z",
+ "iopub.status.busy": "2024-01-09T02:32:38.022457Z",
+ "iopub.status.idle": "2024-01-09T02:32:38.530590Z",
+ "shell.execute_reply": "2024-01-09T02:32:38.529951Z"
}
},
"outputs": [
@@ -1923,10 +1923,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:20.452332Z",
- "iopub.status.busy": "2024-01-08T11:40:20.452057Z",
- "iopub.status.idle": "2024-01-08T11:40:20.461144Z",
- "shell.execute_reply": "2024-01-08T11:40:20.460630Z"
+ "iopub.execute_input": "2024-01-09T02:32:38.533151Z",
+ "iopub.status.busy": "2024-01-09T02:32:38.532769Z",
+ "iopub.status.idle": "2024-01-09T02:32:38.541449Z",
+ "shell.execute_reply": "2024-01-09T02:32:38.540816Z"
}
},
"outputs": [
@@ -2093,10 +2093,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:20.463666Z",
- "iopub.status.busy": "2024-01-08T11:40:20.463222Z",
- "iopub.status.idle": "2024-01-08T11:40:20.471454Z",
- "shell.execute_reply": "2024-01-08T11:40:20.470940Z"
+ "iopub.execute_input": "2024-01-09T02:32:38.544041Z",
+ "iopub.status.busy": "2024-01-09T02:32:38.543674Z",
+ "iopub.status.idle": "2024-01-09T02:32:38.551291Z",
+ "shell.execute_reply": "2024-01-09T02:32:38.550724Z"
},
"nbsphinx": "hidden"
},
@@ -2172,10 +2172,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:20.474001Z",
- "iopub.status.busy": "2024-01-08T11:40:20.473635Z",
- "iopub.status.idle": "2024-01-08T11:40:20.952119Z",
- "shell.execute_reply": "2024-01-08T11:40:20.951453Z"
+ "iopub.execute_input": "2024-01-09T02:32:38.553709Z",
+ "iopub.status.busy": "2024-01-09T02:32:38.553282Z",
+ "iopub.status.idle": "2024-01-09T02:32:39.018596Z",
+ "shell.execute_reply": "2024-01-09T02:32:39.017949Z"
}
},
"outputs": [
@@ -2212,10 +2212,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:20.954782Z",
- "iopub.status.busy": "2024-01-08T11:40:20.954557Z",
- "iopub.status.idle": "2024-01-08T11:40:20.971466Z",
- "shell.execute_reply": "2024-01-08T11:40:20.970812Z"
+ "iopub.execute_input": "2024-01-09T02:32:39.021189Z",
+ "iopub.status.busy": "2024-01-09T02:32:39.020803Z",
+ "iopub.status.idle": "2024-01-09T02:32:39.036856Z",
+ "shell.execute_reply": "2024-01-09T02:32:39.036227Z"
}
},
"outputs": [
@@ -2372,10 +2372,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:20.974073Z",
- "iopub.status.busy": "2024-01-08T11:40:20.973714Z",
- "iopub.status.idle": "2024-01-08T11:40:20.979806Z",
- "shell.execute_reply": "2024-01-08T11:40:20.979180Z"
+ "iopub.execute_input": "2024-01-09T02:32:39.039503Z",
+ "iopub.status.busy": "2024-01-09T02:32:39.039142Z",
+ "iopub.status.idle": "2024-01-09T02:32:39.046006Z",
+ "shell.execute_reply": "2024-01-09T02:32:39.045469Z"
},
"nbsphinx": "hidden"
},
@@ -2420,10 +2420,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:20.982110Z",
- "iopub.status.busy": "2024-01-08T11:40:20.981765Z",
- "iopub.status.idle": "2024-01-08T11:40:21.596167Z",
- "shell.execute_reply": "2024-01-08T11:40:21.595492Z"
+ "iopub.execute_input": "2024-01-09T02:32:39.048336Z",
+ "iopub.status.busy": "2024-01-09T02:32:39.047994Z",
+ "iopub.status.idle": "2024-01-09T02:32:39.701588Z",
+ "shell.execute_reply": "2024-01-09T02:32:39.700851Z"
}
},
"outputs": [
@@ -2505,10 +2505,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:21.599097Z",
- "iopub.status.busy": "2024-01-08T11:40:21.598878Z",
- "iopub.status.idle": "2024-01-08T11:40:21.608229Z",
- "shell.execute_reply": "2024-01-08T11:40:21.607579Z"
+ "iopub.execute_input": "2024-01-09T02:32:39.704854Z",
+ "iopub.status.busy": "2024-01-09T02:32:39.704336Z",
+ "iopub.status.idle": "2024-01-09T02:32:39.714720Z",
+ "shell.execute_reply": "2024-01-09T02:32:39.714054Z"
}
},
"outputs": [
@@ -2636,10 +2636,10 @@
"execution_count": 27,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:21.610921Z",
- "iopub.status.busy": "2024-01-08T11:40:21.610704Z",
- "iopub.status.idle": "2024-01-08T11:40:21.615947Z",
- "shell.execute_reply": "2024-01-08T11:40:21.615196Z"
+ "iopub.execute_input": "2024-01-09T02:32:39.717863Z",
+ "iopub.status.busy": "2024-01-09T02:32:39.717518Z",
+ "iopub.status.idle": "2024-01-09T02:32:39.724127Z",
+ "shell.execute_reply": "2024-01-09T02:32:39.723472Z"
},
"nbsphinx": "hidden"
},
@@ -2676,10 +2676,10 @@
"execution_count": 28,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:21.618619Z",
- "iopub.status.busy": "2024-01-08T11:40:21.618416Z",
- "iopub.status.idle": "2024-01-08T11:40:21.794603Z",
- "shell.execute_reply": "2024-01-08T11:40:21.793814Z"
+ "iopub.execute_input": "2024-01-09T02:32:39.726966Z",
+ "iopub.status.busy": "2024-01-09T02:32:39.726730Z",
+ "iopub.status.idle": "2024-01-09T02:32:39.926152Z",
+ "shell.execute_reply": "2024-01-09T02:32:39.925556Z"
}
},
"outputs": [
@@ -2721,10 +2721,10 @@
"execution_count": 29,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:40:21.797456Z",
- "iopub.status.busy": "2024-01-08T11:40:21.797237Z",
- "iopub.status.idle": "2024-01-08T11:40:21.806076Z",
- "shell.execute_reply": "2024-01-08T11:40:21.805454Z"
+ "iopub.execute_input": "2024-01-09T02:32:39.928509Z",
+ "iopub.status.busy": "2024-01-09T02:32:39.928304Z",
+ "iopub.status.idle": "2024-01-09T02:32:39.936378Z",
+ "shell.execute_reply": "2024-01-09T02:32:39.935871Z"
}
},
"outputs": [
@@ -2749,47 +2749,47 @@
" \n",
" \n",
" \n",
" \n",
" \n",
- " low_information_score \n",
" is_low_information_issue \n",
+ " low_information_score \n",
"
If provided, this must be a 2D array with shape (num_examples, num_features).
knn_graph :
- Sparse matrix representing distances between examples in the dataset in a k nearest neighbor graph.
+ Sparse matrix of precomputed distances between examples in the dataset in a k nearest neighbor graph.
- If provided, this must be a square CSR matrix with shape (num_examples, num_examples) and (k*num_examples) non-zero entries (k is the number of nearest neighbors considered for each example)
+ If provided, this must be a square CSR matrix with shape ``(num_examples, num_examples)`` and ``(k*num_examples)`` non-zero entries (``k`` is the number of nearest neighbors considered for each example),
evenly distributed across the rows.
- The non-zero entries must be the distances between the corresponding examples. Self-distances must be omitted
- (i.e. the diagonal must be all zeros and the k nearest neighbors of each example must not include itself).
+ Each non-zero entry in this matrix is a distance between a pair of examples in the dataset. Self-distances must be omitted
+ (i.e. diagonal must be all zeros, k nearest neighbors for each example do not include the example itself).
+
+ This CSR format uses three 1D arrays (`data`, `indices`, `indptr`) to store a 2D matrix ``M``:
+
+ - `data`: 1D array containing all the non-zero elements of matrix ``M``, listed in a row-wise fashion (but sorted within each row).
+ - `indices`: 1D array storing the column indices in matrix ``M`` of these non-zero elements. Each entry in `indices` corresponds to an entry in `data`, indicating the column of ``M`` containing this entry.
+ - `indptr`: 1D array indicating the start and end indices in `data` for each row of matrix ``M``. The non-zero elements of the i-th row of ``M`` are stored from ``data[indptr[i]]`` to ``data[indptr[i+1]]``.
+
+ Within each row of matrix ``M`` (defined by the ranges in `indptr`), the corresponding non-zero entries (distances) of `knn_graph` must be sorted in ascending order (specifically in the segments of the `data` array that correspond to each row of ``M``). The `indices` array must also reflect this ordering, maintaining the correct column positions for these sorted distances.
+
+ This type of matrix is returned by the method: `sklearn.neighbors.NearestNeighbors.kneighbors_graph <https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors.kneighbors_graph>`_.
+
+ Below is an example to illustrate:
+
+ .. code-block:: python
+
+ knn_graph.todense()
+ # matrix([[0. , 0.3, 0.2],
+ # [0.3, 0. , 0.4],
+ # [0.2, 0.4, 0. ]])
+
+ knn_graph.data
+ # array([0.2, 0.3, 0.3, 0.4, 0.2, 0.4])
+ # Here, 0.2 and 0.3 are the sorted distances in the first row, 0.3 and 0.4 in the second row, and so on.
+
+ knn_graph.indices
+ # array([2, 1, 0, 2, 0, 1])
+ # Corresponding neighbor indices for the distances from the `data` array.
+
+ knn_graph.indptr
+ # array([0, 2, 4, 6])
+ # The non-zero entries in the first row are stored from `knn_graph.data[0]` to `knn_graph.data[2]`, the second row from `knn_graph.data[2]` to `knn_graph.data[4]`, and so on.
For any duplicated examples i,j whose distance is 0, there should be an *explicit* zero stored in the matrix, i.e. ``knn_graph[i,j] = 0``.
@@ -737,6 +768,11 @@ Source code for cleanlab.datalab.datalab
If `knn_graph` is not provided, it is constructed based on the provided `features`.
If neither `knn_graph` nor `features` are provided, certain issue types like (near) duplicates will not be considered.
+ .. seealso::
+ See the
+ `scipy.sparse.csr_matrix documentation <https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html>`_
+ for more details on the CSR matrix format.
+
issue_types :
Collection specifying which types of issues to consider in audit and any non-default parameter settings to use.
If unspecified, a default set of issue types and recommended parameter settings is considered.
diff --git a/master/_modules/cleanlab/datalab/internal/issue_finder.html b/master/_modules/cleanlab/datalab/internal/issue_finder.html
index 75699ced3..f0cf0f36d 100644
--- a/master/_modules/cleanlab/datalab/internal/issue_finder.html
+++ b/master/_modules/cleanlab/datalab/internal/issue_finder.html
@@ -760,16 +760,7 @@ Source code for cleanlab.datalab.internal.issue_finder
knn_graph :
Sparse matrix representing distances between examples in the dataset in a k nearest neighbor graph.
- If provided, this must be a square CSR matrix with shape (num_examples, num_examples) and (k*num_examples) non-zero entries (k is the number of nearest neighbors considered for each example)
- evenly distributed across the rows.
- The non-zero entries must be the distances between the corresponding examples. Self-distances must be omitted
- (i.e. the diagonal must be all zeros and the k nearest neighbors of each example must not include itself).
-
- For any duplicated examples i,j whose distance is 0, there should be an *explicit* zero stored in the matrix, i.e. ``knn_graph[i,j] = 0``.
-
- If both `knn_graph` and `features` are provided, the `knn_graph` will take precendence.
- If `knn_graph` is not provided, it is constructed based on the provided `features`.
- If neither `knn_graph` nor `features` are provided, certain issue types like (near) duplicates will not be considered.
+ For details, refer to the documentation of the same argument in :py:class:`Datalab.find_issues <cleanlab.datalab.datalab.Datalab.find_issues>`
issue_types :
Collection specifying which types of issues to consider in audit and any non-default parameter settings to use.
diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb
index ddb670d4a..830eccd66 100644
--- a/master/_sources/tutorials/audio.ipynb
+++ b/master/_sources/tutorials/audio.ipynb
@@ -91,7 +91,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index 5983c81f3..ae9056a1d 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index 872f7055a..a04a11fe5 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index d0a9cd867..08fa0d0e6 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -81,7 +81,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index 3549a5cc8..68b8a5e1d 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index 6cb67da1f..3f4cee4a0 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index 7c7e763bf..33cb4e139 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index b21e845af..236619040 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -96,7 +96,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index 5316902f3..03616c3f1 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -72,7 +72,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index 9dc19c62f..c1ec95508 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index 25271206b..9456d9559 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index 1c0bf7c95..ff8c12eb6 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -103,7 +103,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index bb1efdb68..02ad77271 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb
index 1ecc90115..2fe704b8a 100644
--- a/master/_sources/tutorials/tabular.ipynb
+++ b/master/_sources/tutorials/tabular.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb
index 5330d3014..4181c147e 100644
--- a/master/_sources/tutorials/text.ipynb
+++ b/master/_sources/tutorials/text.ipynb
@@ -128,7 +128,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 23ad56571..47d2f0746 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/cleanlab/datalab/datalab.html b/master/cleanlab/datalab/datalab.html
index 40ffad715..abd434988 100644
--- a/master/cleanlab/datalab/datalab.html
+++ b/master/cleanlab/datalab/datalab.html
@@ -720,15 +720,48 @@
features (Optional[np.ndarray]
) –
Feature embeddings (vector representations) of every example in the dataset.
If provided, this must be a 2D array with shape (num_examples, num_features).
-knn_graph (Optional
[csr_matrix
]) –
Sparse matrix representing distances between examples in the dataset in a k nearest neighbor graph.
-If provided, this must be a square CSR matrix with shape (num_examples, num_examples) and (k*num_examples) non-zero entries (k is the number of nearest neighbors considered for each example)
+
knn_graph (Optional
[csr_matrix
]) –
Sparse matrix of precomputed distances between examples in the dataset in a k nearest neighbor graph.
+If provided, this must be a square CSR matrix with shape (num_examples, num_examples)
and (k*num_examples)
non-zero entries (k
is the number of nearest neighbors considered for each example),
evenly distributed across the rows.
-The non-zero entries must be the distances between the corresponding examples. Self-distances must be omitted
-(i.e. the diagonal must be all zeros and the k nearest neighbors of each example must not include itself).
+Each non-zero entry in this matrix is a distance between a pair of examples in the dataset. Self-distances must be omitted
+(i.e. diagonal must be all zeros, k nearest neighbors for each example do not include the example itself).
+This CSR format uses three 1D arrays (data
, indices
, indptr
) to store a 2D matrix M
:
+
+data
: 1D array containing all the non-zero elements of matrix M
, listed in a row-wise fashion (but sorted within each row).
+indices
: 1D array storing the column indices in matrix M
of these non-zero elements. Each entry in indices
corresponds to an entry in data
, indicating the column of M
containing this entry.
+indptr
: 1D array indicating the start and end indices in data
for each row of matrix M
. The non-zero elements of the i-th row of M
are stored from data[indptr[i]]
to data[indptr[i+1]]
.
+
+Within each row of matrix M
(defined by the ranges in indptr
), the corresponding non-zero entries (distances) of knn_graph
must be sorted in ascending order (specifically in the segments of the data
array that correspond to each row of M
). The indices
array must also reflect this ordering, maintaining the correct column positions for these sorted distances.
+This type of matrix is returned by the method: sklearn.neighbors.NearestNeighbors.kneighbors_graph.
+Below is an example to illustrate:
+knn_graph.todense()
+# matrix([[0. , 0.3, 0.2],
+# [0.3, 0. , 0.4],
+# [0.2, 0.4, 0. ]])
+
+knn_graph.data
+# array([0.2, 0.3, 0.3, 0.4, 0.2, 0.4])
+# Here, 0.2 and 0.3 are the sorted distances in the first row, 0.3 and 0.4 in the second row, and so on.
+
+knn_graph.indices
+# array([2, 1, 0, 2, 0, 1])
+# Corresponding neighbor indices for the distances from the `data` array.
+
+knn_graph.indptr
+# array([0, 2, 4, 6])
+# The non-zero entries in the first row are stored from `knn_graph.data[0]` to `knn_graph.data[2]`, the second row from `knn_graph.data[2]` to `knn_graph.data[4]`, and so on.
+
+
For any duplicated examples i,j whose distance is 0, there should be an explicit zero stored in the matrix, i.e. knn_graph[i,j] = 0
.
If both knn_graph
and features
are provided, the knn_graph
will take precendence.
If knn_graph
is not provided, it is constructed based on the provided features
.
If neither knn_graph
nor features
are provided, certain issue types like (near) duplicates will not be considered.
+
+See also
+See the
+scipy.sparse.csr_matrix documentation
+for more details on the CSR matrix format.
+
issue_types (Optional
[Dict
[str
, Any
]]) –
Collection specifying which types of issues to consider in audit and any non-default parameter settings to use.
If unspecified, a default set of issue types and recommended parameter settings is considered.
diff --git a/master/cleanlab/datalab/internal/issue_finder.html b/master/cleanlab/datalab/internal/issue_finder.html
index d95eef936..0557b901d 100644
--- a/master/cleanlab/datalab/internal/issue_finder.html
+++ b/master/cleanlab/datalab/internal/issue_finder.html
@@ -625,14 +625,7 @@ issue_finderOptional[csr_matrix
]) – Sparse matrix representing distances between examples in the dataset in a k nearest neighbor graph.
-If provided, this must be a square CSR matrix with shape (num_examples, num_examples) and (k*num_examples) non-zero entries (k is the number of nearest neighbors considered for each example)
-evenly distributed across the rows.
-The non-zero entries must be the distances between the corresponding examples. Self-distances must be omitted
-(i.e. the diagonal must be all zeros and the k nearest neighbors of each example must not include itself).
-For any duplicated examples i,j whose distance is 0, there should be an explicit zero stored in the matrix, i.e. knn_graph[i,j] = 0
.
-If both knn_graph
and features
are provided, the knn_graph
will take precendence.
-If knn_graph
is not provided, it is constructed based on the provided features
.
-If neither knn_graph
nor features
are provided, certain issue types like (near) duplicates will not be considered.
+For details, refer to the documentation of the same argument in Datalab.find_issues
issue_types (Optional
[Dict
[str
, Any
]]) –
Collection specifying which types of issues to consider in audit and any non-default parameter settings to use.
If unspecified, a default set of issue types and recommended parameter settings is considered.
diff --git a/master/searchindex.js b/master/searchindex.js
index bb830f342..78260711e 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90, 93], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 14, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 14, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 14, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 14, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 14, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 14, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 14, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 14, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 14, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 14, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 14, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 12, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 14, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 14, 44, 61, 79, 89], "csr": [4, 14], "evenli": [4, 14], "omit": [4, 14, 56, 57, 81, 86], "itself": [4, 14, 30, 34, 86], "duplic": [4, 7, 14, 18, 19, 30, 34, 71, 74, 82], "explicit": [4, 14], "precend": [4, 14], "construct": [4, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 14, 86], "nor": [4, 8, 12, 14], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "nearestneighbor": [4, 8, 58, 77, 87], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "kneighbors_graph": [4, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "start": [5, 8, 30, 31, 34, 71, 77, 85, 93], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "three": [8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90, 93], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 81, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 81, 82, 84, 86, 87, 90, 93], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "ascend": [29, 42, 50, 81, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90, 93], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "posit": [30, 34, 44, 57, 79, 87], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91], "log_interv": 34, "01": [34, 59, 61, 73, 81, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "th": [39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "second": [40, 42, 44, 57, 59, 74, 80, 82, 93], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "segment": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 81, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90], "03": [69, 79, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90], "039117": 74, "53": [74, 75, 77, 79, 81, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 81, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "reflect": [77, 78, 84, 86, 87, 89, 91, 92], "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "78": [77, 79, 81, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 81, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 82, 86, 90, 93], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86], "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 81, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 81, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 81, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "change_pin": [78, 92], "apple_pay_or_google_pai": [78, 92], "supported_cards_and_curr": [78, 92], "getting_spare_card": [78, 92], "visa_or_mastercard": [78, 92], "card_payment_fee_charg": [78, 92], "beneficiary_not_allow": [78, 92], "lost_or_stolen_phon": [78, 92], "card_about_to_expir": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": [78, 93], "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 81, 82, 84, 86, 90, 93], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90, 93], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86, 93], "98": [79, 80, 89, 90], "452381": 79, "459770": 79, "72": [79, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "704": 81, "331": 81, "310": 81, "430": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "71it": [81, 90], "74it": [81, 90], "57it": [81, 90], "62": [81, 82, 86, 89, 90], "63": [81, 82, 86, 90], "49it": [81, 90], "33it": [81, 90], "50it": [81, 90], "68it": [81, 90], "66it": 81, "89it": [81, 90], "65it": [81, 90], "73it": [81, 90], "85it": [81, 90], "492": 81, "085": 81, "722": 81, "290": [81, 86], "465": 81, "27it": [81, 90], "08it": [81, 90], "62it": [81, 90], "60it": [81, 90], "00it": [81, 90], "42it": [81, 90], "14it": [81, 90], "75it": [81, 90], "85": [81, 86, 89, 90], "88it": [81, 90], "36it": [81, 90], "476": 81, "305": [81, 89], "677": 81, "328": [81, 86], "335": 81, "306": 81, "18it": [81, 90], "86it": [81, 90], "79it": [81, 90], "52it": [81, 90], "63it": [81, 90], "92it": [81, 90], "29it": [81, 90], "25it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86, 93], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "69": [82, 89, 90], "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": [85, 93], "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86, 93], "216": [85, 86], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": 86, "323": 86, "327": 86, "226": [86, 93], "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": 86, "229": 86, "217": [86, 93], "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "semantic_segment": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "16875": 90, "168739": 90, "70it": 90, "33749": 90, "166720": 90, "06it": 90, "50787": 90, "168375": 90, "83it": 90, "67627": 90, "160392": 90, "84665": 90, "163870": 90, "55it": 90, "101475": 90, "165271": 90, "69it": 90, "118414": 90, "166593": 90, "135351": 90, "167465": 90, "152297": 90, "168082": 90, "56it": 90, "169154": 90, "168229": 90, "01it": 90, "186094": 90, "168580": 90, "81it": 90, "203133": 90, "169125": 90, "220065": 90, "169181": 90, "07it": 90, "236987": 90, "165239": 90, "99it": 90, "253533": 90, "164958": 90, "15it": 90, "270749": 90, "167093": 90, "287600": 90, "167510": 90, "98it": 90, "304698": 90, "168542": 90, "59it": 90, "321755": 90, "169144": 90, "21it": 90, "338841": 90, "169655": 90, "355955": 90, "170097": 90, "373028": 90, "170284": 90, "390143": 90, "170540": 90, "407199": 90, "170333": 90, "424234": 90, "165957": 90, "441442": 90, "167758": 90, "31it": 90, "458759": 90, "169358": 90, "04it": 90, "475970": 90, "170172": 90, "493293": 90, "171080": 90, "510610": 90, "171701": 90, "527886": 90, "172014": 90, "12it": 90, "545093": 90, "171956": 90, "90it": 90, "562493": 90, "172565": 90, "579783": 90, "172664": 90, "11it": 90, "597082": 90, "172757": 90, "76it": 90, "614377": 90, "172811": 90, "61it": 90, "631661": 90, "172816": 90, "22it": 90, "648944": 90, "172530": 90, "666266": 90, "172730": 90, "683540": 90, "172712": 90, "700812": 90, "172596": 90, "96it": 90, "718156": 90, "172846": 90, "735441": 90, "172372": 90, "752761": 90, "172619": 90, "67it": 90, "770137": 90, "172959": 90, "787570": 90, "173367": 90, "13it": 90, "804992": 90, "173620": 90, "09it": 90, "822398": 90, "173748": 90, "839858": 90, "174001": 90, "28it": 90, "857366": 90, "174322": 90, "874799": 90, "173567": 90, "892157": 90, "173440": 90, "909502": 90, "173143": 90, "926835": 90, "173197": 90, "03it": 90, "944156": 90, "166202": 90, "97it": 90, "961364": 90, "167910": 90, "978704": 90, "169521": 90, "996048": 90, "170676": 90, "17it": 90, "1013347": 90, "171362": 90, "05it": 90, "1030732": 90, "172101": 90, "84it": 90, "1048019": 90, "172330": 90, "1065263": 90, "171709": 90, "1082628": 90, "172285": 90, "1099931": 90, "172504": 90, "1117194": 90, "172539": 90, "1134546": 90, "172830": 90, "1151895": 90, "173026": 90, "1169210": 90, "173059": 90, "1186517": 90, "172852": 90, "1203803": 90, "172564": 90, "1221098": 90, "172667": 90, "1238475": 90, "172994": 90, "1255775": 90, "172899": 90, "1273066": 90, "172589": 90, "94it": 90, "1290398": 90, "172806": 90, "58it": 90, "1307679": 90, "166160": 90, "47it": 90, "1325085": 90, "168461": 90, "1342482": 90, "170080": 90, "23it": 90, "1359770": 90, "170905": 90, "1377262": 90, "172095": 90, "37it": 90, "1394654": 90, "172637": 90, "1411932": 90, "172322": 90, "24it": 90, "1429364": 90, "172916": 90, "1446805": 90, "173360": 90, "1464219": 90, "173591": 90, "1481618": 90, "173705": 90, "1498992": 90, "173642": 90, "1516359": 90, "173555": 90, "1533819": 90, "173865": 90, "1551313": 90, "174184": 90, "1568733": 90, "174021": 90, "1586136": 90, "173365": 90, "1603562": 90, "173631": 90, "1620931": 90, "173647": 90, "16it": 90, "1638297": 90, "173646": 90, "1655662": 90, "173105": 90, "1672974": 90, "173039": 90, "35it": 90, "1690279": 90, "173003": 90, "1707672": 90, "173279": 90, "1725006": 90, "173295": 90, "1742344": 90, "173319": 90, "1759688": 90, "173351": 90, "1777038": 90, "173394": 90, "1794436": 90, "173569": 90, "40it": 90, "1811793": 90, "173517": 90, "02it": 90, "1829145": 90, "166757": 90, "1846395": 90, "168429": 90, "1863765": 90, "169977": 90, "1881203": 90, "171277": 90, "32it": 90, "1898452": 90, "171635": 90, "1915886": 90, "172439": 90, "30it": 90, "1933369": 90, "173150": 90, "77it": 90, "1950735": 90, "173300": 90, "1968259": 90, "173879": 90, "1985652": 90, "173544": 90, "93it": 90, "2003011": 90, "173058": 90, "44it": 90, "2020320": 90, "172626": 90, "2037585": 90, "172171": 90, "2054804": 90, "172021": 90, "2072008": 90, "171872": 90, "2089420": 90, "172537": 90, "2106675": 90, "171860": 90, "2124106": 90, "172588": 90, "2141366": 90, "172446": 90, "2158656": 90, "172578": 90, "2176016": 90, "172883": 90, "2193384": 90, "173117": 90, "2210697": 90, "172709": 90, "19it": 90, "2227969": 90, "172545": 90, "2245267": 90, "172674": 90, "2262535": 90, "172558": 90, "2279822": 90, "172648": 90, "2297138": 90, "172798": 90, "2314494": 90, "173025": 90, "10it": 90, "2331921": 90, "2349261": 90, "173271": 90, "2366718": 90, "173658": 90, "2384136": 90, "173811": 90, "2401703": 90, "174365": 90, "26it": 90, "2419203": 90, "174552": 90, "2436659": 90, "173962": 90, "2454056": 90, "2471469": 90, "173733": 90, "2488843": 90, "173660": 90, "2506210": 90, "173624": 90, "2523713": 90, "174041": 90, "2541118": 90, "173689": 90, "2558488": 90, "173348": 90, "2575970": 90, "173787": 90, "2593377": 90, "173871": 90, "2610843": 90, "174104": 90, "2628254": 90, "173681": 90, "51it": 90, "2645623": 90, "173400": 90, "2662964": 90, "172608": 90, "48it": 90, "2680450": 90, "2697854": 90, "173505": 90, "2715206": 90, "173196": 90, "91it": 90, "2732568": 90, "173320": 90, "78it": 90, "2749901": 90, "173028": 90, "2767205": 90, "172657": 90, "53it": 90, "2784472": 90, "172316": 90, "2801932": 90, "172995": 90, "2819358": 90, "173371": 90, "2836750": 90, "173532": 90, "45it": 90, "2854104": 90, "173290": 90, "2871434": 90, "173285": 90, "2888763": 90, "172271": 90, "39it": 90, "2906001": 90, "172300": 90, "54it": 90, "2923350": 90, "172655": 90, "2940617": 90, "172478": 90, "2957873": 90, "172501": 90, "2975124": 90, "172352": 90, "2992458": 90, "172646": 90, "3009723": 90, "172517": 90, "3026975": 90, "172246": 90, "82it": 90, "3044200": 90, "171713": 90, "46it": 90, "3061372": 90, "171532": 90, "3078526": 90, "171023": 90, "3095787": 90, "171493": 90, "3113072": 90, "171898": 90, "3130317": 90, "172060": 90, "3147678": 90, "172520": 90, "3165115": 90, "173072": 90, "3182586": 90, "173561": 90, "3200084": 90, "173984": 90, "3217486": 90, "173992": 90, "3234886": 90, "173464": 90, "3252233": 90, "166147": 90, "3269291": 90, "167433": 90, "3286470": 90, "168708": 90, "3303703": 90, "169776": 90, "3321041": 90, "170841": 90, "3338318": 90, "171412": 90, "3355610": 90, "171857": 90, "3372854": 90, "172027": 90, "3390245": 90, "3407661": 90, "3425012": 90, "173189": 90, "3442334": 90, "3459644": 90, "172570": 90, "3476903": 90, "172289": 90, "3494266": 90, "172685": 90, "3511536": 90, "172192": 90, "34it": 90, "3528769": 90, "172229": 90, "3546062": 90, "172435": 90, "3563574": 90, "173237": 90, "3580913": 90, "173280": 90, "95it": 90, "3598242": 90, "166262": 90, "3615609": 90, "168416": 90, "3633130": 90, "170409": 90, "3650477": 90, "171311": 90, "3668009": 90, "172500": 90, "3685499": 90, "173211": 90, "3702836": 90, "171485": 90, "3720207": 90, "172143": 90, "3737691": 90, "172943": 90, "3755186": 90, "173539": 90, "3772694": 90, "173996": 90, "3790125": 90, "174087": 90, "3807603": 90, "174294": 90, "3825052": 90, "174351": 90, "3842536": 90, "174495": 90, "38it": 90, "3860012": 90, "174572": 90, "3877470": 90, "174285": 90, "3894900": 90, "174102": 90, "3912311": 90, "173814": 90, "3929731": 90, "173928": 90, "3947125": 90, "166953": 90, "3964318": 90, "168400": 90, "3981461": 90, "169287": 90, "3998620": 90, "169964": 90, "4015703": 90, "170220": 90, "4032920": 90, "170799": 90, "4050142": 90, "171222": 90, "4067285": 90, "171281": 90, "4084638": 90, "171951": 90, "4101838": 90, "171918": 90, "4119142": 90, "172252": 90, "4136370": 90, "172205": 90, "4153593": 90, "172084": 90, "4170803": 90, "171746": 90, "4188168": 90, "172311": 90, "4205400": 90, "171891": 90, "4222639": 90, "172039": 90, "4239879": 90, "172144": 90, "4257214": 90, "172503": 90, "4274633": 90, "173007": 90, "4292128": 90, "173588": 90, "4309641": 90, "174046": 90, "4327083": 90, "174154": 90, "4344499": 90, "174105": 90, "4361910": 90, "174010": 90, "64it": 90, "4379394": 90, "174257": 90, "4396895": 90, "174479": 90, "80it": 90, "4414419": 90, "174705": 90, "4431890": 90, "174688": 90, "4449359": 90, "174570": 90, "4466817": 90, "173945": 90, "4484213": 90, "165940": 90, "4501196": 90, "167063": 90, "4518396": 90, "168506": 90, "4535534": 90, "169350": 90, "4552661": 90, "169918": 90, "4569943": 90, "170778": 90, "4587166": 90, "171210": 90, "4604300": 90, "170987": 90, "4621454": 90, "171140": 90, "4638642": 90, "171360": 90, "4655790": 90, "171391": 90, "4672933": 90, "171279": 90, "4690064": 90, "171054": 90, "4707172": 90, "170618": 90, "4724236": 90, "170186": 90, "4741256": 90, "169721": 90, "4758229": 90, "169542": 90, "4775186": 90, "169546": 90, "4792204": 90, "169733": 90, "4809588": 90, "170960": 90, "4826935": 90, "171708": 90, "4844144": 90, "171821": 90, "4861509": 90, "172365": 90, "4878998": 90, "173118": 90, "4896357": 90, "173256": 90, "4913683": 90, "172966": 90, "4931015": 90, "173069": 90, "4948368": 90, "173204": 90, "4965689": 90, "172854": 90, "4982975": 90, "172470": 90, "87it": 90, "171905": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a01": 93, "996": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "278": 93, "53k": 93, "31mb": 93, "65m": 93, "2mb": 93, "93m": 93, "9mb": 93, "26m": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 42, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 42, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90, 93], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 81, 82, 84, 86, 87, 90], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91], "log_interv": 34, "01": [34, 59, 61, 73, 81, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 81, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90, 93], "03": [69, 79, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85, 93], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 81, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 81, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91, 93], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "78": [77, 79, 81, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86, 93], "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 81, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "beneficiary_not_allow": [78, 92], "supported_cards_and_curr": [78, 92], "change_pin": [78, 92], "apple_pay_or_google_pai": [78, 92], "visa_or_mastercard": [78, 92], "card_about_to_expir": [78, 92], "getting_spare_card": [78, 92], "lost_or_stolen_phon": [78, 92], "card_payment_fee_charg": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90], "41": [78, 79, 81, 86, 89, 90], "38": [78, 79, 81, 86, 90, 93], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 81, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 81, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89, 90], "452381": 79, "459770": 79, "72": [79, 81, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "662": 81, "331": 81, "310": 81, "346": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "83it": [81, 90], "13it": [81, 90], "96it": [81, 90], "37it": [81, 90], "45it": [81, 90], "51it": [81, 90], "90it": [81, 90], "56it": [81, 90], "68it": [81, 90], "82it": [81, 90], "85": [81, 86, 89, 90], "53it": [81, 90], "04it": [81, 90], "492": 81, "085": 81, "626": 81, "290": [81, 86], "357": 81, "98it": 81, "08it": [81, 90], "22it": [81, 90], "63": [81, 82, 86, 90], "71it": [81, 90], "17it": [81, 90], "62": [81, 82, 86, 89, 90], "74it": [81, 90], "06it": [81, 90], "52it": [81, 90], "97it": [81, 90], "476": 81, "305": [81, 89], "688": [81, 89], "328": [81, 86], "335": 81, "257": [81, 86], "88it": [81, 90], "75it": [81, 90], "15it": [81, 90], "67it": [81, 90], "23it": [81, 90], "21it": [81, 90], "65it": [81, 90], "32it": [81, 90], "36it": [81, 90], "05it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "69": [82, 89, 90], "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86, 93], "174": 82, "163": 82, "150": [82, 84, 86, 93], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90, 93], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": [86, 93], "323": 86, "327": 86, "226": 86, "228": 86, "232": [86, 93], "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": 86, "229": 86, "217": [86, 93], "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "semantic_segment": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17316": 90, "173154": 90, "39it": 90, "34703": 90, "173569": 90, "34it": 90, "52060": 90, "173004": 90, "69497": 90, "173517": 90, "86899": 90, "173692": 90, "14it": 90, "104269": 90, "173377": 90, "81it": 90, "121807": 90, "174025": 90, "93it": 90, "139276": 90, "174232": 90, "76it": 90, "156700": 90, "173844": 90, "12it": 90, "174085": 90, "173466": 90, "58it": 90, "191511": 90, "173705": 90, "208912": 90, "173796": 90, "70it": 90, "226355": 90, "173984": 90, "243754": 90, "173944": 90, "46it": 90, "261149": 90, "173744": 90, "278705": 90, "174288": 90, "59it": 90, "296332": 90, "174880": 90, "84it": 90, "313821": 90, "174480": 90, "55it": 90, "331358": 90, "174744": 90, "92it": 90, "348833": 90, "174449": 90, "366279": 90, "174126": 90, "72it": 90, "383729": 90, "174222": 90, "07it": 90, "401227": 90, "174447": 90, "418855": 90, "174995": 90, "18it": 90, "436537": 90, "175539": 90, "454092": 90, "174543": 90, "99it": 90, "471548": 90, "174226": 90, "488972": 90, "174051": 90, "506378": 90, "173741": 90, "09it": 90, "523916": 90, "174229": 90, "02it": 90, "541494": 90, "174691": 90, "558964": 90, "174558": 90, "576421": 90, "174151": 90, "31it": 90, "593977": 90, "174569": 90, "48it": 90, "611494": 90, "69it": 90, "628969": 90, "172753": 90, "646321": 90, "172979": 90, "663679": 90, "91it": 90, "681030": 90, "173259": 90, "698362": 90, "173275": 90, "715691": 90, "173269": 90, "733023": 90, "173282": 90, "63it": 90, "750352": 90, "172883": 90, "767641": 90, "172695": 90, "49it": 90, "784963": 90, "172849": 90, "42it": 90, "802249": 90, "172543": 90, "819504": 90, "172408": 90, "836746": 90, "172216": 90, "20it": 90, "853968": 90, "172122": 90, "871181": 90, "171981": 90, "888380": 90, "171753": 90, "905557": 90, "171754": 90, "41it": 90, "922933": 90, "172352": 90, "940465": 90, "173240": 90, "44it": 90, "958213": 90, "174508": 90, "975677": 90, "64it": 90, "993172": 90, "174661": 90, "1010639": 90, "174191": 90, "1028059": 90, "173875": 90, "1045447": 90, "173714": 90, "1062819": 90, "173555": 90, "1080175": 90, "173322": 90, "86it": 90, "1097508": 90, "172751": 90, "89it": 90, "1114784": 90, "172069": 90, "1132096": 90, "172355": 90, "1149354": 90, "172417": 90, "1166597": 90, "172128": 90, "78it": 90, "1183811": 90, "171851": 90, "61it": 90, "1201022": 90, "171926": 90, "1218296": 90, "172168": 90, "16it": 90, "1235514": 90, "171822": 90, "1252775": 90, "172055": 90, "38it": 90, "1269981": 90, "171734": 90, "1287155": 90, "171381": 90, "1304565": 90, "172191": 90, "79it": 90, "1321785": 90, "171748": 90, "1338961": 90, "171537": 90, "1356197": 90, "171781": 90, "30it": 90, "1373376": 90, "171542": 90, "1390531": 90, "171307": 90, "25it": 90, "1407812": 90, "171751": 90, "1425138": 90, "172200": 90, "1442395": 90, "172309": 90, "66it": 90, "1459635": 90, "172334": 90, "1476885": 90, "172381": 90, "1494124": 90, "172109": 90, "1511467": 90, "172501": 90, "1528718": 90, "172226": 90, "43it": 90, "1545994": 90, "172362": 90, "1563291": 90, "172539": 90, "1580546": 90, "172246": 90, "1597771": 90, "171890": 90, "1614961": 90, "171888": 90, "1632150": 90, "171585": 90, "35it": 90, "1649309": 90, "171021": 90, "1666412": 90, "170935": 90, "1683781": 90, "171757": 90, "1701534": 90, "173482": 90, "11it": 90, "1719356": 90, "174897": 90, "85it": 90, "1737235": 90, "176060": 90, "1755103": 90, "176843": 90, "1772886": 90, "177136": 90, "1790682": 90, "177379": 90, "1808421": 90, "177296": 90, "1826201": 90, "177446": 90, "1843946": 90, "177072": 90, "1861654": 90, "169255": 90, "1879319": 90, "171398": 90, "1897031": 90, "173074": 90, "1914827": 90, "174514": 90, "1932646": 90, "175602": 90, "1950428": 90, "176258": 90, "1968128": 90, "176478": 90, "1985959": 90, "177022": 90, "2003671": 90, "176864": 90, "50it": 90, "2021471": 90, "177200": 90, "2039196": 90, "176600": 90, "2056860": 90, "176125": 90, "2074490": 90, "176174": 90, "57it": 90, "2092124": 90, "176221": 90, "2109762": 90, "176266": 90, "2127572": 90, "176812": 90, "2145255": 90, "176479": 90, "2162957": 90, "176637": 90, "2180622": 90, "176403": 90, "2198434": 90, "176913": 90, "54it": 90, "2216126": 90, "176065": 90, "2233734": 90, "175147": 90, "24it": 90, "2251386": 90, "175552": 90, "2268988": 90, "175687": 90, "2286719": 90, "176170": 90, "2304337": 90, "176014": 90, "2322325": 90, "177167": 90, "2340199": 90, "177635": 90, "2358106": 90, "178062": 90, "2375951": 90, "178173": 90, "2393821": 90, "178328": 90, "40it": 90, "2411655": 90, "177906": 90, "2429446": 90, "177625": 90, "2447253": 90, "177754": 90, "2465154": 90, "178127": 90, "2483006": 90, "178243": 90, "2500831": 90, "178089": 90, "2518641": 90, "177478": 90, "2536486": 90, "177764": 90, "2554300": 90, "177872": 90, "80it": 90, "2572088": 90, "173695": 90, "2589563": 90, "174002": 90, "2607507": 90, "175610": 90, "2625363": 90, "176485": 90, "2643076": 90, "176673": 90, "2660751": 90, "176662": 90, "2678423": 90, "175928": 90, "2696020": 90, "174944": 90, "2713518": 90, "174532": 90, "2730985": 90, "2748488": 90, "174704": 90, "26it": 90, "2765960": 90, "169598": 90, "2783375": 90, "170931": 90, "19it": 90, "2801062": 90, "172682": 90, "33it": 90, "2818403": 90, "172896": 90, "10it": 90, "2835914": 90, "173552": 90, "2853364": 90, "173832": 90, "2870755": 90, "173480": 90, "2888260": 90, "173946": 90, "60it": 90, "2905823": 90, "174448": 90, "28it": 90, "2923340": 90, "174662": 90, "2940809": 90, "173331": 90, "27it": 90, "2958146": 90, "173207": 90, "2975470": 90, "2992863": 90, "172823": 90, "3010148": 90, "172713": 90, "3027616": 90, "173297": 90, "3044947": 90, "172905": 90, "3062323": 90, "173155": 90, "3079745": 90, "173470": 90, "3097257": 90, "173963": 90, "3114654": 90, "166467": 90, "3132044": 90, "168625": 90, "47it": 90, "3149329": 90, "169861": 90, "3166639": 90, "170816": 90, "3183968": 90, "171549": 90, "3201145": 90, "171562": 90, "3218396": 90, "171842": 90, "3235674": 90, "172118": 90, "3253265": 90, "173249": 90, "3270596": 90, "172856": 90, "3287886": 90, "165844": 90, "3305498": 90, "168828": 90, "3323461": 90, "171996": 90, "3341247": 90, "173724": 90, "3359114": 90, "175189": 90, "3376947": 90, "176120": 90, "3394883": 90, "177082": 90, "62it": 90, "3412744": 90, "177534": 90, "3430589": 90, "177806": 90, "3448377": 90, "177808": 90, "3466193": 90, "177908": 90, "3483988": 90, "177744": 90, "3501919": 90, "178211": 90, "3519742": 90, "178030": 90, "3537822": 90, "178856": 90, "3555826": 90, "179208": 90, "3573778": 90, "179298": 90, "3591709": 90, "178896": 90, "73it": 90, "3609648": 90, "179040": 90, "3627553": 90, "178664": 90, "01it": 90, "3645420": 90, "178510": 90, "3663272": 90, "178345": 90, "3681141": 90, "178445": 90, "3699086": 90, "178744": 90, "3717089": 90, "179127": 90, "3735058": 90, "179292": 90, "3753015": 90, "179373": 90, "3771043": 90, "179642": 90, "3789008": 90, "179431": 90, "3806989": 90, "179543": 90, "3824944": 90, "178858": 90, "3842879": 90, "179000": 90, "3860780": 90, "178366": 90, "3878707": 90, "178633": 90, "3896571": 90, "178100": 90, "3914382": 90, "177345": 90, "3932118": 90, "177085": 90, "3949828": 90, "175940": 90, "3967424": 90, "175871": 90, "87it": 90, "3985013": 90, "175181": 90, "4002533": 90, "174771": 90, "4020011": 90, "174438": 90, "4037456": 90, "174210": 90, "4054878": 90, "173361": 90, "4072335": 90, "173720": 90, "4089708": 90, "173593": 90, "4107077": 90, "173620": 90, "4124749": 90, "174546": 90, "4142205": 90, "174336": 90, "4159640": 90, "174330": 90, "4177074": 90, "174031": 90, "4194478": 90, "4211886": 90, "173983": 90, "4229312": 90, "174062": 90, "4246719": 90, "173664": 90, "4264353": 90, "174461": 90, "4281937": 90, "174872": 90, "4299545": 90, "175233": 90, "4317069": 90, "175008": 90, "4334571": 90, "174884": 90, "4352131": 90, "175094": 90, "4369641": 90, "174298": 90, "4387129": 90, "174469": 90, "4404577": 90, "174283": 90, "4422006": 90, "174246": 90, "4439647": 90, "174890": 90, "4457137": 90, "174697": 90, "4474608": 90, "174511": 90, "4492108": 90, "174654": 90, "4509854": 90, "175491": 90, "4527404": 90, "175471": 90, "4544952": 90, "175040": 90, "4562469": 90, "175076": 90, "4579977": 90, "175030": 90, "4597481": 90, "174825": 90, "4614964": 90, "174502": 90, "4632415": 90, "173890": 90, "4649960": 90, "174334": 90, "4667394": 90, "174197": 90, "4684815": 90, "173652": 90, "4702182": 90, "173656": 90, "4719549": 90, "172923": 90, "4737356": 90, "174456": 90, "4755081": 90, "175290": 90, "4772844": 90, "175987": 90, "4790586": 90, "176415": 90, "03it": 90, "4808372": 90, "176846": 90, "4826299": 90, "177568": 90, "4844078": 90, "177632": 90, "4861887": 90, "177765": 90, "4879670": 90, "177783": 90, "4897511": 90, "177968": 90, "4915308": 90, "177843": 90, "4933093": 90, "177582": 90, "4951024": 90, "178096": 90, "4968834": 90, "177735": 90, "4986846": 90, "174695": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a00": 93, "1068": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "93mb": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}})
\ No newline at end of file
diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html
index 93dc4ddfc..f9be65c87 100644
--- a/master/tutorials/audio.html
+++ b/master/tutorials/audio.html
@@ -1495,7 +1495,7 @@ 5. Use cleanlab to find label issues
-{"state": {"3750c3bb13fd4b7891b2edf9e9528bf3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da6ed8bc9c6845ae8bd787e3a2284e1e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bcb8b268e2cb47f3bb8892761ee0623c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3750c3bb13fd4b7891b2edf9e9528bf3", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_da6ed8bc9c6845ae8bd787e3a2284e1e", "value": 2041.0}}, "1521ff8a83b84bc1a4bd981a48365148": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b17fd9f28464c6d8db3154c2c595c78": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "731bcc4a303c44a5ae86ffb1ad0a00b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1521ff8a83b84bc1a4bd981a48365148", "placeholder": "\u200b", "style": "IPY_MODEL_2b17fd9f28464c6d8db3154c2c595c78", "value": "hyperparams.yaml: 100%"}}, "1daff477050645d292712ef350261387": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b0c006e9507441483d80353f9c4952e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0a0fc008fa2f4721b225a2c8b2912616": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1daff477050645d292712ef350261387", "placeholder": "\u200b", "style": "IPY_MODEL_4b0c006e9507441483d80353f9c4952e", "value": " 2.04k/2.04k [00:00<00:00, 316kB/s]"}}, "38346ba055094159b9ee7fff390710e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d3fa693e91349ba9a156a153d4f61ea": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_731bcc4a303c44a5ae86ffb1ad0a00b0", "IPY_MODEL_bcb8b268e2cb47f3bb8892761ee0623c", "IPY_MODEL_0a0fc008fa2f4721b225a2c8b2912616"], "layout": "IPY_MODEL_38346ba055094159b9ee7fff390710e8"}}, "04a0e3571050433ea7dce2da14374824": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5da8fee63fd746f4a727f89bd324596f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f327926ff31c4299a2800a75539a9db4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_04a0e3571050433ea7dce2da14374824", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5da8fee63fd746f4a727f89bd324596f", "value": 16887676.0}}, "19a233faf08a4b71bf021f74e724d60d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a756acf6dbdd469595b5c32ef5bf7c69": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f8680a078d734c09944d7bd8c6142252": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_19a233faf08a4b71bf021f74e724d60d", "placeholder": "\u200b", "style": "IPY_MODEL_a756acf6dbdd469595b5c32ef5bf7c69", "value": "embedding_model.ckpt: 100%"}}, "ddfe327d2855488db20ee1f6a7393801": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbf59cda17394ee2a5a96b66fa586d02": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "23578704abc8480d95b34b87959deb24": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ddfe327d2855488db20ee1f6a7393801", "placeholder": "\u200b", "style": "IPY_MODEL_fbf59cda17394ee2a5a96b66fa586d02", "value": " 16.9M/16.9M [00:00<00:00, 48.5MB/s]"}}, "9be46107b93445a1829536b8ce31e961": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "014241d1df6541b494c9552089c5d91b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f8680a078d734c09944d7bd8c6142252", "IPY_MODEL_f327926ff31c4299a2800a75539a9db4", "IPY_MODEL_23578704abc8480d95b34b87959deb24"], "layout": "IPY_MODEL_9be46107b93445a1829536b8ce31e961"}}, "ca978915848d4fdda2e52e947cc173d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b1e511fc5bc5456186268f27c80e60c9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "181e6075ca754e248e0b3c04ab5e84da": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ca978915848d4fdda2e52e947cc173d2", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b1e511fc5bc5456186268f27c80e60c9", "value": 3201.0}}, "98fe1753a3684d4b891e012b724acc54": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "237e45c4ab7b4ba382121890a7fb00dd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "66f832a838ad4ae98ae1607f44e20402": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_98fe1753a3684d4b891e012b724acc54", "placeholder": "\u200b", "style": "IPY_MODEL_237e45c4ab7b4ba382121890a7fb00dd", "value": "mean_var_norm_emb.ckpt: 100%"}}, "a9eb780a6f9445c9932510579b76f37f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65ffeb36704e4c24927a9cece1cba669": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ab96d49f9fd24e82979a6c5516574d79": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a9eb780a6f9445c9932510579b76f37f", "placeholder": "\u200b", "style": "IPY_MODEL_65ffeb36704e4c24927a9cece1cba669", "value": " 3.20k/3.20k [00:00<00:00, 522kB/s]"}}, "72c4e5ef5a544d11a4851b6f9dd2a414": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6fc3c34dabe4e1da78193c456f3a546": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_66f832a838ad4ae98ae1607f44e20402", "IPY_MODEL_181e6075ca754e248e0b3c04ab5e84da", "IPY_MODEL_ab96d49f9fd24e82979a6c5516574d79"], "layout": "IPY_MODEL_72c4e5ef5a544d11a4851b6f9dd2a414"}}, "93e009396d8042c29a21037dd236b86a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c17541fb89e447dc92dda72cfc0688fe": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2910cf57e3194ffb89df0f71dc83d354": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_93e009396d8042c29a21037dd236b86a", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c17541fb89e447dc92dda72cfc0688fe", "value": 15856877.0}}, "3bf58ef2af3649e4aa31728845068d4c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ba0acae90cd4fc790ab18a4e22d90ce": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "565e15799797419097ff4ffb7c15b6de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3bf58ef2af3649e4aa31728845068d4c", "placeholder": "\u200b", "style": "IPY_MODEL_5ba0acae90cd4fc790ab18a4e22d90ce", "value": "classifier.ckpt: 100%"}}, "fda1816f838a4c2a8791f2b17afad892": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9dd3746c4bdf4da1998bd16e5fb8324b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5075510f233d49868ea04270daf647a0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fda1816f838a4c2a8791f2b17afad892", "placeholder": "\u200b", "style": "IPY_MODEL_9dd3746c4bdf4da1998bd16e5fb8324b", "value": " 15.9M/15.9M [00:00<00:00, 25.5MB/s]"}}, "c449c2bea33648588764620782fb42ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f3b3073993748aaa1b31d3a782c83dd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_565e15799797419097ff4ffb7c15b6de", "IPY_MODEL_2910cf57e3194ffb89df0f71dc83d354", "IPY_MODEL_5075510f233d49868ea04270daf647a0"], "layout": "IPY_MODEL_c449c2bea33648588764620782fb42ba"}}, "5011acc148994d098e9f0f286e31f7c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c60fc74b4fe64238aef461969d090cee": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cfaeec8713bb469181d52c87b8126f78": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5011acc148994d098e9f0f286e31f7c0", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c60fc74b4fe64238aef461969d090cee", "value": 128619.0}}, "36db81671365485b8ebb5a0fb170a1f2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aee237a7a9e748f4abd1bf21856465ac": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fe3a33a703cb436d9c5088cd3f3d46b6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_36db81671365485b8ebb5a0fb170a1f2", "placeholder": "\u200b", "style": "IPY_MODEL_aee237a7a9e748f4abd1bf21856465ac", "value": "label_encoder.txt: 100%"}}, "5c2d0125d75c49619c022f156aad8d96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7401993c52b49cdac63cb10b9ec46ea": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6ebb12165ac044c6a797778a67dc3dc1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5c2d0125d75c49619c022f156aad8d96", "placeholder": "\u200b", "style": "IPY_MODEL_f7401993c52b49cdac63cb10b9ec46ea", "value": " 129k/129k [00:00<00:00, 1.00MB/s]"}}, "c05bdb67832b43c397ce064fb77e4ecf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f88d91fa31d4eea89344a77025a0121": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fe3a33a703cb436d9c5088cd3f3d46b6", "IPY_MODEL_cfaeec8713bb469181d52c87b8126f78", "IPY_MODEL_6ebb12165ac044c6a797778a67dc3dc1"], "layout": "IPY_MODEL_c05bdb67832b43c397ce064fb77e4ecf"}}}, "version_major": 2, "version_minor": 0}
+{"state": {"455d438a64064a0a8ba13fbe2dc8ea4b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "77bf5a408bd74660a66334bbbfa11597": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bd8e9ef99d6046d994219a87519157b0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_455d438a64064a0a8ba13fbe2dc8ea4b", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_77bf5a408bd74660a66334bbbfa11597", "value": 2041.0}}, "d20fdd8c04ce452ba5357150afd8dace": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5eb24d8e19543d68522a8a50b4b5185": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2aa8344e2ac14266acebf5becc50f27c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d20fdd8c04ce452ba5357150afd8dace", "placeholder": "\u200b", "style": "IPY_MODEL_b5eb24d8e19543d68522a8a50b4b5185", "value": "hyperparams.yaml: 100%"}}, "0906ffbbadf2475aa122ed1881bc7d6b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f93ae37ef664f6b9b4c40b8585aa9aa": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b3ade771edd74c4abd845cc959413ef3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0906ffbbadf2475aa122ed1881bc7d6b", "placeholder": "\u200b", "style": "IPY_MODEL_6f93ae37ef664f6b9b4c40b8585aa9aa", "value": " 2.04k/2.04k [00:00<00:00, 341kB/s]"}}, "87c765a11313429dbc1439ee8c6fee48": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9cf9e20155d04f629b663265053d39cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2aa8344e2ac14266acebf5becc50f27c", "IPY_MODEL_bd8e9ef99d6046d994219a87519157b0", "IPY_MODEL_b3ade771edd74c4abd845cc959413ef3"], "layout": "IPY_MODEL_87c765a11313429dbc1439ee8c6fee48"}}, "df3338f41d134ca9a4319f0342140832": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35dc0bc0e98e453385c5e9200631183c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ec8650aebb9848d188ebcd39c2ae7412": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_df3338f41d134ca9a4319f0342140832", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_35dc0bc0e98e453385c5e9200631183c", "value": 16887676.0}}, "f24fc43092994ee48322ffb18431210d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4386d2d14ff340bebfd014e0a3457dab": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "074162d16a204956a58163b7ed2fc38f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f24fc43092994ee48322ffb18431210d", "placeholder": "\u200b", "style": "IPY_MODEL_4386d2d14ff340bebfd014e0a3457dab", "value": "embedding_model.ckpt: 100%"}}, "64dd0f3ddf4349e98e02d4de795cbd2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d11326a8abb7410995defc11e8e9a951": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d0afa7a5cdd44e27addb91cee44e48f6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_64dd0f3ddf4349e98e02d4de795cbd2c", "placeholder": "\u200b", "style": "IPY_MODEL_d11326a8abb7410995defc11e8e9a951", "value": " 16.9M/16.9M [00:00<00:00, 63.1MB/s]"}}, "23267d69370540c284956a78d45094d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "148c405ab5344da1bf45117d46fc1e4b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_074162d16a204956a58163b7ed2fc38f", "IPY_MODEL_ec8650aebb9848d188ebcd39c2ae7412", "IPY_MODEL_d0afa7a5cdd44e27addb91cee44e48f6"], "layout": "IPY_MODEL_23267d69370540c284956a78d45094d3"}}, "a33aff2e3aaa4fa989b9b85fd1c20315": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c321e7024224d0e929145a821345bd5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f92a351c28d145e78749037598116d02": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a33aff2e3aaa4fa989b9b85fd1c20315", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7c321e7024224d0e929145a821345bd5", "value": 3201.0}}, "0c75ced7da7e47ef91ce46b03af3b641": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba4bde1f28454d6790ac9191769b7323": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ae75e488acf04e9e9a40b95aa335937d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0c75ced7da7e47ef91ce46b03af3b641", "placeholder": "\u200b", "style": "IPY_MODEL_ba4bde1f28454d6790ac9191769b7323", "value": "mean_var_norm_emb.ckpt: 100%"}}, "676548bea73042c7b45afcf1d579ec7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7904dccd7f2f4ae78a71834661345755": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c75a8ca9cbac45b49aa1d7fdb5d9322a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_676548bea73042c7b45afcf1d579ec7f", "placeholder": "\u200b", "style": "IPY_MODEL_7904dccd7f2f4ae78a71834661345755", "value": " 3.20k/3.20k [00:00<00:00, 590kB/s]"}}, "fbe9385b05ae48f3bad319cc10b998f2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8501476ac7454d7ba6881f2af7a59298": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ae75e488acf04e9e9a40b95aa335937d", "IPY_MODEL_f92a351c28d145e78749037598116d02", "IPY_MODEL_c75a8ca9cbac45b49aa1d7fdb5d9322a"], "layout": "IPY_MODEL_fbe9385b05ae48f3bad319cc10b998f2"}}, "6279eedd19ac4aa69e7237c1daee38ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d1967103ae21421bb06de072dc7024cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3ee18ff0722b47748522ada0dd486588": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6279eedd19ac4aa69e7237c1daee38ba", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d1967103ae21421bb06de072dc7024cf", "value": 15856877.0}}, "f2137ff043f649929818511eda4d58f2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3bc0049b5f34f94aaccb07dbd9dcd0a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e5eaafbb7d694737a0802f3ca4b32cdc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f2137ff043f649929818511eda4d58f2", "placeholder": "\u200b", "style": "IPY_MODEL_d3bc0049b5f34f94aaccb07dbd9dcd0a", "value": "classifier.ckpt: 100%"}}, "b2430b1735ff4e908e0d43db76a98503": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42965a973a994ed3bfb2b8c8bfc97033": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9b1808c4d27c469f92d3b79c5001654f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b2430b1735ff4e908e0d43db76a98503", "placeholder": "\u200b", "style": "IPY_MODEL_42965a973a994ed3bfb2b8c8bfc97033", "value": " 15.9M/15.9M [00:00<00:00, 260MB/s]"}}, "39e3eac6651b41a0a8507899dfba6291": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bf82104150440e58d5d307849cb8530": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e5eaafbb7d694737a0802f3ca4b32cdc", "IPY_MODEL_3ee18ff0722b47748522ada0dd486588", "IPY_MODEL_9b1808c4d27c469f92d3b79c5001654f"], "layout": "IPY_MODEL_39e3eac6651b41a0a8507899dfba6291"}}, "c3e52b00e156405ab5cc4f7ea6955fdf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52f99ac78c814eb4af3805a5ab20aa67": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a0cbebed32b54286a8de95e836e9dcd6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c3e52b00e156405ab5cc4f7ea6955fdf", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_52f99ac78c814eb4af3805a5ab20aa67", "value": 128619.0}}, "f7265cd7bb2b4a54bde9ab01c77de4c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f1be1919ca5c4bed989da2aaf7719921": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a4b67b1b62354f4285bdc563ffd1f6fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f7265cd7bb2b4a54bde9ab01c77de4c1", "placeholder": "\u200b", "style": "IPY_MODEL_f1be1919ca5c4bed989da2aaf7719921", "value": "label_encoder.txt: 100%"}}, "feb66c7a251a4f1da48adef810a26b63": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "87fdf9ab141b491fb75725019fdc89f2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8f2acd0d2986481cb93ce93b721793c3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_feb66c7a251a4f1da48adef810a26b63", "placeholder": "\u200b", "style": "IPY_MODEL_87fdf9ab141b491fb75725019fdc89f2", "value": " 129k/129k [00:00<00:00, 7.56MB/s]"}}, "830eb310a3234b8d99f39b782751ec14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9a2cb058ea1f48958e7369b4fc5bffae": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a4b67b1b62354f4285bdc563ffd1f6fe", "IPY_MODEL_a0cbebed32b54286a8de95e836e9dcd6", "IPY_MODEL_8f2acd0d2986481cb93ce93b721793c3"], "layout": "IPY_MODEL_830eb310a3234b8d99f39b782751ec14"}}}, "version_major": 2, "version_minor": 0}
diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb
index f897d9e1d..a22748c45 100644
--- a/master/tutorials/audio.ipynb
+++ b/master/tutorials/audio.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:53.940965Z",
- "iopub.status.busy": "2024-01-08T11:33:53.940747Z",
- "iopub.status.idle": "2024-01-08T11:33:57.298968Z",
- "shell.execute_reply": "2024-01-08T11:33:57.298180Z"
+ "iopub.execute_input": "2024-01-09T02:26:27.022029Z",
+ "iopub.status.busy": "2024-01-09T02:26:27.021835Z",
+ "iopub.status.idle": "2024-01-09T02:26:30.263735Z",
+ "shell.execute_reply": "2024-01-09T02:26:30.263126Z"
},
"nbsphinx": "hidden"
},
@@ -97,7 +97,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -131,10 +131,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:57.302743Z",
- "iopub.status.busy": "2024-01-08T11:33:57.301845Z",
- "iopub.status.idle": "2024-01-08T11:33:57.306059Z",
- "shell.execute_reply": "2024-01-08T11:33:57.305393Z"
+ "iopub.execute_input": "2024-01-09T02:26:30.266671Z",
+ "iopub.status.busy": "2024-01-09T02:26:30.266201Z",
+ "iopub.status.idle": "2024-01-09T02:26:30.269646Z",
+ "shell.execute_reply": "2024-01-09T02:26:30.269137Z"
},
"id": "LaEiwXUiVHCS"
},
@@ -157,10 +157,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:57.308831Z",
- "iopub.status.busy": "2024-01-08T11:33:57.308359Z",
- "iopub.status.idle": "2024-01-08T11:33:57.313604Z",
- "shell.execute_reply": "2024-01-08T11:33:57.312981Z"
+ "iopub.execute_input": "2024-01-09T02:26:30.271907Z",
+ "iopub.status.busy": "2024-01-09T02:26:30.271549Z",
+ "iopub.status.idle": "2024-01-09T02:26:30.277702Z",
+ "shell.execute_reply": "2024-01-09T02:26:30.277134Z"
},
"nbsphinx": "hidden"
},
@@ -208,10 +208,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:57.316546Z",
- "iopub.status.busy": "2024-01-08T11:33:57.316028Z",
- "iopub.status.idle": "2024-01-08T11:33:59.250582Z",
- "shell.execute_reply": "2024-01-08T11:33:59.249701Z"
+ "iopub.execute_input": "2024-01-09T02:26:30.280176Z",
+ "iopub.status.busy": "2024-01-09T02:26:30.279775Z",
+ "iopub.status.idle": "2024-01-09T02:26:31.713482Z",
+ "shell.execute_reply": "2024-01-09T02:26:31.712701Z"
},
"id": "GRDPEg7-VOQe",
"outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6"
@@ -242,10 +242,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:59.254145Z",
- "iopub.status.busy": "2024-01-08T11:33:59.253526Z",
- "iopub.status.idle": "2024-01-08T11:33:59.269467Z",
- "shell.execute_reply": "2024-01-08T11:33:59.268735Z"
+ "iopub.execute_input": "2024-01-09T02:26:31.716641Z",
+ "iopub.status.busy": "2024-01-09T02:26:31.716199Z",
+ "iopub.status.idle": "2024-01-09T02:26:31.728685Z",
+ "shell.execute_reply": "2024-01-09T02:26:31.728070Z"
},
"id": "FDA5sGZwUSur",
"outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895"
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:59.304126Z",
- "iopub.status.busy": "2024-01-08T11:33:59.303590Z",
- "iopub.status.idle": "2024-01-08T11:33:59.309602Z",
- "shell.execute_reply": "2024-01-08T11:33:59.308999Z"
+ "iopub.execute_input": "2024-01-09T02:26:31.761839Z",
+ "iopub.status.busy": "2024-01-09T02:26:31.761426Z",
+ "iopub.status.idle": "2024-01-09T02:26:31.766975Z",
+ "shell.execute_reply": "2024-01-09T02:26:31.766417Z"
},
"nbsphinx": "hidden"
},
@@ -380,10 +380,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:33:59.312333Z",
- "iopub.status.busy": "2024-01-08T11:33:59.311849Z",
- "iopub.status.idle": "2024-01-08T11:34:00.020293Z",
- "shell.execute_reply": "2024-01-08T11:34:00.019590Z"
+ "iopub.execute_input": "2024-01-09T02:26:31.769180Z",
+ "iopub.status.busy": "2024-01-09T02:26:31.768981Z",
+ "iopub.status.idle": "2024-01-09T02:26:32.452239Z",
+ "shell.execute_reply": "2024-01-09T02:26:32.451572Z"
},
"id": "dLBvUZLlII5w",
"outputId": "c6a4917f-4a82-4a89-9193-415072e45550"
@@ -435,10 +435,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:00.023055Z",
- "iopub.status.busy": "2024-01-08T11:34:00.022633Z",
- "iopub.status.idle": "2024-01-08T11:34:02.395152Z",
- "shell.execute_reply": "2024-01-08T11:34:02.394516Z"
+ "iopub.execute_input": "2024-01-09T02:26:32.454750Z",
+ "iopub.status.busy": "2024-01-09T02:26:32.454545Z",
+ "iopub.status.idle": "2024-01-09T02:26:33.352119Z",
+ "shell.execute_reply": "2024-01-09T02:26:33.351556Z"
},
"id": "vL9lkiKsHvKr"
},
@@ -472,10 +472,10 @@
"height": 143
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:02.398095Z",
- "iopub.status.busy": "2024-01-08T11:34:02.397700Z",
- "iopub.status.idle": "2024-01-08T11:34:02.420929Z",
- "shell.execute_reply": "2024-01-08T11:34:02.420376Z"
+ "iopub.execute_input": "2024-01-09T02:26:33.355016Z",
+ "iopub.status.busy": "2024-01-09T02:26:33.354628Z",
+ "iopub.status.idle": "2024-01-09T02:26:33.376746Z",
+ "shell.execute_reply": "2024-01-09T02:26:33.376109Z"
},
"id": "obQYDKdLiUU6",
"outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4"
@@ -555,10 +555,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:02.423575Z",
- "iopub.status.busy": "2024-01-08T11:34:02.423152Z",
- "iopub.status.idle": "2024-01-08T11:34:02.426626Z",
- "shell.execute_reply": "2024-01-08T11:34:02.425997Z"
+ "iopub.execute_input": "2024-01-09T02:26:33.378977Z",
+ "iopub.status.busy": "2024-01-09T02:26:33.378770Z",
+ "iopub.status.idle": "2024-01-09T02:26:33.382088Z",
+ "shell.execute_reply": "2024-01-09T02:26:33.381584Z"
},
"id": "I8JqhOZgi94g"
},
@@ -580,10 +580,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:02.429008Z",
- "iopub.status.busy": "2024-01-08T11:34:02.428639Z",
- "iopub.status.idle": "2024-01-08T11:34:22.063114Z",
- "shell.execute_reply": "2024-01-08T11:34:22.062346Z"
+ "iopub.execute_input": "2024-01-09T02:26:33.384452Z",
+ "iopub.status.busy": "2024-01-09T02:26:33.384077Z",
+ "iopub.status.idle": "2024-01-09T02:26:51.740302Z",
+ "shell.execute_reply": "2024-01-09T02:26:51.739676Z"
},
"id": "2FSQ2GR9R_YA"
},
@@ -615,10 +615,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:22.066321Z",
- "iopub.status.busy": "2024-01-08T11:34:22.065877Z",
- "iopub.status.idle": "2024-01-08T11:34:22.070076Z",
- "shell.execute_reply": "2024-01-08T11:34:22.069418Z"
+ "iopub.execute_input": "2024-01-09T02:26:51.743521Z",
+ "iopub.status.busy": "2024-01-09T02:26:51.743049Z",
+ "iopub.status.idle": "2024-01-09T02:26:51.747245Z",
+ "shell.execute_reply": "2024-01-09T02:26:51.746598Z"
},
"id": "kAkY31IVXyr8",
"outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632"
@@ -677,10 +677,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:22.072790Z",
- "iopub.status.busy": "2024-01-08T11:34:22.072407Z",
- "iopub.status.idle": "2024-01-08T11:34:27.536779Z",
- "shell.execute_reply": "2024-01-08T11:34:27.536085Z"
+ "iopub.execute_input": "2024-01-09T02:26:51.749701Z",
+ "iopub.status.busy": "2024-01-09T02:26:51.749349Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.306478Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.305788Z"
},
"id": "i_drkY9YOcw4"
},
@@ -714,10 +714,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.540334Z",
- "iopub.status.busy": "2024-01-08T11:34:27.539853Z",
- "iopub.status.idle": "2024-01-08T11:34:27.545932Z",
- "shell.execute_reply": "2024-01-08T11:34:27.545297Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.310568Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.310015Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.316162Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.315570Z"
},
"id": "_b-AQeoXOc7q",
"outputId": "15ae534a-f517-4906-b177-ca91931a8954"
@@ -764,10 +764,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.550154Z",
- "iopub.status.busy": "2024-01-08T11:34:27.548816Z",
- "iopub.status.idle": "2024-01-08T11:34:27.658169Z",
- "shell.execute_reply": "2024-01-08T11:34:27.657359Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.320209Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.318922Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.415188Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.414534Z"
}
},
"outputs": [
@@ -804,10 +804,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.661546Z",
- "iopub.status.busy": "2024-01-08T11:34:27.660997Z",
- "iopub.status.idle": "2024-01-08T11:34:27.671888Z",
- "shell.execute_reply": "2024-01-08T11:34:27.671212Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.418377Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.417933Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.428186Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.427516Z"
},
"scrolled": true
},
@@ -862,10 +862,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.674519Z",
- "iopub.status.busy": "2024-01-08T11:34:27.674037Z",
- "iopub.status.idle": "2024-01-08T11:34:27.682843Z",
- "shell.execute_reply": "2024-01-08T11:34:27.682151Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.430598Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.430267Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.438556Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.437949Z"
}
},
"outputs": [
@@ -969,10 +969,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.685480Z",
- "iopub.status.busy": "2024-01-08T11:34:27.684991Z",
- "iopub.status.idle": "2024-01-08T11:34:27.689889Z",
- "shell.execute_reply": "2024-01-08T11:34:27.689217Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.441060Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.440688Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.445142Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.444507Z"
}
},
"outputs": [
@@ -1010,10 +1010,10 @@
"height": 237
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.692557Z",
- "iopub.status.busy": "2024-01-08T11:34:27.692176Z",
- "iopub.status.idle": "2024-01-08T11:34:27.698528Z",
- "shell.execute_reply": "2024-01-08T11:34:27.697877Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.447641Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.447263Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.453304Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.452671Z"
},
"id": "FQwRHgbclpsO",
"outputId": "fee5c335-c00e-4fcc-f22b-718705e93182"
@@ -1133,10 +1133,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.701184Z",
- "iopub.status.busy": "2024-01-08T11:34:27.700778Z",
- "iopub.status.idle": "2024-01-08T11:34:27.825357Z",
- "shell.execute_reply": "2024-01-08T11:34:27.824631Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.455823Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.455456Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.570447Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.569797Z"
},
"id": "ff1NFVlDoysO",
"outputId": "8141a036-44c1-4349-c338-880432513e37"
@@ -1190,10 +1190,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.827978Z",
- "iopub.status.busy": "2024-01-08T11:34:27.827752Z",
- "iopub.status.idle": "2024-01-08T11:34:27.938048Z",
- "shell.execute_reply": "2024-01-08T11:34:27.937384Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.573030Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.572718Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.680113Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.679434Z"
},
"id": "GZgovGkdiaiP",
"outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7"
@@ -1238,10 +1238,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:27.940698Z",
- "iopub.status.busy": "2024-01-08T11:34:27.940289Z",
- "iopub.status.idle": "2024-01-08T11:34:28.051099Z",
- "shell.execute_reply": "2024-01-08T11:34:28.050430Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.682534Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.682326Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.788271Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.787708Z"
},
"id": "lfa2eHbMwG8R",
"outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c"
@@ -1282,10 +1282,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:28.053701Z",
- "iopub.status.busy": "2024-01-08T11:34:28.053466Z",
- "iopub.status.idle": "2024-01-08T11:34:28.166067Z",
- "shell.execute_reply": "2024-01-08T11:34:28.165377Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.790966Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.790585Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.895931Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.895309Z"
}
},
"outputs": [
@@ -1333,10 +1333,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:28.168635Z",
- "iopub.status.busy": "2024-01-08T11:34:28.168404Z",
- "iopub.status.idle": "2024-01-08T11:34:28.172213Z",
- "shell.execute_reply": "2024-01-08T11:34:28.171590Z"
+ "iopub.execute_input": "2024-01-09T02:26:57.898301Z",
+ "iopub.status.busy": "2024-01-09T02:26:57.898098Z",
+ "iopub.status.idle": "2024-01-09T02:26:57.901458Z",
+ "shell.execute_reply": "2024-01-09T02:26:57.900903Z"
},
"nbsphinx": "hidden"
},
@@ -1377,29 +1377,28 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "014241d1df6541b494c9552089c5d91b": {
+ "074162d16a204956a58163b7ed2fc38f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f8680a078d734c09944d7bd8c6142252",
- "IPY_MODEL_f327926ff31c4299a2800a75539a9db4",
- "IPY_MODEL_23578704abc8480d95b34b87959deb24"
- ],
- "layout": "IPY_MODEL_9be46107b93445a1829536b8ce31e961"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f24fc43092994ee48322ffb18431210d",
+ "placeholder": "",
+ "style": "IPY_MODEL_4386d2d14ff340bebfd014e0a3457dab",
+ "value": "embedding_model.ckpt: 100%"
}
},
- "04a0e3571050433ea7dce2da14374824": {
+ "0906ffbbadf2475aa122ed1881bc7d6b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1451,28 +1450,29 @@
"width": null
}
},
- "0a0fc008fa2f4721b225a2c8b2912616": {
+ "0bf82104150440e58d5d307849cb8530": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1daff477050645d292712ef350261387",
- "placeholder": "",
- "style": "IPY_MODEL_4b0c006e9507441483d80353f9c4952e",
- "value": " 2.04k/2.04k [00:00<00:00, 316kB/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e5eaafbb7d694737a0802f3ca4b32cdc",
+ "IPY_MODEL_3ee18ff0722b47748522ada0dd486588",
+ "IPY_MODEL_9b1808c4d27c469f92d3b79c5001654f"
+ ],
+ "layout": "IPY_MODEL_39e3eac6651b41a0a8507899dfba6291"
}
},
- "1521ff8a83b84bc1a4bd981a48365148": {
+ "0c75ced7da7e47ef91ce46b03af3b641": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1524,31 +1524,29 @@
"width": null
}
},
- "181e6075ca754e248e0b3c04ab5e84da": {
+ "148c405ab5344da1bf45117d46fc1e4b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ca978915848d4fdda2e52e947cc173d2",
- "max": 3201.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b1e511fc5bc5456186268f27c80e60c9",
- "value": 3201.0
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_074162d16a204956a58163b7ed2fc38f",
+ "IPY_MODEL_ec8650aebb9848d188ebcd39c2ae7412",
+ "IPY_MODEL_d0afa7a5cdd44e27addb91cee44e48f6"
+ ],
+ "layout": "IPY_MODEL_23267d69370540c284956a78d45094d3"
}
},
- "19a233faf08a4b71bf021f74e724d60d": {
+ "23267d69370540c284956a78d45094d3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1600,7 +1598,44 @@
"width": null
}
},
- "1daff477050645d292712ef350261387": {
+ "2aa8344e2ac14266acebf5becc50f27c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d20fdd8c04ce452ba5357150afd8dace",
+ "placeholder": "",
+ "style": "IPY_MODEL_b5eb24d8e19543d68522a8a50b4b5185",
+ "value": "hyperparams.yaml: 100%"
+ }
+ },
+ "35dc0bc0e98e453385c5e9200631183c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "39e3eac6651b41a0a8507899dfba6291": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1652,28 +1687,31 @@
"width": null
}
},
- "23578704abc8480d95b34b87959deb24": {
+ "3ee18ff0722b47748522ada0dd486588": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_ddfe327d2855488db20ee1f6a7393801",
- "placeholder": "",
- "style": "IPY_MODEL_fbf59cda17394ee2a5a96b66fa586d02",
- "value": " 16.9M/16.9M [00:00<00:00, 48.5MB/s]"
+ "layout": "IPY_MODEL_6279eedd19ac4aa69e7237c1daee38ba",
+ "max": 15856877.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d1967103ae21421bb06de072dc7024cf",
+ "value": 15856877.0
}
},
- "237e45c4ab7b4ba382121890a7fb00dd": {
+ "42965a973a994ed3bfb2b8c8bfc97033": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1688,31 +1726,7 @@
"description_width": ""
}
},
- "2910cf57e3194ffb89df0f71dc83d354": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_93e009396d8042c29a21037dd236b86a",
- "max": 15856877.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c17541fb89e447dc92dda72cfc0688fe",
- "value": 15856877.0
- }
- },
- "2b17fd9f28464c6d8db3154c2c595c78": {
+ "4386d2d14ff340bebfd014e0a3457dab": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1727,7 +1741,7 @@
"description_width": ""
}
},
- "36db81671365485b8ebb5a0fb170a1f2": {
+ "455d438a64064a0a8ba13fbe2dc8ea4b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1779,7 +1793,23 @@
"width": null
}
},
- "3750c3bb13fd4b7891b2edf9e9528bf3": {
+ "52f99ac78c814eb4af3805a5ab20aa67": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6279eedd19ac4aa69e7237c1daee38ba": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1831,7 +1861,7 @@
"width": null
}
},
- "38346ba055094159b9ee7fff390710e8": {
+ "64dd0f3ddf4349e98e02d4de795cbd2c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1883,7 +1913,7 @@
"width": null
}
},
- "3bf58ef2af3649e4aa31728845068d4c": {
+ "676548bea73042c7b45afcf1d579ec7f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1935,29 +1965,38 @@
"width": null
}
},
- "3f3b3073993748aaa1b31d3a782c83dd": {
+ "6f93ae37ef664f6b9b4c40b8585aa9aa": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_565e15799797419097ff4ffb7c15b6de",
- "IPY_MODEL_2910cf57e3194ffb89df0f71dc83d354",
- "IPY_MODEL_5075510f233d49868ea04270daf647a0"
- ],
- "layout": "IPY_MODEL_c449c2bea33648588764620782fb42ba"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "77bf5a408bd74660a66334bbbfa11597": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "4b0c006e9507441483d80353f9c4952e": {
+ "7904dccd7f2f4ae78a71834661345755": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1972,7 +2011,23 @@
"description_width": ""
}
},
- "5011acc148994d098e9f0f286e31f7c0": {
+ "7c321e7024224d0e929145a821345bd5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "830eb310a3234b8d99f39b782751ec14": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2024,64 +2079,29 @@
"width": null
}
},
- "5075510f233d49868ea04270daf647a0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fda1816f838a4c2a8791f2b17afad892",
- "placeholder": "",
- "style": "IPY_MODEL_9dd3746c4bdf4da1998bd16e5fb8324b",
- "value": " 15.9M/15.9M [00:00<00:00, 25.5MB/s]"
- }
- },
- "565e15799797419097ff4ffb7c15b6de": {
+ "8501476ac7454d7ba6881f2af7a59298": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3bf58ef2af3649e4aa31728845068d4c",
- "placeholder": "",
- "style": "IPY_MODEL_5ba0acae90cd4fc790ab18a4e22d90ce",
- "value": "classifier.ckpt: 100%"
- }
- },
- "5ba0acae90cd4fc790ab18a4e22d90ce": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ae75e488acf04e9e9a40b95aa335937d",
+ "IPY_MODEL_f92a351c28d145e78749037598116d02",
+ "IPY_MODEL_c75a8ca9cbac45b49aa1d7fdb5d9322a"
+ ],
+ "layout": "IPY_MODEL_fbe9385b05ae48f3bad319cc10b998f2"
}
},
- "5c2d0125d75c49619c022f156aad8d96": {
+ "87c765a11313429dbc1439ee8c6fee48": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2133,60 +2153,65 @@
"width": null
}
},
- "5da8fee63fd746f4a727f89bd324596f": {
+ "87fdf9ab141b491fb75725019fdc89f2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "5f88d91fa31d4eea89344a77025a0121": {
+ "8f2acd0d2986481cb93ce93b721793c3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_fe3a33a703cb436d9c5088cd3f3d46b6",
- "IPY_MODEL_cfaeec8713bb469181d52c87b8126f78",
- "IPY_MODEL_6ebb12165ac044c6a797778a67dc3dc1"
- ],
- "layout": "IPY_MODEL_c05bdb67832b43c397ce064fb77e4ecf"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_feb66c7a251a4f1da48adef810a26b63",
+ "placeholder": "",
+ "style": "IPY_MODEL_87fdf9ab141b491fb75725019fdc89f2",
+ "value": " 129k/129k [00:00<00:00, 7.56MB/s]"
}
},
- "65ffeb36704e4c24927a9cece1cba669": {
+ "9a2cb058ea1f48958e7369b4fc5bffae": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a4b67b1b62354f4285bdc563ffd1f6fe",
+ "IPY_MODEL_a0cbebed32b54286a8de95e836e9dcd6",
+ "IPY_MODEL_8f2acd0d2986481cb93ce93b721793c3"
+ ],
+ "layout": "IPY_MODEL_830eb310a3234b8d99f39b782751ec14"
}
},
- "66f832a838ad4ae98ae1607f44e20402": {
+ "9b1808c4d27c469f92d3b79c5001654f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2201,13 +2226,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_98fe1753a3684d4b891e012b724acc54",
+ "layout": "IPY_MODEL_b2430b1735ff4e908e0d43db76a98503",
"placeholder": "",
- "style": "IPY_MODEL_237e45c4ab7b4ba382121890a7fb00dd",
- "value": "mean_var_norm_emb.ckpt: 100%"
+ "style": "IPY_MODEL_42965a973a994ed3bfb2b8c8bfc97033",
+ "value": " 15.9M/15.9M [00:00<00:00, 260MB/s]"
}
},
- "6d3fa693e91349ba9a156a153d4f61ea": {
+ "9cf9e20155d04f629b663265053d39cc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -2222,35 +2247,38 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_731bcc4a303c44a5ae86ffb1ad0a00b0",
- "IPY_MODEL_bcb8b268e2cb47f3bb8892761ee0623c",
- "IPY_MODEL_0a0fc008fa2f4721b225a2c8b2912616"
+ "IPY_MODEL_2aa8344e2ac14266acebf5becc50f27c",
+ "IPY_MODEL_bd8e9ef99d6046d994219a87519157b0",
+ "IPY_MODEL_b3ade771edd74c4abd845cc959413ef3"
],
- "layout": "IPY_MODEL_38346ba055094159b9ee7fff390710e8"
+ "layout": "IPY_MODEL_87c765a11313429dbc1439ee8c6fee48"
}
},
- "6ebb12165ac044c6a797778a67dc3dc1": {
+ "a0cbebed32b54286a8de95e836e9dcd6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5c2d0125d75c49619c022f156aad8d96",
- "placeholder": "",
- "style": "IPY_MODEL_f7401993c52b49cdac63cb10b9ec46ea",
- "value": " 129k/129k [00:00<00:00, 1.00MB/s]"
+ "layout": "IPY_MODEL_c3e52b00e156405ab5cc4f7ea6955fdf",
+ "max": 128619.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_52f99ac78c814eb4af3805a5ab20aa67",
+ "value": 128619.0
}
},
- "72c4e5ef5a544d11a4851b6f9dd2a414": {
+ "a33aff2e3aaa4fa989b9b85fd1c20315": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2302,7 +2330,7 @@
"width": null
}
},
- "731bcc4a303c44a5ae86ffb1ad0a00b0": {
+ "a4b67b1b62354f4285bdc563ffd1f6fe": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2317,13 +2345,34 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1521ff8a83b84bc1a4bd981a48365148",
+ "layout": "IPY_MODEL_f7265cd7bb2b4a54bde9ab01c77de4c1",
"placeholder": "",
- "style": "IPY_MODEL_2b17fd9f28464c6d8db3154c2c595c78",
- "value": "hyperparams.yaml: 100%"
+ "style": "IPY_MODEL_f1be1919ca5c4bed989da2aaf7719921",
+ "value": "label_encoder.txt: 100%"
}
},
- "93e009396d8042c29a21037dd236b86a": {
+ "ae75e488acf04e9e9a40b95aa335937d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0c75ced7da7e47ef91ce46b03af3b641",
+ "placeholder": "",
+ "style": "IPY_MODEL_ba4bde1f28454d6790ac9191769b7323",
+ "value": "mean_var_norm_emb.ckpt: 100%"
+ }
+ },
+ "b2430b1735ff4e908e0d43db76a98503": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2375,7 +2424,82 @@
"width": null
}
},
- "98fe1753a3684d4b891e012b724acc54": {
+ "b3ade771edd74c4abd845cc959413ef3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0906ffbbadf2475aa122ed1881bc7d6b",
+ "placeholder": "",
+ "style": "IPY_MODEL_6f93ae37ef664f6b9b4c40b8585aa9aa",
+ "value": " 2.04k/2.04k [00:00<00:00, 341kB/s]"
+ }
+ },
+ "b5eb24d8e19543d68522a8a50b4b5185": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ba4bde1f28454d6790ac9191769b7323": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "bd8e9ef99d6046d994219a87519157b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_455d438a64064a0a8ba13fbe2dc8ea4b",
+ "max": 2041.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_77bf5a408bd74660a66334bbbfa11597",
+ "value": 2041.0
+ }
+ },
+ "c3e52b00e156405ab5cc4f7ea6955fdf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2427,7 +2551,80 @@
"width": null
}
},
- "9be46107b93445a1829536b8ce31e961": {
+ "c75a8ca9cbac45b49aa1d7fdb5d9322a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_676548bea73042c7b45afcf1d579ec7f",
+ "placeholder": "",
+ "style": "IPY_MODEL_7904dccd7f2f4ae78a71834661345755",
+ "value": " 3.20k/3.20k [00:00<00:00, 590kB/s]"
+ }
+ },
+ "d0afa7a5cdd44e27addb91cee44e48f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_64dd0f3ddf4349e98e02d4de795cbd2c",
+ "placeholder": "",
+ "style": "IPY_MODEL_d11326a8abb7410995defc11e8e9a951",
+ "value": " 16.9M/16.9M [00:00<00:00, 63.1MB/s]"
+ }
+ },
+ "d11326a8abb7410995defc11e8e9a951": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d1967103ae21421bb06de072dc7024cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "d20fdd8c04ce452ba5357150afd8dace": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2479,7 +2676,7 @@
"width": null
}
},
- "9dd3746c4bdf4da1998bd16e5fb8324b": {
+ "d3bc0049b5f34f94aaccb07dbd9dcd0a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2494,22 +2691,7 @@
"description_width": ""
}
},
- "a756acf6dbdd469595b5c32ef5bf7c69": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "a9eb780a6f9445c9932510579b76f37f": {
+ "df3338f41d134ca9a4319f0342140832": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2561,7 +2743,7 @@
"width": null
}
},
- "ab96d49f9fd24e82979a6c5516574d79": {
+ "e5eaafbb7d694737a0802f3ca4b32cdc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2576,68 +2758,52 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a9eb780a6f9445c9932510579b76f37f",
+ "layout": "IPY_MODEL_f2137ff043f649929818511eda4d58f2",
"placeholder": "",
- "style": "IPY_MODEL_65ffeb36704e4c24927a9cece1cba669",
- "value": " 3.20k/3.20k [00:00<00:00, 522kB/s]"
+ "style": "IPY_MODEL_d3bc0049b5f34f94aaccb07dbd9dcd0a",
+ "value": "classifier.ckpt: 100%"
}
},
- "aee237a7a9e748f4abd1bf21856465ac": {
+ "ec8650aebb9848d188ebcd39c2ae7412": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_df3338f41d134ca9a4319f0342140832",
+ "max": 16887676.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_35dc0bc0e98e453385c5e9200631183c",
+ "value": 16887676.0
}
},
- "b1e511fc5bc5456186268f27c80e60c9": {
+ "f1be1919ca5c4bed989da2aaf7719921": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "bcb8b268e2cb47f3bb8892761ee0623c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3750c3bb13fd4b7891b2edf9e9528bf3",
- "max": 2041.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_da6ed8bc9c6845ae8bd787e3a2284e1e",
- "value": 2041.0
- }
- },
- "c05bdb67832b43c397ce064fb77e4ecf": {
+ "f2137ff043f649929818511eda4d58f2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2689,23 +2855,7 @@
"width": null
}
},
- "c17541fb89e447dc92dda72cfc0688fe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c449c2bea33648588764620782fb42ba": {
+ "f24fc43092994ee48322ffb18431210d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2757,23 +2907,7 @@
"width": null
}
},
- "c60fc74b4fe64238aef461969d090cee": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ca978915848d4fdda2e52e947cc173d2": {
+ "f7265cd7bb2b4a54bde9ab01c77de4c1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2825,7 +2959,7 @@
"width": null
}
},
- "cfaeec8713bb469181d52c87b8126f78": {
+ "f92a351c28d145e78749037598116d02": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -2841,31 +2975,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5011acc148994d098e9f0f286e31f7c0",
- "max": 128619.0,
+ "layout": "IPY_MODEL_a33aff2e3aaa4fa989b9b85fd1c20315",
+ "max": 3201.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_c60fc74b4fe64238aef461969d090cee",
- "value": 128619.0
- }
- },
- "da6ed8bc9c6845ae8bd787e3a2284e1e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "style": "IPY_MODEL_7c321e7024224d0e929145a821345bd5",
+ "value": 3201.0
}
},
- "ddfe327d2855488db20ee1f6a7393801": {
+ "fbe9385b05ae48f3bad319cc10b998f2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2917,104 +3035,7 @@
"width": null
}
},
- "e6fc3c34dabe4e1da78193c456f3a546": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_66f832a838ad4ae98ae1607f44e20402",
- "IPY_MODEL_181e6075ca754e248e0b3c04ab5e84da",
- "IPY_MODEL_ab96d49f9fd24e82979a6c5516574d79"
- ],
- "layout": "IPY_MODEL_72c4e5ef5a544d11a4851b6f9dd2a414"
- }
- },
- "f327926ff31c4299a2800a75539a9db4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_04a0e3571050433ea7dce2da14374824",
- "max": 16887676.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5da8fee63fd746f4a727f89bd324596f",
- "value": 16887676.0
- }
- },
- "f7401993c52b49cdac63cb10b9ec46ea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "f8680a078d734c09944d7bd8c6142252": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_19a233faf08a4b71bf021f74e724d60d",
- "placeholder": "",
- "style": "IPY_MODEL_a756acf6dbdd469595b5c32ef5bf7c69",
- "value": "embedding_model.ckpt: 100%"
- }
- },
- "fbf59cda17394ee2a5a96b66fa586d02": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "fda1816f838a4c2a8791f2b17afad892": {
+ "feb66c7a251a4f1da48adef810a26b63": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3065,27 +3086,6 @@
"visibility": null,
"width": null
}
- },
- "fe3a33a703cb436d9c5088cd3f3d46b6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_36db81671365485b8ebb5a0fb170a1f2",
- "placeholder": "",
- "style": "IPY_MODEL_aee237a7a9e748f4abd1bf21856465ac",
- "value": "label_encoder.txt: 100%"
- }
}
},
"version_major": 2,
diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html
index 6832980a7..5217fa512 100644
--- a/master/tutorials/datalab/datalab_advanced.html
+++ b/master/tutorials/datalab/datalab_advanced.html
@@ -1313,7 +1313,7 @@ Functionality 2: Specifying nondefault arguments
-/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.
+/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.
warnings.warn(
/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:330: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.
warnings.warn(
@@ -1444,7 +1444,7 @@ Functionality 3: Save and load Datalab objects
-
+
@@ -1709,7 +1709,7 @@ Functionality 4: Adding a custom IssueManager
-{"state": {"01ccacddae2b495ea776e64a7346015c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "442abb8b0187458db381c233eafbc3e3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8b7e54de05f047d188e8503333712b15": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_01ccacddae2b495ea776e64a7346015c", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_442abb8b0187458db381c233eafbc3e3", "value": 132.0}}, "6ac3b81577c14190bb97448002f1c800": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b9c20b3efe84341b391d1b6b03bde4c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7b9a02d5ff47412684a768f4ab1d6f42": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6ac3b81577c14190bb97448002f1c800", "placeholder": "\u200b", "style": "IPY_MODEL_1b9c20b3efe84341b391d1b6b03bde4c", "value": "Saving the dataset (1/1 shards): 100%"}}, "58766d09610d40998368500a3fddb812": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ef5ec58639e046c9832280ca3b2c87fe": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "87dc49e0eca246e395085ffacf7b72a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_58766d09610d40998368500a3fddb812", "placeholder": "\u200b", "style": "IPY_MODEL_ef5ec58639e046c9832280ca3b2c87fe", "value": " 132/132 [00:00<00:00, 10307.91 examples/s]"}}, "05447487ad404ad1a1956734bbbf67ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec705183cd6a441f97cc4ce0bd78bbfc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7b9a02d5ff47412684a768f4ab1d6f42", "IPY_MODEL_8b7e54de05f047d188e8503333712b15", "IPY_MODEL_87dc49e0eca246e395085ffacf7b72a2"], "layout": "IPY_MODEL_05447487ad404ad1a1956734bbbf67ab"}}}, "version_major": 2, "version_minor": 0}
+{"state": {"1a2de10699ec427e96d5ebe777fa9fb2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3190254257e4d6ca04a259fce77519a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8184f847a410422aa84e170085668978": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1a2de10699ec427e96d5ebe777fa9fb2", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f3190254257e4d6ca04a259fce77519a", "value": 132.0}}, "db6bfdcd197c4e1882d803554195cadc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fec99cd0ee204cf9a014604ad6b883d9": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c8d8233ab22a4ce4a2b56b4efade5228": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_db6bfdcd197c4e1882d803554195cadc", "placeholder": "\u200b", "style": "IPY_MODEL_fec99cd0ee204cf9a014604ad6b883d9", "value": "Saving the dataset (1/1 shards): 100%"}}, "9d8260991a684c089bdcb850426cf784": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c698eab8c4734d3495cbd2282070e85a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d90f6a41bd314d4e891bb3d16cd0028e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9d8260991a684c089bdcb850426cf784", "placeholder": "\u200b", "style": "IPY_MODEL_c698eab8c4734d3495cbd2282070e85a", "value": " 132/132 [00:00<00:00, 11164.74 examples/s]"}}, "07966514fa3d4d8eae604ebb6aff59c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c04978b64e7d4ea98b71d1a4a610e60d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c8d8233ab22a4ce4a2b56b4efade5228", "IPY_MODEL_8184f847a410422aa84e170085668978", "IPY_MODEL_d90f6a41bd314d4e891bb3d16cd0028e"], "layout": "IPY_MODEL_07966514fa3d4d8eae604ebb6aff59c0"}}}, "version_major": 2, "version_minor": 0}
diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb
index b3f918658..62920430a 100644
--- a/master/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/tutorials/datalab/datalab_advanced.ipynb
@@ -80,10 +80,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:33.146796Z",
- "iopub.status.busy": "2024-01-08T11:34:33.146580Z",
- "iopub.status.idle": "2024-01-08T11:34:34.279914Z",
- "shell.execute_reply": "2024-01-08T11:34:34.279276Z"
+ "iopub.execute_input": "2024-01-09T02:27:03.246496Z",
+ "iopub.status.busy": "2024-01-09T02:27:03.246312Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.312637Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.312040Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -118,10 +118,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.283299Z",
- "iopub.status.busy": "2024-01-08T11:34:34.282663Z",
- "iopub.status.idle": "2024-01-08T11:34:34.286062Z",
- "shell.execute_reply": "2024-01-08T11:34:34.285449Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.315605Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.315202Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.318390Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.317806Z"
}
},
"outputs": [],
@@ -252,10 +252,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.288753Z",
- "iopub.status.busy": "2024-01-08T11:34:34.288408Z",
- "iopub.status.idle": "2024-01-08T11:34:34.298085Z",
- "shell.execute_reply": "2024-01-08T11:34:34.297428Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.320759Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.320563Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.329862Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.329341Z"
},
"nbsphinx": "hidden"
},
@@ -353,10 +353,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.300808Z",
- "iopub.status.busy": "2024-01-08T11:34:34.300334Z",
- "iopub.status.idle": "2024-01-08T11:34:34.305564Z",
- "shell.execute_reply": "2024-01-08T11:34:34.305053Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.332010Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.331820Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.336559Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.336031Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.308143Z",
- "iopub.status.busy": "2024-01-08T11:34:34.307763Z",
- "iopub.status.idle": "2024-01-08T11:34:34.600255Z",
- "shell.execute_reply": "2024-01-08T11:34:34.599599Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.338848Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.338658Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.610353Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.609739Z"
},
"nbsphinx": "hidden"
},
@@ -517,10 +517,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.603364Z",
- "iopub.status.busy": "2024-01-08T11:34:34.602935Z",
- "iopub.status.idle": "2024-01-08T11:34:34.983088Z",
- "shell.execute_reply": "2024-01-08T11:34:34.982356Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.612956Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.612745Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.932586Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.931909Z"
}
},
"outputs": [
@@ -568,10 +568,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:34.985879Z",
- "iopub.status.busy": "2024-01-08T11:34:34.985483Z",
- "iopub.status.idle": "2024-01-08T11:34:35.010687Z",
- "shell.execute_reply": "2024-01-08T11:34:35.010126Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.935114Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.934891Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.959378Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.958886Z"
}
},
"outputs": [],
@@ -607,10 +607,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:35.013506Z",
- "iopub.status.busy": "2024-01-08T11:34:35.013145Z",
- "iopub.status.idle": "2024-01-08T11:34:35.025383Z",
- "shell.execute_reply": "2024-01-08T11:34:35.024728Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.961623Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.961422Z",
+ "iopub.status.idle": "2024-01-09T02:27:04.972782Z",
+ "shell.execute_reply": "2024-01-09T02:27:04.972297Z"
}
},
"outputs": [],
@@ -641,10 +641,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:35.028417Z",
- "iopub.status.busy": "2024-01-08T11:34:35.027920Z",
- "iopub.status.idle": "2024-01-08T11:34:36.408854Z",
- "shell.execute_reply": "2024-01-08T11:34:36.408094Z"
+ "iopub.execute_input": "2024-01-09T02:27:04.975044Z",
+ "iopub.status.busy": "2024-01-09T02:27:04.974849Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.234140Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.233377Z"
}
},
"outputs": [
@@ -708,10 +708,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.411792Z",
- "iopub.status.busy": "2024-01-08T11:34:36.411308Z",
- "iopub.status.idle": "2024-01-08T11:34:36.438973Z",
- "shell.execute_reply": "2024-01-08T11:34:36.438145Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.237045Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.236482Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.258845Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.258222Z"
}
},
"outputs": [
@@ -820,10 +820,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.441779Z",
- "iopub.status.busy": "2024-01-08T11:34:36.441554Z",
- "iopub.status.idle": "2024-01-08T11:34:36.464948Z",
- "shell.execute_reply": "2024-01-08T11:34:36.464225Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.261485Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.260947Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.281898Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.281279Z"
}
},
"outputs": [
@@ -909,7 +909,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n",
+ "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:300: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n",
" warnings.warn(\n",
"/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:330: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n",
" warnings.warn(\n",
@@ -935,10 +935,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.467930Z",
- "iopub.status.busy": "2024-01-08T11:34:36.467490Z",
- "iopub.status.idle": "2024-01-08T11:34:36.483386Z",
- "shell.execute_reply": "2024-01-08T11:34:36.482690Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.284383Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.283931Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.299025Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.298425Z"
}
},
"outputs": [
@@ -1068,17 +1068,17 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.486338Z",
- "iopub.status.busy": "2024-01-08T11:34:36.485861Z",
- "iopub.status.idle": "2024-01-08T11:34:36.509477Z",
- "shell.execute_reply": "2024-01-08T11:34:36.508746Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.301493Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.301290Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.323030Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.322343Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ec705183cd6a441f97cc4ce0bd78bbfc",
+ "model_id": "c04978b64e7d4ea98b71d1a4a610e60d",
"version_major": 2,
"version_minor": 0
},
@@ -1114,10 +1114,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.513090Z",
- "iopub.status.busy": "2024-01-08T11:34:36.512758Z",
- "iopub.status.idle": "2024-01-08T11:34:36.529061Z",
- "shell.execute_reply": "2024-01-08T11:34:36.528400Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.325817Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.325468Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.340691Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.340079Z"
}
},
"outputs": [
@@ -1235,10 +1235,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.531806Z",
- "iopub.status.busy": "2024-01-08T11:34:36.531483Z",
- "iopub.status.idle": "2024-01-08T11:34:36.538282Z",
- "shell.execute_reply": "2024-01-08T11:34:36.537717Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.343042Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.342698Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.348865Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.348263Z"
}
},
"outputs": [],
@@ -1295,10 +1295,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:36.540674Z",
- "iopub.status.busy": "2024-01-08T11:34:36.540423Z",
- "iopub.status.idle": "2024-01-08T11:34:36.560392Z",
- "shell.execute_reply": "2024-01-08T11:34:36.559698Z"
+ "iopub.execute_input": "2024-01-09T02:27:06.351121Z",
+ "iopub.status.busy": "2024-01-09T02:27:06.350767Z",
+ "iopub.status.idle": "2024-01-09T02:27:06.368855Z",
+ "shell.execute_reply": "2024-01-09T02:27:06.368310Z"
}
},
"outputs": [
@@ -1430,7 +1430,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "01ccacddae2b495ea776e64a7346015c": {
+ "07966514fa3d4d8eae604ebb6aff59c0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1482,7 +1482,7 @@
"width": null
}
},
- "05447487ad404ad1a1956734bbbf67ab": {
+ "1a2de10699ec427e96d5ebe777fa9fb2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1534,38 +1534,31 @@
"width": null
}
},
- "1b9c20b3efe84341b391d1b6b03bde4c": {
+ "8184f847a410422aa84e170085668978": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "442abb8b0187458db381c233eafbc3e3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1a2de10699ec427e96d5ebe777fa9fb2",
+ "max": 132.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f3190254257e4d6ca04a259fce77519a",
+ "value": 132.0
}
},
- "58766d09610d40998368500a3fddb812": {
+ "9d8260991a684c089bdcb850426cf784": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1617,7 +1610,86 @@
"width": null
}
},
- "6ac3b81577c14190bb97448002f1c800": {
+ "c04978b64e7d4ea98b71d1a4a610e60d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c8d8233ab22a4ce4a2b56b4efade5228",
+ "IPY_MODEL_8184f847a410422aa84e170085668978",
+ "IPY_MODEL_d90f6a41bd314d4e891bb3d16cd0028e"
+ ],
+ "layout": "IPY_MODEL_07966514fa3d4d8eae604ebb6aff59c0"
+ }
+ },
+ "c698eab8c4734d3495cbd2282070e85a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c8d8233ab22a4ce4a2b56b4efade5228": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_db6bfdcd197c4e1882d803554195cadc",
+ "placeholder": "",
+ "style": "IPY_MODEL_fec99cd0ee204cf9a014604ad6b883d9",
+ "value": "Saving the dataset (1/1 shards): 100%"
+ }
+ },
+ "d90f6a41bd314d4e891bb3d16cd0028e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9d8260991a684c089bdcb850426cf784",
+ "placeholder": "",
+ "style": "IPY_MODEL_c698eab8c4734d3495cbd2282070e85a",
+ "value": " 132/132 [00:00<00:00, 11164.74 examples/s]"
+ }
+ },
+ "db6bfdcd197c4e1882d803554195cadc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1669,95 +1741,23 @@
"width": null
}
},
- "7b9a02d5ff47412684a768f4ab1d6f42": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_6ac3b81577c14190bb97448002f1c800",
- "placeholder": "",
- "style": "IPY_MODEL_1b9c20b3efe84341b391d1b6b03bde4c",
- "value": "Saving the dataset (1/1 shards): 100%"
- }
- },
- "87dc49e0eca246e395085ffacf7b72a2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_58766d09610d40998368500a3fddb812",
- "placeholder": "",
- "style": "IPY_MODEL_ef5ec58639e046c9832280ca3b2c87fe",
- "value": " 132/132 [00:00<00:00, 10307.91 examples/s]"
- }
- },
- "8b7e54de05f047d188e8503333712b15": {
+ "f3190254257e4d6ca04a259fce77519a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_01ccacddae2b495ea776e64a7346015c",
- "max": 132.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_442abb8b0187458db381c233eafbc3e3",
- "value": 132.0
- }
- },
- "ec705183cd6a441f97cc4ce0bd78bbfc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7b9a02d5ff47412684a768f4ab1d6f42",
- "IPY_MODEL_8b7e54de05f047d188e8503333712b15",
- "IPY_MODEL_87dc49e0eca246e395085ffacf7b72a2"
- ],
- "layout": "IPY_MODEL_05447487ad404ad1a1956734bbbf67ab"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "ef5ec58639e046c9832280ca3b2c87fe": {
+ "fec99cd0ee204cf9a014604ad6b883d9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb
index 594682e36..33a753919 100644
--- a/master/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/tutorials/datalab/datalab_quickstart.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:41.399374Z",
- "iopub.status.busy": "2024-01-08T11:34:41.398891Z",
- "iopub.status.idle": "2024-01-08T11:34:42.575705Z",
- "shell.execute_reply": "2024-01-08T11:34:42.574932Z"
+ "iopub.execute_input": "2024-01-09T02:27:11.322063Z",
+ "iopub.status.busy": "2024-01-09T02:27:11.321519Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.412043Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.411447Z"
},
"nbsphinx": "hidden"
},
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -116,10 +116,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.579261Z",
- "iopub.status.busy": "2024-01-08T11:34:42.578625Z",
- "iopub.status.idle": "2024-01-08T11:34:42.582725Z",
- "shell.execute_reply": "2024-01-08T11:34:42.582225Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.414884Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.414479Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.417704Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.417174Z"
}
},
"outputs": [],
@@ -250,10 +250,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.585379Z",
- "iopub.status.busy": "2024-01-08T11:34:42.585005Z",
- "iopub.status.idle": "2024-01-08T11:34:42.595035Z",
- "shell.execute_reply": "2024-01-08T11:34:42.594337Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.420267Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.419952Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.429962Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.429473Z"
},
"nbsphinx": "hidden"
},
@@ -356,10 +356,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.597515Z",
- "iopub.status.busy": "2024-01-08T11:34:42.597143Z",
- "iopub.status.idle": "2024-01-08T11:34:42.602135Z",
- "shell.execute_reply": "2024-01-08T11:34:42.601636Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.432318Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.431950Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.436921Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.436437Z"
}
},
"outputs": [],
@@ -448,10 +448,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.604738Z",
- "iopub.status.busy": "2024-01-08T11:34:42.604358Z",
- "iopub.status.idle": "2024-01-08T11:34:42.905667Z",
- "shell.execute_reply": "2024-01-08T11:34:42.905002Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.439558Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.439194Z",
+ "iopub.status.idle": "2024-01-09T02:27:12.710837Z",
+ "shell.execute_reply": "2024-01-09T02:27:12.710218Z"
},
"nbsphinx": "hidden"
},
@@ -520,10 +520,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:42.909137Z",
- "iopub.status.busy": "2024-01-08T11:34:42.908667Z",
- "iopub.status.idle": "2024-01-08T11:34:43.293081Z",
- "shell.execute_reply": "2024-01-08T11:34:43.292407Z"
+ "iopub.execute_input": "2024-01-09T02:27:12.713848Z",
+ "iopub.status.busy": "2024-01-09T02:27:12.713461Z",
+ "iopub.status.idle": "2024-01-09T02:27:13.086755Z",
+ "shell.execute_reply": "2024-01-09T02:27:13.086057Z"
}
},
"outputs": [
@@ -559,10 +559,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:43.296095Z",
- "iopub.status.busy": "2024-01-08T11:34:43.295683Z",
- "iopub.status.idle": "2024-01-08T11:34:43.298675Z",
- "shell.execute_reply": "2024-01-08T11:34:43.298100Z"
+ "iopub.execute_input": "2024-01-09T02:27:13.089325Z",
+ "iopub.status.busy": "2024-01-09T02:27:13.088980Z",
+ "iopub.status.idle": "2024-01-09T02:27:13.091992Z",
+ "shell.execute_reply": "2024-01-09T02:27:13.091474Z"
}
},
"outputs": [],
@@ -601,10 +601,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:43.301134Z",
- "iopub.status.busy": "2024-01-08T11:34:43.300755Z",
- "iopub.status.idle": "2024-01-08T11:34:43.340277Z",
- "shell.execute_reply": "2024-01-08T11:34:43.339467Z"
+ "iopub.execute_input": "2024-01-09T02:27:13.094408Z",
+ "iopub.status.busy": "2024-01-09T02:27:13.094038Z",
+ "iopub.status.idle": "2024-01-09T02:27:13.131635Z",
+ "shell.execute_reply": "2024-01-09T02:27:13.131023Z"
}
},
"outputs": [
@@ -646,10 +646,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:43.343085Z",
- "iopub.status.busy": "2024-01-08T11:34:43.342639Z",
- "iopub.status.idle": "2024-01-08T11:34:44.800588Z",
- "shell.execute_reply": "2024-01-08T11:34:44.799838Z"
+ "iopub.execute_input": "2024-01-09T02:27:13.134085Z",
+ "iopub.status.busy": "2024-01-09T02:27:13.133711Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.421819Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.421052Z"
}
},
"outputs": [
@@ -701,10 +701,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.803855Z",
- "iopub.status.busy": "2024-01-08T11:34:44.803273Z",
- "iopub.status.idle": "2024-01-08T11:34:44.830962Z",
- "shell.execute_reply": "2024-01-08T11:34:44.830255Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.424472Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.424133Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.449895Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.449334Z"
}
},
"outputs": [
@@ -878,10 +878,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.833734Z",
- "iopub.status.busy": "2024-01-08T11:34:44.833392Z",
- "iopub.status.idle": "2024-01-08T11:34:44.841059Z",
- "shell.execute_reply": "2024-01-08T11:34:44.840429Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.452288Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.452087Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.458950Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.458325Z"
}
},
"outputs": [
@@ -985,10 +985,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.843594Z",
- "iopub.status.busy": "2024-01-08T11:34:44.843221Z",
- "iopub.status.idle": "2024-01-08T11:34:44.850295Z",
- "shell.execute_reply": "2024-01-08T11:34:44.849662Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.461165Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.460964Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.467181Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.466583Z"
}
},
"outputs": [
@@ -1055,10 +1055,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.852715Z",
- "iopub.status.busy": "2024-01-08T11:34:44.852497Z",
- "iopub.status.idle": "2024-01-08T11:34:44.865433Z",
- "shell.execute_reply": "2024-01-08T11:34:44.864679Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.469479Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.469089Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.479591Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.478950Z"
}
},
"outputs": [
@@ -1231,10 +1231,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.868474Z",
- "iopub.status.busy": "2024-01-08T11:34:44.868214Z",
- "iopub.status.idle": "2024-01-08T11:34:44.879916Z",
- "shell.execute_reply": "2024-01-08T11:34:44.879313Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.482039Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.481681Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.490635Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.490031Z"
}
},
"outputs": [
@@ -1350,10 +1350,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.882460Z",
- "iopub.status.busy": "2024-01-08T11:34:44.882229Z",
- "iopub.status.idle": "2024-01-08T11:34:44.890995Z",
- "shell.execute_reply": "2024-01-08T11:34:44.890353Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.493054Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.492613Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.500079Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.499480Z"
},
"scrolled": true
},
@@ -1478,10 +1478,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:44.893552Z",
- "iopub.status.busy": "2024-01-08T11:34:44.893324Z",
- "iopub.status.idle": "2024-01-08T11:34:44.904463Z",
- "shell.execute_reply": "2024-01-08T11:34:44.903901Z"
+ "iopub.execute_input": "2024-01-09T02:27:14.502264Z",
+ "iopub.status.busy": "2024-01-09T02:27:14.502064Z",
+ "iopub.status.idle": "2024-01-09T02:27:14.512094Z",
+ "shell.execute_reply": "2024-01-09T02:27:14.511557Z"
}
},
"outputs": [
diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb
index 42b44f2b2..cd1a07a8b 100644
--- a/master/tutorials/datalab/tabular.ipynb
+++ b/master/tutorials/datalab/tabular.ipynb
@@ -74,10 +74,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:50.505775Z",
- "iopub.status.busy": "2024-01-08T11:34:50.505591Z",
- "iopub.status.idle": "2024-01-08T11:34:51.624934Z",
- "shell.execute_reply": "2024-01-08T11:34:51.624296Z"
+ "iopub.execute_input": "2024-01-09T02:27:19.382666Z",
+ "iopub.status.busy": "2024-01-09T02:27:19.382144Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.391166Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.390567Z"
},
"nbsphinx": "hidden"
},
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.628068Z",
- "iopub.status.busy": "2024-01-08T11:34:51.627532Z",
- "iopub.status.idle": "2024-01-08T11:34:51.644887Z",
- "shell.execute_reply": "2024-01-08T11:34:51.644329Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.394273Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.393784Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.409973Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.409482Z"
}
},
"outputs": [],
@@ -155,10 +155,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.647750Z",
- "iopub.status.busy": "2024-01-08T11:34:51.647515Z",
- "iopub.status.idle": "2024-01-08T11:34:51.903125Z",
- "shell.execute_reply": "2024-01-08T11:34:51.902263Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.412427Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.412061Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.593887Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.593272Z"
}
},
"outputs": [
@@ -265,10 +265,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.906006Z",
- "iopub.status.busy": "2024-01-08T11:34:51.905761Z",
- "iopub.status.idle": "2024-01-08T11:34:51.909950Z",
- "shell.execute_reply": "2024-01-08T11:34:51.909417Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.596176Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.595974Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.599775Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.599267Z"
}
},
"outputs": [],
@@ -289,10 +289,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.912363Z",
- "iopub.status.busy": "2024-01-08T11:34:51.912147Z",
- "iopub.status.idle": "2024-01-08T11:34:51.920575Z",
- "shell.execute_reply": "2024-01-08T11:34:51.920067Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.602113Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.601789Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.610049Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.609444Z"
}
},
"outputs": [],
@@ -337,10 +337,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.923373Z",
- "iopub.status.busy": "2024-01-08T11:34:51.922885Z",
- "iopub.status.idle": "2024-01-08T11:34:51.925875Z",
- "shell.execute_reply": "2024-01-08T11:34:51.925328Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.612621Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.612301Z",
+ "iopub.status.idle": "2024-01-09T02:27:20.614994Z",
+ "shell.execute_reply": "2024-01-09T02:27:20.614457Z"
}
},
"outputs": [],
@@ -362,10 +362,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:51.928459Z",
- "iopub.status.busy": "2024-01-08T11:34:51.927965Z",
- "iopub.status.idle": "2024-01-08T11:34:55.638056Z",
- "shell.execute_reply": "2024-01-08T11:34:55.637320Z"
+ "iopub.execute_input": "2024-01-09T02:27:20.617374Z",
+ "iopub.status.busy": "2024-01-09T02:27:20.617044Z",
+ "iopub.status.idle": "2024-01-09T02:27:24.216876Z",
+ "shell.execute_reply": "2024-01-09T02:27:24.216187Z"
}
},
"outputs": [],
@@ -401,10 +401,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:55.641861Z",
- "iopub.status.busy": "2024-01-08T11:34:55.641241Z",
- "iopub.status.idle": "2024-01-08T11:34:55.651431Z",
- "shell.execute_reply": "2024-01-08T11:34:55.650761Z"
+ "iopub.execute_input": "2024-01-09T02:27:24.220116Z",
+ "iopub.status.busy": "2024-01-09T02:27:24.219896Z",
+ "iopub.status.idle": "2024-01-09T02:27:24.229801Z",
+ "shell.execute_reply": "2024-01-09T02:27:24.229301Z"
}
},
"outputs": [],
@@ -436,10 +436,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:55.654276Z",
- "iopub.status.busy": "2024-01-08T11:34:55.653905Z",
- "iopub.status.idle": "2024-01-08T11:34:57.120571Z",
- "shell.execute_reply": "2024-01-08T11:34:57.119831Z"
+ "iopub.execute_input": "2024-01-09T02:27:24.232123Z",
+ "iopub.status.busy": "2024-01-09T02:27:24.231924Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.546330Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.545531Z"
}
},
"outputs": [
@@ -475,10 +475,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.124312Z",
- "iopub.status.busy": "2024-01-08T11:34:57.123643Z",
- "iopub.status.idle": "2024-01-08T11:34:57.150064Z",
- "shell.execute_reply": "2024-01-08T11:34:57.149408Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.550890Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.549531Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.577583Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.576967Z"
},
"scrolled": true
},
@@ -624,10 +624,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.153434Z",
- "iopub.status.busy": "2024-01-08T11:34:57.152923Z",
- "iopub.status.idle": "2024-01-08T11:34:57.163985Z",
- "shell.execute_reply": "2024-01-08T11:34:57.163337Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.581876Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.580728Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.593229Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.592648Z"
}
},
"outputs": [
@@ -731,10 +731,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.167110Z",
- "iopub.status.busy": "2024-01-08T11:34:57.166645Z",
- "iopub.status.idle": "2024-01-08T11:34:57.179525Z",
- "shell.execute_reply": "2024-01-08T11:34:57.178870Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.597462Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.596322Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.610741Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.610155Z"
}
},
"outputs": [
@@ -863,10 +863,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.183833Z",
- "iopub.status.busy": "2024-01-08T11:34:57.182608Z",
- "iopub.status.idle": "2024-01-08T11:34:57.196844Z",
- "shell.execute_reply": "2024-01-08T11:34:57.196207Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.614994Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.613883Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.626482Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.625904Z"
}
},
"outputs": [
@@ -980,10 +980,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.201537Z",
- "iopub.status.busy": "2024-01-08T11:34:57.200372Z",
- "iopub.status.idle": "2024-01-08T11:34:57.216002Z",
- "shell.execute_reply": "2024-01-08T11:34:57.215445Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.630730Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.629615Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.642892Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.642365Z"
}
},
"outputs": [
@@ -1094,10 +1094,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.219860Z",
- "iopub.status.busy": "2024-01-08T11:34:57.218916Z",
- "iopub.status.idle": "2024-01-08T11:34:57.228253Z",
- "shell.execute_reply": "2024-01-08T11:34:57.227745Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.645341Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.645060Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.652298Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.651726Z"
}
},
"outputs": [
@@ -1181,10 +1181,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.232001Z",
- "iopub.status.busy": "2024-01-08T11:34:57.231042Z",
- "iopub.status.idle": "2024-01-08T11:34:57.240468Z",
- "shell.execute_reply": "2024-01-08T11:34:57.239924Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.654712Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.654256Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.660999Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.660399Z"
}
},
"outputs": [
@@ -1277,10 +1277,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-08T11:34:57.243254Z",
- "iopub.status.busy": "2024-01-08T11:34:57.242852Z",
- "iopub.status.idle": "2024-01-08T11:34:57.251094Z",
- "shell.execute_reply": "2024-01-08T11:34:57.250364Z"
+ "iopub.execute_input": "2024-01-09T02:27:25.663447Z",
+ "iopub.status.busy": "2024-01-09T02:27:25.663113Z",
+ "iopub.status.idle": "2024-01-09T02:27:25.669905Z",
+ "shell.execute_reply": "2024-01-09T02:27:25.669353Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html
index 0b59e3c01..852ce733d 100644
--- a/master/tutorials/datalab/text.html
+++ b/master/tutorials/datalab/text.html
@@ -943,7 +943,7 @@ 2. Load and format the text dataset
This dataset has 10 classes.
-Classes: {'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'cancel_transfer', 'visa_or_mastercard', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'card_about_to_expire'}
+Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_about_to_expire', 'getting_spare_card', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer'}
Let’s view the i-th example in the dataset:
@@ -990,43 +990,43 @@ 2. Load and format the text dataset
Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai
Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.
-epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.704
+epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.662
-epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.430
+epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.346
Computing feature embeddings ...
+- 5%|▌ | 2/40 [00:00<00:02, 17.83it/s]
- -
</pre>
- 5%|▌ | 2/40 [00:00<00:02, 18.71it/s]
+- 5%|▌ | 2/40 [00:00<00:02, 17.83it/s]
end{sphinxVerbatim}
5%|▌ | 2/40 [00:00<00:02, 18.71it/s]
+5%|▌ | 2/40 [00:00<00:02, 17.83it/s]
+- 20%|██ | 8/40 [00:00<00:00, 39.13it/s]
- -
</pre>
- 25%|██▌ | 10/40 [00:00<00:00, 50.74it/s]
+- 20%|██ | 8/40 [00:00<00:00, 39.13it/s]
end{sphinxVerbatim}
25%|██▌ | 10/40 [00:00<00:00, 50.74it/s]
+20%|██ | 8/40 [00:00<00:00, 39.13it/s]
+- 38%|███▊ | 15/40 [00:00<00:00, 50.96it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 56.57it/s]
+- 38%|███▊ | 15/40 [00:00<00:00, 50.96it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 56.57it/s]
+38%|███▊ | 15/40 [00:00<00:00, 50.96it/s]
+- 57%|█████▊ | 23/40 [00:00<00:00, 59.37it/s]
- -
</pre>
- 62%|██████▎ | 25/40 [00:00<00:00, 63.49it/s]
+- 57%|█████▊ | 23/40 [00:00<00:00, 59.37it/s]
end{sphinxVerbatim}
62%|██████▎ | 25/40 [00:00<00:00, 63.49it/s]
+57%|█████▊ | 23/40 [00:00<00:00, 59.37it/s]
+- 78%|███████▊ | 31/40 [00:00<00:00, 64.45it/s]
- -
</pre>
- 82%|████████▎ | 33/40 [00:00<00:00, 68.33it/s]
+- 78%|███████▊ | 31/40 [00:00<00:00, 64.45it/s]
end{sphinxVerbatim}
82%|████████▎ | 33/40 [00:00<00:00, 68.33it/s]
+78%|███████▊ | 31/40 [00:00<00:00, 64.45it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 60.51it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 63.50it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 60.51it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 63.50it/s]
+100%|██████████| 40/40 [00:00<00:00, 60.51it/s]
+- 5%|▌ | 2/40 [00:00<00:02, 17.90it/s]
- -
</pre>
- 2%|▎ | 1/40 [00:00<00:04, 9.68it/s]
+- 5%|▌ | 2/40 [00:00<00:02, 17.90it/s]
end{sphinxVerbatim}
2%|▎ | 1/40 [00:00<00:04, 9.68it/s]
+5%|▌ | 2/40 [00:00<00:02, 17.90it/s]
+- 25%|██▌ | 10/40 [00:00<00:00, 50.56it/s]
- -
</pre>
- 22%|██▎ | 9/40 [00:00<00:00, 48.66it/s]
+- 25%|██▌ | 10/40 [00:00<00:00, 50.56it/s]
end{sphinxVerbatim}
22%|██▎ | 9/40 [00:00<00:00, 48.66it/s]
+25%|██▌ | 10/40 [00:00<00:00, 50.56it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 61.68it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 60.89it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 61.68it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 60.89it/s]
+45%|████▌ | 18/40 [00:00<00:00, 61.68it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 66.82it/s]
- -
</pre>
- 60%|██████ | 24/40 [00:00<00:00, 63.65it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 66.82it/s]
end{sphinxVerbatim}
60%|██████ | 24/40 [00:00<00:00, 63.65it/s]
+65%|██████▌ | 26/40 [00:00<00:00, 66.82it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 68.53it/s]
- -
</pre>
- 80%|████████ | 32/40 [00:00<00:00, 67.73it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 68.53it/s]
end{sphinxVerbatim}
80%|████████ | 32/40 [00:00<00:00, 67.73it/s]
+85%|████████▌ | 34/40 [00:00<00:00, 68.53it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 64.04it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 63.85it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 64.04it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 63.85it/s]
+100%|██████████| 40/40 [00:00<00:00, 64.04it/s]
-epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.722
+epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.626
-epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.465
+epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.357
Computing feature embeddings ...
+- 2%|▎ | 1/40 [00:00<00:04, 8.98it/s]
- -
</pre>
- 5%|▌ | 2/40 [00:00<00:01, 19.27it/s]
+- 2%|▎ | 1/40 [00:00<00:04, 8.98it/s]
end{sphinxVerbatim}
5%|▌ | 2/40 [00:00<00:01, 19.27it/s]
+2%|▎ | 1/40 [00:00<00:04, 8.98it/s]
+- 20%|██ | 8/40 [00:00<00:00, 41.08it/s]
- -
</pre>
- 25%|██▌ | 10/40 [00:00<00:00, 50.68it/s]
+- 20%|██ | 8/40 [00:00<00:00, 41.08it/s]
end{sphinxVerbatim}
25%|██▌ | 10/40 [00:00<00:00, 50.68it/s]
+20%|██ | 8/40 [00:00<00:00, 41.08it/s]
+- 40%|████ | 16/40 [00:00<00:00, 56.22it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 59.08it/s]
+- 40%|████ | 16/40 [00:00<00:00, 56.22it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 59.08it/s]
+40%|████ | 16/40 [00:00<00:00, 56.22it/s]
+- 60%|██████ | 24/40 [00:00<00:00, 63.71it/s]
- -
</pre>
- 60%|██████ | 24/40 [00:00<00:00, 60.62it/s]
+- 60%|██████ | 24/40 [00:00<00:00, 63.71it/s]
end{sphinxVerbatim}
60%|██████ | 24/40 [00:00<00:00, 60.62it/s]
+60%|██████ | 24/40 [00:00<00:00, 63.71it/s]
+- 80%|████████ | 32/40 [00:00<00:00, 68.17it/s]
- -
</pre>
- 78%|███████▊ | 31/40 [00:00<00:00, 63.60it/s]
+- 80%|████████ | 32/40 [00:00<00:00, 68.17it/s]
end{sphinxVerbatim}
78%|███████▊ | 31/40 [00:00<00:00, 63.60it/s]
+80%|████████ | 32/40 [00:00<00:00, 68.17it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 62.74it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 62.00it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 62.74it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 62.00it/s]
+100%|██████████| 40/40 [00:00<00:00, 62.74it/s]
+- 5%|▌ | 2/40 [00:00<00:01, 19.56it/s]
- -
</pre>
- 5%|▌ | 2/40 [00:00<00:02, 18.42it/s]
+- 5%|▌ | 2/40 [00:00<00:01, 19.56it/s]
end{sphinxVerbatim}
5%|▌ | 2/40 [00:00<00:02, 18.42it/s]
+5%|▌ | 2/40 [00:00<00:01, 19.56it/s]
+- 25%|██▌ | 10/40 [00:00<00:00, 51.06it/s]
- -
</pre>
- 25%|██▌ | 10/40 [00:00<00:00, 52.14it/s]
+- 25%|██▌ | 10/40 [00:00<00:00, 51.06it/s]
end{sphinxVerbatim}
25%|██▌ | 10/40 [00:00<00:00, 52.14it/s]
+25%|██▌ | 10/40 [00:00<00:00, 51.06it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 62.52it/s]
- -
</pre>
- 45%|████▌ | 18/40 [00:00<00:00, 62.75it/s]
+- 45%|████▌ | 18/40 [00:00<00:00, 62.52it/s]
end{sphinxVerbatim}
45%|████▌ | 18/40 [00:00<00:00, 62.75it/s]
+45%|████▌ | 18/40 [00:00<00:00, 62.52it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 68.08it/s]
- -
</pre>
- 65%|██████▌ | 26/40 [00:00<00:00, 67.50it/s]
+- 65%|██████▌ | 26/40 [00:00<00:00, 68.08it/s]
end{sphinxVerbatim}
65%|██████▌ | 26/40 [00:00<00:00, 67.50it/s]
+65%|██████▌ | 26/40 [00:00<00:00, 68.08it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 70.97it/s]
- -
</pre>
- 85%|████████▌ | 34/40 [00:00<00:00, 70.88it/s]
+- 85%|████████▌ | 34/40 [00:00<00:00, 70.97it/s]
end{sphinxVerbatim}
85%|████████▌ | 34/40 [00:00<00:00, 70.88it/s]
+85%|████████▌ | 34/40 [00:00<00:00, 70.97it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 65.96it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 65.36it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 65.96it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 65.36it/s]
+100%|██████████| 40/40 [00:00<00:00, 65.96it/s]
-epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.677
+epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.688
-epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.306
+epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.257
Computing feature embeddings ...
+- 5%|▌ | 2/40 [00:00<00:02, 18.88it/s]
- -
</pre>
- 5%|▌ | 2/40 [00:00<00:01, 19.36it/s]
+- 5%|▌ | 2/40 [00:00<00:02, 18.88it/s]
end{sphinxVerbatim}
5%|▌ | 2/40 [00:00<00:01, 19.36it/s]
+5%|▌ | 2/40 [00:00<00:02, 18.88it/s]
+- 22%|██▎ | 9/40 [00:00<00:00, 47.75it/s]
- -
</pre>
- 25%|██▌ | 10/40 [00:00<00:00, 53.18it/s]
+- 22%|██▎ | 9/40 [00:00<00:00, 47.75it/s]
end{sphinxVerbatim}
25%|██▌ | 10/40 [00:00<00:00, 53.18it/s]
+22%|██▎ | 9/40 [00:00<00:00, 47.75it/s]
+- 42%|████▎ | 17/40 [00:00<00:00, 60.15it/s]
- -
</pre>
- 45%|████▌ | 18/40 [00:00<00:00, 63.86it/s]
+- 42%|████▎ | 17/40 [00:00<00:00, 60.15it/s]
end{sphinxVerbatim}
45%|████▌ | 18/40 [00:00<00:00, 63.86it/s]
+42%|████▎ | 17/40 [00:00<00:00, 60.15it/s]
+- 62%|██████▎ | 25/40 [00:00<00:00, 65.67it/s]
- -
</pre>
- 65%|██████▌ | 26/40 [00:00<00:00, 68.79it/s]
+- 62%|██████▎ | 25/40 [00:00<00:00, 65.67it/s]
end{sphinxVerbatim}
65%|██████▌ | 26/40 [00:00<00:00, 68.79it/s]
+62%|██████▎ | 25/40 [00:00<00:00, 65.67it/s]
+- 82%|████████▎ | 33/40 [00:00<00:00, 70.23it/s]
- -
</pre>
- 88%|████████▊ | 35/40 [00:00<00:00, 73.52it/s]
+- 82%|████████▎ | 33/40 [00:00<00:00, 70.23it/s]
end{sphinxVerbatim}
88%|████████▊ | 35/40 [00:00<00:00, 73.52it/s]
+82%|████████▎ | 33/40 [00:00<00:00, 70.23it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 65.21it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 67.63it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 65.21it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 67.63it/s]
+100%|██████████| 40/40 [00:00<00:00, 65.21it/s]
+- 2%|▎ | 1/40 [00:00<00:04, 9.65it/s]
- -
</pre>
- 2%|▎ | 1/40 [00:00<00:04, 9.52it/s]
+- 2%|▎ | 1/40 [00:00<00:04, 9.65it/s]
end{sphinxVerbatim}
2%|▎ | 1/40 [00:00<00:04, 9.52it/s]
+2%|▎ | 1/40 [00:00<00:04, 9.65it/s]
+- 22%|██▎ | 9/40 [00:00<00:00, 49.53it/s]
- -
</pre>
- 22%|██▎ | 9/40 [00:00<00:00, 48.92it/s]
+- 22%|██▎ | 9/40 [00:00<00:00, 49.53it/s]
end{sphinxVerbatim}
22%|██▎ | 9/40 [00:00<00:00, 48.92it/s]
+22%|██▎ | 9/40 [00:00<00:00, 49.53it/s]
+- 42%|████▎ | 17/40 [00:00<00:00, 61.98it/s]
- -
</pre>
- 42%|████▎ | 17/40 [00:00<00:00, 61.29it/s]
+- 42%|████▎ | 17/40 [00:00<00:00, 61.98it/s]
end{sphinxVerbatim}
42%|████▎ | 17/40 [00:00<00:00, 61.29it/s]
+42%|████▎ | 17/40 [00:00<00:00, 61.98it/s]
+- 62%|██████▎ | 25/40 [00:00<00:00, 68.32it/s]
- -
</pre>
- 62%|██████▎ | 25/40 [00:00<00:00, 67.86it/s]
+- 62%|██████▎ | 25/40 [00:00<00:00, 68.32it/s]
end{sphinxVerbatim}
62%|██████▎ | 25/40 [00:00<00:00, 67.86it/s]
+62%|██████▎ | 25/40 [00:00<00:00, 68.32it/s]
+- 82%|████████▎ | 33/40 [00:00<00:00, 72.36it/s]
- -
</pre>
- 82%|████████▎ | 33/40 [00:00<00:00, 70.25it/s]
+- 82%|████████▎ | 33/40 [00:00<00:00, 72.36it/s]
end{sphinxVerbatim}
82%|████████▎ | 33/40 [00:00<00:00, 70.25it/s]
+82%|████████▎ | 33/40 [00:00<00:00, 72.36it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 66.05it/s]
- -
</pre>
- 100%|██████████| 40/40 [00:00<00:00, 65.66it/s]
+- 100%|██████████| 40/40 [00:00<00:00, 66.05it/s]
end{sphinxVerbatim}
100%|██████████| 40/40 [00:00<00:00, 65.66it/s]
+100%|██████████| 40/40 [00:00<00:00, 66.05it/s]
-
+Finished Training
-Finished Training
+
Reorder rows of the dataset based on row order in features
and pred_probs
. Carefully ensure your ordering of the dataset matches these objects!
+- 0%| | 17316/4997817 [00:00<00:28, 173154.39it/s]
- -
</pre>
- 0%| | 16875/4997817 [00:00<00:29, 168739.70it/s]
+- 0%| | 17316/4997817 [00:00<00:28, 173154.39it/s]
end{sphinxVerbatim}
0%| | 16875/4997817 [00:00<00:29, 168739.70it/s]
+0%| | 17316/4997817 [00:00<00:28, 173154.39it/s]
+- 1%| | 34703/4997817 [00:00<00:28, 173569.34it/s]
- -
</pre>
- 1%| | 33749/4997817 [00:00<00:29, 166720.06it/s]
+- 1%| | 34703/4997817 [00:00<00:28, 173569.34it/s]
end{sphinxVerbatim}
1%| | 33749/4997817 [00:00<00:29, 166720.06it/s]
+1%| | 34703/4997817 [00:00<00:28, 173569.34it/s]
+- 1%| | 52060/4997817 [00:00<00:28, 173004.51it/s]
- -
</pre>
- 1%| | 50787/4997817 [00:00<00:29, 168375.83it/s]
+- 1%| | 52060/4997817 [00:00<00:28, 173004.51it/s]
end{sphinxVerbatim}
1%| | 50787/4997817 [00:00<00:29, 168375.83it/s]
+1%| | 52060/4997817 [00:00<00:28, 173004.51it/s]
+- 1%|▏ | 69497/4997817 [00:00<00:28, 173517.32it/s]
- -
</pre>
- 1%|▏ | 67627/4997817 [00:00<00:30, 160392.08it/s]
+- 1%|▏ | 69497/4997817 [00:00<00:28, 173517.32it/s]
end{sphinxVerbatim}
1%|▏ | 67627/4997817 [00:00<00:30, 160392.08it/s]
+1%|▏ | 69497/4997817 [00:00<00:28, 173517.32it/s]
+- 2%|▏ | 86899/4997817 [00:00<00:28, 173692.14it/s]
- -
</pre>
- 2%|▏ | 84665/4997817 [00:00<00:29, 163870.55it/s]
+- 2%|▏ | 86899/4997817 [00:00<00:28, 173692.14it/s]
end{sphinxVerbatim}
2%|▏ | 84665/4997817 [00:00<00:29, 163870.55it/s]
+2%|▏ | 86899/4997817 [00:00<00:28, 173692.14it/s]
+- 2%|▏ | 104269/4997817 [00:00<00:28, 173377.81it/s]
- -
</pre>
- 2%|▏ | 101475/4997817 [00:00<00:29, 165271.69it/s]
+- 2%|▏ | 104269/4997817 [00:00<00:28, 173377.81it/s]
end{sphinxVerbatim}
2%|▏ | 101475/4997817 [00:00<00:29, 165271.69it/s]
+2%|▏ | 104269/4997817 [00:00<00:28, 173377.81it/s]
+- 2%|▏ | 121807/4997817 [00:00<00:28, 174025.93it/s]
- -
</pre>
- 2%|▏ | 118414/4997817 [00:00<00:29, 166593.89it/s]
+- 2%|▏ | 121807/4997817 [00:00<00:28, 174025.93it/s]
end{sphinxVerbatim}
2%|▏ | 118414/4997817 [00:00<00:29, 166593.89it/s]
+2%|▏ | 121807/4997817 [00:00<00:28, 174025.93it/s]
+- 3%|▎ | 139276/4997817 [00:00<00:27, 174232.76it/s]
- -
</pre>
- 3%|▎ | 135351/4997817 [00:00<00:29, 167465.27it/s]
+- 3%|▎ | 139276/4997817 [00:00<00:27, 174232.76it/s]
end{sphinxVerbatim}
3%|▎ | 135351/4997817 [00:00<00:29, 167465.27it/s]
+3%|▎ | 139276/4997817 [00:00<00:27, 174232.76it/s]
+- 3%|▎ | 156700/4997817 [00:00<00:27, 173844.12it/s]
- -
</pre>
- 3%|▎ | 152297/4997817 [00:00<00:28, 168082.56it/s]
+- 3%|▎ | 156700/4997817 [00:00<00:27, 173844.12it/s]
end{sphinxVerbatim}
3%|▎ | 152297/4997817 [00:00<00:28, 168082.56it/s]
+3%|▎ | 156700/4997817 [00:00<00:27, 173844.12it/s]
+- 3%|▎ | 174085/4997817 [00:01<00:27, 173466.58it/s]
- -
</pre>
- 3%|▎ | 169154/4997817 [00:01<00:28, 168229.01it/s]
+- 3%|▎ | 174085/4997817 [00:01<00:27, 173466.58it/s]
end{sphinxVerbatim}
3%|▎ | 169154/4997817 [00:01<00:28, 168229.01it/s]
+3%|▎ | 174085/4997817 [00:01<00:27, 173466.58it/s]
+- 4%|▍ | 191511/4997817 [00:01<00:27, 173705.82it/s]
- -
</pre>
- 4%|▎ | 186094/4997817 [00:01<00:28, 168580.81it/s]
+- 4%|▍ | 191511/4997817 [00:01<00:27, 173705.82it/s]
end{sphinxVerbatim}
4%|▎ | 186094/4997817 [00:01<00:28, 168580.81it/s]
+4%|▍ | 191511/4997817 [00:01<00:27, 173705.82it/s]
+- 4%|▍ | 208912/4997817 [00:01<00:27, 173796.70it/s]
- -
</pre>
- 4%|▍ | 203133/4997817 [00:01<00:28, 169125.85it/s]
+- 4%|▍ | 208912/4997817 [00:01<00:27, 173796.70it/s]
end{sphinxVerbatim}
4%|▍ | 203133/4997817 [00:01<00:28, 169125.85it/s]
+4%|▍ | 208912/4997817 [00:01<00:27, 173796.70it/s]
+- 5%|▍ | 226355/4997817 [00:01<00:27, 173984.93it/s]
- -
</pre>
- 4%|▍ | 220065/4997817 [00:01<00:28, 169181.07it/s]
+- 5%|▍ | 226355/4997817 [00:01<00:27, 173984.93it/s]
end{sphinxVerbatim}
4%|▍ | 220065/4997817 [00:01<00:28, 169181.07it/s]
+5%|▍ | 226355/4997817 [00:01<00:27, 173984.93it/s]
+- 5%|▍ | 243754/4997817 [00:01<00:27, 173944.46it/s]
- -
</pre>
- 5%|▍ | 236987/4997817 [00:01<00:28, 165239.99it/s]
+- 5%|▍ | 243754/4997817 [00:01<00:27, 173944.46it/s]
end{sphinxVerbatim}
5%|▍ | 236987/4997817 [00:01<00:28, 165239.99it/s]
+5%|▍ | 243754/4997817 [00:01<00:27, 173944.46it/s]
+- 5%|▌ | 261149/4997817 [00:01<00:27, 173744.83it/s]
- -
</pre>
- 5%|▌ | 253533/4997817 [00:01<00:28, 164958.15it/s]
+- 5%|▌ | 261149/4997817 [00:01<00:27, 173744.83it/s]
end{sphinxVerbatim}
5%|▌ | 253533/4997817 [00:01<00:28, 164958.15it/s]
+5%|▌ | 261149/4997817 [00:01<00:27, 173744.83it/s]
+- 6%|▌ | 278705/4997817 [00:01<00:27, 174288.59it/s]
- -
</pre>
- 5%|▌ | 270749/4997817 [00:01<00:28, 167093.29it/s]
+- 6%|▌ | 278705/4997817 [00:01<00:27, 174288.59it/s]
end{sphinxVerbatim}
5%|▌ | 270749/4997817 [00:01<00:28, 167093.29it/s]
+6%|▌ | 278705/4997817 [00:01<00:27, 174288.59it/s]
+- 6%|▌ | 296332/4997817 [00:01<00:26, 174880.84it/s]
- -
</pre>
- 6%|▌ | 287600/4997817 [00:01<00:28, 167510.98it/s]
+- 6%|▌ | 296332/4997817 [00:01<00:26, 174880.84it/s]
end{sphinxVerbatim}
6%|▌ | 287600/4997817 [00:01<00:28, 167510.98it/s]
+6%|▌ | 296332/4997817 [00:01<00:26, 174880.84it/s]
+- 6%|▋ | 313821/4997817 [00:01<00:26, 174480.55it/s]
- -
</pre>
- 6%|▌ | 304698/4997817 [00:01<00:27, 168542.59it/s]
+- 6%|▋ | 313821/4997817 [00:01<00:26, 174480.55it/s]
end{sphinxVerbatim}
6%|▌ | 304698/4997817 [00:01<00:27, 168542.59it/s]
+6%|▋ | 313821/4997817 [00:01<00:26, 174480.55it/s]
+- 7%|▋ | 331358/4997817 [00:01<00:26, 174744.92it/s]
- -
</pre>
- 6%|▋ | 321755/4997817 [00:01<00:27, 169144.21it/s]
+- 7%|▋ | 331358/4997817 [00:01<00:26, 174744.92it/s]
end{sphinxVerbatim}
6%|▋ | 321755/4997817 [00:01<00:27, 169144.21it/s]
+7%|▋ | 331358/4997817 [00:01<00:26, 174744.92it/s]
+- 7%|▋ | 348833/4997817 [00:02<00:26, 174449.74it/s]
- -
</pre>
- 7%|▋ | 338841/4997817 [00:02<00:27, 169655.75it/s]
+- 7%|▋ | 348833/4997817 [00:02<00:26, 174449.74it/s]
end{sphinxVerbatim}
7%|▋ | 338841/4997817 [00:02<00:27, 169655.75it/s]
+7%|▋ | 348833/4997817 [00:02<00:26, 174449.74it/s]
+- 7%|▋ | 366279/4997817 [00:02<00:26, 174126.72it/s]
- -
</pre>
- 7%|▋ | 355955/4997817 [00:02<00:27, 170097.49it/s]
+- 7%|▋ | 366279/4997817 [00:02<00:26, 174126.72it/s]
end{sphinxVerbatim}
7%|▋ | 355955/4997817 [00:02<00:27, 170097.49it/s]
+7%|▋ | 366279/4997817 [00:02<00:26, 174126.72it/s]
+- 8%|▊ | 383729/4997817 [00:02<00:26, 174222.07it/s]
- -
</pre>
- 7%|▋ | 373028/4997817 [00:02<00:27, 170284.50it/s]
+- 8%|▊ | 383729/4997817 [00:02<00:26, 174222.07it/s]
end{sphinxVerbatim}
7%|▋ | 373028/4997817 [00:02<00:27, 170284.50it/s]
+8%|▊ | 383729/4997817 [00:02<00:26, 174222.07it/s]
+- 8%|▊ | 401227/4997817 [00:02<00:26, 174447.97it/s]
- -
</pre>
- 8%|▊ | 390143/4997817 [00:02<00:27, 170540.06it/s]
+- 8%|▊ | 401227/4997817 [00:02<00:26, 174447.97it/s]
end{sphinxVerbatim}
8%|▊ | 390143/4997817 [00:02<00:27, 170540.06it/s]
+8%|▊ | 401227/4997817 [00:02<00:26, 174447.97it/s]
+- 8%|▊ | 418855/4997817 [00:02<00:26, 174995.18it/s]
- -
</pre>
- 8%|▊ | 407199/4997817 [00:02<00:26, 170333.63it/s]
+- 8%|▊ | 418855/4997817 [00:02<00:26, 174995.18it/s]
end{sphinxVerbatim}
8%|▊ | 407199/4997817 [00:02<00:26, 170333.63it/s]
+8%|▊ | 418855/4997817 [00:02<00:26, 174995.18it/s]
+- 9%|▊ | 436537/4997817 [00:02<00:25, 175539.18it/s]
- -
</pre>
- 8%|▊ | 424234/4997817 [00:02<00:27, 165957.27it/s]
+- 9%|▊ | 436537/4997817 [00:02<00:25, 175539.18it/s]
end{sphinxVerbatim}
8%|▊ | 424234/4997817 [00:02<00:27, 165957.27it/s]
+9%|▊ | 436537/4997817 [00:02<00:25, 175539.18it/s]
+- 9%|▉ | 454092/4997817 [00:02<00:26, 174543.99it/s]
- -
</pre>
- 9%|▉ | 441442/4997817 [00:02<00:27, 167758.31it/s]
+- 9%|▉ | 454092/4997817 [00:02<00:26, 174543.99it/s]
end{sphinxVerbatim}
9%|▉ | 441442/4997817 [00:02<00:27, 167758.31it/s]
+9%|▉ | 454092/4997817 [00:02<00:26, 174543.99it/s]
+- 9%|▉ | 471548/4997817 [00:02<00:25, 174226.13it/s]
- -
</pre>
- 9%|▉ | 458759/4997817 [00:02<00:26, 169358.04it/s]
+- 9%|▉ | 471548/4997817 [00:02<00:25, 174226.13it/s]
end{sphinxVerbatim}
9%|▉ | 458759/4997817 [00:02<00:26, 169358.04it/s]
+9%|▉ | 471548/4997817 [00:02<00:25, 174226.13it/s]
+- 10%|▉ | 488972/4997817 [00:02<00:25, 174051.97it/s]
- -
</pre>
- 10%|▉ | 475970/4997817 [00:02<00:26, 170172.63it/s]
+- 10%|▉ | 488972/4997817 [00:02<00:25, 174051.97it/s]
end{sphinxVerbatim}
10%|▉ | 475970/4997817 [00:02<00:26, 170172.63it/s]
+10%|▉ | 488972/4997817 [00:02<00:25, 174051.97it/s]
+- 10%|█ | 506378/4997817 [00:02<00:25, 173741.09it/s]
- -
</pre>
- 10%|▉ | 493293/4997817 [00:02<00:26, 171080.88it/s]
+- 10%|█ | 506378/4997817 [00:02<00:25, 173741.09it/s]
end{sphinxVerbatim}
10%|▉ | 493293/4997817 [00:02<00:26, 171080.88it/s]
+10%|█ | 506378/4997817 [00:02<00:25, 173741.09it/s]
+- 10%|█ | 523916/4997817 [00:03<00:25, 174229.02it/s]
- -
</pre>
- 10%|█ | 510610/4997817 [00:03<00:26, 171701.31it/s]
+- 10%|█ | 523916/4997817 [00:03<00:25, 174229.02it/s]
end{sphinxVerbatim}
10%|█ | 510610/4997817 [00:03<00:26, 171701.31it/s]
+10%|█ | 523916/4997817 [00:03<00:25, 174229.02it/s]
+- 11%|█ | 541494/4997817 [00:03<00:25, 174691.21it/s]
- -
</pre>
- 11%|█ | 527886/4997817 [00:03<00:25, 172014.12it/s]
+- 11%|█ | 541494/4997817 [00:03<00:25, 174691.21it/s]
end{sphinxVerbatim}
11%|█ | 527886/4997817 [00:03<00:25, 172014.12it/s]
+11%|█ | 541494/4997817 [00:03<00:25, 174691.21it/s]
+- 11%|█ | 558964/4997817 [00:03<00:25, 174558.81it/s]
- -
</pre>
- 11%|█ | 545093/4997817 [00:03<00:25, 171956.90it/s]
+- 11%|█ | 558964/4997817 [00:03<00:25, 174558.81it/s]
end{sphinxVerbatim}
11%|█ | 545093/4997817 [00:03<00:25, 171956.90it/s]
+11%|█ | 558964/4997817 [00:03<00:25, 174558.81it/s]
+- 12%|█▏ | 576421/4997817 [00:03<00:25, 174151.31it/s]
- -
</pre>
- 11%|█▏ | 562493/4997817 [00:03<00:25, 172565.25it/s]
+- 12%|█▏ | 576421/4997817 [00:03<00:25, 174151.31it/s]
end{sphinxVerbatim}
11%|█▏ | 562493/4997817 [00:03<00:25, 172565.25it/s]
+12%|█▏ | 576421/4997817 [00:03<00:25, 174151.31it/s]
+- 12%|█▏ | 593977/4997817 [00:03<00:25, 174569.48it/s]
- -
</pre>
- 12%|█▏ | 579783/4997817 [00:03<00:25, 172664.11it/s]
+- 12%|█▏ | 593977/4997817 [00:03<00:25, 174569.48it/s]
end{sphinxVerbatim}
12%|█▏ | 579783/4997817 [00:03<00:25, 172664.11it/s]
+12%|█▏ | 593977/4997817 [00:03<00:25, 174569.48it/s]
+- 12%|█▏ | 611494/4997817 [00:03<00:25, 174744.69it/s]
- -
</pre>
- 12%|█▏ | 597082/4997817 [00:03<00:25, 172757.76it/s]
+- 12%|█▏ | 611494/4997817 [00:03<00:25, 174744.69it/s]
end{sphinxVerbatim}
12%|█▏ | 597082/4997817 [00:03<00:25, 172757.76it/s]
+12%|█▏ | 611494/4997817 [00:03<00:25, 174744.69it/s]
+- 13%|█▎ | 628969/4997817 [00:03<00:25, 172753.15it/s]
- -
</pre>
- 12%|█▏ | 614377/4997817 [00:03<00:25, 172811.61it/s]
+- 13%|█▎ | 628969/4997817 [00:03<00:25, 172753.15it/s]
end{sphinxVerbatim}
12%|█▏ | 614377/4997817 [00:03<00:25, 172811.61it/s]
+13%|█▎ | 628969/4997817 [00:03<00:25, 172753.15it/s]
+- 13%|█▎ | 646321/4997817 [00:03<00:25, 172979.58it/s]
- -
</pre>
- 13%|█▎ | 631661/4997817 [00:03<00:25, 172816.22it/s]
+- 13%|█▎ | 646321/4997817 [00:03<00:25, 172979.58it/s]
end{sphinxVerbatim}
13%|█▎ | 631661/4997817 [00:03<00:25, 172816.22it/s]
+13%|█▎ | 646321/4997817 [00:03<00:25, 172979.58it/s]
+- 13%|█▎ | 663679/4997817 [00:03<00:25, 173154.91it/s]
- -
</pre>
- 13%|█▎ | 648944/4997817 [00:03<00:25, 172530.14it/s]
+- 13%|█▎ | 663679/4997817 [00:03<00:25, 173154.91it/s]
end{sphinxVerbatim}
13%|█▎ | 648944/4997817 [00:03<00:25, 172530.14it/s]
+13%|█▎ | 663679/4997817 [00:03<00:25, 173154.91it/s]
+- 14%|█▎ | 681030/4997817 [00:03<00:24, 173259.04it/s]
- -
</pre>
- 13%|█▎ | 666266/4997817 [00:03<00:25, 172730.07it/s]
+- 14%|█▎ | 681030/4997817 [00:03<00:24, 173259.04it/s]
end{sphinxVerbatim}
13%|█▎ | 666266/4997817 [00:03<00:25, 172730.07it/s]
+14%|█▎ | 681030/4997817 [00:03<00:24, 173259.04it/s]
+- 14%|█▍ | 698362/4997817 [00:04<00:24, 173275.22it/s]
- -
</pre>
- 14%|█▎ | 683540/4997817 [00:04<00:24, 172712.98it/s]
+- 14%|█▍ | 698362/4997817 [00:04<00:24, 173275.22it/s]
end{sphinxVerbatim}
14%|█▎ | 683540/4997817 [00:04<00:24, 172712.98it/s]
+14%|█▍ | 698362/4997817 [00:04<00:24, 173275.22it/s]
+- 14%|█▍ | 715691/4997817 [00:04<00:24, 173269.06it/s]
- -
</pre>
- 14%|█▍ | 700812/4997817 [00:04<00:24, 172596.96it/s]
+- 14%|█▍ | 715691/4997817 [00:04<00:24, 173269.06it/s]
end{sphinxVerbatim}
14%|█▍ | 700812/4997817 [00:04<00:24, 172596.96it/s]
+14%|█▍ | 715691/4997817 [00:04<00:24, 173269.06it/s]
+- 15%|█▍ | 733023/4997817 [00:04<00:24, 173282.63it/s]
- -
</pre>
- 14%|█▍ | 718156/4997817 [00:04<00:24, 172846.08it/s]
+- 15%|█▍ | 733023/4997817 [00:04<00:24, 173282.63it/s]
end{sphinxVerbatim}
14%|█▍ | 718156/4997817 [00:04<00:24, 172846.08it/s]
+15%|█▍ | 733023/4997817 [00:04<00:24, 173282.63it/s]
+- 15%|█▌ | 750352/4997817 [00:04<00:24, 172883.34it/s]
- -
</pre>
- 15%|█▍ | 735441/4997817 [00:04<00:24, 172372.99it/s]
+- 15%|█▌ | 750352/4997817 [00:04<00:24, 172883.34it/s]
end{sphinxVerbatim}
15%|█▍ | 735441/4997817 [00:04<00:24, 172372.99it/s]
+15%|█▌ | 750352/4997817 [00:04<00:24, 172883.34it/s]
+- 15%|█▌ | 767641/4997817 [00:04<00:24, 172695.49it/s]
- -
</pre>
- 15%|█▌ | 752761/4997817 [00:04<00:24, 172619.67it/s]
+- 15%|█▌ | 767641/4997817 [00:04<00:24, 172695.49it/s]
end{sphinxVerbatim}
15%|█▌ | 752761/4997817 [00:04<00:24, 172619.67it/s]
+15%|█▌ | 767641/4997817 [00:04<00:24, 172695.49it/s]
+- 16%|█▌ | 784963/4997817 [00:04<00:24, 172849.42it/s]
- -
</pre>
- 15%|█▌ | 770137/4997817 [00:04<00:24, 172959.01it/s]
+- 16%|█▌ | 784963/4997817 [00:04<00:24, 172849.42it/s]
end{sphinxVerbatim}
15%|█▌ | 770137/4997817 [00:04<00:24, 172959.01it/s]
+16%|█▌ | 784963/4997817 [00:04<00:24, 172849.42it/s]
+- 16%|█▌ | 802249/4997817 [00:04<00:24, 172543.53it/s]
- -
</pre>
- 16%|█▌ | 787570/4997817 [00:04<00:24, 173367.13it/s]
+- 16%|█▌ | 802249/4997817 [00:04<00:24, 172543.53it/s]
end{sphinxVerbatim}
16%|█▌ | 787570/4997817 [00:04<00:24, 173367.13it/s]
+16%|█▌ | 802249/4997817 [00:04<00:24, 172543.53it/s]
+- 16%|█▋ | 819504/4997817 [00:04<00:24, 172408.48it/s]
- -
</pre>
- 16%|█▌ | 804992/4997817 [00:04<00:24, 173620.09it/s]
+- 16%|█▋ | 819504/4997817 [00:04<00:24, 172408.48it/s]
end{sphinxVerbatim}
16%|█▌ | 804992/4997817 [00:04<00:24, 173620.09it/s]
+16%|█▋ | 819504/4997817 [00:04<00:24, 172408.48it/s]
+- 17%|█▋ | 836746/4997817 [00:04<00:24, 172216.20it/s]
- -
</pre>
- 16%|█▋ | 822398/4997817 [00:04<00:24, 173748.68it/s]
+- 17%|█▋ | 836746/4997817 [00:04<00:24, 172216.20it/s]
end{sphinxVerbatim}
16%|█▋ | 822398/4997817 [00:04<00:24, 173748.68it/s]
+17%|█▋ | 836746/4997817 [00:04<00:24, 172216.20it/s]
+- 17%|█▋ | 853968/4997817 [00:04<00:24, 172122.21it/s]
- -
</pre>
- 17%|█▋ | 839858/4997817 [00:04<00:23, 174001.28it/s]
+- 17%|█▋ | 853968/4997817 [00:04<00:24, 172122.21it/s]
end{sphinxVerbatim}
17%|█▋ | 839858/4997817 [00:04<00:23, 174001.28it/s]
+17%|█▋ | 853968/4997817 [00:04<00:24, 172122.21it/s]
+- 17%|█▋ | 871181/4997817 [00:05<00:23, 171981.09it/s]
- -
</pre>
- 17%|█▋ | 857366/4997817 [00:05<00:23, 174322.85it/s]
+- 17%|█▋ | 871181/4997817 [00:05<00:23, 171981.09it/s]
end{sphinxVerbatim}
17%|█▋ | 857366/4997817 [00:05<00:23, 174322.85it/s]
+17%|█▋ | 871181/4997817 [00:05<00:23, 171981.09it/s]
+- 18%|█▊ | 888380/4997817 [00:05<00:23, 171753.81it/s]
- -
</pre>
- 18%|█▊ | 874799/4997817 [00:05<00:23, 173567.56it/s]
+- 18%|█▊ | 888380/4997817 [00:05<00:23, 171753.81it/s]
end{sphinxVerbatim}
18%|█▊ | 874799/4997817 [00:05<00:23, 173567.56it/s]
+18%|█▊ | 888380/4997817 [00:05<00:23, 171753.81it/s]
+- 18%|█▊ | 905557/4997817 [00:05<00:23, 171754.41it/s]
- -
</pre>
- 18%|█▊ | 892157/4997817 [00:05<00:23, 173440.50it/s]
+- 18%|█▊ | 905557/4997817 [00:05<00:23, 171754.41it/s]
end{sphinxVerbatim}
18%|█▊ | 892157/4997817 [00:05<00:23, 173440.50it/s]
+18%|█▊ | 905557/4997817 [00:05<00:23, 171754.41it/s]
+- 18%|█▊ | 922933/4997817 [00:05<00:23, 172352.92it/s]
- -
</pre>
- 18%|█▊ | 909502/4997817 [00:05<00:23, 173143.04it/s]
+- 18%|█▊ | 922933/4997817 [00:05<00:23, 172352.92it/s]
end{sphinxVerbatim}
18%|█▊ | 909502/4997817 [00:05<00:23, 173143.04it/s]
+18%|█▊ | 922933/4997817 [00:05<00:23, 172352.92it/s]
+- 19%|█▉ | 940465/4997817 [00:05<00:23, 173240.44it/s]
- -
</pre>
- 19%|█▊ | 926835/4997817 [00:05<00:23, 173197.03it/s]
+- 19%|█▉ | 940465/4997817 [00:05<00:23, 173240.44it/s]
end{sphinxVerbatim}
19%|█▊ | 926835/4997817 [00:05<00:23, 173197.03it/s]
+19%|█▉ | 940465/4997817 [00:05<00:23, 173240.44it/s]
+- 19%|█▉ | 958213/4997817 [00:05<00:23, 174508.18it/s]
- -
</pre>
- 19%|█▉ | 944156/4997817 [00:05<00:24, 166202.97it/s]
+- 19%|█▉ | 958213/4997817 [00:05<00:23, 174508.18it/s]
end{sphinxVerbatim}
19%|█▉ | 944156/4997817 [00:05<00:24, 166202.97it/s]
+19%|█▉ | 958213/4997817 [00:05<00:23, 174508.18it/s]
+- 20%|█▉ | 975677/4997817 [00:05<00:23, 174543.64it/s]
- -
</pre>
- 19%|█▉ | 961364/4997817 [00:05<00:24, 167910.74it/s]
+- 20%|█▉ | 975677/4997817 [00:05<00:23, 174543.64it/s]
end{sphinxVerbatim}
19%|█▉ | 961364/4997817 [00:05<00:24, 167910.74it/s]
+20%|█▉ | 975677/4997817 [00:05<00:23, 174543.64it/s]
+- 20%|█▉ | 993172/4997817 [00:05<00:22, 174661.67it/s]
- -
</pre>
- 20%|█▉ | 978704/4997817 [00:05<00:23, 169521.29it/s]
+- 20%|█▉ | 993172/4997817 [00:05<00:22, 174661.67it/s]
end{sphinxVerbatim}
20%|█▉ | 978704/4997817 [00:05<00:23, 169521.29it/s]
+20%|█▉ | 993172/4997817 [00:05<00:22, 174661.67it/s]
+- 20%|██ | 1010639/4997817 [00:05<00:22, 174191.42it/s]
- -
</pre>
- 20%|█▉ | 996048/4997817 [00:05<00:23, 170676.17it/s]
+- 20%|██ | 1010639/4997817 [00:05<00:22, 174191.42it/s]
end{sphinxVerbatim}
20%|█▉ | 996048/4997817 [00:05<00:23, 170676.17it/s]
+20%|██ | 1010639/4997817 [00:05<00:22, 174191.42it/s]
+- 21%|██ | 1028059/4997817 [00:05<00:22, 173875.72it/s]
- -
</pre>
- 20%|██ | 1013347/4997817 [00:05<00:23, 171362.05it/s]
+- 21%|██ | 1028059/4997817 [00:05<00:22, 173875.72it/s]
end{sphinxVerbatim}
20%|██ | 1013347/4997817 [00:05<00:23, 171362.05it/s]
+21%|██ | 1028059/4997817 [00:05<00:22, 173875.72it/s]
+- 21%|██ | 1045447/4997817 [00:06<00:22, 173714.48it/s]
- -
</pre>
- 21%|██ | 1030732/4997817 [00:06<00:23, 172101.84it/s]
+- 21%|██ | 1045447/4997817 [00:06<00:22, 173714.48it/s]
end{sphinxVerbatim}
21%|██ | 1030732/4997817 [00:06<00:23, 172101.84it/s]
+21%|██ | 1045447/4997817 [00:06<00:22, 173714.48it/s]
+- 21%|██▏ | 1062819/4997817 [00:06<00:22, 173555.59it/s]
- -
</pre>
- 21%|██ | 1048019/4997817 [00:06<00:22, 172330.03it/s]
+- 21%|██▏ | 1062819/4997817 [00:06<00:22, 173555.59it/s]
end{sphinxVerbatim}
21%|██ | 1048019/4997817 [00:06<00:22, 172330.03it/s]
+21%|██▏ | 1062819/4997817 [00:06<00:22, 173555.59it/s]
+- 22%|██▏ | 1080175/4997817 [00:06<00:22, 173322.86it/s]
- -
</pre>
- 21%|██▏ | 1065263/4997817 [00:06<00:22, 171709.76it/s]
+- 22%|██▏ | 1080175/4997817 [00:06<00:22, 173322.86it/s]
end{sphinxVerbatim}
21%|██▏ | 1065263/4997817 [00:06<00:22, 171709.76it/s]
+22%|██▏ | 1080175/4997817 [00:06<00:22, 173322.86it/s]
+- 22%|██▏ | 1097508/4997817 [00:06<00:22, 172751.89it/s]
- -
</pre>
- 22%|██▏ | 1082628/4997817 [00:06<00:22, 172285.29it/s]
+- 22%|██▏ | 1097508/4997817 [00:06<00:22, 172751.89it/s]
end{sphinxVerbatim}
22%|██▏ | 1082628/4997817 [00:06<00:22, 172285.29it/s]
+22%|██▏ | 1097508/4997817 [00:06<00:22, 172751.89it/s]
+- 22%|██▏ | 1114784/4997817 [00:06<00:22, 172069.99it/s]
- -
</pre>
- 22%|██▏ | 1099931/4997817 [00:06<00:22, 172504.86it/s]
+- 22%|██▏ | 1114784/4997817 [00:06<00:22, 172069.99it/s]
end{sphinxVerbatim}
22%|██▏ | 1099931/4997817 [00:06<00:22, 172504.86it/s]
+22%|██▏ | 1114784/4997817 [00:06<00:22, 172069.99it/s]
+- 23%|██▎ | 1132096/4997817 [00:06<00:22, 172355.18it/s]
- -
</pre>
- 22%|██▏ | 1117194/4997817 [00:06<00:22, 172539.89it/s]
+- 23%|██▎ | 1132096/4997817 [00:06<00:22, 172355.18it/s]
end{sphinxVerbatim}
22%|██▏ | 1117194/4997817 [00:06<00:22, 172539.89it/s]
+23%|██▎ | 1132096/4997817 [00:06<00:22, 172355.18it/s]
+- 23%|██▎ | 1149354/4997817 [00:06<00:22, 172417.36it/s]
- -
</pre>
- 23%|██▎ | 1134546/4997817 [00:06<00:22, 172830.60it/s]
+- 23%|██▎ | 1149354/4997817 [00:06<00:22, 172417.36it/s]
end{sphinxVerbatim}
23%|██▎ | 1134546/4997817 [00:06<00:22, 172830.60it/s]
+23%|██▎ | 1149354/4997817 [00:06<00:22, 172417.36it/s]
+- 23%|██▎ | 1166597/4997817 [00:06<00:22, 172128.78it/s]
- -
</pre>
- 23%|██▎ | 1151895/4997817 [00:06<00:22, 173026.36it/s]
+- 23%|██▎ | 1166597/4997817 [00:06<00:22, 172128.78it/s]
end{sphinxVerbatim}
23%|██▎ | 1151895/4997817 [00:06<00:22, 173026.36it/s]
+23%|██▎ | 1166597/4997817 [00:06<00:22, 172128.78it/s]
+- 24%|██▎ | 1183811/4997817 [00:06<00:22, 171851.61it/s]
- -
</pre>
- 23%|██▎ | 1169210/4997817 [00:06<00:22, 173059.88it/s]
+- 24%|██▎ | 1183811/4997817 [00:06<00:22, 171851.61it/s]
end{sphinxVerbatim}
23%|██▎ | 1169210/4997817 [00:06<00:22, 173059.88it/s]
+24%|██▎ | 1183811/4997817 [00:06<00:22, 171851.61it/s]
+- 24%|██▍ | 1201022/4997817 [00:06<00:22, 171926.83it/s]
- -
</pre>
- 24%|██▎ | 1186517/4997817 [00:06<00:22, 172852.31it/s]
+- 24%|██▍ | 1201022/4997817 [00:06<00:22, 171926.83it/s]
end{sphinxVerbatim}
24%|██▎ | 1186517/4997817 [00:06<00:22, 172852.31it/s]
+24%|██▍ | 1201022/4997817 [00:06<00:22, 171926.83it/s]
+- 24%|██▍ | 1218296/4997817 [00:07<00:21, 172168.16it/s]
- -
</pre>
- 24%|██▍ | 1203803/4997817 [00:07<00:21, 172564.61it/s]
+- 24%|██▍ | 1218296/4997817 [00:07<00:21, 172168.16it/s]
end{sphinxVerbatim}
24%|██▍ | 1203803/4997817 [00:07<00:21, 172564.61it/s]
+24%|██▍ | 1218296/4997817 [00:07<00:21, 172168.16it/s]
+- 25%|██▍ | 1235514/4997817 [00:07<00:21, 171822.70it/s]
- -
</pre>
- 24%|██▍ | 1221098/4997817 [00:07<00:21, 172667.84it/s]
+- 25%|██▍ | 1235514/4997817 [00:07<00:21, 171822.70it/s]
end{sphinxVerbatim}
24%|██▍ | 1221098/4997817 [00:07<00:21, 172667.84it/s]
+25%|██▍ | 1235514/4997817 [00:07<00:21, 171822.70it/s]
+- 25%|██▌ | 1252775/4997817 [00:07<00:21, 172055.38it/s]
- -
</pre>
- 25%|██▍ | 1238475/4997817 [00:07<00:21, 172994.08it/s]
+- 25%|██▌ | 1252775/4997817 [00:07<00:21, 172055.38it/s]
end{sphinxVerbatim}
25%|██▍ | 1238475/4997817 [00:07<00:21, 172994.08it/s]
+25%|██▌ | 1252775/4997817 [00:07<00:21, 172055.38it/s]
+- 25%|██▌ | 1269981/4997817 [00:07<00:21, 171734.72it/s]
- -
</pre>
- 25%|██▌ | 1255775/4997817 [00:07<00:21, 172899.42it/s]
+- 25%|██▌ | 1269981/4997817 [00:07<00:21, 171734.72it/s]
end{sphinxVerbatim}
25%|██▌ | 1255775/4997817 [00:07<00:21, 172899.42it/s]
+25%|██▌ | 1269981/4997817 [00:07<00:21, 171734.72it/s]
+- 26%|██▌ | 1287155/4997817 [00:07<00:21, 171381.05it/s]
- -
</pre>
- 25%|██▌ | 1273066/4997817 [00:07<00:21, 172589.94it/s]
+- 26%|██▌ | 1287155/4997817 [00:07<00:21, 171381.05it/s]
end{sphinxVerbatim}
25%|██▌ | 1273066/4997817 [00:07<00:21, 172589.94it/s]
+26%|██▌ | 1287155/4997817 [00:07<00:21, 171381.05it/s]
+- 26%|██▌ | 1304565/4997817 [00:07<00:21, 172191.79it/s]
- -
</pre>
- 26%|██▌ | 1290398/4997817 [00:07<00:21, 172806.58it/s]
+- 26%|██▌ | 1304565/4997817 [00:07<00:21, 172191.79it/s]
end{sphinxVerbatim}
26%|██▌ | 1290398/4997817 [00:07<00:21, 172806.58it/s]
+26%|██▌ | 1304565/4997817 [00:07<00:21, 172191.79it/s]
+- 26%|██▋ | 1321785/4997817 [00:07<00:21, 171748.05it/s]
- -
</pre>
- 26%|██▌ | 1307679/4997817 [00:07<00:22, 166160.47it/s]
+- 26%|██▋ | 1321785/4997817 [00:07<00:21, 171748.05it/s]
end{sphinxVerbatim}
26%|██▌ | 1307679/4997817 [00:07<00:22, 166160.47it/s]
+26%|██▋ | 1321785/4997817 [00:07<00:21, 171748.05it/s]
+- 27%|██▋ | 1338961/4997817 [00:07<00:21, 171537.69it/s]
- -
</pre>
- 27%|██▋ | 1325085/4997817 [00:07<00:21, 168461.57it/s]
+- 27%|██▋ | 1338961/4997817 [00:07<00:21, 171537.69it/s]
end{sphinxVerbatim}
27%|██▋ | 1325085/4997817 [00:07<00:21, 168461.57it/s]
+27%|██▋ | 1338961/4997817 [00:07<00:21, 171537.69it/s]
+- 27%|██▋ | 1356197/4997817 [00:07<00:21, 171781.30it/s]
- -
</pre>
- 27%|██▋ | 1342482/4997817 [00:07<00:21, 170080.23it/s]
+- 27%|██▋ | 1356197/4997817 [00:07<00:21, 171781.30it/s]
end{sphinxVerbatim}
27%|██▋ | 1342482/4997817 [00:07<00:21, 170080.23it/s]
+27%|██▋ | 1356197/4997817 [00:07<00:21, 171781.30it/s]
+- 27%|██▋ | 1373376/4997817 [00:07<00:21, 171542.55it/s]
- -
</pre>
- 27%|██▋ | 1359770/4997817 [00:07<00:21, 170905.76it/s]
+- 27%|██▋ | 1373376/4997817 [00:07<00:21, 171542.55it/s]
end{sphinxVerbatim}
27%|██▋ | 1359770/4997817 [00:07<00:21, 170905.76it/s]
+27%|██▋ | 1373376/4997817 [00:07<00:21, 171542.55it/s]
+- 28%|██▊ | 1390531/4997817 [00:08<00:21, 171307.25it/s]
- -
</pre>
- 28%|██▊ | 1377262/4997817 [00:08<00:21, 172095.37it/s]
+- 28%|██▊ | 1390531/4997817 [00:08<00:21, 171307.25it/s]
end{sphinxVerbatim}
28%|██▊ | 1377262/4997817 [00:08<00:21, 172095.37it/s]
+28%|██▊ | 1390531/4997817 [00:08<00:21, 171307.25it/s]
+- 28%|██▊ | 1407812/4997817 [00:08<00:20, 171751.72it/s]
- -
</pre>
- 28%|██▊ | 1394654/4997817 [00:08<00:20, 172637.04it/s]
+- 28%|██▊ | 1407812/4997817 [00:08<00:20, 171751.72it/s]
end{sphinxVerbatim}
28%|██▊ | 1394654/4997817 [00:08<00:20, 172637.04it/s]
+28%|██▊ | 1407812/4997817 [00:08<00:20, 171751.72it/s]
+- 29%|██▊ | 1425138/4997817 [00:08<00:20, 172200.17it/s]
- -
</pre>
- 28%|██▊ | 1411932/4997817 [00:08<00:20, 172322.24it/s]
+- 29%|██▊ | 1425138/4997817 [00:08<00:20, 172200.17it/s]
end{sphinxVerbatim}
28%|██▊ | 1411932/4997817 [00:08<00:20, 172322.24it/s]
+29%|██▊ | 1425138/4997817 [00:08<00:20, 172200.17it/s]
+- 29%|██▉ | 1442395/4997817 [00:08<00:20, 172309.66it/s]
- -
</pre>
- 29%|██▊ | 1429364/4997817 [00:08<00:20, 172916.11it/s]
+- 29%|██▉ | 1442395/4997817 [00:08<00:20, 172309.66it/s]
end{sphinxVerbatim}
29%|██▊ | 1429364/4997817 [00:08<00:20, 172916.11it/s]
+29%|██▉ | 1442395/4997817 [00:08<00:20, 172309.66it/s]
+- 29%|██▉ | 1459635/4997817 [00:08<00:20, 172334.32it/s]
- -
</pre>
- 29%|██▉ | 1446805/4997817 [00:08<00:20, 173360.81it/s]
+- 29%|██▉ | 1459635/4997817 [00:08<00:20, 172334.32it/s]
end{sphinxVerbatim}
29%|██▉ | 1446805/4997817 [00:08<00:20, 173360.81it/s]
+29%|██▉ | 1459635/4997817 [00:08<00:20, 172334.32it/s]
+- 30%|██▉ | 1476885/4997817 [00:08<00:20, 172381.08it/s]
- -
</pre>
- 29%|██▉ | 1464219/4997817 [00:08<00:20, 173591.08it/s]
+- 30%|██▉ | 1476885/4997817 [00:08<00:20, 172381.08it/s]
end{sphinxVerbatim}
29%|██▉ | 1464219/4997817 [00:08<00:20, 173591.08it/s]
+30%|██▉ | 1476885/4997817 [00:08<00:20, 172381.08it/s]
+- 30%|██▉ | 1494124/4997817 [00:08<00:20, 172109.18it/s]
- -
</pre>
- 30%|██▉ | 1481618/4997817 [00:08<00:20, 173705.89it/s]
+- 30%|██▉ | 1494124/4997817 [00:08<00:20, 172109.18it/s]
end{sphinxVerbatim}
30%|██▉ | 1481618/4997817 [00:08<00:20, 173705.89it/s]
+30%|██▉ | 1494124/4997817 [00:08<00:20, 172109.18it/s]
+- 30%|███ | 1511467/4997817 [00:08<00:20, 172501.07it/s]
- -
</pre>
- 30%|██▉ | 1498992/4997817 [00:08<00:20, 173642.85it/s]
+- 30%|███ | 1511467/4997817 [00:08<00:20, 172501.07it/s]
end{sphinxVerbatim}
30%|██▉ | 1498992/4997817 [00:08<00:20, 173642.85it/s]
+30%|███ | 1511467/4997817 [00:08<00:20, 172501.07it/s]
+- 31%|███ | 1528718/4997817 [00:08<00:20, 172226.43it/s]
- -
</pre>
- 30%|███ | 1516359/4997817 [00:08<00:20, 173555.56it/s]
+- 31%|███ | 1528718/4997817 [00:08<00:20, 172226.43it/s]
end{sphinxVerbatim}
30%|███ | 1516359/4997817 [00:08<00:20, 173555.56it/s]
+31%|███ | 1528718/4997817 [00:08<00:20, 172226.43it/s]
+- 31%|███ | 1545994/4997817 [00:08<00:20, 172362.13it/s]
- -
</pre>
- 31%|███ | 1533819/4997817 [00:08<00:19, 173865.84it/s]
+- 31%|███ | 1545994/4997817 [00:08<00:20, 172362.13it/s]
end{sphinxVerbatim}
31%|███ | 1533819/4997817 [00:08<00:19, 173865.84it/s]
+31%|███ | 1545994/4997817 [00:08<00:20, 172362.13it/s]
+- 31%|███▏ | 1563291/4997817 [00:09<00:19, 172539.97it/s]
- -
</pre>
- 31%|███ | 1551313/4997817 [00:09<00:19, 174184.25it/s]
+- 31%|███▏ | 1563291/4997817 [00:09<00:19, 172539.97it/s]
end{sphinxVerbatim}
31%|███ | 1551313/4997817 [00:09<00:19, 174184.25it/s]
+31%|███▏ | 1563291/4997817 [00:09<00:19, 172539.97it/s]
+- 32%|███▏ | 1580546/4997817 [00:09<00:19, 172246.17it/s]
- -
</pre>
- 31%|███▏ | 1568733/4997817 [00:09<00:19, 174021.96it/s]
+- 32%|███▏ | 1580546/4997817 [00:09<00:19, 172246.17it/s]
end{sphinxVerbatim}
31%|███▏ | 1568733/4997817 [00:09<00:19, 174021.96it/s]
+32%|███▏ | 1580546/4997817 [00:09<00:19, 172246.17it/s]
+- 32%|███▏ | 1597771/4997817 [00:09<00:19, 171890.88it/s]
- -
</pre>
- 32%|███▏ | 1586136/4997817 [00:09<00:19, 173365.83it/s]
+- 32%|███▏ | 1597771/4997817 [00:09<00:19, 171890.88it/s]
end{sphinxVerbatim}
32%|███▏ | 1586136/4997817 [00:09<00:19, 173365.83it/s]
+32%|███▏ | 1597771/4997817 [00:09<00:19, 171890.88it/s]
+- 32%|███▏ | 1614961/4997817 [00:09<00:19, 171888.14it/s]
- -
</pre>
- 32%|███▏ | 1603562/4997817 [00:09<00:19, 173631.98it/s]
+- 32%|███▏ | 1614961/4997817 [00:09<00:19, 171888.14it/s]
end{sphinxVerbatim}
32%|███▏ | 1603562/4997817 [00:09<00:19, 173631.98it/s]
+32%|███▏ | 1614961/4997817 [00:09<00:19, 171888.14it/s]
+- 33%|███▎ | 1632150/4997817 [00:09<00:19, 171585.35it/s]
- -
</pre>
- 32%|███▏ | 1620931/4997817 [00:09<00:19, 173647.16it/s]
+- 33%|███▎ | 1632150/4997817 [00:09<00:19, 171585.35it/s]
end{sphinxVerbatim}
32%|███▏ | 1620931/4997817 [00:09<00:19, 173647.16it/s]
+33%|███▎ | 1632150/4997817 [00:09<00:19, 171585.35it/s]
+- 33%|███▎ | 1649309/4997817 [00:09<00:19, 171021.79it/s]
- -
</pre>
- 33%|███▎ | 1638297/4997817 [00:09<00:19, 173646.47it/s]
+- 33%|███▎ | 1649309/4997817 [00:09<00:19, 171021.79it/s]
end{sphinxVerbatim}
33%|███▎ | 1638297/4997817 [00:09<00:19, 173646.47it/s]
+33%|███▎ | 1649309/4997817 [00:09<00:19, 171021.79it/s]
+- 33%|███▎ | 1666412/4997817 [00:09<00:19, 170935.53it/s]
- -
</pre>
- 33%|███▎ | 1655662/4997817 [00:09<00:19, 173105.92it/s]
+- 33%|███▎ | 1666412/4997817 [00:09<00:19, 170935.53it/s]
end{sphinxVerbatim}
33%|███▎ | 1655662/4997817 [00:09<00:19, 173105.92it/s]
+33%|███▎ | 1666412/4997817 [00:09<00:19, 170935.53it/s]
+- 34%|███▎ | 1683781/4997817 [00:09<00:19, 171757.14it/s]
- -
</pre>
- 33%|███▎ | 1672974/4997817 [00:09<00:19, 173039.35it/s]
+- 34%|███▎ | 1683781/4997817 [00:09<00:19, 171757.14it/s]
end{sphinxVerbatim}
33%|███▎ | 1672974/4997817 [00:09<00:19, 173039.35it/s]
+34%|███▎ | 1683781/4997817 [00:09<00:19, 171757.14it/s]
+- 34%|███▍ | 1701534/4997817 [00:09<00:19, 173482.11it/s]
- -
</pre>
- 34%|███▍ | 1690279/4997817 [00:09<00:19, 173003.33it/s]
+- 34%|███▍ | 1701534/4997817 [00:09<00:19, 173482.11it/s]
end{sphinxVerbatim}
34%|███▍ | 1690279/4997817 [00:09<00:19, 173003.33it/s]
+34%|███▍ | 1701534/4997817 [00:09<00:19, 173482.11it/s]
+- 34%|███▍ | 1719356/4997817 [00:09<00:18, 174897.85it/s]
- -
</pre>
- 34%|███▍ | 1707672/4997817 [00:09<00:18, 173279.01it/s]
+- 34%|███▍ | 1719356/4997817 [00:09<00:18, 174897.85it/s]
end{sphinxVerbatim}
34%|███▍ | 1707672/4997817 [00:09<00:18, 173279.01it/s]
+34%|███▍ | 1719356/4997817 [00:09<00:18, 174897.85it/s]
+- 35%|███▍ | 1737235/4997817 [00:10<00:18, 176060.81it/s]
- -
</pre>
- 35%|███▍ | 1725006/4997817 [00:10<00:18, 173295.60it/s]
+- 35%|███▍ | 1737235/4997817 [00:10<00:18, 176060.81it/s]
end{sphinxVerbatim}
35%|███▍ | 1725006/4997817 [00:10<00:18, 173295.60it/s]
+35%|███▍ | 1737235/4997817 [00:10<00:18, 176060.81it/s]
+- 35%|███▌ | 1755103/4997817 [00:10<00:18, 176843.20it/s]
- -
</pre>
- 35%|███▍ | 1742344/4997817 [00:10<00:18, 173319.21it/s]
+- 35%|███▌ | 1755103/4997817 [00:10<00:18, 176843.20it/s]
end{sphinxVerbatim}
35%|███▍ | 1742344/4997817 [00:10<00:18, 173319.21it/s]
+35%|███▌ | 1755103/4997817 [00:10<00:18, 176843.20it/s]
+- 35%|███▌ | 1772886/4997817 [00:10<00:18, 177136.08it/s]
- -
</pre>
- 35%|███▌ | 1759688/4997817 [00:10<00:18, 173351.88it/s]
+- 35%|███▌ | 1772886/4997817 [00:10<00:18, 177136.08it/s]
end{sphinxVerbatim}
35%|███▌ | 1759688/4997817 [00:10<00:18, 173351.88it/s]
+35%|███▌ | 1772886/4997817 [00:10<00:18, 177136.08it/s]
+- 36%|███▌ | 1790682/4997817 [00:10<00:18, 177379.78it/s]
- -
</pre>
- 36%|███▌ | 1777038/4997817 [00:10<00:18, 173394.86it/s]
+- 36%|███▌ | 1790682/4997817 [00:10<00:18, 177379.78it/s]
end{sphinxVerbatim}
36%|███▌ | 1777038/4997817 [00:10<00:18, 173394.86it/s]
+36%|███▌ | 1790682/4997817 [00:10<00:18, 177379.78it/s]
+- 36%|███▌ | 1808421/4997817 [00:10<00:17, 177296.81it/s]
- -
</pre>
- 36%|███▌ | 1794436/4997817 [00:10<00:18, 173569.40it/s]
+- 36%|███▌ | 1808421/4997817 [00:10<00:17, 177296.81it/s]
end{sphinxVerbatim}
36%|███▌ | 1794436/4997817 [00:10<00:18, 173569.40it/s]
+36%|███▌ | 1808421/4997817 [00:10<00:17, 177296.81it/s]
+- 37%|███▋ | 1826201/4997817 [00:10<00:17, 177446.09it/s]
- -
</pre>
- 36%|███▋ | 1811793/4997817 [00:10<00:18, 173517.02it/s]
+- 37%|███▋ | 1826201/4997817 [00:10<00:17, 177446.09it/s]
end{sphinxVerbatim}
36%|███▋ | 1811793/4997817 [00:10<00:18, 173517.02it/s]
+37%|███▋ | 1826201/4997817 [00:10<00:17, 177446.09it/s]
+- 37%|███▋ | 1843946/4997817 [00:10<00:17, 177072.32it/s]
- -
</pre>
- 37%|███▋ | 1829145/4997817 [00:10<00:19, 166757.09it/s]
+- 37%|███▋ | 1843946/4997817 [00:10<00:17, 177072.32it/s]
end{sphinxVerbatim}
37%|███▋ | 1829145/4997817 [00:10<00:19, 166757.09it/s]
+37%|███▋ | 1843946/4997817 [00:10<00:17, 177072.32it/s]
+- 37%|███▋ | 1861654/4997817 [00:10<00:18, 169255.30it/s]
- -
</pre>
- 37%|███▋ | 1846395/4997817 [00:10<00:18, 168429.79it/s]
+- 37%|███▋ | 1861654/4997817 [00:10<00:18, 169255.30it/s]
end{sphinxVerbatim}
37%|███▋ | 1846395/4997817 [00:10<00:18, 168429.79it/s]
+37%|███▋ | 1861654/4997817 [00:10<00:18, 169255.30it/s]
+- 38%|███▊ | 1879319/4997817 [00:10<00:18, 171398.15it/s]
- -
</pre>
- 37%|███▋ | 1863765/4997817 [00:10<00:18, 169977.65it/s]
+- 38%|███▊ | 1879319/4997817 [00:10<00:18, 171398.15it/s]
end{sphinxVerbatim}
37%|███▋ | 1863765/4997817 [00:10<00:18, 169977.65it/s]
+38%|███▊ | 1879319/4997817 [00:10<00:18, 171398.15it/s]
+- 38%|███▊ | 1897031/4997817 [00:10<00:17, 173074.16it/s]
- -
</pre>
- 38%|███▊ | 1881203/4997817 [00:10<00:18, 171277.32it/s]
+- 38%|███▊ | 1897031/4997817 [00:10<00:17, 173074.16it/s]
end{sphinxVerbatim}
38%|███▊ | 1881203/4997817 [00:10<00:18, 171277.32it/s]
+38%|███▊ | 1897031/4997817 [00:10<00:17, 173074.16it/s]
+- 38%|███▊ | 1914827/4997817 [00:11<00:17, 174514.83it/s]
- -
</pre>
- 38%|███▊ | 1898452/4997817 [00:11<00:18, 171635.92it/s]
+- 38%|███▊ | 1914827/4997817 [00:11<00:17, 174514.83it/s]
end{sphinxVerbatim}
38%|███▊ | 1898452/4997817 [00:11<00:18, 171635.92it/s]
+38%|███▊ | 1914827/4997817 [00:11<00:17, 174514.83it/s]
+- 39%|███▊ | 1932646/4997817 [00:11<00:17, 175602.86it/s]
- -
</pre>
- 38%|███▊ | 1915886/4997817 [00:11<00:17, 172439.30it/s]
+- 39%|███▊ | 1932646/4997817 [00:11<00:17, 175602.86it/s]
end{sphinxVerbatim}
38%|███▊ | 1915886/4997817 [00:11<00:17, 172439.30it/s]
+39%|███▊ | 1932646/4997817 [00:11<00:17, 175602.86it/s]
+- 39%|███▉ | 1950428/4997817 [00:11<00:17, 176258.83it/s]
- -
</pre>
- 39%|███▊ | 1933369/4997817 [00:11<00:17, 173150.77it/s]
+- 39%|███▉ | 1950428/4997817 [00:11<00:17, 176258.83it/s]
end{sphinxVerbatim}
39%|███▊ | 1933369/4997817 [00:11<00:17, 173150.77it/s]
+39%|███▉ | 1950428/4997817 [00:11<00:17, 176258.83it/s]
+- 39%|███▉ | 1968128/4997817 [00:11<00:17, 176478.85it/s]
- -
</pre>
- 39%|███▉ | 1950735/4997817 [00:11<00:17, 173300.23it/s]
+- 39%|███▉ | 1968128/4997817 [00:11<00:17, 176478.85it/s]
end{sphinxVerbatim}
39%|███▉ | 1950735/4997817 [00:11<00:17, 173300.23it/s]
+39%|███▉ | 1968128/4997817 [00:11<00:17, 176478.85it/s]
+- 40%|███▉ | 1985959/4997817 [00:11<00:17, 177022.66it/s]
- -
</pre>
- 39%|███▉ | 1968259/4997817 [00:11<00:17, 173879.08it/s]
+- 40%|███▉ | 1985959/4997817 [00:11<00:17, 177022.66it/s]
end{sphinxVerbatim}
39%|███▉ | 1968259/4997817 [00:11<00:17, 173879.08it/s]
+40%|███▉ | 1985959/4997817 [00:11<00:17, 177022.66it/s]
+- 40%|████ | 2003671/4997817 [00:11<00:16, 176864.50it/s]
- -
</pre>
- 40%|███▉ | 1985652/4997817 [00:11<00:17, 173544.93it/s]
+- 40%|████ | 2003671/4997817 [00:11<00:16, 176864.50it/s]
end{sphinxVerbatim}
40%|███▉ | 1985652/4997817 [00:11<00:17, 173544.93it/s]
+40%|████ | 2003671/4997817 [00:11<00:16, 176864.50it/s]
+- 40%|████ | 2021471/4997817 [00:11<00:16, 177200.11it/s]
- -
</pre>
- 40%|████ | 2003011/4997817 [00:11<00:17, 173058.44it/s]
+- 40%|████ | 2021471/4997817 [00:11<00:16, 177200.11it/s]
end{sphinxVerbatim}
40%|████ | 2003011/4997817 [00:11<00:17, 173058.44it/s]
+40%|████ | 2021471/4997817 [00:11<00:16, 177200.11it/s]
+- 41%|████ | 2039196/4997817 [00:11<00:16, 176600.99it/s]
- -
</pre>
- 40%|████ | 2020320/4997817 [00:11<00:17, 172626.97it/s]
+- 41%|████ | 2039196/4997817 [00:11<00:16, 176600.99it/s]
end{sphinxVerbatim}
40%|████ | 2020320/4997817 [00:11<00:17, 172626.97it/s]
+41%|████ | 2039196/4997817 [00:11<00:16, 176600.99it/s]
+- 41%|████ | 2056860/4997817 [00:11<00:16, 176125.38it/s]
- -
</pre>
- 41%|████ | 2037585/4997817 [00:11<00:17, 172171.70it/s]
+- 41%|████ | 2056860/4997817 [00:11<00:16, 176125.38it/s]
end{sphinxVerbatim}
41%|████ | 2037585/4997817 [00:11<00:17, 172171.70it/s]
+41%|████ | 2056860/4997817 [00:11<00:16, 176125.38it/s]
+- 42%|████▏ | 2074490/4997817 [00:11<00:16, 176174.57it/s]
- -
</pre>
- 41%|████ | 2054804/4997817 [00:11<00:17, 172021.86it/s]
+- 42%|████▏ | 2074490/4997817 [00:11<00:16, 176174.57it/s]
end{sphinxVerbatim}
41%|████ | 2054804/4997817 [00:11<00:17, 172021.86it/s]
+42%|████▏ | 2074490/4997817 [00:11<00:16, 176174.57it/s]
+- 42%|████▏ | 2092124/4997817 [00:12<00:16, 176221.83it/s]
- -
</pre>
- 41%|████▏ | 2072008/4997817 [00:12<00:17, 171872.70it/s]
+- 42%|████▏ | 2092124/4997817 [00:12<00:16, 176221.83it/s]
end{sphinxVerbatim}
41%|████▏ | 2072008/4997817 [00:12<00:17, 171872.70it/s]
+42%|████▏ | 2092124/4997817 [00:12<00:16, 176221.83it/s]
+- 42%|████▏ | 2109762/4997817 [00:12<00:16, 176266.96it/s]
- -
</pre>
- 42%|████▏ | 2089420/4997817 [00:12<00:16, 172537.92it/s]
+- 42%|████▏ | 2109762/4997817 [00:12<00:16, 176266.96it/s]
end{sphinxVerbatim}
42%|████▏ | 2089420/4997817 [00:12<00:16, 172537.92it/s]
+42%|████▏ | 2109762/4997817 [00:12<00:16, 176266.96it/s]
+- 43%|████▎ | 2127572/4997817 [00:12<00:16, 176812.89it/s]
- -
</pre>
- 42%|████▏ | 2106675/4997817 [00:12<00:16, 171860.33it/s]
+- 43%|████▎ | 2127572/4997817 [00:12<00:16, 176812.89it/s]
end{sphinxVerbatim}
42%|████▏ | 2106675/4997817 [00:12<00:16, 171860.33it/s]
+43%|████▎ | 2127572/4997817 [00:12<00:16, 176812.89it/s]
+- 43%|████▎ | 2145255/4997817 [00:12<00:16, 176479.78it/s]
- -
</pre>
- 43%|████▎ | 2124106/4997817 [00:12<00:16, 172588.27it/s]
+- 43%|████▎ | 2145255/4997817 [00:12<00:16, 176479.78it/s]
end{sphinxVerbatim}
43%|████▎ | 2124106/4997817 [00:12<00:16, 172588.27it/s]
+43%|████▎ | 2145255/4997817 [00:12<00:16, 176479.78it/s]
+- 43%|████▎ | 2162957/4997817 [00:12<00:16, 176637.39it/s]
- -
</pre>
- 43%|████▎ | 2141366/4997817 [00:12<00:16, 172446.13it/s]
+- 43%|████▎ | 2162957/4997817 [00:12<00:16, 176637.39it/s]
end{sphinxVerbatim}
43%|████▎ | 2141366/4997817 [00:12<00:16, 172446.13it/s]
+43%|████▎ | 2162957/4997817 [00:12<00:16, 176637.39it/s]
+- 44%|████▎ | 2180622/4997817 [00:12<00:15, 176403.11it/s]
- -
</pre>
- 43%|████▎ | 2158656/4997817 [00:12<00:16, 172578.88it/s]
+- 44%|████▎ | 2180622/4997817 [00:12<00:15, 176403.11it/s]
end{sphinxVerbatim}
43%|████▎ | 2158656/4997817 [00:12<00:16, 172578.88it/s]
+44%|████▎ | 2180622/4997817 [00:12<00:15, 176403.11it/s]
+- 44%|████▍ | 2198434/4997817 [00:12<00:15, 176913.54it/s]
- -
</pre>
- 44%|████▎ | 2176016/4997817 [00:12<00:16, 172883.67it/s]
+- 44%|████▍ | 2198434/4997817 [00:12<00:15, 176913.54it/s]
end{sphinxVerbatim}
44%|████▎ | 2176016/4997817 [00:12<00:16, 172883.67it/s]
+44%|████▍ | 2198434/4997817 [00:12<00:15, 176913.54it/s]
+- 44%|████▍ | 2216126/4997817 [00:12<00:15, 176065.30it/s]
- -
</pre>
- 44%|████▍ | 2193384/4997817 [00:12<00:16, 173117.96it/s]
+- 44%|████▍ | 2216126/4997817 [00:12<00:15, 176065.30it/s]
end{sphinxVerbatim}
44%|████▍ | 2193384/4997817 [00:12<00:16, 173117.96it/s]
+44%|████▍ | 2216126/4997817 [00:12<00:15, 176065.30it/s]
+- 45%|████▍ | 2233734/4997817 [00:12<00:15, 175147.24it/s]
- -
</pre>
- 44%|████▍ | 2210697/4997817 [00:12<00:16, 172709.19it/s]
+- 45%|████▍ | 2233734/4997817 [00:12<00:15, 175147.24it/s]
end{sphinxVerbatim}
44%|████▍ | 2210697/4997817 [00:12<00:16, 172709.19it/s]
+45%|████▍ | 2233734/4997817 [00:12<00:15, 175147.24it/s]
+- 45%|████▌ | 2251386/4997817 [00:12<00:15, 175552.74it/s]
- -
</pre>
- 45%|████▍ | 2227969/4997817 [00:12<00:16, 172545.52it/s]
+- 45%|████▌ | 2251386/4997817 [00:12<00:15, 175552.74it/s]
end{sphinxVerbatim}
45%|████▍ | 2227969/4997817 [00:12<00:16, 172545.52it/s]
+45%|████▌ | 2251386/4997817 [00:12<00:15, 175552.74it/s]
+- 45%|████▌ | 2268988/4997817 [00:13<00:15, 175687.55it/s]
- -
</pre>
- 45%|████▍ | 2245267/4997817 [00:13<00:15, 172674.25it/s]
+- 45%|████▌ | 2268988/4997817 [00:13<00:15, 175687.55it/s]
end{sphinxVerbatim}
45%|████▍ | 2245267/4997817 [00:13<00:15, 172674.25it/s]
+45%|████▌ | 2268988/4997817 [00:13<00:15, 175687.55it/s]
+- 46%|████▌ | 2286719/4997817 [00:13<00:15, 176170.58it/s]
- -
</pre>
- 45%|████▌ | 2262535/4997817 [00:13<00:15, 172558.22it/s]
+- 46%|████▌ | 2286719/4997817 [00:13<00:15, 176170.58it/s]
end{sphinxVerbatim}
45%|████▌ | 2262535/4997817 [00:13<00:15, 172558.22it/s]
+46%|████▌ | 2286719/4997817 [00:13<00:15, 176170.58it/s]
+- 46%|████▌ | 2304337/4997817 [00:13<00:15, 176014.56it/s]
- -
</pre>
- 46%|████▌ | 2279822/4997817 [00:13<00:15, 172648.33it/s]
+- 46%|████▌ | 2304337/4997817 [00:13<00:15, 176014.56it/s]
end{sphinxVerbatim}
46%|████▌ | 2279822/4997817 [00:13<00:15, 172648.33it/s]
+46%|████▌ | 2304337/4997817 [00:13<00:15, 176014.56it/s]
+- 46%|████▋ | 2322325/4997817 [00:13<00:15, 177167.82it/s]
- -
</pre>
- 46%|████▌ | 2297138/4997817 [00:13<00:15, 172798.00it/s]
+- 46%|████▋ | 2322325/4997817 [00:13<00:15, 177167.82it/s]
end{sphinxVerbatim}
46%|████▌ | 2297138/4997817 [00:13<00:15, 172798.00it/s]
+46%|████▋ | 2322325/4997817 [00:13<00:15, 177167.82it/s]
+- 47%|████▋ | 2340199/4997817 [00:13<00:14, 177635.21it/s]
- -
</pre>
- 46%|████▋ | 2314494/4997817 [00:13<00:15, 173025.10it/s]
+- 47%|████▋ | 2340199/4997817 [00:13<00:14, 177635.21it/s]
end{sphinxVerbatim}
46%|████▋ | 2314494/4997817 [00:13<00:15, 173025.10it/s]
+47%|████▋ | 2340199/4997817 [00:13<00:14, 177635.21it/s]
+- 47%|████▋ | 2358106/4997817 [00:13<00:14, 178062.16it/s]
- -
</pre>
- 47%|████▋ | 2331921/4997817 [00:13<00:15, 173394.56it/s]
+- 47%|████▋ | 2358106/4997817 [00:13<00:14, 178062.16it/s]
end{sphinxVerbatim}
47%|████▋ | 2331921/4997817 [00:13<00:15, 173394.56it/s]
+47%|████▋ | 2358106/4997817 [00:13<00:14, 178062.16it/s]
+- 48%|████▊ | 2375951/4997817 [00:13<00:14, 178173.75it/s]
- -
</pre>
- 47%|████▋ | 2349261/4997817 [00:13<00:15, 173271.00it/s]
+- 48%|████▊ | 2375951/4997817 [00:13<00:14, 178173.75it/s]
end{sphinxVerbatim}
47%|████▋ | 2349261/4997817 [00:13<00:15, 173271.00it/s]
+48%|████▊ | 2375951/4997817 [00:13<00:14, 178173.75it/s]
+- 48%|████▊ | 2393821/4997817 [00:13<00:14, 178328.40it/s]
- -
</pre>
- 47%|████▋ | 2366718/4997817 [00:13<00:15, 173658.70it/s]
+- 48%|████▊ | 2393821/4997817 [00:13<00:14, 178328.40it/s]
end{sphinxVerbatim}
47%|████▋ | 2366718/4997817 [00:13<00:15, 173658.70it/s]
+48%|████▊ | 2393821/4997817 [00:13<00:14, 178328.40it/s]
+- 48%|████▊ | 2411655/4997817 [00:13<00:14, 177906.21it/s]
- -
</pre>
- 48%|████▊ | 2384136/4997817 [00:13<00:15, 173811.32it/s]
+- 48%|████▊ | 2411655/4997817 [00:13<00:14, 177906.21it/s]
end{sphinxVerbatim}
48%|████▊ | 2384136/4997817 [00:13<00:15, 173811.32it/s]
+48%|████▊ | 2411655/4997817 [00:13<00:14, 177906.21it/s]
+- 49%|████▊ | 2429446/4997817 [00:13<00:14, 177625.78it/s]
- -
</pre>
- 48%|████▊ | 2401703/4997817 [00:13<00:14, 174365.26it/s]
+- 49%|████▊ | 2429446/4997817 [00:13<00:14, 177625.78it/s]
end{sphinxVerbatim}
48%|████▊ | 2401703/4997817 [00:13<00:14, 174365.26it/s]
+49%|████▊ | 2429446/4997817 [00:13<00:14, 177625.78it/s]
+- 49%|████▉ | 2447253/4997817 [00:14<00:14, 177754.70it/s]
- -
</pre>
- 48%|████▊ | 2419203/4997817 [00:14<00:14, 174552.05it/s]
+- 49%|████▉ | 2447253/4997817 [00:14<00:14, 177754.70it/s]
end{sphinxVerbatim}
48%|████▊ | 2419203/4997817 [00:14<00:14, 174552.05it/s]
+49%|████▉ | 2447253/4997817 [00:14<00:14, 177754.70it/s]
+- 49%|████▉ | 2465154/4997817 [00:14<00:14, 178127.76it/s]
- -
</pre>
- 49%|████▉ | 2436659/4997817 [00:14<00:14, 173962.22it/s]
+- 49%|████▉ | 2465154/4997817 [00:14<00:14, 178127.76it/s]
end{sphinxVerbatim}
49%|████▉ | 2436659/4997817 [00:14<00:14, 173962.22it/s]
+49%|████▉ | 2465154/4997817 [00:14<00:14, 178127.76it/s]
+- 50%|████▉ | 2483006/4997817 [00:14<00:14, 178243.04it/s]
- -
</pre>
- 49%|████▉ | 2454056/4997817 [00:14<00:14, 173567.35it/s]
+- 50%|████▉ | 2483006/4997817 [00:14<00:14, 178243.04it/s]
end{sphinxVerbatim}
49%|████▉ | 2454056/4997817 [00:14<00:14, 173567.35it/s]
+50%|████▉ | 2483006/4997817 [00:14<00:14, 178243.04it/s]
+- 50%|█████ | 2500831/4997817 [00:14<00:14, 178089.02it/s]
- -
</pre>
- 49%|████▉ | 2471469/4997817 [00:14<00:14, 173733.02it/s]
+- 50%|█████ | 2500831/4997817 [00:14<00:14, 178089.02it/s]
end{sphinxVerbatim}
49%|████▉ | 2471469/4997817 [00:14<00:14, 173733.02it/s]
+50%|█████ | 2500831/4997817 [00:14<00:14, 178089.02it/s]
+- 50%|█████ | 2518641/4997817 [00:14<00:13, 177478.59it/s]
- -
</pre>
- 50%|████▉ | 2488843/4997817 [00:14<00:14, 173660.69it/s]
+- 50%|█████ | 2518641/4997817 [00:14<00:13, 177478.59it/s]
end{sphinxVerbatim}
50%|████▉ | 2488843/4997817 [00:14<00:14, 173660.69it/s]
+50%|█████ | 2518641/4997817 [00:14<00:13, 177478.59it/s]
+- 51%|█████ | 2536486/4997817 [00:14<00:13, 177764.93it/s]
- -
</pre>
- 50%|█████ | 2506210/4997817 [00:14<00:14, 173624.61it/s]
+- 51%|█████ | 2536486/4997817 [00:14<00:13, 177764.93it/s]
end{sphinxVerbatim}
50%|█████ | 2506210/4997817 [00:14<00:14, 173624.61it/s]
+51%|█████ | 2536486/4997817 [00:14<00:13, 177764.93it/s]
+- 51%|█████ | 2554300/4997817 [00:14<00:13, 177872.80it/s]
- -
</pre>
- 50%|█████ | 2523713/4997817 [00:14<00:14, 174041.90it/s]
+- 51%|█████ | 2554300/4997817 [00:14<00:13, 177872.80it/s]
end{sphinxVerbatim}
50%|█████ | 2523713/4997817 [00:14<00:14, 174041.90it/s]
+51%|█████ | 2554300/4997817 [00:14<00:13, 177872.80it/s]
+- 51%|█████▏ | 2572088/4997817 [00:14<00:13, 173695.20it/s]
- -
</pre>
- 51%|█████ | 2541118/4997817 [00:14<00:14, 173689.21it/s]
+- 51%|█████▏ | 2572088/4997817 [00:14<00:13, 173695.20it/s]
end{sphinxVerbatim}
51%|█████ | 2541118/4997817 [00:14<00:14, 173689.21it/s]
+51%|█████▏ | 2572088/4997817 [00:14<00:13, 173695.20it/s]
+- 52%|█████▏ | 2589563/4997817 [00:14<00:13, 174002.55it/s]
- -
</pre>
- 51%|█████ | 2558488/4997817 [00:14<00:14, 173348.56it/s]
+- 52%|█████▏ | 2589563/4997817 [00:14<00:13, 174002.55it/s]
end{sphinxVerbatim}
51%|█████ | 2558488/4997817 [00:14<00:14, 173348.56it/s]
+52%|█████▏ | 2589563/4997817 [00:14<00:13, 174002.55it/s]
+- 52%|█████▏ | 2607507/4997817 [00:14<00:13, 175610.39it/s]
- -
</pre>
- 52%|█████▏ | 2575970/4997817 [00:14<00:13, 173787.88it/s]
+- 52%|█████▏ | 2607507/4997817 [00:14<00:13, 175610.39it/s]
end{sphinxVerbatim}
52%|█████▏ | 2575970/4997817 [00:14<00:13, 173787.88it/s]
+52%|█████▏ | 2607507/4997817 [00:14<00:13, 175610.39it/s]
+- 53%|█████▎ | 2625363/4997817 [00:15<00:13, 176485.43it/s]
- -
</pre>
- 52%|█████▏ | 2593377/4997817 [00:15<00:13, 173871.28it/s]
+- 53%|█████▎ | 2625363/4997817 [00:15<00:13, 176485.43it/s]
end{sphinxVerbatim}
52%|█████▏ | 2593377/4997817 [00:15<00:13, 173871.28it/s]
+53%|█████▎ | 2625363/4997817 [00:15<00:13, 176485.43it/s]
+- 53%|█████▎ | 2643076/4997817 [00:15<00:13, 176673.64it/s]
- -
</pre>
- 52%|█████▏ | 2610843/4997817 [00:15<00:13, 174104.12it/s]
+- 53%|█████▎ | 2643076/4997817 [00:15<00:13, 176673.64it/s]
end{sphinxVerbatim}
52%|█████▏ | 2610843/4997817 [00:15<00:13, 174104.12it/s]
+53%|█████▎ | 2643076/4997817 [00:15<00:13, 176673.64it/s]
+- 53%|█████▎ | 2660751/4997817 [00:15<00:13, 176662.91it/s]
- -
</pre>
- 53%|█████▎ | 2628254/4997817 [00:15<00:13, 173681.51it/s]
+- 53%|█████▎ | 2660751/4997817 [00:15<00:13, 176662.91it/s]
end{sphinxVerbatim}
53%|█████▎ | 2628254/4997817 [00:15<00:13, 173681.51it/s]
+53%|█████▎ | 2660751/4997817 [00:15<00:13, 176662.91it/s]
+- 54%|█████▎ | 2678423/4997817 [00:15<00:13, 175928.30it/s]
- -
</pre>
- 53%|█████▎ | 2645623/4997817 [00:15<00:13, 173400.15it/s]
+- 54%|█████▎ | 2678423/4997817 [00:15<00:13, 175928.30it/s]
end{sphinxVerbatim}
53%|█████▎ | 2645623/4997817 [00:15<00:13, 173400.15it/s]
+54%|█████▎ | 2678423/4997817 [00:15<00:13, 175928.30it/s]
+- 54%|█████▍ | 2696020/4997817 [00:15<00:13, 174944.71it/s]
- -
</pre>
- 53%|█████▎ | 2662964/4997817 [00:15<00:13, 172608.48it/s]
+- 54%|█████▍ | 2696020/4997817 [00:15<00:13, 174944.71it/s]
end{sphinxVerbatim}
53%|█████▎ | 2662964/4997817 [00:15<00:13, 172608.48it/s]
+54%|█████▍ | 2696020/4997817 [00:15<00:13, 174944.71it/s]
+- 54%|█████▍ | 2713518/4997817 [00:15<00:13, 174532.08it/s]
- -
</pre>
- 54%|█████▎ | 2680450/4997817 [00:15<00:13, 173279.24it/s]
+- 54%|█████▍ | 2713518/4997817 [00:15<00:13, 174532.08it/s]
end{sphinxVerbatim}
54%|█████▎ | 2680450/4997817 [00:15<00:13, 173279.24it/s]
+54%|█████▍ | 2713518/4997817 [00:15<00:13, 174532.08it/s]
+- 55%|█████▍ | 2730985/4997817 [00:15<00:12, 174569.12it/s]
- -
</pre>
- 54%|█████▍ | 2697854/4997817 [00:15<00:13, 173505.33it/s]
+- 55%|█████▍ | 2730985/4997817 [00:15<00:12, 174569.12it/s]
end{sphinxVerbatim}
54%|█████▍ | 2697854/4997817 [00:15<00:13, 173505.33it/s]
+55%|█████▍ | 2730985/4997817 [00:15<00:12, 174569.12it/s]
+- 55%|█████▍ | 2748488/4997817 [00:15<00:12, 174704.26it/s]
- -
</pre>
- 54%|█████▍ | 2715206/4997817 [00:15<00:13, 173196.91it/s]
+- 55%|█████▍ | 2748488/4997817 [00:15<00:12, 174704.26it/s]
end{sphinxVerbatim}
54%|█████▍ | 2715206/4997817 [00:15<00:13, 173196.91it/s]
+55%|█████▍ | 2748488/4997817 [00:15<00:12, 174704.26it/s]
+- 55%|█████▌ | 2765960/4997817 [00:15<00:13, 169598.50it/s]
- -
</pre>
- 55%|█████▍ | 2732568/4997817 [00:15<00:13, 173320.78it/s]
+- 55%|█████▌ | 2765960/4997817 [00:15<00:13, 169598.50it/s]
end{sphinxVerbatim}
55%|█████▍ | 2732568/4997817 [00:15<00:13, 173320.78it/s]
+55%|█████▌ | 2765960/4997817 [00:15<00:13, 169598.50it/s]
+- 56%|█████▌ | 2783375/4997817 [00:15<00:12, 170931.19it/s]
- -
</pre>
- 55%|█████▌ | 2749901/4997817 [00:16<00:12, 173028.07it/s]
+- 56%|█████▌ | 2783375/4997817 [00:15<00:12, 170931.19it/s]
end{sphinxVerbatim}
55%|█████▌ | 2749901/4997817 [00:16<00:12, 173028.07it/s]
+56%|█████▌ | 2783375/4997817 [00:15<00:12, 170931.19it/s]
+- 56%|█████▌ | 2801062/4997817 [00:16<00:12, 172682.33it/s]
- -
</pre>
- 55%|█████▌ | 2767205/4997817 [00:16<00:12, 172657.53it/s]
+- 56%|█████▌ | 2801062/4997817 [00:16<00:12, 172682.33it/s]
end{sphinxVerbatim}
55%|█████▌ | 2767205/4997817 [00:16<00:12, 172657.53it/s]
+56%|█████▌ | 2801062/4997817 [00:16<00:12, 172682.33it/s]
+- 56%|█████▋ | 2818403/4997817 [00:16<00:12, 172896.10it/s]
- -
</pre>
- 56%|█████▌ | 2784472/4997817 [00:16<00:12, 172316.76it/s]
+- 56%|█████▋ | 2818403/4997817 [00:16<00:12, 172896.10it/s]
end{sphinxVerbatim}
56%|█████▌ | 2784472/4997817 [00:16<00:12, 172316.76it/s]
+56%|█████▋ | 2818403/4997817 [00:16<00:12, 172896.10it/s]
+- 57%|█████▋ | 2835914/4997817 [00:16<00:12, 173552.51it/s]
- -
</pre>
- 56%|█████▌ | 2801932/4997817 [00:16<00:12, 172995.25it/s]
+- 57%|█████▋ | 2835914/4997817 [00:16<00:12, 173552.51it/s]
end{sphinxVerbatim}
56%|█████▌ | 2801932/4997817 [00:16<00:12, 172995.25it/s]
+57%|█████▋ | 2835914/4997817 [00:16<00:12, 173552.51it/s]
+- 57%|█████▋ | 2853364/4997817 [00:16<00:12, 173832.11it/s]
- -
</pre>
- 56%|█████▋ | 2819358/4997817 [00:16<00:12, 173371.86it/s]
+- 57%|█████▋ | 2853364/4997817 [00:16<00:12, 173832.11it/s]
end{sphinxVerbatim}
56%|█████▋ | 2819358/4997817 [00:16<00:12, 173371.86it/s]
+57%|█████▋ | 2853364/4997817 [00:16<00:12, 173832.11it/s]
+- 57%|█████▋ | 2870755/4997817 [00:16<00:12, 173480.96it/s]
- -
</pre>
- 57%|█████▋ | 2836750/4997817 [00:16<00:12, 173532.45it/s]
+- 57%|█████▋ | 2870755/4997817 [00:16<00:12, 173480.96it/s]
end{sphinxVerbatim}
57%|█████▋ | 2836750/4997817 [00:16<00:12, 173532.45it/s]
+57%|█████▋ | 2870755/4997817 [00:16<00:12, 173480.96it/s]
+- 58%|█████▊ | 2888260/4997817 [00:16<00:12, 173946.60it/s]
- -
</pre>
- 57%|█████▋ | 2854104/4997817 [00:16<00:12, 173290.91it/s]
+- 58%|█████▊ | 2888260/4997817 [00:16<00:12, 173946.60it/s]
end{sphinxVerbatim}
57%|█████▋ | 2854104/4997817 [00:16<00:12, 173290.91it/s]
+58%|█████▊ | 2888260/4997817 [00:16<00:12, 173946.60it/s]
+- 58%|█████▊ | 2905823/4997817 [00:16<00:11, 174448.28it/s]
- -
</pre>
- 57%|█████▋ | 2871434/4997817 [00:16<00:12, 173285.52it/s]
+- 58%|█████▊ | 2905823/4997817 [00:16<00:11, 174448.28it/s]
end{sphinxVerbatim}
57%|█████▋ | 2871434/4997817 [00:16<00:12, 173285.52it/s]
+58%|█████▊ | 2905823/4997817 [00:16<00:11, 174448.28it/s]
+- 58%|█████▊ | 2923340/4997817 [00:16<00:11, 174662.89it/s]
- -
</pre>
- 58%|█████▊ | 2888763/4997817 [00:16<00:12, 172271.39it/s]
+- 58%|█████▊ | 2923340/4997817 [00:16<00:11, 174662.89it/s]
end{sphinxVerbatim}
58%|█████▊ | 2888763/4997817 [00:16<00:12, 172271.39it/s]
+58%|█████▊ | 2923340/4997817 [00:16<00:11, 174662.89it/s]
+- 59%|█████▉ | 2940809/4997817 [00:16<00:11, 173331.27it/s]
- -
</pre>
- 58%|█████▊ | 2906001/4997817 [00:16<00:12, 172300.54it/s]
+- 59%|█████▉ | 2940809/4997817 [00:16<00:11, 173331.27it/s]
end{sphinxVerbatim}
58%|█████▊ | 2906001/4997817 [00:16<00:12, 172300.54it/s]
+59%|█████▉ | 2940809/4997817 [00:16<00:11, 173331.27it/s]
+- 59%|█████▉ | 2958146/4997817 [00:16<00:11, 173207.59it/s]
- -
</pre>
- 58%|█████▊ | 2923350/4997817 [00:17<00:12, 172655.17it/s]
+- 59%|█████▉ | 2958146/4997817 [00:16<00:11, 173207.59it/s]
end{sphinxVerbatim}
58%|█████▊ | 2923350/4997817 [00:17<00:12, 172655.17it/s]
+59%|█████▉ | 2958146/4997817 [00:16<00:11, 173207.59it/s]
+- 60%|█████▉ | 2975470/4997817 [00:17<00:11, 172355.65it/s]
- -
</pre>
- 59%|█████▉ | 2940617/4997817 [00:17<00:11, 172478.89it/s]
+- 60%|█████▉ | 2975470/4997817 [00:17<00:11, 172355.65it/s]
end{sphinxVerbatim}
59%|█████▉ | 2940617/4997817 [00:17<00:11, 172478.89it/s]
+60%|█████▉ | 2975470/4997817 [00:17<00:11, 172355.65it/s]
+- 60%|█████▉ | 2992863/4997817 [00:17<00:11, 172823.09it/s]
- -
</pre>
- 59%|█████▉ | 2957873/4997817 [00:17<00:11, 172501.12it/s]
+- 60%|█████▉ | 2992863/4997817 [00:17<00:11, 172823.09it/s]
end{sphinxVerbatim}
59%|█████▉ | 2957873/4997817 [00:17<00:11, 172501.12it/s]
+60%|█████▉ | 2992863/4997817 [00:17<00:11, 172823.09it/s]
+- 60%|██████ | 3010148/4997817 [00:17<00:11, 172713.90it/s]
- -
</pre>
- 60%|█████▉ | 2975124/4997817 [00:17<00:11, 172352.09it/s]
+- 60%|██████ | 3010148/4997817 [00:17<00:11, 172713.90it/s]
end{sphinxVerbatim}
60%|█████▉ | 2975124/4997817 [00:17<00:11, 172352.09it/s]
+60%|██████ | 3010148/4997817 [00:17<00:11, 172713.90it/s]
+- 61%|██████ | 3027616/4997817 [00:17<00:11, 173297.88it/s]
- -
</pre>
- 60%|█████▉ | 2992458/4997817 [00:17<00:11, 172646.00it/s]
+- 61%|██████ | 3027616/4997817 [00:17<00:11, 173297.88it/s]
end{sphinxVerbatim}
60%|█████▉ | 2992458/4997817 [00:17<00:11, 172646.00it/s]
+61%|██████ | 3027616/4997817 [00:17<00:11, 173297.88it/s]
+- 61%|██████ | 3044947/4997817 [00:17<00:11, 172905.18it/s]
- -
</pre>
- 60%|██████ | 3009723/4997817 [00:17<00:11, 172517.73it/s]
+- 61%|██████ | 3044947/4997817 [00:17<00:11, 172905.18it/s]
end{sphinxVerbatim}
60%|██████ | 3009723/4997817 [00:17<00:11, 172517.73it/s]
+61%|██████ | 3044947/4997817 [00:17<00:11, 172905.18it/s]
+- 61%|██████▏ | 3062323/4997817 [00:17<00:11, 173155.09it/s]
- -
</pre>
- 61%|██████ | 3026975/4997817 [00:17<00:11, 172246.82it/s]
+- 61%|██████▏ | 3062323/4997817 [00:17<00:11, 173155.09it/s]
end{sphinxVerbatim}
61%|██████ | 3026975/4997817 [00:17<00:11, 172246.82it/s]
+61%|██████▏ | 3062323/4997817 [00:17<00:11, 173155.09it/s]
+- 62%|██████▏ | 3079745/4997817 [00:17<00:11, 173470.97it/s]
- -
</pre>
- 61%|██████ | 3044200/4997817 [00:17<00:11, 171713.46it/s]
+- 62%|██████▏ | 3079745/4997817 [00:17<00:11, 173470.97it/s]
end{sphinxVerbatim}
61%|██████ | 3044200/4997817 [00:17<00:11, 171713.46it/s]
+62%|██████▏ | 3079745/4997817 [00:17<00:11, 173470.97it/s]
+- 62%|██████▏ | 3097257/4997817 [00:17<00:10, 173963.11it/s]
- -
</pre>
- 61%|██████▏ | 3061372/4997817 [00:17<00:11, 171532.71it/s]
+- 62%|██████▏ | 3097257/4997817 [00:17<00:10, 173963.11it/s]
end{sphinxVerbatim}
61%|██████▏ | 3061372/4997817 [00:17<00:11, 171532.71it/s]
+62%|██████▏ | 3097257/4997817 [00:17<00:10, 173963.11it/s]
+- 62%|██████▏ | 3114654/4997817 [00:17<00:11, 166467.97it/s]
- -
</pre>
- 62%|██████▏ | 3078526/4997817 [00:17<00:11, 171023.60it/s]
+- 62%|██████▏ | 3114654/4997817 [00:17<00:11, 166467.97it/s]
end{sphinxVerbatim}
62%|██████▏ | 3078526/4997817 [00:17<00:11, 171023.60it/s]
+62%|██████▏ | 3114654/4997817 [00:17<00:11, 166467.97it/s]
+- 63%|██████▎ | 3132044/4997817 [00:18<00:11, 168625.47it/s]
- -
</pre>
- 62%|██████▏ | 3095787/4997817 [00:18<00:11, 171493.69it/s]
+- 63%|██████▎ | 3132044/4997817 [00:18<00:11, 168625.47it/s]
end{sphinxVerbatim}
62%|██████▏ | 3095787/4997817 [00:18<00:11, 171493.69it/s]
+63%|██████▎ | 3132044/4997817 [00:18<00:11, 168625.47it/s]
+- 63%|██████▎ | 3149329/4997817 [00:18<00:10, 169861.52it/s]
- -
</pre>
- 62%|██████▏ | 3113072/4997817 [00:18<00:10, 171898.27it/s]
+- 63%|██████▎ | 3149329/4997817 [00:18<00:10, 169861.52it/s]
end{sphinxVerbatim}
62%|██████▏ | 3113072/4997817 [00:18<00:10, 171898.27it/s]
+63%|██████▎ | 3149329/4997817 [00:18<00:10, 169861.52it/s]
+- 63%|██████▎ | 3166639/4997817 [00:18<00:10, 170816.69it/s]
- -
</pre>
- 63%|██████▎ | 3130317/4997817 [00:18<00:10, 172060.77it/s]
+- 63%|██████▎ | 3166639/4997817 [00:18<00:10, 170816.69it/s]
end{sphinxVerbatim}
63%|██████▎ | 3130317/4997817 [00:18<00:10, 172060.77it/s]
+63%|██████▎ | 3166639/4997817 [00:18<00:10, 170816.69it/s]
+- 64%|██████▎ | 3183968/4997817 [00:18<00:10, 171549.59it/s]
- -
</pre>
- 63%|██████▎ | 3147678/4997817 [00:18<00:10, 172520.94it/s]
+- 64%|██████▎ | 3183968/4997817 [00:18<00:10, 171549.59it/s]
end{sphinxVerbatim}
63%|██████▎ | 3147678/4997817 [00:18<00:10, 172520.94it/s]
+64%|██████▎ | 3183968/4997817 [00:18<00:10, 171549.59it/s]
+- 64%|██████▍ | 3201145/4997817 [00:18<00:10, 171562.52it/s]
- -
</pre>
- 63%|██████▎ | 3165115/4997817 [00:18<00:10, 173072.26it/s]
+- 64%|██████▍ | 3201145/4997817 [00:18<00:10, 171562.52it/s]
end{sphinxVerbatim}
63%|██████▎ | 3165115/4997817 [00:18<00:10, 173072.26it/s]
+64%|██████▍ | 3201145/4997817 [00:18<00:10, 171562.52it/s]
+- 64%|██████▍ | 3218396/4997817 [00:18<00:10, 171842.40it/s]
- -
</pre>
- 64%|██████▎ | 3182586/4997817 [00:18<00:10, 173561.76it/s]
+- 64%|██████▍ | 3218396/4997817 [00:18<00:10, 171842.40it/s]
end{sphinxVerbatim}
64%|██████▎ | 3182586/4997817 [00:18<00:10, 173561.76it/s]
+64%|██████▍ | 3218396/4997817 [00:18<00:10, 171842.40it/s]
+- 65%|██████▍ | 3235674/4997817 [00:18<00:10, 172118.69it/s]
- -
</pre>
- 64%|██████▍ | 3200084/4997817 [00:18<00:10, 173984.19it/s]
+- 65%|██████▍ | 3235674/4997817 [00:18<00:10, 172118.69it/s]
end{sphinxVerbatim}
64%|██████▍ | 3200084/4997817 [00:18<00:10, 173984.19it/s]
+65%|██████▍ | 3235674/4997817 [00:18<00:10, 172118.69it/s]
+- 65%|██████▌ | 3253265/4997817 [00:18<00:10, 173249.49it/s]
- -
</pre>
- 64%|██████▍ | 3217486/4997817 [00:18<00:10, 173992.61it/s]
+- 65%|██████▌ | 3253265/4997817 [00:18<00:10, 173249.49it/s]
end{sphinxVerbatim}
64%|██████▍ | 3217486/4997817 [00:18<00:10, 173992.61it/s]
+65%|██████▌ | 3253265/4997817 [00:18<00:10, 173249.49it/s]
+- 65%|██████▌ | 3270596/4997817 [00:18<00:09, 172856.88it/s]
- -
</pre>
- 65%|██████▍ | 3234886/4997817 [00:18<00:10, 173464.75it/s]
+- 65%|██████▌ | 3270596/4997817 [00:18<00:09, 172856.88it/s]
end{sphinxVerbatim}
65%|██████▍ | 3234886/4997817 [00:18<00:10, 173464.75it/s]
+65%|██████▌ | 3270596/4997817 [00:18<00:09, 172856.88it/s]
+- 66%|██████▌ | 3287886/4997817 [00:18<00:10, 165844.34it/s]
- -
</pre>
- 65%|██████▌ | 3252233/4997817 [00:18<00:10, 166147.28it/s]
+- 66%|██████▌ | 3287886/4997817 [00:18<00:10, 165844.34it/s]
end{sphinxVerbatim}
65%|██████▌ | 3252233/4997817 [00:18<00:10, 166147.28it/s]
+66%|██████▌ | 3287886/4997817 [00:18<00:10, 165844.34it/s]
+- 66%|██████▌ | 3305498/4997817 [00:19<00:10, 168828.92it/s]
- -
</pre>
- 65%|██████▌ | 3269291/4997817 [00:19<00:10, 167433.14it/s]
+- 66%|██████▌ | 3305498/4997817 [00:19<00:10, 168828.92it/s]
end{sphinxVerbatim}
65%|██████▌ | 3269291/4997817 [00:19<00:10, 167433.14it/s]
+66%|██████▌ | 3305498/4997817 [00:19<00:10, 168828.92it/s]
+- 66%|██████▋ | 3323461/4997817 [00:19<00:09, 171996.35it/s]
- -
</pre>
- 66%|██████▌ | 3286470/4997817 [00:19<00:10, 168708.76it/s]
+- 66%|██████▋ | 3323461/4997817 [00:19<00:09, 171996.35it/s]
end{sphinxVerbatim}
66%|██████▌ | 3286470/4997817 [00:19<00:10, 168708.76it/s]
+66%|██████▋ | 3323461/4997817 [00:19<00:09, 171996.35it/s]
+- 67%|██████▋ | 3341247/4997817 [00:19<00:09, 173724.86it/s]
- -
</pre>
- 66%|██████▌ | 3303703/4997817 [00:19<00:09, 169776.91it/s]
+- 67%|██████▋ | 3341247/4997817 [00:19<00:09, 173724.86it/s]
end{sphinxVerbatim}
66%|██████▌ | 3303703/4997817 [00:19<00:09, 169776.91it/s]
+67%|██████▋ | 3341247/4997817 [00:19<00:09, 173724.86it/s]
+- 67%|██████▋ | 3359114/4997817 [00:19<00:09, 175189.64it/s]
- -
</pre>
- 66%|██████▋ | 3321041/4997817 [00:19<00:09, 170841.35it/s]
+- 67%|██████▋ | 3359114/4997817 [00:19<00:09, 175189.64it/s]
end{sphinxVerbatim}
66%|██████▋ | 3321041/4997817 [00:19<00:09, 170841.35it/s]
+67%|██████▋ | 3359114/4997817 [00:19<00:09, 175189.64it/s]
+- 68%|██████▊ | 3376947/4997817 [00:19<00:09, 176120.99it/s]
- -
</pre>
- 67%|██████▋ | 3338318/4997817 [00:19<00:09, 171412.45it/s]
+- 68%|██████▊ | 3376947/4997817 [00:19<00:09, 176120.99it/s]
end{sphinxVerbatim}
67%|██████▋ | 3338318/4997817 [00:19<00:09, 171412.45it/s]
+68%|██████▊ | 3376947/4997817 [00:19<00:09, 176120.99it/s]
+- 68%|██████▊ | 3394883/4997817 [00:19<00:09, 177082.62it/s]
- -
</pre>
- 67%|██████▋ | 3355610/4997817 [00:19<00:09, 171857.40it/s]
+- 68%|██████▊ | 3394883/4997817 [00:19<00:09, 177082.62it/s]
end{sphinxVerbatim}
67%|██████▋ | 3355610/4997817 [00:19<00:09, 171857.40it/s]
+68%|██████▊ | 3394883/4997817 [00:19<00:09, 177082.62it/s]
+- 68%|██████▊ | 3412744/4997817 [00:19<00:08, 177534.60it/s]
- -
</pre>
- 67%|██████▋ | 3372854/4997817 [00:19<00:09, 172027.02it/s]
+- 68%|██████▊ | 3412744/4997817 [00:19<00:08, 177534.60it/s]
end{sphinxVerbatim}
67%|██████▋ | 3372854/4997817 [00:19<00:09, 172027.02it/s]
+68%|██████▊ | 3412744/4997817 [00:19<00:08, 177534.60it/s]
+- 69%|██████▊ | 3430589/4997817 [00:19<00:08, 177806.25it/s]
- -
</pre>
- 68%|██████▊ | 3390245/4997817 [00:19<00:09, 172589.19it/s]
+- 69%|██████▊ | 3430589/4997817 [00:19<00:08, 177806.25it/s]
end{sphinxVerbatim}
68%|██████▊ | 3390245/4997817 [00:19<00:09, 172589.19it/s]
+69%|██████▊ | 3430589/4997817 [00:19<00:08, 177806.25it/s]
+- 69%|██████▉ | 3448377/4997817 [00:19<00:08, 177808.84it/s]
- -
</pre>
- 68%|██████▊ | 3407661/4997817 [00:19<00:09, 173058.22it/s]
+- 69%|██████▉ | 3448377/4997817 [00:19<00:08, 177808.84it/s]
end{sphinxVerbatim}
68%|██████▊ | 3407661/4997817 [00:19<00:09, 173058.22it/s]
+69%|██████▉ | 3448377/4997817 [00:19<00:08, 177808.84it/s]
+- 69%|██████▉ | 3466193/4997817 [00:19<00:08, 177908.63it/s]
- -
</pre>
- 69%|██████▊ | 3425012/4997817 [00:19<00:09, 173189.91it/s]
+- 69%|██████▉ | 3466193/4997817 [00:19<00:08, 177908.63it/s]
end{sphinxVerbatim}
69%|██████▊ | 3425012/4997817 [00:19<00:09, 173189.91it/s]
+69%|██████▉ | 3466193/4997817 [00:19<00:08, 177908.63it/s]
+- 70%|██████▉ | 3483988/4997817 [00:20<00:08, 177744.79it/s]
- -
</pre>
- 69%|██████▉ | 3442334/4997817 [00:20<00:08, 173072.96it/s]
+- 70%|██████▉ | 3483988/4997817 [00:20<00:08, 177744.79it/s]
end{sphinxVerbatim}
69%|██████▉ | 3442334/4997817 [00:20<00:08, 173072.96it/s]
+70%|██████▉ | 3483988/4997817 [00:20<00:08, 177744.79it/s]
+- 70%|███████ | 3501919/4997817 [00:20<00:08, 178211.72it/s]
- -
</pre>
- 69%|██████▉ | 3459644/4997817 [00:20<00:08, 172570.70it/s]
+- 70%|███████ | 3501919/4997817 [00:20<00:08, 178211.72it/s]
end{sphinxVerbatim}
69%|██████▉ | 3459644/4997817 [00:20<00:08, 172570.70it/s]
+70%|███████ | 3501919/4997817 [00:20<00:08, 178211.72it/s]
+- 70%|███████ | 3519742/4997817 [00:20<00:08, 178030.37it/s]
- -
</pre>
- 70%|██████▉ | 3476903/4997817 [00:20<00:08, 172289.61it/s]
+- 70%|███████ | 3519742/4997817 [00:20<00:08, 178030.37it/s]
end{sphinxVerbatim}
70%|██████▉ | 3476903/4997817 [00:20<00:08, 172289.61it/s]
+70%|███████ | 3519742/4997817 [00:20<00:08, 178030.37it/s]
+- 71%|███████ | 3537822/4997817 [00:20<00:08, 178856.43it/s]
- -
</pre>
- 70%|██████▉ | 3494266/4997817 [00:20<00:08, 172685.69it/s]
+- 71%|███████ | 3537822/4997817 [00:20<00:08, 178856.43it/s]
end{sphinxVerbatim}
70%|██████▉ | 3494266/4997817 [00:20<00:08, 172685.69it/s]
+71%|███████ | 3537822/4997817 [00:20<00:08, 178856.43it/s]
+- 71%|███████ | 3555826/4997817 [00:20<00:08, 179208.50it/s]
- -
</pre>
- 70%|███████ | 3511536/4997817 [00:20<00:08, 172192.34it/s]
+- 71%|███████ | 3555826/4997817 [00:20<00:08, 179208.50it/s]
end{sphinxVerbatim}
70%|███████ | 3511536/4997817 [00:20<00:08, 172192.34it/s]
+71%|███████ | 3555826/4997817 [00:20<00:08, 179208.50it/s]
+- 72%|███████▏ | 3573778/4997817 [00:20<00:07, 179298.35it/s]
- -
</pre>
- 71%|███████ | 3528769/4997817 [00:20<00:08, 172229.00it/s]
+- 72%|███████▏ | 3573778/4997817 [00:20<00:07, 179298.35it/s]
end{sphinxVerbatim}
71%|███████ | 3528769/4997817 [00:20<00:08, 172229.00it/s]
+72%|███████▏ | 3573778/4997817 [00:20<00:07, 179298.35it/s]
+- 72%|███████▏ | 3591709/4997817 [00:20<00:07, 178896.73it/s]
- -
</pre>
- 71%|███████ | 3546062/4997817 [00:20<00:08, 172435.86it/s]
+- 72%|███████▏ | 3591709/4997817 [00:20<00:07, 178896.73it/s]
end{sphinxVerbatim}
71%|███████ | 3546062/4997817 [00:20<00:08, 172435.86it/s]
+72%|███████▏ | 3591709/4997817 [00:20<00:07, 178896.73it/s]
+- 72%|███████▏ | 3609648/4997817 [00:20<00:07, 179040.52it/s]
- -
</pre>
- 71%|███████▏ | 3563574/4997817 [00:20<00:08, 173237.24it/s]
+- 72%|███████▏ | 3609648/4997817 [00:20<00:07, 179040.52it/s]
end{sphinxVerbatim}
71%|███████▏ | 3563574/4997817 [00:20<00:08, 173237.24it/s]
+72%|███████▏ | 3609648/4997817 [00:20<00:07, 179040.52it/s]
+- 73%|███████▎ | 3627553/4997817 [00:20<00:07, 178664.01it/s]
- -
</pre>
- 72%|███████▏ | 3580913/4997817 [00:20<00:08, 173280.95it/s]
+- 73%|███████▎ | 3627553/4997817 [00:20<00:07, 178664.01it/s]
end{sphinxVerbatim}
72%|███████▏ | 3580913/4997817 [00:20<00:08, 173280.95it/s]
+73%|███████▎ | 3627553/4997817 [00:20<00:07, 178664.01it/s]
+- 73%|███████▎ | 3645420/4997817 [00:20<00:07, 178510.34it/s]
- -
</pre>
- 72%|███████▏ | 3598242/4997817 [00:20<00:08, 166262.86it/s]
+- 73%|███████▎ | 3645420/4997817 [00:20<00:07, 178510.34it/s]
end{sphinxVerbatim}
72%|███████▏ | 3598242/4997817 [00:20<00:08, 166262.86it/s]
+73%|███████▎ | 3645420/4997817 [00:20<00:07, 178510.34it/s]
+- 73%|███████▎ | 3663272/4997817 [00:21<00:07, 178345.16it/s]
- -
</pre>
- 72%|███████▏ | 3615609/4997817 [00:21<00:08, 168416.14it/s]
+- 73%|███████▎ | 3663272/4997817 [00:21<00:07, 178345.16it/s]
end{sphinxVerbatim}
72%|███████▏ | 3615609/4997817 [00:21<00:08, 168416.14it/s]
+73%|███████▎ | 3663272/4997817 [00:21<00:07, 178345.16it/s]
+- 74%|███████▎ | 3681141/4997817 [00:21<00:07, 178445.12it/s]
- -
</pre>
- 73%|███████▎ | 3633130/4997817 [00:21<00:08, 170409.00it/s]
+- 74%|███████▎ | 3681141/4997817 [00:21<00:07, 178445.12it/s]
end{sphinxVerbatim}
73%|███████▎ | 3633130/4997817 [00:21<00:08, 170409.00it/s]
+74%|███████▎ | 3681141/4997817 [00:21<00:07, 178445.12it/s]
+- 74%|███████▍ | 3699086/4997817 [00:21<00:07, 178744.49it/s]
- -
</pre>
- 73%|███████▎ | 3650477/4997817 [00:21<00:07, 171311.40it/s]
+- 74%|███████▍ | 3699086/4997817 [00:21<00:07, 178744.49it/s]
end{sphinxVerbatim}
73%|███████▎ | 3650477/4997817 [00:21<00:07, 171311.40it/s]
+74%|███████▍ | 3699086/4997817 [00:21<00:07, 178744.49it/s]
+- 74%|███████▍ | 3717089/4997817 [00:21<00:07, 179127.32it/s]
- -
</pre>
- 73%|███████▎ | 3668009/4997817 [00:21<00:07, 172500.44it/s]
+- 74%|███████▍ | 3717089/4997817 [00:21<00:07, 179127.32it/s]
end{sphinxVerbatim}
73%|███████▎ | 3668009/4997817 [00:21<00:07, 172500.44it/s]
+74%|███████▍ | 3717089/4997817 [00:21<00:07, 179127.32it/s]
+- 75%|███████▍ | 3735058/4997817 [00:21<00:07, 179292.58it/s]
- -
</pre>
- 74%|███████▎ | 3685499/4997817 [00:21<00:07, 173211.47it/s]
+- 75%|███████▍ | 3735058/4997817 [00:21<00:07, 179292.58it/s]
end{sphinxVerbatim}
74%|███████▎ | 3685499/4997817 [00:21<00:07, 173211.47it/s]
+75%|███████▍ | 3735058/4997817 [00:21<00:07, 179292.58it/s]
+- 75%|███████▌ | 3753015/4997817 [00:21<00:06, 179373.12it/s]
- -
</pre>
- 74%|███████▍ | 3702836/4997817 [00:21<00:07, 171485.94it/s]
+- 75%|███████▌ | 3753015/4997817 [00:21<00:06, 179373.12it/s]
end{sphinxVerbatim}
74%|███████▍ | 3702836/4997817 [00:21<00:07, 171485.94it/s]
+75%|███████▌ | 3753015/4997817 [00:21<00:06, 179373.12it/s]
+- 75%|███████▌ | 3771043/4997817 [00:21<00:06, 179642.68it/s]
- -
</pre>
- 74%|███████▍ | 3720207/4997817 [00:21<00:07, 172143.12it/s]
+- 75%|███████▌ | 3771043/4997817 [00:21<00:06, 179642.68it/s]
end{sphinxVerbatim}
74%|███████▍ | 3720207/4997817 [00:21<00:07, 172143.12it/s]
+75%|███████▌ | 3771043/4997817 [00:21<00:06, 179642.68it/s]
+- 76%|███████▌ | 3789008/4997817 [00:21<00:06, 179431.05it/s]
- -
</pre>
- 75%|███████▍ | 3737691/4997817 [00:21<00:07, 172943.79it/s]
+- 76%|███████▌ | 3789008/4997817 [00:21<00:06, 179431.05it/s]
end{sphinxVerbatim}
75%|███████▍ | 3737691/4997817 [00:21<00:07, 172943.79it/s]
+76%|███████▌ | 3789008/4997817 [00:21<00:06, 179431.05it/s]
+- 76%|███████▌ | 3806989/4997817 [00:21<00:06, 179543.38it/s]
- -
</pre>
- 75%|███████▌ | 3755186/4997817 [00:21<00:07, 173539.30it/s]
+- 76%|███████▌ | 3806989/4997817 [00:21<00:06, 179543.38it/s]
end{sphinxVerbatim}
75%|███████▌ | 3755186/4997817 [00:21<00:07, 173539.30it/s]
+76%|███████▌ | 3806989/4997817 [00:21<00:06, 179543.38it/s]
+- 77%|███████▋ | 3824944/4997817 [00:21<00:06, 178858.18it/s]
- -
</pre>
- 75%|███████▌ | 3772694/4997817 [00:21<00:07, 173996.86it/s]
+- 77%|███████▋ | 3824944/4997817 [00:21<00:06, 178858.18it/s]
end{sphinxVerbatim}
75%|███████▌ | 3772694/4997817 [00:21<00:07, 173996.86it/s]
+77%|███████▋ | 3824944/4997817 [00:21<00:06, 178858.18it/s]
+- 77%|███████▋ | 3842879/4997817 [00:22<00:06, 179000.45it/s]
- -
</pre>
- 76%|███████▌ | 3790125/4997817 [00:22<00:06, 174087.62it/s]
+- 77%|███████▋ | 3842879/4997817 [00:22<00:06, 179000.45it/s]
end{sphinxVerbatim}
76%|███████▌ | 3790125/4997817 [00:22<00:06, 174087.62it/s]
+77%|███████▋ | 3842879/4997817 [00:22<00:06, 179000.45it/s]
+- 77%|███████▋ | 3860780/4997817 [00:22<00:06, 178366.66it/s]
- -
</pre>
- 76%|███████▌ | 3807603/4997817 [00:22<00:06, 174294.13it/s]
+- 77%|███████▋ | 3860780/4997817 [00:22<00:06, 178366.66it/s]
end{sphinxVerbatim}
76%|███████▌ | 3807603/4997817 [00:22<00:06, 174294.13it/s]
+77%|███████▋ | 3860780/4997817 [00:22<00:06, 178366.66it/s]
+- 78%|███████▊ | 3878707/4997817 [00:22<00:06, 178633.05it/s]
- -
</pre>
- 77%|███████▋ | 3825052/4997817 [00:22<00:06, 174351.37it/s]
+- 78%|███████▊ | 3878707/4997817 [00:22<00:06, 178633.05it/s]
end{sphinxVerbatim}
77%|███████▋ | 3825052/4997817 [00:22<00:06, 174351.37it/s]
+78%|███████▊ | 3878707/4997817 [00:22<00:06, 178633.05it/s]
+- 78%|███████▊ | 3896571/4997817 [00:22<00:06, 178100.92it/s]
- -
</pre>
- 77%|███████▋ | 3842536/4997817 [00:22<00:06, 174495.38it/s]
+- 78%|███████▊ | 3896571/4997817 [00:22<00:06, 178100.92it/s]
end{sphinxVerbatim}
77%|███████▋ | 3842536/4997817 [00:22<00:06, 174495.38it/s]
+78%|███████▊ | 3896571/4997817 [00:22<00:06, 178100.92it/s]
+- 78%|███████▊ | 3914382/4997817 [00:22<00:06, 177345.72it/s]
- -
</pre>
- 77%|███████▋ | 3860012/4997817 [00:22<00:06, 174572.14it/s]
+- 78%|███████▊ | 3914382/4997817 [00:22<00:06, 177345.72it/s]
end{sphinxVerbatim}
77%|███████▋ | 3860012/4997817 [00:22<00:06, 174572.14it/s]
+78%|███████▊ | 3914382/4997817 [00:22<00:06, 177345.72it/s]
+- 79%|███████▊ | 3932118/4997817 [00:22<00:06, 177085.85it/s]
- -
</pre>
- 78%|███████▊ | 3877470/4997817 [00:22<00:06, 174285.97it/s]
+- 79%|███████▊ | 3932118/4997817 [00:22<00:06, 177085.85it/s]
end{sphinxVerbatim}
78%|███████▊ | 3877470/4997817 [00:22<00:06, 174285.97it/s]
+79%|███████▊ | 3932118/4997817 [00:22<00:06, 177085.85it/s]
+- 79%|███████▉ | 3949828/4997817 [00:22<00:05, 175940.33it/s]
- -
</pre>
- 78%|███████▊ | 3894900/4997817 [00:22<00:06, 174102.34it/s]
+- 79%|███████▉ | 3949828/4997817 [00:22<00:05, 175940.33it/s]
end{sphinxVerbatim}
78%|███████▊ | 3894900/4997817 [00:22<00:06, 174102.34it/s]
+79%|███████▉ | 3949828/4997817 [00:22<00:05, 175940.33it/s]
+- 79%|███████▉ | 3967424/4997817 [00:22<00:05, 175871.87it/s]
- -
</pre>
- 78%|███████▊ | 3912311/4997817 [00:22<00:06, 173814.05it/s]
+- 79%|███████▉ | 3967424/4997817 [00:22<00:05, 175871.87it/s]
end{sphinxVerbatim}
78%|███████▊ | 3912311/4997817 [00:22<00:06, 173814.05it/s]
+79%|███████▉ | 3967424/4997817 [00:22<00:05, 175871.87it/s]
+- 80%|███████▉ | 3985013/4997817 [00:22<00:05, 175181.24it/s]
- -
</pre>
- 79%|███████▊ | 3929731/4997817 [00:22<00:06, 173928.24it/s]
+- 80%|███████▉ | 3985013/4997817 [00:22<00:05, 175181.24it/s]
end{sphinxVerbatim}
79%|███████▊ | 3929731/4997817 [00:22<00:06, 173928.24it/s]
+80%|███████▉ | 3985013/4997817 [00:22<00:05, 175181.24it/s]
+- 80%|████████ | 4002533/4997817 [00:22<00:05, 174771.28it/s]
- -
</pre>
- 79%|███████▉ | 3947125/4997817 [00:22<00:06, 166953.78it/s]
+- 80%|████████ | 4002533/4997817 [00:22<00:05, 174771.28it/s]
end{sphinxVerbatim}
79%|███████▉ | 3947125/4997817 [00:22<00:06, 166953.78it/s]
+80%|████████ | 4002533/4997817 [00:22<00:05, 174771.28it/s]
+- 80%|████████ | 4020011/4997817 [00:23<00:05, 174438.64it/s]
- -
</pre>
- 79%|███████▉ | 3964318/4997817 [00:23<00:06, 168400.63it/s]
+- 80%|████████ | 4020011/4997817 [00:23<00:05, 174438.64it/s]
end{sphinxVerbatim}
79%|███████▉ | 3964318/4997817 [00:23<00:06, 168400.63it/s]
+80%|████████ | 4020011/4997817 [00:23<00:05, 174438.64it/s]
+- 81%|████████ | 4037456/4997817 [00:23<00:05, 174210.08it/s]
- -
</pre>
- 80%|███████▉ | 3981461/4997817 [00:23<00:06, 169287.17it/s]
+- 81%|████████ | 4037456/4997817 [00:23<00:05, 174210.08it/s]
end{sphinxVerbatim}
80%|███████▉ | 3981461/4997817 [00:23<00:06, 169287.17it/s]
+81%|████████ | 4037456/4997817 [00:23<00:05, 174210.08it/s]
+- 81%|████████ | 4054878/4997817 [00:23<00:05, 173361.99it/s]
- -
</pre>
- 80%|████████ | 3998620/4997817 [00:23<00:05, 169964.52it/s]
+- 81%|████████ | 4054878/4997817 [00:23<00:05, 173361.99it/s]
end{sphinxVerbatim}
80%|████████ | 3998620/4997817 [00:23<00:05, 169964.52it/s]
+81%|████████ | 4054878/4997817 [00:23<00:05, 173361.99it/s]
+- 81%|████████▏ | 4072335/4997817 [00:23<00:05, 173720.18it/s]
- -
</pre>
- 80%|████████ | 4015703/4997817 [00:23<00:05, 170220.44it/s]
+- 81%|████████▏ | 4072335/4997817 [00:23<00:05, 173720.18it/s]
end{sphinxVerbatim}
80%|████████ | 4015703/4997817 [00:23<00:05, 170220.44it/s]
+81%|████████▏ | 4072335/4997817 [00:23<00:05, 173720.18it/s]
+- 82%|████████▏ | 4089708/4997817 [00:23<00:05, 173593.80it/s]
- -
</pre>
- 81%|████████ | 4032920/4997817 [00:23<00:05, 170799.75it/s]
+- 82%|████████▏ | 4089708/4997817 [00:23<00:05, 173593.80it/s]
end{sphinxVerbatim}
81%|████████ | 4032920/4997817 [00:23<00:05, 170799.75it/s]
+82%|████████▏ | 4089708/4997817 [00:23<00:05, 173593.80it/s]
+- 82%|████████▏ | 4107077/4997817 [00:23<00:05, 173620.74it/s]
- -
</pre>
- 81%|████████ | 4050142/4997817 [00:23<00:05, 171222.48it/s]
+- 82%|████████▏ | 4107077/4997817 [00:23<00:05, 173620.74it/s]
end{sphinxVerbatim}
81%|████████ | 4050142/4997817 [00:23<00:05, 171222.48it/s]
+82%|████████▏ | 4107077/4997817 [00:23<00:05, 173620.74it/s]
+- 83%|████████▎ | 4124749/4997817 [00:23<00:05, 174546.86it/s]
- -
</pre>
- 81%|████████▏ | 4067285/4997817 [00:23<00:05, 171281.63it/s]
+- 83%|████████▎ | 4124749/4997817 [00:23<00:05, 174546.86it/s]
end{sphinxVerbatim}
81%|████████▏ | 4067285/4997817 [00:23<00:05, 171281.63it/s]
+83%|████████▎ | 4124749/4997817 [00:23<00:05, 174546.86it/s]
+- 83%|████████▎ | 4142205/4997817 [00:23<00:04, 174336.41it/s]
- -
</pre>
- 82%|████████▏ | 4084638/4997817 [00:23<00:05, 171951.78it/s]
+- 83%|████████▎ | 4142205/4997817 [00:23<00:04, 174336.41it/s]
end{sphinxVerbatim}
82%|████████▏ | 4084638/4997817 [00:23<00:05, 171951.78it/s]
+83%|████████▎ | 4142205/4997817 [00:23<00:04, 174336.41it/s]
+- 83%|████████▎ | 4159640/4997817 [00:23<00:04, 174330.83it/s]
- -
</pre>
- 82%|████████▏ | 4101838/4997817 [00:23<00:05, 171918.77it/s]
+- 83%|████████▎ | 4159640/4997817 [00:23<00:04, 174330.83it/s]
end{sphinxVerbatim}
82%|████████▏ | 4101838/4997817 [00:23<00:05, 171918.77it/s]
+83%|████████▎ | 4159640/4997817 [00:23<00:04, 174330.83it/s]
+- 84%|████████▎ | 4177074/4997817 [00:23<00:04, 174031.38it/s]
- -
</pre>
- 82%|████████▏ | 4119142/4997817 [00:23<00:05, 172252.61it/s]
+- 84%|████████▎ | 4177074/4997817 [00:23<00:04, 174031.38it/s]
end{sphinxVerbatim}
82%|████████▏ | 4119142/4997817 [00:23<00:05, 172252.61it/s]
+84%|████████▎ | 4177074/4997817 [00:23<00:04, 174031.38it/s]
+- 84%|████████▍ | 4194478/4997817 [00:24<00:04, 173944.64it/s]
- -
</pre>
- 83%|████████▎ | 4136370/4997817 [00:24<00:05, 172205.01it/s]
+- 84%|████████▍ | 4194478/4997817 [00:24<00:04, 173944.64it/s]
end{sphinxVerbatim}
83%|████████▎ | 4136370/4997817 [00:24<00:05, 172205.01it/s]
+84%|████████▍ | 4194478/4997817 [00:24<00:04, 173944.64it/s]
+- 84%|████████▍ | 4211886/4997817 [00:24<00:04, 173983.23it/s]
- -
</pre>
- 83%|████████▎ | 4153593/4997817 [00:24<00:04, 172084.17it/s]
+- 84%|████████▍ | 4211886/4997817 [00:24<00:04, 173983.23it/s]
end{sphinxVerbatim}
83%|████████▎ | 4153593/4997817 [00:24<00:04, 172084.17it/s]
+84%|████████▍ | 4211886/4997817 [00:24<00:04, 173983.23it/s]
+- 85%|████████▍ | 4229312/4997817 [00:24<00:04, 174062.96it/s]
- -
</pre>
- 83%|████████▎ | 4170803/4997817 [00:24<00:04, 171746.39it/s]
+- 85%|████████▍ | 4229312/4997817 [00:24<00:04, 174062.96it/s]
end{sphinxVerbatim}
83%|████████▎ | 4170803/4997817 [00:24<00:04, 171746.39it/s]
+85%|████████▍ | 4229312/4997817 [00:24<00:04, 174062.96it/s]
+- 85%|████████▍ | 4246719/4997817 [00:24<00:04, 173664.93it/s]
- -
</pre>
- 84%|████████▍ | 4188168/4997817 [00:24<00:04, 172311.70it/s]
+- 85%|████████▍ | 4246719/4997817 [00:24<00:04, 173664.93it/s]
end{sphinxVerbatim}
84%|████████▍ | 4188168/4997817 [00:24<00:04, 172311.70it/s]
+85%|████████▍ | 4246719/4997817 [00:24<00:04, 173664.93it/s]
+- 85%|████████▌ | 4264353/4997817 [00:24<00:04, 174461.91it/s]
- -
</pre>
- 84%|████████▍ | 4205400/4997817 [00:24<00:04, 171891.35it/s]
+- 85%|████████▌ | 4264353/4997817 [00:24<00:04, 174461.91it/s]
end{sphinxVerbatim}
84%|████████▍ | 4205400/4997817 [00:24<00:04, 171891.35it/s]
+85%|████████▌ | 4264353/4997817 [00:24<00:04, 174461.91it/s]
+- 86%|████████▌ | 4281937/4997817 [00:24<00:04, 174872.22it/s]
- -
</pre>
- 84%|████████▍ | 4222639/4997817 [00:24<00:04, 172039.23it/s]
+- 86%|████████▌ | 4281937/4997817 [00:24<00:04, 174872.22it/s]
end{sphinxVerbatim}
84%|████████▍ | 4222639/4997817 [00:24<00:04, 172039.23it/s]
+86%|████████▌ | 4281937/4997817 [00:24<00:04, 174872.22it/s]
+- 86%|████████▌ | 4299545/4997817 [00:24<00:03, 175233.06it/s]
- -
</pre>
- 85%|████████▍ | 4239879/4997817 [00:24<00:04, 172144.34it/s]
+- 86%|████████▌ | 4299545/4997817 [00:24<00:03, 175233.06it/s]
end{sphinxVerbatim}
85%|████████▍ | 4239879/4997817 [00:24<00:04, 172144.34it/s]
+86%|████████▌ | 4299545/4997817 [00:24<00:03, 175233.06it/s]
+- 86%|████████▋ | 4317069/4997817 [00:24<00:03, 175008.30it/s]
- -
</pre>
- 85%|████████▌ | 4257214/4997817 [00:24<00:04, 172503.86it/s]
+- 86%|████████▋ | 4317069/4997817 [00:24<00:03, 175008.30it/s]
end{sphinxVerbatim}
85%|████████▌ | 4257214/4997817 [00:24<00:04, 172503.86it/s]
+86%|████████▋ | 4317069/4997817 [00:24<00:03, 175008.30it/s]
+- 87%|████████▋ | 4334571/4997817 [00:24<00:03, 174884.33it/s]
- -
</pre>
- 86%|████████▌ | 4274633/4997817 [00:24<00:04, 173007.52it/s]
+- 87%|████████▋ | 4334571/4997817 [00:24<00:03, 174884.33it/s]
end{sphinxVerbatim}
86%|████████▌ | 4274633/4997817 [00:24<00:04, 173007.52it/s]
+87%|████████▋ | 4334571/4997817 [00:24<00:03, 174884.33it/s]
+- 87%|████████▋ | 4352131/4997817 [00:24<00:03, 175094.88it/s]
- -
</pre>
- 86%|████████▌ | 4292128/4997817 [00:24<00:04, 173588.54it/s]
+- 87%|████████▋ | 4352131/4997817 [00:24<00:03, 175094.88it/s]
end{sphinxVerbatim}
86%|████████▌ | 4292128/4997817 [00:24<00:04, 173588.54it/s]
+87%|████████▋ | 4352131/4997817 [00:24<00:03, 175094.88it/s]
+- 87%|████████▋ | 4369641/4997817 [00:25<00:03, 174298.22it/s]
- -
</pre>
- 86%|████████▌ | 4309641/4997817 [00:25<00:03, 174046.70it/s]
+- 87%|████████▋ | 4369641/4997817 [00:25<00:03, 174298.22it/s]
end{sphinxVerbatim}
86%|████████▌ | 4309641/4997817 [00:25<00:03, 174046.70it/s]
+87%|████████▋ | 4369641/4997817 [00:25<00:03, 174298.22it/s]
+- 88%|████████▊ | 4387129/4997817 [00:25<00:03, 174469.25it/s]
- -
</pre>
- 87%|████████▋ | 4327083/4997817 [00:25<00:03, 174154.84it/s]
+- 88%|████████▊ | 4387129/4997817 [00:25<00:03, 174469.25it/s]
end{sphinxVerbatim}
87%|████████▋ | 4327083/4997817 [00:25<00:03, 174154.84it/s]
+88%|████████▊ | 4387129/4997817 [00:25<00:03, 174469.25it/s]
+- 88%|████████▊ | 4404577/4997817 [00:25<00:03, 174283.07it/s]
- -
</pre>
- 87%|████████▋ | 4344499/4997817 [00:25<00:03, 174105.02it/s]
+- 88%|████████▊ | 4404577/4997817 [00:25<00:03, 174283.07it/s]
end{sphinxVerbatim}
87%|████████▋ | 4344499/4997817 [00:25<00:03, 174105.02it/s]
+88%|████████▊ | 4404577/4997817 [00:25<00:03, 174283.07it/s]
+- 88%|████████▊ | 4422006/4997817 [00:25<00:03, 174246.16it/s]
- -
</pre>
- 87%|████████▋ | 4361910/4997817 [00:25<00:03, 174010.64it/s]
+- 88%|████████▊ | 4422006/4997817 [00:25<00:03, 174246.16it/s]
end{sphinxVerbatim}
87%|████████▋ | 4361910/4997817 [00:25<00:03, 174010.64it/s]
+88%|████████▊ | 4422006/4997817 [00:25<00:03, 174246.16it/s]
+- 89%|████████▉ | 4439647/4997817 [00:25<00:03, 174890.16it/s]
- -
</pre>
- 88%|████████▊ | 4379394/4997817 [00:25<00:03, 174257.46it/s]
+- 89%|████████▉ | 4439647/4997817 [00:25<00:03, 174890.16it/s]
end{sphinxVerbatim}
88%|████████▊ | 4379394/4997817 [00:25<00:03, 174257.46it/s]
+89%|████████▉ | 4439647/4997817 [00:25<00:03, 174890.16it/s]
+- 89%|████████▉ | 4457137/4997817 [00:25<00:03, 174697.39it/s]
- -
</pre>
- 88%|████████▊ | 4396895/4997817 [00:25<00:03, 174479.80it/s]
+- 89%|████████▉ | 4457137/4997817 [00:25<00:03, 174697.39it/s]
end{sphinxVerbatim}
88%|████████▊ | 4396895/4997817 [00:25<00:03, 174479.80it/s]
+89%|████████▉ | 4457137/4997817 [00:25<00:03, 174697.39it/s]
+- 90%|████████▉ | 4474608/4997817 [00:25<00:02, 174511.33it/s]
- -
</pre>
- 88%|████████▊ | 4414419/4997817 [00:25<00:03, 174705.46it/s]
+- 90%|████████▉ | 4474608/4997817 [00:25<00:02, 174511.33it/s]
end{sphinxVerbatim}
88%|████████▊ | 4414419/4997817 [00:25<00:03, 174705.46it/s]
+90%|████████▉ | 4474608/4997817 [00:25<00:02, 174511.33it/s]
+- 90%|████████▉ | 4492108/4997817 [00:25<00:02, 174654.82it/s]
- -
</pre>
- 89%|████████▊ | 4431890/4997817 [00:25<00:03, 174688.01it/s]
+- 90%|████████▉ | 4492108/4997817 [00:25<00:02, 174654.82it/s]
end{sphinxVerbatim}
89%|████████▊ | 4431890/4997817 [00:25<00:03, 174688.01it/s]
+90%|████████▉ | 4492108/4997817 [00:25<00:02, 174654.82it/s]
+- 90%|█████████ | 4509854/4997817 [00:25<00:02, 175491.59it/s]
- -
</pre>
- 89%|████████▉ | 4449359/4997817 [00:25<00:03, 174570.32it/s]
+- 90%|█████████ | 4509854/4997817 [00:25<00:02, 175491.59it/s]
end{sphinxVerbatim}
89%|████████▉ | 4449359/4997817 [00:25<00:03, 174570.32it/s]
+90%|█████████ | 4509854/4997817 [00:25<00:02, 175491.59it/s]
+- 91%|█████████ | 4527404/4997817 [00:25<00:02, 175471.34it/s]
- -
</pre>
- 89%|████████▉ | 4466817/4997817 [00:25<00:03, 173945.75it/s]
+- 91%|█████████ | 4527404/4997817 [00:25<00:02, 175471.34it/s]
end{sphinxVerbatim}
89%|████████▉ | 4466817/4997817 [00:25<00:03, 173945.75it/s]
+91%|█████████ | 4527404/4997817 [00:25<00:02, 175471.34it/s]
+- 91%|█████████ | 4544952/4997817 [00:26<00:02, 175040.52it/s]
- -
</pre>
- 90%|████████▉ | 4484213/4997817 [00:26<00:03, 165940.76it/s]
+- 91%|█████████ | 4544952/4997817 [00:26<00:02, 175040.52it/s]
end{sphinxVerbatim}
90%|████████▉ | 4484213/4997817 [00:26<00:03, 165940.76it/s]
+91%|█████████ | 4544952/4997817 [00:26<00:02, 175040.52it/s]
+- 91%|█████████▏| 4562469/4997817 [00:26<00:02, 175076.70it/s]
- -
</pre>
- 90%|█████████ | 4501196/4997817 [00:26<00:02, 167063.71it/s]
+- 91%|█████████▏| 4562469/4997817 [00:26<00:02, 175076.70it/s]
end{sphinxVerbatim}
90%|█████████ | 4501196/4997817 [00:26<00:02, 167063.71it/s]
+91%|█████████▏| 4562469/4997817 [00:26<00:02, 175076.70it/s]
+- 92%|█████████▏| 4579977/4997817 [00:26<00:02, 175030.99it/s]
- -
</pre>
- 90%|█████████ | 4518396/4997817 [00:26<00:02, 168506.25it/s]
+- 92%|█████████▏| 4579977/4997817 [00:26<00:02, 175030.99it/s]
end{sphinxVerbatim}
90%|█████████ | 4518396/4997817 [00:26<00:02, 168506.25it/s]
+92%|█████████▏| 4579977/4997817 [00:26<00:02, 175030.99it/s]
+- 92%|█████████▏| 4597481/4997817 [00:26<00:02, 174825.57it/s]
- -
</pre>
- 91%|█████████ | 4535534/4997817 [00:26<00:02, 169350.62it/s]
+- 92%|█████████▏| 4597481/4997817 [00:26<00:02, 174825.57it/s]
end{sphinxVerbatim}
91%|█████████ | 4535534/4997817 [00:26<00:02, 169350.62it/s]
+92%|█████████▏| 4597481/4997817 [00:26<00:02, 174825.57it/s]
+- 92%|█████████▏| 4614964/4997817 [00:26<00:02, 174502.37it/s]
- -
</pre>
- 91%|█████████ | 4552661/4997817 [00:26<00:02, 169918.37it/s]
+- 92%|█████████▏| 4614964/4997817 [00:26<00:02, 174502.37it/s]
end{sphinxVerbatim}
91%|█████████ | 4552661/4997817 [00:26<00:02, 169918.37it/s]
+92%|█████████▏| 4614964/4997817 [00:26<00:02, 174502.37it/s]
+- 93%|█████████▎| 4632415/4997817 [00:26<00:02, 173890.11it/s]
- -
</pre>
- 91%|█████████▏| 4569943/4997817 [00:26<00:02, 170778.89it/s]
+- 93%|█████████▎| 4632415/4997817 [00:26<00:02, 173890.11it/s]
end{sphinxVerbatim}
91%|█████████▏| 4569943/4997817 [00:26<00:02, 170778.89it/s]
+93%|█████████▎| 4632415/4997817 [00:26<00:02, 173890.11it/s]
+- 93%|█████████▎| 4649960/4997817 [00:26<00:01, 174334.04it/s]
- -
</pre>
- 92%|█████████▏| 4587166/4997817 [00:26<00:02, 171210.55it/s]
+- 93%|█████████▎| 4649960/4997817 [00:26<00:01, 174334.04it/s]
end{sphinxVerbatim}
92%|█████████▏| 4587166/4997817 [00:26<00:02, 171210.55it/s]
+93%|█████████▎| 4649960/4997817 [00:26<00:01, 174334.04it/s]
+- 93%|█████████▎| 4667394/4997817 [00:26<00:01, 174197.62it/s]
- -
</pre>
- 92%|█████████▏| 4604300/4997817 [00:26<00:02, 170987.56it/s]
+- 93%|█████████▎| 4667394/4997817 [00:26<00:01, 174197.62it/s]
end{sphinxVerbatim}
92%|█████████▏| 4604300/4997817 [00:26<00:02, 170987.56it/s]
+93%|█████████▎| 4667394/4997817 [00:26<00:01, 174197.62it/s]
+- 94%|█████████▎| 4684815/4997817 [00:26<00:01, 173652.87it/s]
- -
</pre>
- 92%|█████████▏| 4621454/4997817 [00:26<00:02, 171140.60it/s]
+- 94%|█████████▎| 4684815/4997817 [00:26<00:01, 173652.87it/s]
end{sphinxVerbatim}
92%|█████████▏| 4621454/4997817 [00:26<00:02, 171140.60it/s]
+94%|█████████▎| 4684815/4997817 [00:26<00:01, 173652.87it/s]
+- 94%|█████████▍| 4702182/4997817 [00:26<00:01, 173656.80it/s]
- -
</pre>
- 93%|█████████▎| 4638642/4997817 [00:26<00:02, 171360.24it/s]
+- 94%|█████████▍| 4702182/4997817 [00:26<00:01, 173656.80it/s]
end{sphinxVerbatim}
93%|█████████▎| 4638642/4997817 [00:26<00:02, 171360.24it/s]
+94%|█████████▍| 4702182/4997817 [00:26<00:01, 173656.80it/s]
+- 94%|█████████▍| 4719549/4997817 [00:27<00:01, 172923.17it/s]
- -
</pre>
- 93%|█████████▎| 4655790/4997817 [00:27<00:01, 171391.62it/s]
+- 94%|█████████▍| 4719549/4997817 [00:27<00:01, 172923.17it/s]
end{sphinxVerbatim}
93%|█████████▎| 4655790/4997817 [00:27<00:01, 171391.62it/s]
+94%|█████████▍| 4719549/4997817 [00:27<00:01, 172923.17it/s]
+- 95%|█████████▍| 4737356/4997817 [00:27<00:01, 174456.59it/s]
- -
</pre>
- 93%|█████████▎| 4672933/4997817 [00:27<00:01, 171279.98it/s]
+- 95%|█████████▍| 4737356/4997817 [00:27<00:01, 174456.59it/s]
end{sphinxVerbatim}
93%|█████████▎| 4672933/4997817 [00:27<00:01, 171279.98it/s]
+95%|█████████▍| 4737356/4997817 [00:27<00:01, 174456.59it/s]
+- 95%|█████████▌| 4755081/4997817 [00:27<00:01, 175290.22it/s]
- -
</pre>
- 94%|█████████▍| 4690064/4997817 [00:27<00:01, 171054.95it/s]
+- 95%|█████████▌| 4755081/4997817 [00:27<00:01, 175290.22it/s]
end{sphinxVerbatim}
94%|█████████▍| 4690064/4997817 [00:27<00:01, 171054.95it/s]
+95%|█████████▌| 4755081/4997817 [00:27<00:01, 175290.22it/s]
+- 95%|█████████▌| 4772844/4997817 [00:27<00:01, 175987.84it/s]
- -
</pre>
- 94%|█████████▍| 4707172/4997817 [00:27<00:01, 170618.09it/s]
+- 95%|█████████▌| 4772844/4997817 [00:27<00:01, 175987.84it/s]
end{sphinxVerbatim}
94%|█████████▍| 4707172/4997817 [00:27<00:01, 170618.09it/s]
+95%|█████████▌| 4772844/4997817 [00:27<00:01, 175987.84it/s]
+- 96%|█████████▌| 4790586/4997817 [00:27<00:01, 176415.03it/s]
- -
</pre>
- 95%|█████████▍| 4724236/4997817 [00:27<00:01, 170186.79it/s]
+- 96%|█████████▌| 4790586/4997817 [00:27<00:01, 176415.03it/s]
end{sphinxVerbatim}
95%|█████████▍| 4724236/4997817 [00:27<00:01, 170186.79it/s]
+96%|█████████▌| 4790586/4997817 [00:27<00:01, 176415.03it/s]
+- 96%|█████████▌| 4808372/4997817 [00:27<00:01, 176846.27it/s]
- -
</pre>
- 95%|█████████▍| 4741256/4997817 [00:27<00:01, 169721.93it/s]
+- 96%|█████████▌| 4808372/4997817 [00:27<00:01, 176846.27it/s]
end{sphinxVerbatim}
95%|█████████▍| 4741256/4997817 [00:27<00:01, 169721.93it/s]
+96%|█████████▌| 4808372/4997817 [00:27<00:01, 176846.27it/s]
+- 97%|█████████▋| 4826299/4997817 [00:27<00:00, 177568.88it/s]
- -
</pre>
- 95%|█████████▌| 4758229/4997817 [00:27<00:01, 169542.15it/s]
+- 97%|█████████▋| 4826299/4997817 [00:27<00:00, 177568.88it/s]
end{sphinxVerbatim}
95%|█████████▌| 4758229/4997817 [00:27<00:01, 169542.15it/s]
+97%|█████████▋| 4826299/4997817 [00:27<00:00, 177568.88it/s]
+- 97%|█████████▋| 4844078/4997817 [00:27<00:00, 177632.18it/s]
- -
</pre>
- 96%|█████████▌| 4775186/4997817 [00:27<00:01, 169546.90it/s]
+- 97%|█████████▋| 4844078/4997817 [00:27<00:00, 177632.18it/s]
end{sphinxVerbatim}
96%|█████████▌| 4775186/4997817 [00:27<00:01, 169546.90it/s]
+97%|█████████▋| 4844078/4997817 [00:27<00:00, 177632.18it/s]
+- 97%|█████████▋| 4861887/4997817 [00:27<00:00, 177765.19it/s]
- -
</pre>
- 96%|█████████▌| 4792204/4997817 [00:27<00:01, 169733.18it/s]
+- 97%|█████████▋| 4861887/4997817 [00:27<00:00, 177765.19it/s]
end{sphinxVerbatim}
96%|█████████▌| 4792204/4997817 [00:27<00:01, 169733.18it/s]
+97%|█████████▋| 4861887/4997817 [00:27<00:00, 177765.19it/s]
+- 98%|█████████▊| 4879670/4997817 [00:27<00:00, 177783.28it/s]
- -
</pre>
- 96%|█████████▌| 4809588/4997817 [00:27<00:01, 170960.94it/s]
+- 98%|█████████▊| 4879670/4997817 [00:27<00:00, 177783.28it/s]
end{sphinxVerbatim}
96%|█████████▌| 4809588/4997817 [00:27<00:01, 170960.94it/s]
+98%|█████████▊| 4879670/4997817 [00:27<00:00, 177783.28it/s]
+- 98%|█████████▊| 4897511/4997817 [00:28<00:00, 177968.50it/s]
- -
</pre>
- 97%|█████████▋| 4826935/4997817 [00:28<00:00, 171708.83it/s]
+- 98%|█████████▊| 4897511/4997817 [00:28<00:00, 177968.50it/s]
end{sphinxVerbatim}
97%|█████████▋| 4826935/4997817 [00:28<00:00, 171708.83it/s]
+98%|█████████▊| 4897511/4997817 [00:28<00:00, 177968.50it/s]
+- 98%|█████████▊| 4915308/4997817 [00:28<00:00, 177843.48it/s]
- -
</pre>
- 97%|█████████▋| 4844144/4997817 [00:28<00:00, 171821.27it/s]
+- 98%|█████████▊| 4915308/4997817 [00:28<00:00, 177843.48it/s]
end{sphinxVerbatim}
97%|█████████▋| 4844144/4997817 [00:28<00:00, 171821.27it/s]
+98%|█████████▊| 4915308/4997817 [00:28<00:00, 177843.48it/s]
+- 99%|█████████▊| 4933093/4997817 [00:28<00:00, 177582.59it/s]
- -
</pre>
- 97%|█████████▋| 4861509/4997817 [00:28<00:00, 172365.85it/s]
+- 99%|█████████▊| 4933093/4997817 [00:28<00:00, 177582.59it/s]
end{sphinxVerbatim}
97%|█████████▋| 4861509/4997817 [00:28<00:00, 172365.85it/s]
+99%|█████████▊| 4933093/4997817 [00:28<00:00, 177582.59it/s]
+- 99%|█████████▉| 4951024/4997817 [00:28<00:00, 178096.42it/s]
- -
</pre>
- 98%|█████████▊| 4878998/4997817 [00:28<00:00, 173118.17it/s]
+- 99%|█████████▉| 4951024/4997817 [00:28<00:00, 178096.42it/s]
end{sphinxVerbatim}
98%|█████████▊| 4878998/4997817 [00:28<00:00, 173118.17it/s]
+99%|█████████▉| 4951024/4997817 [00:28<00:00, 178096.42it/s]
+- 99%|█████████▉| 4968834/4997817 [00:28<00:00, 177735.23it/s]
- -
</pre>
- 98%|█████████▊| 4896357/4997817 [00:28<00:00, 173256.25it/s]
+- 99%|█████████▉| 4968834/4997817 [00:28<00:00, 177735.23it/s]
end{sphinxVerbatim}
98%|█████████▊| 4896357/4997817 [00:28<00:00, 173256.25it/s]
- - ----
-- more-to-come:
-- -
- class:
-- -
stderr
-
--</pre>
-
--end{sphinxVerbatim}
-
98%|█████████▊| 4913683/4997817 [00:28<00:00, 172966.77it/s]
----
-- more-to-come:
-- -
- class:
-- -
stderr
-
--</pre>
-
--end{sphinxVerbatim}
-
99%|█████████▊| 4931015/4997817 [00:28<00:00, 173069.80it/s]
----
-- more-to-come:
-- -
- class:
-- -
stderr
-
--</pre>
-
--end{sphinxVerbatim}
-
99%|█████████▉| 4948368/4997817 [00:28<00:00, 173204.93it/s]
----
-- more-to-come:
-- -
- class:
-- -
stderr
-
--</pre>
-
--end{sphinxVerbatim}
-
99%|█████████▉| 4965689/4997817 [00:28<00:00, 172854.75it/s]
+99%|█████████▉| 4968834/4997817 [00:28<00:00, 177735.23it/s]
+- 100%|█████████▉| 4986846/4997817 [00:28<00:00, 178445.60it/s]
- -
</pre>
- 100%|█████████▉| 4982975/4997817 [00:28<00:00, 172470.87it/s]
+- 100%|█████████▉| 4986846/4997817 [00:28<00:00, 178445.60it/s]
end{sphinxVerbatim}
100%|█████████▉| 4982975/4997817 [00:28<00:00, 172470.87it/s]
+100%|█████████▉| 4986846/4997817 [00:28<00:00, 178445.60it/s]
+- 100%|██████████| 4997817/4997817 [00:28<00:00, 174695.48it/s]
- -
</pre>
- 100%|██████████| 4997817/4997817 [00:29<00:00, 171905.44it/s]
+- 100%|██████████| 4997817/4997817 [00:28<00:00, 174695.48it/s]
end{sphinxVerbatim}
100%|██████████| 4997817/4997817 [00:29<00:00, 171905.44it/s]
+100%|██████████| 4997817/4997817 [00:28<00:00, 174695.48it/s]
Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True
or False
mask as find_label_issues()
.
This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies', 'getting_spare_card', 'visa_or_mastercard', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'cancel_transfer', 'change_pin'}
+Classes: {'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'change_pin', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard'}
Let’s print the first example in the train set.
diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 8132e6b9f..a5204c0a8 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:12.834865Z", - "iopub.status.busy": "2024-01-08T11:46:12.834657Z", - "iopub.status.idle": "2024-01-08T11:46:14.955723Z", - "shell.execute_reply": "2024-01-08T11:46:14.955049Z" + "iopub.execute_input": "2024-01-09T02:38:17.736971Z", + "iopub.status.busy": "2024-01-09T02:38:17.736775Z", + "iopub.status.idle": "2024-01-09T02:38:19.785413Z", + "shell.execute_reply": "2024-01-09T02:38:19.784759Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:14.958732Z", - "iopub.status.busy": "2024-01-08T11:46:14.958324Z", - "iopub.status.idle": "2024-01-08T11:46:14.962048Z", - "shell.execute_reply": "2024-01-08T11:46:14.961433Z" + "iopub.execute_input": "2024-01-09T02:38:19.788389Z", + "iopub.status.busy": "2024-01-09T02:38:19.787863Z", + "iopub.status.idle": "2024-01-09T02:38:19.791600Z", + "shell.execute_reply": "2024-01-09T02:38:19.791079Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:14.964403Z", - "iopub.status.busy": "2024-01-08T11:46:14.964046Z", - "iopub.status.idle": "2024-01-08T11:46:14.967395Z", - "shell.execute_reply": "2024-01-08T11:46:14.966785Z" + "iopub.execute_input": "2024-01-09T02:38:19.793926Z", + "iopub.status.busy": "2024-01-09T02:38:19.793560Z", + "iopub.status.idle": "2024-01-09T02:38:19.796843Z", + "shell.execute_reply": "2024-01-09T02:38:19.796334Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:14.969913Z", - "iopub.status.busy": "2024-01-08T11:46:14.969542Z", - "iopub.status.idle": "2024-01-08T11:46:15.113411Z", - "shell.execute_reply": "2024-01-08T11:46:15.112720Z" + "iopub.execute_input": "2024-01-09T02:38:19.799089Z", + "iopub.status.busy": "2024-01-09T02:38:19.798722Z", + "iopub.status.idle": "2024-01-09T02:38:19.846151Z", + "shell.execute_reply": "2024-01-09T02:38:19.845530Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:15.115927Z", - "iopub.status.busy": "2024-01-08T11:46:15.115573Z", - "iopub.status.idle": "2024-01-08T11:46:15.119394Z", - "shell.execute_reply": "2024-01-08T11:46:15.118790Z" + "iopub.execute_input": "2024-01-09T02:38:19.849016Z", + "iopub.status.busy": "2024-01-09T02:38:19.848628Z", + "iopub.status.idle": "2024-01-09T02:38:19.852329Z", + "shell.execute_reply": "2024-01-09T02:38:19.851803Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:15.121624Z", - "iopub.status.busy": "2024-01-08T11:46:15.121268Z", - "iopub.status.idle": "2024-01-08T11:46:15.125229Z", - "shell.execute_reply": "2024-01-08T11:46:15.124605Z" + "iopub.execute_input": "2024-01-09T02:38:19.854688Z", + "iopub.status.busy": "2024-01-09T02:38:19.854315Z", + "iopub.status.idle": "2024-01-09T02:38:19.858368Z", + "shell.execute_reply": "2024-01-09T02:38:19.857837Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies', 'getting_spare_card', 'visa_or_mastercard', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'cancel_transfer', 'change_pin'}\n" + "Classes: {'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'change_pin', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:15.127588Z", - "iopub.status.busy": "2024-01-08T11:46:15.127098Z", - "iopub.status.idle": "2024-01-08T11:46:15.130732Z", - "shell.execute_reply": "2024-01-08T11:46:15.130136Z" + "iopub.execute_input": "2024-01-09T02:38:19.860686Z", + "iopub.status.busy": "2024-01-09T02:38:19.860322Z", + "iopub.status.idle": "2024-01-09T02:38:19.864124Z", + "shell.execute_reply": "2024-01-09T02:38:19.863584Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:15.133181Z", - "iopub.status.busy": "2024-01-08T11:46:15.132695Z", - "iopub.status.idle": "2024-01-08T11:46:15.136260Z", - "shell.execute_reply": "2024-01-08T11:46:15.135695Z" + "iopub.execute_input": "2024-01-09T02:38:19.866426Z", + "iopub.status.busy": "2024-01-09T02:38:19.866228Z", + "iopub.status.idle": "2024-01-09T02:38:19.870061Z", + "shell.execute_reply": "2024-01-09T02:38:19.869523Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:15.138494Z", - "iopub.status.busy": "2024-01-08T11:46:15.138294Z", - "iopub.status.idle": "2024-01-08T11:46:24.367103Z", - "shell.execute_reply": "2024-01-08T11:46:24.366447Z" + "iopub.execute_input": "2024-01-09T02:38:19.872274Z", + "iopub.status.busy": "2024-01-09T02:38:19.872081Z", + "iopub.status.idle": "2024-01-09T02:38:28.431076Z", + "shell.execute_reply": "2024-01-09T02:38:28.430439Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:24.370167Z", - "iopub.status.busy": "2024-01-08T11:46:24.369737Z", - "iopub.status.idle": "2024-01-08T11:46:24.372928Z", - "shell.execute_reply": "2024-01-08T11:46:24.372406Z" + "iopub.execute_input": "2024-01-09T02:38:28.434230Z", + "iopub.status.busy": "2024-01-09T02:38:28.433777Z", + "iopub.status.idle": "2024-01-09T02:38:28.437031Z", + "shell.execute_reply": "2024-01-09T02:38:28.436510Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:24.375176Z", - "iopub.status.busy": "2024-01-08T11:46:24.374973Z", - "iopub.status.idle": "2024-01-08T11:46:24.377913Z", - "shell.execute_reply": "2024-01-08T11:46:24.377382Z" + "iopub.execute_input": "2024-01-09T02:38:28.439329Z", + "iopub.status.busy": "2024-01-09T02:38:28.439120Z", + "iopub.status.idle": "2024-01-09T02:38:28.441906Z", + "shell.execute_reply": "2024-01-09T02:38:28.441348Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:24.380093Z", - "iopub.status.busy": "2024-01-08T11:46:24.379893Z", - "iopub.status.idle": "2024-01-08T11:46:26.589464Z", - "shell.execute_reply": "2024-01-08T11:46:26.588623Z" + "iopub.execute_input": "2024-01-09T02:38:28.444140Z", + "iopub.status.busy": "2024-01-09T02:38:28.443939Z", + "iopub.status.idle": "2024-01-09T02:38:30.639738Z", + "shell.execute_reply": "2024-01-09T02:38:30.638890Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:26.593237Z", - "iopub.status.busy": "2024-01-08T11:46:26.592349Z", - "iopub.status.idle": "2024-01-08T11:46:26.600575Z", - "shell.execute_reply": "2024-01-08T11:46:26.599963Z" + "iopub.execute_input": "2024-01-09T02:38:30.643324Z", + "iopub.status.busy": "2024-01-09T02:38:30.642519Z", + "iopub.status.idle": "2024-01-09T02:38:30.650603Z", + "shell.execute_reply": "2024-01-09T02:38:30.650087Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:26.602973Z", - "iopub.status.busy": "2024-01-08T11:46:26.602595Z", - "iopub.status.idle": "2024-01-08T11:46:26.606506Z", - "shell.execute_reply": "2024-01-08T11:46:26.605958Z" + "iopub.execute_input": "2024-01-09T02:38:30.653107Z", + "iopub.status.busy": "2024-01-09T02:38:30.652606Z", + "iopub.status.idle": "2024-01-09T02:38:30.656810Z", + "shell.execute_reply": "2024-01-09T02:38:30.656299Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:26.609182Z", - "iopub.status.busy": "2024-01-08T11:46:26.608668Z", - "iopub.status.idle": "2024-01-08T11:46:26.612360Z", - "shell.execute_reply": "2024-01-08T11:46:26.611783Z" + "iopub.execute_input": "2024-01-09T02:38:30.659198Z", + "iopub.status.busy": "2024-01-09T02:38:30.658840Z", + "iopub.status.idle": "2024-01-09T02:38:30.662238Z", + "shell.execute_reply": "2024-01-09T02:38:30.661599Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:26.615004Z", - "iopub.status.busy": "2024-01-08T11:46:26.614525Z", - "iopub.status.idle": "2024-01-08T11:46:26.617879Z", - "shell.execute_reply": "2024-01-08T11:46:26.617349Z" + "iopub.execute_input": "2024-01-09T02:38:30.664638Z", + "iopub.status.busy": "2024-01-09T02:38:30.664280Z", + "iopub.status.idle": "2024-01-09T02:38:30.667517Z", + "shell.execute_reply": "2024-01-09T02:38:30.666979Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:26.620357Z", - "iopub.status.busy": "2024-01-08T11:46:26.619902Z", - "iopub.status.idle": "2024-01-08T11:46:26.627192Z", - "shell.execute_reply": "2024-01-08T11:46:26.626543Z" + "iopub.execute_input": "2024-01-09T02:38:30.669830Z", + "iopub.status.busy": "2024-01-09T02:38:30.669457Z", + "iopub.status.idle": "2024-01-09T02:38:30.676655Z", + "shell.execute_reply": "2024-01-09T02:38:30.675973Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:26.629855Z", - "iopub.status.busy": "2024-01-08T11:46:26.629406Z", - "iopub.status.idle": "2024-01-08T11:46:26.875361Z", - "shell.execute_reply": "2024-01-08T11:46:26.874719Z" + "iopub.execute_input": "2024-01-09T02:38:30.679300Z", + "iopub.status.busy": "2024-01-09T02:38:30.678928Z", + "iopub.status.idle": "2024-01-09T02:38:30.922557Z", + "shell.execute_reply": "2024-01-09T02:38:30.921826Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:26.878500Z", - "iopub.status.busy": "2024-01-08T11:46:26.878039Z", - "iopub.status.idle": "2024-01-08T11:46:27.176040Z", - "shell.execute_reply": "2024-01-08T11:46:27.175408Z" + "iopub.execute_input": "2024-01-09T02:38:30.925622Z", + "iopub.status.busy": "2024-01-09T02:38:30.925132Z", + "iopub.status.idle": "2024-01-09T02:38:31.203728Z", + "shell.execute_reply": "2024-01-09T02:38:31.202990Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:27.179200Z", - "iopub.status.busy": "2024-01-08T11:46:27.178738Z", - "iopub.status.idle": "2024-01-08T11:46:27.183002Z", - "shell.execute_reply": "2024-01-08T11:46:27.182380Z" + "iopub.execute_input": "2024-01-09T02:38:31.208016Z", + "iopub.status.busy": "2024-01-09T02:38:31.206845Z", + "iopub.status.idle": "2024-01-09T02:38:31.212490Z", + "shell.execute_reply": "2024-01-09T02:38:31.211882Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 62d530b9b..10d480055 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -862,7 +862,7 @@
---2024-01-08 11:46:31-- https://data.deepai.org/conll2003.zip
+--2024-01-09 02:38:35-- https://data.deepai.org/conll2003.zip
Resolving data.deepai.org (data.deepai.org)...
-143.244.50.88, 2400:52e0:1a01::996:1
-Connecting to data.deepai.org (data.deepai.org)|143.244.50.88|:443... connected.
+185.93.1.247, 2400:52e0:1a00::1068:1
+Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443...
+
+connected.
HTTP request sent, awaiting response...
conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s
+conll2003.zip 100%[===================>] 959.94K 5.93MB/s in 0.2s
--2024-01-08 11:46:32 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]
+2024-01-09 02:38:36 (5.93 MB/s) - ‘conll2003.zip’ saved [982975/982975]
mkdir: cannot create directory ‘data’: File exists </pre>
conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s
+conll2003.zip 100%[===================>] 959.94K 5.93MB/s in 0.2s
--2024-01-08 11:46:32 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]
+2024-01-09 02:38:36 (5.93 MB/s) - ‘conll2003.zip’ saved [982975/982975]
mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}
conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s
+conll2003.zip 100%[===================>] 959.94K 5.93MB/s in 0.2s
-2024-01-08 11:46:32 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]
+2024-01-09 02:38:36 (5.93 MB/s) - ‘conll2003.zip’ saved [982975/982975]
mkdir: cannot create directory ‘data’: File exists
@@ -940,24 +948,9 @@-1. Install required dependencies and download data
----2024-01-08 11:46:32-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz -Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.226.249, 52.217.9.148, 3.5.7.165, ... -Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.226.249|:443... --------connected. --@@ -981,66 +974,29 @@---+--2024-01-09 02:38:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz +Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.11.201, 52.217.232.201, 3.5.27.107, ... +Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.11.201|:443... connected. HTTP request sent, awaiting response...1. Install required dependencies and download data
pred_probs.npz 0%[ ] 0 –.-KB/s
--------
-- pred_probs.npz 1%[ ] 278.53K 1.31MB/s
- -
--</pre>
-- pred_probs.npz 1%[ ] 278.53K 1.31MB/s
- -
--end{sphinxVerbatim}
-pred_probs.npz 1%[ ] 278.53K 1.31MB/s
--------
-- pred_probs.npz 28%[====> ] 4.65M 11.2MB/s
- -
--</pre>
-- pred_probs.npz 28%[====> ] 4.65M 11.2MB/s
- -
--end{sphinxVerbatim}
-pred_probs.npz 28%[====> ] 4.65M 11.2MB/s
-pred_probs.npz 97%[==================> ] 15.93M 25.9MB/s -pred_probs.npz 100%[===================>] 16.26M 25.9MB/s in 0.6s
+pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s
--2024-01-08 11:46:33 (25.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
+2024-01-09 02:38:36 (150 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
</pre>
pred_probs.npz 97%[==================> ] 15.93M 25.9MB/s -pred_probs.npz 100%[===================>] 16.26M 25.9MB/s in 0.6s
+pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s
--2024-01-08 11:46:33 (25.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
+2024-01-09 02:38:36 (150 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
end{sphinxVerbatim}
pred_probs.npz 97%[==================> ] 15.93M 25.9MB/s -pred_probs.npz 100%[===================>] 16.26M 25.9MB/s in 0.6s
+pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s
-2024-01-08 11:46:33 (25.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
+2024-01-09 02:38:36 (150 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]
[3]: diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index a86b6aa2a..0195394fb 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:31.949730Z", - "iopub.status.busy": "2024-01-08T11:46:31.949540Z", - "iopub.status.idle": "2024-01-08T11:46:33.725399Z", - "shell.execute_reply": "2024-01-08T11:46:33.724750Z" + "iopub.execute_input": "2024-01-09T02:38:35.691342Z", + "iopub.status.busy": "2024-01-09T02:38:35.690883Z", + "iopub.status.idle": "2024-01-09T02:38:36.831466Z", + "shell.execute_reply": "2024-01-09T02:38:36.830783Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-08 11:46:31-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-01-09 02:38:35-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.50.88, 2400:52e0:1a01::996:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.50.88|:443... connected.\r\n", + "185.93.1.247, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -116,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.05s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.93MB/s in 0.2s \r\n", "\r\n", - "2024-01-08 11:46:32 (17.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-01-09 02:38:36 (5.93 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-08 11:46:32-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.226.249, 52.217.9.148, 3.5.7.165, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.226.249|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-01-09 02:38:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.11.201, 52.217.232.201, 3.5.27.107, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.11.201|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,26 +168,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 278.53K 1.31MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 28%[====> ] 4.65M 11.2MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 97%[==================> ] 15.93M 25.9MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 25.9MB/s in 0.6s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-01-08 11:46:33 (25.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-01-09 02:38:36 (150 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -210,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:33.728078Z", - "iopub.status.busy": "2024-01-08T11:46:33.727684Z", - "iopub.status.idle": "2024-01-08T11:46:34.740109Z", - "shell.execute_reply": "2024-01-08T11:46:34.739496Z" + "iopub.execute_input": "2024-01-09T02:38:36.834357Z", + "iopub.status.busy": "2024-01-09T02:38:36.833955Z", + "iopub.status.idle": "2024-01-09T02:38:37.874955Z", + "shell.execute_reply": "2024-01-09T02:38:37.874330Z" }, "nbsphinx": "hidden" }, @@ -224,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0a03742f52fc2b4c54e6274c64867976397f0b0d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3526e4e8dbd8a5103c3050f41f03eaff284b3ab8\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -250,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:34.742946Z", - "iopub.status.busy": "2024-01-08T11:46:34.742446Z", - "iopub.status.idle": "2024-01-08T11:46:34.746122Z", - "shell.execute_reply": "2024-01-08T11:46:34.745496Z" + "iopub.execute_input": "2024-01-09T02:38:37.878027Z", + "iopub.status.busy": "2024-01-09T02:38:37.877578Z", + "iopub.status.idle": "2024-01-09T02:38:37.881195Z", + "shell.execute_reply": "2024-01-09T02:38:37.880644Z" } }, "outputs": [], @@ -303,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:34.748638Z", - "iopub.status.busy": "2024-01-08T11:46:34.748268Z", - "iopub.status.idle": "2024-01-08T11:46:34.751511Z", - "shell.execute_reply": "2024-01-08T11:46:34.750857Z" + "iopub.execute_input": "2024-01-09T02:38:37.883800Z", + "iopub.status.busy": "2024-01-09T02:38:37.883428Z", + "iopub.status.idle": "2024-01-09T02:38:37.886626Z", + "shell.execute_reply": "2024-01-09T02:38:37.886095Z" }, "nbsphinx": "hidden" }, @@ -324,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:34.753914Z", - "iopub.status.busy": "2024-01-08T11:46:34.753565Z", - "iopub.status.idle": "2024-01-08T11:46:42.670159Z", - "shell.execute_reply": "2024-01-08T11:46:42.669510Z" + "iopub.execute_input": "2024-01-09T02:38:37.889033Z", + "iopub.status.busy": "2024-01-09T02:38:37.888669Z", + "iopub.status.idle": "2024-01-09T02:38:45.878971Z", + "shell.execute_reply": "2024-01-09T02:38:45.878283Z" } }, "outputs": [], @@ -401,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:42.673217Z", - "iopub.status.busy": "2024-01-08T11:46:42.672808Z", - "iopub.status.idle": "2024-01-08T11:46:42.678894Z", - "shell.execute_reply": "2024-01-08T11:46:42.678330Z" + "iopub.execute_input": "2024-01-09T02:38:45.881874Z", + "iopub.status.busy": "2024-01-09T02:38:45.881620Z", + "iopub.status.idle": "2024-01-09T02:38:45.887671Z", + "shell.execute_reply": "2024-01-09T02:38:45.887078Z" }, "nbsphinx": "hidden" }, @@ -444,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:42.681143Z", - "iopub.status.busy": "2024-01-08T11:46:42.680835Z", - "iopub.status.idle": "2024-01-08T11:46:43.104429Z", - "shell.execute_reply": "2024-01-08T11:46:43.103715Z" + "iopub.execute_input": "2024-01-09T02:38:45.890004Z", + "iopub.status.busy": "2024-01-09T02:38:45.889632Z", + "iopub.status.idle": "2024-01-09T02:38:46.317888Z", + "shell.execute_reply": "2024-01-09T02:38:46.317259Z" } }, "outputs": [], @@ -484,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:43.107340Z", - "iopub.status.busy": "2024-01-08T11:46:43.107087Z", - "iopub.status.idle": "2024-01-08T11:46:43.113362Z", - "shell.execute_reply": "2024-01-08T11:46:43.112733Z" + "iopub.execute_input": "2024-01-09T02:38:46.320703Z", + "iopub.status.busy": "2024-01-09T02:38:46.320290Z", + "iopub.status.idle": "2024-01-09T02:38:46.325604Z", + "shell.execute_reply": "2024-01-09T02:38:46.325035Z" } }, "outputs": [ @@ -559,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:43.115913Z", - "iopub.status.busy": "2024-01-08T11:46:43.115476Z", - "iopub.status.idle": "2024-01-08T11:46:45.037388Z", - "shell.execute_reply": "2024-01-08T11:46:45.036624Z" + "iopub.execute_input": "2024-01-09T02:38:46.328121Z", + "iopub.status.busy": "2024-01-09T02:38:46.327752Z", + "iopub.status.idle": "2024-01-09T02:38:48.279409Z", + "shell.execute_reply": "2024-01-09T02:38:48.278654Z" } }, "outputs": [], @@ -584,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:45.040997Z", - "iopub.status.busy": "2024-01-08T11:46:45.040075Z", - "iopub.status.idle": "2024-01-08T11:46:45.047022Z", - "shell.execute_reply": "2024-01-08T11:46:45.046360Z" + "iopub.execute_input": "2024-01-09T02:38:48.282869Z", + "iopub.status.busy": "2024-01-09T02:38:48.282115Z", + "iopub.status.idle": "2024-01-09T02:38:48.289091Z", + "shell.execute_reply": "2024-01-09T02:38:48.288442Z" } }, "outputs": [ @@ -623,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:45.049521Z", - "iopub.status.busy": "2024-01-08T11:46:45.049029Z", - "iopub.status.idle": "2024-01-08T11:46:45.075003Z", - "shell.execute_reply": "2024-01-08T11:46:45.074374Z" + "iopub.execute_input": "2024-01-09T02:38:48.291646Z", + "iopub.status.busy": "2024-01-09T02:38:48.291203Z", + "iopub.status.idle": "2024-01-09T02:38:48.308281Z", + "shell.execute_reply": "2024-01-09T02:38:48.307787Z" } }, "outputs": [ @@ -804,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:45.077409Z", - "iopub.status.busy": "2024-01-08T11:46:45.076978Z", - "iopub.status.idle": "2024-01-08T11:46:45.109110Z", - "shell.execute_reply": "2024-01-08T11:46:45.108606Z" + "iopub.execute_input": "2024-01-09T02:38:48.310500Z", + "iopub.status.busy": "2024-01-09T02:38:48.310301Z", + "iopub.status.idle": "2024-01-09T02:38:48.342796Z", + "shell.execute_reply": "2024-01-09T02:38:48.342287Z" } }, "outputs": [ @@ -909,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:45.111487Z", - "iopub.status.busy": "2024-01-08T11:46:45.111114Z", - "iopub.status.idle": "2024-01-08T11:46:45.118819Z", - "shell.execute_reply": "2024-01-08T11:46:45.118293Z" + "iopub.execute_input": "2024-01-09T02:38:48.345127Z", + "iopub.status.busy": "2024-01-09T02:38:48.344926Z", + "iopub.status.idle": "2024-01-09T02:38:48.354346Z", + "shell.execute_reply": "2024-01-09T02:38:48.353738Z" } }, "outputs": [ @@ -986,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:45.121192Z", - "iopub.status.busy": "2024-01-08T11:46:45.120823Z", - "iopub.status.idle": "2024-01-08T11:46:46.940522Z", - "shell.execute_reply": "2024-01-08T11:46:46.939948Z" + "iopub.execute_input": "2024-01-09T02:38:48.356834Z", + "iopub.status.busy": "2024-01-09T02:38:48.356628Z", + "iopub.status.idle": "2024-01-09T02:38:50.187680Z", + "shell.execute_reply": "2024-01-09T02:38:50.187124Z" } }, "outputs": [ @@ -1161,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-01-08T11:46:46.943173Z", - "iopub.status.busy": "2024-01-08T11:46:46.942789Z", - "iopub.status.idle": "2024-01-08T11:46:46.947081Z", - "shell.execute_reply": "2024-01-08T11:46:46.946560Z" + "iopub.execute_input": "2024-01-09T02:38:50.190444Z", + "iopub.status.busy": "2024-01-09T02:38:50.189942Z", + "iopub.status.idle": "2024-01-09T02:38:50.194378Z", + "shell.execute_reply": "2024-01-09T02:38:50.193753Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index f30622fcd..c5d4ae716 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.5.0", - commit_hash: "0a03742f52fc2b4c54e6274c64867976397f0b0d", + commit_hash: "3526e4e8dbd8a5103c3050f41f03eaff284b3ab8", }; \ No newline at end of file