From f8f26aeedddce9de369aaa97c0dcce19c26cc7fb Mon Sep 17 00:00:00 2001 From: elisno Date: Wed, 17 Jan 2024 23:19:03 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@93154314109f77e58265574da2ab08503d0fd5a2 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3315 -> 3315 bytes .../benchmarking/noise_generation.doctree | Bin 83507 -> 83507 bytes .../.doctrees/cleanlab/classification.doctree | Bin 297397 -> 297397 bytes master/.doctrees/cleanlab/count.doctree | Bin 297132 -> 297132 bytes .../cleanlab/datalab/datalab.doctree | Bin 181018 -> 181018 bytes .../guide/custom_issue_manager.doctree | Bin 29123 -> 29123 bytes .../guide/generating_cluster_ids.doctree | Bin 6256 -> 6256 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5915 -> 5915 bytes .../guide/issue_type_description.doctree | Bin 104324 -> 104324 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5502 -> 5502 bytes .../cleanlab/datalab/internal/data.doctree | Bin 75965 -> 75965 bytes .../datalab/internal/data_issues.doctree | Bin 76753 -> 76753 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 43724 -> 43724 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4562 -> 4562 bytes .../datalab/internal/issue_finder.doctree | Bin 46509 -> 46509 bytes .../_notices/not_registered.doctree | Bin 3377 -> 3377 bytes .../issue_manager/data_valuation.doctree | Bin 76478 -> 76478 bytes .../internal/issue_manager/duplicate.doctree | Bin 73748 -> 73748 bytes .../internal/issue_manager/imbalance.doctree | Bin 71607 -> 71607 bytes .../internal/issue_manager/index.doctree | Bin 5884 -> 5884 bytes .../issue_manager/issue_manager.doctree | Bin 82549 -> 82549 bytes .../internal/issue_manager/label.doctree | Bin 87552 -> 87552 bytes .../internal/issue_manager/noniid.doctree | Bin 90234 -> 90234 bytes .../internal/issue_manager/null.doctree | Bin 64142 -> 64142 bytes .../internal/issue_manager/outlier.doctree | Bin 75773 -> 75773 bytes .../issue_manager/regression/index.doctree | Bin 3622 -> 3622 bytes .../issue_manager/regression/label.doctree | Bin 107659 -> 107659 bytes .../underperforming_group.doctree | Bin 121020 -> 121020 bytes .../cleanlab/datalab/internal/report.doctree | Bin 32315 -> 32315 bytes .../datalab/optional_dependencies.doctree | Bin 3389 -> 3389 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 102668 -> 102668 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 346504 -> 346504 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48181 -> 48181 bytes .../cleanlab/experimental/index.doctree | Bin 5382 -> 5382 bytes .../experimental/label_issues_batched.doctree | Bin 161811 -> 161811 bytes .../experimental/mnist_pytorch.doctree | Bin 492589 -> 492589 bytes master/.doctrees/cleanlab/filter.doctree | Bin 98823 -> 98823 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4550 -> 4550 bytes .../internal/label_quality_utils.doctree | Bin 19742 -> 19742 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 88865 -> 88865 bytes .../internal/multiannotator_utils.doctree | Bin 45614 -> 45614 bytes .../internal/multilabel_scorer.doctree | Bin 162776 -> 162776 bytes .../internal/multilabel_utils.doctree | Bin 33914 -> 33914 bytes .../cleanlab/internal/outlier.doctree | Bin 17097 -> 17097 bytes .../token_classification_utils.doctree | Bin 66017 -> 66017 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 208122 -> 208122 bytes .../cleanlab/internal/validation.doctree | Bin 33814 -> 33814 bytes .../cleanlab/models/fasttext.doctree | Bin 2403 -> 2403 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5060 -> 5060 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103797 -> 103797 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 171038 -> 171038 bytes .../multilabel_classification/dataset.doctree | Bin 67565 -> 67565 bytes .../multilabel_classification/filter.doctree | Bin 89621 -> 89621 bytes .../multilabel_classification/index.doctree | Bin 5009 -> 5009 bytes .../multilabel_classification/rank.doctree | Bin 46224 -> 46224 bytes .../cleanlab/object_detection/filter.doctree | Bin 36016 -> 36016 bytes .../cleanlab/object_detection/index.doctree | Bin 3927 -> 3927 bytes .../cleanlab/object_detection/rank.doctree | Bin 151195 -> 151195 bytes .../cleanlab/object_detection/summary.doctree | Bin 157619 -> 157619 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 102110 -> 102110 bytes master/.doctrees/cleanlab/rank.doctree | Bin 117415 -> 117415 bytes .../cleanlab/regression/index.doctree | Bin 3801 -> 3801 bytes .../cleanlab/regression/learn.doctree | Bin 220237 -> 220237 bytes .../cleanlab/regression/rank.doctree | Bin 19619 -> 19619 bytes .../cleanlab/segmentation/filter.doctree | Bin 29078 -> 29078 bytes .../cleanlab/segmentation/index.doctree | Bin 3855 -> 3855 bytes .../cleanlab/segmentation/rank.doctree | Bin 53242 -> 53242 bytes .../cleanlab/segmentation/summary.doctree | Bin 67310 -> 67310 bytes .../token_classification/filter.doctree | Bin 29360 -> 29360 bytes .../token_classification/index.doctree | Bin 4017 -> 4017 bytes .../token_classification/rank.doctree | Bin 66747 -> 66747 bytes .../token_classification/summary.doctree | Bin 84588 -> 84588 bytes master/.doctrees/environment.pickle | Bin 1817764 -> 1817764 bytes master/.doctrees/index.doctree | Bin 41848 -> 41848 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28054 -> 28054 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1198 +++++------ .../tutorials/datalab/datalab_advanced.ipynb | 348 +-- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1908 ++++++++--------- .../nbsphinx/tutorials/dataset_health.ipynb | 56 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 568 ++--- .../.doctrees/nbsphinx/tutorials/image.ipynb | 1758 ++++++++------- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- .../nbsphinx/tutorials/object_detection.ipynb | 146 +- .../nbsphinx/tutorials/outliers.ipynb | 404 ++-- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 1336 ++++++------ .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 164 +- .../tutorials/token_classification.ipynb | 164 +- master/.doctrees/tutorials/audio.doctree | Bin 327063 -> 327065 bytes .../datalab/datalab_advanced.doctree | Bin 198979 -> 198979 bytes .../datalab/datalab_quickstart.doctree | Bin 150645 -> 150645 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3058 -> 3058 bytes .../tutorials/datalab/tabular.doctree | Bin 121277 -> 121277 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 308691 -> 308693 bytes .../tutorials/dataset_health.doctree | Bin 330828 -> 328956 bytes master/.doctrees/tutorials/faq.doctree | Bin 175069 -> 175069 bytes master/.doctrees/tutorials/image.doctree | Bin 492341 -> 488665 bytes .../tutorials/indepth_overview.doctree | Bin 212787 -> 212787 bytes master/.doctrees/tutorials/index.doctree | Bin 3170 -> 3170 bytes .../tutorials/multiannotator.doctree | Bin 137341 -> 137341 bytes .../multilabel_classification.doctree | Bin 57571 -> 57571 bytes .../tutorials/object_detection.doctree | Bin 110970 -> 110970 bytes master/.doctrees/tutorials/outliers.doctree | Bin 106817 -> 106815 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17248 -> 17248 bytes master/.doctrees/tutorials/regression.doctree | Bin 80759 -> 80759 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 3055047 -> 3084737 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59757 -> 59757 bytes master/.doctrees/tutorials/text.doctree | Bin 90061 -> 90061 bytes .../tutorials/token_classification.doctree | Bin 186296 -> 186475 bytes master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1198 +++++------ .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 348 +-- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 18 +- master/tutorials/datalab/text.ipynb | 1908 ++++++++--------- master/tutorials/dataset_health.html | 20 +- master/tutorials/dataset_health.ipynb | 56 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 568 ++--- master/tutorials/image.html | 280 ++- master/tutorials/image.ipynb | 1758 ++++++++------- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- master/tutorials/object_detection.ipynb | 146 +- master/tutorials/outliers.html | 4 +- master/tutorials/outliers.ipynb | 404 ++-- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 1905 ++++++++-------- master/tutorials/segmentation.ipynb | 1336 ++++++------ master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 2 +- master/tutorials/text.ipynb | 164 +- master/tutorials/token_classification.html | 63 +- master/tutorials/token_classification.ipynb | 164 +- versioning.js | 2 +- 161 files changed, 10359 insertions(+), 10095 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index c6c2a8882..70e411042 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 4f3df2d59ec98742a805ef8a33da0300 +config: 4bb4c4bcc276393a0692c2c4822e1f6b tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index a4d25efc1019305c4af0a702865fac8b44aa8771..027c3e42491447181d0b73976e432a7a5cc5f510 100644 GIT binary patch delta 175 zcmew?`B`#9IHO^FfoVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( kxv6oYMM`4Yf#_>+vJH%UYn^V%p{jjI3m6o9^hsn7mn&c?vV>R)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*zgPKl delta 1655 zcmdno!@9YLbwfO(p>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2v3UX`D;e6RJGw9?Z`Nd5Gb`v=Bt}wC`i6ZjG&Rlu_K3(kc_y7IR!+V~++pKDyRn3tG z;%M%6o*!%*D9Fus`HNcoKEKObrr%Kfhrj5U*05|l{?jVzeydc?M2}yMX+v_;ZQYLXW{S6L?^yCumn`bDG_Sn zR_&;8ho0l+T`Pu%mUY^V>d4q6zu2!>Ma8HMqn3PGdsmOIEi)&#FW4RXXnsn?$k?<8 z(cK-YRfmU?Rk47e`JTPRFYbQmP1J6VvFF62k70^n-TO(qm|x05Jf3kcU#`Ma{ij+ZB`0hw^ASUU{ft7P!9b}qJePQ#gG zI$nT-E7j7qL>@Uob^Jj(Gx4y8dLUX#tB^C?%mbNMV#F6Rzy%K-LA-{=#t~~^fbm8e z#Wvtg?KBa-cF-kkg?K`JAAPe6H-&0`_6AMm!F6hZS7BOj`LCFg4VnOv`!pN*%2dfC z=|ti74Vntw>-30%YZH$F8FNgJO=vVQ{VhFPMDh|yrIpk2;y9#?uG zrJSw!aBx4|d(3|JX@~z+w?I;s@&)k?xD~)9YH6zIK1B!`aFu9Mfqxs-xpm{NkWu6_sPT7`5cfyLyBE&g}exfk0pUqxmTnqvJDP zM0Zc9P8}IeRmCEL=6m*%c5(MZf3kLSoINKVeGF3s>)B7b#KLk8;_*y)d8``a-RwNJ zvV>-Tuce_oPyY~T@9M8+H2Zmd5^*Xv=L`lyW)Vjs0ar3|9orgulZXy&Hf|$rXtQBE zxq>$5>&b1j*=HhAwE4Z6Ory;vD=9&nmorE=+Pt!p97UVwv&byk%yyGcX!BS$=|Px5 zZlEU!DUe)ZL~I_AoAxd8^w;u81<^s+My7TkcD%gPT965sO0>h^yGqVq*3QNE&S^N4 zN++B+xJoTsOXiUiRL37=G7}GbsTZPUv>G|X%{-8KrAB-q16=UZQN(Lld>rux2AF7~ zQEUU=+(nb&Yd2lSR!Af?4A3{ba8sz^XK&DS9$2Rqcon7%mj8+=-JnSjxli+uuS``u zl1UV9+o0*tw@!~JxHgFxkTJ*f*n}nn)8EpwB_#h)@+sO``NmwqzvVFt#4?x-ar;{V zTn1R-Wfp5p!`CDq$; diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 05d1ac346bb4d8a3844d1ba9dcad47dfe2222283..1b94fe457e28c6bf302725a5f99e5106f65d4d8d 100644 GIT binary patch delta 3738 zcmZ28QE1IXp$(plhVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{Fo826H)t5Cvt^K2$2ax5&Au-nYTVj@D8ts6<#HT_`&qyFT2J>|_y zCHHZWuU}*HYn6#)co=5C#%31v4kk+M7t!KoAyfb6dcA6j>~1m)rAU9gNj*jS)6B0? z6!u3fLnyL;fz1kX!ycISG&Wyw{K8CT+=2D`xXq=={e_;pDRTc7zcz~8e<)}UMfN`n zKTnbUwlP~M(qEbIg`)KLHK~E3`1_k`OOgIV87UO`e_hTi3gS;-Ge^;79`e(_z-I6I zn_=YXH<*0?iqz)$*S2s{qW|0j18*|)8)`FKY){u=+(eG$V9iZtjP90X*bJ=oytlg+ zFlGyou6a99^BgzQ^?|B7x9wk!Gj6daLo>*`(-WAOIJQf&Fl{9#wIEEe7i3~GA zlTj*wQ^aor6W63}384CBl(5~Nn#SU; F1OP?pr6T|U delta 3738 zcmZ28QE1IXp$(plhQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pEi+y=3SrlrY{rn~8}W3kxOeHuJEUh>&ILM$&anf7rmNKe=8{dGk`q zeO%=0*Vz18Wg;0KhS{&NnMJ*Wi4yxow76Nw)W5l2ubLven+!uK(jRY9Pm%sK^J^4^ z{SnI$itJxtvx3~P2c|uZ%@-WMFq0W~VEsOBb18Cvq33Rj+`q-IjUx9S3YtTa{m;VB zQ)Itw%od9DS0;R+DE)m+YM?0o{-)Yer2kMx3Pt{3m-C8(_!HR7QFNJy{PZud*}MK` z78Kec`3Rlp7ux?j>L0*u+;s)WX zZ9kdoCAkTuDOouu3560A6bwD)w*t5+X(@ZKWaFN`{#l zm6>sj2|ut%LQ7FN#1X*|yvWe%qJl1rE(+=*LxYSi!e;F+=(m5s^FF`#J!jrCJ?&yo zyEtAV8qG3o;v;;r^~&CY@V0}5S0xFVlkA;1}j}J)zjBIx63pBWn)4o%QENlCpTs(nZ;y6f02H#v>kLGuWZ0x%CBzE5-$8KYF z6+r@rx3N&LGaCD?$}`c}Z&pj7ow-A3-z@Wd0JN@6d}D1xG(Bh4^+jVpT)#gW`<8H9 z40K%rw7EQy6*tXc8%||ot)H;IRkq_=Bi6IZ3T`NLC7n!qWP{uWHU>AP?OJO{29a3*1Lz8X*bVE3BN zTKJ-cOl4s5NC6YK?;_JtBrs`u0W-hiBugoH3?u(hOjf`v80o{v)gvSpOCVEwzfGGD zlOlddAr@@&uNC2oRm5Y3#vp5%mr1&2Qb++$Y9w9QEM%@%@mrt-9=i0{z=ckdgZ-!e pwf6k_MwQel3}Js zWo8^>LJf-~v=oIy91#q`iwvzUD(J%KqM$A^G|1>8Y}WpQp1GTw-}^kzd)|4^>FX5x zI>m`{p+IVCsE!uZ2JHdKDf=9*y)I{gzrZ2+LQYq{-{A}Tt0g()Dk_wHg--2Lw$sY^ zEP8(^fer~z^Zy&CEBz&GftUplRSXB>F_bC>E8Qrbhv+iuj-)bcQlbIIZEVac8!?=D z)4nEQDD|cp+1&OQsBsOa1E-Q%&dxs$+<{i&I7r7D-&)m#`gccc?3(u^HgBSR~l3NBw5aX+7#U>SR!zxg%(9mVGV&s;+l@bNvN9nR6Nk^r#Xcy9HBU$7#i^fvrBjf;w26H#738P7nU`&Bz95 zKYLilVrwFX(u_qb+wmoP4#WA(xZnn*RgD#S$CMzaW8&)cdqJdkCR6yax577UrFghj zv0$5jy$D~bB_1o(21U)jL^4%Vh!pdbX3~T8Lg88!zXfvOq05gAT<9iw*gN$f oKio@7v7bRvw~mqoZ68^A+ar>T?G%M;MbbAx4JhHGGvqA!3$O)j@c;k- diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 6b8cac7184d0346fb2147d9c00a5e711cea7b885..f54d8218f31a422b720d38869990e85d94f371bb 100644 GIT binary patch delta 64 zcmX^7nDOvq#ti|ChVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 Trpe}}#)%dwiD{b~8J!9M;}I1o delta 64 zcmX^7nDOvq#ti|ChQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 S=B5^jrY1n9#pXsvrvd=NbQB^0 diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 7dbd7cace1c26e2b41d15f580f795f0e2609d100..4fb86f0ae1422ef406d31aba6a0b11df801ac1d9 100644 GIT binary patch delta 62 zcmexh@WEh1HltyDfoVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( Rxv6oYMM`4Y<~fX4!~mve6o>!- delta 62 zcmexh@WEh1Hlv|&Sy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& QMWU$*kZG}b4&xOu0ENmEf&c&j diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index f2a6f80f7330c493235a9fa70466fa34ca5f8751..4b023c8f52f8c34bf2e18e640170a5cd4d0b3035 100644 GIT binary patch delta 67 zcmbQOH(PH*G^0^`foVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( Xxv6oYMM`3t{^avwx|??~CW-<8;3E}D delta 67 zcmbQOH(PH*G^3GmSy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& VMWU$*kZGYm`Mj9!=3R`5q5!&R6hi<2 diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index a8dd1aa6ee003b1504afb28056a7780f14fcad08..24096580fee0a338f67b16ef1718d149079bc4d5 100644 GIT binary patch delta 68 zcmZo!&(^Y@Z9^)fVSIsUMR`V^Vp{Vw#_iJ>8Q)C>00`R_W&i*H delta 68 zcmZo!&(^Y@Z9^)fp>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah Wxv52>sR@v2(L9ZD`!q(zcT)l67ZqRt diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 4ab580823c92be7acbd7464dde854bca029439e2..d1f468c4a16d06ddd33621c5a0b27657f4cc6cb3 100644 GIT binary patch delta 175 zcmeyT^-pVqFQZ|6foVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( jxv6oYMM`4Y4LpwQim-e4h~jh-x?b delta 175 zcmeyT^-pVqFQcJxSy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& iMWU$*kZCcwj`1WJy5R=#Sg|oF$I)w*k_FN&&or&O-i#E4r-h-d^4wKeHg?m|a>@S(9(Ro>L z`^wZRZ^yaNX<~|l9E+okHe!V; zy8C!FF+UZ()Z9qi`$5hIPfu7N7U1y1NguHQmF01Gg_i#xupNcA7%_gBj@!`N)vO2p zv)e!{KvTaLo!6tjcD98Wy{Zm%iE8NJ_W_%DN9$mNWi}MXvE%{TEK$6i&R1^T0g9O( zTKGNKdQ~Q#9p1ii_sG`Gf?^gPjYLSu2$TypNUzr5K-Nh-*>wshwvC2qsr_}a6NRx_ zv#vp$xI7-G7EmsHC9318=^sQ@$mgwCEKN|;SK*$y-8AE!Lv9me0&dZSlOH>`k)q$= zsD$A!^ExPyTV$$q;FU3I;MG#A9*UzY+Bs-nZ_k!_S}E&^C|sCcy-2%>O%CNeo!Gx7 z(H`XgdE|!%riHes{}3${j>#`9Ooa9-ZxYG(S!TkbqpqR)U5p)ON}T-N!DRK6B`Zvm T+bLF*U%z(a4*8Ck5h{KIwtb}9 delta 3706 zcmbtXUq}-H80Y5xSlih-8_Xy-8jD`CbKA`;luD>MG))FJki~9mqY(tHh=d>^3d-og zkMJRgpe(AF;By=zV~8^FL17Hkh}BC-O1%|nB6fF~)}!CO-OKOK_xpX{ahER{^CjcE z5YyzpkxleBUrHUl=nsezA3PQe_>w-}FQo&)rX(+=k_o?<4mJy-Bm|U45pFWy2q=l| zg3pE}BC^vsK}0?@4Umu$J~h8ElAvjPZ#_>)79}=sAStGBl#3G-L1I(*#(tTq`qpu) ziefk$ff-i=4CZQZzCKE)@Zj8mYoxie5u9<+=GM%6@YBH&(t4IxM!igPYVOnZ`UF=11yxy#9 z5GSrq#Hj^TieHK9cy{&&Q56aWE0)TW)bv%jXJJ3hc=xc|#F&6vHsSQg?p>tlw>YX{ zI|(yoW%#F};v+Sl9jRe@H@W+Dm~X4bFJZep85IZr1JY@}!} zWd+MQzhCPBN*sLPh)xG6q4i zu~sf+M3OGl;v$QPN0@~omINXN7XwN_Dk-kq)P3MOM#nRLAjq4NF4)?{CY~p-Y%PML@RWw-{l3Bgc*$>erN*tR0o(s*+K4y2o4q zW&ThikNj|aTa{DMRNMpPa?xdT6MK^|1BOLJnsIA@NRU=4` zcAiGewr0>=^fh3ng0$NQG+dCTD6xMKxELbkDgJJ7I~_dmYY%1?_!vNLgdCvesYVBc z8IdNBxvVoKaN%~t3iF^Z-E8mjMQHVE62knKhgg7b`PxgZxo=<{N|)aN-#GDv=6Fxd z&s!C*x!@CRl!_5PQyire&)3j%5%s85x!4UR(o+l5&-yZYoDP0_=~WQ4f7iqGWqAml z-N8St$Xh}C_@qSj)g{#K;3t2)^ka5&-p%%z&wMOM_1^>FK3Jm22-v^%z{j2-&!D)) mreM3QmY;pbHYjD@>0;fMSVfL?pRz=Ol~DW9TjC$}xa%*s7N=VP delta 2904 zcmcb3o#o0xLJz1mx**ML3&d*+ptaGAWv`h4(3vQkv=}V5y7nAEZPnF$GhRvHBm899paB!ni z&Spz3Pcjk)FqCs9AMoVctgG`)hCG{r+GEJj2?=C@&DXt-vy!E~ezRX-GC5wpm|VR% zHuyL>0S$`UE77aTv$cM+e%wAXGT>y8t#cEZ$2pqZxi^=qB_2k%K!Rfyk8AUh0EnQDWmIqt!Q@x&?@M=^_pX|rWxp_{# z9|hVc!lJVBOq^WtU&ay$TW1=r@(j(Ox{WSI7)eUWTrlmj5`@pA>H#|tqEOy+*1 zx%vLo7i5~VIezXQGU_;B5t=?(?l9Nn`>WZeFJ%WhV@`+YdWh-qy^7a(D zwu7{LeA>iCp6%1;F*7PoU&78PxcSImCo=QHcAz1VWV(NQKRe?ha*9Dh%Ko*emyl>+US2^R8XXg6%>pDZ&; zV6$Vxelj9zvtf%4FIl#hO}=0tJXxnfbhFMRHFErI*a9|UGtZ2v0%W)VQVMWw4qREy F2mq|ed!PUS delta 1212 zcmX?emFdh?rVYM~hQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pXIjA#$`GWO_@6w#f&XN+%`5g)ZNGk?9GarS>*UvQFG#EU)?}5Y@7_z znxKD~iL4-+xcRHmL3XmVR&GwP?vy1Sy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& lMWU$*kZG~GfpHGA5y{&0CkwDkP0nCFOTJd~%{$nnxB=A>H30ws diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 7ffdc190eb8fce52d59fcedc5726ea24105a54f2..1501a082aefefd77d8238d299a121fb5799444f1 100644 GIT binary patch delta 1140 zcmZ4cnrZE8rVZhYhVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{cV7$w-r&~}l7jSSl+U*t&MoXz!}JgsS)fAYw4lkQlctp$^JN)(cz z({XXuSYVH64 delta 1140 zcmZ4cnrZE8rVZhYhQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pVu133f8HUF2XR!?wv6Ig&SLbA2aIYue_YJo4P6I~Hhb!Q`D1g=FY- zT%0v|nVj(E8Tb~I!*5z6M0%EdwB{?zOBc#+1V&ZjBF#) z$25#bnTlR7f&NEpxQV0FO?Gj02cgLd;kCd diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 7d0ce042c2ffb7b72bfc90a764c4e5b2e2b52fc4..970a41c916d6cf5f184717dc67a23f55314115b1 100644 GIT binary patch delta 62 zcmdlewNYw=E0bY-foVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( Rxv6oYMM`4Y<}#+;TmW?d6K?X+mefH2943=t0<+P^4>2Z_zeh7Dwg#W_of%}0!{Fp(P;ApMo*J>=TI`J5#eGbMKK zwCy0*ZeSje*sSF6gCf8Gc3we|{Vi_)D6&7<>kgUvXHFIflbhV3&9~XqZ!VeX4`hb& z=KaC#WQM`a%>rS3WX3O(Mbeg% zA8%Q_n(IQDUa@_$mXY-|%8DvJo%t?{Fn+3OIlADS_ z+5>k)@{;cQ$&4%olkdn%O}35Y-CT4`gA5m-7?E`9A`khl*!=Fg4h7mLzq`(}`QZ~u mHPT%GDoAE+Kg!M6%|W{6?Lf_1Tk6G delta 2794 zcmdmYm1W;mmJQL2hQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pE8wyJYApWSuZsi+LI8IyW=2*puVTLe_tzTQgmK2?bC$xJz1hF9 zkgs2Svm$RBE1CK?7YLu@CR6X^0%6w8JPN^Ngc!u{ApN>Z(d-o1KUr6aZ}N8^d#i`~ zCAkG4OmZSa#6ySnFACy8Vso-#1KDA5&QfCY5#uXN_D>?k2$nU?MS5Rbsi`zen>`(T(L#FCQo$_Xpw58<7 zTNdx;3E6R+%S^88uC zo0rUSBeVLNIr+i@-pN8+geP-K@oj#zNRo|QcL2@Vd}(C{nb9zFQY7zY!7Z8Orecux zz#Wmiq`Q7HBTK>LJF-%fZDV;i7ah|e!v!ctB%Qj*L%u6Ezq_tOf%eJouJdeu_(W2T lbQgdMl3Cl2ax->wkgj<oho$&WOi&9h?NImt^hn-`?#bCIWY@&^;4%@2xV`N`A1`A^dY z4l=cN_pBhZke}S$BeT#k)CeehRsf1=2oki8-0o%;W{>?33j-a&Mlu zsfmn8+Z?!eD>)@g;NIz*&mFwPLwb;HzIbj88QLaaJU4N({T+Ta(rpA4gWGwT8SBVQ pTGKypF>-DX=3%TNGl5Ol7i8qxK23=6D;Y5abbZNoVAJafBLLWoB+>u? delta 2566 zcmbPofMv=7mJNZ7w#H>eNtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9g?>tYaSRTIB~x?R6oS$+Ug5K*WCXBaLVCtXOwW@{-Kv1?l-*^i o^bcH&oZEwW7^}!kVAJ&l8M(Gk6Jq>IMhpR6U$Pz8^m@Vw0K)nC#{d8T diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 6b8c641db845109a88717b2738312734cd08a69c..fe2187c0a7f003490c239ac6ba0d552f56557568 100644 GIT binary patch delta 2528 zcmdnKo@M)bmJNZ7w($j~73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD~*N`N_rl#rdU0$*Gesgc?si$oSllWK)1TOD6j=A0$ub^t+;r{F4u{ z6q2RAe{wIk@Mbo)<1FN9-`vY>$x5cyHo>PHWNOuxW@98z>tr!?;ms_vL7Zf3k0w(m zFrX*jaN*k=q;ZzOvi(?zcucm#P&e5H)Ptr`LE>xGHu>m zYx9pxTPK739PF@+nXDjNxA}(49P;9M^X3SzO!EA@dGk`Ax8(VE^X9UEbaHJy7<7*e zTQ^?_eMqj2QzNdCVI#1p-Mra9W*&JFGkf#SL__iljtP?!Rfi_{r4%zJq7;(Y71prRNEgLE5vrOSs9iee?Y3uH=RKgvs-#3vS*v$BdUe zn}H!OxOv~IO7cQIXR?EovE1 zhfA`GZqZ?v?N&kZJ4Bmom3(r);PQ*LPM73#XrC_2z=RyM1Sh5fvX5PR1s3IAZGWz! zks;QW9>vH=ynxGLXZ$3DFS8|M9_jTLJciSf(X9i~IrDP{h*p>CISgfmm3hRMdop3X z2PCziS*$6WJXKd{*zuZGwC#9J5w%$_)4;>0@Px4VAA6_x2HGjTVgv`X$H_`cA4BKagrSOr3kP)-fW~3QQ zU16IMGaapqS(sT%-b^RE(^%?btg)n+5{EV{wjZ1&4s+?{_}m0F@LQtc#zf;6W&bEa o4L8XO=mZKSKgO_Mb!zW*s)gr#*egL%y$0?P8(m1%o^V%p{|Mk6w`O%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24gf3EYc~J@ delta 2596 zcmey`!uqv^bwebhp>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2vAK)UhzxC$7oMw`oXLEUbPK^cud_6erL%MLJ3q0_>TFdkWNR1RoX0J} zN}l%34uYBN_+7Z<)D^p8PEg>A&Hf3!l)7MD(m4uT01isOv}4R< z1!dRd13lc6?Fxi9zs>38Qm@RDh>!23(&mUja01vjtzyoXFbPpz>% diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 476001193850ed195d4c868af1db678ece8db677..94901172591b5406c926526ac118529773b806bc 100644 GIT binary patch delta 2852 zcmZoz!`iThb%Q6PVSIsUMR`V^V%p{^MkzA1OTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1bZ$7B` delta 2852 zcmZoz!`iThb%Q6Pp>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2vAK#-iVSU&7Y5`^?q^}0Y{tBYbW5SS8_3c*aq~siI2N+BPTl;KONf;$ zt#zBX3GC%1PwQkQ`6uM*+`Lu6L7F_Rlea1ePnM3bw>qw0l3M`6B&Q8vG)>%m&~_7f zfjw=rm2(4mNo(5XM%RT*WchpA=9eBlXY-4y=Nx3E^}5LqUa(KrZ)V%v-NMO5rV$f* zMK*``EAW%4{qz#)&5rY1$@PHlI^NAqD^%FYv>l{9X@j#2ncCx%gg2+3O(M6r0BP^O z7(r&mIr+d<{>jZNgg0-wE=_Lo0UEKn_YNny_3wihLYu>1nUa@u(kK7=p|d&Qs}Om? zm%jPekLx^SMI6Xx>Fq6Sj8c^74-{s+sY;gpb<=Gv7}>W!uw>LFH{CyY!M6R76Qe1a dX=nOBH%6}Q8$1|~k{5TNHY)#i#Sq5(i~uc1dF22A diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index a4ea0a53ff495420e9412934fff83ad9aab9bd3d..3cd1b9aac60b4aa3ce643d859e19d9417edcc02b 100644 GIT binary patch delta 2906 zcmex$fc4h_)(zf_hVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{c_7-h-OHo5VB-ee2rqoi91);Wizfjpg?ce8$AAy4b%-K@fs8%kL= zCvrD4lVwEyqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^A{tRGm&(>i%KtMKH8QkKn$ z+|A5n8IeEv7rWBtW&CR>&^~z?KgboVn{`CAS;=%om$=GiX{lRm6lmY6_)n26?TwQa z!dW-xxwr_Bt({|YPAC(3X|8dzLb#wf*)|JJ?(A}~I;CHdTL8i&XBJ@EZQT4J|1^0i zuyOK-eBsRvrLAQ89i$zcbk3JAXCgBUU`9Ap_fYDJX|<;*b%l203QAouxA`cguFz>; zMqY+)n%uvfd-H_uRpg}yu=dFlx*?G&FtMDxus}5?cJdkW!UNTq|I<>b;To%%d#T}? zvvc&Q;hKx{wo=12F^d|=jPT9<%U^Pkm2;aWPx!(%IiZSmv)M**F7k}nv`3boJe`{_ zoK9sYPwV6hrv*0uxE#Svy7tYD_a~B9$4%aR?HM~S={5q(_omGgz66pNz!{SRf~BUv zVr1moyy(9oc|{7sjO{JVjH`Lb@&nkA$+-(Tw!ac!6s6RRU9ybVRmpNk({>jZMl13Y jJnMEdUq&19T1idYRf8EXkr$D9ljpGTZ(kb6c$E^Vw(PBM`n}B26n8QH!()A8j`Gka-mb!WE(D_$=liIkg59}$7V8h+Hf_H zrL%hSObg-7)!aNRWNVk$>@6TeUU*e+78YaYAk*e~3LKly$*C}sr+xE0g>*6XKCt$CMm?0+u4lTR zOxrilv^YSC&9c@z$+Q{l?^$-sm`M+|&4o@s$cyV)lP`p_ZnpHuCeP0h?Im7h`Wd4A zuWuqHw(A9unbIJ(&kW8X)Ar35Lbs6@*ASb-BGt)@wD!%Wac{^e+Y;~AZa$wb!9{us z1J*z_lk*FNHZLoZoo+sD8WZQiEnFqP4>cX3SyZ|`_Ewlgt delta 2522 zcmeDC%G~#rd4oHnk#Sj3Ql)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2p+DJ?*<`YT9qZ;zj1jDcBVC(unM|EFTn%LD zte!m6LU?mEHxCQh+9fu73&@ZcUe%k0#n?H>w0WKa$L4c#Dvac5-#kwtolHkho~Ix@ z`G=#u)e-%Y+yW3LC#^t2{$mfbRD(t~Ytq0GjpgLBBVee;FTZREu@#OAO_b@C#ueY0uY8*<9F#Jjbd&!#usLx?@8%0r63EF_i8JhY$gmL< zQ~|5mHwP~*BQIq^wAU{0k|M))U>r~WZ^$~C{~*uiV~4EBi0jRUXBUwXT$2sYPTD-} g;w&;EX>;P;V`Qf1$@MSUHs5~cL2jzL@Ma$`0EE2*z5oCK diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 79f6d24db34bf0f671b3b9c01e6d7c7a7d6cc551..beab1b0366992e2813cd8e1fb356431cd5bf40bd 100644 GIT binary patch delta 2831 zcmex+p5^a(mJPm)hVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{eb7!}CSHrbG+bg~Qc9?~rY>ij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*06<52HUIzs delta 2831 zcmex+p5^a(mJPm)hQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pXIj1v0cvHe@NC?83ZQFIgwBkgZ*Ovn#g@ zD_Pn*H%kjLagn99XY(y-HZsC^v!JXS8QLZb%1)mwFYiH?TOon0uke@rK$h72Q?-FS zcY|z~*zBgUmWgb~OKd)%-9w4(l6n`(w0-k@!vmDqtYdPQOq;>McFo*|65H=vo+i`w z&GEMTn8}Q=^U6Gv<%5MM>nreW{_ogJZmNSABe6Nvy`0=IfElsXlic{93^O9$Hm{gSB6q zUBOMJ_Va6nHjA!cCDZYn&#zVECDY~!2L(6p-t9q7d>gW4PCoZUdh)3wJd+okV%>c5 zm>4+)8j>-a7o0lCLxx8nMyPF8ydg}c_RZ&>$g7cIGq8a*{U0YI`}URGjMg0F88CUm jLALGlMHrpQjQ;65vW%SD7f3OlBQF-~x67$9-e&{=IN?kv diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 9572893d2cf549b966ce38bd4fd23b3b54ad6527..00adeb8da8ffa424da204eb3084b092a5a249a66 100644 GIT binary patch delta 62 zcmZ1`vrJ|~Fr#67foVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( Rxv6oYMM`4Y<`%|9JOFc@6JP)U delta 62 zcmZ1`vrJ|~Fr%SySy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& QMWU$*kZG~Gg>exN08;=GS^xk5 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index e5763dadbd38b7c073db96c4d3d84efb48c2d6cf..d3e825195ef5ee923a3dccc0ea8f6b2c33a8d322 100644 GIT binary patch delta 3307 zcmeA^$<}?6ZG$JHVSIsUMR`V^V%p{^Mr$&(P2M=OX>tbhLDDS*>%7C#K%UOc{A_<%$kRHRpG|o4MeZtQ zvb4{eyun|1@&`}e%~k@@0Q8_-`h%Js`39u=E60^0aSOQc~q3 zQ>&OEADMpM{MqQE2zjl)` z&x~LpKZi(c4vASoiS3W${*meT%^Q;Tk>~LFljEDYCnr>cvNzx6tn>xs#XHOxiOqj= z+{g<9gb`->-^mLHgb@nG(UiI(uk;(Gt_ZKxqrerL6RO!Li&Tltk@f4zk5JytPg^25 z$tp(XPd<>yHrcP2eX~@58W-tCY~DEYKR+4T9@4P-pXmr`LGMayUr4 z^kly}_RZR#H7GP-1mG%?DHlWqXC!@$4YbQWV67XXn*Lw*1N delta 3307 zcmeA^$<}?6ZG$JHp>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2vAK%Tnhb4|H_mLDoWXpMbPK^c@31tGr*ktu+aDJ4v`*${6W)B0yNa1C z?eivY@E4x^!IO8hl|VFkE&v%JvAIUHj=b=OXn!dFn~7`>NNheVJ%N=x?VFX9RQbr% zDrU$>rk^)|Hu@++o~@HNdqk6|6ByN-KX`s5GnzMV@Sj1Zcflz{Kj;A^QT#2mhZ5T} zBUs4KArhNIVpdRM`{THOWcq#chNOMuIeh-)_-5|O3DuzN&9^x#eF1s#4l_n#^WPjd z^1=XNgjxP~^1=aOghFvNrLM>;{YI%P!YlPCaK+|?YBtIuRbq2w{d)2vly~#fmIzL= zijnz~4R?y4KB#ho#90 zVa3B6Hp`yy=Ox`nU>gDyx&oVhuGNzfvOw)coAVw9lb5oJCg(lW**xLtH6F4Y4$>|? z*{_a$v-W2V3XRw*!N{*hmMi9O|E|VZ!$F>2V9>K}_b_0rBd;kjf4Yq&Bggi6W{mx8 zq&r~x!7#@8+yB}!E+r$CLo^q;G0KsV&Ow?#ljq=t+uI@-w+NA^dCKGslAPN)au^-R w^fAN$u@c4rGSVB!*B}EprW-dhhLGmiy1*8L1noJ zIgv0B>?XEA&>h-=+N#k-1rc3z6BNB&EZ9Xf0*NBiXaB+X`2#-Z^ZWi@9&x22tW<>Z zIbuIE zcCT+ij{VD#5jpnV$1Z?&79Y#VF>j0qK(o~K;S(Kl?8i?nqPRcRNzqZuV=q>2+Yp>sm*QJ&{*e{H=va^ zGXJ<1m6Q48jXpW{>@D=prQ&P1O>*q!J9atQNAI@Ev7erQslaAl&#q?LVy+p)JsuUy zJXmhQaMrQ>yA?y}zoTZRdNHNOa5na?8!VcZ*LSkmr>Fp$%j=I+7)ouMZEWJ#SMIkucYbWtqKN)SqIzT-hfqtH7=Dq-Vj$KZYPVZ~yug?=Nwn7r0uk$+o zZJN}u%insWc$27k`7-H|@d&R!GSr22ldo1t5&IKUs!u}6haZ!B;4$!LYvix-KVaYS A)&Kwi delta 3933 zcmbuC-D^@|9LIT@X`3%wYAR!~2phs=Q;$;%aV=pMiySm)Q5QPfW`-_yu~CpnP+2ZQ zo=6x7b`x75=pNbwYpX^V6-0E=O;Gf9v0xX`2qcQ^c=jKB&)vECJfG+LdpU=*T2-x9 zRh9F^Da=fdUGm1qd(R1OU)13_=yAJZE{71EaC@9FM|3DVvUlTt^|g%#y+fph`4vDAS_f!uk(ou*hXr^qZQnOH1a(!*ifn!n=d} z<=BIv1v&OF#|Gut_nw#r?JPN*m1EuI0`b~SgzBg$v$+iRgV4a{7VJab1}Py=}P%#5Dx^@ zEcmwnEJ(}2E*C#yKeB(w6d|AB|gPfpt-WKqQ+2a-)du{zrLa` zrUq{N^Aw%5^o)_cudm6#c~(IZV8i)aBQb-?3nFXbAKQt|fK|RwvJ)e(^$u5I!L&hW|md3Yzk=a@jc?#&xGJ;`t@)Kc!rJ>08Fw-lfBeY2;~GctmCbAseoUb1XV*!)c0go#Y8tF?q>$kRI6-#v^B zogX5TCNBsS-t6tsK~4Zev`cKR^GPQsS;4eV@T(;!#DLm2F9`HyA^V%p?7#=~Uj`XFYsc?pvn3z=Gd*_Serr**O~JIC~fen$4mDO`nQ8Iim> zlY0UySz0qTPZCri&*2%H{Y47M(7O49*gJBf^@CW(=5on;GHjd-(%LVxi(FeD$+?ni z>jA~*bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2F}aTMFd4c&h#75O!sNz6rdD6}rA*{$o$SlbF}v&pG=} zD&3|^x9MOu8$P|*y6Bxb3kR7KY=wz43mt_vd!pUuusRc*@fPPSt7ULpyu)U(I)+#i z?6z5Ur+LJhN?LNRxS-f@;$~^V4WMke-Rl5?ScrO#g8E#WxF{I2= z{enJ~F{#@x$msrQuA*ibu1bJ~#gXkk5$x}-Fd5a8;Z`Jy=N4*(=>$?aAy-dy>+25% zpQ}3iGzWvy3va{$6XLcwa@DH1$Z(A6u8K4AACg(p(5>dOqGHdV_w#LW%yyp)4^jJ! z8i$49QiJoxW68VJNBMKHQFEzJ3I?LoGn40`)P`x9D79`zDnL~&4ik2iTn^)sgFF0y3>U$s1;)(i9$w zN?SKCL#6tybAifgxkhX&N2#$pOsMqAPMF%d2d3`W2cMWF`yZec)*l>+mg(+ccqv`~ zf}_;Pqt&Q%MBQ0by5p-nw89%set=Ssp1Oci`<;PjIO+SVD3#7{LUaAS{%@4JqG2;i zJ$~U9Kvf$qT}Fv%SH=NEZ5x`K_M_DDYsl@UQ77Kmic;6zOagLM*)1dbZa&lu5u@+* zM~Th%MqEGg#z%jmz1-Cvfl70qtOlfN__JMr%rmnzL1L|__PUM@20E&7 zRe!b$^<|PHiYNavj}=Hn+@;- zZD{*EmV(qwi(iOCscZrJ1o(vCk;Up2EQsgVvoJbb!3vNm@&rP{rWE*+?uj9rFWJoW zRK1ZEA!otkK*FH`7#{$w)3^eSO|?Hb_&?@TIWbO)PXr?@zC#B zfYx?*=7_=6?G!76;}BLS&^Rcw9^1mA_E}tr18Ks~Y_b9ELhqX_n1731Exk)?2FS^1lSl*- zi`wI9vc#Q?d%QA#fupHsiIbX&zD;GbKww9A8nE+K-byx?r1gv z?p`f{v~s_^+~52}$Ur9K`5AePW6ke_LM4&>KM@MRuk__*mT!?e{XH80Q$K7%IvQh|4 zo@PVBW+3vo5iw-*xcf@So1e<=Dnr2-vPsx=CN)xzLwitaCT_-SI84*#K% z6RBH|{?OoE`{@i^d|eLXdt-D_^kIzdA9M+j@Hz^7E+uBwwF9LS|JgpBRwnD72K)Eh`JO-A{O9}q{BFsBjzr&R7F%Re0!0l#Aa4PZ2Q^CNQYg7GEaRh#WTmHs#ytD9G3~=9GlU-0#atG zE*_uCnAGOtVX*yFrl{%OmnFa=(voF6?&)f)H5$|tez8at&n?ti<8h>NLarVkINTKq zK36Rr*5wIG&%a>;Cd3wL$yFOn0e%?O)?hO5ACg#N!nTO&@(TMu$LBlJGS7Cx&r2OP zVJa4eRrSo9h9z%RALW-}qh?i~6plivr>8GKsqM2eQ0lQcsQ^`tv>36YWL1AF%>#&H zDy?cq*)ufHN^22HoxgA*N}W=PRQhOTADD{uk$pBR~H|+Ilp5A-M5UK@!qn~-nA*G-J~2!8JwPk0Kah-;=}s%Wl&*cj zQEI^9MpQcf*cnvX{8b)W;SDD~K&gjMo=2%8PQx>t`2A&+O6NACx&GevH%hH*--1$) zp1%oD)%FV)QR2i)Qvss34I{4XL#Z`ak=sq97F^$kQrF!`1aei`O#}LFKG+2jL+*}5 ziCy<6Avv16N2A2phj1?qkN!k^xvSS7mF7NK4MQL@$zHBS1oo!$fu+KeKN(^EJC^vc#JBDgk4Pm>{I=2P06qLI^ zl)Z^^cfQKzpxlqc*k+V_;dM3z;kH+m)7PU|49Z;_!6qVH``NFGV)>}HG?r~ZwLG37 z?_myjqA&W2F!t~U* ziIpQ~!R|o9p&b|=JAMXTYG$QC2S|uBe8IN!wMUp2O(k{`*z;QFNH`n=bI#;G-!V6> z?Y4~ZaWwEGtA^tcR>#peD5DMA!lL$>T!`H%=VvzE8|^~y4dzJ+*I5ZTd6^^}t{~ZK z*T~bm%$wHUV>QV3Fh632{VnW#$O?cKl5j~g0Ob?9EN<0H-ZaKTItY-t-GPKd9gsYQ z7$oEs%Z09p<_(bAke>CVNx5`%sFVh53vL&4A@-#8p^`oTD7ogaYOLhj-}Rb!sSyo^ zgjKBG@i<7tu?K_}Q+S4S6HdOORPxr6=gZP1FJ6%@rICk4x{jP)t(n3wZMfql&=xQc zZj#*lTT#DC3Pj?tZ!!{AN05os#6?_Mg7iZZ=WUg~MAs*+-Ybm-PH$iNggAg^9+Y;3 zf(@YB4yg^_S&=Nv-IsNps-BK~Ev~rF;I)1j64@WG^lr z6cgz-likrt>`O{`6?r)oO}9bzAdA230{2I&uCQqebRrNVzkN%3m)3;KNobQu1QLea zklOL;O_giWv&n_nhg>JiDagyZCql{QnboqJZON~CzH*~nOer(uAY?H9V?_^U$up2M z^TNen+nMxmf!qmv|KfHV5_#AmUE!%?0I)I8#mj~ zd+xMypS;59i2AHr4#>I4$i6HO-*H9`d!|w z453%<$!7;SGc|m$x8g~Q-Ic-U4u~6?w zH_J*P~AW15+LDq82DUDELPVGlurC*`)pd7q*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgR>SBzyn> delta 1771 zcmdn`gK6szrVYW2w#H>eNtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9g?>tYag0*+N|QG+9yKJ{6rj%V&HtGaSxDEqc_Moq6Y1K3 zHYQD8#8p6sPR7vSNdo+nb%caB@8EvOO124`b%cBv$<{r&M^a+5vdBhq{0{X2$b@?F zD)Qa1xkqvjh4z1zaU$P-a2Pz0TSuWAER}jGbVH#^IE8K~R(GV(4e^@E6uKc-$C8W; zI2o9lCJR`JY_>D>;~+0NZx*n6FF}^p+|6@?jmZeO&5WUeTx8i8Jb8Yi_~y6qdSuuN z3aZWX6Th*OX>&rR_-2DFBQkBC4ATBL+l-S;+t(GdZ{An>liXkfX?JQ2)FIRM*fm^} Ywf&S)54U|Lb0QD&lVY>{f2l$xAsk!YD{k!+e~oMvR0mSSpXW?+9Uxr5Pwopf!JUvk_bOPAMX2d-mW0H}~QssI20 delta 175 zcmZqEYSY>f&S+>{R+Lm}o{_4bVr*iOXkcb(W@40VWMG__W@2WTY>=3moMdc~W@c_` fk!WfHWLj+QU^HMSUEAcB9Cygl<+a&?>lhaRlaMo* diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 3536c6818a74ec0f6a51b9ac11eeb531f4950366..a71df045d89ace48c1255391e85ab0ed9f194e3c 100644 GIT binary patch delta 3415 zcmbuC&1(}u7>9W$U!%X~Vhxlzf3d_DxY)ImPH>58ZRR4#`@n6g^c zpk1vo9^Cm7Q`p3LSL+C(FtwAn@F((NZ~g1Fa9&h%jY#x*x`azDn1|BG7mhB3P{|hV z;TQFh(emFG(MlTjY205XPIe83XQ=%%pGsu0hVCD zn0pNU$m`1%Y#4_oM*{B)IOj-kWCFH15~Ry;!;#?WD_HMHaOX9=b0pX`1%Hr_n7xfF z?_mlz!-g;ql8S6Enm@vG$o%F$c|5fB+Nb>dldd#F06nD`K#Dn-nvPn*zF}h9d)T$z68jl zCfp8LT_n~QADq@r6ry delta 3415 zcmbuCOK1~O6oxrBFVa*;iN&CzH9kX;WRgiT$wK2Ih))7;O10=DCZkZac2Oy6O#@Ys zBFbQ|SVfU)Tof9-!gXQ63Z*Koi9%ggaMg`ay3j>kIFk`v&zaq9{_p?K+;i@k(U!g1 zvbUy!80+uL4tV9y2gcL1ABQd2UCB#BRDHifExs*u8WhE}@k1~4z>k%?d z43=2Nam8WX(U58xhl`!`On7X_$AmJ@eSppQ6(`DhkSzoN=Q_xSw_J5ucV%KQfC;NK zRIR%s%KUp?VFK%N*4;6J2&|dT+t^d_h}(L-hMZO8Vk=U5BU{C}mi4Ceu*GAG0hF^L zcd@?G$XS$pNUP0WM=HO6c#BiA<( zS@`RI)w*MI1j?bc+@FT9U_-xj7=B|%(C{D5fj5iyr_v~#!pUiF2GU%ia36EW>vw$q0JV+{Sq$P0vw%y9ku}38r-x6c=j4L+5+5t1Jkwud#B(Ja*3J8 zxcVNZa5JoOy^&;OdfxsKULXgM_Rd3y->SoD+&)rG!1yX353LPJSs#u6gYMst3t#+!vHe?{pF$ f@9iRwu!qtFOr9ZgK12!s{!6qmp@nbnAuGPW{dW{K diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index b4886aafff4d1f1dbdc7608a1a8683793f5f71bb..70b38dd3024a40ff02c5b0162526cdb8e13410fb 100644 GIT binary patch delta 15184 zcmbtbYfx0z9iMYwOHdZVLNLML8jX%64&ku~)`~y|L39KI2GT6bQ($Z%8U?qCKuJXN z95;GWZKyVhXov~%2LEGYwKSO2NR^Zr6U3-BHDyd=tX4x@rRUyT>rB4w&kxM-<@fkM z&i|Zy?%mz3QM+5CIty9sqFPsdUFFJznE0gfe-aZ*`vg?9t<0jN}G!Df$5)x+d}Bcc{OSZ`AkBv?JzTOIHuhW0i%9D3bd zOB5I$p*Ps0!O(^J7=2Di2N=5E;CNbwjIZIp%w=}{U_=pyZ`S)Fld+(i_5Jtf0Rii& z&c{_K*lIm-QXE#`YF&;#5df*Wy?+gj@OCCE{HYu@ME54tV-`#vy)(HBvC-60qJN+E zb3|D{z2|3t1H^71%d_^wNC&UaVJXu)VxIa%t?}poC~In2VKjJ<{^#tqv7hpsF{u^r4Erb)P-)xQE|8eiBuk_IW!R>-v+|QPr3)ccQAzXV0Umj<0@&swRIu z7gc?DXg{jTzrlC9Z{I>y2QHf|&4OR^vK8mWg`eviCdTyQrRVhGXXkqD! z%oOCFM4T__H5&^>JuePqTT$$eAT}PwE(>8JD0XZZO9abHH^SK#R5$Hj_5z?wERqGG zwcQuRojiLJ;MREi+$z=PvnC)}w+UV^V1>YC_-%sDB8I#=FbJxtuY?T(v&#f?0aj^l zB^$B%e=%z?l+x*1HW2~8`x49JzEv!UZ>nd12hd6?H>`%QYG`vSG0l%3CK3Ba!iEz-wC2teN0{-mL(fL(=EK6tcE^0Uk~3FG%&s zj%}_;=NMU|=dMeKz~fRLHyH+*d=#0+w>&ub&|#KAt>Ll*=|qEugps5munbld=N^>r z!E0e;vSqToC*n>#aA$@bOnoWxofV{A&^Y|}LAizUATp5!u9Ujn@+{=woV!e};n_af zO*d=g2Y~vMV9=2z(7jHsq*t5e%fPc83Gg4B{^ytrvu-}FM-Jc@+hvVs`sBq_w@V%e z1pXr~ihD~=KsM)Fmcp$vRCLSHs2dWIEdW~2424Ec$jJS#l?MTipp=vHVzeqW)h9z+ zk(oaMj_S%+dLqG|p!TuK1fUVE%oU7RUPflPVVyjam7hY(-e_e3wo`7jQV3RkA>Wd& z+-)6#>Qj_4{MjyMC-L7_(9%K@gnvZVfw_+i7ATcS8O*&*fWzpNTiF%}bb-n6#8N96 z8B|!MAn&xTbA_NOLHfb;aAvs@L^;cpQRr?+f+6)GGzBBu6_s~vQ;vZIBnYNwfna{@ zq6q%T1!XPLer5*=hG_I8LThg*$S2Cyflz=os${ASJ&e&6hl)Rwu`#L)+}BwhyMBV& z0;hcAWc5|}IiO;OYPaUkwL~?7h7#59(E&h$>pdg|<~{G*nQ9gC7_xndT1>mbIV@4Kot!Z8mGtILpCYIf$Ro9a0L>|8Tm~PZ7E;p)I#XVVC^)JaS{ww$Tg;@l$*b3(^S4~q83QP!!v-q5xqr2 zg60@vBsN|v<#L>M!~b1?1hyN|G+j5&(*EhcrWLWk2JTJM-UeJV}cm9rlyQ(jMZw0==R)uYn{ozef+`9{&_y$ zkMo{$&%Nw!jo#fF-C4xq5?0ieu1cybk6oPLOfH$`N^v>k%i^aclvFrfab?p=%F9X< zk}F(EiOD62PVqC@yMc`Ws5D36W{*wP!{vV?q82L z!JAq?NyHLYvwTn?`?lK=5>krGT zP}Sg7nW(DI1IHTNP=KliH)f)-`kM0qRlTXD4^aTyZ099@L?NwBD{O?wvs_DNEL7^kBzkos$cUGaXX202r zs;=H0fkJ0=!m2eotQxx)UOAKYT}Ct9^L{Rxrh^C2(WHOyryZzjcuxZg{n# z!`sb)-p#10@7SkkT^s%e_wc*NPok#J&7M8Ba zOhN8R#QBn5v#~JL^P)hu6~*odV&hS4T`2RR*sHClnny2%LH=)R%vb} z^V$5rm^B#6=yWZch=AXHiRJT=RV;{as%L)()C~d>1T`84E}%<|Y#!1%Lb-r?TG;+k z{wtFJ{{?9lfh(o}&dPx+bZ+E|U+-W+i}$h7RMo|5!IbBd zU>FYZKjpmpjHuVC!|V%SjGJICz@sUvm%WKZZ_3vnXGc(ZI(&kC1SpeG9ze1!aBiCN z4^|NjWZUeN@GHy%x0(GK`x*$>oJah$n+0`kmD-W15I0UL;5Y7)0;ta>wIk&+7)UU@ z7Y1ZbfXn#i94V8YyCD^x=H8Jpyy!5pa-bwh$HaWraV!y+k+w@wyDq7pDAgV(` z&ZOpsM}nan9iTk=kZ8w?%al-h=73~}*R-HnGr|A7TLCzRq|bpVWNr5XJet;Dkm`{g z+gy>3F|tO_U6&4l$EAF3G7K{LC^C(2d9d@L!z`0pBV;?$i3SY`BgsKv8LTMIJt*IU z*TTqT%Vc>^T0QD!qpd(A5d!1ZKuQtnte{9CdU*_>}#im=L1(JjZIZb(G70BAik6!M*rk^5gO4+0!XsVC({XjN$HhzxB- zX8r^?x~o9xi2{3q+Q%vrfJU@3S2$jI8JXdRb@EJBehMvnqm>0XnDSzjBCzTU`IZdj zZtDBmKKsA{3Egs%zb3AP^m=9VD4oC98Ra)%CZ|Z`K*bC-*qT4rTxui@xzz8`0YHN5JtPI@J@4CDY8CPrvVDnKLc8XxVfO${ zFTjf_w?cIQi=6~`Q#B@9V|?`NslxM<@51v;ahrvgN)H!gthc2iaVP)GzwI5dAa7jg8 z&|CfS=@k`ut7(DvT~!<5n1_bdI%JlbojK~JdJaukSDS`>OlO5WQPGfpsj|QyY8vu! zy#*c@sJ(%V{3g4$l&^DWq4Z>kb{fby35F`<8dFrt&0n->D&ICy3nby;89?5M-l8Ev za||&Om!Oq#IbOTr|1LlR+l^?Nt{Z1*|MXweidbL+_oi!a12>o6G)E#oGhdrS#W~to zplJ*O5(Mo)A*_;KMM(#WaLTZRsn33U#&flX3>#h%chr>Y2`oh zzm8@Mf?zJSw`r;AI6*cS4npaTv)WAH=I*wQO~cx(xI4AMg^hP8<00Eh;3Q{wA(4_t OU675!y&l`t!2beV{`rak diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index a4a6b04ece85ee681c8f54f51d53d52815fcf585..fbee53cd37951ab524893e957581219617e26f95 100644 GIT binary patch delta 1210 zcmZo~VQX(;+u+S;7++voQJzs|qHk=GYMGRpoNAG1nP`!0nr574WSEv>YG`I)lx$&W znrv=roM@4fm^QhF@cRoS0@}W|(Y{n3|kqY>{SW zZfcQeY64_hOs-)(K!&abh6bDGGCg1?PwV7+TwBT3DX^J^CxMwP?Z%V+H3TQ$RTSR* zhCh*&A|oU=-xA$RPIxacgtw5CJJ28ejoDWFnL;mHnUEiBPFukPm+<3gF-W| sD>CNGl5K|IbUklIv{0Uvs7ZvX%Q diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 5866e5c6bd000e471ac60416aaea4c4e88835ae5..75ef57092e2016517ad2eea6eda55a054a968dd4 100644 GIT binary patch delta 175 zcmX@6d`x+RKciuMfoVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( jxv6oYMM`4Y<_5+tX417ywqbLcT+7-=y3WluY+c*{*zz^2 delta 175 zcmX@6d`x+RKck^>Sy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& iMWU$*kZG~Gfw7C3bZwJu*qkQUvi6a#bF&Rw7dHUN3No1h diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 2b55ec72bf5b06d75726eb3a48825727e6cdb182..06aac0f67608be20864480022e0c614969919e77 100644 GIT binary patch delta 545 zcmbO?i*ep8#to^AhVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{dsF*1>%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)W@Ok`-Aynroc@_Sa+$y&^BNVgQKTVV2Lmi1)oZXjLf<^^moSxDCg sbZ*;b2cF&JX)WG7Uoe}EEL)2w&lhCfyjdc{h%D`(7~ zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!@ysKA delta 1740 zcmZ3ujdkHR)(z2&hQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pE8w&!p>`ZWzfJzL}jlkDWZdQJc7}$Z#yk+Qi9ccnV3kb@E1?md&4d zC$o{IwR5w*s5=vxS{)>gk*oE9bTt{l1oUg?=C86l$+a~@v4>n+*D1dw*VaIFR&uop zXcds5b@N6Y9~Ls>bi1K0xmxF$32>5SYvJYq2Tk(QZ{g$s2iDCB?yBNs*&H)jUQ!5X z1p8!}O1{lM<7SiRcbGA(n=MitMaXbTV?)7asY)|43Z2c34cFw!uyLbK^kn~)a+?_! z9wNh5U`CAI?7wn>I$1WyY_7TJ$3v#p@O!*AFtU=NZE~St++-c*`=nb4);Wu1KiN73CjVe9AWQd@&ARMD9As&o zxtUYIoQ!bVTqx+yOoojIRc3B(5}ibbjgvuI?};B~BGcAv>Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-*P=@x=@&SKe5woZY`KUfRM(miFfF1rv1Sz2dq z<`gg|Bb+uD3c53sVdFuSnVXwLCy`;}WRTW-;)j{Yv^87$Gr3wdU0%v=L@4ctU69y?Fo-Vp5C-;86j5}89)@13Gb07o(|rB`zi)l(+iS10Im02- zaLCl>p(T|&T)Ud88y7h8+}?uiUd`+F6nNa4%a`ZNRee=1HQ$-5xmB08(3R(LS9yGn zs(@DSs1G#k)VyrSn#u0dBQK6D9EP8I;aWlpKHp2$7I&JdnkH( z!x1d)Ht}N9Pqga6Ew{1ZtYKgM7V)Vf14vlkb`hL?s<5%OPJ?)+y~27QD--awU^$GH z>8rU2HYL9L2PZ%STO-!)9s*HjKAt9q4?RHfr5=+g?CM2Vg^shrE`#8w_nE-ndwZJE z^Y86R6i+VYPKv&=Q2Q?;Rn`7Rv3Fq6{OBv{bHAB&h7!e^FSm>sE;>VnDbb^n66j%E z^c>f@YPsD?^*~aiu-`^G7O*nc;UvCvCauH-G-=PITwuY4t!rF|Bl}7I$fglsvy7^o zbJ9%qt0GyRnM;1ui_}#<0$b^?1*@E!PqoQlj=ZCYCdm9^dJcPtC|oY3U{drR!WV}Z z9wiH}^pZi2l+y=n*^R15UF9q=&|_>Ed20(Lu&W^(Z@1AZX{e@`z!v&nb3LAqmG`!j zU4Q!|OWsO1fV28zC!&-tV-Hd+F!=wd+&@fL$FGugj6RR!(5zC=W;SsD{%MAtq}p+* zI1Z3Wo)40JJk9X13U?J#s%+?{E7|zW*yX*u%&^X!{WXp(+Wfm;<)Yox}BM h%#z*96)Wf>EF!n9P)3}93H@J~{zJjm#I<8vP4mJ!zhjFl*W=aQ`R?2tUyknb*5#2eV;ZjHhQzHv23^KozjM++gP?=7-#K7(rqkj70&cZ zq}MRIICC{xH9zY%SoO-4`5-CQ>(wagceSCd-posifhM9=G~^qxiKu5i#Rf59**6?F zijJa5SkK|=HeRxm68QI-G@YGZaR3S+tg{g!ceCCpW-+j`8Muq0u`C81lR0bpP_%vB z5iIRi@uK1Bf< z-5p8d>D8P`(N`AEd!0yC=e-?bPw%1y(N|P+U&T&^l0@m3J4Or_r$Pl2qDLhq(4)BM zIj*=mS!1OpAgNI}V52MxSeYw0nJ=A9D=`6|w5L-Ju;9YheO$qj{Um>6(g?6wMpZ89 zG@JdZPLUU~DS&#BO64Q4mHt|=%4|0^q<}f{lZBKh-9_{q_7G9HRzhvb(R&DA9A0pg zEPS({405EBK48mkR7EP4i@-pSv0>yb`zV2Rg>3wUjaErR9lZp$(Epli@qDbj`vlq5 zw@-@XEp!Vwt3P%kO4DWRL5c+i{~wk9!_+l?m5gKbc^rpkl`5OL!2SED8Fq#m#--vo zKqh&)jqKxThKE&nUJ<3r?dR!wCO$KE+4q2S?ByT1PIk!$XxC)W!Ts0dluzE!3N(#~ zz_YhBaR%l<2I90q?8BvsD|V`UXVK10!;14#hh~;GU5iKCj|d2-mXL}$V0%4TTuoz! fJilDCf-b@$a#OK3q5~$>zcBSf%PfbQwRr6}3d-Dm diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 952da8ce3119e1f555d961c66ca7996455717fb0..9380e189ea9aeb431b13c0366a1ca03076f4fde4 100644 GIT binary patch delta 1312 zcmey>!St(xX+u1tVSIsUMR`V^V%p>hj6ccHrDz{ES%8^bofBC0lWFG!7J!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+j>Vc= delta 1312 zcmey>!St(xX+u1tp>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2F?j;xPcn2V+J{XRU?x}R1eX0|+BtzmVDdB80u=yR^V^;FD zPkzTHyt#(AkerZKv^V%p?7#(Sje+T6>eO^#)bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2F}aTM9_hL^_cCddW0@>#$YfiV^`u)kS(fz(8M=CzTqYmjkej@cTX=Ij pTR#i=Mr>ZmeV&;D?c4$}^Vw!$ResZyXaeir0a_VHqyLyxFG2S&K*%YA8tjS@_ugTPThh;z6It3=X zu@#V|JA1N%F3;o*3c{NU+4a~cGD3WF9A70Pg+@#hn94+v5fYnU3pZ2d3W?2nVjYya zqD<1CQdhJ}Cs68&rExMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@jPNLQEu delta 1864 zcmaFZ%<{0AWkWHet#MgVQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2p`VhUT&!Q5Us{x$I@$5A-sF3XcMVB41*kJ?av1Y#GIicz*-y4kfyr)c z1!U>Yo~)qDGkJr8@a95xJvNGr5Z@ffSIJ1B5z_>wGEroN#OBw+&6K%9VzZuD2c@nk zlk}(56|K?jWZ1sh R@otmg23cO^xLZOOvcNPg<#`%wsD_E3uWOdad3Ri+4+^Wm$4cnaz?~ zwmj8ZV%t*Um72)cfT|`gQ$9-z5TKAsEdl2-s8H&qGuo|?xLnrYdF zN;fX;L!}3ndr;}26}!;yI*`s#>V$niO0}$nM z)R=-=l$y8>x@?rAZrT7(Q_d6lXsxzFxYjjA#VFOexdiR7vurO)ZS-tHskP(N?cnk!Ihe9H-xTKillK$R^!69Ad|7?{|V zjY>z_pTg>_lt*9c4gg2S?hb;E`Ubhj zwW=;gpaeOUjL7+Tpe zbH|LuV59dF13zabCqX_J21jFYxK7ePXl57P#LN>M!~&*J%21v7&#OtF*8e#C)3xM9 zU`a5cThA}M$@iiDL&e?fklHfzJZUqziH)JEXF?yudp$&p4Wom_ZYK-*iU#s5n1Ty~ zAq;M3MSF>nH|{2l7~IZgZ9R1OJ-v-X?l2*#FMY=?yPX<9tldbe%MuZQneKZlAMxJ?`4gp(V83HD>QT*TsG!uX; z55PxQ>}O(g7oVXnV2)G=E*#vd{m zSKUO soI%8gyEVCJ1>L7jyf9FsLp!MGf6-|!MfhKU=%Df^I*eQ6H5UT^0kC@C7XSbN delta 8004 zcmbuEZBUd|7>4JZWo5$!c3CzsAQ?tRCJT01gvEf}F<}*0S;~(Z3|$BUCMZ7QLm@GX zX~J;qrH&&y_z`4emc7+cbF`S9Oi^bl`oR>T%@j>3hIqE+dubx-Ouwr z=Q(F)r$+QsBl`DT#A<7-D``oqC`)?6mSXo>QqxmYl1q~5{Cms7xs&yqi5>eUpDD?rC2dyk8Kt_mc+n2KO821Drm{^awXUKArLwAI zlv+_;j#8_icB0h$I`I8cBWE-uq12$J2DH|gmP(Ww-+COS);-q+P-W|m1VE-f1}1mr zpwiKfC$T!KD?=qOR2_b$WLpO1<9w8b+;=V_65<;p~04Q0nOZ$5HA??@5$u zIb4NO)B6Tc>ho{H)XssUDD}%@>1eG3@BW5LGvr!Sn*R|z!|f-FQEJ=AJv!*9Z;*R^ zO9C;e)a%pA1(!NaklZ1ii#EzdSJSa=F()_wP-1}TTFE)PkVQI)K@R-WhxJd1p_QGp zx6N1#Hg+#D^0Q`g0_1aHa3mIo>m|eeW_H0t%sjzKtY8YI4AqJMyqffD{g1;xT}xgB zmIM>J_56~Dd>`UJRNT!@sXf!cleUl>*chsMCiFVqS4OnhFgjW6HnNznXe7^qDY!5g z#^4TCyoZ>0(=O74!5v%}ym2?weup&XGO$UXm_BxtECU8dd_&cQuRKm{KnQkiie$5y zK@!TRe56(He;NOC`1=cTJsfqI_(^1VYMkhiW1v*Qg~N>nAYR(EF`QM7lLYq4P4d?r znDCHai4nL_ls2wo6*oydyKsw)`=5XdgIsif-PX|vR_>q%KB%EX=s^%JIlv4vqnSR! z&xg=Oz}MqKoQVwn2{+AQYpqnrFE67(NNmM{3y0T({r_4_#b3#!I_dX6OuW%S9|XGo zp9{CFqMp0_&%s5G0gzn4zj>HO0i9Eq)|#zhy!lbuawq!wVp;+$9F=d`9?e?zQZsL? zr$>Me{A^Vw!$ResZyXaeir0a_VHpAi2rw821{IYzk1P*W_nR7s=F_!zwV@iDf<6 zx*N#S88rEVoc!iKwuh`_YggVZ%6pB80__t8CX=sSW%Fs_OiHxh7AvDf`wvMaMzZ~` zviYEN51F=az982{rdD8_t88Xe3Zg{&FBN(6lMK)16mf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S2>O6CRt delta 1562 zcmbQ%!8EOdX+toht#MgVQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2p`VhUT&!Q5Us{x$I+-y@Zt^`5DtiGIi##3QTrlSx>g^ z2C{SpO}-!}zqya?AuHM1l{bs>USpy_`$U1sf}~?fywp}9Gffs!kI~Tz-Gpv8RXdHhW~foVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( Rxv6oYMM`4Y=6c2_>;Q{R6ZrrD delta 62 zcmaDX^jK(vAETjhSy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& QMWU$*kZG~Gp79Ag0BW!j^8f$< diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index e86f9b327c8aa0b2725b33703fe240ec6de29420..1f165cfbc818398b3bc274416934c5c74536b50e 100644 GIT binary patch delta 175 zcmX@2enfqPH=|*EfoVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( gxv6oYMM`4Y<{HLDY@}06(Sy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& fMWU$*kZG~GhH()a>DngybDSbem)+(LP8%)&+J`dI diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 98b62dbee1e1117845b3817e866f9f8dea3f12b6..ed719d140e302a688dfe317f463f4dc9fa328bb5 100644 GIT binary patch delta 4036 zcmbuC-Afcv7{+;Rbw9KZOKYQ~GK|WgUDv5GDL z69yWE*c7A-uZmM0wyUz}LrBXAZ%XT;-HX12SfLwfW{2v!Xa0ca`90^n=Y3yJdNe0J znscXy-2T%-tg|IrzTG2+Dw;!qkSJA1VnC2Ra+zBW3ho`QvViCo0y_ndBnBl}IY(1~ zN;{XFsa(tPc}Ad-CK<7mnwr>Bapma@rotn6;V{0MmeLyul)}Tzb6{#cnl+T`?>P2d-d9ca0 zFw#v1zLX-BcG2}o1xFfYRu5b&u=tCzkWeALx0hA(+oYQM>a!Waye**UT~$^ z4BgpVhjf|oY#hq>zOQi0IFywGh3ss9JR7vg8(6H4S5k@c^2QU)g5?c71L^E=d<2z7 zN9GHlz!FieIBk`m4Q~{HRis?2?{#HWB<}zZtHq#lHTvtlS z*5aSGQ3{5JUE~Hjiofwt15hA-NT3uj;`QroQsb-1p+2vqIjjW@1Abr+y@n&q){sp( z77udkeriNrxaMLlL=O>eC#%}kLb=L9qJz)*$pVhlCRMlMn$<6di7uG&CPkt3W>-R(Umf)i{wllQsJ1|(jqX8h$Is} z=uC*EFuL%{_^OX}RV(@<^}D0k;(NmX=6ziAVjE*m;@+ zRPyP)JdttNgh`cwLCWH3%l<-Kzmg5@?1bdC%qOkkw~L0b^qSnxQ_h}cFx}2)JYO;} zIrm9hvLIg`|G|u6i|gUO#WEO>Ts!_W{*NvW}&~1xh@Za{1FU{YZ^f51tB# zkZ#iPh5TbjCsN-(@`XsH5qi3-$_Rb@!d4^n8y6KL^cOw1jL^+}K_m1PSDKB`^R5Pr z(Cz&-NSEo?#>T!6e1%)a#@0sjdG}x}6ST;QE?36O$-!RUe1ci0rg~``tNic~3ch5)uT3AY z{J&hew1MimZ{{BGtCzIQHEc&*>H`LvP{~6u^l`FgS(sc?M99_> zpLWqK3=KKS1$2~nGK;lRV%>pA{`@IcHY(3eO=jAkqwV-Yw4(+4YaD;RfWw8^n zW??x<^{9(bT`c+NAwunBQF>Y_n=K|f#9Skpz>(UZXjVeC`eic^#>!4jG>Tv+O#>H6 qFRYrwDki(=9I)DShfTe-wA?!OnD)ahKjOjTm`G#x<8nQ`-4E-0C{I?g*Vp_`x09UIdu>b%7 delta 1773 zcmbQYgKORnt_{(QhQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pE8w8)WFZsN_2N7SlhnbOub;mgU-<%wj7?miEJB=n^z4*=(uO!cLaf z%FXFI_sI!bL8HpeAM`#jk#6f|L8E9gv`q%tC}ui~46U0VnlC0p8`wrY>kH&+U19ft z+>kYLoKCK-#V&Wqwe_dlB64kY^?FQR0!-YzE67HS^i%|loW#u?nS95{(>mE!m2-N& z6C>+(GXutXg5(>r9cYMrHd*>zCo2?*Z zY)|85sSQ fx1TCwdd^C|A=`n5Y?2{E|3xML?S-?L)-nPBNU{e5 diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index accfba0deff43365df484265efbd8e1dcbbb34c2..7b8365a1814a802d42f2803df8ac2477c112efb8 100644 GIT binary patch delta 1250 zcmaFc&+@jPWrHuHVSIsUMR`V^V%p|9MnN*PO-@uw+pNa?o{4lDL0TuTVcSo(PJzin90g?Qp0wGOGl-2W zt(woc#tPvSMXwr-U9K(4Ks^2f=rb#tQ9ZdS4) zrhfAojYbYKwf;49b|hWv=EC9&yrgTJTv*(5~r}RN4G-i#ZQ@+BY9K mXv9aJ*2(AY%WYn9p^r@Mo6p_bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2vAK>>kPK~;6P407t1-W4BHc!i*2!zw_LHqsV6qTL0a>~yZFc1hVk1lI zw9Rn>)5!~{X`A;5{U9%(rf;qh+eMzO(>MQDne27WZvxGBqMYXQER2^11tRn^#=uBUAh4bNBzLl4UcfnBd=D#Ku_72mqMOc;o;8 diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 4ee5505e117652dfdaae62a80ed3b63b4ae8490a..dcf4cdf533ac0c0949b36f4325713641deeb3798 100644 GIT binary patch delta 791 zcmbQbhjr>6)(zf_hVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{c_82QN1HhCg@=4KV<7fhtv2-I3Kc_Z6;vUENnL)XPCS(^noy;#Z9 zI$3~IezJfl%Vr7w+2jNi&~~^Hg@RAX2{5P;n*~H=*~s)n!Cl_XSEX-CQlLG|jK7&I f?OmG{b~Q+mu66UpE0*n~YXhdQ;_d5V7}FU67u)@M delta 791 zcmbQbhjr>6)(zf_hQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pW7DJ~FgTp2(iLS%vup6X`YrwU$iY$hMv=olnTnb@58pW&utwR`Rq? z7T}bhEFj9VS%QByIROQ<9d1OS;8St}3~Iz?0Z~~tGCfgnmv{43>6?-iXb&^vZzfB7 e*Jg!X4N|0Q-F)$iWjpEGfa$Av`??s$bVdL=5AZAi diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 2e842a19bc01cac7c5d7c6b704d72e4043550b83..b264e464ffea5dd00b548752239dbfd90a8b0a55 100644 GIT binary patch delta 195 zcmbQJK2d!`A){@4foVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( zxv6oYMM`3teoB6Fv3_xWX;E_O;M1& delta 195 zcmbQJK2d!`A)~EvSy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& zMWU$*kZGZxlAm0xUz}fBl$<&_fJ0@nJ}2wu>x?3-h9nyW)SfcAfqg#dIyVP!IC293 DI}$kB diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 99158d0fa5dcf323e68868c866f193be5741ee4f..3f9141641e69fbf87cbe2c512bf28826b6e5bedc 100644 GIT binary patch delta 778 zcmbR6l4-(ArVZ|lhVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{cF7&*w%wvow|nRMGGZ)8fHEWep+@-(&$6zG1&UPy*+LBXEQBAi*Q zWNDqa*@1rnIRPaoSWQkq2?|cw>?8MXt{)n@t4g^U1PW$&5* delta 778 zcmbR6l4-(ArVZ|lhQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pVh|4sx_@WO8LD-L}aanNlaqZ|0gjjco%3x}UKZlA&8ruxGOfXBI12 zS|@IH;9o#aKnV&~lM_&af)h6TipsK(<=D#2B2rJuaO`A3!OG2xWx9gMvvsmT5zpqw Z`PpRJ4A#z4)apQn?Z9-kS$=aNBLK~3;!FSl diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index c32aaad4d808d5659964b3feceb80758338e506e..de119631a26131cda7ea009f0bfee076527f66b5 100644 GIT binary patch delta 540 zcmdlmlW7AGc{3Wu7noL*XOx-f8(XAWCZ#5)S|nN~S|ppM8K)T;rlpt~ni&`+TNs)q zo0}RZTBIbVO|D_wNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0{|erq}Bic delta 540 zcmdlmlW7AGc{3UsmlY*dnrEcyrx=@9BpR4mnwc0S8yOfUrkR)-CL1KCCMOwNq?wtU zS|pm90GSq(YZy0@p(~E*3t76tH{W8eAjg?;Oi7cUvaTn~(v-=X?0IDA44N#@tGd~q gBbJ3c?VII!tysy^3ba{h^E)9HUJA6gD`@5b01|1Npa1{> diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 5af2fc40fd91797cf2906d9133d93ddd83e4d86a..34695c97de2b688ceb7f417dfc88e661e9e3e7e8 100644 GIT binary patch delta 185 zcmcaEcU^8nJfmTJfoVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( nxv6oYMM`4Y<_V0wj7B7D)1NHJDm6Ki`7HTb%{T94na2eH4-`0{ delta 185 zcmcaEcU^8nJfop;Sy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& mMWU$*kZG}b0%I?u5y{&0CkwJlP0nOKOTJd~%{y7wvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!||-J+x(TEg^5h9D}?IF(^|jyx+s}CH@8b1AXn>m>3s5{w|=vj+zN7S%~Mn)L+j=P z%F@ha#Y_F>ZuMj`Y@B>RxqkCJt+nK8{jIx>l`IFRZ+0}v;UQD2tK$)Ovb6e7ju#f% zJiGHR8wJ|6CPs*mu6??}Y{u}(3esYm6_!QwQlNjb!ZMc4vRgi6lWE3u1ARuZ?W+|S z|B~y9?LZUGlVSaKU=XYnAkW#^+e_Cl=8#uZ`cGESmD*k{$8?R0bjyJ`1fu`7Cevgk Nvh@3H2UZmG7y%rc5Lf^J diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index a88b5633dfe0c7bb22af0f5b68fda74662161da1..3fd4deb2279f8c0b70755a5a93cce10bac92bfae 100644 GIT binary patch delta 2655 zcmdmdo^$hg&JDhdhVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{GT7&nul>*M{9$$9KTlTR>BBv1F|d(6klaW2GSfyq{E>&dei=NM#hCyxu@~^E{64oRpa%zS&c_pFID=-66iYNAxHYW$uvJ%qIDPLU%}PUM;LZGSW3T!tirrzOT}!b$@^qI_;*QPh4J0Vh56mhOn`?|y zDK=x889T*h1X;eN*o-eW2Pifp(_s(AX54c2W~Ct8Z$9KH$wi6&ijV|9^7L zNVj~tV*+Es_5w4;3Jx+gPX}ri-#)>f@fw-d7jEZ>WaMBc-TLi7w|fbZt`8Vjq0`?L zFmi8~DQ0{rNQnW{S{WMy$TZ-AC?m`C30D|ZwjaI5xP{y%0>Tvahm1$<$#P5B^bJ}} b^3&VR7zMU3Qevx>y#8sk)o z&6sA!PO%w5mTxIGG=^OQFWw8+vLI=w-bQGWYPaYjWl<7zw5fOrYg zEuZd~z?iVTz>KkigG|lSfttm)Pq1gaMyBN0L4R|2R$TEGx6-JfqN3St%A-9QuFh%_#<57FE+!8i@gBFwg a^ma2wf$fVFncB%n3cxT8+YU5^*%kmMc0GUq diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index b580db0babb46d0d97eb63adcdb4d2fdb76ec2a4..4cc6b3626b5924126e598d2e0b1e4a81b11877e3 100644 GIT binary patch delta 1385 zcmcaNm+jtMwhg|FhVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{GT7!Q-7YvEd>%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~yp8yW;== delta 1385 zcmcaNm+jtMwhg|FhQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pF81!(`}MxYlU%5~gNyECgzuEXN_Rc@~QzGkG=xwKtHZ(`9lWukdCy z&d=mo?6SF!SAmr*n>{yc2%lslORLZ3JgETk0y=#18Y!;L0Wt~`$+CGq>AE%-u6xcx zy0*!M>k=mi>}K8ke)COoyb9AEzb%=G0^1{Zrjlv<=78Oal-TUCuZW#2hx=`|JeJ8t zrdGv^r)@~rI=xYX(RX_mALBDl(lu`fYUVW~T^}%oxNc|hXWU0#Fu88G2xnYvN`}4A M;%a+XFJlKI09_!YSpWb4 diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 5dbb05e03a2b723dd31c1f3d05e5d94123f0aff2..efc32621f0648fd1d73831750050c32e40796921 100644 GIT binary patch delta 2023 zcmZ2Jm3{eC_6_cghVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{E77!YR4WC01*%~P0yS;*GTvDt?`U4U%u&1C6}*eoOYo{cQ6 zv72WqWRVlbA1z}yPgGjXM5e8$RA-QD>j(8fa&0}YwT4`+oO&hXrHa_i+{P*7`t`5L zMsgi&W6?r}t(!kuN->ier!#GP$gpuTC?##S|3I!k4V@WT$#Sskx{cI!SN-|vmHY9E}BgeLO#soRiLt*>GrHqbbWS;3jeF@u>S2LQ* Ul5Qz5zk}*o{_QL$85c7G0D+^2EdT%j delta 2023 zcmZ2Jm3{eC_6_cghQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pDXcU1aF`XsI(UI}@rB6c&kaSFM9{cEz3 zTnF1&w2)!z=8u+A%w)#tOxqqZY@7^ANt^9Ikn2xFXGT`C9PB#zLJ;fbwH|9Z$GbPL@(aOT4?sR%BqM{O}t3-3wh}N1LYG7qPRG@Esp@h`h z6%RcL!=6Zp(IJjlL=r_{R%nnxgIX1YLRhPQ(RtczS{?o(MU7@(o>!ap{@LJ-zWvqKbOy-sO5?u z*_>#km0Q9gz{;bM?*OLh#w|ltNnndIZ}y>9b$C58Y_h>bWhVq zKcEG7Kk}m1&R7dz<#xV^8b_WC1IEN5jE{Xrtw*2UL#?-;??kO#FWOLR|I1ydwei&; zYGrSxQETdCJ8I2+cL1>RYwvT=Id#q0kf%5r@$mTU`Aq00^l0%}GoM?y-wfe(tmg{>>eTo8OsUyb(d6o zjR&xaT-w0G)5OYT30dq=6Dc!rRRI?hF>SepN zyxIbmyvCFz`uk{W=`vEp&@vb(H$eWMCH}pI<}r<%{{cwYDlh;5 delta 4150 zcmbuCUr19?9LG6l&OfW^G$m|NqLqb7&du#wL`5Y`SBd7V5!sv$H85Ig80d=+N=U6; z@z6hEWPeDA(IJkkh$M=@tk58X$bs|_KJ*|&P(kMoq38Sc?Y?}zpWpeN`#a~}nMw1^ zq&e0^Z1$c|bFZtdbythsq4>+3l}<-_puEiP4?3K-K$*Wa&}>(NPFIEEuW-mmMGcd$ z0A+I@;)~RZ2qmiec3RZoEg5_`qSo~3F4Ss$cNnnpYwz>XId#ujkgGTv@$$s{g&gQ4^s0$@BVSm$-wxsRtp7O4 z5bM081h|;x{Hz2_pCTj^t3cGACD~~h%Oq73BT8) zeMpqkJa)B`8ilN31a5&ABV^1rY@q7dB@Z>RgC4q|e<8_%(0CC$LN@_lj@qYgx9IZH zjllYagg>s;U$rJ}5?kBoTj0P~8uHICGig8pMHKs+#pnwX!{G zL0u6`-C)QSLxZ%_v5FKi`iu@#0|9akRU({bSOTs&tpQa`!dZf>F|ztROEyRf{P YHj3-p4c(>s8zBGBlKT(sgbU l(P1H7*CdhX%{wHb$p{*d&iPWR2Bh0LxqvTlvzvD;BLK;;n7sf1 diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index f710e1ea30d80fd3d486df7fefccf71947d7f5f6..25fd6c34cb097264ef2220b07f3eb7a62c6b76f9 100644 GIT binary patch delta 524 zcmbRCm~q-;#tq(#hVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 zrpe}}#)%dwiD{E-7*~>^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYBr0=HZ delta 524 zcmbRCm~q-;#tq(#hQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pD{sm1O9e$QCns6H^aaI{i2AW6mJQsT0|vCU0b2PnM;p$k6qWCx7#A h_N^?WYu)^i$BLbFZId7J#B5$6QprcA)^*A+d;uN9ov{D_ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 50d55bdd7071177b0191e70f00ad8620677a13c8..37ea9c1809444f162063cba7bb10c249af118300 100644 GIT binary patch delta 185 zcmeB|>zCUQ&S)54U|Lb0QD&lVY>{f2l$xAsk!YD{k!+e~oMvR0mSSpXW?+9Uxr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2Ppr8isv delta 185 zcmeB|>zCUQ&S+>{R+Lm}o{_4bVr*iOXkcb(W@40VWMG__W@2WTY>=3moMdc~W@c_` lk!WfHWLj+QV60^{B3YaMWIY-H?M3z?f$>;cmHv822 YlILiMcIEb0Ze-ZLfHidUz>% delta 769 zcmex0pZV8(<_+$QhQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 z=B5^jrY1n9#pDXchh*ql!0NsEDpLwM7A{~7n|y#}Jz16>BSV*iV9{ny_J1s7X)W8l zj>nrEUpfeuZC=2a&qTVdn;it#agwfWvV&m!<~nIBJ~Fj>XjKJ~rPY1%IewwdKDEB& XIU1r}x&4(J8MZHA4c$EXTsk8Fexu^^ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 82b03f2457326eb85bad922220d81aef39229329..cadaba3533ebcd4ae6323bf75c9ddd712117b011 100644 GIT binary patch delta 1042 zcmaFY%kr+5WrHuHVSIsUMR`V^V%p?7##dzMddM2M`4v+aITk)-jhW2Ix}Gdc&yc0dXRAp#An$F@3VMM{loXWh`U_ E0MZOcwg3PC delta 1042 zcmaFY%kr+5WrHuHp>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2F}aTM6&bo7vIcH`#neTPg%4R{CNr|GC(F_^Wa;vmY|pQ>*@s<`m2Btwy}0`3exY_UZJrF$zDuNnOxriF7iS_r$oMzg%9`+z>2G^} z{>^{2C%BWTou^1_vqFg+F9q5!HeUB8Q@en;;AXRP;_MV?zkO9qpDgXs+iO`F3mE~J CDnd(19`JUVF4omTkEQ% delta 542 zcmdn+lyL(Pc{3UsmlY*dnrEcyrx=@9BpR4mnwc0S8yOfUrkR)-CL1KCCMOwNq?wtU zS|pm90GSq(YZ(8Nq3fPd)MST3*3I0^W#m{2(JruAhE^V%p>i#-C*9suK#^{DY~M91B5O|FD=clV|JXKP&>1PjD2FrMqeKYtCt` zWNB^NY#|`ZM7q|^bwcXod9{6Wte83n={8QT6UyJLB7cIsxXIt#qu5tXmaXBFeMN*e dZ<%XPp3M;Lz4LXG$+A5RlrpvlGBai|0stKg^kM)2 delta 783 zcmdnp$+EkXWrI7Tp>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah zxv52>sR@v2F}Z^ACmFixgu*ueV5%j@LXg%!ET+ul**f_Ti@@X)90g?QZrc2sa~dmI zTH7{T2#7L~u61*rkUDu@ZQmR#rp`gSjg#wy@;9r?UQ=MHec^4CNl&x0Rzh(5VJ=1`GHnOzZ{}gVV@;O*p!~#-bq3U9Rf&i0Yc~`0TRe2q|reLom>bKxJeEmT?FYt zl#7B?5k;vg2q?{hN=HQ$h3|i6@4X>U-+PMs^m`9}KXTg4nVB$nyZZa2)!!$% zO*Z8O&Ubr0Br2ue*fGOK*A1%EAhzM4*uk+4Vj9LY7+f!|PF(GfxFPjILW64$ZV*y$ zaQ%99Vj2vIiJSl75VIrGwx^|#lIA*N#)YONj|km1vDD;Z5w+_y3a;0vZr#A@!T6V* zsSJu45j!M4EjzPe(8%E_{NIuNSC?t+RuWy;c(TGEMPGLt@8fXI7(_VNx|~a9AB5@4<<&F-eIrgMyMrjZBP>O|#xk zsYopsnS!i7Bg;^^_kdh%Qku2~NWrezndPa)4%hNPD$>ezZWXQF^y*S^3elzF;DuVJ z91NARDKJScV|_lfxD;UBnpV<{%cKiK<&rL$Md)^It%!A1XkoflUN#|56`Ehdt-Lil zQL)}>P{NvFEIwXD^KYbgt({cHdMT}vwN-<<^l+|bvR-OjSqh=~Zc>PKU*mGzimJ5Y6<02>swj|- zA99hcDG8ONqO{UgDvDaSSY#?rUKLTj{fU(ddyO15GC3_iCUHcN-Ds65q=I{8Yl{X= zt^32u(oJ0sw5|#Zw5Fiop^3gyMM{m6Dq2s}FKhjBL{$_YBBS`pp%tW3wDlF&Qr0`8 z3QK_$Qr9gIrS0>O%e!P2qxoB1i=kH4xK`D?voi}h`y(wTDZ#p@SsCjmVO60#rm$;8 zBy0|oR-vpeQc-JA8d{$eBvq%CRkWh?Fi`VDf_miB$E_ZaVw4i?Qp~!tS-`fC7W=AL zj}Nb-Ivl|0y+<2Osk&T3^c>}NQ7T#UQc9HjxeYv>wHur~Drsakc~6FA-ybIX(h6NJ z?U(7BZ#KI>jj*l^D=T{Hjl>FcX{cP>Iwhqvo6y-^sBFF)c>aS0;EvXjBWj_aT3mD~ zYQ4~;jAXbkav4@(KemRXm6wdBvk~)a5f_tcy^va--NW7w$mdU654-qVlhUd{7aLy6 zw%(2}E(r&=N?{?i-$O2Ey&P7}dZ&I-(bX=QM%P)*jY?bhrj|7v@^a%!hLbDCgJt)T zZn~f0xeFVj`$qaXoMCx#X?S&2>%L~Cq(}VFKRfeLQxA_BiYK=M?Je$6!5W+tD4sp` zJIQbt>wpA*tMACtg}t1;5f`60G8RLW;e%+Q{XtvVEHK~st^G!q7EiWIrtxebUA{Yk zC`Kz1-Ps%cC~T*@pEV||rFba$VGK_yZGTkwiL$08RAApT#)qycC9J-~D_W<9mXnMD z0#8BUwhg00UDM~eJ@r)E7H9OLJx&*YQ}64f&Y!-luXa)odTr7BIH-th^PAYWl za($SSs(-GH-or^XsBY6YCZW-CLQbQl&_{~k#F@>r?Bt6mU^y}ikgBt6MVHBPOjFLY8({9W_} zC)NJ?Ej`Uijr}56&jFP#`o8BhlJ%8N;q<{(^h75$v;Ka4ypx(+?65w;NiF!|J$<8- zS~KUk9_6IgeHo_DbW$6hiO|uFr5l-R9ZF}g8^Qo0t`WPp5 zKJFQcJ<~x&%5PTDW1W7KG(pX3yJ zjlHCAa8lk{cYUyvD*Z-~zQ##aAM%B6by9VTydlblpicU4BHLYUtxtAPzFQ8Bwfd$vljd2wrPo$?+?DEe95~$J+ zWP4MQs?h0cuHIJfPYP4Dx^CXIqNz(M>-MeXthqCaLnDvEtTAMN>_6AI!@Bo+$={-t zhhb=?7Q>|q^xS+GZ)?haL`_?(arN@+L7(@LyeaI0R0*{yVLi1%v?D&hq=(y3jp1qIFDRDhr@x?Bo(TVfVtK~>3yP&*SFE+| z`ihir7H;#$xfO>IjuuTu=-b3j4GjIMQinh*N(~7Eixp`ajP8PH3H)0;~ZjN96 zc{L)}yM|Ha5qO@&6aI5Ev^gJQtv~%YK4Jf=J{&=DePWup22<7q7f<^91E~?ky&^qL zaj8;!+I~iA=^T9u8ZLKV3z}EWwF~Wi7h(FZs{5MnBYBjIr%DrC8vnu&LE8sN4XmTL zH~!_Z;ul*&cgwprv>Jm4hk$=zbM9(VE%MsuTH_bog1h3+ZVtz=ztEh>!*2bpy$<|R z50U$E7jK&UfmH5a_0|1DZgq?f`>R{Xaru9D3wf>a-`zr9KmC&y(%mFiJ%2Q@p89S; z!4c)};jdKWTWK(L{=}s=aY*uShnXe+b1mj&@c&jH^HTqhZE;mKC*&#VDgH-3Z@Xj} z^X8vD7XMb?=1q-1w%ygN1tW!D)nc0I=cZeK)g&9~AtnBD;P6}9&RaPDzU^zex%3mk z(Vse;{UrwAU910;0fx48Z9}fNr7-#zLCBwGh0#$`H)H8(56~T9WKG&uPU?+?DDT<* zr))8EsY@w(Yk=DyYmk0YH2vy_gSPj>NeC}p{=I2<1M`V#cv<%|ui@R?e`%W0ui;=w ztgrrW8U62Ng70NIAF5mO`qwK5PaA_@$9RA5b z`={D>^y{w8Nko)?7t`{cnJ1=ot3XvwxD}`HeJ+KpfnOPi{=Z?^{Wt#0SCM|%$oE1a-`p?!qqF~oewjHH zhbhI~3R_P<;2ZG&@n`0-JBWV=_{Vq9K&s^C7V6ws_*;!?e_dDAR&%`UyRg>O?`qOx zcN+g(^GT;Q{twPckKI-LTiXALu2O2a8b6;Ap~D~jkmas-t^bk%`PW#=H z*nhUu_=o9#k50pnsp7iElG>rany_vhnwHBp!lX#8BZ-;o&rT`Zw%W?2n6Ihq=@4 z;%FBujn>rJ(xB2Ch$A65q zl{?-PblI)guiCc%_d)lQK|uUe>|Y;d{+mI7Uv&8UeBoc7J^w%R04y%ODLuqgLcFi( ze{5Lbw_HAP1^y`lM+603fkHh^l^%Kd;@@of_9spj{I=7-t5;M~@ow!+XWVf2|9FSxiEHHVyYj1Vov!g&4O1}v`OAmj6hb`l4}OcRaTV$>h%@gynpU)SM~Q^v;38(?SH`l z!*5i7;x>Q2+XVRG$}PJSqy_##gs;; zCDT}`E`__8Qt3J*)YHY3n3HT$;n4gk8TQ*}*l%OWQ#LK6$|lnks$w#YrXU{=6;8u}{XERHppt1Uy;Q-JLbWTHZqY}~D^Uq# zxr(OAa9sYV(G$mg;<&%hahKDBW~Ql91Wjpf8c(0JG)|&k^nMjKh~VHnXDQP@_J`ecdFkJ*tU6$y2RI|D=YkCXoh)O^|lw9woeNkRugkkA{Nw&=j_OLB?aKHz%|1{EaB z!-xq==V?n}Tk#wE0THbP58q*Jgc_TpH^pQ)^T_%V1 z1i7Iw^iAjwax2^Ae1B6Eoo7Mx0Jy+O?s(D0y91D<{b-QOOUPAd%0MPNfE-#1-$1>~ zWCiZpK2fN5`}V-zk3tPjavyb$MsuGT0<3XGxiFoMM&j_1Aa7JcT_R&Z9_S4cZegM= zRb+2E%Di^W6U}Np2xO;JkS`804W%LMYkBoi?$d)I*vIw~>2@+%nER#75Y+xHb}5l= z>ktSwrGWJAEc;W{Sdb^;K#I1lWb!cAStKqJ2XZw#Cb|<}9tD{j0jgO`xeWOZg>Wxd z<;PZXXhptkV5f&CKrwYDQYny9%L9hi^%&Glhe76 zJL{%FRETRUvVE#U@IBj0Wb2;*@+f!to&-!;8@aU8qvSAJkO;wTHuJ7@koAUxY|dV} za5zSbYV1qVOXObkY!U>m*vpTumjlQ<8RQ=B$`Q$?#nhCao8T0TK8@pn9Z%trCJk6} zs;L`Ave7zzD>tElG-UJSr*vwX$x68~z#5Fe^EGW8u>0MVf#f|BN$zutCJ#~C(5p;t zW2JMGmFCoM6v&6{QM*T(=1@^QCX_fDs=D&HvuvIcO1;M*$tbq{@Wo0C`jN@&Oh%10 zJxkTtu-@Y^W`-vNTQknIP<(Y&KU55Z8-F=azsT5X#;!BQ-}uviV2r=Zrz^$rhd-64 z`!U8}uhYvi#vhc^Yca;(c+(p*#-Cl&+cCypLDPFO#vdZn2QkK<0MnC; z^xKT_u&zH~j6blTyO+Qp{+>WZy%?kX{(QY6WBh)2y*6X~>T|t0W3wq{f~jyizinBM zV+Ox4SRcU{zv)(=%ox9yRiDckzeQAE%ox@UPw8tJgwKgbwgXV*_M#y6n#3ykrlS^XMge6dpho-w{@r^}`Ahp%4gg&FI~SRiA3 z??SK17@xK4jTqyjRlO}^ql5=WFv_PSdJJQ{@vSE@#+#S=1jcv+O3z@dA7eR;@s~sO zRgCfefxd+?-Zjv7F*b;?w;Aij*eS-AG4=^#DU97Jg%9M4C8GWlGkH0uYo+mr*KB%G z#w?6gU@Vfc5XSm5){LO=h(n%+ko7_#W`&Da03$xL~bG{qLZ*c4;ed-6HcN75$SmL;a@ zE_AB{8tuK@w2F3gM0-yyH`SCF^|AS_G!3+)(^hfQ1=nr0DcX*Xdcl-nM{ln&#oN(@ z7frey{d}D%&5p)zz$S#D;m$_Wa66i^*%W6-uWT{>Xh*--+bc)F~`Bl?2dn&)3PV~iHrf2Njdb<&q8x=XQ$Mlm#b9!O^58fhoXP+35 z8zsY$?wkBRiW8XH_b)n*?;poxzbbJ`Q2i!VU))ad@{Akox;U`uYh|o;1ytbP|v2?`V}T zedZ>6(Sr9)N2vN4QxeDbCFsfrDCXW7xP6aPsKl^Q2)`~KG*zRE875Df;v*+>xIdVB z_@XAUA0o*!#qjtd=8vMb#lb6e7QBak;Dw(9?|pyp-a7~0hSHAqh;=~uk5SOLGVtPg zADb#jjQY?U=S}CO7j4g9Fr~RXX47owuo-rBcRn#)gu3@WHH~vI3K($3^r`eBt^dZ< znjX&8Ot#D~Ot&ShNA`Ki!+AY2m;%z#__V92@g2?HJz`z)>NQk&k2{)E@j8Tl4`4DZ zQT%B54G1nhK&~@4xSbOfqf@bJ=}Upr6#G~==N5!luOk=Y-vRW>4P*$r176W%#+cI3 z2z}>%4Rx1~LHhmI=;$F_*(;A}41zHNtQQ-2=hk(XDJ4`kk?&pf_cR6lgI4vU2s0Y= z?surh#IHmS6l93%;6~e30(0Rg#Sr@)&nW1Gb`{kGsnUq?L3o zQ7&c6^N>GzjQWa+)cRbyN_($sDqVMz75ds!K0@MAnmGfCuuknu zU1vhaXQhzzR8QzAUPg|lm66E4vbA?&hN3gr_c(4amxE7?p;ybvUq0@WvBBTno4zkEzfUdeqgGfX_am(VYV}%06z(&` zZqS>RU{KFk`0?n<;Acv9zi=#@d(!|HWU5{j!gn5`DR7wnIg7x$Pz|gLAEFUhKUb#4 zHPE`B&N^DKwgy@dYwKN8Zt=KYLKkbv-%-yWP^eh4_6kM`0rz3Q1HmZz`;usua9{V@ z5bP_3I*q9fL4#|K@dgX_GIY2Oq|$X{3$2SfZ6Hi6rL6CU6`|tws{!h9=eXULVud}XA*yliec0!CL%7fJ77ll-(HMf&Em8Z0 zjgjl{G)H^SH-TWubg1jl6oTZ_j%JA+1ZoCpiw_}nZH{K?H0*8cjva3} za~-2eo}{%vq04WgHrS(xqoKD@)LSjV`{)~cyRcaiOTj-nx_rjd5bpJI^vaRes33Wx zT@Bkn@a}OO0bv7U5G^_ZP2aSY^Jw@E}oos$=7b)puDn!egpw8hvWKXKr0VN%& zfGP-&N$H3x#xX!;QSReva3fRX4Op^pg2HKXPgjci!0{kphbn`D zPGO-kZM0lfV${d>`WSAKK--Oz5zz~D&vyM52JLAG za}Ap;he(Y2*w#SGJflr!w;mviOk>}bwBd8r+3HD9jjVx*m7l^fX6!#Q$OJ6dd^ z+{lg&UMxQ=k$X5sWNgVTr%%Jtj`B<8dJ>~P6QXl#BT;HJs(JAGQ$t(nnihKer6nuU(#8O=8rCqV~)6Y&*8fUG22DRSB`R z-zFnKX1VRc%kn-ux^=spZAZ~bjtqs~mdn~szlur9P&oOpT;A4cr`*m?i*_E{B{#8W zEwx*|CDHC8jwWMIvnlP^i>fUs3Ts!`hpI`vY+d)GGXbw2kdFY;v6tl{wqpkoJ%MRG zB*!!S=`A^pVaj270>f+Xz!?BX9g&{_B#+&4EnDC*w(+V?jsmfD+Ju&#K!L+Mqd@hf zTuWlqhng2r8rr73C-*gI+qL)Q)-FP1Yk8U->SSR=bl7l(+0G#U@pATo!}iV@c1X~^ zHm`H?Dm!}MBYC$SwVr2R7YX7o%6si-ALPY$w8f9?1)RZF_<_9Hj-GsoR;xLIj%y23b|FR+TB}P+N4(?| z+w>$UKN&pXC~vwbb?v#`-4wHnArd~*R#wW{MdK9(D|w+wxX(+fQr#}Pp()r`5H-2) zp|rQ7Jv|jSLzhkWR`7U=yl}NL+kF-E{_U!c-p8(Z56bpa+R@Hxa)s^w3OXN{j}4s< z?-uB%MU{pw23o6x5^hK5l~OQri3CAqlyi1&$+8L-HG+GooN~|3{i>q!s-63CWyQtS zNN}i{l5S7XtERHTp1>TWylLlN2vK_5(ROu}@9hb?hbm3&8dfw^PTRQ|jg`;r+)2%q zTsvB^mGaP@pk8YQ{vc}R*H($QCwR7l@`6N7syOU{vw@=YYA4u3sfuBzVrL~!>TNsK zS(*Ph%j<>V$~SasC!P|VG_0YY_B$SsgWVN)9B5ygM}&e$NuWD>Dj(R<{9d#&MWBARxq~=Y(>ic;9BVvFzIEZ~wPTe=k`zg0 zrzwSPljD?COw=5qbhnKfru1eaCPOYvS4S$LwxYUHhB=qkAf#%apkVlkw0)MyuF$KC z!(2EbnMGy0LUn@_r3v4D2>B5T^d-vEws%vNXmD)Mzn&$m+6L9Vn7HzS($qG2wDKvZ zh#jkBF}yoYS;KJY1jW;Zg66?)ICSYqv6Ijrd$S$JJ28p96tu6+XR`9F9o;%bNw%Z4 zrzv4BMuO=xlvF#aWS|YS=p#gpIKb&aLuNy3rz`gTCEM}YO0dMVugy18$rPxc?WMWO zM2Q;ZA`{MfCQ%{6d=ZwVV7>rqpD*&}D;WNnwqd@&5GK$Q*~)% ze?V?v`)Ip@%}kctQg$d9?ga{4L0{o5(1)|Kwv@RG`c`a*5?;vK?(Jd&f%c_gOO!UY z%-yV1&_$Lh^=;Mn!jTR7LcG$zc4QxSE6Z(O2NVP%0)68RWsx0CepB&xF}S&J;fWB3 za~&mdG6%rNasYfL2f)W60DKzPQ4vRRp!giFqpLWC>sUmbz;$#J$8V7F*&6^Kya7xz z0H3&l;^VfC##tLEK4=42VlRTv*r0|F*udq}H2^+Z1K@Kt06tU$;1e|fK1~DQqci|M zM+4x`;-ZKt2E}J-VDdp40H2}(@DUmSpPvEbxZ%VLkdMv)_}mPD56uAh#0-Fs%K)Mb zzz1cZ_>c^MPsjlHcnpBg#sK(W41iC?0Qg7@fX~AK_%IBBPr?9j43^H255WNV1Pp*r zzX15?3xLnP0Qk@gfKR*t__zyz&$5J zt3n1os6t9UrGidAqJlC$p8~~)Q}7@@nd(?f7UxnB@}U%jd?MA+q)(=I-c?$aod;?_ zw*Co@rDBBV4ZxvP!$2HWrQ=VmP84)RDJo5)wnvmo(uRN+kA@0{tS zs>t**|JlxecHmE}zLMTMq6F9A9^*9gYd~VfpIFgD%$i#hta%Pklzng5vaCsvrA`KOt6hX0%s{BAV+sPd8&LrsqaIpa7L!fXXdEEi6DSEep-O4TKUo9xtqD# z-0NAQo0;Nn&l3HePjScRQ|tlx)U0YurB@L{L6&Y2q=TAMfSOx?npc3DUx2a}pmGXO z>}y;+`(BoCI#B6$lD&?FJWgZ@_sgf)5A&&dwG4{Kjx4=?0jgmEid~iSvFm0DpUtP( zXPHXpF(gZPFOvqvZk$iC8#BctN|x~Fe2N`ApW0j7pm>s&sm@ToOR{rtgn8~y8d&Pxegl( z{%2TA6QqOkC_s4@pu7uEz6B`10#uO#RIvh734=YNtvYWcLEXo({@(;e91al2%jmQ_2Vf1k!t_l%7%=EkCW)pq{6( zCKPx&K){E}IB5=fol(ls&JUFy20mFzv}K)9O1nt&X!AL6`%;)<4xppw6c6h9vEpNE z_K}j~Dy_D?e?jS>(1dcTr>({nrKL$qwm$07WTgAIiF`xY?$Cqm);qTv}4i!Jgb&b+=uVg7SItdrfo|r5E|~rfX=)iR&71rbb9HHk z4Q&c@F>}m?N{zK;sOAptQU>J)n494n2WHh)!rweWqoVJdJ#EhinD3}&9(R#8*|xN* zxu_~Fvb|E<+(nay+uWL(Us9!UHd`C>T(gvAL&2n(?UU?$+oyfZeLSQUwq|kWV?NSQ zN`D8|6b;{N^^|Q-k2SB5q}jI5#+eJbNa41xCz!t}O1YQKo|O5H*_ZZ`xe$e&@o~2W zWSfIrrG?ZLJHt|fZ6%p|nWZ$__sh*&DoZ)Gb%)GTT%?s${jj+`zSk}cx$GTSYWZRF z1!=quThM0mN)u*!$-1H7SaGs-i1ILU7zE<&xQC zOS@oh;v&tYEtkw!q_sA>Z2sI;T4$T|xmop;M%XgGF<)^h#Bm-hWke0M<&e2J<$PzZ zERD3i{+;=0#fw8e%=j2i!=HL8Gk|WJ)FKovsj4mLp}B^OdronCcV{-vIic33d6Mey zlG&8SpU|R_934B%@El+~H9{ql(Goqe0mQcA7rYU>iL3C0A*U?R`&mi%GK5 zwQ(r=c|Y}pB*ocA6;UU+;&kM8akaBF$JV@r+Qcj^AUp^G*ZBg6cuHY$eQODX+dL_2m96!`wPjwrzR^wXY<-V7pLJeNU2B(YDI!eQ6Z#m#Q(+ zR2zC^wj_18p>GSjr1MA!GxJ?50KRAiz|koHN2dThTmW!%3ed{{9G!yV=oDbC0iHJi z-=qSQqf-EmP60SN1>ooufTL4@<)sYBx28aHbPB-HDZpgvP*d$HqBVGRdMZ;2v^Dw>zoV`6g0F5N6HX>lp)+GLwHe!a3YIX;be&QO@?rw4BRxi8wK&m*7OsvqTrsQtkAsI8^|OsuUo#N=nI zt+oL8zP8#$y<17pOY*)mr%Q)S&umV}ND#)ebW6 zL+D2gD|kJ?Xyeg9EoE?z8{B4%RD86jsb^8TSYI_8qW28ZoCa!TgK^4WyxTx+Z!pdn zjG%^UOM~%|JxfFNX_S4up&DWEFB^Q65(IuyBZq=741V|5JWH7EtxTt{8>vmCbP8^a zPEDsVjWJ@T)4|4S7nz?_{T>}|tcFt8CTd}Wai8*PZcQd-C?`@?Rv>c8;c*07qNFe^M#nX;Dbr(`r{) zDC%z5>Dbe1BZJY?X*dKN4;4Qz$D_d;R(hXqB&|ZAmE0P=oJ-4FqZL9Bm0zK@24|3+ z^HwzMfat84M^ap}QyFb-qxOde&$enmS!hTw3a;1|)BMGUiaYIXi+1GFTW!@r0M*;6 zg8}BXQ_~FnW4ck+D7A(&@GI@`u3SoKuf`aOCfa*)y{kDSUtXhw+6`ghqz-BXzHuoq7kNWEtHZ!p+*ys3#?tN1Y9heEF6snjEEl-ZZljE;YE=ph$Dbq* z#8=V%RmDiK#hzfo8_3e_^7)&%FuGit~arV8V$jb9**iCu?q%A zsErUYFN;uz0?0kp(Et;Bs^gRlZsplWYO$h>xdKHOL#&@1iAD8Peia6VEk zX~-_-mtBqW{LN+xFJmr2(Y;XB3>wu-9Sd-y7iuI_eQ8gArHA@x^5eZ#eKivm<}#Ud&ik0C~+7}TB0uEprpr89=S$)V;z^8C`C3-bBNm5(2j}~HMqkJ#ZPxu%Nn_srKo;}D1pkRIx++$!21?avjlaBAxt&$y`F%< zei0Q)bl6~woxc;a`jSMorZk)mC#u60-t^Zebtmb0wJ_~|3(|hW)i6kx3`ZXc>GVgc za=f{@EQN(}LovP>@>zyl_`7#2n1?L~4L6ezKnI5~!>NB7S}~3`reWbUj^q)@Gmer+s0s2ouJ#tYbBx4#Pn0>1 zI*&xgarD|qRR^dzN*w|)dlY#{qU&Q2dS+4Qv9LlG?HY^b zXHl(j>KHkT+i=#%xp$mM6*wOKCHNN&{@}4{>wL$jsAS9sE)&qkEJ~iBj-ap<)g*ms zq=oDDF*0AHJtN^E(LK$jh{q>`dy{sgfE(T$T^KbDy(bE~V`PR&dIw*~_)UDeRA zEL!z4(%v&fUv$9S78qmpaW->44Vi?_o=+c4Qq$%6+%Q+VJq1q&#^YfILpB(B&qD9< zLFSr9m(8b`$?7!Z{A{v11z_kDbvnQ`1Efw>CxE&>RUKz2DQPIdTo+06x|kI)wi==` zLWF55)}YH8NheRoI5wXyOjk!LqGFYM7|uR?2Ev#X^zsaKJV4M))gtrpmL6i{dvB(i zW-#g+jObbFSc6gDV0=AGon$Z?8H~&fb%w!cYA|Y8FyOAB6&5uUpyq6KKENIWbep4Q zfx0{gTLvpADN}tG;3orQ&Q)iC@_kmFX6Wl@=!5N&zz>+`sB4VDmm90Tv|_B;%h@4A z>H0jiwK9|&G^__DK8-C3><@YQ*Gh{`NlqK-h@nJ+1iGky)bO)?j9Rv?^yT%dL^lFq}gb+*D~ zkf0Qm*#OTIIu{s~@BcdVLgYywT2*gDltbyH)~BZF2xNk@F?)tngKR7YM84-JFbBfj z*{V1A$FkLq03~zOPDW{~d(hSAM^@21nM{Ni2eU76_n|e@IC=%`2WmMdg zCg);&75ejxdTq&7Ly+fEF2b>J3MREZz<9#)LZsS7dzYdXUNg+zj-W7{N-xCl6;8

K1`3e2#%wo~(FBc;?4X0+$i6+c_PVH;d{Sz)MjA|~ym}P5pM6P+e#_LV|D_xLnk6({i441+Ng@++u~W z|C|*LlX^!y(#>pA@?NRBLsO}hYG*@55xa^tD;-8E9$~DLPOMa`N=bBorP@hOV*d`L zkaaNUmiN)-8>`_HdvoA=&2!Af990*|%8O(3B)vCH4utCjUIR{cU=$xt)!0@MUA zQ#~nqU%>=bjRaWWYIJlt5***B`6zY`wDftkqfwtAkuLWqB=cB}Fm)l7U5()?frhPC z;{cAW#$q6WD!qXHy#$)_f;vb};C8e!^kb#1QJ1}_Vem3@dFMl!Kw)dtR7Iq0A3?9C zpd&jhF^4%EIDty8RTB+)*9h7>67r2p%`K_xJv@U6^z~YV^CEZ82wpgqq}eaxu@ju$ z5p;7gdgJ+=u%vIJV0hk(m_10r(4NV4~9*ao#ZQcm8W_BI3~ zAy|r9K~FIX*r*nQwB|-cup-;|+?Swc%L`_+!vbk^7E&Y%*`#(eR7{KD=Pi`-)?&T% z_9oTCV9&I-S7!PS0#Xm?3JCLzgzA zD#x~{z6N6<&D{=0l{`EoX%v=+kT#8$02umLK3b_}Td{$VMjf|e@JXYkTM@>m(fzF| zAJlYvN#xx0lG@);yv?v(_%?^_wnxyhqv*=MdFD`heH%t+QKMIl8o9r$`a(^aml0qJ z{vNJa2kQEgS;;rrrI)d=PNUYZVDXkln_f}ljcUFVK~a6!O{Kt7bJn>%dpBKPNPQ`KTT5z3S+WYZSf}xjMe4x*O?kM$jcLLNsLQ zYw+$g+VUF4JE7%Udv6Es#1;;0zSH45_w9n$cdGS`qz~*IuU%?WB<;LQ?QB%kjY8f* zy!6U0Y&WLS&0T7DgRdEU%#!sCMj_gF1RFMocVqK^z~21XCylPZj;$#;%WlWxR>a7= zakp9*{7btLO~bSIs67o$b?L$$1cZn7h%P?6N93-#7g3~WRV`Y13}L}h-bM`Er@GOk zgJyrnCZk9Z($lbts7r-?!d08>!){X=E!!vj?uUKYa!Z>a8+bzAe#J!1Bw-3Q^wB2BEJTnveG52_6e?l6OU;UGp_ku1Sr#Gl4G zDC?%?nfoTZHR(t;wm3KDh@t|X=m@7j*?Q1G-7bCc^29EM9ew(P9UE{h)wyL zlRnl+iE*&4!I)q$ZXZ%R;Y_XBTUZu}gi{PY7G@m`#&m<>Xt5~6pE|s)mNw+Geo_9z zd*&jv=WSF}Xq{~&Lg-clM|Fh`V+P(x0}rc%Wxjo-XB%#VHKaz>J}_6OW~a=B9Z%0j zs__n@+Ksg09Xz%hNqQF#@kWYz7h(2B+Wjt;;2X)~h)_A;h+ytIf?-i;-qMpNiIP<9 zBXf19VK!3YQS9Swq_>Z%1C4Y$deVh~NcYuItjOlZ`vp?Ub?j?wq$S5NNC;KCjW%Rm zMYwz(#ugIChnz$mIm~C!@GM?-)rP9-xx*0Fs_Pp#~uBW~2ppV1OG`JNFZsJ+Bn!%`IF!Ih~Ph=gPKkG1Dtw)L>Pj^3O3CZW+2%?0# zMiR6u7+JkOf}gCTfgh=@3~^IKEP|Oi$ISQ%>1}fr`Igc&IuRrI9#cg)@eQnY%c z7KtCLB@E4NoZQ+5qrJgEBZ|>3A9t@uourc?t9S$+5ax;B9d|mfmNBw*HAEQmicylU zdyz-8VcUuwj$Y6+J^!Qzb*y$HB$&0kHhA8hMHjl>8+ZWXkneTM!N#t`CNAHb)LIf9n z-)wS@8zZUtB}6cn_ z=Jg-UmFehZY$FQ=lk?dDG;p-PN&%m!vLTy>tL-_+0_FK3^++1=3Bmx8*@FA*93<5I z5&P3#pQ^qFJ2TPGt6Fv^Xjqo1k~M&6uAW5B%m zDaMhDwvJ~zEjR2}=5tIHg0aeJe2p?c$6_{~c7KjBCZ0-N zf!*RM=?X?7k#w_>^!yb}x}(YW3pGj}%{pH(_;bEMLc!Q!Fz$bWp>Z^JoH0)c{%(Vh z$5x~DM|}f}I0lbQR1>M zr|++k^T@3 zT1BrvgsYCCpB|!iQ*)YVy=1<(u5aOd*y>>BHLb1Go$5+j`yx33_S;nUbNKF@_Ek}a z@VBq3Va-swG9Gi@G?0aOmt9o=Wz|rfJ1Ro72cp8%*F~#{`x%p6w9>e8v5diL+Qpy` zon??t_W=6wm2161x2K*O7CJ1{GBSHgw*FFYu&zY&#S3v5U8R8ZcD_^`5ceq{tM2k&?w5O-X3KzGLLyFMacim6>eIq}qm!DvckkV&%{ z#L|lZ{lqMBynupJ`3fen`m+V3ALmOqu=G*^>BW5MU7pM~hJlhOLQ3gPO zc$_yDP;e?=L3i65s^-S`bKiE?ngS>uT0EY@R1d8az-|w1EI|E2+5~`Yg|wLfjXbsa z0PlKga{>B#XAqStz(rrdY*$#*L2WB6n0|g*EU58*f;#6XlC<*InqXjcv zMB^(((~4-F0ZtUrS_2d)3ap@MyAX)%%VYB98-4>c;Tg=4Up zQ(UVDu&+3n>EvBP>kSZJLhBFkW(jS8yK%z^_f2ul=y(aOjb~hZ(vYb55hF&$j>y*2 zX=+K4<(vWPmeQh(EN&P+bT?`qptVur#a)(kx>`!;ZC4s5N~evbwY~sK87%=|L>X8k zoz9ohA_3|J2#^_|4Z*8!ZwF}U0I7kfS=csFCE!JR{qpZprUcg!zPV*e~siMsSxKssw z`5d*as-+mI{AguW&7V$I)uOa4v?WHWN|aSyD@l5= z=0U52wJ{Ku3en~m!T?%X1F=`9-6jt@5+drMi&?5V`$2V@SVk+J zdqwi3y$!U=RH7ay?m)p!~{I*o=ujS*lPZGBp6hnf3_r!oG_pw6w) zXESJ5Yi%MOi_lEetPQ+y2EEw^1JYQk&=zeUOLN+4O8~00(>8e6Z&Sf~xKb6IqXp%* zMQC!Nqt=Z)r)n~-h|^@GO>eJl0SM}#frY!(i+)Y~v(4@Pz0^sBB$dEzPduZzbYDEay z@d#}ds1ZH27XXS!3Tjs*T7f%Ay|l#u-}DmH{NCD9P(giA&=Pv7j~4F55ezKbWw7ww zX%rK!O>@oGmk{-Zo+Z?%AIexlAN4~Om(cY7f?0Wh_B^O}254*CMF`}BFh=*GkOA5p z+7zjILRcgUWi6qXqqOG$!lMOsBU)PqYHp0y13wkK6a)8qk(v(D`pYl!(1F{JgYgi) zHb_ebzuI7p41NGbUoi#JmBHF_-07J$1OsU@T^xd$1~24^MbnbWJr3n0)7m)LDVf?0 zMXhlqXsDJ0FnO3p0L9|9g#cUQMTRaqYLraZ3@|%EBq^7ujmI6CrHOExMf7TFQOYM=(9yMB^AZu!cUr@)~8{pSw!_m zU|d>6`$q_>>qu075q&%o&&zP?J4)-I@|_p-#LmGKouUOU0jTr!q%Qb^T)!EYjxKOK|`N0nib&s7;O>2tg%`)K&f$Bj*%mab7WCeiWclp z+>x4%*F2D_<9O6|I9(dA%>ziCfQk*LhZ6)f?-{gtI0a7B+9MRzCu;4)tJ6`q;iNIZ0cWYWVON9tm*8XSy~C zG4i|9F)?LP@flhMz^WPO(kyB;6aAG%CuXA8vnXj6959OtWuT-iTACq})U%-XvgoJ< zE|f+3Y;7T39Iu(=Yh3O%3dz(aQ>_siE}>1pps{!kdN7MBXQIwo^jfB7rGSaxcb}{E z;&%bgMMN=#+@D3O=hLER;pw=o@+_X4`II#eBg1@ZnT2s;K7E~~Z3kFCUoiVG&|U)N zWz}8*IA|5r*lY|Q^QmHvwjSVkj-V#yYMVe+CyWL2=_KJl*7HfL|=0B$$1n9Lydk3KWQtc$b-K8RlZJD+o)cEDvA%K=E z1khG$Z-P3pQrib$U8TJN(EE8ol~}Fq1a)e)_9~?hgCVkC&}?9ITBGfvym&AQtwj_# zl-jSw&^(l8uf^Oxl)hSvka8$Ryok_ZsBQm?T4DS)iB7G@XwNGexY)EI)O?H9NsUQN zj2e`bt%pwj&tArI+oZ z;h{E6is7`*hG{vR{C6N&38z^*Fgu6SPdhNNhSR85@w9}~H?N8$(XU}rME2K&&PF>0 zbInd+4X<57=jdJ9K*K0X1geH>7(Sb|t`zjTrXgpe*M&irye`c7)9b>x19oe%MwTL+ z1=lV_mePAfmMVLYHi;~I;1Ef4cn?ZRqL95>s=INeg0qyTmG5i#)zTi#iyrLJ%F_8& zY7s+TiRG2((vbpkeVH_st!MrPFo zTgt8Xqc#g^=6-B!ETp6RVL4omIG{zS35Gwq#?tviS`0lnpp}Iv@C`(=3AE%51T6_v z>Yz5uofGP; z%v%_O66lAwFy1E6oVT?x9zt0^R@N_qy)cNH9@c7L?XDk2q(bG6GepgF#Pvc6ZvYu4x@}V}64j+Ld<2y!2Fw5eM{U{tJjb1w{ zGS)aIsO87-RHjj(4dGt$k0_F5rCu=zUR${DCNP=Ym<|iZIu*E26+c zUkLEb7aHGu*=2wqzrYxPi#K12W?%hM$f|!OR4@NZn+RFytHQoHSFypDL+@YJs!KV! z*ANQjQ2T3G!sO7RYX}5#=#y&*QFEy7b<`n;mR!e5W+jK*rRer`EdaRB4M-Ac+zl)O z6X~rR(3?nMH}TYurr_L-$Z@JQ~z56oV*236`M)J*bc++8dnXMLT+hIsMb+) z2^W1l?YoV!d^}aUgQdxM>`lXd6X^RpsL2HC@HIMm0v-Pv?U+DazCqkJflhn_CzwDz zzlDQLpi|#!6Wqm7_be`97MIYM_!QhlpFl_NqE|Ljz3;RR0F%E%A8(}pYwNxPt0>mL zfg4OtILsmakV+Dg&}%5tAxM+no0O1*1hRzmP{jj?AP|r~qVy^d>Q#;)Qd9&*1#DbI zL@pN<3+-CCBKUrvd9sgie{cRc&(3FNXZ!4)J)7AZzhlfYop%@2mFYWou@{wT&wsJQ z;GbC$TxE1I;`5o(N2>Wb;=DSW=C#^W|yV;@zdR#dQW%BJdVK5A?QD^*8UP~(t4tAgr} z+i;&(P){JZ9#>gv4lT(=nv;uq-vg}rzEO`y>lqH^tGm;3(eK%4#J1_59#Zd#iC;ikEgbofh9pR`$%|J-;S3U6?=t6%*zla|3S5G5ER#bx#@++!- z2ya)!{A|~5ry7ee-KmBloOha%jVq}%q?T7w0}-xQGUKHvQ{-i(h64Yi)M#byBgWu% zoP{n#gH$X2rI>yPMu}Z6Q_xXa4MJ)}W!0CkvKoNk6QKI>*bQjx20S+Xyo=1T0F{mq z7-%M&6{v&~cKQsty0?QC&Dt#}=Od>AWgvr6C?hk|2NEE3PqMqhS^ruPmr%6OD zi@&4vYayyOejWWfM72SP4#m`p^s}MZibeW|P&HQZPo^|hs*ZD(kF_gQ)zaI;R1iuX z3d8y-(lKt;(&uG8*o}%_*2~-~89$hwaI0nr_uQ&0enIS51zVt47gxc`F4iZjsL=?u z!cCYLjul$0uZF7(gsu^4q$>aI6H}g{`$eeke_wAG>&GLpZHo1%NR^53E{8f%Y7|oQ zqSQDZc`42IQk@#D`sg0f%8ATD(OAM_{YJFvjT^K6F{(8}#~4(Tt+&Uh0)*(QD3Yz8 zt%{Y9t$(PhQW3hxVkghmdty~F?&K!LVS#W%H%>i=a4SwNMwl6|79s>zQ*#mU&;NzE z*;^?=bw=o$pr#_6PEe%?LlZIgnff1zDmO3_`#ml-Z)BOTzr*#0BvnrbJgI_L#^G?J z|KP@6KU*(KQXTNq;@KqZ*|T-;>S{j1h3cw3eo&08p;8c@u7P9gS^Z889Edx$t0s1U zoqBXltk(>EsHSRx@SmDkrVO203ner3samQCp-pX-hfr2qO+bjMV^Z_$V0v5ihjmm( zgrK@AA7N%)EX7v+XI-p>t-7F|nuzdyJsfjeb$WeNwpD*oAFFb!Zqq=`LO9w$O+ski z5Hq+;Pj0B{BW!Jm8C<4sHpFhbOm}Xi`XH=mgadJz{;rW~g}c-V$*Lwo_hi)#VR5W6YPB!eFKWu*P5tm81`?f`tUDf zU5Dt~S$=L^*iZicPBKnFa5^|U}weL`6X*Pg(l zEzrZ7oA6O{>Dosmd)47PeH`NPWer4y{a)U9E7mF4YfOskR7hT4M@J z_3GBx^G4}^w#E#P((X1m2uA6NZLppOX>S|sU4!&rZLms~>waxjQ-nEfabzslKeR>3 z<+?{Z>_J=f)^=E3TlAH7sB??%&>qd#7QMYaN^a4WQ?QXY>WL|+bEEdAsC+&86ut}9 z>wxC4L{I5}aZ2=s4p{D4y7iNok6C*1lUT%A`llzcxo7E-9kKZR^{I~PNd(miJ4Sy! zt&^JM>Q9aJVcfjOhd!F3s%yNcx}r|$r0VEbYT`$|)XvHug~xWr#QW)2J7XR9(~d5x zIzqiJsvW}kE@-{_=~G?QO9*LQ)iH#Gr_?J5N1j4+-cPsdhLzM$Pwj^Jct&6Arsg5! zbywXS&tL}7tHQBKj(GibckCX|=%zieN}ka#_P~+-jQ+X@7U3DZvPkXl8Lt26iBX5^ z*}YV6$8Z|8rrtHvQEO#yH3U4gx0=q}Twj{)XrV*&2B0Z$vT#^y@bi$|+N2tCr&J%q05YNNjy@1eCY6d8FL zIDpdinHg9oH!@U9E@V%9akh%qqsHKfPuHbmaF7hq_r{>r8lvZ9Vhau7DOSr;oiJSY zr0TEV$imJyMAsXu{-Q8Wtw6v;lJvLZR6`7#DYeU1Pxud^#dv5+Ly-G@w#q@kv|@FU zg@szHPgt1XTHSZN8t7O{qu}=ROhr)d{FGoI&R!aw8bkx?Ja?#S|>m#}9V}yly>KbRa)Z@Q#w9@|^)_+}f z)X`lF)f%6C@3lf4Mu@eF(GK{VdYcVFUmPk@uaCx4<#9ha0`-Ox^*YK7nTWOvbxoP1 zZX-EJZPsdx(ChkLSFF?JgPI-QCA1} zqIaE=891FRq%AQVq3%pIf$Olh1$Mb;eP$*alZEKDUzH%tnuX(hp}sszJ%cdfIWwl& zN?$yO<9d_sFdMtuCjIAZHQ2G~(XCWRZ+jja!DuagY>=Bo%F#QX&+*vH>gGq|^|Q>q5*uS;>bZSwA1sN$%^ z=|xH*>hmwE!$>Y)tbB=AEx{!LqFRO%8RB!xvA-goT7i{>i0*UI@9-w?!k5%`AD)A! z^hYaHj2`+jj_OUi`77!+dndi5yMJe0v>GRcq5AS_Tp113?lrhXou^l>Q6H;$Saw_q z9M8rhN%8Bj+hyD6_P#erpgm!lre~>od$`f5C-t8GEERRNmeciDud87W>d~bX&sjde;XnES4ut9Yvjb?kr|afk94_eT+ly

-5D_YMgHOCN4eJY5k`91n&~H4r7T2 z>idUrejZ3m{92`fG|j}u4eEE*x8K46*yaeD!GXN!e;q;H19j`8Y7xQ*N7WXD{9`zd z2h#e$m(JrjZ070($JI83CU4_PXfDmxYy>k$UEV=$bE%cyt25tKDUP``xg^>XB6On< zRiOUlT~+9Bv_Ug{<&@-a@GVv08<2@?*81-x)X)zh}=`ZY@p2#m0-6 z_P8gIT285_k+PoWY;A+dUS+4Od7S-5-n;2Ogvf$teE6L`$y6hE>2%ZR=E{o77i zH#z%TfjbP}3;fFPgTP&ep9JnP+z@!c;JGE@gP+f_Gu#oNM>YVz2>3JnCQymtu0Umm zKLmmp{uBshcu)>_5n&aU$M9SMznL?Vp@KjRgD(L++JQHunmMazgV`A>*(pnLc7Q-2 zLx?~qLzQ$o{!EqOEKyPXNbGZ=0X&{IR!Y=%2Fn5F;4PFZs~`!|9440p}(XKGl;@`n^z%|&spl#CaSS2bVS~x8Xs4`KxVlOLYYA}vb%|`?A^`;EnWR7rp~?^& zOqF4F%G%E5s|b`aL}CSz8JY`x$>0KomokKvjlu z0`UwMz+-yaw8mo)lgXtbuVUMqh0V89Rsm-h3zRTS7MQ~D41qk5j~YETm>Or=DXSLG z!gG>u)n$2JiZo!DE0D}EPoOEo0)gfX3k6y+yeQC?VTlbMD}`m5EmlW{6#`utv_Ln8 zRRr??1z6bCHkgH7Yp1NfTz2ZF~b`IlNb&Wm?!6^F}!7iSsh316gs^!JKJ#rj~Rg; zwZr;*M~cj5I3X~X;iSNPhW7;)GMpBmr}0qfM*_k` z43CW|ufSuSXQ^O|^(BL^z$FHUz&8vP1+Fqw68M(EC2*Y~K!Bb)#G-kEL~gQ#2;5-^ z6Zn;(iojil2!b)b_=v<1YK^hMtd3YpEurlDT)vtO_QW4Fsn4rPN7ROlU-m#fHj__$cX;>sw(pI^+iSWziz1Ld2#|%(Of%a&Ef2M0`nLa z2$V7`6nK&0MS-OZO9WOJ@L0=4Ug9Dv1YTj#0&5vo32b0^MPM_-8i8#L>jZW%Y+#^$ zVi(IMDYBPgivT^jiuJQi-~hvRfrAV?1?U-8jIvAMD8n9sw+XOM>=U79S~1Q)1n6m2 z!0Q6^AS=Kt@G-+dfpZLR3Vg=!mcV(2qXx`9!7o{kOOZ7vr>0+9?q66E^gqv}9z6K~jJj=NiS%8KU^ z?g%6@{31Zl?P40g3DASOfV%?pa4z5vfrbo!61+s+-COrDh$4?=8Yw^eD^SWjFx#9* z@Uy|pq`#fAT5+~hpe=(ENMWcfK+p4Hf`I@JPooPDI3{?e&55)3gPU1)keesdXMG|Z<3!7x8taQ$?Sl)y_2-34A@=tGd0i(#n1 zUWTUy{!xDXjSxA&MMeo6WEd@Qm?2%@D8m?mw;8eoPB4rUIK^NAJiObTX33EvA2Z|% zoMXrr_>7@Y;5iq_OW-EMYyo=kIruwS4#!)pSbRxAfZ+A_RBVET>g!0@IGrb&FuPFbBe`=~%yhT{U=8Qu}- z#c%@P;c4_`IY~uK=Lx4Uge`U21~bu*D3wFaH1(c`&~JHJr0QBbaKMb%ygc znDQ5p@^F4S=U=q*txSeX0`w3)rg&LkJi`@%T!yOx1q{~+rqNuKFnn(V<^tD$KiElY zGUxv!Fpc4cz_Sdu1ZFba5tz;JivT^Fj~V|>U_QfLf--adS;TVB2xio*o%?pmTEf|X z2`p#u!6Uxry*ZX=ImNo zbo`qUK4z&SMb0tQ6Znjw0l^%a#y=U7Z7|blVyDdi9$?X%5p1LKm$`fk8>qa;YGo&_ ze{p^rfolxy1ioiT5%`heNr4*-odj+(bRpPIb3r|mV79t3VEN5#_mKR%oZm~}9z!32 z2MqlLeDGL2svIET%P>g5pJ9kVC5B-hk;*K?1%enx3WPGG3RGc86NqHU5TJjbz?@|Y z#4(Ju!DA(`WZPm@XBaO~i(!I5U4}dX`acUyra&N>p-7-9Ly16h2G1msRxDEl+A>TN zNMV>R(6PJ{fi4U)1-dajC(x7O`EtPV*N0`U6rq3Vz|zbkF#oMFn4#1Lv&Ss5Q`Ruf zUMw(zVW~hW!*YRihLz^{GtR8Qi$_BGKK0wOD`Rh3ULp$Hv$ndei z7KXC|uQGfhu#@34f!z#W5KN@G*w1jm2FwM{zZdPK^*ZNY5_p5*vcQ`RR|JkQTqP)_ zX;3eGSUKO?V3zcIJ7t~V>>q6KSf^NiBBB4Cv3|x7YPe;Cso@T#W>YqGu7vDgZ7|ut z+bQc)&i=2!7Yz3Zo}~)@#1Ja@%K)AKO$|O{?fgqT!s7%xX#`&kVFZ60OnE1zGAR2R zmv`AikjA@Dmx6v0-Si)ajCCSz?da}jT+ ztOr~^LBI$9?1A#0BoSYh8Up?dwFD|L)Dfu6P){I;p@BdsLnDDI42=nv(d+)KD3)gB z!keSHowBNOc1wYHhSma!3~dE!FtjJgqLovJ;Yl0J%IQQYkIApk`CaUMs}aLf0!`hOkSCDIP#`dlp-5mnLy1Qumt~Sb z0mBr5Vuoo1OKJU3XJ%MG&)Q(t&kQ?dP2=oY1f!_@a~MMTIX0j?+P@d zMp(cjEV98&U@@hZQ}%o=zsv@cy~0je3pra0EM{0mu!SmEK7{YTt+vI~u+~mlnnzeK z@G`?jfi(=92{uxd8yL3PU~1fMr>xDKy_28>DwTH9c5ZKRfh@d}JaDd@08%za9?Uctl$oa=@G5>~!DZV3cluMi-=tot)har@B z-v(3VX**?o$k}HE&N6%|@EOB-I{vuIf3jSZB406F7WjtYs=&V)z7zPK;YWgJXg+^p zxM_o#&)as&x`QFQ|M;uOZx{mnSKtqZ`vMObe8$<+sDL4i;zux?ChA~t+F&NC?3Cr= z?7(us@&~bmN|7*zaDfPhXn`1pID#EC(RhYL8_Yzj+bOFCXV(^}!%%-5eg88xG+;@V zB8?fE2|U5jQlJ$>TY+{A9R!|a=uEJP=Ccb!Hyikw;2w6;>dE>@j56?66^fyoTh z1fF5=2+Ux3?r)jRGFOVcz_37|l;K5z#SF^?mNRIAAvEJJF}z}fnejDt%34d?AA9cx zk&QgU7K9ZWn)p0Me_Yj8&e<+ScQEV{*v+s{U_Zm_0tXll3LK*4#|*qBa)jYH!CG2` zw;4{@U>4z|ow81G_Gy6+8O{itW%!gJpKAP!;XHwd#8i1f^1tN#O9EdrToL#e!!?0# z8LkWb!0@xc4TjqScMN!}Uqyc7BL5ZmgWNW=qS*Mp{u}C3_Wb{SUp+#*kbi%7$7i^VTiy`hT#O8Xpb7fkZOb3q0;P> zmCo6j0$B{%*>wIhHCQYYq)0A9fj}WciNHjLDFRa&rVBjFFjHU_!}9`jX#HacnkO=! zVWGexh9v?^8CD3aWLPEeGQ%2ywG0~sHZp9=W3}@VdYO zhJyq{X}cU^c*_Q}U5-*}9%Ub+^^c{0#}<=+!cJN5VF=mp3w*%vk-*0c=L9}s_*~!% zh6@5;GF)Py<^P)HiWK=5!!?0#8LkryraAwC;b$AnjNi0V)-BHdkH9YszYE-DxJTQc ztNfGYFM-D_v-FQ6nAfmdz6}00n29>=lvRndD+>fL1Pg>PxCN?MeEx|PiQ*zv1!5Vh z2_!I7Cm2cVq6R~48_aCgwNq9-&Tc5sh@puA^ZmamOLHmGf}yoQ8;14-^q;R*3PVR5 z%tSleDXR--cN6H&&`Y2m_d^`!f@OMzW#m3PFnAB{z-vT45tM?WH=*mmf=%@<`N z{FC9Lz*h!JtVEy3^epA7YyL5KvI1U3i?BehW2hE{?!%7aL zIXuUK{%Z!ctl==3!wVc%mrvqVPSPX&C`ym2BhWM32=ufw!eS0%IMDN?!1WyHkwm2C zbC}7YF9&+u33)GZpvQ`kqTjs{R?tNdBK_`*K)>%I(9gCA^t&lS8HZF3^y?Rpe$+ys zUzHH(Ec^N3=VW_5h>iL zqd@n{5a`|&0^OoQpgS=Lbb|$fZkr&`?GXgJ$$>yOCJ^X;0|MPvK%kog2=s;CgGgVP z5$G!{0(~V!pzmx5^oS951s_+yW~xV)CNP|pl> zRdF|Il$zWiKX>eMv1unY(5nhqUy7v*)xk0F4&!e`AZ2O}Y@9XCb!Sr7%XIiz3OB3{rU{|z`b@)}J zne*D2Iw06p-+AESWHr6kkLTd^M|q8dIX;5dhJJ&y)tg6qrv7)v;V(!Mt ze=qCC|C80&Ue;IsC#(72%ev{2ES=kdH~iK|`TZ)G_UcFN9@#pvpm0}h=c^AV<3r@I z+wiE%jBS3@qB9QwGCi;vzk^dk+`r=iE_ zqdk4xCVPU0vgl(7ePqzbeaaX~LoWLGg_21$^b~y*(noe4U559d!QUynGYz$&j|lpB zoIYC8$J6xDk3Q*HHhZ4{wq z8AT@SFhxe{w$ZLQ?8hUcUDeQaiYMBY$Q_}C>qf^_I7Xnxxin1QdQXL+&KdgaXjfMc zoj0cQc>{sY8whm5K%iMipc4iHoiGsSgn>Xah(Kow1Uge7&@3U)nF4`M5eRglh(Kou z1eys1x~Q7Iyrfibj&W6qqpD5C{KbIgi7#`_9nK-%3o)*(UGOTC85yn^-=~p__e8sr zc<5HTtD%DoU70ls#H%6Bj&OzIHA+M!r8V@vWM>WUfHAIHpG491QE70;oXoV`o|$Qd zx!Jj68)RkUZR?xSH+NKwFXiiV%__&?ohECVSB_#>qN5T4mz!6vj?m%ds5pNrSW+6U zga7RxKKIEMmAy~42>3L_K^I==INxVv<;Y0B3@Z)DEGo{PkXD?TYUO3;Vp79&uO0!h zRZY=A$;?3slS?%u>v&h?WNe~g`f!hcWW4v}Mvs6dTzjHEcF&b)@_O|Qi1np<^oH&M zF+Rh*r9A`Q$-#R_`W_633a3l6(tu8B#c4Td>GE26kDhrjAkyDtMxr04s+FQ*O(MuH zIX1I6wfxm5R6{jA`i_4>1-vum{=tBnwM|)e=*W>MVC}2jD z26SaL5X@l2J+^iEA<)F(^^q_uj zb3m9AZ*4Kj7)r)q@mJ~|bpw-7G{0_O6JN^H9qI(u<&mQG?rwPFsu?3x2X%M4eO7vd z>jhSbbI`>tHqn)X0nt1hp@TbBio)9}(tZf4uj73yI=u^e1P#8XKPpk8&pz#}qZdbFsuwQ?4ycS5GBms%SRY~J^}q%`tG%Vy z17n&v=*k+eia8fpG1A}s=Pd1I*Mp)tBT_HHtHOCWR41o8-F`GeiS~KmAEWc@RgCtg zRSo*F7G84Dt4mOlV-?kwq(^4sU1h8E+AcxW4dGz)X;QJF_imS z@%q-vpaekGRY5iU2uk#l9A~n3%BrC6;_-HXv_nCOjww`WRsC17GY+)lP*AKNQHkDn z!#~vf&7q*=hK|KlCQkeG!yACV4y@?%H(v|Th8YRC9u(lS*o*COA<04C5O6?WNv{~A zM>nUUMryH`qD%D4fx(IBZ~sVOaJ^j%oOrZy9=V&)~-B z2!D5<;8q-J=tjMQ!?<{3D&C}mg)aL01~>JiuO%fqJ}5ZFd%kb*#)t^|f>IjTKQlkC zusE|&4yLhsNp^6Q&sc9+c5t&i^YX9K$2<1!%{|JODhxKr$}60dR)`~_?|}=!eg8!8Pj2T!-$qWsK^;yjExUJslf(!iH8b<2W9*&6$Y)%+Jjasey2J zen>JxodqGaBTPNcqWqlf;?%T4ssiJdl-AK5R#&X!U9lkKB)#)`ke^TtCGe4=6< zG~Q>0_iRDv*Wo@n-aYd|3tFL*>T2(XCiqUJl~V9dXpDJlG**hwd(OnVq@|TI@+Rb$ zpqF7xMnQ>w92x~YT85dS9fxf$z`WNM8 z6;Ghuz$7bm7(2Ewb8MQ~)MeTyJ1i>JWCZmp$tli8Tc4RTAS16Z6PwX^r2hG0#V9|M z(D$;!V$J)ROB?FsOBEZH^YO7^G0~=U&59|wf(um5RxQ3OgF; zn@a0*$&|3D>NHeZ31_&*dAXV6^01XzIMvvk`cl0qQ^N+i{OMbG5n8YgOTt6-jHzM% z-UD;O9wcVd*YeUpTvg#9OD)3rFf%s;ySw4a*hMlji;7Z<^TualWf=6Ikd~j1lX!Vj zO~@=9iw%gK3HysF5s;CWllQ-sq4|0b@6M%uw7orchJ8_zLU#g6gEDfm^HX#4vWqfP z3vr;K4&%x=9eqMBlS<9VE6FXUVmhswyOw!rFJ8HI+^O6=9HwWUcUD2K)5oj16QWFI ze_s#em!xJT^CWb9tUJt?@^wnAI~*g_PjE+a9Z}SKb_{3kiFH@up>r7OZz>EljYKMD zDAgRngqSNW<8JddS*%Yi?E@l^zWh=)q=4_0Y#mIDHw9l=IRpWTvpln+4g&E^g zsUYetuhXqlzH)|FG4)r`8Ehw&^Qf0RF?L>DhstrnVNBeB|)=P3vOfat~#vXO<*NRd8 z=7tUqxNlmz=@2W@SGu@k&@cCcF77IRbhD>KpZnSw=WWr|eU^IRu0PowuHz@WT|AtK z&~GxvDAu`?-8IZxj#2ffe>o!^d|ya+pXjd2UPW*Cx3dbSQmkXAxMM2QV%QCqp;}xn zipqtD(8cD8f0*B9aY;n?m~_e{cP&h6?G$%)4l(>9VahDQQY7E4=$`90)$R40T4m1| z^FH8Gdr&U!kJe;V5eVmDCX|hoRu2CDssz}a>(d)l+#`=@v;&sJ2 zXSjFSGQ0&^q=9I-bDx6jn+g&B6MF9k%W-9CL$hT z@tTNOggqwZJ-a62jpxjJZSj35@Rlrkx5)2oZgcg>83kt zrOt`jMI~uD*;COz5a>Sfk#)FOv>qLXm)ROF(fw{Zle|Y0B6k!y=w4iDv`+3C>DIfJ zM^;29+Y47l#vtri85!$G*(LhQ9Vf009?B>tf892a(Nuvb_BtMBaHhY5~>o|NGjpzK<;|Np72 VyrCv8!IkipI?ft;?cr$0{{w!Mie3N! delta 81177 zcmeEP2V51$*3Vwp-Mb4SC|FUk#x7V;v0?9uirA$nmX%_~E_S(!3SQu-vBwlU#w6Fo zZlWd{Yw|Q|VoA{?_VmQWeE&0h??qm^ujRc@e?K{G=IqRwGc#w(-Ch4(()#a`Jg3Xq zH8VY*4ylteI&Nb9Vez#F*QwheHaN6lXx-X_Y6sVe9a1+mWKeKy{Ghlx4Tgl)uh$^9 zUR|IKGT$9+b!FPoN(w1y9TSpLH!(DL!j7qd(~CuhGzbf>6ILfQs9G@oWu>cev18%~ z4T;3iqA^7f=Y@_ zj31LVAggkE2*rANhS=9Mtsn(Z^U9t99$D#u6w=ZXXrI+ERn{&wEr4caR7)>LG0SDo5?Sf~iNlAEjvYHZX=p7I zi;qsJot0h&IZE31k5ur;E9I2{d&cM{_Oi(h?Mp`2wNG!PN=50kk5aTyR(iof3GuN> z39)gth73;_8$a5f86GT^v)?;e&Mr0Zx8L1YknWz5ReP~frBJ+(g`TC!rzq%}jceM2 zN0y`(%j9BIu%cc>%A)4W8j*d+lk(FNA9@4lxolH~| zOL|#4UDK;9DpQQEE|ZGcXVkB|q)Ao#l}15QIXVz3m$P4OTG;-@h!ToCJZW(J1iNHZ zkeZ=Rm2+P4Eb5I?j~zEQdGzqugfaFRV?yjP^~>8^H?3mNO(;Qcc`L;%>E-F_bC&Wb zQ*5GA*pgnIn$NdX7Z0o%;8hGr2yOSZgaD~PWmUNXkg60?*rO`lGL&-m=A+96~1_CKfqbhrq22u$PP?YxH zvlJ9ch1uD3J3^WtsO)Uh{AM`apd76=lt8cUkkA(SD;z;ruROf1`0Fp91ctsWl{alyLE&l!^rlxNRrg zfpWX3mFz*uVchPY53d8ea0}VPM+ZqIXw(v~5_r11#qFsLf*$rh$lRtf?F^3DUd4pN zJnSL0V#f_0o}5Joyp{4r(+lMl&uqleW7rK3tn(@+I*CVvLT;z$rVF+!DJAS*G$?K_ zkPt|5iAo{+RilKIuYpXDM-kjkWwt03hKk-+oSOHLii=YF9rr42pV6?q%MqG|SF|r_ z7GMugRHgD}|Kf(WcWLNlFPZ3TpA{McK6@2+*1W!nN z(nTkh@#yN#j&5(+v|7I2X!ehyzcPT>FEuJBJv7j8XSUZHaKEj=!JAN%1Z79Vp zFyER4uVSL-SX@IJIxt$yJ&NV)2aYkNBy&{Uu`#8-M{2U?6Hl~le%_GR6k9UhSnj5R zV(uA3+*Gr7Eye~nHRQ!uBhF2YuR6@gaZ?kPJY@{Zqdsh9taeiqhr}7{-PDvH`x>dK zZgT3uHpYB6wLG_ovC&OEQ+|dq*iGfG{nF^^rna|>H>S8L$FW_;C^xm!?`y+wQ^z}Y zGv>Idzg22(Z1GHW)&9Lo*~V12@Vyty8f)Ctjp@n8CO7rn<|m8{7q!-NR5xRRn<_ML zs}bp@0zKOs^YW+xos7wDs`9{#MzrS>siyJQ)~l9m%ytVKtn6;|$fLe!Ys_#{;bAr- z(M_eCxoD)jsVUEmG*aBu)Q)7Vb5jedcQ!KJ)T=#0jaX2rqV3nde#6gL<`y2>7Gw-` zQ%B}5Hzv5L6K&r%X1S?%yqXy++|;!z-x$5z)Mud|7-??m#_bA5lAF4BZ-Ft5sZ@5o zb?E-a^Dg1KQlZ(#<~%BAtI^d>l`enH$Z}JadrvbKyQ#1;tBu}nD%^6`c-l?1^-3~g z@~GEp7$XFg%8&2(dQoGXTiEr@c}A3*is=2o80)46+`ee^b5kRxb}{<8sWH{FjA3qS z%KaCNg>Gu<`lk)Mo62nUk@ zjQ(!w`P)`wk(=5uJJnd~rnW|88)MwmOXYSM2mfWpM~0$^y>CX&-Ai?eYOOp+_BW5pca@gOf@{}{)(E_HGfl;{o3*2 zKU2rUwo9FFTaV#%q@G789&V$kc^)Ih1{5!2& zmwvB%)Xh$jhNIFv5Bv+&^ThHmRL?Wjzfe6-eg8uBJeB@w^>nR*RMCDtwX9uEukris z%MGUcN1b*qMz37>;9^s^n^$4L} zO)S3l;0xt`%a4DjvcF#tjzLfmx?0c@W-qd~G96y#(a3&yle-)JQi<#-pEduLQrWNl z*vfwGhcJ7uZB_FXjucO+!7nsNk)ti>DMgBTG{c8=`+NZC^^N&TtUj)xqi>+QIpp_22oUkRN)V}7+sSr1O8-B|5ZP0Z$EsUr{OLC zqxIqi+W%sE@lx}jS+9CpcF!lIC-|Se?8XE-@}G7{UOoS#6&zC=Q(DSE%g-hwuH4W; zmW2Okm*X9Qzj_U+QhTW%9r?oY>p{ft4lTUb@lUB|rHUSXXkQ^uU;CQ3O8iqD-?avBY(2JyYsTe`y}zV2+6=Z}5&zI4Pb@8dx2OEvL7LEE zAJ2;P%^r`xU#R`At6-n=j~i#mCMhoek}fZj7gN9=8#w-W@A)fOh_`-!*?m$rS*p`F z1u;yXI$Mc%iOe;xSnvG5G!^fQKQSA z$8%CA^4%g8`TgF?2Y3I78OP7@tV*5h%f9xYb7kH8p}#qK{!iPJk3JvU^S1}ZKjWW# zc>G7~Iak4Y{MY*WBRVO~J>b!dVqTF-|JRJ0f5x#^Z z4=*bpTl{C68oxBK{1J=u)u_Lc#dBUj2Nm1@VuxI;F#a1I9k*e8Y2+nKIhtI>^EXBt zzKr%8_Ak28l0=8IJwyM1%U7CdsYMtC{$xD;OQFiYs})|JVQHRsTGU4M#4V$TH>3Vvj#PXT z`Ei@jUuyQ?>)?;uEt@8 z3k7w-&x*wT8Q%8gFtrwm;l9@`Z0{sp$8|Mx1i(cJar{d?=Xun$7rx2&!=1;DJYnQ5 zf%)RPd7ONt1}>JEK_;KYynM25-YwK>jVyThWjtKWYgckDwe!z8Lk3C-#48iNj7iTu z@bsm-bv*s;Po)nR_vzi2Hc|?B#!=fY7V`l5@Ae*|T1kUwmzPwBuf4XnKl@TcaYI*J zaz9(tb0Cd;#bWMDQr_XIi1GPA*IxP`~RQ~9SgP3SF4*~jhkPi-Im<~;v4#tLMe?QaAMv}+u=$pUBKd!?+jVS*NIAT)rys@K@${lKS-7r<-{SrGFhA^N zR@Bb3gt*T2&u`fwi#%r0zbfA6AC3PHwQT4K&zk0v?Q!$+a*p2u@VI$@Ymxq6-Fx}9 z4*!MCOGS2i*7&szm&aW=|Bej5tmAPT|L$hne|10RSFk*8*E3YPi&#{JCpt@4PE4#N6m*eDq3Cl7-CcM`_tLT|3;}-jJHB1?*D`ngl6MsT;ins&uzQ>N5%vDzuOb|U5NjMo`7>8 zTqVf%EMi^+{j(9_W1sk~dlvjgOt(+Wo#NT!&)ug@y)oEQoPsub6rj8tG2+_A zpE%Nb^cmx^i~I|>=J_?Le`Oc>;)G`~r9JI>v(0a$vLAM3u>_x~d@;kPZjT_>uDT$BESQ_){+oO$d&_(hxZ zwkW@!`?3GTVm$NrP&Km11b$Nux!e;)O=I)4J- zvHv{wpGWc^uMF{-2>4I>9BS?%52lgVakul%HBWzyzZk)Sd2T@^mA@PD*x4RC+aoy} z?qcx=L)d?=NOB?#lH{?T^@5}8P=rMuMV&121iD+$Td`zI*>~hI6zT!S>lS%5os;Bo zmb!JbM}hnOPoAGqlCQT0-{miku!~M*7mX($S@xw`e%=~AE6X#aDQ@mkJet2p^4N7B zyY3^ou1AJ3+_Aj0TwK!lYc+148%%4;%7rMTyqrpR3c>Lz$?_0KP>}2=QEqwJq&dwJ zy>@g+&5=n%v(klIB4atZIMhz0-R0#JDpygyOYg|@`{6v=Hj}4NQgi(2(i(qi6ouf!mhv6?poKh@ekg+6shnDgxhxgx402xwxdF{*>|zuIw>rz+Xu0`ZbgE;)J5(| z?S}z-zpq?`61qZAD*@!mu5w>G+8Nk`D4eYhj({L)2&X%TM}ElU=B^-@otKN!fNmhW zb^^J-o7{`qbJ1>mCYPk1-66Qt(?!0`PjVFNg?J4)B(Eh-Lf>k{sXfi-9pYt796{0{DWbN~!pze*1z)<*8 zWa|NJ<^vSe+8arH;y{k*4NW<*!0t;*iJU&*?-&lMmZFrSIZO`YVt>*{?nft*fJIkT z{Ap5O2nw@0m@A6T3xh_Kkl|uA2lSR9O>=TW0?_vwQ6O9tw zVykqHL3IyvBQ~n26sB`Aa=5gZq)53O-L9krQdBH*2aJInekIek%8D{aJe0!w0L!h9C$|~|K~=+*ZWoggV?mZ4jPkFIai!Zn7=knGIli5h0ICuX zvOW8xsNGs7>vMw$rA3B-+&_vF_k?q0GC7?4LemyXX(}|7^L7CFLrbL;En#vm8rdwV zHVot;E?-hxr3B4o@&vn{(0rfCEo@&=j4{JOe#gZXwfu}pe{Rjrh8#z)vAIRIj|>Px zxnGKG{YQZ8&d$GYggla}L;yQCP6?+a2@q7}O7BhuSuYXfVD4Z`6ETpq>89WkW%{}hUr$!?09Cpg&QF1rx&Q8_wE2S}& z8I5e6*i17=%XT`^3+~l$3|igM54`)`)PdwX7Djbr*VZb{x+v^i!uH}obf$l{Bbu!Esj6@9X7+CG5%zlQI;|O zx|vavG5!#l(TFkrW|+~AG5)fb(UUR$+LjT=7=P}{NG^_VWQuP{8B>_aUt}_DjPVzZ zj2y=Ji$KQHjPVzBj9kX}8#Klq#`vo(#!<%jJ153D#`uFE#z&0thck?OjPa;$JYbB! zv|xCZz#sm~Kt-b%qx_0}qatJcK6#@yWBlH9qZwm8D0Z@3IF;YwYz$!rzm?b+!x+C< z*O<;2zY^A1$QZxO)L70KzkAbojxl~Ur12tS{LVt-0Au_HJ>vvp{AM@fB4hlHG2;`) z_!U>iSB&u+mJCZtHWk0&$0%45fB3yJMj&JSHWQ-?WBd*cBa|_IbA!>6F@8~i5y2S$ zB;6Rm82|3sFc{+>(;DL$;~#4pvl-)G{~4K#@z2SORgCe^k5Y|IjPg%ajGc_}uNsU) zjPc!f;|ybbL)y5^7~i8cZZgIfEsgIO<7;>LmNEYDB`l*bV|@R{2x5%yUl=tQ<5PDd zj4?i3HQF+^NcdAEqkJ4<#4^Sk+eQ*&yhUkDW{fwRj5Nl^GnUQRP{!6V#ybYaHpY0L zz}U^$bjIFfY$ju88RKtC8Xq#o-;*@%2I6z7Vrgjn$V^_<8G0%F5rIKb#`yb@Mg_+B z+mS{HV;qSaO&OcWSVzVoHdyC zXQ_VVyHfFY)Fv#Nm@Y&EmdbBSt0`pJqZ_jS2eOrNE9t5O-*S(2>V5ku`J%Miv2BH1 z%|b_Kq2j))<#n`THtKwKwOm7D)X(9+Rvzd?XRYJv3$EvSImU^Odqy7NMDIN-4|k#? zo|g?LdToO|+KCR|Bu{XnpKq2Eo#@D|@(?F_eVhD)6a8|#+{KCZ*deDl(F-rilbmS$ z%Wm|p!-WzWMs`epMV{qM<-f~~KEGR@;^fxbD^GQzukDk6l&Il6SIfgW29ReOtdM(< z8v&@F^<`Fr{sWSTw`HYn681|;z%0k)?@b#Gb zN;kUQ8IP;}mfTL7PgiGRdR+Pz+~sSV(~A*k$I?i<%YnO{fKd5DHeDQHcK|Iv2}k?e z7jQY{6ofyuQIgFlyxVCAPPK&x?l~>z()xBvVaN0{@ z)39;Qaw5<#LD&C=Cq}2>i9ODuD4UO=l2;DlbM;r!WFPWvD$+KjOXuW4bh#;##lMSW z(SMVZcmWViwa%gzffv9F%W+mQ;vz@71peC>!Cz-XHxg@t^6$&-a?;V2xMMpOzb{vi zKo+7ym*n@Qsg9>F%cCuiSWyR>ZjPz#ix1_?(DwF6@Ih3cZt6>mY4p z9J$WlhTv3l3?Nv&^riJJka)pe@E$Bv&GtqRJb-$wcUGFhKZo$^=U@>L|1SIjn#yc< zNx%C-&XwkINv}Vm9SC+PLm8JPFH}{|sq3ZC$WTS5LSLihn-oStQMG;);E#g7^$p6h zw}_I2HPi@NQWUJk-+^_m7Ls8h%7t4kH8ie&WAy;)B!Ui{8gOFG&kN1L9x`nJCdZC!h=wgBr=*aa} zK753-iYe7T;#rOM-_kX@o;iDX<*y{w^Lr zz7TkCopSa&EI18Xb{hPK{@{Ob0aeASvkavNpuF2ILhx+>1m63dRmDQIG<7Jdw97ew z2fSPqvTEm%Ni5ucDuztoo=2t;#UVKM69ibGj?7+$v~@~?WeY(8u}JMpJ!*sZaUgih z-g6eFcxfeuI$g&=DQ5ANr6K&u9~rQCEkf7JK>0fX$kihVf_*QbLtriIPb&pZIpxzo?*(SCvMIpJm%b~nyhC?8;PF@|_oJO1@#I%4Du=OHo>56TO=VJ1 z&y*)olscW99oMyB?oCo>wE|VE0^ym$P9dD6Kbm^VvRk%A&L=`hWYVSL*+bq&vdz5^+pg}nF*6EZG>F6)11B} zs(h(2gp1Q%4%MLvQoQ#iCQdPsQd3BSe}K-rO_kTAg@idfkWMvIPCsg`?hnQo8lLDL zL%m6Fjz?|?L-nv(F@(l8LiOHg0p8p>r~!5?;;HLg6n;)C@TL?)Ix&_UZ;hh0Esn$u z+dwc&b&Yn|#fYOwD+FJ*MRSaHJkw4o@yH(Xl*O|Et!nJ0QA7{LhpKkKvo5T9*n%TF zvU#6%S@6A%Nb&ipyp|b27vFIOEt#DmES;R^?*4SX3$j-q z5s><>apkvmLyZhJiO!BwQk|&(U`$pb8_kMWPSVgfWnYRLqU1h; z3$`4pOkf3mj<<#?J~E?)9k&vcULGd5=SXF3>!>TQW$QVq>N@*Zi#_g=an-OE$D@P%iwMBG;IG3&53sPhd!H> zT-r5MDdZ@*SvmG7U83k# zr3JPkw#h}1qk^RN)3S@Zev>Gz!KOV)>W>ip_=XbVIBZeta;EzpYB39#BabR|9Bmb~ z95W47Ex^p1$CNO~3z}MunU{3c8%)OyZ?zB8t$kE~ru+J;<3W@6UZv*Cg;ccX<#*8( z*#GW9S^g@V{erVIy&RyTIYAb3gcniSi!Wej=6X>z)M9dLl~B7n(TqS9V}VE;Tw1;0 zRBh()=2%x$xUshW;@YJE!79k1fi|f<4!c7tvbw^U~va^y+r;G zTmxx?F*wnBr4x*D^#KBoik;P5DZ+8KvzqxR>*u8r>X$Ub&*einU3ivy6oL;O>aJqA z1nTF&aJkBfzS@(kBe-jOsc>Ku?W4|dqV@Z!4k!9kf3<_fOwc!4O?Ps?iBV@d(fM&I z=A7x3To1=t#v3aT57R2xfDcY@~^CS!%#%JJ4HH3l39 z^rKI77pfgl-HVCq&!|lt(^J%sI7R#f6*Fdc$JZ0pXBn=Xtom4J^&MB!;Jl?H#ZN=i z484mv?({VFRiJ(j-|6aNCz?A$#fF{WhRjl%TTFD;9Cfr4Rnk;+@sJX(vL~dV7Yv>c ztp!V>0;lGy!4ji>4!?ADp%dMbmxg25y|Y@a;1pF@%eD}yUSG#uSfIn!tJ9q5H_xa)N%Xmn z5dh~=U1-PisQW%IJgdwG6%z|kjL-*_dXB{#xh{hCwW}eHpv~-vg2ogx)KO|HT2as* z=@rXU$S|*Bjy2o3zMRH^X&oimU(i)4oO#uu*d2Hp`QmBEckt7II-l0$B^8^4g2r6d z!13P8>MWCXjNGXncA{-xWu@ue&=NQ~YfI_7p)aGCYqI`!H=7G|AsV(qZR1Ga%Sr`Z zWR+UqQEfjQ+@voLR~tBvAK>O@xuf7~D&`-7zWzElhd`4Ls{s}h&3OYoMI6<2l*Bn5 z03Xr;@Ch9NAI|~s*<43e9L#~@Q@M^F;z+Jz5pf>Z(Ni48LB=O>0DKGw(9;Bb{sxK< z-#VHnZ=m?t4PXnOzX0-y8`SV|8z??&1K@);06t{{;3GBwK3@aivo!!dSOefwHGm!r zo-p_;vY_~64S`4 z2Vnqw3I@POU;upn1;B@20DSTVz{g$yeC7qf2VMYt+6BNzT>$(uF#tZ}0^kEK06yJH z?Wl>ft&WN~*aF~FEim~=tD{w%XCWycW_8rXNfrPfW1+S9469>7aemdYkT|^RSX7)` zAp;*X~1AXA^poQd0=Grdp+ znO@{SFY}+B_!Dm|qqmQ%!PU9NI8A1CNbL9%FItFM3u}P2nEzzrPrMODwN9u-TX8$E zxK1rd>fukkFh8?AgTYexj}?F7h3T1pj#=mV&qcu}ntwul0dKBva#9VHBB<|4b+qV> z8KQ!?_$DfxA!?dOg;x-l;>?3^Zov#=?nA5$BP|~lSJ6z)eKErroR1okj~WIlm7ilK zHS!4)@=+O;Or_jwakVucm6eam$ww{CM=j4stzaq@k2jTmkWctgKB~%-4?mupnTyS> zo*|lsZL+M22v`Jc|7=kE&PGqu*12z58?4#fMm_Voc01E3fALXBqDw2;XmX9i7Qm*<3<`b6AM+N1h%H^Xffhi%B0oj)aumpoZ8;R zQvu4nt4@^cRPel7j&{AP_Av43(m+SXd9{=UH!Zhb1a~=wtJX4f;-czJUEf#z98KTD za!VTGc;~X(L6tT*%3N2w%2J#o`KCHqEtP`;V{#c}0uF{itv5j`sb8vXanxJZODjXs zs@0D&zE(XQv%XZztI|eVQPsts-dgi=d~jdwC{v%G@Zc7bHCoH|a4w!5Yb9%Qi!_*8 zceOTg1bJEySun*N(Y4a7)R+8KYc*+#1LY34SUIjj5e!F~X6@i5&7qt!)~1wE+^RWB z1Xw5Q(iR6eKWSDTSdnmzV`UXyuKJW6w9%R%*e;LS7j|X2cUuq?e(4vQ~s5Bu#VF`pH_| zVo7h5eOjwcmr8l*MTUiT8H*8f9#UpkcQ$c)6UyBjP>ha9+BK;+!4_p4$1PfbhxD}L zLs>g0DLnQM$fEGecr+x%>3vnJTafQjA)0VLw-!IQ8co+UPe)g)wm_1`nMM!y()_5_ zxMB+V>Do&;zk&1gk;XdUm@jxp{T%Q3Xxn6|FWsDo=RWPPVOwXIV_Xq!vIh=C?iJTM zOLj-I5?W&`mAGv6|}yRw90Y0qV~2V^`{+AYWJl@xLm5mN=qGRpZOBa`x1??p{k}>QhDry z(N~&aya|Syfa6ifcz^)lcocwdRsnE43c&Fwz!DSiWhziS-vDqt3c&Fw0LP;M9FGD# zXMzENCgfXF;Bq_)!0{-6jXKoOx{CPBCKgLJu~teGOC_6FDcQtA$tH#dn~2?PVqma| zSj{HZNH(!VvWXRvO+;EYaX--}mPa;mFVQ9zM>cUE(I&znn^+jxj7_{+vWaz(O)QIS zVpU`lv5!rxiELs?WD_eQn^+Lp#CpgkmP0nN8nTJ#$R^f8Hn9}4iA#kx5&YQ1GRP)Y zK{l}nvWYcN8kRsz7Y+~tS6DuE^2xx5L zGN4VYdTe6RV-ss0n^^ML#EQoz7Cbf)tk}eI$HuFjR6L$nJ2nxT*u+}LCYCxjvC^@L zu*4?TIX1D(v55)QCVa{!mN;o*g_9;0IBCM4Y{H$=gg2!LXG#;klqOs$O{{Fvgd;Vy z2}ep3ev~HMC{1`#ns6eUSkt756-}COpfuq>X>gwtwX|qVIW>c|Hkfk81#7(lP6TTM z0cwP3!00C-@CRp5@2d=ts$m6M{TV+z<0H^cIpsLygGuyhG-?J z#7Al%UAd}SwJhU$uP2_UYz(1{I$94i)iV*ad6_HK?Qbx~4WZz=S}#+&DT3B?c1eTp zc>7V8Z#65DT&}A{aLRhFlrKh5$X29$|0A__0oQZ57!Fz-sx_qPAFEzI5A$D*An65{ zYTx@>F{qm#Dzsh<)p~)dQ(vnoZJ@aNS|fl}^|cNP?>rdCO)C_9fC0z5ffi_TPnq1N zVVW;xH1R1)SL$n4Q}nheTF^jy(qx=98E-Yv+MA5?CZkqEt%b>W&zYs6)(X!))liEx z`5%~kJf#-+NntJppP2maulkg*I%^q6UxaCm@w<=UMrhPH8s7-xW*i-Aq;*kv>%{n$ zjyBRlscU1cu*tYjxsA2Dl(F4cako_*ZECFHe3vswl-UH$@7+YJZ!$bh#(*X;R2-!@ z5f8Y~MC%T!MpLc5Dzf=@Gn=OGJ+&C+Hr2|S?84pX_;+Xk7h5LZW?D()tlms(ZR#&h zA6MPfs@2x&n-Ej<%jpC!1r;pHCqz1an3UxRuZ!?#$%d29tGebB%wL zqiOX1x2i9dX|Acr)2OA^5+Jpu)&<~1OSsT{D$`0lWJoKmt0EM2H%)c2l@?|)db({_ zi1z=a`WJNd4&J3Q`g9{{omP~RTce>j((2Zzg%CvN6{xMriF0z^h=CnWwbqJxCk;t< zE2HggwEocG(^l)J2n{352Ul#10N~0`su%5Vi+XINH`;1(0M*)Qg8&w{(?*;6$9JQQ zaawg&U6dAEtfgEIwvk4**J8~?Q=N^u(Zd>&C$HW?>xMXSS_dr>;O!1tl){^D1`OQ+ zE#VlXRVLq#u;-PIXw?#mHGmd%)KoLkLNn2}jzWjj3B9l>R&R>wCNd7|rcG5uG4@ho zH*GL=?XLMl;o$Dtc!2l1YvW8UN1S>SdT22a9Pi;O{&A;ZP^1=y_<2>NHWWbVsigo+ z?Ws*vdAHKI@K7n%l(tr&m|_U!nQqxZMjS5~@CRCcoZ8dpP;2-dcc};AS@}HCzibAJa4%gZdom(?=U= zNG0C zpq~9qMu^Gi+ZQFus9~)xn#UB?HAS5UVfa`>D+g%_wA!Z0QkcnaJ=M%olJ?a?^Nbvf zULu~+gbqy5u%N18ElF;_}k>e3lQ%=A!e5cz!S>qB?ZRHlk}u1q6S zI|^3RRsrj3t5ma`RD?_ajaKKH}bc8n86pk|U?HPf=eiIc)aM@tI zlfMfS`-%juhLk}^6SPD%gAFvTJ4sJ#g=y~_koHT|!XaIes3j;uiocnR4OszAa%Mwj4CvNkR;jK{3f%62Qr1I9>)dA1T0&k#O`33LFK877tlr zDp@%SBOf{YRq~3uyCbte_TU4b02e~qVm9y{t5u-VQ#Efh$LnT} zo+H>zImeZ8nw&EjL%VoTz45TU$bZyK*scXn+P$p-?v5Qvx5gs|jik;KV2eoFJpo3D zq?!}8@d_WV7#GZ(`zMN2L6gvGf`7&2KQjrvGLjxlfo{F>9FxzS}#ZK2| zA?L@_wHW|IXK1qlZkk}!Ol>l#TQjwZrjnAT63lZ^w782^72~QYDlJ5qqT)@uteJHB zY>Z)(>GEuCtSSojWDnEJ6Xzg)iKZ9lXp;bH&DCrQA7&XLX1=%QYNJg?U6TYI!&=4sPRMwrP+Pt)d@j3y?dx($PEG_A2|=>Rq6YncH1OwetCmI3O61=uu*rlfRj z5x|coNMESU0aa*`Hp|r4&(sIoC4paNv8$}HCSPf!6{0m0tObj>f+9YTGva&T&nH-q zP}8PbF_D0FWoVi^4il+{^`L}S*u%g^Qo(?lqvJ;=j~<&(%?P@^TnnV#U*k-a6VdA# zT48CnwD1l#^{+SYEfE~trdhcH(P55@Ljg6NLzYPMko^P z+ie!yhokf-){!Fd8xNN$W4hJTZ}`Y@t~L-Uj+yEfEz^oZ!L!S>j%Lo&PTK`7*UFom zcY4s3ecV5nBmA7ZT=O;A=kgNbdgyXd?N65@XicQ1Pl+lld`jzUmiGy9VQJQql(AB)3I)4XYCQl7 zu0nt>D)X(gh@w>^7F!FtRm9atAy$Ts}U_E(!kZCj9XS~ZA=|%B$ds^(k^(7 zXy)c?g#8z+ahcRN@}XvClalXR%?p|W*J_DYw!`5TETSq6?W1X;$Dm{bUzjZX@87)p($MtAw>c=8nr!M4bS zMyVoY`$&3aBpR~A3TwE_f!9&V=d=V<-Zhf;kA-~mN^1-1`Yrn4I{M-{MEW9k&q!WS zm8AL4quU8i??}3{9KM4G22hC&njg|v-=MX|F~R5!S~n$=ix+1WFXIS`H~$%U(6nPZ zhJ=lXk%Tp!rG$;xFUh2F8?l2Rl8vCXxd_C3Hz8OTj3j5fhHuiE zA?5TIS2_TfS`-HyG5OzOBDgHI-{ z+>Qu8lkRWV_|&G`3nJ&17qtGS;vJ^#B6hfJ_i`kiJb|X{n`;fFJv%TuixRzJmdNWx ztq|0dei6Zs;P2ytb)c>tAn%z2cDihO z1MK?)FYCZpuyrRifBLW;zkS8k95*RqJ92e=Rr4~_ z-HD{D{0LEzm9N6PGilqa81ICZubizNv`Y(ypxZ8&@7#9^_UzK?n@JxyIR$rXO^~$n zZmqLfP)`auhH&bo-PnoDq&vH{?j~P1`Isf^nT!H-;5asNj_$?Lz<~XEvri`7+Jjvy zILlsFcPnD%-Mm+;3;xx;h_d0?`?Q{>rn+=_AL7L$`$Q98*e7z=*pDDn)T$<}J&Ca3 z1n)2g9nd^!+97LzYyVNC2h_q*?hIjyIOk>DRC$JCF*$j=*>zCA^NE zlL@r#bu32t3K7N=k+JmG$Qb;(=0zFz^nje>R)5-i2#ze$#G7fvkht)W*1+TrGr5-! zVZ;^5MwpD@=deD?xTE{z9EP_h9fltXagr&n{NBUj;FFkk_8)dVX_T2p4DK~9AUmI) zxd-1_TDlz;!WwFvEd69pAo=bMQTx>d)qUV)>SfmhJLquL;auVNWlrrTg`sZ-Uz zS*uagv)00{-m`+LA4AZ)g4P^Ew_QQfTj<0qDEci#;VWqGTUeT}An)Ts<$&XYx%)VV zMWK0HPo5-7Qq}jY)!c?zK?x_Yzqf+kJfRIV)9vg@mj@!GVm1o-3sb_3cCa=XwNBZIQJsUY3y6};`$sjle#=WBllq?Ejq20 zLE5cI3-G`MUCv<8PNVr}5Z0v8r89_3lBmYp=r-a#4j=rziSK6nm!LP_#x{bGe{9OT z-bKkeyp1L1o{y|PF7qW(vv)B4h=e!Hga|sC;{o^HfgzKq>)*5nD&KlDzUs;Q!bNfa z3a*rK6T2AL=`8MT1`8s^x2A$i7ZLmquzD481`^Y#)LE^SB9c5Xlc1^L)~qAx6C4(= zISW@1a*4`bHv^wMxi?LTDHP!2icdv4Pcz-Bck!s`L`9j~`L7oCDoZ~2y(l%ljME_@>tiNH z+}ligo>pCkD+qqH$@jjZH8L4-CPNIPr@lsroq7e6yhs~wigK@DQ>iPxc|{9RviP}4 z0%UWgaSZcz`iBW_*B^rtiZjmqjN& z(jv{g*-_?zdFLaHBUdH{XihiGq6r^s^`*s>`!Q_IS0#+qru|A^!&D&{>)giIDg7E2 zvx{l(HHWUB{%`n+koRMJv5o=SwDk!6!&47&}eI{ZBA7 z_Qqy3<|)D7Yx2=;b=r8MP>_3{;%QcMFbaRfKE>&4h;g=^C{&V~eFkq9(nD^Y6)3ly zmp6r#_bNsEKf@RySY zN%!_G__9cL+vJKhW9QpAPZZpHCU@0sbcL~W={DBfg8z-l$H1dg|2tZc)Q_g#!AQcF zkc|hX@a7%taR`Q#eNXo%Od%~z+EdW30{Bt5FOKm}-qp&PVpWI{KeaPyUC?5}TYd+f zC*vNbxqg&;4?}f7dTj^Z(eMLKMh!9zaR8k@`_g89McT5()o`QdYfV|}U77uaR# zOY^?KBD61^_yXH0eW~b|7&C`a>o0NQJB+JQL*!ihC4wwL2MbypGXMA`4w(hBj$qdL z3hgwE27HB}a~S1*1uquT#zKmUwl?Wzf}Z-d7Km#z%fHs@;f~p@@9rl+{kBzsJFJ*hw>c@VTRVlR9Dj5yQ(;b7D;+! z5%+B?=Yjng&bix}6YsvLuDLf*glHc`g{iMauZWu((=B=_T)tSvUwy=U9@+r8Tr$8KBRqXz7(aQF9tKY&gj0+Ok^I-+w4{$3O$kN{Vq|!jQbOKAG^GO5qq_`!h;5k?~Fz7{77^Km121&FN zpr43wzRIT{EZVL9c~&2VnIW%k-SVVeS!(2yM&?N|ldE{nV(P-6HzhE5n&vZzq2~em ziAmv9J_Tp<6pUl_7xGEp&yzZ5jE9SMB~Ln*f~KWfULFZE|Ij3zNyNJ|0wiQ%Cw zHsu+r(lfZbxrr=ySZ8c0AW6QCcs-h z`a*!d1@$iIuNw;LjQ~C_sCNfw;H&omSmLV>0J!U`4+4nv)B6GB`sqUfiWSm_0HhYu zV*suc63ljmbpzCn!h-4Vug8O$9U(V8)Se3B5PK@Dh4|fWsy90bX(3V&CF+DJ~qHDxtUW88SR+aP;soW5&gg$-*wg z%#tF@MHAEw)T7NTo)|t1Pij_1Z=((uS6breMxfB!t`tlZN1IFOeF4Q<^0;pF;fb=r@V7&A8UKu?VU{nwanM3=7^sxZ-%IbL2674FhPg3~abb2wGzF00! zk>y}(@XMh!bEs~4k!MzUJr>l*J{~Hyg)6nBD`QVUdN(0 z2l$~Pw5+BGFf^>~wAjxwIq@iNvY;WX>1Pi1``z}3oV z%k|W@iaydz)HT5L$_tn%F0d%RQrvqH9rLQnkRicb)dPy>Z zb#Gc9tdEBIk(u?UlXhc!(%dv)WLXN?U8|bqewnG%VCu8TZ5!^Rm*b z*{^Q&C%lwQC9gVqAtWkY2Y#4JNp;|dskEbxJ{mWtD%I5+07Tc-Uk}RHGi6aXzi92Sd*%EmR+2W~k2@>eKc{dL@bo(-9cg)jjEWD0=yP zx)G`mF_SgnWKGD=ska_&tgjbFioNyqaR7B2z`5qr;s!$d*A37h^QnJBbjta(vmrXk zdb%m zG}aW_-CCat5Y`3{okEA(U>Gu}LR(bapapI96#$jn>6^R_JQTO7#2*UI)@$XoML=@7 zquz~tX6g#98KNslo7!IA22iVmo(piLgT5VLNk@GXK+{h8W`G+eSlU^C7F4q?`g(wm zx(I4PSN%Cqbs|vwIrMS_MwvOJcGH&tEbpeT1!&w|Ujy)dcVw7DvwP?p0BS}G*{Mi< z9jGxq^=ANzM+s_o6l#GxNWJvs0AKbJRAz5|C8%0`@SrX9LLWS63wiX_?Eusl`L-@AX5Gw$SYUg8AeC{b^9g2I$Xvi9p8>!HVHWAp`UUv?WUSfv`w4bZ?;-qxGi% zB4Pw}J4RmxYGJJ213w158Vg^VN=@SQ{tEy2Asx3J2cfII8mA|NUv-d9Ccg~DT$h9B z`XGHZF7V77jNx((T^Xz|q=L(JnMTL!OX(D21&8QF8BYP*Gz2wVL+ys5_-p91p?Wqg zeg^#6!%(|5RBX7u6kz*sk*bS<(ygJJCYV1$Cs5@Q^hvlJvoZnxvWc!Gz($*Bcp~Pq zO>{pIPP&QGlk^;b^2sRICVDMd$a;>1>P>WeB-(2e%^0O;0~8%CsEwmBxNM^OV=xkJ zqJv`u)paZ;#!dA8Sag&O>N`&Fpz&oFIQOnW6f;trk1d*76o3gBqpi zX?-grDcgXT@pvj74o!U{2;`Fg5G2ItD4 z=#hG`TYE=pI!X6Nx{i}XuB(&u#h^w_M)5M}r^$j^JOwq+prEOGdxW6IRK1;ecRC7t zaS%0)&}-R)cF1&Rs@~E|+;-W(55k0-s*g8|w}1{#gTe(Ak&2dBKp&-I*j+$lrbGP# z@|dC902a=GxfW2+Ou@{Zi78(dY!zcm}vQ6v?gqo)C^n}cSJq_DYYGrXsKE?Pd4lIFo7BdI_d9u!F{(?pVbHndM|mUZ)pS%TlDaH}U*p|> z3lTxgBd_5A>+m+SigGM~~90rXm-9|I`AQa=Om^-7V%u}VJ(YSL=`2tbQ90_bb? z!=O&D)eivJ*XgeV^nO}UCD!Y^K%HH$zXFi)jG#I_tM3M-J*PLrx}^Pc7>j4q{O2%> z&!*3wL-078BA-VPG23zQdA%@xokV9hVtD7Z3!G}!U~0Ba@1(^hBt*w0Wf_SydJ~MB zNGCQS07|6Vn-NAPQqpE9N~Cu;Bi2czCR;FYC(`;YsCObMTLp8(R*~VPN!8tk0whw_ zHZ)NpeYFiiULy6*#cY;H2XgfoZ?SgT!8c@f^q}Mq^-?)o^x8CKJ32@r*|rPKH@0IY z6$y89!rk=X6&;uPU(o%KX73B4NR@Z!!_72@IL#qiwM~!k8y1@|1eIZ@dV|?-P*bpd z#kCH>J;vN)rot^R3WfV#6cs4{lF+;GB}}=A^sPz7y^OF2w^?2m6%Tb_7EGiK4$Q-e z6tELvNg~bLiRn0ze%y(fG?B)=f*z7cU%n!e#Jq}G5ZPZ9I>UAe=CiwmH45$)I#YJ* z15Kl-ktiDOSNLt!yHc$^x{jP-dxSw&>=EYtagQ+WfW3OWnWYG4!F>vmrPMx=rSd+c zO()wvI7B)f-G`^7Q^EQebUuj!E*-%@}-dc@PEBYG@7cug-0QPAs%S@A;O*AbKF`e-k4+&YT&jG`{@>I3QMarkj2ojZ<+7H8)t;4hi<>Ispt`bj~pK8a45 zNd-=cM@%_|$O~u0r}Pw4TRLk?=k^)s7oQTFkY&CAeKE7Ku;zy}IwKy^?u>ZI&NGNr zaed-##C)0b+}ombW!@2h-VqN`{w5wd_HQD|?Z1iQ#GDmL-aU)82oA^33F^&rqQ z6*^ye7Xf4@g`F4qUObP+$fUX#5Cdk?&I?%LWKz?Mm})cW*hP_~^?R6VGwI-aLT97* z1@oo%^%O9xUlKakUP6z`B%jN|7&9)5I^4S~${BM-l=H+DeT-?0&$-s0Q@0bS^~S4k z?@W5>Dtc=s75_lwNc#XiE0ezXKv;3`hj4Zj=0ov_1|R7oyhRJ?*z7QLgs8jpQk46F z9;S|oj~@)nQh|>VJ!jI4kI^&H3Lgt?y{{n#&!qj=1he{eVXjrz#RCg`BEXbSFzRN~ zZWH|Q35Eb%sQFY>`^Kk2R_!yPdi7_BfHSGo4PoEx8`!vurFU-V)uh;*n}~p7sr^l? zRbpw`P0akU^x;hei?LMq7RnGyD{f)QvW!FQK)QEJF9Y1~HY5XS;%%(<2GSe1p?Bc_ zwRPWtRTTRkzzrrRIhl}t2q}aRLI|DEJ3*TC-b+YAAX!2ZQmDeA34%ddU_b&0(xqSJ z2qHyAxHiDXMMUIsQL)f$ToHWV-~6&a;k}nX_P6ty+1XytW>%-%!cIR`Z@Pv1ovHep zTbQ1ydgN^rKE91D)jT!IqUDgKzy8%9FMHhfZ=>sf$2{Hp7hJB*)8~J|Mleqg`V||3NC%P+cuh2j6eQYh1d?_-UX>67ecne!(cnE)YH9|Z@ls1sMcD&v>t#CPAr2O0diz7HyfPj4mzlg5 z{=(%_*{aHFtk;lLGu6}RzN;qSd0HbcRan6qqW62L@e2Q%>GcHt0U|4?EacCvp!(x^ z+h-M2GlYOA)j0JWosBNhlw8sW9%9kQP4|x0vmMG?cc=NH->GpB%hf+VsYc=1IM9UN*V!f}V1jgaE2dg8auCBBM&={)AEh9gA!slf>OeyShB zTYi|HS=!}P;}K>$)i8t$PE)dxze+=@)L#umxZ!VxOHroCi%Jaz{;bp(WgZyD;HjL2 z=0by2EB*zTe&0ojJprbmqoNvw)X0jeFJVPB0KqFz_2Z%I)6n&KX!_X}nY#m3Izmv8 z8SS_rH3F%(g3Rz?!B`TQhhS6byTN7@RYOde8e;1HAViHqk=mhZIFF(~jiNt|B1(UK z$xG>1Lsc#O?DoS&Qux<@Af+F!S;lyB)v0S1*6!J za4ex6I>x11dhOPOU8rfdUg=WF_$l<1OEpEf?^0dy+hE5^SO=xLs1g=;sXkpvjX_9? zFkw*y7HO%z7NIf_x>i=BR4Hu}vuV_`b-&80``;JYrTWQ8tesLlI#OjKyu+b(lp2lH zq9~Qc1FxWgSLoDe)kpV;R!(FNipDIK>er)HZ#;wbjZv);I>w-yrFv(KnuHKt1x1$X zSyiwUmg?`Ts8odRvDnO)>V2`Q2oG%&s$z!l?6#_!hj6>9T81zuPAx$Qs-_kq;NScU z@LbnFUUf$38?UA#ydSSh5QbLA)Q{2ssIGE@#_+lQ<~Z||W`y39pz7+tr&P%5s#x0e z&)eAUC+HUvR0sTMcrHQB)aMq5dh32QFq#SaVhzoGO4Xp8ibnyLlD&owbyMLIPJC5!Z#Bvpverk2V>*j-CaM2MF<*|=xDj@XEd4*}J-?xeC z!#{g<9is1yL&Nz6O;iGY=SZv7M{VvU~q6y|S@{_!c4T%$*I#Jm^kGac1a2&xmdib6f3 zlbRC1zm?%Ry>)bmKAxg#=)edcKb_J^)z<53;^(^5&dL{s$9Kk#9y5#6PXjYO6l>G!E!mx9f%_r1kV}n2z=OdN;KQA+NjY z=Ac#p(6GXZDULY(Rd;L~>vfYJSRU*3(jM5e*Xyr(U>4TnlVWO@*A)FnPYgOm&+nyr zJE-M=lA3zY97odX-f9SVXm2%>xw*bP-_b&c^-*Q;{e9G@zNUCWQ+?o=O4OAyaNN7t z7l+~Tx@kXEitt`PYA0V6=iZ!@OFQ1{(^@?FwjjQx;!_-v=HE~eVPT$(( zXs=^NsEzQWBh*QRStHc}godNkd|y+_)fJ1ZdQq0t6 zCaPYJOd2dnhg@>h(w%Z~n9J11a@9u&OY+op&TgqEeC=qZ59TWk?> zKLp0BIPE_Z%XfvIHB+5O=sQb&>}#@P@v#1w!doP692hXT8^`7qyx>M0S&;sjRRg5rqF81>k`pR7O48q8HW=OM^ zKA(sEI$w8~kIgM#|2ba`cH}?4mTK$m&tfGQP0}X@`PS0a7hqS;*LxPIO9+b=s;?2O z=hS5`)kViv^X;lj7h%`R_Y7IADtjU3Kd(Z(d`&fjd+XXIYOwyQ1iM?l=anU@DwTNu z1*H)6g{A5!lBLU(H}Tr#xFkSSD{&S>oL7qN74gg}EF?rU06l}^k~M0l7f->{`omQ! zMh|@vdv(5UzE0g?@1&P^_wB3;%Wy{MtFM&d%BZh)t;a>`biI1L`bbeLB)H2znT>yn zira|IK4S*iLk`_AeD2^QQ z+tgCDgL-fqrZro~ZpYy&ThH9B#_66ru#IKwjXTt8Uo%8_PaU@thm*cLv9D$8OFPv! zXzTQ?U1|lwpjU8C?5{_^sq%I0-59bz)v^x(6%5pK_Fz{)W9oa<^9Vims-wQt_)1Ch zPWtR#RZq9xhwCfk@57OHnjW}cZASQgKMo($be98aCBhd6uyak*Qx9ToPSc(Lp}t3G z_^P_;wOvj^cyUz1MO28AXS~PI~HLEDDr5j2#jU+@Dcdy4@SN?ii)@8|q`Pt=c+@Io_%t z9L33bE6wq%{#$9B)f?5X*Hzzn6FXp=V>k?MFjLg!ZPd1jj?(*e<~u6IL2c6D2uCfG>V_Yv zApP+>s=(K1{igcr8P!nFIEAxfj{fl!2F=kU-o<594$te&cd^gr(1G|3M-Ekl20g~( zyzYMl>!IBloDXwouHSPkqRf`OnVk414x5W~ulI17v541l;`^$nzbW&`jF-KS%fv-I z$&3 z45?B|nKn_L9v%#Dm6nTYVK^#q zgyERLn+zuaZl2i_EN@AXw;A3c*oie_on|;~gIOH^v{Tl5oc+GQhYTMIoMSjE@Ckvt z)H*NnIT!gv;3C6k0$(y*5V*o{QQ+SUmjtdeTo(9_;R->zd4=momVX4{Fn0y$?F_�=^8t3HUSI6R61W zhd?mHp8{bF56b~xAFRak1YRNF&v8aFR1k<^@Ft+QIPg_eGi81@n2o{TPFaex0|kN@ zLIuJYDy7r@XR3@~iIO7G46y=L8R7-1Gb9SsWT-7rhoL?}22FSahDJ7Ix#>vLgpwO6 zzbWUpu))k&D?4Si=InL??HQgTpf^ygjtpIFFcmy)r>t(A-BZBbi>0qfKZbzlZVYa{=hWP@|GCXI4 z+gij@VvDteVVS^khEjo53~L0|GL#XRJ(^z1#ERW$gINum?3A^c%WqAmuWyMSIE)4GqbYnO};5PHtljS`r(ud&#f&L612@GO5N3e^we0rA^Q}&4s zX8C+(r>v2jeL*1AfZMt#lFmgg31l){7RX|_A~1pBsz5HoHGxSC*9D3gzGa}}&lHv$ zQe-;A4+1k8eiE3?aEpN66SC$r+_k~X{V#UPTFBYI2`px~XZAl+!xEN1q{uRcKM4lW zI3A!6OZbV5axmklK&fXa`$_a6+hK#r_OnygIrNrz%7QZ0(Tj@3H-{?BZIboGqd+tdQp)*v^o9B(ANet_xSp%tQ4uwuuveGVUa)+hUW#EGb|Bk#jsSMEyHpf+*S(9N?WXs466jXFld2p z3~LGGUkNa?Wj2_Z-C(DzzFht#fdLGgGwA$lY8cG2MT!h#*d{QNVTV8}!!ChzhTQ_0 z40{E#81@THaI+i~$z^y|U=qV2fg*<21*R|@Auw;u&0u)b2D3Ph+bJ}2Wj3~x1a30` zy<&&u_qG(7&u~g$A;W2b#SH%xSi$#7O+b@~2xUSus7`9z?M;WL4a z3>O48Gh8GvFXVlJK8*LW4QB4I*eQ$N*F*MI20H%iX1OLs_Ay)+ILPp=z-tUQ1YT$O zLEsIBp9GFE+!8oRfb-uSk$1Sr&jR!sAg1+Kf%h1GCopg9eZ=sG4Q6Klv{Tl3&VDHH zDZ>+E%PVkO7g#FTVtv8jEpVB^A@DVWpTIQ+e}Qip0t9X_1PairhL|;Xu*fZzP=UJ) z;R3%hR1&zyP?=z%H#(8%L#;73n8guGsTq|0fXi32A*&f(|5mq?))ROs4NybiNrsvN z4u)C+PKG)H0Sxs7f*2YIgfb)(xXpCASQ<-_$_z~fq8XYC#4@xLsK(G*Ac3K+Kuw1B z1gYNWq>SbBUq@Ta;_7Uttol4aSAk@PZURjhdI&UU=q1pKp^rdYhJFmR|D~`DkRlx! z1_^Xw7$VS(VVFQqh7kgN7)A;7XGj$oM1cJ-O=Kt+$q*R9kSQ>lVZ1;ZLpH&DZ*(m5 zVH28YgIT0`cFM})@{?=`v?j0=8qr@}Q-yBxf+YQ08!CF1oWNAH&`wzkID3)6B8KM$ zN*I<1EM-_Ku!3Q^z$yc7Yo*8=zEez`gwli!L*u}7kfwqY~ zEH6uu{R~?L=+#v$pX~yN7=Ss40Nca?5qhZ=!~8>lUS|co zCO~hp0z3jAF&q{+&+vx8rwnfjTwpkEz&sH6g5{(Xxy3-1$RESChl87>p>_D^r& zqR15~;?HnZpd!OHfnbK~0$~i_3ebDHsPu+FB*PB`CEn;%8OX=Po3@z!?zWw>;&_0& z0@WFQ5ug`$F^=B^=uKU~Jpp<<7x0Hb1BO2dCQ}>t)&umS$P<}H%J=>Xl-lf#PIDf> z#|ATzzIMuL#o11QwhT%jg`uJVz0ivh1_9hWjxH=AQluM0m_Sbkmp~te2!Z|#kphDl zq6LOBR1p|45c7{IsY+tr8cpRQ@iv&5O|Vl|I%g*eWHKZPWHHnhn7~k1AeW)O0ki+n z%fy(9hEk-6p^?B8h9&~j8JY>qWN0BUo1vA!Jcc#`3jnnLwG&yyMN$Ol#blItN`PKT z26Pfw!O%ru6~og4YZ$r4{FJR|T8!z_Ut46_A(WSA>(i($S1z0r-0 zW`V%349{iKJ+avW?y)SEBKH|e1RgTHAmD|!YfcrW{1-dev6zIh2 zQvf%Qqc6*8Dq`A6ID5`-G6V_iW(X13#}Fn! z{|tc9xCCBfh$sgfe_m&alp=31L<<~as3LHZp{l?;4AlsR&<1ygA;AW-NE7Xp^*(1O zjideF4Db<4Z7Fh|p{~HE4D|_~qjCI;A=w5qj>dM%{PzK7y(vL1mA}H}Ti8J5-Bv3* zY5kk?+X!4|XeaO;LyEu;3{MH%WauPthoK9>ESd^xganh-jREs-CcB5^-{bsV0{0pE z2s~uyC*XzG;!))Q0dIyu0=^7G1pFC>xkW0nj1UNB7$p$KkSb7#Ax$8XAwz)vfdW&O zDNvPRybW$Eo+aBBs|Ldafh2~B0(BVj1n564Fq%mM$qa=8O&E#=nlrekh_qsvCeW5) zhCm9#Oo5K&l?ZfUm?O}QVV*!whG)wG`(GcHg;Iq6sRMJfh+qe8GSo5+pu`5V#k^pr ztYMtJOkgC#3IY0m4^&Vpkj}8$?0;q)nJjCl$Zi_xTJ&L6zmfAl zu=B0W3?B(>WjH6WgW+R=R~SAO*vs%a!BCotgA5mKz*OM;d&y2(uW|lmf!7(X2)w~? zRp1!IHG-FE9B(mvV}qH~@9dOyinG7B!EK#k`H^G{)$kMguy}9VU~0HasR@)#?I=igtPxE@HxYMf?}%RPxPUJzYNg%-_+nW-p;?w13XDEm6G3{Tl$7EUKhxlMjO&hKL9TMZeW z7HG`SU7#65Pl1*Uy#?AZ^c85&(4SxlP1b<%{QPUMEoQogQfejTQ>$HAM=j^04mj_r( zP(TAb&jY+*gBigxO0A>p#aw=+4JLb)owAm2wiZ~%u$Ev0RZu#FpTCvaVrtl6r!36_ zyd>}~VtCUAQ^9dN<+cuU{z+T#A82NbZwnk}I7Ogon%+ep zrsFe6oV z$_n7@pmMu7YS!3`8#Oq_StqIN zHkyUE7*5$>X5qA*vd(b!`vM;@oE137@CiXC)%YpH1p+sTsq&)af5G{e1-@dqD)4WH z>jK{}+z|Ml;U|Hc40iM}bZZT?L+I=wXA~>dDf_7OOAA0D*xFLj;C0j3CITEovk~stsm? zO0!c|I%j7JjAO{ortROX>*WZ;n>LvBa-34rDfcwwU}=cFKAeeaQZ&zKiOa={Fa@vZgcj}0>3c)E^v?G zKCOSQ@=un(1fH#YL(J z#4=P9h-aulFpZW)B10`3%w*NEQ&wHhZXnQ*p|JsT|KEhAxfE%^&|07kLwkblG}07? zjy9N)cD7Si7tZb`(4C=|KyLYWq+1IHkc}h*ePo$XO9pV$&e~Ah9N^>EW>z# zEQSdLTWOp*Zk9Y-%t$BMDXW09iv=b#OcR*SFjHU_!yJLR49^NIU|2-pHj}ZKWeExW zf35Wb!*UzUWUaJQ7G4&i9a9UeVOS?n#;{S~C5D#;wis|*+evb0q&v9CD>j&s?y*zW zUd}!saFF3OfkO<31&%PhNwA1Uag5=l4SfCkww<)z;r!DAXBgfW_<-T8z&VCb1U_ZB zAn-4SO9EdSD7LD5J)!5SfI8+MgGZH`e*i`phbcwa$swJ?Y7QA3Hged)fp#Jcu$aRx z4r4hC;_wWINgON=&vMvPK0N(10IGS31HGz_)G`kAwlh)#InevBNYVSG2&o+Aa~Qy3 z4hMRh5Jl*9Cxpoy=(QrG=yz{~G`a{vq~CoJ==WU&`q>tNem6xZ<3PWZA@v*w`cVrh z`c(;mp5i0WvwH-3Mvp*`))D9#Gy**YMxf`k2=uTO0S{H(6zSP00zL6WpeLIM^k@+Q z59%n;voZvFc7;HXs1WE$3<5o1L7>Mb2=sUafgW-o(1QsCdftFQj};K;;Q#{N(7O@o zh8clwVG-z-5P|O55a^Bwfo_Em=z1N2F3u6?`Wayb2RfA_MJHbbI>{o?84IC52RddW zMMqHtI`WOGTxyO+NYc)aK)WNtB7CGMpaWWTnHw0;7A>-z2n=ZM+#B)46H7~z&*wc=FU9d-$N$M{Y-jCyEKBDE1q3+vJ!e*`ac!MZByeUe68* zh}N+_K7KSMuiBY9FeIR!^R-8l)pQjHPp{{3Uhl&kSDBY+Hd^P$a?aK_LjsyPYn5w% zT`x4Ct}{uJ`C$RoT#Xw2z1R~T%hHEKF%Q)rw_9X29y3>?7JpZf_-IzV9vK#(obiuZ zJ!j2FlkwqA{~ow*dCoL_J3JuLmE8F66<7a%Wi|aftKOqoQQ?nlM#+!m=-J_zn1+wr z-td4hw2Oi9Md>dozs{ri_0Wn%tSg|V^QCg#iZ2!f#OYjDfYVv_sMT_=e>7P|pLJnD zt$WN|jgtSK*By^#>Cqi|6>fTrU5%RmJ)ax?PnPU2FF%&0dw1r_wm;7ID`Aqhhy_Ok z)N*coG#M8vHEw&{8`(S1*2i6TiOr9>z84Wt(cL)@C(35j38hX$>hz|LlRBfQQ;#~| z<)Sl&`eLawl{yc|qN%S3b%LlO4iA;ncZFLu6B54t3h((G~e0gzYIE zK%Ifq8A6>r>QtjnW$M(V&ePNxN1fkkFbDPBp*|P&)uv8A>O4W61nT@kxj#@RgOX38 zvn;*DcWlnM?3_$A#TQ_qv8>$4fEaH1Drsf4$?>|u0Oj!GLvl%NNR-|%LmQhZW|p?6&v`d=zwZyTg4q6P@P*!iO>yC zst61~NAHqwefwP%jyf0Vuc8CGy6MC+lTR!NbYelEGYSGtIs#2D0-aG1=!}9u6No^k z5(GMxAkZWs(5VE0&LIeNC5b?%5CobC1iI>)Sz278x5NZgs!CP!Q(77&-#*Z(jxUB+ zcrL~SZ0my0n#|4!i1B_A8TdqWKmzyOP7i3{AVXVc4TJERh;t(Y!tezpqT-T7eIVJH z=ov6J;P%H+Q}^l-7+b{@4U)_plrXteL$ZzwsF;jZv{N7L5txi`pxo>c z*qCdtu20+#sBZFl^$d*lrh4?I?tw90J3S>m1K-ZUH%a;)4vdOOrlm~|cYt}Ml1MISe zX_GVYX%#9bmXnu;#&pv?y^aLVZd{)(J*~$0H(72!ppD&E;!Sn%rD=&z&$RSRv~9fD zbN{EnpWEO|6t`*zMLFnt6|JkE-x3(^#D_RcGKP{dnEhS4N1dPq6wR*_)YzNybcfnO zb$Fm?y|)`awrYk5)4|=HF0Wmlkh(z?sygWE7pv&%;lOC_udG8l`A2z;)oI@c*TWTr zpVRYvkDx(a@r8=3D}rLZo>{#zsIJ#Do_Z^TZb#vJ5wUxN>N+f{B~hPj92BX~^>YUK z5ESeEy__vQhxP`osOxx^O4QK(V)2o~F+=bX@xN9C`FJHVwErR~$cIW4>vO}Mwe_+{ zjP=r`paB)}*@gx;g6biRx)D_0YmcYoMo>&+2VHvOvoYs`{33nLbvSKhH-e)%BT_HN zSHihJOed#0T|P8GvG#iC8>92<`bB%vss#U#gwG%J>JpsbpeuN^pEN2PpDBAqZ|D+S z!w_~xuf~22JomZ;|EC|mK5%(WaHRJ#l-0La2gd`dtPM`2FB>@YiX3M{&$P9{-^SsK z0cl5qt2^jEprnfatH@auwChN4tPfGKK5)}F%=7h;;N%7lx=BD=hF<;f?ccA0`~rN< zZ37NrMgngH2YL;1YVU-_ zd(*w6p7eHDjQL(P7K+!q&gykYOZ+qPCgvC8FrANYTNqJ)%Ty+ezTa6t^Xcgz&&7Ab zR;Hl2>xn+$u?QtT;nflL`-CT$?>Co3>7e^zQCPKfr;1hEaG{IN>*c8qUg0hr#pZdE z9pT;6(bV)aS>bUA>p2|D3a=JV_qHXzg?ZzOCemhLlKvgWk1xm^pJrAyKJ1(w9u;dc zf_oL`6lLR3pP4ftBd;J6tI>F*{^^oml#fa1`{Tl6&6k-=8tCN9ehtg{p zjm(*Eh$m%w_@Dq^x=Sy_0j$IFh%h~SdbqFW(1P%X)wAigy(9>iTG+`_3voKk%+0{& zZnz>gk&Mj3!qlR?37J?J27M={<>%uZUY=AFGYiIJ1!7~u_F_r|X5{7M{qM?(_40S| z)m&<6+tcHf@Xw1==t)6Ia7Ipcerj%Bc41~}0d_RhVO$xfy-z5>q*62TigSyom`k9X#e4P^OiogK% z;$4wkM-;WM9mARXVqKNE?>zeYn+k)>K_V3slxp_i@`*+h(&@DK3{A!6YzkH^7qf}T zyp`ivb26T#Z_0RMwAXFFDph&d;A~p(1sPeXR1o!+*XhzJUpgZynfm=R3JX#v7Z#;u zOemkLkT_Qq=4E+xSEcTzNN8^H#MI*4>`BF$sTnzGg@v*}L+PsH|IMk0BPcGPQf0FB zo$9VwR2!V&iuRi2shi-M9B)2Oj4kT?uYOU!=7A4(xUXBfXcya|uXb_8pxy3=U0juX z=wVQ?KL3@os;5O)*EwpXyWUh+gpQl)3gG_g2>qsFh*F(9)s<+zZ;Yx(|Jxbq;O9oV z`(#%Y_DXuwf1H&tmQo!%%@tFTX2U*U8A{@EQB*D>l&&>b{lom8iYp>|2BlM`xRNlc z4bxmTIK=QLgekKabCG<{&$ZBJy36A;z0$t1=1agOxC5A9DNYAfQHmi-r&Uog++SUX zcsZ-%NJG!IaEaP5Rz-47jDG1`XRI$du3cB1cSd+tUa9m$d$i&0t{PDbVQ1BdM1*ry zBjUV7}Cj`9*V6V810+QEnf7?fHlrzIZ~0nriCgI91&=;O%Kv z5;3T!SFxw$UlA|Ag9f%6uCE-4(0zU71cbcxmE#bWt*;!5u+OAC=hjz#eV+NKE$)bd zZae9tyZfp|(x-6GR*S5LaHm>i0vCv&kK{(W=;2$5b8>cJaavCHbQ~fGbf37$+FUGJ zj|s<@Yz-Idez%+np5yV6y9yn{X~1Zm+%?jr_moEZp%LySt0Q9&cCC(#^`Y!yef6#r z7c8qIpC5-twsRgtCRL`#dvsvJ=LC!L^5v6)S$g+_$Vl@ETs-zU85JIn4IxY4eh^s) zL&iLeZ0eQe>HjeD?u$|MNbvu?@mOhYJkX4`x!s^*+T3oeG`Abx25#!8I_8tNSkxu4 z&ZG*~N^=+DwbGOJV$|R&zVxKA5NE;zH-jsCKKDd5P4HUa3HUOqS{<~WO{>6X9ZD4I zx}>a diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index a46ecc8be8c8b44153dfb73bf6e0bc3db50dc553..0d5014600a4e89f334e4490049733706cb0aebfb 100644 GIT binary patch delta 64 zcmexyjOoWQrVTBOhVcca73CRaCi=z}sg_Bp$*C5JmWdY0rfJ4$MuurAriNw)M#&b2 Urpe}}#)%dwiD{d+G9F$C0R0mdbN~PV delta 64 zcmexyjOoWQrVTBOhQ?(@NtNaqsro6#CKibXW|n3qM#)A7#))YrW`@ZIiK)p+#ujO2 T=B5^jrY1n9#pbPyhZh0>+;$ai diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 4928a252ba1ab778f86065e9c1d4e0e34d4fc8eb..d0f2041423f8c7933af4ba30b5bbe19937cf1b0f 100644 GIT binary patch delta 64 zcmbPsn{nE0#tn-Z4dV+;E6Ov-v9sr delta 64 zcmbPsn{nE0#tn-Z4UNl+k}AzJQuR}eO)L@(%q-1JjFOEEj1$vL%nXwa5>u0tj4jg4 T%uOv4O-+DIi_KRU4`l-Yy=4^H diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index 5d67baf75..a64acbf25 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:03:56.246621Z", - "iopub.status.busy": "2024-01-17T18:03:56.246426Z", - "iopub.status.idle": "2024-01-17T18:03:59.462158Z", - "shell.execute_reply": "2024-01-17T18:03:59.461536Z" + "iopub.execute_input": "2024-01-17T23:06:03.241225Z", + "iopub.status.busy": "2024-01-17T23:06:03.241029Z", + "iopub.status.idle": "2024-01-17T23:06:06.464107Z", + "shell.execute_reply": "2024-01-17T23:06:06.463420Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:03:59.465517Z", - "iopub.status.busy": "2024-01-17T18:03:59.464868Z", - "iopub.status.idle": "2024-01-17T18:03:59.468353Z", - "shell.execute_reply": "2024-01-17T18:03:59.467776Z" + "iopub.execute_input": "2024-01-17T23:06:06.467168Z", + "iopub.status.busy": "2024-01-17T23:06:06.466788Z", + "iopub.status.idle": "2024-01-17T23:06:06.470304Z", + "shell.execute_reply": "2024-01-17T23:06:06.469673Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:03:59.470782Z", - "iopub.status.busy": "2024-01-17T18:03:59.470350Z", - "iopub.status.idle": "2024-01-17T18:03:59.475553Z", - "shell.execute_reply": "2024-01-17T18:03:59.475067Z" + "iopub.execute_input": "2024-01-17T23:06:06.472648Z", + "iopub.status.busy": "2024-01-17T23:06:06.472216Z", + "iopub.status.idle": "2024-01-17T23:06:06.477236Z", + "shell.execute_reply": "2024-01-17T23:06:06.476626Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-17T18:03:59.477904Z", - "iopub.status.busy": "2024-01-17T18:03:59.477550Z", - "iopub.status.idle": "2024-01-17T18:04:01.172783Z", - "shell.execute_reply": "2024-01-17T18:04:01.171901Z" + "iopub.execute_input": "2024-01-17T23:06:06.479737Z", + "iopub.status.busy": "2024-01-17T23:06:06.479248Z", + "iopub.status.idle": "2024-01-17T23:06:07.960092Z", + "shell.execute_reply": "2024-01-17T23:06:07.959366Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:01.175803Z", - "iopub.status.busy": "2024-01-17T18:04:01.175584Z", - "iopub.status.idle": "2024-01-17T18:04:01.187892Z", - "shell.execute_reply": "2024-01-17T18:04:01.187256Z" + "iopub.execute_input": "2024-01-17T23:06:07.963314Z", + "iopub.status.busy": "2024-01-17T23:06:07.962895Z", + "iopub.status.idle": "2024-01-17T23:06:07.975189Z", + "shell.execute_reply": "2024-01-17T23:06:07.974586Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:01.221136Z", - "iopub.status.busy": "2024-01-17T18:04:01.220534Z", - "iopub.status.idle": "2024-01-17T18:04:01.227460Z", - "shell.execute_reply": "2024-01-17T18:04:01.226813Z" + "iopub.execute_input": "2024-01-17T23:06:08.007234Z", + "iopub.status.busy": "2024-01-17T23:06:08.006813Z", + "iopub.status.idle": "2024-01-17T23:06:08.013562Z", + "shell.execute_reply": "2024-01-17T23:06:08.013029Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:01.230129Z", - "iopub.status.busy": "2024-01-17T18:04:01.229643Z", - "iopub.status.idle": "2024-01-17T18:04:01.936049Z", - "shell.execute_reply": "2024-01-17T18:04:01.935379Z" + "iopub.execute_input": "2024-01-17T23:06:08.015975Z", + "iopub.status.busy": "2024-01-17T23:06:08.015602Z", + "iopub.status.idle": "2024-01-17T23:06:08.737027Z", + "shell.execute_reply": "2024-01-17T23:06:08.736373Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:01.938750Z", - "iopub.status.busy": "2024-01-17T18:04:01.938361Z", - "iopub.status.idle": "2024-01-17T18:04:02.839523Z", - "shell.execute_reply": "2024-01-17T18:04:02.838812Z" + "iopub.execute_input": "2024-01-17T23:06:08.739545Z", + "iopub.status.busy": "2024-01-17T23:06:08.739230Z", + "iopub.status.idle": "2024-01-17T23:06:10.120689Z", + "shell.execute_reply": "2024-01-17T23:06:10.120102Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:02.842451Z", - "iopub.status.busy": "2024-01-17T18:04:02.842179Z", - "iopub.status.idle": "2024-01-17T18:04:02.864885Z", - "shell.execute_reply": "2024-01-17T18:04:02.864263Z" + "iopub.execute_input": "2024-01-17T23:06:10.123621Z", + "iopub.status.busy": "2024-01-17T23:06:10.123219Z", + "iopub.status.idle": "2024-01-17T23:06:10.145672Z", + "shell.execute_reply": "2024-01-17T23:06:10.145076Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:02.867335Z", - "iopub.status.busy": "2024-01-17T18:04:02.866965Z", - "iopub.status.idle": "2024-01-17T18:04:02.870237Z", - "shell.execute_reply": "2024-01-17T18:04:02.869668Z" + "iopub.execute_input": "2024-01-17T23:06:10.148144Z", + "iopub.status.busy": "2024-01-17T23:06:10.147843Z", + "iopub.status.idle": "2024-01-17T23:06:10.151186Z", + "shell.execute_reply": "2024-01-17T23:06:10.150643Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:02.872601Z", - "iopub.status.busy": "2024-01-17T18:04:02.872244Z", - "iopub.status.idle": "2024-01-17T18:04:21.805805Z", - "shell.execute_reply": "2024-01-17T18:04:21.805139Z" + "iopub.execute_input": "2024-01-17T23:06:10.153485Z", + "iopub.status.busy": "2024-01-17T23:06:10.153191Z", + "iopub.status.idle": "2024-01-17T23:06:28.541137Z", + "shell.execute_reply": "2024-01-17T23:06:28.540500Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:21.809284Z", - "iopub.status.busy": "2024-01-17T18:04:21.808690Z", - "iopub.status.idle": "2024-01-17T18:04:21.813229Z", - "shell.execute_reply": "2024-01-17T18:04:21.812575Z" + "iopub.execute_input": "2024-01-17T23:06:28.544247Z", + "iopub.status.busy": "2024-01-17T23:06:28.543816Z", + "iopub.status.idle": "2024-01-17T23:06:28.548440Z", + "shell.execute_reply": "2024-01-17T23:06:28.547908Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:21.815784Z", - "iopub.status.busy": "2024-01-17T18:04:21.815395Z", - "iopub.status.idle": "2024-01-17T18:04:27.285963Z", - "shell.execute_reply": "2024-01-17T18:04:27.285265Z" + "iopub.execute_input": "2024-01-17T23:06:28.550975Z", + "iopub.status.busy": "2024-01-17T23:06:28.550597Z", + "iopub.status.idle": "2024-01-17T23:06:34.059947Z", + "shell.execute_reply": "2024-01-17T23:06:34.059266Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.289545Z", - "iopub.status.busy": "2024-01-17T18:04:27.289071Z", - "iopub.status.idle": "2024-01-17T18:04:27.294502Z", - "shell.execute_reply": "2024-01-17T18:04:27.293903Z" + "iopub.execute_input": "2024-01-17T23:06:34.063475Z", + "iopub.status.busy": "2024-01-17T23:06:34.062997Z", + "iopub.status.idle": "2024-01-17T23:06:34.068792Z", + "shell.execute_reply": "2024-01-17T23:06:34.068163Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.297552Z", - "iopub.status.busy": "2024-01-17T18:04:27.297119Z", - "iopub.status.idle": "2024-01-17T18:04:27.391354Z", - "shell.execute_reply": "2024-01-17T18:04:27.390637Z" + "iopub.execute_input": "2024-01-17T23:06:34.071846Z", + "iopub.status.busy": "2024-01-17T23:06:34.071416Z", + "iopub.status.idle": "2024-01-17T23:06:34.185550Z", + "shell.execute_reply": "2024-01-17T23:06:34.184822Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.394410Z", - "iopub.status.busy": "2024-01-17T18:04:27.394019Z", - "iopub.status.idle": "2024-01-17T18:04:27.404313Z", - "shell.execute_reply": "2024-01-17T18:04:27.403781Z" + "iopub.execute_input": "2024-01-17T23:06:34.188375Z", + "iopub.status.busy": "2024-01-17T23:06:34.188110Z", + "iopub.status.idle": "2024-01-17T23:06:34.198290Z", + "shell.execute_reply": "2024-01-17T23:06:34.197648Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.406721Z", - "iopub.status.busy": "2024-01-17T18:04:27.406410Z", - "iopub.status.idle": "2024-01-17T18:04:27.414725Z", - "shell.execute_reply": "2024-01-17T18:04:27.414071Z" + "iopub.execute_input": "2024-01-17T23:06:34.200848Z", + "iopub.status.busy": "2024-01-17T23:06:34.200521Z", + "iopub.status.idle": "2024-01-17T23:06:34.208862Z", + "shell.execute_reply": "2024-01-17T23:06:34.208245Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.417120Z", - "iopub.status.busy": "2024-01-17T18:04:27.416724Z", - "iopub.status.idle": "2024-01-17T18:04:27.421580Z", - "shell.execute_reply": "2024-01-17T18:04:27.420916Z" + "iopub.execute_input": "2024-01-17T23:06:34.211398Z", + "iopub.status.busy": "2024-01-17T23:06:34.211050Z", + "iopub.status.idle": "2024-01-17T23:06:34.215872Z", + "shell.execute_reply": "2024-01-17T23:06:34.215362Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.423983Z", - "iopub.status.busy": "2024-01-17T18:04:27.423639Z", - "iopub.status.idle": "2024-01-17T18:04:27.429656Z", - "shell.execute_reply": "2024-01-17T18:04:27.429010Z" + "iopub.execute_input": "2024-01-17T23:06:34.218162Z", + "iopub.status.busy": "2024-01-17T23:06:34.217800Z", + "iopub.status.idle": "2024-01-17T23:06:34.224079Z", + "shell.execute_reply": "2024-01-17T23:06:34.223545Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.432082Z", - "iopub.status.busy": "2024-01-17T18:04:27.431713Z", - "iopub.status.idle": "2024-01-17T18:04:27.545999Z", - "shell.execute_reply": "2024-01-17T18:04:27.545312Z" + "iopub.execute_input": "2024-01-17T23:06:34.226655Z", + "iopub.status.busy": "2024-01-17T23:06:34.226193Z", + "iopub.status.idle": "2024-01-17T23:06:34.342868Z", + "shell.execute_reply": "2024-01-17T23:06:34.342208Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.548644Z", - "iopub.status.busy": "2024-01-17T18:04:27.548226Z", - "iopub.status.idle": "2024-01-17T18:04:27.658900Z", - "shell.execute_reply": "2024-01-17T18:04:27.658242Z" + "iopub.execute_input": "2024-01-17T23:06:34.345463Z", + "iopub.status.busy": "2024-01-17T23:06:34.345103Z", + "iopub.status.idle": "2024-01-17T23:06:34.452029Z", + "shell.execute_reply": "2024-01-17T23:06:34.451378Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.661353Z", - "iopub.status.busy": "2024-01-17T18:04:27.661065Z", - "iopub.status.idle": "2024-01-17T18:04:27.770988Z", - "shell.execute_reply": "2024-01-17T18:04:27.770337Z" + "iopub.execute_input": "2024-01-17T23:06:34.454818Z", + "iopub.status.busy": "2024-01-17T23:06:34.454245Z", + "iopub.status.idle": "2024-01-17T23:06:34.561699Z", + "shell.execute_reply": "2024-01-17T23:06:34.561010Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.773635Z", - "iopub.status.busy": "2024-01-17T18:04:27.773261Z", - "iopub.status.idle": "2024-01-17T18:04:27.880054Z", - "shell.execute_reply": "2024-01-17T18:04:27.879383Z" + "iopub.execute_input": "2024-01-17T23:06:34.564138Z", + "iopub.status.busy": "2024-01-17T23:06:34.563922Z", + "iopub.status.idle": "2024-01-17T23:06:34.673537Z", + "shell.execute_reply": "2024-01-17T23:06:34.672870Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.882841Z", - "iopub.status.busy": "2024-01-17T18:04:27.882447Z", - "iopub.status.idle": "2024-01-17T18:04:27.885966Z", - "shell.execute_reply": "2024-01-17T18:04:27.885407Z" + "iopub.execute_input": "2024-01-17T23:06:34.675986Z", + "iopub.status.busy": "2024-01-17T23:06:34.675761Z", + "iopub.status.idle": "2024-01-17T23:06:34.679368Z", + "shell.execute_reply": "2024-01-17T23:06:34.678729Z" }, "nbsphinx": "hidden" }, @@ -1377,65 +1377,37 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04545eb82c614214a57ff48711e5ef69": { + "030585901c0a49c3976e336a1ab51ee1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e38a6eaeba49436d880afec59461ee06", - "placeholder": "​", - "style": "IPY_MODEL_9a471f99ebec460f82f340da4bf084a3", - "value": "embedding_model.ckpt: 100%" - } - }, - "0fd11d936da54fa68096671994e1275f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_617fa189f462470a937beee9505799fa", - "placeholder": "​", - "style": "IPY_MODEL_9fca2e61f7d64cea930c8b07bdcbc59e", - "value": " 3.20k/3.20k [00:00<00:00, 549kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "159b496215244dc799dd25dae2e0470d": { + "0ff00007ea674a8496fed6616e438639": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "1acfc2e65c71473497f43eb9e974bc92": { + "1bdf3168328746ddb97b58d22771e706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1450,65 +1422,66 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_db86af8139ff41018b497ff1758537de", - "IPY_MODEL_fc52934f923d48f6815ef3ea863cb962", - "IPY_MODEL_ebe5bf1237e54a5cb31a7953735ed040" + "IPY_MODEL_8d69a36aa0ef4ac398e5473efe8facaf", + "IPY_MODEL_4013766ebdd64bcdaa57852522f87774", + "IPY_MODEL_7b3c7b951bc643fea2c2d55d50e02569" ], - "layout": "IPY_MODEL_7fda371c9fba45549d352696e38b0c16" - } - }, - "1cca100b2cea4a77bbbcc5a23f19e1d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da8efe510bcf414b9d2c76f5f791e9ea", - "placeholder": "​", - "style": "IPY_MODEL_220c65a6f5bb442e8b509643c78298cb", - "value": "label_encoder.txt: 100%" - } - }, - "220c65a6f5bb442e8b509643c78298cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_46c6f6135bb9449482ba0294d1515087" } }, - "24e87b41e33643a0a449e4e5f4a04a21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "1eb624a3dad54e7fa6b146681c26c1fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "25691bde0c394a299f774959e32e539d": { + "2105d31075094aec8143dc36c2cc4c8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1524,7 +1497,7 @@ "description_width": "" } }, - "25c36bd0682a44a1af90eecaec670b14": { + "21a9a1365c8149ebafde1882681607b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1576,28 +1549,7 @@ "width": null } }, - "2fb3c50dfd544cf297447c4dd5e4bdfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5836728e785d44ce8ebe512cb1ffe735", - "placeholder": "​", - "style": "IPY_MODEL_dae854f92b7548ddb4b4981bb4a8c9d2", - "value": " 16.9M/16.9M [00:00<00:00, 96.3MB/s]" - } - }, - "32761d387fb34f55a8662c19898e2e19": { + "2415134083d142f18e75d9c1fd90ad9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1649,68 +1601,102 @@ "width": null } }, - "41336a38204142909d6d6151660b30ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "26707147e6f24b498f499aec25d3879a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "42cde93ea0f44516bebd28767667c2fa": { + "289a6e5f2aa24222a97d08ebc952a72e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ccb07543f38c422eba6e58deccf2a389", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_55ca6bb4d3414d2091e2d6cc744d0227", - "value": 2041.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f2c87a26b3e843afa6644bed13f5508c", + "IPY_MODEL_7694a31ea9a04edcb6864f25b28b15cb", + "IPY_MODEL_959ba9c2758b476f942db7be7ea533c2" + ], + "layout": "IPY_MODEL_965eba21261d4a2e9ee7513ec333adc2" } }, - "4a8b0b00351a48b1bd3c4ffb02422045": { + "320bad48fde04048bd4f6c3c7723b882": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_649eb4698e3443adb0fd32629e36ece6", - "IPY_MODEL_c9aad8223fed4fd79a1fa84e675e9c34", - "IPY_MODEL_0fd11d936da54fa68096671994e1275f" - ], - "layout": "IPY_MODEL_c3b13273fa614276aa8cd31a0d3ba6a0" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da437028c14a404b9d0753eab94e3c55", + "placeholder": "​", + "style": "IPY_MODEL_df6099d96cc04692aa1804b28f0d3165", + "value": " 129k/129k [00:00<00:00, 12.9MB/s]" } }, - "4bdbef4700e34979a7835f1c9cb5f63b": { + "3b6ccb1c3d224e82864d450d361cb50f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1762,7 +1748,46 @@ "width": null } }, - "4d632ff2b07b4dffa2ead315843c6e6c": { + "3bfd515955e24904b4dc7bac5512c42f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4013766ebdd64bcdaa57852522f87774": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff2eea9324ab4fdebb914b6830cf4e4e", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b391f6736d6440f5977ea7e4075132b1", + "value": 16887676.0 + } + }, + "424d86c2319543f0b0d18ccae78cd508": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1777,7 +1802,7 @@ "description_width": "" } }, - "5105284d7b9346b09f3d678a6f15a3cb": { + "46c6f6135bb9449482ba0294d1515087": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1829,44 +1854,65 @@ "width": null } }, - "53e5f5516c1940eb84c59305f879b33d": { + "48805febf856433c84dda4034fb9c0c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_53a59a607d394f2e832ba2a5f8cd33f2", + "placeholder": "​", + "style": "IPY_MODEL_0ff00007ea674a8496fed6616e438639", + "value": " 3.20k/3.20k [00:00<00:00, 511kB/s]" + } + }, + "4a7fe1b9aff24fc7a7e179b7f11d5bbd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5105284d7b9346b09f3d678a6f15a3cb", - "placeholder": "​", - "style": "IPY_MODEL_db5c6c408f9147df9a5d44f8f886ab61", - "value": " 2.04k/2.04k [00:00<00:00, 352kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8d8b99dd01c64a7ca9041d32353eac13", + "IPY_MODEL_e364bdc739a344f9b5a54749543225af", + "IPY_MODEL_320bad48fde04048bd4f6c3c7723b882" + ], + "layout": "IPY_MODEL_d9416e2443dc46e89ea2b97a96b892cb" } }, - "55ca6bb4d3414d2091e2d6cc744d0227": { + "4aba10cb04694ab4bf360dfefe9871d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "5836728e785d44ce8ebe512cb1ffe735": { + "508a9cef5621429ca2ad08b2e5a5b906": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1918,7 +1964,7 @@ "width": null } }, - "617fa189f462470a937beee9505799fa": { + "53a59a607d394f2e832ba2a5f8cd33f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1970,7 +2016,44 @@ "width": null } }, - "61d06a92b987421cb46d8a89d1975bb7": { + "5fd842770f3c46198750ec0bc065bbec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_851a3e78f4cb49c28fa6d9d3f6ad533c", + "IPY_MODEL_b3b1a6b802c2438aa6b7345347be1daa", + "IPY_MODEL_48805febf856433c84dda4034fb9c0c6" + ], + "layout": "IPY_MODEL_cc06c8dc25a146d1949bbc6f284744e5" + } + }, + "609ef4dd1eb940adb8bd7ff656af9b5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "766477efa9484d7b8b8cc8a77a1b6f7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2022,112 +2105,52 @@ "width": null } }, - "649eb4698e3443adb0fd32629e36ece6": { + "7694a31ea9a04edcb6864f25b28b15cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4bdbef4700e34979a7835f1c9cb5f63b", - "placeholder": "​", - "style": "IPY_MODEL_41336a38204142909d6d6151660b30ef", - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "64de8f2a3f18422084ccd72434dca5cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1cca100b2cea4a77bbbcc5a23f19e1d7", - "IPY_MODEL_7137378c46a441c9b8f6dd4cd7cd9ee2", - "IPY_MODEL_7aaa5224bfe44036a333755a894e18b5" - ], - "layout": "IPY_MODEL_25c36bd0682a44a1af90eecaec670b14" - } - }, - "660387b90c454207a12955625f60a888": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "69f5f977755e4a4b82b5ca684955dd9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04545eb82c614214a57ff48711e5ef69", - "IPY_MODEL_886f26d855ae49049a473788aaf13fdd", - "IPY_MODEL_2fb3c50dfd544cf297447c4dd5e4bdfa" - ], - "layout": "IPY_MODEL_77fefa233aa04e3ba284da2418760799" + "layout": "IPY_MODEL_508a9cef5621429ca2ad08b2e5a5b906", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2105d31075094aec8143dc36c2cc4c8a", + "value": 15856877.0 } }, - "7137378c46a441c9b8f6dd4cd7cd9ee2": { + "7b3c7b951bc643fea2c2d55d50e02569": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_78e330e8413b4c638b5f5ad1892ffc7c", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_25691bde0c394a299f774959e32e539d", - "value": 128619.0 + "layout": "IPY_MODEL_3b6ccb1c3d224e82864d450d361cb50f", + "placeholder": "​", + "style": "IPY_MODEL_3bfd515955e24904b4dc7bac5512c42f", + "value": " 16.9M/16.9M [00:00<00:00, 74.2MB/s]" } }, - "77fefa233aa04e3ba284da2418760799": { + "7eb2a98375b74c91b45dc5b5accd9bca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2179,7 +2202,7 @@ "width": null } }, - "78e330e8413b4c638b5f5ad1892ffc7c": { + "83f7b9bff2ec40f19a358ae6e9071f3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2231,7 +2254,7 @@ "width": null } }, - "799d78d15e1549e58376f474b256b3f1": { + "851a3e78f4cb49c28fa6d9d3f6ad533c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2246,13 +2269,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8c2848fd80e94dfeba2260153670f5b5", + "layout": "IPY_MODEL_ee5f56e9b26d44c29b98957642b5cbe6", "placeholder": "​", - "style": "IPY_MODEL_d73d40dffae24b919506395235104b28", - "value": "hyperparams.yaml: 100%" + "style": "IPY_MODEL_4aba10cb04694ab4bf360dfefe9871d7", + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "8699a0a7cb124a369027b929c14aca25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7aaa5224bfe44036a333755a894e18b5": { + "8d69a36aa0ef4ac398e5473efe8facaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2267,89 +2305,55 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_61d06a92b987421cb46d8a89d1975bb7", + "layout": "IPY_MODEL_2415134083d142f18e75d9c1fd90ad9e", "placeholder": "​", - "style": "IPY_MODEL_f1827a2afaa3497796df337825e00c5d", - "value": " 129k/129k [00:00<00:00, 13.1MB/s]" + "style": "IPY_MODEL_424d86c2319543f0b0d18ccae78cd508", + "value": "embedding_model.ckpt: 100%" } }, - "7fda371c9fba45549d352696e38b0c16": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "8d8b99dd01c64a7ca9041d32353eac13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_766477efa9484d7b8b8cc8a77a1b6f7d", + "placeholder": "​", + "style": "IPY_MODEL_d3cc29ff5820423989ce16d9d70bcd31", + "value": "label_encoder.txt: 100%" } }, - "886f26d855ae49049a473788aaf13fdd": { + "959ba9c2758b476f942db7be7ea533c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bbb0a42cbeb44cd2807289cb84e06c66", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_660387b90c454207a12955625f60a888", - "value": 16887676.0 + "layout": "IPY_MODEL_21a9a1365c8149ebafde1882681607b7", + "placeholder": "​", + "style": "IPY_MODEL_030585901c0a49c3976e336a1ab51ee1", + "value": " 15.9M/15.9M [00:00<00:00, 89.8MB/s]" } }, - "8c2848fd80e94dfeba2260153670f5b5": { + "965eba21261d4a2e9ee7513ec333adc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2401,7 +2405,7 @@ "width": null } }, - "95589bfbae6545eea65cdda502cb8591": { + "aa7002ac34ad461c971cb567fbaed7c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -2417,59 +2421,83 @@ "description_width": "" } }, - "9a471f99ebec460f82f340da4bf084a3": { + "b391f6736d6440f5977ea7e4075132b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "9fca2e61f7d64cea930c8b07bdcbc59e": { + "b3b1a6b802c2438aa6b7345347be1daa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3db5175210c48839bd72a54bbd9e709", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa7002ac34ad461c971cb567fbaed7c7", + "value": 3201.0 } }, - "a2cd93bedff346d4b94c8c101e88352e": { + "b6341a7e935242c2adc1364ec71311bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83f7b9bff2ec40f19a358ae6e9071f3a", + "placeholder": "​", + "style": "IPY_MODEL_bf1dc44a81b64e408396f375ab6db707", + "value": " 2.04k/2.04k [00:00<00:00, 337kB/s]" + } + }, + "bf1dc44a81b64e408396f375ab6db707": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_799d78d15e1549e58376f474b256b3f1", - "IPY_MODEL_42cde93ea0f44516bebd28767667c2fa", - "IPY_MODEL_53e5f5516c1940eb84c59305f879b33d" - ], - "layout": "IPY_MODEL_32761d387fb34f55a8662c19898e2e19" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a70c7781a1174beb8b08bdb996fa2bc8": { + "c4ebdef1b4f14614814debc42af581c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2521,7 +2549,29 @@ "width": null } }, - "bbb0a42cbeb44cd2807289cb84e06c66": { + "c5b91c7d529d4e1a9a36a41238ba0244": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed7a2be85ae641c2b6cb2f1e8fb8054b", + "IPY_MODEL_cc503c61cdb6438ea915c9aa1032c63c", + "IPY_MODEL_b6341a7e935242c2adc1364ec71311bf" + ], + "layout": "IPY_MODEL_fa264daf6009497ca63787f2eb2c7503" + } + }, + "cc06c8dc25a146d1949bbc6f284744e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2573,7 +2623,62 @@ "width": null } }, - "c0de636f211e43f793ee2c8ccaccead2": { + "cc503c61cdb6438ea915c9aa1032c63c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_26707147e6f24b498f499aec25d3879a", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d21e1fb2327a464b8b743384ffa08cc0", + "value": 2041.0 + } + }, + "d21e1fb2327a464b8b743384ffa08cc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d3cc29ff5820423989ce16d9d70bcd31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d3db5175210c48839bd72a54bbd9e709": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2625,7 +2730,7 @@ "width": null } }, - "c30853559a364583b1f650a150b6654a": { + "d9416e2443dc46e89ea2b97a96b892cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2677,7 +2782,7 @@ "width": null } }, - "c3b13273fa614276aa8cd31a0d3ba6a0": { + "da437028c14a404b9d0753eab94e3c55": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2729,7 +2834,22 @@ "width": null } }, - "c9aad8223fed4fd79a1fa84e675e9c34": { + "df6099d96cc04692aa1804b28f0d3165": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e364bdc739a344f9b5a54749543225af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2745,82 +2865,36 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c0de636f211e43f793ee2c8ccaccead2", - "max": 3201.0, + "layout": "IPY_MODEL_c4ebdef1b4f14614814debc42af581c4", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_95589bfbae6545eea65cdda502cb8591", - "value": 3201.0 - } - }, - "ccb07543f38c422eba6e58deccf2a389": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "style": "IPY_MODEL_f8c0ae7aca4c47fdb99824d3a5c6c79b", + "value": 128619.0 } }, - "d73d40dffae24b919506395235104b28": { + "ed7a2be85ae641c2b6cb2f1e8fb8054b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1eb624a3dad54e7fa6b146681c26c1fd", + "placeholder": "​", + "style": "IPY_MODEL_8699a0a7cb124a369027b929c14aca25", + "value": "hyperparams.yaml: 100%" } }, - "da8efe510bcf414b9d2c76f5f791e9ea": { + "ee5f56e9b26d44c29b98957642b5cbe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2872,58 +2946,44 @@ "width": null } }, - "dae854f92b7548ddb4b4981bb4a8c9d2": { + "f2c87a26b3e843afa6644bed13f5508c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7eb2a98375b74c91b45dc5b5accd9bca", + "placeholder": "​", + "style": "IPY_MODEL_609ef4dd1eb940adb8bd7ff656af9b5e", + "value": "classifier.ckpt: 100%" } }, - "db5c6c408f9147df9a5d44f8f886ab61": { + "f8c0ae7aca4c47fdb99824d3a5c6c79b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "db86af8139ff41018b497ff1758537de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a70c7781a1174beb8b08bdb996fa2bc8", - "placeholder": "​", - "style": "IPY_MODEL_4d632ff2b07b4dffa2ead315843c6e6c", - "value": "classifier.ckpt: 100%" - } - }, - "e38a6eaeba49436d880afec59461ee06": { + "fa264daf6009497ca63787f2eb2c7503": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2975,7 +3035,7 @@ "width": null } }, - "e52c6bc80973455ab0806594b5177ef7": { + "ff2eea9324ab4fdebb914b6830cf4e4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3026,66 +3086,6 @@ "visibility": null, "width": null } - }, - "ebe5bf1237e54a5cb31a7953735ed040": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c30853559a364583b1f650a150b6654a", - "placeholder": "​", - "style": "IPY_MODEL_24e87b41e33643a0a449e4e5f4a04a21", - "value": " 15.9M/15.9M [00:00<00:00, 302MB/s]" - } - }, - "f1827a2afaa3497796df337825e00c5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fc52934f923d48f6815ef3ea863cb962": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e52c6bc80973455ab0806594b5177ef7", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_159b496215244dc799dd25dae2e0470d", - "value": 15856877.0 - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 1d05a4ac7..90cafbf27 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:33.483819Z", - "iopub.status.busy": "2024-01-17T18:04:33.483262Z", - "iopub.status.idle": "2024-01-17T18:04:34.563147Z", - "shell.execute_reply": "2024-01-17T18:04:34.562532Z" + "iopub.execute_input": "2024-01-17T23:06:39.342500Z", + "iopub.status.busy": "2024-01-17T23:06:39.342321Z", + "iopub.status.idle": "2024-01-17T23:06:40.409562Z", + "shell.execute_reply": "2024-01-17T23:06:40.408997Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.566022Z", - "iopub.status.busy": "2024-01-17T18:04:34.565584Z", - "iopub.status.idle": "2024-01-17T18:04:34.568829Z", - "shell.execute_reply": "2024-01-17T18:04:34.568346Z" + "iopub.execute_input": "2024-01-17T23:06:40.412370Z", + "iopub.status.busy": "2024-01-17T23:06:40.412089Z", + "iopub.status.idle": "2024-01-17T23:06:40.415239Z", + "shell.execute_reply": "2024-01-17T23:06:40.414697Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.571312Z", - "iopub.status.busy": "2024-01-17T18:04:34.571026Z", - "iopub.status.idle": "2024-01-17T18:04:34.580263Z", - "shell.execute_reply": "2024-01-17T18:04:34.579715Z" + "iopub.execute_input": "2024-01-17T23:06:40.417686Z", + "iopub.status.busy": "2024-01-17T23:06:40.417328Z", + "iopub.status.idle": "2024-01-17T23:06:40.426661Z", + "shell.execute_reply": "2024-01-17T23:06:40.426085Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.582624Z", - "iopub.status.busy": "2024-01-17T18:04:34.582267Z", - "iopub.status.idle": "2024-01-17T18:04:34.587260Z", - "shell.execute_reply": "2024-01-17T18:04:34.586787Z" + "iopub.execute_input": "2024-01-17T23:06:40.429048Z", + "iopub.status.busy": "2024-01-17T23:06:40.428682Z", + "iopub.status.idle": "2024-01-17T23:06:40.433294Z", + "shell.execute_reply": "2024-01-17T23:06:40.432812Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.589869Z", - "iopub.status.busy": "2024-01-17T18:04:34.589376Z", - "iopub.status.idle": "2024-01-17T18:04:34.868264Z", - "shell.execute_reply": "2024-01-17T18:04:34.867632Z" + "iopub.execute_input": "2024-01-17T23:06:40.435792Z", + "iopub.status.busy": "2024-01-17T23:06:40.435424Z", + "iopub.status.idle": "2024-01-17T23:06:40.706242Z", + "shell.execute_reply": "2024-01-17T23:06:40.705511Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.871315Z", - "iopub.status.busy": "2024-01-17T18:04:34.870886Z", - "iopub.status.idle": "2024-01-17T18:04:35.179091Z", - "shell.execute_reply": "2024-01-17T18:04:35.178424Z" + "iopub.execute_input": "2024-01-17T23:06:40.709010Z", + "iopub.status.busy": "2024-01-17T23:06:40.708793Z", + "iopub.status.idle": "2024-01-17T23:06:41.078542Z", + "shell.execute_reply": "2024-01-17T23:06:41.077853Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:35.181786Z", - "iopub.status.busy": "2024-01-17T18:04:35.181405Z", - "iopub.status.idle": "2024-01-17T18:04:35.205575Z", - "shell.execute_reply": "2024-01-17T18:04:35.205040Z" + "iopub.execute_input": "2024-01-17T23:06:41.081271Z", + "iopub.status.busy": "2024-01-17T23:06:41.081043Z", + "iopub.status.idle": "2024-01-17T23:06:41.105700Z", + "shell.execute_reply": "2024-01-17T23:06:41.105204Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:35.208176Z", - "iopub.status.busy": "2024-01-17T18:04:35.207800Z", - "iopub.status.idle": "2024-01-17T18:04:35.219387Z", - "shell.execute_reply": "2024-01-17T18:04:35.218891Z" + "iopub.execute_input": "2024-01-17T23:06:41.108273Z", + "iopub.status.busy": "2024-01-17T23:06:41.107900Z", + "iopub.status.idle": "2024-01-17T23:06:41.119557Z", + "shell.execute_reply": "2024-01-17T23:06:41.119070Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:35.221936Z", - "iopub.status.busy": "2024-01-17T18:04:35.221576Z", - "iopub.status.idle": "2024-01-17T18:04:36.514513Z", - "shell.execute_reply": "2024-01-17T18:04:36.513826Z" + "iopub.execute_input": "2024-01-17T23:06:41.121850Z", + "iopub.status.busy": "2024-01-17T23:06:41.121645Z", + "iopub.status.idle": "2024-01-17T23:06:42.395090Z", + "shell.execute_reply": "2024-01-17T23:06:42.394350Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.517319Z", - "iopub.status.busy": "2024-01-17T18:04:36.516739Z", - "iopub.status.idle": "2024-01-17T18:04:36.540062Z", - "shell.execute_reply": "2024-01-17T18:04:36.539415Z" + "iopub.execute_input": "2024-01-17T23:06:42.397825Z", + "iopub.status.busy": "2024-01-17T23:06:42.397474Z", + "iopub.status.idle": "2024-01-17T23:06:42.421815Z", + "shell.execute_reply": "2024-01-17T23:06:42.421176Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.542755Z", - "iopub.status.busy": "2024-01-17T18:04:36.542357Z", - "iopub.status.idle": "2024-01-17T18:04:36.565338Z", - "shell.execute_reply": "2024-01-17T18:04:36.564636Z" + "iopub.execute_input": "2024-01-17T23:06:42.424433Z", + "iopub.status.busy": "2024-01-17T23:06:42.424030Z", + "iopub.status.idle": "2024-01-17T23:06:42.444464Z", + "shell.execute_reply": "2024-01-17T23:06:42.443784Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.568303Z", - "iopub.status.busy": "2024-01-17T18:04:36.567786Z", - "iopub.status.idle": "2024-01-17T18:04:36.582311Z", - "shell.execute_reply": "2024-01-17T18:04:36.581766Z" + "iopub.execute_input": "2024-01-17T23:06:42.446887Z", + "iopub.status.busy": "2024-01-17T23:06:42.446518Z", + "iopub.status.idle": "2024-01-17T23:06:42.461229Z", + "shell.execute_reply": "2024-01-17T23:06:42.460605Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.584583Z", - "iopub.status.busy": "2024-01-17T18:04:36.584386Z", - "iopub.status.idle": "2024-01-17T18:04:36.606116Z", - "shell.execute_reply": "2024-01-17T18:04:36.605481Z" + "iopub.execute_input": "2024-01-17T23:06:42.463847Z", + "iopub.status.busy": "2024-01-17T23:06:42.463265Z", + "iopub.status.idle": "2024-01-17T23:06:42.485045Z", + "shell.execute_reply": "2024-01-17T23:06:42.484382Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce0df2e674ad49f289b9c6629eb9a93b", + "model_id": "f9c446a6ae0e481a8f4425281acd2812", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.608360Z", - "iopub.status.busy": "2024-01-17T18:04:36.608121Z", - "iopub.status.idle": "2024-01-17T18:04:36.623341Z", - "shell.execute_reply": "2024-01-17T18:04:36.622732Z" + "iopub.execute_input": "2024-01-17T23:06:42.487982Z", + "iopub.status.busy": "2024-01-17T23:06:42.487461Z", + "iopub.status.idle": "2024-01-17T23:06:42.502778Z", + "shell.execute_reply": "2024-01-17T23:06:42.502139Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.625892Z", - "iopub.status.busy": "2024-01-17T18:04:36.625457Z", - "iopub.status.idle": "2024-01-17T18:04:36.631828Z", - "shell.execute_reply": "2024-01-17T18:04:36.631217Z" + "iopub.execute_input": "2024-01-17T23:06:42.505343Z", + "iopub.status.busy": "2024-01-17T23:06:42.504854Z", + "iopub.status.idle": "2024-01-17T23:06:42.511266Z", + "shell.execute_reply": "2024-01-17T23:06:42.510747Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.634265Z", - "iopub.status.busy": "2024-01-17T18:04:36.633885Z", - "iopub.status.idle": "2024-01-17T18:04:36.652691Z", - "shell.execute_reply": "2024-01-17T18:04:36.652133Z" + "iopub.execute_input": "2024-01-17T23:06:42.513763Z", + "iopub.status.busy": "2024-01-17T23:06:42.513319Z", + "iopub.status.idle": "2024-01-17T23:06:42.532164Z", + "shell.execute_reply": "2024-01-17T23:06:42.531605Z" } }, "outputs": [ @@ -1430,52 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016da6d5adb14dfcab43c2faeffdcac2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1bec11a906f14351943811da375f1b68", - "placeholder": "​", - "style": "IPY_MODEL_328dc3e51eef4f61ada827866ade843a", - "value": " 132/132 [00:00<00:00, 11203.37 examples/s]" - } - }, - "051bf949fb4a4c34977914b2fdbd1a46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8524043e6e114e199d262dc88bfc22da", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4a135c98d58f4354bffda310f2a613d9", - "value": 132.0 - } - }, - "1bec11a906f14351943811da375f1b68": { + "11eac3b2f4164e5694fdb5152fff54f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1527,53 +1482,7 @@ "width": null } }, - "328dc3e51eef4f61ada827866ade843a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4a135c98d58f4354bffda310f2a613d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5f0f68db532f4983830e8d3d0e1d9c55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6ea64771986e42b6b69a518953aae518": { + "2c9ed523e681457c97733b484f5d2302": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1625,7 +1534,7 @@ "width": null } }, - "8524043e6e114e199d262dc88bfc22da": { + "67e30ead652c4e178b1a2fa25ba4149c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1677,7 +1586,43 @@ "width": null } }, - "b3956bd3c1b34e468eb324a8aa73cd4e": { + "7c7a8b3a377f4891984c98cc48b480b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_67e30ead652c4e178b1a2fa25ba4149c", + "placeholder": "​", + "style": "IPY_MODEL_de85a0cc75b345a8b0257d3379f3b927", + "value": " 132/132 [00:00<00:00, 11349.20 examples/s]" + } + }, + "9d1d43035b6d471cbf16064de0792a70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bdeb99c1040f435d9ea59551e490a482": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1729,7 +1674,59 @@ "width": null } }, - "ce0df2e674ad49f289b9c6629eb9a93b": { + "d48408d0b5804d8c8f562072e9542410": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_11eac3b2f4164e5694fdb5152fff54f1", + "placeholder": "​", + "style": "IPY_MODEL_9d1d43035b6d471cbf16064de0792a70", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "dded8d49e1ea43ad9f1ab1944f0fa28e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "de85a0cc75b345a8b0257d3379f3b927": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f9c446a6ae0e481a8f4425281acd2812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1744,32 +1741,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f247eef24dd44de39c6212b2720239c1", - "IPY_MODEL_051bf949fb4a4c34977914b2fdbd1a46", - "IPY_MODEL_016da6d5adb14dfcab43c2faeffdcac2" + "IPY_MODEL_d48408d0b5804d8c8f562072e9542410", + "IPY_MODEL_ffd5efcaf7a945d984571d2a9f2057ad", + "IPY_MODEL_7c7a8b3a377f4891984c98cc48b480b5" ], - "layout": "IPY_MODEL_b3956bd3c1b34e468eb324a8aa73cd4e" + "layout": "IPY_MODEL_bdeb99c1040f435d9ea59551e490a482" } }, - "f247eef24dd44de39c6212b2720239c1": { + "ffd5efcaf7a945d984571d2a9f2057ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6ea64771986e42b6b69a518953aae518", - "placeholder": "​", - "style": "IPY_MODEL_5f0f68db532f4983830e8d3d0e1d9c55", - "value": "Saving the dataset (1/1 shards): 100%" + "layout": "IPY_MODEL_2c9ed523e681457c97733b484f5d2302", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dded8d49e1ea43ad9f1ab1944f0fa28e", + "value": 132.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 1697ceead..d3df4ed89 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:41.467132Z", - "iopub.status.busy": "2024-01-17T18:04:41.466518Z", - "iopub.status.idle": "2024-01-17T18:04:42.555591Z", - "shell.execute_reply": "2024-01-17T18:04:42.554980Z" + "iopub.execute_input": "2024-01-17T23:06:47.569861Z", + "iopub.status.busy": "2024-01-17T23:06:47.569660Z", + "iopub.status.idle": "2024-01-17T23:06:48.641275Z", + "shell.execute_reply": "2024-01-17T23:06:48.640563Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.558508Z", - "iopub.status.busy": "2024-01-17T18:04:42.558086Z", - "iopub.status.idle": "2024-01-17T18:04:42.561388Z", - "shell.execute_reply": "2024-01-17T18:04:42.560867Z" + "iopub.execute_input": "2024-01-17T23:06:48.644454Z", + "iopub.status.busy": "2024-01-17T23:06:48.643822Z", + "iopub.status.idle": "2024-01-17T23:06:48.647145Z", + "shell.execute_reply": "2024-01-17T23:06:48.646571Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.563994Z", - "iopub.status.busy": "2024-01-17T18:04:42.563549Z", - "iopub.status.idle": "2024-01-17T18:04:42.573492Z", - "shell.execute_reply": "2024-01-17T18:04:42.572963Z" + "iopub.execute_input": "2024-01-17T23:06:48.649505Z", + "iopub.status.busy": "2024-01-17T23:06:48.649176Z", + "iopub.status.idle": "2024-01-17T23:06:48.658971Z", + "shell.execute_reply": "2024-01-17T23:06:48.658347Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.575559Z", - "iopub.status.busy": "2024-01-17T18:04:42.575357Z", - "iopub.status.idle": "2024-01-17T18:04:42.579953Z", - "shell.execute_reply": "2024-01-17T18:04:42.579468Z" + "iopub.execute_input": "2024-01-17T23:06:48.661358Z", + "iopub.status.busy": "2024-01-17T23:06:48.661025Z", + "iopub.status.idle": "2024-01-17T23:06:48.666186Z", + "shell.execute_reply": "2024-01-17T23:06:48.665652Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.582528Z", - "iopub.status.busy": "2024-01-17T18:04:42.582149Z", - "iopub.status.idle": "2024-01-17T18:04:42.863268Z", - "shell.execute_reply": "2024-01-17T18:04:42.862639Z" + "iopub.execute_input": "2024-01-17T23:06:48.668478Z", + "iopub.status.busy": "2024-01-17T23:06:48.668137Z", + "iopub.status.idle": "2024-01-17T23:06:48.950866Z", + "shell.execute_reply": "2024-01-17T23:06:48.950180Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.866012Z", - "iopub.status.busy": "2024-01-17T18:04:42.865802Z", - "iopub.status.idle": "2024-01-17T18:04:43.236893Z", - "shell.execute_reply": "2024-01-17T18:04:43.236235Z" + "iopub.execute_input": "2024-01-17T23:06:48.953576Z", + "iopub.status.busy": "2024-01-17T23:06:48.953323Z", + "iopub.status.idle": "2024-01-17T23:06:49.325530Z", + "shell.execute_reply": "2024-01-17T23:06:49.324859Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:43.239627Z", - "iopub.status.busy": "2024-01-17T18:04:43.239261Z", - "iopub.status.idle": "2024-01-17T18:04:43.242241Z", - "shell.execute_reply": "2024-01-17T18:04:43.241645Z" + "iopub.execute_input": "2024-01-17T23:06:49.328443Z", + "iopub.status.busy": "2024-01-17T23:06:49.327940Z", + "iopub.status.idle": "2024-01-17T23:06:49.331128Z", + "shell.execute_reply": "2024-01-17T23:06:49.330575Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:43.244798Z", - "iopub.status.busy": "2024-01-17T18:04:43.244450Z", - "iopub.status.idle": "2024-01-17T18:04:43.282859Z", - "shell.execute_reply": "2024-01-17T18:04:43.282243Z" + "iopub.execute_input": "2024-01-17T23:06:49.333565Z", + "iopub.status.busy": "2024-01-17T23:06:49.333216Z", + "iopub.status.idle": "2024-01-17T23:06:49.371453Z", + "shell.execute_reply": "2024-01-17T23:06:49.370801Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:43.285162Z", - "iopub.status.busy": "2024-01-17T18:04:43.284947Z", - "iopub.status.idle": "2024-01-17T18:04:44.608959Z", - "shell.execute_reply": "2024-01-17T18:04:44.608186Z" + "iopub.execute_input": "2024-01-17T23:06:49.373991Z", + "iopub.status.busy": "2024-01-17T23:06:49.373529Z", + "iopub.status.idle": "2024-01-17T23:06:50.680046Z", + "shell.execute_reply": "2024-01-17T23:06:50.679378Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.611888Z", - "iopub.status.busy": "2024-01-17T18:04:44.611313Z", - "iopub.status.idle": "2024-01-17T18:04:44.636218Z", - "shell.execute_reply": "2024-01-17T18:04:44.635671Z" + "iopub.execute_input": "2024-01-17T23:06:50.682695Z", + "iopub.status.busy": "2024-01-17T23:06:50.682347Z", + "iopub.status.idle": "2024-01-17T23:06:50.707371Z", + "shell.execute_reply": "2024-01-17T23:06:50.706854Z" } }, "outputs": [ @@ -878,10 +878,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.638722Z", - "iopub.status.busy": "2024-01-17T18:04:44.638518Z", - "iopub.status.idle": "2024-01-17T18:04:44.646754Z", - "shell.execute_reply": "2024-01-17T18:04:44.646231Z" + "iopub.execute_input": "2024-01-17T23:06:50.709806Z", + "iopub.status.busy": "2024-01-17T23:06:50.709606Z", + "iopub.status.idle": "2024-01-17T23:06:50.716253Z", + "shell.execute_reply": "2024-01-17T23:06:50.715721Z" } }, "outputs": [ @@ -985,10 +985,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.649051Z", - "iopub.status.busy": "2024-01-17T18:04:44.648690Z", - "iopub.status.idle": "2024-01-17T18:04:44.654993Z", - "shell.execute_reply": "2024-01-17T18:04:44.654393Z" + "iopub.execute_input": "2024-01-17T23:06:50.718504Z", + "iopub.status.busy": "2024-01-17T23:06:50.718307Z", + "iopub.status.idle": "2024-01-17T23:06:50.724463Z", + "shell.execute_reply": "2024-01-17T23:06:50.723963Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.657457Z", - "iopub.status.busy": "2024-01-17T18:04:44.657064Z", - "iopub.status.idle": "2024-01-17T18:04:44.667959Z", - "shell.execute_reply": "2024-01-17T18:04:44.667358Z" + "iopub.execute_input": "2024-01-17T23:06:50.726704Z", + "iopub.status.busy": "2024-01-17T23:06:50.726464Z", + "iopub.status.idle": "2024-01-17T23:06:50.737224Z", + "shell.execute_reply": "2024-01-17T23:06:50.736715Z" } }, "outputs": [ @@ -1231,10 +1231,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.670277Z", - "iopub.status.busy": "2024-01-17T18:04:44.670077Z", - "iopub.status.idle": "2024-01-17T18:04:44.679556Z", - "shell.execute_reply": "2024-01-17T18:04:44.679053Z" + "iopub.execute_input": "2024-01-17T23:06:50.739595Z", + "iopub.status.busy": "2024-01-17T23:06:50.739250Z", + "iopub.status.idle": "2024-01-17T23:06:50.748736Z", + "shell.execute_reply": "2024-01-17T23:06:50.748121Z" } }, "outputs": [ @@ -1350,10 +1350,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.681741Z", - "iopub.status.busy": "2024-01-17T18:04:44.681546Z", - "iopub.status.idle": "2024-01-17T18:04:44.689258Z", - "shell.execute_reply": "2024-01-17T18:04:44.688717Z" + "iopub.execute_input": "2024-01-17T23:06:50.751142Z", + "iopub.status.busy": "2024-01-17T23:06:50.750687Z", + "iopub.status.idle": "2024-01-17T23:06:50.758345Z", + "shell.execute_reply": "2024-01-17T23:06:50.757710Z" }, "scrolled": true }, @@ -1478,10 +1478,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.691411Z", - "iopub.status.busy": "2024-01-17T18:04:44.691219Z", - "iopub.status.idle": "2024-01-17T18:04:44.701261Z", - "shell.execute_reply": "2024-01-17T18:04:44.700743Z" + "iopub.execute_input": "2024-01-17T23:06:50.760695Z", + "iopub.status.busy": "2024-01-17T23:06:50.760357Z", + "iopub.status.idle": "2024-01-17T23:06:50.770230Z", + "shell.execute_reply": "2024-01-17T23:06:50.769519Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 4d347a0cb..89e9e8e2e 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:49.517933Z", - "iopub.status.busy": "2024-01-17T18:04:49.517732Z", - "iopub.status.idle": "2024-01-17T18:04:50.545443Z", - "shell.execute_reply": "2024-01-17T18:04:50.544850Z" + "iopub.execute_input": "2024-01-17T23:06:55.582283Z", + "iopub.status.busy": "2024-01-17T23:06:55.581731Z", + "iopub.status.idle": "2024-01-17T23:06:56.607603Z", + "shell.execute_reply": "2024-01-17T23:06:56.606957Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.548446Z", - "iopub.status.busy": "2024-01-17T18:04:50.547847Z", - "iopub.status.idle": "2024-01-17T18:04:50.564313Z", - "shell.execute_reply": "2024-01-17T18:04:50.563695Z" + "iopub.execute_input": "2024-01-17T23:06:56.610616Z", + "iopub.status.busy": "2024-01-17T23:06:56.610107Z", + "iopub.status.idle": "2024-01-17T23:06:56.627639Z", + "shell.execute_reply": "2024-01-17T23:06:56.627094Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.566981Z", - "iopub.status.busy": "2024-01-17T18:04:50.566555Z", - "iopub.status.idle": "2024-01-17T18:04:50.730069Z", - "shell.execute_reply": "2024-01-17T18:04:50.729433Z" + "iopub.execute_input": "2024-01-17T23:06:56.630524Z", + "iopub.status.busy": "2024-01-17T23:06:56.630127Z", + "iopub.status.idle": "2024-01-17T23:06:56.764165Z", + "shell.execute_reply": "2024-01-17T23:06:56.763459Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.732586Z", - "iopub.status.busy": "2024-01-17T18:04:50.732381Z", - "iopub.status.idle": "2024-01-17T18:04:50.736190Z", - "shell.execute_reply": "2024-01-17T18:04:50.735672Z" + "iopub.execute_input": "2024-01-17T23:06:56.766653Z", + "iopub.status.busy": "2024-01-17T23:06:56.766289Z", + "iopub.status.idle": "2024-01-17T23:06:56.770134Z", + "shell.execute_reply": "2024-01-17T23:06:56.769507Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.738648Z", - "iopub.status.busy": "2024-01-17T18:04:50.738199Z", - "iopub.status.idle": "2024-01-17T18:04:50.746501Z", - "shell.execute_reply": "2024-01-17T18:04:50.746013Z" + "iopub.execute_input": "2024-01-17T23:06:56.772612Z", + "iopub.status.busy": "2024-01-17T23:06:56.772309Z", + "iopub.status.idle": "2024-01-17T23:06:56.780263Z", + "shell.execute_reply": "2024-01-17T23:06:56.779767Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.749021Z", - "iopub.status.busy": "2024-01-17T18:04:50.748698Z", - "iopub.status.idle": "2024-01-17T18:04:50.751419Z", - "shell.execute_reply": "2024-01-17T18:04:50.750879Z" + "iopub.execute_input": "2024-01-17T23:06:56.782699Z", + "iopub.status.busy": "2024-01-17T23:06:56.782326Z", + "iopub.status.idle": "2024-01-17T23:06:56.785122Z", + "shell.execute_reply": "2024-01-17T23:06:56.784591Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.753826Z", - "iopub.status.busy": "2024-01-17T18:04:50.753466Z", - "iopub.status.idle": "2024-01-17T18:04:54.360252Z", - "shell.execute_reply": "2024-01-17T18:04:54.359622Z" + "iopub.execute_input": "2024-01-17T23:06:56.787751Z", + "iopub.status.busy": "2024-01-17T23:06:56.787454Z", + "iopub.status.idle": "2024-01-17T23:07:00.383276Z", + "shell.execute_reply": "2024-01-17T23:07:00.382535Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:54.363603Z", - "iopub.status.busy": "2024-01-17T18:04:54.363144Z", - "iopub.status.idle": "2024-01-17T18:04:54.373021Z", - "shell.execute_reply": "2024-01-17T18:04:54.372497Z" + "iopub.execute_input": "2024-01-17T23:07:00.386618Z", + "iopub.status.busy": "2024-01-17T23:07:00.386346Z", + "iopub.status.idle": "2024-01-17T23:07:00.396061Z", + "shell.execute_reply": "2024-01-17T23:07:00.395412Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:54.375544Z", - "iopub.status.busy": "2024-01-17T18:04:54.375164Z", - "iopub.status.idle": "2024-01-17T18:04:55.734156Z", - "shell.execute_reply": "2024-01-17T18:04:55.733429Z" + "iopub.execute_input": "2024-01-17T23:07:00.398720Z", + "iopub.status.busy": "2024-01-17T23:07:00.398246Z", + "iopub.status.idle": "2024-01-17T23:07:01.717594Z", + "shell.execute_reply": "2024-01-17T23:07:01.716841Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.738536Z", - "iopub.status.busy": "2024-01-17T18:04:55.737191Z", - "iopub.status.idle": "2024-01-17T18:04:55.765750Z", - "shell.execute_reply": "2024-01-17T18:04:55.765138Z" + "iopub.execute_input": "2024-01-17T23:07:01.722190Z", + "iopub.status.busy": "2024-01-17T23:07:01.720796Z", + "iopub.status.idle": "2024-01-17T23:07:01.749134Z", + "shell.execute_reply": "2024-01-17T23:07:01.748523Z" }, "scrolled": true }, @@ -624,10 +624,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.770227Z", - "iopub.status.busy": "2024-01-17T18:04:55.769054Z", - "iopub.status.idle": "2024-01-17T18:04:55.781862Z", - "shell.execute_reply": "2024-01-17T18:04:55.781261Z" + "iopub.execute_input": "2024-01-17T23:07:01.753395Z", + "iopub.status.busy": "2024-01-17T23:07:01.752274Z", + "iopub.status.idle": "2024-01-17T23:07:01.764948Z", + "shell.execute_reply": "2024-01-17T23:07:01.764266Z" } }, "outputs": [ @@ -731,10 +731,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.786261Z", - "iopub.status.busy": "2024-01-17T18:04:55.785118Z", - "iopub.status.idle": "2024-01-17T18:04:55.799914Z", - "shell.execute_reply": "2024-01-17T18:04:55.799303Z" + "iopub.execute_input": "2024-01-17T23:07:01.769149Z", + "iopub.status.busy": "2024-01-17T23:07:01.768032Z", + "iopub.status.idle": "2024-01-17T23:07:01.782499Z", + "shell.execute_reply": "2024-01-17T23:07:01.781898Z" } }, "outputs": [ @@ -863,10 +863,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.804376Z", - "iopub.status.busy": "2024-01-17T18:04:55.803247Z", - "iopub.status.idle": "2024-01-17T18:04:55.816361Z", - "shell.execute_reply": "2024-01-17T18:04:55.815747Z" + "iopub.execute_input": "2024-01-17T23:07:01.786729Z", + "iopub.status.busy": "2024-01-17T23:07:01.785586Z", + "iopub.status.idle": "2024-01-17T23:07:01.798260Z", + "shell.execute_reply": "2024-01-17T23:07:01.797656Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.820790Z", - "iopub.status.busy": "2024-01-17T18:04:55.819659Z", - "iopub.status.idle": "2024-01-17T18:04:55.832665Z", - "shell.execute_reply": "2024-01-17T18:04:55.832191Z" + "iopub.execute_input": "2024-01-17T23:07:01.802498Z", + "iopub.status.busy": "2024-01-17T23:07:01.801367Z", + "iopub.status.idle": "2024-01-17T23:07:01.814051Z", + "shell.execute_reply": "2024-01-17T23:07:01.813478Z" } }, "outputs": [ @@ -1094,10 +1094,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.835067Z", - "iopub.status.busy": "2024-01-17T18:04:55.834854Z", - "iopub.status.idle": "2024-01-17T18:04:55.842208Z", - "shell.execute_reply": "2024-01-17T18:04:55.841666Z" + "iopub.execute_input": "2024-01-17T23:07:01.816878Z", + "iopub.status.busy": "2024-01-17T23:07:01.816671Z", + "iopub.status.idle": "2024-01-17T23:07:01.823646Z", + "shell.execute_reply": "2024-01-17T23:07:01.823005Z" } }, "outputs": [ @@ -1181,10 +1181,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.844882Z", - "iopub.status.busy": "2024-01-17T18:04:55.844409Z", - "iopub.status.idle": "2024-01-17T18:04:55.851860Z", - "shell.execute_reply": "2024-01-17T18:04:55.851312Z" + "iopub.execute_input": "2024-01-17T23:07:01.826161Z", + "iopub.status.busy": "2024-01-17T23:07:01.825755Z", + "iopub.status.idle": "2024-01-17T23:07:01.832679Z", + "shell.execute_reply": "2024-01-17T23:07:01.832073Z" } }, "outputs": [ @@ -1277,10 +1277,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.854459Z", - "iopub.status.busy": "2024-01-17T18:04:55.854085Z", - "iopub.status.idle": "2024-01-17T18:04:55.861606Z", - "shell.execute_reply": "2024-01-17T18:04:55.860960Z" + "iopub.execute_input": "2024-01-17T23:07:01.835198Z", + "iopub.status.busy": "2024-01-17T23:07:01.834825Z", + "iopub.status.idle": "2024-01-17T23:07:01.842060Z", + "shell.execute_reply": "2024-01-17T23:07:01.841527Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 4e71fc4dd..9f92665d5 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:00.739310Z", - "iopub.status.busy": "2024-01-17T18:05:00.739115Z", - "iopub.status.idle": "2024-01-17T18:05:03.063769Z", - "shell.execute_reply": "2024-01-17T18:05:03.063206Z" + "iopub.execute_input": "2024-01-17T23:07:06.736514Z", + "iopub.status.busy": "2024-01-17T23:07:06.736135Z", + "iopub.status.idle": "2024-01-17T23:07:09.007449Z", + "shell.execute_reply": "2024-01-17T23:07:09.006832Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cf63fee22bbf401492c9f2f6f74d206a", + "model_id": "735576d8959e46f3826a38708cf752de", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.066797Z", - "iopub.status.busy": "2024-01-17T18:05:03.066295Z", - "iopub.status.idle": "2024-01-17T18:05:03.069771Z", - "shell.execute_reply": "2024-01-17T18:05:03.069245Z" + "iopub.execute_input": "2024-01-17T23:07:09.010579Z", + "iopub.status.busy": "2024-01-17T23:07:09.009974Z", + "iopub.status.idle": "2024-01-17T23:07:09.013430Z", + "shell.execute_reply": "2024-01-17T23:07:09.012886Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.072156Z", - "iopub.status.busy": "2024-01-17T18:05:03.071788Z", - "iopub.status.idle": "2024-01-17T18:05:03.075200Z", - "shell.execute_reply": "2024-01-17T18:05:03.074554Z" + "iopub.execute_input": "2024-01-17T23:07:09.015859Z", + "iopub.status.busy": "2024-01-17T23:07:09.015504Z", + "iopub.status.idle": "2024-01-17T23:07:09.018792Z", + "shell.execute_reply": "2024-01-17T23:07:09.018271Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.077484Z", - "iopub.status.busy": "2024-01-17T18:05:03.077149Z", - "iopub.status.idle": "2024-01-17T18:05:03.143138Z", - "shell.execute_reply": "2024-01-17T18:05:03.142505Z" + "iopub.execute_input": "2024-01-17T23:07:09.021102Z", + "iopub.status.busy": "2024-01-17T23:07:09.020714Z", + "iopub.status.idle": "2024-01-17T23:07:09.058694Z", + "shell.execute_reply": "2024-01-17T23:07:09.058068Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.145703Z", - "iopub.status.busy": "2024-01-17T18:05:03.145221Z", - "iopub.status.idle": "2024-01-17T18:05:03.149435Z", - "shell.execute_reply": "2024-01-17T18:05:03.148814Z" + "iopub.execute_input": "2024-01-17T23:07:09.061088Z", + "iopub.status.busy": "2024-01-17T23:07:09.060763Z", + "iopub.status.idle": "2024-01-17T23:07:09.064868Z", + "shell.execute_reply": "2024-01-17T23:07:09.064298Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin'}\n" + "Classes: {'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'card_about_to_expire', 'getting_spare_card', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'change_pin', 'visa_or_mastercard'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.151986Z", - "iopub.status.busy": "2024-01-17T18:05:03.151547Z", - "iopub.status.idle": "2024-01-17T18:05:03.155066Z", - "shell.execute_reply": "2024-01-17T18:05:03.154495Z" + "iopub.execute_input": "2024-01-17T23:07:09.067157Z", + "iopub.status.busy": "2024-01-17T23:07:09.066816Z", + "iopub.status.idle": "2024-01-17T23:07:09.070335Z", + "shell.execute_reply": "2024-01-17T23:07:09.069700Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.157519Z", - "iopub.status.busy": "2024-01-17T18:05:03.157070Z", - "iopub.status.idle": "2024-01-17T18:05:12.348322Z", - "shell.execute_reply": "2024-01-17T18:05:12.347594Z" + "iopub.execute_input": "2024-01-17T23:07:09.072907Z", + "iopub.status.busy": "2024-01-17T23:07:09.072479Z", + "iopub.status.idle": "2024-01-17T23:07:19.691854Z", + "shell.execute_reply": "2024-01-17T23:07:19.691230Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "45ac3af2e1ed4f4c8dfdabe525afe3d2", + "model_id": "eae3f2bc15824aa1945e4a9709a7cb7c", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e185e5cf5c0548fbbc30b1069d606797", + "model_id": "aebe7c43a94b411b875f55c85e5bbf99", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0b94b659172c4c808567a150cf38153c", + "model_id": "ba2d5d53d9a94b1896142b5a30bbd514", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cac01943eb874158907dd23885f1ee1a", + "model_id": "0065750b88fd406396533e490ff9a0ca", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3d414f4be0554dc48490d27044d55d7b", + "model_id": "3b25cf0897af4c389e5bb84dce0e453a", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "696fed9227a24944a318a7e13ec558c1", + "model_id": "116e4a0b97db4d0c884059f25c064c6a", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "48cf8f69b83648bc957e73f69c88e66a", + "model_id": "253f1e63067b4f78a688136462184c85", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:12.351622Z", - "iopub.status.busy": "2024-01-17T18:05:12.351228Z", - "iopub.status.idle": "2024-01-17T18:05:13.520684Z", - "shell.execute_reply": "2024-01-17T18:05:13.519985Z" + "iopub.execute_input": "2024-01-17T23:07:19.695009Z", + "iopub.status.busy": "2024-01-17T23:07:19.694579Z", + "iopub.status.idle": "2024-01-17T23:07:20.868638Z", + "shell.execute_reply": "2024-01-17T23:07:20.867960Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:13.524656Z", - "iopub.status.busy": "2024-01-17T18:05:13.524249Z", - "iopub.status.idle": "2024-01-17T18:05:13.527395Z", - "shell.execute_reply": "2024-01-17T18:05:13.526816Z" + "iopub.execute_input": "2024-01-17T23:07:20.873083Z", + "iopub.status.busy": "2024-01-17T23:07:20.871780Z", + "iopub.status.idle": "2024-01-17T23:07:20.876509Z", + "shell.execute_reply": "2024-01-17T23:07:20.875949Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:13.531364Z", - "iopub.status.busy": "2024-01-17T18:05:13.530212Z", - "iopub.status.idle": "2024-01-17T18:05:14.861750Z", - "shell.execute_reply": "2024-01-17T18:05:14.860991Z" + "iopub.execute_input": "2024-01-17T23:07:20.880805Z", + "iopub.status.busy": "2024-01-17T23:07:20.879680Z", + "iopub.status.idle": "2024-01-17T23:07:22.198191Z", + "shell.execute_reply": "2024-01-17T23:07:22.197409Z" }, "scrolled": true }, @@ -640,10 +640,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.866391Z", - "iopub.status.busy": "2024-01-17T18:05:14.865013Z", - "iopub.status.idle": "2024-01-17T18:05:14.901758Z", - "shell.execute_reply": "2024-01-17T18:05:14.901142Z" + "iopub.execute_input": "2024-01-17T23:07:22.201762Z", + "iopub.status.busy": "2024-01-17T23:07:22.201081Z", + "iopub.status.idle": "2024-01-17T23:07:22.236485Z", + "shell.execute_reply": "2024-01-17T23:07:22.235879Z" }, "scrolled": true }, @@ -808,10 +808,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.906114Z", - "iopub.status.busy": "2024-01-17T18:05:14.904971Z", - "iopub.status.idle": "2024-01-17T18:05:14.917983Z", - "shell.execute_reply": "2024-01-17T18:05:14.917381Z" + "iopub.execute_input": "2024-01-17T23:07:22.239702Z", + "iopub.status.busy": "2024-01-17T23:07:22.239312Z", + "iopub.status.idle": "2024-01-17T23:07:22.249593Z", + "shell.execute_reply": "2024-01-17T23:07:22.249016Z" }, "scrolled": true }, @@ -921,10 +921,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.920990Z", - "iopub.status.busy": "2024-01-17T18:05:14.920788Z", - "iopub.status.idle": "2024-01-17T18:05:14.925853Z", - "shell.execute_reply": "2024-01-17T18:05:14.925068Z" + "iopub.execute_input": "2024-01-17T23:07:22.252711Z", + "iopub.status.busy": "2024-01-17T23:07:22.252340Z", + "iopub.status.idle": "2024-01-17T23:07:22.256985Z", + "shell.execute_reply": "2024-01-17T23:07:22.256523Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.928490Z", - "iopub.status.busy": "2024-01-17T18:05:14.928107Z", - "iopub.status.idle": "2024-01-17T18:05:14.935276Z", - "shell.execute_reply": "2024-01-17T18:05:14.934787Z" + "iopub.execute_input": "2024-01-17T23:07:22.259203Z", + "iopub.status.busy": "2024-01-17T23:07:22.258912Z", + "iopub.status.idle": "2024-01-17T23:07:22.264975Z", + "shell.execute_reply": "2024-01-17T23:07:22.264510Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.937647Z", - "iopub.status.busy": "2024-01-17T18:05:14.937445Z", - "iopub.status.idle": "2024-01-17T18:05:14.945173Z", - "shell.execute_reply": "2024-01-17T18:05:14.944393Z" + "iopub.execute_input": "2024-01-17T23:07:22.267168Z", + "iopub.status.busy": "2024-01-17T23:07:22.266883Z", + "iopub.status.idle": "2024-01-17T23:07:22.272743Z", + "shell.execute_reply": "2024-01-17T23:07:22.272288Z" } }, "outputs": [ @@ -1168,10 +1168,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.947361Z", - "iopub.status.busy": "2024-01-17T18:05:14.947162Z", - "iopub.status.idle": "2024-01-17T18:05:14.953478Z", - "shell.execute_reply": "2024-01-17T18:05:14.952831Z" + "iopub.execute_input": "2024-01-17T23:07:22.274875Z", + "iopub.status.busy": "2024-01-17T23:07:22.274585Z", + "iopub.status.idle": "2024-01-17T23:07:22.280068Z", + "shell.execute_reply": "2024-01-17T23:07:22.279615Z" } }, "outputs": [ @@ -1279,10 +1279,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.955611Z", - "iopub.status.busy": "2024-01-17T18:05:14.955414Z", - "iopub.status.idle": "2024-01-17T18:05:14.965109Z", - "shell.execute_reply": "2024-01-17T18:05:14.964575Z" + "iopub.execute_input": "2024-01-17T23:07:22.282238Z", + "iopub.status.busy": "2024-01-17T23:07:22.281951Z", + "iopub.status.idle": "2024-01-17T23:07:22.290181Z", + "shell.execute_reply": "2024-01-17T23:07:22.289592Z" } }, "outputs": [ @@ -1393,10 +1393,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.967441Z", - "iopub.status.busy": "2024-01-17T18:05:14.967073Z", - "iopub.status.idle": "2024-01-17T18:05:14.972810Z", - "shell.execute_reply": "2024-01-17T18:05:14.972298Z" + "iopub.execute_input": "2024-01-17T23:07:22.292538Z", + "iopub.status.busy": "2024-01-17T23:07:22.292335Z", + "iopub.status.idle": "2024-01-17T23:07:22.475829Z", + "shell.execute_reply": "2024-01-17T23:07:22.475150Z" } }, "outputs": [ @@ -1464,10 +1464,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.975149Z", - "iopub.status.busy": "2024-01-17T18:05:14.974766Z", - "iopub.status.idle": "2024-01-17T18:05:15.144852Z", - "shell.execute_reply": "2024-01-17T18:05:15.144184Z" + "iopub.execute_input": "2024-01-17T23:07:22.478452Z", + "iopub.status.busy": "2024-01-17T23:07:22.478023Z", + "iopub.status.idle": "2024-01-17T23:07:22.484232Z", + "shell.execute_reply": "2024-01-17T23:07:22.483639Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:15.147389Z", - "iopub.status.busy": "2024-01-17T18:05:15.147036Z", - "iopub.status.idle": "2024-01-17T18:05:15.151030Z", - "shell.execute_reply": "2024-01-17T18:05:15.150478Z" + "iopub.execute_input": "2024-01-17T23:07:22.486793Z", + "iopub.status.busy": "2024-01-17T23:07:22.486423Z", + "iopub.status.idle": "2024-01-17T23:07:22.490377Z", + "shell.execute_reply": "2024-01-17T23:07:22.489770Z" } }, "outputs": [ @@ -1597,10 +1597,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:15.153611Z", - "iopub.status.busy": "2024-01-17T18:05:15.153229Z", - "iopub.status.idle": "2024-01-17T18:05:15.159064Z", - "shell.execute_reply": "2024-01-17T18:05:15.158439Z" + "iopub.execute_input": "2024-01-17T23:07:22.492585Z", + "iopub.status.busy": "2024-01-17T23:07:22.492384Z", + "iopub.status.idle": "2024-01-17T23:07:22.498186Z", + "shell.execute_reply": "2024-01-17T23:07:22.497549Z" }, "nbsphinx": "hidden" }, @@ -1650,73 +1650,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04bf7ee7a9c34eeeaa4d9b286f8d7f9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_27abf396b79145cd917bff0ccd201c7e", - "placeholder": "​", - "style": "IPY_MODEL_4af4550bfcf047a5b3c8e1e3d3cd4b87", - "value": " 466k/466k [00:00<00:00, 29.4MB/s]" - } - }, - "0753cc2aba574e4da97f9bf330792b5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "075782102ee04e45ac26c0953b93dd10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "093ca90351304fdc8d2445f60be4b830": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0b94b659172c4c808567a150cf38153c": { + "0065750b88fd406396533e490ff9a0ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1731,14 +1665,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a40a416e6a3b4891b9b8d98a976ad7ed", - "IPY_MODEL_631251cb36704a7e85d67bbb798aaeec", - "IPY_MODEL_1f21207692b5457abe47bd5134b48d96" + "IPY_MODEL_c3a4ce2dd9534c0dae13baffc4bd8242", + "IPY_MODEL_a6798e924bf145afa6fb5a4f09ee6212", + "IPY_MODEL_f01c428443be4e759a8006b89c1f9698" ], - "layout": "IPY_MODEL_681e924901d943949a488b29a505cff0" + "layout": "IPY_MODEL_016aa72c5a294f7d8d81a1b8202fd993" } }, - "0fbbf4fdb51b413294041b296f5b2a74": { + "016aa72c5a294f7d8d81a1b8202fd993": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1790,59 +1724,105 @@ "width": null } }, - "13ff262aa4b44a0e8255af196d81fd7d": { + "06bdb1c3f8ce403faee0d760e00db57e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ad72a839c6e047a1827fda170388e992", - "placeholder": "​", - "style": "IPY_MODEL_d44a2401009343aeae443f41faabbafa", - "value": "tokenizer_config.json: 100%" + "layout": "IPY_MODEL_98d9d39b1f014399a851cb3246835792", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b73ee3bd3bc9482f9e9a6daf96958b25", + "value": 665.0 } }, - "156b2e945a6b44ddbdf2da4443a15de5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "0ec758d764544f0c95b7109cd53210d6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1cd9e82053dd4f6e9275c8fa64b04d24": { + "116e4a0b97db4d0c884059f25c064c6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c4d8a52a4a0431d9bf8fa248904a023", + "IPY_MODEL_81190e134e0f4f15b3e4fd3bbe41be0c", + "IPY_MODEL_989066e3c5524adaa8b8a66f2f5ad9e5" + ], + "layout": "IPY_MODEL_3b8bd17f043a430fb0597488d2d6d5f2" } }, - "1e756c095e0949b1a3e12c3fd5657b28": { + "167dfa55e2104cc999179284d62f3179": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1894,70 +1874,46 @@ "width": null } }, - "1ec07e59e71d462894df6ddac86d79db": { + "17086bcb496d418a808e0606b0e2a048": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56eb788d2ed34127ad6946586c6057e4", - "placeholder": "​", - "style": "IPY_MODEL_0753cc2aba574e4da97f9bf330792b5f", - "value": " 391/391 [00:00<00:00, 49.9kB/s]" - } - }, - "1f21207692b5457abe47bd5134b48d96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e55f2cd15ee649ac846a97aaf09d6567", - "placeholder": "​", - "style": "IPY_MODEL_075782102ee04e45ac26c0953b93dd10", - "value": " 665/665 [00:00<00:00, 82.4kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "24800faa4aa049179ae0e1a942a1bdf6": { + "1be99f53fcc64c409edb1ddbd07de2b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f5e134f5de9e4373a4455cf6307bb806", - "placeholder": "​", - "style": "IPY_MODEL_7736ef16b7ec4b909c412b03cfe285dc", - "value": " 29.0/29.0 [00:00<00:00, 3.70kB/s]" + "layout": "IPY_MODEL_b1fbb37072854152a3a3b16caf0ab204", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ba078714339f4da593e623adf2222bd7", + "value": 2211.0 } }, - "27abf396b79145cd917bff0ccd201c7e": { + "1e09d7da26ff491d9d5a848cc7f15be9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2009,7 +1965,7 @@ "width": null } }, - "2a69838d719f4df6a92e28d9ece1f08d": { + "2367326c6c9a474ab889cf6d74faf9aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2045,195 +2001,23 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "33db2753de344f9b9a86f2af38acd19e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_690fccf3b2e142c4aab722075bd4f649", - "placeholder": "​", - "style": "IPY_MODEL_5d8a1655567a40f081ab0f97f931d0fd", - "value": ".gitattributes: 100%" - } - }, - "37196e3822914cc9a99aadf1179c6517": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3b4ab4c5daaf45d7b33c2799316d07cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3d414f4be0554dc48490d27044d55d7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98ec89e168f64dfbafb57d9076bd2975", - "IPY_MODEL_ecd151fdeecb4f5393b6dc51ca91a59e", - "IPY_MODEL_04bf7ee7a9c34eeeaa4d9b286f8d7f9d" - ], - "layout": "IPY_MODEL_7c80669ce4b44eb091bc16d3833d05ef" - } - }, - "45ac3af2e1ed4f4c8dfdabe525afe3d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_33db2753de344f9b9a86f2af38acd19e", - "IPY_MODEL_4ca1fe21051a4502b3b9f11c97612ceb", - "IPY_MODEL_1ec07e59e71d462894df6ddac86d79db" - ], - "layout": "IPY_MODEL_648615497a3f4b90ad7c7b1c678d5f5f" - } - }, - "48cf8f69b83648bc957e73f69c88e66a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_abf34ac7904346f0af3ff73344ab92dd", - "IPY_MODEL_ab6d14ed062546a7bc3a37486ca8e7f2", - "IPY_MODEL_99287ca3d43a478fa3a68b0140e5b6cc" - ], - "layout": "IPY_MODEL_e88376b3ed14410a951ad244ba1c84a3" - } - }, - "4af4550bfcf047a5b3c8e1e3d3cd4b87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4afd2fbb4d864842b5974978b9c8d333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4ca1fe21051a4502b3b9f11c97612ceb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d4076baf5b434bb2adf7f2348373cb42", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_976b837ca52c4769859ed9e693f46300", - "value": 391.0 + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "553f932b2e7648b68c7c9aa3f3257737": { + "247e42b59dc0445aaaa5f7084dd20cf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2285,23 +2069,44 @@ "width": null } }, - "55be5ce9aa9e4a548b0ad61273477bd1": { + "253f1e63067b4f78a688136462184c85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4efdd1e0ae254291ba5a3223a84bc808", + "IPY_MODEL_5fd1f24864bd4064949a3e592679a012", + "IPY_MODEL_ccb22378b232470890186d60d7e8a7ea" + ], + "layout": "IPY_MODEL_9904071098db436e985611826d978697" + } + }, + "2e0c8591af124e1e862ae0bbee13ab5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "56eb788d2ed34127ad6946586c6057e4": { + "30aa87d3494840c4aa464ef74d9e0db1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2353,22 +2158,74 @@ "width": null } }, - "5d8a1655567a40f081ab0f97f931d0fd": { + "3164b830fbfe43a3b05f9dcada4619b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3dcbe3b63dd44a6ca4dc5a4e53ac44d9", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4ce483df8b44f459c167932952d75d6", + "value": 0.0 + } + }, + "34de74288e484d6392837444b0960b3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ab3108545484488b542fe77f6de60f6", + "placeholder": "​", + "style": "IPY_MODEL_3c9c5368618d46b89d1f97ee8461b90b", + "value": "config.json: 100%" + } + }, + "3b25cf0897af4c389e5bb84dce0e453a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_932c39ca775540ec91faed2d09952439", + "IPY_MODEL_ff6d854ab28e41d9b10ad56ffdd1d632", + "IPY_MODEL_41d630690c6c48ef936615876fa0652c" + ], + "layout": "IPY_MODEL_30aa87d3494840c4aa464ef74d9e0db1" } }, - "601383fd35904b3d948030127529c5b7": { + "3b8bd17f043a430fb0597488d2d6d5f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2420,52 +2277,37 @@ "width": null } }, - "62c627b523ce4d0680d7ef46df4046b2": { + "3c9c5368618d46b89d1f97ee8461b90b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6eb61a2631024a97b38409576940d076", - "placeholder": "​", - "style": "IPY_MODEL_6f7185636dfd445bbcfa590f6f91decd", - "value": " 2.21k/2.21k [00:00<00:00, 288kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "631251cb36704a7e85d67bbb798aaeec": { + "3d7b642ec81c487dab799950929baded": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1e756c095e0949b1a3e12c3fd5657b28", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4afd2fbb4d864842b5974978b9c8d333", - "value": 665.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "648615497a3f4b90ad7c7b1c678d5f5f": { + "3dcbe3b63dd44a6ca4dc5a4e53ac44d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2514,10 +2356,25 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "3dd0e3791e974382a9f78275796c9be1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "681e924901d943949a488b29a505cff0": { + "3e17f05dde9d401b9fbb2d95c15d1fba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2569,7 +2426,49 @@ "width": null } }, - "68aac3d30f1c485fb01431c3acce067f": { + "41a6a383eaa443cba8c9a8e78ec48ecd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95b27ef1300348efbc7ad67edd3d9b7a", + "placeholder": "​", + "style": "IPY_MODEL_dae97db7d3c64df7896a80c486b3450f", + "value": " 2.21k/2.21k [00:00<00:00, 299kB/s]" + } + }, + "41d630690c6c48ef936615876fa0652c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_57d3bf10275b4091992aa1a8a28265d8", + "placeholder": "​", + "style": "IPY_MODEL_6504d792bf274abaadea897aedb15878", + "value": " 466k/466k [00:00<00:00, 33.2MB/s]" + } + }, + "431d2da6f0804f3790d3cc8f87036067": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2621,7 +2520,100 @@ "width": null } }, - "690fccf3b2e142c4aab722075bd4f649": { + "43c253f77bd74d59bb9b5eb8c0dad2f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46c6854e27ef4c689e054b875c34f02d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e17f05dde9d401b9fbb2d95c15d1fba", + "placeholder": "​", + "style": "IPY_MODEL_826c4413b0c040c9b8a8c022223e7ab0", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "494ad30da7f845f995cfe5a7b7812ca2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d6c91a6a97947bca8cef6f298aee849", + "placeholder": "​", + "style": "IPY_MODEL_3d7b642ec81c487dab799950929baded", + "value": ".gitattributes: 100%" + } + }, + "49def5d883e3468bb75ff61ae24e8374": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4efdd1e0ae254291ba5a3223a84bc808": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ec758d764544f0c95b7109cd53210d6", + "placeholder": "​", + "style": "IPY_MODEL_2e0c8591af124e1e862ae0bbee13ab5a", + "value": "vocab.txt: 100%" + } + }, + "51b14007f9df43c2ae6ae64965212985": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2673,7 +2665,38 @@ "width": null } }, - "6950f4f6ccd84fec8817d0612d30f52c": { + "5521b2020c564b9892aa36630243ff48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "55a8e271f7084ea88ce61eb6cea457ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "579ddcecd4ad41ff943769c38a61dcc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2725,29 +2748,7 @@ "width": null } }, - "696fed9227a24944a318a7e13ec558c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_13ff262aa4b44a0e8255af196d81fd7d", - "IPY_MODEL_b99461c80ba342a19bb61225b5a1c6ab", - "IPY_MODEL_24800faa4aa049179ae0e1a942a1bdf6" - ], - "layout": "IPY_MODEL_2a69838d719f4df6a92e28d9ece1f08d" - } - }, - "6cdbd6e2878d4ad0a30ac4e4f00206cb": { + "57d3bf10275b4091992aa1a8a28265d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2796,26 +2797,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" - } - }, - "6df9e8714cf44f9cb0c6adc1e2801a7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "width": null } }, - "6eb61a2631024a97b38409576940d076": { + "5da50ac709c04ceebc042c02d11780bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2867,7 +2852,31 @@ "width": null } }, - "6f7185636dfd445bbcfa590f6f91decd": { + "5fd1f24864bd4064949a3e592679a012": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a59b8ca3d88645ca9287af80e876815b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6985d8eda2514934b005c470e8949eb2", + "value": 231508.0 + } + }, + "6504d792bf274abaadea897aedb15878": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2882,74 +2891,59 @@ "description_width": "" } }, - "705ab5d8864749feba2e94565f234f24": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "653bb2ad40a74c2392bb1d2735dea51e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "7736ef16b7ec4b909c412b03cfe285dc": { + "6985d8eda2514934b005c470e8949eb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7a8a403f88844204b88b6b499f25620b": { + "6a18b3dd9d7049169469a3a4798f15b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2f3f723831e4429ba055d875902387a", + "placeholder": "​", + "style": "IPY_MODEL_c8a57340288d4909ade8e4646100002d", + "value": "" + } + }, + "6baeb4add86f4ccea1fa84f9697170d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3001,7 +2995,28 @@ "width": null } }, - "7c80669ce4b44eb091bc16d3833d05ef": { + "6c4d8a52a4a0431d9bf8fa248904a023": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9174cdb1a46c4b888353513a0a8b4639", + "placeholder": "​", + "style": "IPY_MODEL_7e47396caa2d4e8ba0db916be172b240", + "value": "tokenizer_config.json: 100%" + } + }, + "6cad7a8d33ba491babcc8162595fad2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3053,7 +3068,7 @@ "width": null } }, - "7da1806fce7e4909bc926a3bb7935ad7": { + "6d6c91a6a97947bca8cef6f298aee849": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3105,28 +3120,29 @@ "width": null } }, - "8717845bbc894b72935b209a75bb2f16": { + "735576d8959e46f3826a38708cf752de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e5067484ef674c0380e65aaa243e5a78", - "placeholder": "​", - "style": "IPY_MODEL_d5bd9e0905d947c6b4a03b3be26daf04", - "value": "pytorch_model.bin: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a18b3dd9d7049169469a3a4798f15b9", + "IPY_MODEL_3164b830fbfe43a3b05f9dcada4619b7", + "IPY_MODEL_46c6854e27ef4c689e054b875c34f02d" + ], + "layout": "IPY_MODEL_579ddcecd4ad41ff943769c38a61dcc1" } }, - "8e2803fbb174478d972207388a2cb9ff": { + "741743a689ed408fabb5c8b7ae249ad3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3141,44 +3157,61 @@ "description_width": "" } }, - "90d2e4a16ad541c380a1dff4cfde1f90": { + "7e47396caa2d4e8ba0db916be172b240": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "9407545d118c45a89c4d6605a80d0fff": { + "81190e134e0f4f15b3e4fd3bbe41be0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c3b4b53286594ff5bb5a5fd3d6d3eef3", - "placeholder": "​", - "style": "IPY_MODEL_093ca90351304fdc8d2445f60be4b830", - "value": " 0/0 [00:00<?, ?it/s]" + "layout": "IPY_MODEL_431d2da6f0804f3790d3cc8f87036067", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_971a763adca04a4898d2ea87d1e3b531", + "value": 29.0 + } + }, + "826c4413b0c040c9b8a8c022223e7ab0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "976b837ca52c4769859ed9e693f46300": { + "890e919775c548d29334fc80abf8dd41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3194,7 +3227,59 @@ "description_width": "" } }, - "97a28fb79228459592c99ca4714195d8": { + "8ab3108545484488b542fe77f6de60f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9174cdb1a46c4b888353513a0a8b4639": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3246,73 +3331,7 @@ "width": null } }, - "982f196d95cf48388e934100fe105449": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6cdbd6e2878d4ad0a30ac4e4f00206cb", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_156b2e945a6b44ddbdf2da4443a15de5", - "value": 0.0 - } - }, - "98ec89e168f64dfbafb57d9076bd2975": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_601383fd35904b3d948030127529c5b7", - "placeholder": "​", - "style": "IPY_MODEL_37196e3822914cc9a99aadf1179c6517", - "value": "tokenizer.json: 100%" - } - }, - "99287ca3d43a478fa3a68b0140e5b6cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6950f4f6ccd84fec8817d0612d30f52c", - "placeholder": "​", - "style": "IPY_MODEL_a4b986613dd3460fb27e399d856b5baf", - "value": " 232k/232k [00:00<00:00, 26.4MB/s]" - } - }, - "9b6a79f738174dc4a1d6e6c7665fb9c5": { + "92cc65daed6c4dd6a66605efa7d7c4f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3364,38 +3383,7 @@ "width": null } }, - "9b70999254274e98a23fd7d37ed2000f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a30da11f6f264d78801d7be28ba245f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a40a416e6a3b4891b9b8d98a976ad7ed": { + "932c39ca775540ec91faed2d09952439": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3410,28 +3398,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eaf16cd449ad4d9ba049f1736192243c", + "layout": "IPY_MODEL_1e09d7da26ff491d9d5a848cc7f15be9", "placeholder": "​", - "style": "IPY_MODEL_3b4ab4c5daaf45d7b33c2799316d07cf", - "value": "config.json: 100%" - } - }, - "a4b986613dd3460fb27e399d856b5baf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_741743a689ed408fabb5c8b7ae249ad3", + "value": "tokenizer.json: 100%" } }, - "a92177c88acf40c5ababe4a7a348a09e": { + "95b27ef1300348efbc7ad67edd3d9b7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3483,52 +3456,7 @@ "width": null } }, - "ab6d14ed062546a7bc3a37486ca8e7f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cc2919ce84274a69aae9ff4e90a80906", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_55be5ce9aa9e4a548b0ad61273477bd1", - "value": 231508.0 - } - }, - "abf34ac7904346f0af3ff73344ab92dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0fbbf4fdb51b413294041b296f5b2a74", - "placeholder": "​", - "style": "IPY_MODEL_e797f27a584b45b88287c7dfb530657c", - "value": "vocab.txt: 100%" - } - }, - "ad72a839c6e047a1827fda170388e992": { + "9694ffca6f9a4f48be09b09321d00477": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3580,7 +3508,7 @@ "width": null } }, - "b31ba758e76b4e649b3bc97ebfcfb764": { + "971a763adca04a4898d2ea87d1e3b531": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3596,7 +3524,28 @@ "description_width": "" } }, - "b773da097d5d41d2bd390767173f453b": { + "989066e3c5524adaa8b8a66f2f5ad9e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a369cc74356749659c4fdffbd4415a89", + "placeholder": "​", + "style": "IPY_MODEL_5521b2020c564b9892aa36630243ff48", + "value": " 29.0/29.0 [00:00<00:00, 3.64kB/s]" + } + }, + "98d9d39b1f014399a851cb3246835792": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3648,31 +3597,7 @@ "width": null } }, - "b99461c80ba342a19bb61225b5a1c6ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb539705caae4b2888bf430cbdae00f9", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b70999254274e98a23fd7d37ed2000f", - "value": 29.0 - } - }, - "c3b4b53286594ff5bb5a5fd3d6d3eef3": { + "9904071098db436e985611826d978697": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3724,50 +3649,7 @@ "width": null } }, - "c44c22e3abfa4e00b6be10158490dcc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_553f932b2e7648b68c7c9aa3f3257737", - "placeholder": "​", - "style": "IPY_MODEL_1cd9e82053dd4f6e9275c8fa64b04d24", - "value": "" - } - }, - "cac01943eb874158907dd23885f1ee1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8717845bbc894b72935b209a75bb2f16", - "IPY_MODEL_d26bd1de66324c479d2abcd64629946d", - "IPY_MODEL_f5732d71a1fa4ad285feb8ad5d719a36" - ], - "layout": "IPY_MODEL_705ab5d8864749feba2e94565f234f24" - } - }, - "cb539705caae4b2888bf430cbdae00f9": { + "a369cc74356749659c4fdffbd4415a89": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3819,7 +3701,7 @@ "width": null } }, - "cc2919ce84274a69aae9ff4e90a80906": { + "a59b8ca3d88645ca9287af80e876815b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3861,39 +3743,17 @@ "object_fit": null, "object_position": null, "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cf63fee22bbf401492c9f2f6f74d206a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c44c22e3abfa4e00b6be10158490dcc5", - "IPY_MODEL_982f196d95cf48388e934100fe105449", - "IPY_MODEL_9407545d118c45a89c4d6605a80d0fff" - ], - "layout": "IPY_MODEL_b773da097d5d41d2bd390767173f453b" + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d26bd1de66324c479d2abcd64629946d": { + "a6798e924bf145afa6fb5a4f09ee6212": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3909,39 +3769,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a92177c88acf40c5ababe4a7a348a09e", + "layout": "IPY_MODEL_6baeb4add86f4ccea1fa84f9697170d3", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_90d2e4a16ad541c380a1dff4cfde1f90", + "style": "IPY_MODEL_890e919775c548d29334fc80abf8dd41", "value": 54245363.0 } }, - "d2af69c7dfa5442bae97f456950de975": { + "aebe7c43a94b411b875f55c85e5bbf99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_68aac3d30f1c485fb01431c3acce067f", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6df9e8714cf44f9cb0c6adc1e2801a7d", - "value": 2211.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e0f7b67a7ef14e7f81bcde4581d41777", + "IPY_MODEL_1be99f53fcc64c409edb1ddbd07de2b0", + "IPY_MODEL_41a6a383eaa443cba8c9a8e78ec48ecd" + ], + "layout": "IPY_MODEL_fe5812eb7c1945458f0517ab7e8b8982" } }, - "d4076baf5b434bb2adf7f2348373cb42": { + "b1fbb37072854152a3a3b16caf0ab204": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3993,37 +3851,39 @@ "width": null } }, - "d44a2401009343aeae443f41faabbafa": { + "b73ee3bd3bc9482f9e9a6daf96958b25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "d5bd9e0905d947c6b4a03b3be26daf04": { + "ba078714339f4da593e623adf2222bd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "e185e5cf5c0548fbbc30b1069d606797": { + "ba2d5d53d9a94b1896142b5a30bbd514": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4038,14 +3898,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_eebfeb338a314755a90465c813e21dc1", - "IPY_MODEL_d2af69c7dfa5442bae97f456950de975", - "IPY_MODEL_62c627b523ce4d0680d7ef46df4046b2" + "IPY_MODEL_34de74288e484d6392837444b0960b3b", + "IPY_MODEL_06bdb1c3f8ce403faee0d760e00db57e", + "IPY_MODEL_c8688c529ee943f0a17f150a07147e22" ], - "layout": "IPY_MODEL_7a8a403f88844204b88b6b499f25620b" + "layout": "IPY_MODEL_92cc65daed6c4dd6a66605efa7d7c4f8" } }, - "e5067484ef674c0380e65aaa243e5a78": { + "c2eb7e0981334b8d9993c8d3ef5a5d69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4097,7 +3957,7 @@ "width": null } }, - "e55f2cd15ee649ac846a97aaf09d6567": { + "c2f3f723831e4429ba055d875902387a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4149,7 +4009,49 @@ "width": null } }, - "e797f27a584b45b88287c7dfb530657c": { + "c3a4ce2dd9534c0dae13baffc4bd8242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_51b14007f9df43c2ae6ae64965212985", + "placeholder": "​", + "style": "IPY_MODEL_3dd0e3791e974382a9f78275796c9be1", + "value": "pytorch_model.bin: 100%" + } + }, + "c8688c529ee943f0a17f150a07147e22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cbef96f2bab2484681f3c8921fa2c6ec", + "placeholder": "​", + "style": "IPY_MODEL_ea74d452fbb34576ab157f19520a727a", + "value": " 665/665 [00:00<00:00, 84.2kB/s]" + } + }, + "c8a57340288d4909ade8e4646100002d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4164,7 +4066,7 @@ "description_width": "" } }, - "e88376b3ed14410a951ad244ba1c84a3": { + "cbef96f2bab2484681f3c8921fa2c6ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4216,83 +4118,80 @@ "width": null } }, - "eaf16cd449ad4d9ba049f1736192243c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "ccb22378b232470890186d60d7e8a7ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_247e42b59dc0445aaaa5f7084dd20cf8", + "placeholder": "​", + "style": "IPY_MODEL_653bb2ad40a74c2392bb1d2735dea51e", + "value": " 232k/232k [00:00<00:00, 27.0MB/s]" + } + }, + "dae97db7d3c64df7896a80c486b3450f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "ecd151fdeecb4f5393b6dc51ca91a59e": { + "e0f7b67a7ef14e7f81bcde4581d41777": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7da1806fce7e4909bc926a3bb7935ad7", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b31ba758e76b4e649b3bc97ebfcfb764", - "value": 466062.0 + "layout": "IPY_MODEL_167dfa55e2104cc999179284d62f3179", + "placeholder": "​", + "style": "IPY_MODEL_49def5d883e3468bb75ff61ae24e8374", + "value": "README.md: 100%" + } + }, + "e4ce483df8b44f459c167932952d75d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eebfeb338a314755a90465c813e21dc1": { + "e98bd145421044fba60d1778da8b0bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4307,13 +4206,74 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9b6a79f738174dc4a1d6e6c7665fb9c5", + "layout": "IPY_MODEL_5da50ac709c04ceebc042c02d11780bb", "placeholder": "​", - "style": "IPY_MODEL_a30da11f6f264d78801d7be28ba245f6", - "value": "README.md: 100%" + "style": "IPY_MODEL_43c253f77bd74d59bb9b5eb8c0dad2f8", + "value": " 391/391 [00:00<00:00, 44.5kB/s]" + } + }, + "ea74d452fbb34576ab157f19520a727a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eae3f2bc15824aa1945e4a9709a7cb7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_494ad30da7f845f995cfe5a7b7812ca2", + "IPY_MODEL_efd392f0de6b42a3b5b343acd7c8211a", + "IPY_MODEL_e98bd145421044fba60d1778da8b0bc6" + ], + "layout": "IPY_MODEL_6cad7a8d33ba491babcc8162595fad2a" + } + }, + "efd392f0de6b42a3b5b343acd7c8211a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9694ffca6f9a4f48be09b09321d00477", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f18d2ca563c44c24a00e3946ef1e6c94", + "value": 391.0 } }, - "f5732d71a1fa4ad285feb8ad5d719a36": { + "f01c428443be4e759a8006b89c1f9698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4328,13 +4288,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_97a28fb79228459592c99ca4714195d8", + "layout": "IPY_MODEL_2367326c6c9a474ab889cf6d74faf9aa", "placeholder": "​", - "style": "IPY_MODEL_8e2803fbb174478d972207388a2cb9ff", - "value": " 54.2M/54.2M [00:00<00:00, 250MB/s]" + "style": "IPY_MODEL_17086bcb496d418a808e0606b0e2a048", + "value": " 54.2M/54.2M [00:01<00:00, 41.9MB/s]" + } + }, + "f18d2ca563c44c24a00e3946ef1e6c94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f5e134f5de9e4373a4455cf6307bb806": { + "fe5812eb7c1945458f0517ab7e8b8982": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4385,6 +4361,30 @@ "visibility": null, "width": null } + }, + "ff6d854ab28e41d9b10ad56ffdd1d632": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2eb7e0981334b8d9993c8d3ef5a5d69", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_55a8e271f7084ea88ce61eb6cea457ad", + "value": 466062.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index dee038810..b276fa39c 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:19.808883Z", - "iopub.status.busy": "2024-01-17T18:05:19.808324Z", - "iopub.status.idle": "2024-01-17T18:05:20.839884Z", - "shell.execute_reply": "2024-01-17T18:05:20.839261Z" + "iopub.execute_input": "2024-01-17T23:07:27.832889Z", + "iopub.status.busy": "2024-01-17T23:07:27.832698Z", + "iopub.status.idle": "2024-01-17T23:07:28.833865Z", + "shell.execute_reply": "2024-01-17T23:07:28.833240Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:20.842981Z", - "iopub.status.busy": "2024-01-17T18:05:20.842479Z", - "iopub.status.idle": "2024-01-17T18:05:20.845564Z", - "shell.execute_reply": "2024-01-17T18:05:20.844934Z" + "iopub.execute_input": "2024-01-17T23:07:28.836757Z", + "iopub.status.busy": "2024-01-17T23:07:28.836298Z", + "iopub.status.idle": "2024-01-17T23:07:28.839253Z", + "shell.execute_reply": "2024-01-17T23:07:28.838765Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:20.848194Z", - "iopub.status.busy": "2024-01-17T18:05:20.847848Z", - "iopub.status.idle": "2024-01-17T18:05:20.860567Z", - "shell.execute_reply": "2024-01-17T18:05:20.860055Z" + "iopub.execute_input": "2024-01-17T23:07:28.841805Z", + "iopub.status.busy": "2024-01-17T23:07:28.841328Z", + "iopub.status.idle": "2024-01-17T23:07:28.854079Z", + "shell.execute_reply": "2024-01-17T23:07:28.853457Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:20.862951Z", - "iopub.status.busy": "2024-01-17T18:05:20.862575Z", - "iopub.status.idle": "2024-01-17T18:05:25.011623Z", - "shell.execute_reply": "2024-01-17T18:05:25.011065Z" + "iopub.execute_input": "2024-01-17T23:07:28.856642Z", + "iopub.status.busy": "2024-01-17T23:07:28.856314Z", + "iopub.status.idle": "2024-01-17T23:07:31.662775Z", + "shell.execute_reply": "2024-01-17T23:07:31.662089Z" }, "id": "dhTHOg8Pyv5G" }, @@ -297,6 +297,9 @@ "text": [ "\n", "🎯 Caltech256 🎯\n", + "\n", + "\n", + "Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)\n", "\n" ] }, @@ -304,9 +307,6 @@ "name": "stdout", "output_type": "stream", "text": [ - "\n", - "Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)\n", - "\n", "-------------------------------------------------------------\n", "| Generating a Cleanlab Dataset Health Summary |\n", "| for your dataset with 29,780 examples and 256 classes. |\n", @@ -692,13 +692,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -2182,13 +2176,7 @@ "\n", "\n", "🎯 Cifar100_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", "\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 24103a62b..c60bdad38 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:29.575294Z", - "iopub.status.busy": "2024-01-17T18:05:29.575098Z", - "iopub.status.idle": "2024-01-17T18:05:30.601638Z", - "shell.execute_reply": "2024-01-17T18:05:30.600990Z" + "iopub.execute_input": "2024-01-17T23:07:36.495882Z", + "iopub.status.busy": "2024-01-17T23:07:36.495688Z", + "iopub.status.idle": "2024-01-17T23:07:37.512326Z", + "shell.execute_reply": "2024-01-17T23:07:37.511707Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:30.604812Z", - "iopub.status.busy": "2024-01-17T18:05:30.604317Z", - "iopub.status.idle": "2024-01-17T18:05:30.607977Z", - "shell.execute_reply": "2024-01-17T18:05:30.607450Z" + "iopub.execute_input": "2024-01-17T23:07:37.515517Z", + "iopub.status.busy": "2024-01-17T23:07:37.514954Z", + "iopub.status.idle": "2024-01-17T23:07:37.518606Z", + "shell.execute_reply": "2024-01-17T23:07:37.517983Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:30.610519Z", - "iopub.status.busy": "2024-01-17T18:05:30.610067Z", - "iopub.status.idle": "2024-01-17T18:05:32.632789Z", - "shell.execute_reply": "2024-01-17T18:05:32.632102Z" + "iopub.execute_input": "2024-01-17T23:07:37.521046Z", + "iopub.status.busy": "2024-01-17T23:07:37.520609Z", + "iopub.status.idle": "2024-01-17T23:07:39.512127Z", + "shell.execute_reply": "2024-01-17T23:07:39.511435Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.636274Z", - "iopub.status.busy": "2024-01-17T18:05:32.635511Z", - "iopub.status.idle": "2024-01-17T18:05:32.677507Z", - "shell.execute_reply": "2024-01-17T18:05:32.676720Z" + "iopub.execute_input": "2024-01-17T23:07:39.515319Z", + "iopub.status.busy": "2024-01-17T23:07:39.514761Z", + "iopub.status.idle": "2024-01-17T23:07:39.553653Z", + "shell.execute_reply": "2024-01-17T23:07:39.552872Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.680506Z", - "iopub.status.busy": "2024-01-17T18:05:32.680097Z", - "iopub.status.idle": "2024-01-17T18:05:32.719749Z", - "shell.execute_reply": "2024-01-17T18:05:32.719066Z" + "iopub.execute_input": "2024-01-17T23:07:39.556731Z", + "iopub.status.busy": "2024-01-17T23:07:39.556457Z", + "iopub.status.idle": "2024-01-17T23:07:39.590911Z", + "shell.execute_reply": "2024-01-17T23:07:39.590128Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.722770Z", - "iopub.status.busy": "2024-01-17T18:05:32.722366Z", - "iopub.status.idle": "2024-01-17T18:05:32.725463Z", - "shell.execute_reply": "2024-01-17T18:05:32.724891Z" + "iopub.execute_input": "2024-01-17T23:07:39.593846Z", + "iopub.status.busy": "2024-01-17T23:07:39.593576Z", + "iopub.status.idle": "2024-01-17T23:07:39.596849Z", + "shell.execute_reply": "2024-01-17T23:07:39.596247Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.727932Z", - "iopub.status.busy": "2024-01-17T18:05:32.727487Z", - "iopub.status.idle": "2024-01-17T18:05:32.730280Z", - "shell.execute_reply": "2024-01-17T18:05:32.729759Z" + "iopub.execute_input": "2024-01-17T23:07:39.599261Z", + "iopub.status.busy": "2024-01-17T23:07:39.598893Z", + "iopub.status.idle": "2024-01-17T23:07:39.601723Z", + "shell.execute_reply": "2024-01-17T23:07:39.601200Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.732729Z", - "iopub.status.busy": "2024-01-17T18:05:32.732328Z", - "iopub.status.idle": "2024-01-17T18:05:32.759985Z", - "shell.execute_reply": "2024-01-17T18:05:32.759356Z" + "iopub.execute_input": "2024-01-17T23:07:39.604155Z", + "iopub.status.busy": "2024-01-17T23:07:39.603812Z", + "iopub.status.idle": "2024-01-17T23:07:39.631912Z", + "shell.execute_reply": "2024-01-17T23:07:39.631291Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d2907ab9e816444c921cba3edd090d1c", + "model_id": "c8d58b7026a04e969e05f5cbd2b99e14", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1401ba3b9414469b83ae25c9cddabf3", + "model_id": "8fc0f21110364ef8b4a28d24e2bd55e7", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.767178Z", - "iopub.status.busy": "2024-01-17T18:05:32.766941Z", - "iopub.status.idle": "2024-01-17T18:05:32.774377Z", - "shell.execute_reply": "2024-01-17T18:05:32.773883Z" + "iopub.execute_input": "2024-01-17T23:07:39.638587Z", + "iopub.status.busy": "2024-01-17T23:07:39.638170Z", + "iopub.status.idle": "2024-01-17T23:07:39.644966Z", + "shell.execute_reply": "2024-01-17T23:07:39.644435Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.776777Z", - "iopub.status.busy": "2024-01-17T18:05:32.776413Z", - "iopub.status.idle": "2024-01-17T18:05:32.780193Z", - "shell.execute_reply": "2024-01-17T18:05:32.779640Z" + "iopub.execute_input": "2024-01-17T23:07:39.647202Z", + "iopub.status.busy": "2024-01-17T23:07:39.646994Z", + "iopub.status.idle": "2024-01-17T23:07:39.650818Z", + "shell.execute_reply": "2024-01-17T23:07:39.650290Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.782656Z", - "iopub.status.busy": "2024-01-17T18:05:32.782291Z", - "iopub.status.idle": "2024-01-17T18:05:32.789381Z", - "shell.execute_reply": "2024-01-17T18:05:32.788810Z" + "iopub.execute_input": "2024-01-17T23:07:39.653116Z", + "iopub.status.busy": "2024-01-17T23:07:39.652913Z", + "iopub.status.idle": "2024-01-17T23:07:39.659830Z", + "shell.execute_reply": "2024-01-17T23:07:39.659314Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.791749Z", - "iopub.status.busy": "2024-01-17T18:05:32.791389Z", - "iopub.status.idle": "2024-01-17T18:05:32.834263Z", - "shell.execute_reply": "2024-01-17T18:05:32.833469Z" + "iopub.execute_input": "2024-01-17T23:07:39.662042Z", + "iopub.status.busy": "2024-01-17T23:07:39.661827Z", + "iopub.status.idle": "2024-01-17T23:07:39.700248Z", + "shell.execute_reply": "2024-01-17T23:07:39.699558Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.837464Z", - "iopub.status.busy": "2024-01-17T18:05:32.836999Z", - "iopub.status.idle": "2024-01-17T18:05:32.879044Z", - "shell.execute_reply": "2024-01-17T18:05:32.878377Z" + "iopub.execute_input": "2024-01-17T23:07:39.703097Z", + "iopub.status.busy": "2024-01-17T23:07:39.702829Z", + "iopub.status.idle": "2024-01-17T23:07:39.740445Z", + "shell.execute_reply": "2024-01-17T23:07:39.739778Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.882160Z", - "iopub.status.busy": "2024-01-17T18:05:32.881824Z", - "iopub.status.idle": "2024-01-17T18:05:33.000399Z", - "shell.execute_reply": "2024-01-17T18:05:32.999631Z" + "iopub.execute_input": "2024-01-17T23:07:39.743730Z", + "iopub.status.busy": "2024-01-17T23:07:39.743262Z", + "iopub.status.idle": "2024-01-17T23:07:39.857929Z", + "shell.execute_reply": "2024-01-17T23:07:39.857221Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:33.003322Z", - "iopub.status.busy": "2024-01-17T18:05:33.003098Z", - "iopub.status.idle": "2024-01-17T18:05:35.514808Z", - "shell.execute_reply": "2024-01-17T18:05:35.514063Z" + "iopub.execute_input": "2024-01-17T23:07:39.860566Z", + "iopub.status.busy": "2024-01-17T23:07:39.860345Z", + "iopub.status.idle": "2024-01-17T23:07:42.349955Z", + "shell.execute_reply": "2024-01-17T23:07:42.349281Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.517610Z", - "iopub.status.busy": "2024-01-17T18:05:35.517166Z", - "iopub.status.idle": "2024-01-17T18:05:35.576901Z", - "shell.execute_reply": "2024-01-17T18:05:35.576188Z" + "iopub.execute_input": "2024-01-17T23:07:42.352843Z", + "iopub.status.busy": "2024-01-17T23:07:42.352472Z", + "iopub.status.idle": "2024-01-17T23:07:42.410242Z", + "shell.execute_reply": "2024-01-17T23:07:42.409702Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "37949d7a", + "id": "78363458", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "dfe41b86", + "id": "d2a5e8b7", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "17100cb9", + "id": "c950fb91", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.579654Z", - "iopub.status.busy": "2024-01-17T18:05:35.579165Z", - "iopub.status.idle": "2024-01-17T18:05:35.693837Z", - "shell.execute_reply": "2024-01-17T18:05:35.692940Z" + "iopub.execute_input": "2024-01-17T23:07:42.412848Z", + "iopub.status.busy": "2024-01-17T23:07:42.412446Z", + "iopub.status.idle": "2024-01-17T23:07:42.526424Z", + "shell.execute_reply": "2024-01-17T23:07:42.525736Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "a03bf6f2", + "id": "8ab3357a", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "6ef2cce4", + "id": "1c9ad48b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.697709Z", - "iopub.status.busy": "2024-01-17T18:05:35.696542Z", - "iopub.status.idle": "2024-01-17T18:05:35.771866Z", - "shell.execute_reply": "2024-01-17T18:05:35.771185Z" + "iopub.execute_input": "2024-01-17T23:07:42.530165Z", + "iopub.status.busy": "2024-01-17T23:07:42.529379Z", + "iopub.status.idle": "2024-01-17T23:07:42.607790Z", + "shell.execute_reply": "2024-01-17T23:07:42.607189Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "8ca4b358", + "id": "4fc657f4", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "66ce860e", + "id": "8fa90df4", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.774640Z", - "iopub.status.busy": "2024-01-17T18:05:35.774188Z", - "iopub.status.idle": "2024-01-17T18:05:35.782861Z", - "shell.execute_reply": "2024-01-17T18:05:35.782309Z" + "iopub.execute_input": "2024-01-17T23:07:42.610437Z", + "iopub.status.busy": "2024-01-17T23:07:42.610059Z", + "iopub.status.idle": "2024-01-17T23:07:42.618357Z", + "shell.execute_reply": "2024-01-17T23:07:42.617793Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "5f1c9f23", + "id": "cf99e781", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "7dce32d6", + "id": "98118892", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.785295Z", - "iopub.status.busy": "2024-01-17T18:05:35.784899Z", - "iopub.status.idle": "2024-01-17T18:05:35.805010Z", - "shell.execute_reply": "2024-01-17T18:05:35.804458Z" + "iopub.execute_input": "2024-01-17T23:07:42.620700Z", + "iopub.status.busy": "2024-01-17T23:07:42.620256Z", + "iopub.status.idle": "2024-01-17T23:07:42.638982Z", + "shell.execute_reply": "2024-01-17T23:07:42.638447Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "47046a1c", + "id": "e6faf2ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.807439Z", - "iopub.status.busy": "2024-01-17T18:05:35.807048Z", - "iopub.status.idle": "2024-01-17T18:05:35.811530Z", - "shell.execute_reply": "2024-01-17T18:05:35.811000Z" + "iopub.execute_input": "2024-01-17T23:07:42.641306Z", + "iopub.status.busy": "2024-01-17T23:07:42.640932Z", + "iopub.status.idle": "2024-01-17T23:07:42.645229Z", + "shell.execute_reply": "2024-01-17T23:07:42.644699Z" } }, "outputs": [ @@ -1205,38 +1205,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2effe8a32eaa4e92abaa5cfd66d81dcb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "36e767e7e95d43ffb851228c4f91edbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4af3a63525c440a4abc52d769e9017dd": { + "01401acd053d494aa90753fa1b8c29ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1288,37 +1257,68 @@ "width": null } }, - "522f0096addf4e0cbafbc1d1348408a1": { + "07a3f5a6aaad401a972197c77e87bf79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "5e22bd91d1694cfd8c3fe6d8d8c39dff": { + "0a9f4395be2b49e484d8a8639bea82b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9cc15f84dcd54b2ca4ee56b56c2a8d26", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_50bbf71c81b94d23aeb3814fd48c052f", + "value": 50.0 + } + }, + "1f5c5a8eafb94b9a9b11d9a2524373d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d62ab3c07fc64753b2a9c29aea8050a2", + "placeholder": "​", + "style": "IPY_MODEL_63793e7ce97b43db816b5f644c926e7f", + "value": "number of examples processed for checking labels: " } }, - "5f05395507ac4367ae64c6ba9a41e376": { + "265276564615465aae7792742a910cf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1370,7 +1370,74 @@ "width": null } }, - "6100ae8ba0d54e21a507da746704062e": { + "381f4ed9e1cc4936a05b827e22b7d226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4c99538a52524c55b6909964ce7c9d68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5b4c3e45e8848ffbc301b4507e649f1", + "placeholder": "​", + "style": "IPY_MODEL_ad51724cc1d6431d904bb6e18167ea25", + "value": " 10000/? [00:00<00:00, 1165602.49it/s]" + } + }, + "50bbf71c81b94d23aeb3814fd48c052f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "63793e7ce97b43db816b5f644c926e7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8187bd04584f405d9507f19902206d11": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1422,7 +1489,29 @@ "width": null } }, - "63d1a448b6a746f18ee2f037a92ae878": { + "8fc0f21110364ef8b4a28d24e2bd55e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1f5c5a8eafb94b9a9b11d9a2524373d7", + "IPY_MODEL_ce759ae3b428466aa400b60523204cbc", + "IPY_MODEL_4c99538a52524c55b6909964ce7c9d68" + ], + "layout": "IPY_MODEL_8187bd04584f405d9507f19902206d11" + } + }, + "91b32b8f1849447099270e102d55f348": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1437,13 +1526,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a80a6611d34f4705b4f07ebf44d92707", + "layout": "IPY_MODEL_960a5752066f4191bb38b7c279cd71ee", "placeholder": "​", - "style": "IPY_MODEL_2effe8a32eaa4e92abaa5cfd66d81dcb", - "value": " 10000/? [00:00<00:00, 1183093.76it/s]" + "style": "IPY_MODEL_381f4ed9e1cc4936a05b827e22b7d226", + "value": " 10000/? [00:00<00:00, 913831.54it/s]" } }, - "67bf9df6950044db8352f04efbecf277": { + "960a5752066f4191bb38b7c279cd71ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1495,7 +1584,7 @@ "width": null } }, - "69ec8fb5a49d4072a4b0ee16e18334df": { + "9bee374c69a64257bb771b86156bbde2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1510,13 +1599,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5f05395507ac4367ae64c6ba9a41e376", + "layout": "IPY_MODEL_01401acd053d494aa90753fa1b8c29ba", "placeholder": "​", - "style": "IPY_MODEL_522f0096addf4e0cbafbc1d1348408a1", - "value": " 10000/? [00:00<00:00, 948101.00it/s]" + "style": "IPY_MODEL_a813a7209e3749ad8bce32b87d8a1474", + "value": "number of examples processed for estimating thresholds: " } }, - "984a0aef565c492c93122b0c6cd2e272": { + "9cc15f84dcd54b2ca4ee56b56c2a8d26": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1568,23 +1657,37 @@ "width": null } }, - "a60031b8b82f49fbafcdb6359ff9ad02": { + "a813a7209e3749ad8bce32b87d8a1474": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ad51724cc1d6431d904bb6e18167ea25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "a80a6611d34f4705b4f07ebf44d92707": { + "c5b4c3e45e8848ffbc301b4507e649f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1636,53 +1739,53 @@ "width": null } }, - "c481e1fa4e204113b169f35e94dcd64d": { + "c8d58b7026a04e969e05f5cbd2b99e14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6100ae8ba0d54e21a507da746704062e", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a60031b8b82f49fbafcdb6359ff9ad02", - "value": 50.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9bee374c69a64257bb771b86156bbde2", + "IPY_MODEL_0a9f4395be2b49e484d8a8639bea82b5", + "IPY_MODEL_91b32b8f1849447099270e102d55f348" + ], + "layout": "IPY_MODEL_e591d29a3749442799df27c12ffbaf94" } }, - "d2907ab9e816444c921cba3edd090d1c": { + "ce759ae3b428466aa400b60523204cbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e69126c6e0524cfcafeb8b4ee9fa96bc", - "IPY_MODEL_f89f3d1d85684857aa38609ce181730f", - "IPY_MODEL_69ec8fb5a49d4072a4b0ee16e18334df" - ], - "layout": "IPY_MODEL_ee0899a9ff57472586211760d9d7a753" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_265276564615465aae7792742a910cf0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_07a3f5a6aaad401a972197c77e87bf79", + "value": 50.0 } }, - "e1135200e6bc4c8d898c8dc36eb2cd8e": { + "d62ab3c07fc64753b2a9c29aea8050a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1734,50 +1837,7 @@ "width": null } }, - "e1401ba3b9414469b83ae25c9cddabf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f7eb91c94209438b8648fd260292716e", - "IPY_MODEL_c481e1fa4e204113b169f35e94dcd64d", - "IPY_MODEL_63d1a448b6a746f18ee2f037a92ae878" - ], - "layout": "IPY_MODEL_e1135200e6bc4c8d898c8dc36eb2cd8e" - } - }, - "e69126c6e0524cfcafeb8b4ee9fa96bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4af3a63525c440a4abc52d769e9017dd", - "placeholder": "​", - "style": "IPY_MODEL_5e22bd91d1694cfd8c3fe6d8d8c39dff", - "value": "number of examples processed for estimating thresholds: " - } - }, - "ee0899a9ff57472586211760d9d7a753": { + "e591d29a3749442799df27c12ffbaf94": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1828,66 +1888,6 @@ "visibility": null, "width": null } - }, - "ee272707d3f34718a00e655664ab8731": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f7eb91c94209438b8648fd260292716e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_67bf9df6950044db8352f04efbecf277", - "placeholder": "​", - "style": "IPY_MODEL_ee272707d3f34718a00e655664ab8731", - "value": "number of examples processed for checking labels: " - } - }, - "f89f3d1d85684857aa38609ce181730f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_984a0aef565c492c93122b0c6cd2e272", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36e767e7e95d43ffb851228c4f91edbe", - "value": 50.0 - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index e02fa69d1..fbad8e084 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:41.067246Z", - "iopub.status.busy": "2024-01-17T18:05:41.067031Z", - "iopub.status.idle": "2024-01-17T18:05:43.291099Z", - "shell.execute_reply": "2024-01-17T18:05:43.290418Z" + "iopub.execute_input": "2024-01-17T23:07:47.931457Z", + "iopub.status.busy": "2024-01-17T23:07:47.931264Z", + "iopub.status.idle": "2024-01-17T23:07:50.035403Z", + "shell.execute_reply": "2024-01-17T23:07:50.034793Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:43.294169Z", - "iopub.status.busy": "2024-01-17T18:05:43.293669Z", - "iopub.status.idle": "2024-01-17T18:05:43.297424Z", - "shell.execute_reply": "2024-01-17T18:05:43.296885Z" + "iopub.execute_input": "2024-01-17T23:07:50.038356Z", + "iopub.status.busy": "2024-01-17T23:07:50.037866Z", + "iopub.status.idle": "2024-01-17T23:07:50.041629Z", + "shell.execute_reply": "2024-01-17T23:07:50.041029Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:43.299869Z", - "iopub.status.busy": "2024-01-17T18:05:43.299508Z", - "iopub.status.idle": "2024-01-17T18:05:45.744718Z", - "shell.execute_reply": "2024-01-17T18:05:45.744111Z" + "iopub.execute_input": "2024-01-17T23:07:50.043951Z", + "iopub.status.busy": "2024-01-17T23:07:50.043515Z", + "iopub.status.idle": "2024-01-17T23:07:53.352869Z", + "shell.execute_reply": "2024-01-17T23:07:53.352216Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9218ba50145b4c1abb05285d39489f7b", + "model_id": "79ccb0a1555b42b5a881bd1c68892db9", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "411e7b1250d04fceabc4a56d3aa7c5ba", + "model_id": "3b8311a276a84a2b810f57fb87ac7a1c", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34ddbf7efb384ee4960a77089187f278", + "model_id": "19d4a001660c44e8a52d8d2f5e1ea989", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "13b1818046c2493686e01a759bad0eef", + "model_id": "7ce4749d923744c09bd675ee944baaad", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:45.747577Z", - "iopub.status.busy": "2024-01-17T18:05:45.747182Z", - "iopub.status.idle": "2024-01-17T18:05:45.751308Z", - "shell.execute_reply": "2024-01-17T18:05:45.750698Z" + "iopub.execute_input": "2024-01-17T23:07:53.355203Z", + "iopub.status.busy": "2024-01-17T23:07:53.354998Z", + "iopub.status.idle": "2024-01-17T23:07:53.359311Z", + "shell.execute_reply": "2024-01-17T23:07:53.358704Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:45.753514Z", - "iopub.status.busy": "2024-01-17T18:05:45.753224Z", - "iopub.status.idle": "2024-01-17T18:05:58.059408Z", - "shell.execute_reply": "2024-01-17T18:05:58.058802Z" + "iopub.execute_input": "2024-01-17T23:07:53.361599Z", + "iopub.status.busy": "2024-01-17T23:07:53.361259Z", + "iopub.status.idle": "2024-01-17T23:08:05.481673Z", + "shell.execute_reply": "2024-01-17T23:08:05.480925Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "76f30844c4444b9cb566e2bb926b7b40", + "model_id": "cf1bbec90cc743c19c044238bc5cd410", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:58.062215Z", - "iopub.status.busy": "2024-01-17T18:05:58.061961Z", - "iopub.status.idle": "2024-01-17T18:06:20.156233Z", - "shell.execute_reply": "2024-01-17T18:06:20.155534Z" + "iopub.execute_input": "2024-01-17T23:08:05.484696Z", + "iopub.status.busy": "2024-01-17T23:08:05.484433Z", + "iopub.status.idle": "2024-01-17T23:08:26.795293Z", + "shell.execute_reply": "2024-01-17T23:08:26.794657Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.159472Z", - "iopub.status.busy": "2024-01-17T18:06:20.159075Z", - "iopub.status.idle": "2024-01-17T18:06:20.164287Z", - "shell.execute_reply": "2024-01-17T18:06:20.163771Z" + "iopub.execute_input": "2024-01-17T23:08:26.798340Z", + "iopub.status.busy": "2024-01-17T23:08:26.797902Z", + "iopub.status.idle": "2024-01-17T23:08:26.804100Z", + "shell.execute_reply": "2024-01-17T23:08:26.803564Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.166658Z", - "iopub.status.busy": "2024-01-17T18:06:20.166314Z", - "iopub.status.idle": "2024-01-17T18:06:20.170443Z", - "shell.execute_reply": "2024-01-17T18:06:20.169973Z" + "iopub.execute_input": "2024-01-17T23:08:26.806531Z", + "iopub.status.busy": "2024-01-17T23:08:26.806178Z", + "iopub.status.idle": "2024-01-17T23:08:26.810192Z", + "shell.execute_reply": "2024-01-17T23:08:26.809670Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.172709Z", - "iopub.status.busy": "2024-01-17T18:06:20.172347Z", - "iopub.status.idle": "2024-01-17T18:06:20.181874Z", - "shell.execute_reply": "2024-01-17T18:06:20.181379Z" + "iopub.execute_input": "2024-01-17T23:08:26.812487Z", + "iopub.status.busy": "2024-01-17T23:08:26.812126Z", + "iopub.status.idle": "2024-01-17T23:08:26.821683Z", + "shell.execute_reply": "2024-01-17T23:08:26.821162Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.184367Z", - "iopub.status.busy": "2024-01-17T18:06:20.183884Z", - "iopub.status.idle": "2024-01-17T18:06:20.214975Z", - "shell.execute_reply": "2024-01-17T18:06:20.214272Z" + "iopub.execute_input": "2024-01-17T23:08:26.823908Z", + "iopub.status.busy": "2024-01-17T23:08:26.823540Z", + "iopub.status.idle": "2024-01-17T23:08:26.852714Z", + "shell.execute_reply": "2024-01-17T23:08:26.852213Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.218114Z", - "iopub.status.busy": "2024-01-17T18:06:20.217484Z", - "iopub.status.idle": "2024-01-17T18:06:52.341728Z", - "shell.execute_reply": "2024-01-17T18:06:52.340867Z" + "iopub.execute_input": "2024-01-17T23:08:26.855055Z", + "iopub.status.busy": "2024-01-17T23:08:26.854682Z", + "iopub.status.idle": "2024-01-17T23:08:57.530989Z", + "shell.execute_reply": "2024-01-17T23:08:57.530120Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.896\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.560\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.667\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.349\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.04it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.97it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.57it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 48.20it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.36it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 60.18it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 64.11it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 68.31it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 69.32it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.78it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.65it/s]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.18it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.01it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 52.54it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 50.14it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 63.06it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 60.51it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 68.34it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 62.34it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 71.92it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 67.31it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.99it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.76it/s]" ] }, { @@ -882,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.738\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.550\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.632\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.337\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.17it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 25.95it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.23it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 53.82it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.67it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 63.69it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.28it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 64.34it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.98it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 65.40it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.01it/s]" ] }, { @@ -976,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 7.50it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.33it/s]" ] }, { @@ -984,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 43.21it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 43.06it/s]" ] }, { @@ -992,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 56.82it/s]" + " 40%|████ | 16/40 [00:00<00:00, 52.93it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.54it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 57.07it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.22it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 62.51it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.30it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.78it/s]" ] }, { @@ -1038,14 +1038,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.767\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.749\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.551\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.346\n", "Computing feature embeddings ...\n" ] }, @@ -1062,7 +1062,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.49it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 27.26it/s]" ] }, { @@ -1070,7 +1070,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.44it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 55.24it/s]" ] }, { @@ -1078,7 +1078,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 64.49it/s]" ] }, { @@ -1086,7 +1086,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.96it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 69.00it/s]" ] }, { @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 67.69it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 73.84it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.32it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.59it/s]" ] }, { @@ -1132,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.55it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 19.00it/s]" ] }, { @@ -1140,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 44.04it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 52.63it/s]" ] }, { @@ -1148,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 54.25it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 63.02it/s]" ] }, { @@ -1156,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 62.12it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.31it/s]" ] }, { @@ -1164,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 67.11it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.71it/s]" ] }, { @@ -1172,15 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 69.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.51it/s]" ] }, { @@ -1257,10 +1249,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:52.344865Z", - "iopub.status.busy": "2024-01-17T18:06:52.344261Z", - "iopub.status.idle": "2024-01-17T18:06:52.360939Z", - "shell.execute_reply": "2024-01-17T18:06:52.360351Z" + "iopub.execute_input": "2024-01-17T23:08:57.533946Z", + "iopub.status.busy": "2024-01-17T23:08:57.533629Z", + "iopub.status.idle": "2024-01-17T23:08:57.550228Z", + "shell.execute_reply": "2024-01-17T23:08:57.549699Z" } }, "outputs": [], @@ -1285,10 +1277,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:52.364131Z", - "iopub.status.busy": "2024-01-17T18:06:52.363638Z", - "iopub.status.idle": "2024-01-17T18:06:52.849592Z", - "shell.execute_reply": "2024-01-17T18:06:52.848859Z" + "iopub.execute_input": "2024-01-17T23:08:57.552782Z", + "iopub.status.busy": "2024-01-17T23:08:57.552226Z", + "iopub.status.idle": "2024-01-17T23:08:57.986311Z", + "shell.execute_reply": "2024-01-17T23:08:57.985707Z" } }, "outputs": [], @@ -1308,10 +1300,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:52.852535Z", - "iopub.status.busy": "2024-01-17T18:06:52.852301Z", - "iopub.status.idle": "2024-01-17T18:10:13.364394Z", - "shell.execute_reply": "2024-01-17T18:10:13.363707Z" + "iopub.execute_input": "2024-01-17T23:08:57.989260Z", + "iopub.status.busy": "2024-01-17T23:08:57.988841Z", + "iopub.status.idle": "2024-01-17T23:12:17.592442Z", + "shell.execute_reply": "2024-01-17T23:12:17.591804Z" } }, "outputs": [ @@ -1350,7 +1342,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4788f80918f340f199482171f3731dd8", + "model_id": "c1f8c848d7954850a757e5e8fa83f920", "version_major": 2, "version_minor": 0 }, @@ -1389,10 +1381,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.367055Z", - "iopub.status.busy": "2024-01-17T18:10:13.366655Z", - "iopub.status.idle": "2024-01-17T18:10:13.890209Z", - "shell.execute_reply": "2024-01-17T18:10:13.889535Z" + "iopub.execute_input": "2024-01-17T23:12:17.595341Z", + "iopub.status.busy": "2024-01-17T23:12:17.594687Z", + "iopub.status.idle": "2024-01-17T23:12:18.109017Z", + "shell.execute_reply": "2024-01-17T23:12:18.108362Z" } }, "outputs": [ @@ -1604,10 +1596,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.893666Z", - "iopub.status.busy": "2024-01-17T18:10:13.893098Z", - "iopub.status.idle": "2024-01-17T18:10:13.957139Z", - "shell.execute_reply": "2024-01-17T18:10:13.956469Z" + "iopub.execute_input": "2024-01-17T23:12:18.112328Z", + "iopub.status.busy": "2024-01-17T23:12:18.111889Z", + "iopub.status.idle": "2024-01-17T23:12:18.175100Z", + "shell.execute_reply": "2024-01-17T23:12:18.174534Z" } }, "outputs": [ @@ -1711,10 +1703,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.959807Z", - "iopub.status.busy": "2024-01-17T18:10:13.959450Z", - "iopub.status.idle": "2024-01-17T18:10:13.968741Z", - "shell.execute_reply": "2024-01-17T18:10:13.968232Z" + "iopub.execute_input": "2024-01-17T23:12:18.177637Z", + "iopub.status.busy": "2024-01-17T23:12:18.177428Z", + "iopub.status.idle": "2024-01-17T23:12:18.186532Z", + "shell.execute_reply": "2024-01-17T23:12:18.185876Z" } }, "outputs": [ @@ -1844,10 +1836,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.971381Z", - "iopub.status.busy": "2024-01-17T18:10:13.970900Z", - "iopub.status.idle": "2024-01-17T18:10:13.976151Z", - "shell.execute_reply": "2024-01-17T18:10:13.975669Z" + "iopub.execute_input": "2024-01-17T23:12:18.188808Z", + "iopub.status.busy": "2024-01-17T23:12:18.188604Z", + "iopub.status.idle": "2024-01-17T23:12:18.193610Z", + "shell.execute_reply": "2024-01-17T23:12:18.193087Z" }, "nbsphinx": "hidden" }, @@ -1893,10 +1885,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.978642Z", - "iopub.status.busy": "2024-01-17T18:10:13.978133Z", - "iopub.status.idle": "2024-01-17T18:10:14.471555Z", - "shell.execute_reply": "2024-01-17T18:10:14.470916Z" + "iopub.execute_input": "2024-01-17T23:12:18.195809Z", + "iopub.status.busy": "2024-01-17T23:12:18.195608Z", + "iopub.status.idle": "2024-01-17T23:12:18.652330Z", + "shell.execute_reply": "2024-01-17T23:12:18.651636Z" } }, "outputs": [ @@ -1931,10 +1923,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.474235Z", - "iopub.status.busy": "2024-01-17T18:10:14.473823Z", - "iopub.status.idle": "2024-01-17T18:10:14.482948Z", - "shell.execute_reply": "2024-01-17T18:10:14.482455Z" + "iopub.execute_input": "2024-01-17T23:12:18.655261Z", + "iopub.status.busy": "2024-01-17T23:12:18.654743Z", + "iopub.status.idle": "2024-01-17T23:12:18.663764Z", + "shell.execute_reply": "2024-01-17T23:12:18.663258Z" } }, "outputs": [ @@ -2101,10 +2093,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.485528Z", - "iopub.status.busy": "2024-01-17T18:10:14.485164Z", - "iopub.status.idle": "2024-01-17T18:10:14.492848Z", - "shell.execute_reply": "2024-01-17T18:10:14.492364Z" + "iopub.execute_input": "2024-01-17T23:12:18.666187Z", + "iopub.status.busy": "2024-01-17T23:12:18.665737Z", + "iopub.status.idle": "2024-01-17T23:12:18.674326Z", + "shell.execute_reply": "2024-01-17T23:12:18.673700Z" }, "nbsphinx": "hidden" }, @@ -2180,10 +2172,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.496054Z", - "iopub.status.busy": "2024-01-17T18:10:14.495663Z", - "iopub.status.idle": "2024-01-17T18:10:14.964665Z", - "shell.execute_reply": "2024-01-17T18:10:14.963989Z" + "iopub.execute_input": "2024-01-17T23:12:18.676786Z", + "iopub.status.busy": "2024-01-17T23:12:18.676313Z", + "iopub.status.idle": "2024-01-17T23:12:19.151323Z", + "shell.execute_reply": "2024-01-17T23:12:19.150735Z" } }, "outputs": [ @@ -2220,10 +2212,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.967054Z", - "iopub.status.busy": "2024-01-17T18:10:14.966847Z", - "iopub.status.idle": "2024-01-17T18:10:14.982866Z", - "shell.execute_reply": "2024-01-17T18:10:14.982341Z" + "iopub.execute_input": "2024-01-17T23:12:19.153906Z", + "iopub.status.busy": "2024-01-17T23:12:19.153526Z", + "iopub.status.idle": "2024-01-17T23:12:19.169696Z", + "shell.execute_reply": "2024-01-17T23:12:19.169068Z" } }, "outputs": [ @@ -2380,10 +2372,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.985211Z", - "iopub.status.busy": "2024-01-17T18:10:14.984998Z", - "iopub.status.idle": "2024-01-17T18:10:14.990999Z", - "shell.execute_reply": "2024-01-17T18:10:14.990478Z" + "iopub.execute_input": "2024-01-17T23:12:19.172357Z", + "iopub.status.busy": "2024-01-17T23:12:19.172040Z", + "iopub.status.idle": "2024-01-17T23:12:19.178064Z", + "shell.execute_reply": "2024-01-17T23:12:19.177456Z" }, "nbsphinx": "hidden" }, @@ -2428,10 +2420,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.993471Z", - "iopub.status.busy": "2024-01-17T18:10:14.993012Z", - "iopub.status.idle": "2024-01-17T18:10:15.582338Z", - "shell.execute_reply": "2024-01-17T18:10:15.581670Z" + "iopub.execute_input": "2024-01-17T23:12:19.180611Z", + "iopub.status.busy": "2024-01-17T23:12:19.180056Z", + "iopub.status.idle": "2024-01-17T23:12:19.840971Z", + "shell.execute_reply": "2024-01-17T23:12:19.840346Z" } }, "outputs": [ @@ -2513,10 +2505,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.585070Z", - "iopub.status.busy": "2024-01-17T18:10:15.584860Z", - "iopub.status.idle": "2024-01-17T18:10:15.594353Z", - "shell.execute_reply": "2024-01-17T18:10:15.593626Z" + "iopub.execute_input": "2024-01-17T23:12:19.844161Z", + "iopub.status.busy": "2024-01-17T23:12:19.843784Z", + "iopub.status.idle": "2024-01-17T23:12:19.853652Z", + "shell.execute_reply": "2024-01-17T23:12:19.853100Z" } }, "outputs": [ @@ -2541,47 +2533,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2644,10 +2636,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.597141Z", - "iopub.status.busy": "2024-01-17T18:10:15.596921Z", - "iopub.status.idle": "2024-01-17T18:10:15.602211Z", - "shell.execute_reply": "2024-01-17T18:10:15.601473Z" + "iopub.execute_input": "2024-01-17T23:12:19.856574Z", + "iopub.status.busy": "2024-01-17T23:12:19.856209Z", + "iopub.status.idle": "2024-01-17T23:12:19.862408Z", + "shell.execute_reply": "2024-01-17T23:12:19.861843Z" }, "nbsphinx": "hidden" }, @@ -2684,10 +2676,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.604750Z", - "iopub.status.busy": "2024-01-17T18:10:15.604550Z", - "iopub.status.idle": "2024-01-17T18:10:15.778107Z", - "shell.execute_reply": "2024-01-17T18:10:15.777326Z" + "iopub.execute_input": "2024-01-17T23:12:19.865248Z", + "iopub.status.busy": "2024-01-17T23:12:19.864885Z", + "iopub.status.idle": "2024-01-17T23:12:20.064339Z", + "shell.execute_reply": "2024-01-17T23:12:20.063776Z" } }, "outputs": [ @@ -2729,10 +2721,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.781004Z", - "iopub.status.busy": "2024-01-17T18:10:15.780794Z", - "iopub.status.idle": "2024-01-17T18:10:15.789706Z", - "shell.execute_reply": "2024-01-17T18:10:15.788980Z" + "iopub.execute_input": "2024-01-17T23:12:20.066913Z", + "iopub.status.busy": "2024-01-17T23:12:20.066523Z", + "iopub.status.idle": "2024-01-17T23:12:20.074947Z", + "shell.execute_reply": "2024-01-17T23:12:20.074451Z" } }, "outputs": [ @@ -2818,10 +2810,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.792222Z", - "iopub.status.busy": "2024-01-17T18:10:15.791846Z", - "iopub.status.idle": "2024-01-17T18:10:15.991891Z", - "shell.execute_reply": "2024-01-17T18:10:15.991225Z" + "iopub.execute_input": "2024-01-17T23:12:20.077342Z", + "iopub.status.busy": "2024-01-17T23:12:20.076942Z", + "iopub.status.idle": "2024-01-17T23:12:20.273417Z", + "shell.execute_reply": "2024-01-17T23:12:20.272758Z" } }, "outputs": [ @@ -2861,10 +2853,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.994477Z", - "iopub.status.busy": "2024-01-17T18:10:15.994081Z", - "iopub.status.idle": "2024-01-17T18:10:15.998830Z", - "shell.execute_reply": "2024-01-17T18:10:15.998287Z" + "iopub.execute_input": "2024-01-17T23:12:20.275994Z", + "iopub.status.busy": "2024-01-17T23:12:20.275783Z", + "iopub.status.idle": "2024-01-17T23:12:20.280537Z", + "shell.execute_reply": "2024-01-17T23:12:20.280012Z" }, "nbsphinx": "hidden" }, @@ -2901,39 +2893,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0422f06140e1429bb9df4d5e22a01ac2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "06b2bf8222ef4b6db00a974dc321d1d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "09b79e0723394c75a9295ba283a8fd52": { + "0397c83a64194b3e8f302bed7a8d9f8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2948,13 +2908,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6c248b337d0c458ead2d440b3472437f", + "layout": "IPY_MODEL_e6236cd92f06491a83ea7c38bf31a7e7", "placeholder": "​", - "style": "IPY_MODEL_0ddd9623827d4a419d5c51467297b6bd", - "value": " 60000/0 [00:00<00:00, 817475.64 examples/s]" + "style": "IPY_MODEL_2bfaa3482cd24c6f8a7f4c4e881e2ca7", + "value": "Generating train split: " } }, - "0a024c8dbb214427b3250ba948806841": { + "045208935e1f4bd6a391b26b3983d049": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2970,31 +2930,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_19629acb9010471ba50b5b29e00183c6", - "max": 1.0, + "layout": "IPY_MODEL_7b8800a4904440598f0e45fab5fbd35a", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f72cf07726314106aaa73a8aa0dbb3d9", - "value": 1.0 - } - }, - "0d884ce3ab3b4e51bd48a78309442fe2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_98fe2af32bbc4615b9fd39e09236fd2f", + "value": 60000.0 } }, - "0ddd9623827d4a419d5c51467297b6bd": { + "06760201f05c4000afc116288d98641b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3009,53 +2953,28 @@ "description_width": "" } }, - "1236cf2a98e4455b930f467d1e95e56f": { + "0a530e5055f0497090b37f9ec22dadae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a649432ed8c04a3b87f55c6e1cbc806d", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6616b30d88f3472290070dde94c3d289", - "value": 60000.0 - } - }, - "13b1818046c2493686e01a759bad0eef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3dd51d9190ef4190bd322c16bed1fb06", - "IPY_MODEL_5c339eb01faf4cf5a621c0edb6c44b68", - "IPY_MODEL_cf40c5cc5c3e42069f474bc592b94779" - ], - "layout": "IPY_MODEL_5d82cde87f5c4f48b90eca1c0c7219d2" + "layout": "IPY_MODEL_3bf8c457de024516a37553baea232c37", + "placeholder": "​", + "style": "IPY_MODEL_1ed5c49b1ddb4b7dbf0853bcd1a3778a", + "value": "Downloading data: 100%" } }, - "13e232e4e5e148d8a3faa3c2f89ea970": { + "0c58d5d607b74c128d2fed5574d2b2f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3107,7 +3026,7 @@ "width": null } }, - "14970ee75a2d4d2b84651021085a0bab": { + "179264665b3d4da192240f1ac09ac5e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3122,37 +3041,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2dbb0555cbba41679ae0e974d1f96ac2", + "layout": "IPY_MODEL_c3549b4dff2849a49f4c582646e80469", "placeholder": "​", - "style": "IPY_MODEL_94474ce5fa7c49859fb2ba027b64aef7", - "value": "Computing checksums: 100%" + "style": "IPY_MODEL_99d94d93be9e48819c0c81e7e63b86e8", + "value": "Map (num_proc=4): 100%" } }, - "18e94be5479c4f7bade2bb296c771679": { + "19d4a001660c44e8a52d8d2f5e1ea989": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cf90eb9f6391477bbf013ddee2032497", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9af6f90090b44f5a994f4d2ef2c28c38", - "value": 2.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0397c83a64194b3e8f302bed7a8d9f8c", + "IPY_MODEL_231dea10656441a1a0519b295f0d7bfd", + "IPY_MODEL_84270cee9acd46f7b5711cc0cb1d1790" + ], + "layout": "IPY_MODEL_80393a3a390947c29ad3e5befeee9f1a" } }, - "19629acb9010471ba50b5b29e00183c6": { + "1a9050a96ba840b1981a446cc79d9a2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3201,25 +3118,62 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "1e1ecba39033420591ada0b76d527bf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "1a99e1fffc83437580ec94981db5304f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "20170352b29c453e997c9a95c3a33b80": { + "1c435eee98164c94875a24dc9213ab07": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3271,7 +3225,22 @@ "width": null } }, - "25cccd29d96c4634a04b0cb4c0ae7a99": { + "1ed5c49b1ddb4b7dbf0853bcd1a3778a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "231dea10656441a1a0519b295f0d7bfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3287,58 +3256,61 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_adfa225ec8f64e7880afb3cb066db908", - "max": 60000.0, + "layout": "IPY_MODEL_f2f5ea97fde04ab1992313b89ce1e044", + "max": 1.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f7614c62ca994b079963f2061f90aec2", - "value": 60000.0 + "style": "IPY_MODEL_995e09d244bd49bd8d7ac45836ec79f9", + "value": 1.0 } }, - "293d1b710eea4f9fa017893a7a977f6d": { + "2bfaa3482cd24c6f8a7f4c4e881e2ca7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_14970ee75a2d4d2b84651021085a0bab", - "IPY_MODEL_18e94be5479c4f7bade2bb296c771679", - "IPY_MODEL_41a78828843c457294fc38e7f334ef9a" - ], - "layout": "IPY_MODEL_819ad8fec46043248eb022c81bb1b5b6" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "2b8505492b124436bf13b9605b3b7dd8": { + "2f977c6c9def44e5a688a578fdbe8f46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e9f3c1977bc4cc18ccf7c0091220fdd", - "placeholder": "​", - "style": "IPY_MODEL_a8a2c7b2b22842f5be552d65b32d2f6c", - "value": " 60000/60000 [00:12<00:00, 6511.95 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "38f79432d4ea43f3ad8e5a6a05b9cfd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2dbb0555cbba41679ae0e974d1f96ac2": { + "39cced6b09354583a41a423a7f3697f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3390,50 +3362,59 @@ "width": null } }, - "34ddbf7efb384ee4960a77089187f278": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "3b5c42a953034dfbb32825a03164a0f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_daf93e367bcd41009e494ece90f80fde", - "IPY_MODEL_0a024c8dbb214427b3250ba948806841", - "IPY_MODEL_09b79e0723394c75a9295ba283a8fd52" - ], - "layout": "IPY_MODEL_e57d19b9905849f58864c0e2ae9f2c73" - } - }, - "3dd51d9190ef4190bd322c16bed1fb06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_67575008a0c84c898646dedc03acf942", - "placeholder": "​", - "style": "IPY_MODEL_fe2e11a13fdb46e8b74279e56b89a038", - "value": "Generating test split: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "411e7b1250d04fceabc4a56d3aa7c5ba": { + "3b8311a276a84a2b810f57fb87ac7a1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3448,35 +3429,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5fc122f493644e7ca3b284b5bf922da7", - "IPY_MODEL_6af063d78a0b4668bb022ad287881b3a", - "IPY_MODEL_6a561cf815bc411bbf8042951da94f0f" + "IPY_MODEL_0a530e5055f0497090b37f9ec22dadae", + "IPY_MODEL_4975b121fca840d69ee14918cd0d217d", + "IPY_MODEL_fd2ab6faeeeb4055bbcc5fe64bac125d" ], - "layout": "IPY_MODEL_8388e5c0bcdd44658f6c1d9fe032adde" - } - }, - "41a78828843c457294fc38e7f334ef9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_20170352b29c453e997c9a95c3a33b80", - "placeholder": "​", - "style": "IPY_MODEL_af1dd8d8ecef45a48f86fa83500577b4", - "value": " 2/2 [00:00<00:00, 346.19it/s]" + "layout": "IPY_MODEL_94881b422b624471974fef993ac1b9e3" } }, - "43118ea6bbea4a20b0f36f67ad05ec28": { + "3bf8c457de024516a37553baea232c37": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3528,29 +3488,83 @@ "width": null } }, - "4788f80918f340f199482171f3731dd8": { + "3dceb99795994c2c9faef0d8437d26df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3f168cb3d1c94b1ba4a217cd6467dbc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d80873115a3d48b4a783d8a26120c697", - "IPY_MODEL_1236cf2a98e4455b930f467d1e95e56f", - "IPY_MODEL_56ab71b0a1ee4eb8b1ab047505bc017c" - ], - "layout": "IPY_MODEL_b950eeaac0b8423fbc3d696ee313e0f7" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c58d5d607b74c128d2fed5574d2b2f0", + "placeholder": "​", + "style": "IPY_MODEL_481f7c373c054bd1a8ed7c673293ca90", + "value": " 30.9M/30.9M [00:01<00:00, 16.7MB/s]" + } + }, + "406fe6cbb9a34dca80a0ecaff800df90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1a9050a96ba840b1981a446cc79d9a2a", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_38f79432d4ea43f3ad8e5a6a05b9cfd7", + "value": 2.0 + } + }, + "41327ec0739e4dcd957c5ee2898e050a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "56ab71b0a1ee4eb8b1ab047505bc017c": { + "44346c7bc1cf426680dd5db30374b0c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3565,13 +3579,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_13e232e4e5e148d8a3faa3c2f89ea970", + "layout": "IPY_MODEL_a392060d75f04f79b300b2254520405a", "placeholder": "​", - "style": "IPY_MODEL_59b669434d304300ae56a27d14f49bf5", - "value": " 60000/60000 [00:34<00:00, 1771.33it/s]" + "style": "IPY_MODEL_2f977c6c9def44e5a688a578fdbe8f46", + "value": "Computing checksums: 100%" } }, - "58930589e42646c7a4adf4cd6bcd6371": { + "44d4dca1913340ce8b9c507cd312f8c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3623,7 +3637,46 @@ "width": null } }, - "59b669434d304300ae56a27d14f49bf5": { + "481f7c373c054bd1a8ed7c673293ca90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4975b121fca840d69ee14918cd0d217d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b5c42a953034dfbb32825a03164a0f7", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9fafe542e2ed4c18aab17f4dc9200a15", + "value": 5175617.0 + } + }, + "4ece4d1132ab47b39c47d91a5c14bc90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3638,7 +3691,7 @@ "description_width": "" } }, - "5a1b5f56c91c4c2aa69d687eae32d787": { + "4f39a6854c894be9b84b9424dc291601": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3690,31 +3743,44 @@ "width": null } }, - "5c339eb01faf4cf5a621c0edb6c44b68": { + "522cf4a497fa4a07ae98cbe1f5c211c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "57b755a1482c49a2be45568b6bdd0f3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ae038169fdbf4ff78f655a94650c3c2b", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d884ce3ab3b4e51bd48a78309442fe2", - "value": 1.0 + "layout": "IPY_MODEL_c83a7ea94765464f9172b04328ecf7cb", + "placeholder": "​", + "style": "IPY_MODEL_9ae996a06a074f598ffdd1896fc06e5f", + "value": " 60000/60000 [00:34<00:00, 1762.24it/s]" } }, - "5d82cde87f5c4f48b90eca1c0c7219d2": { + "58928fb735cd44a8ab6e8c0edf078872": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3766,44 +3832,31 @@ "width": null } }, - "5fc122f493644e7ca3b284b5bf922da7": { + "59a3fa3e95574a8b814d146dfed3c4b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fd329fbe811246e8a0566112ee0206c9", - "placeholder": "​", - "style": "IPY_MODEL_fdd50d7c13524c3c882b9c849c0fb910", - "value": "Downloading data: 100%" - } - }, - "6616b30d88f3472290070dde94c3d289": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "layout": "IPY_MODEL_5e5f26489aa44b649b2a01102f0c989a", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_522cf4a497fa4a07ae98cbe1f5c211c0", + "value": 1.0 } }, - "67575008a0c84c898646dedc03acf942": { + "5e5f26489aa44b649b2a01102f0c989a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3852,10 +3905,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "6a561cf815bc411bbf8042951da94f0f": { + "6f35b4075f004e12901e63c69bb0356a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3870,13 +3923,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_85537fd6b7504ad187504946935cc321", + "layout": "IPY_MODEL_8e7dbb79e5a543c7885714426be3c75c", "placeholder": "​", - "style": "IPY_MODEL_8b814b38f0104752b04bd4a5310bb6b1", - "value": " 5.18M/5.18M [00:00<00:00, 52.6MB/s]" + "style": "IPY_MODEL_e9e90e1e28aa4e3588e479ab25012fbf", + "value": " 60000/60000 [00:12<00:00, 5989.87 examples/s]" } }, - "6af063d78a0b4668bb022ad287881b3a": { + "748f41179a3a40d5bfb7a4edfe8d13ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3892,15 +3945,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_58930589e42646c7a4adf4cd6bcd6371", - "max": 5175617.0, + "layout": "IPY_MODEL_e35a74ec5bd6445e96da7f49abfe6c0c", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0422f06140e1429bb9df4d5e22a01ac2", - "value": 5175617.0 + "style": "IPY_MODEL_41327ec0739e4dcd957c5ee2898e050a", + "value": 60000.0 + } + }, + "79ccb0a1555b42b5a881bd1c68892db9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a776487ef584aacb78e7a4c24fc20f0", + "IPY_MODEL_f9341d1dc6404c1194db44e60a6c230e", + "IPY_MODEL_3f168cb3d1c94b1ba4a217cd6467dbc6" + ], + "layout": "IPY_MODEL_1c435eee98164c94875a24dc9213ab07" } }, - "6c248b337d0c458ead2d440b3472437f": { + "7b8800a4904440598f0e45fab5fbd35a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3952,7 +4027,7 @@ "width": null } }, - "76f30844c4444b9cb566e2bb926b7b40": { + "7ce4749d923744c09bd675ee944baaad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3967,14 +4042,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fc146736a7804106a33260d3a605aae1", - "IPY_MODEL_25cccd29d96c4634a04b0cb4c0ae7a99", - "IPY_MODEL_2b8505492b124436bf13b9605b3b7dd8" + "IPY_MODEL_fba3a6dbeac647a58b86ca3c2387dea1", + "IPY_MODEL_59a3fa3e95574a8b814d146dfed3c4b7", + "IPY_MODEL_9122abc397764bf2888a6ee466622011" ], - "layout": "IPY_MODEL_da553b2e323e4d9e9a3dfc9c117bcd77" + "layout": "IPY_MODEL_857bf7c092c443779ed47daba1a805c1" } }, - "78bbe03efe744a16b7517c70dee50f2a": { + "80393a3a390947c29ad3e5befeee9f1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4026,7 +4101,7 @@ "width": null } }, - "7d62cb9c305943eab8fadf60d62315d0": { + "80ebd1685921401db08c4590b9baa83c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4041,59 +4116,28 @@ "description_width": "" } }, - "819ad8fec46043248eb022c81bb1b5b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "84270cee9acd46f7b5711cc0cb1d1790": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eac75786bd0747edbc8069694b24a47f", + "placeholder": "​", + "style": "IPY_MODEL_c200da24b8d24af2a8729220de3fc9f5", + "value": " 60000/0 [00:00<00:00, 822434.05 examples/s]" } }, - "8388e5c0bcdd44658f6c1d9fe032adde": { + "857bf7c092c443779ed47daba1a805c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4145,7 +4189,28 @@ "width": null } }, - "85537fd6b7504ad187504946935cc321": { + "8a776487ef584aacb78e7a4c24fc20f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be2fb1d47c9b4ddca4f55cd862ed528f", + "placeholder": "​", + "style": "IPY_MODEL_9f3c94882ba84a3188e74bcaadb84860", + "value": "Downloading data: 100%" + } + }, + "8e7dbb79e5a543c7885714426be3c75c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4197,58 +4262,29 @@ "width": null } }, - "886d87adc7e14bb181d14fe73356712c": { + "8f5c519e8d9d42d7a8b129396063163d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ecec36d46b93457e812be0045f430615", - "placeholder": "​", - "style": "IPY_MODEL_92480a4d5aa542e4b3c245d5eaef0719", - "value": " 30.9M/30.9M [00:00<00:00, 54.1MB/s]" - } - }, - "8a59d3978538419bb1a7ae4f2c634c57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8b814b38f0104752b04bd4a5310bb6b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44346c7bc1cf426680dd5db30374b0c0", + "IPY_MODEL_406fe6cbb9a34dca80a0ecaff800df90", + "IPY_MODEL_8f6e5f7512ee4ff7ad72e4cc5dca9461" + ], + "layout": "IPY_MODEL_58928fb735cd44a8ab6e8c0edf078872" } }, - "8ec077adf7584cd58c173b40862ef286": { + "8f6e5f7512ee4ff7ad72e4cc5dca9461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4263,81 +4299,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d080bdb537ff418c9cc35048f6e03b22", + "layout": "IPY_MODEL_e5a47d68a2cd473f951c59fcf76d01f1", "placeholder": "​", - "style": "IPY_MODEL_7d62cb9c305943eab8fadf60d62315d0", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_4ece4d1132ab47b39c47d91a5c14bc90", + "value": " 2/2 [00:00<00:00, 299.27it/s]" } }, - "9218ba50145b4c1abb05285d39489f7b": { + "9122abc397764bf2888a6ee466622011": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8ec077adf7584cd58c173b40862ef286", - "IPY_MODEL_dc3e760d54c94143afafcc4928690c1e", - "IPY_MODEL_886d87adc7e14bb181d14fe73356712c" - ], - "layout": "IPY_MODEL_43118ea6bbea4a20b0f36f67ad05ec28" - } - }, - "92480a4d5aa542e4b3c245d5eaef0719": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "94474ce5fa7c49859fb2ba027b64aef7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9af6f90090b44f5a994f4d2ef2c28c38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44d4dca1913340ce8b9c507cd312f8c9", + "placeholder": "​", + "style": "IPY_MODEL_3dceb99795994c2c9faef0d8437d26df", + "value": " 10000/0 [00:00<00:00, 481500.65 examples/s]" } }, - "9e9f3c1977bc4cc18ccf7c0091220fdd": { + "94881b422b624471974fef993ac1b9e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4389,7 +4378,7 @@ "width": null } }, - "a649432ed8c04a3b87f55c6e1cbc806d": { + "9531113f8f814de2b0a6e754c456bf1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4441,22 +4430,7 @@ "width": null } }, - "a8a2c7b2b22842f5be552d65b32d2f6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "adfa225ec8f64e7880afb3cb066db908": { + "9700769e28304398b3004f50582ae2ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4508,59 +4482,39 @@ "width": null } }, - "ae038169fdbf4ff78f655a94650c3c2b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "98fe2af32bbc4615b9fd39e09236fd2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "995e09d244bd49bd8d7ac45836ec79f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "af1dd8d8ecef45a48f86fa83500577b4": { + "99d94d93be9e48819c0c81e7e63b86e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4575,59 +4529,68 @@ "description_width": "" } }, - "b950eeaac0b8423fbc3d696ee313e0f7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "9ae996a06a074f598ffdd1896fc06e5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d080255b4c84e7c91b438dd5562134b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9f3c94882ba84a3188e74bcaadb84860": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9fafe542e2ed4c18aab17f4dc9200a15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c8c2dd564bcd47159c5d7da2cd990067": { + "a392060d75f04f79b300b2254520405a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4679,22 +4642,23 @@ "width": null } }, - "cee108b3a0fc446daf791fcfa739d5f9": { + "b36fa317529346c8837fe628e9b58225": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "cf40c5cc5c3e42069f474bc592b94779": { + "b94cbe2658d747a2b3051c57bb7a1145": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4709,13 +4673,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c8c2dd564bcd47159c5d7da2cd990067", + "layout": "IPY_MODEL_1a99e1fffc83437580ec94981db5304f", "placeholder": "​", - "style": "IPY_MODEL_cee108b3a0fc446daf791fcfa739d5f9", - "value": " 10000/0 [00:00<00:00, 518981.42 examples/s]" + "style": "IPY_MODEL_06760201f05c4000afc116288d98641b", + "value": "100%" } }, - "cf90eb9f6391477bbf013ddee2032497": { + "be2fb1d47c9b4ddca4f55cd862ed528f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4767,7 +4731,44 @@ "width": null } }, - "d0382716c80644e3ba550bc5ed756161": { + "c1f8c848d7954850a757e5e8fa83f920": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b94cbe2658d747a2b3051c57bb7a1145", + "IPY_MODEL_748f41179a3a40d5bfb7a4edfe8d13ff", + "IPY_MODEL_57b755a1482c49a2be45568b6bdd0f3e" + ], + "layout": "IPY_MODEL_4f39a6854c894be9b84b9424dc291601" + } + }, + "c200da24b8d24af2a8729220de3fc9f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c3549b4dff2849a49f4c582646e80469": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4819,7 +4820,7 @@ "width": null } }, - "d080bdb537ff418c9cc35048f6e03b22": { + "c83a7ea94765464f9172b04328ecf7cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4871,28 +4872,29 @@ "width": null } }, - "d80873115a3d48b4a783d8a26120c697": { + "cf1bbec90cc743c19c044238bc5cd410": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a1b5f56c91c4c2aa69d687eae32d787", - "placeholder": "​", - "style": "IPY_MODEL_de829f78730844509bffcc9f0cf8f531", - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_179264665b3d4da192240f1ac09ac5e5", + "IPY_MODEL_045208935e1f4bd6a391b26b3983d049", + "IPY_MODEL_6f35b4075f004e12901e63c69bb0356a" + ], + "layout": "IPY_MODEL_39cced6b09354583a41a423a7f3697f2" } }, - "da553b2e323e4d9e9a3dfc9c117bcd77": { + "e35a74ec5bd6445e96da7f49abfe6c0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4944,67 +4946,7 @@ "width": null } }, - "daf93e367bcd41009e494ece90f80fde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d0382716c80644e3ba550bc5ed756161", - "placeholder": "​", - "style": "IPY_MODEL_1e1ecba39033420591ada0b76d527bf1", - "value": "Generating train split: " - } - }, - "dc3e760d54c94143afafcc4928690c1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_78bbe03efe744a16b7517c70dee50f2a", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06b2bf8222ef4b6db00a974dc321d1d2", - "value": 30931277.0 - } - }, - "de829f78730844509bffcc9f0cf8f531": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e57d19b9905849f58864c0e2ae9f2c73": { + "e5a47d68a2cd473f951c59fcf76d01f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5056,7 +4998,7 @@ "width": null } }, - "ecec36d46b93457e812be0045f430615": { + "e6236cd92f06491a83ea7c38bf31a7e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5108,60 +5050,74 @@ "width": null } }, - "f72cf07726314106aaa73a8aa0dbb3d9": { + "e9e90e1e28aa4e3588e479ab25012fbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f7614c62ca994b079963f2061f90aec2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "eac75786bd0747edbc8069694b24a47f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fc146736a7804106a33260d3a605aae1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fcad613391c24914b64a652e2c514fcb", - "placeholder": "​", - "style": "IPY_MODEL_8a59d3978538419bb1a7ae4f2c634c57", - "value": "Map (num_proc=4): 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fcad613391c24914b64a652e2c514fcb": { + "f21c6c99bca84e06b8d1299f3b53db6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5213,7 +5169,7 @@ "width": null } }, - "fd329fbe811246e8a0566112ee0206c9": { + "f2f5ea97fde04ab1992313b89ce1e044": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5262,37 +5218,73 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "fdd50d7c13524c3c882b9c849c0fb910": { + "f9341d1dc6404c1194db44e60a6c230e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f21c6c99bca84e06b8d1299f3b53db6d", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b36fa317529346c8837fe628e9b58225", + "value": 30931277.0 } }, - "fe2e11a13fdb46e8b74279e56b89a038": { + "fba3a6dbeac647a58b86ca3c2387dea1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9531113f8f814de2b0a6e754c456bf1f", + "placeholder": "​", + "style": "IPY_MODEL_9d080255b4c84e7c91b438dd5562134b", + "value": "Generating test split: " + } + }, + "fd2ab6faeeeb4055bbcc5fe64bac125d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9700769e28304398b3004f50582ae2ae", + "placeholder": "​", + "style": "IPY_MODEL_80ebd1685921401db08c4590b9baa83c", + "value": " 5.18M/5.18M [00:00<00:00, 38.7MB/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index f96a2b6cb..36e58d2a0 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:21.766507Z", - "iopub.status.busy": "2024-01-17T18:10:21.766309Z", - "iopub.status.idle": "2024-01-17T18:10:22.883924Z", - "shell.execute_reply": "2024-01-17T18:10:22.882998Z" + "iopub.execute_input": "2024-01-17T23:12:25.645173Z", + "iopub.status.busy": "2024-01-17T23:12:25.644719Z", + "iopub.status.idle": "2024-01-17T23:12:26.712765Z", + "shell.execute_reply": "2024-01-17T23:12:26.712142Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:22.886848Z", - "iopub.status.busy": "2024-01-17T18:10:22.886478Z", - "iopub.status.idle": "2024-01-17T18:10:23.166976Z", - "shell.execute_reply": "2024-01-17T18:10:23.166265Z" + "iopub.execute_input": "2024-01-17T23:12:26.715639Z", + "iopub.status.busy": "2024-01-17T23:12:26.715237Z", + "iopub.status.idle": "2024-01-17T23:12:26.981319Z", + "shell.execute_reply": "2024-01-17T23:12:26.980689Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:23.170233Z", - "iopub.status.busy": "2024-01-17T18:10:23.169703Z", - "iopub.status.idle": "2024-01-17T18:10:23.182165Z", - "shell.execute_reply": "2024-01-17T18:10:23.181510Z" + "iopub.execute_input": "2024-01-17T23:12:26.984263Z", + "iopub.status.busy": "2024-01-17T23:12:26.983847Z", + "iopub.status.idle": "2024-01-17T23:12:26.995890Z", + "shell.execute_reply": "2024-01-17T23:12:26.995368Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:23.184824Z", - "iopub.status.busy": "2024-01-17T18:10:23.184445Z", - "iopub.status.idle": "2024-01-17T18:10:23.391408Z", - "shell.execute_reply": "2024-01-17T18:10:23.390738Z" + "iopub.execute_input": "2024-01-17T23:12:26.998151Z", + "iopub.status.busy": "2024-01-17T23:12:26.997887Z", + "iopub.status.idle": "2024-01-17T23:12:27.219836Z", + "shell.execute_reply": "2024-01-17T23:12:27.219174Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:23.394226Z", - "iopub.status.busy": "2024-01-17T18:10:23.393866Z", - "iopub.status.idle": "2024-01-17T18:10:23.421258Z", - "shell.execute_reply": "2024-01-17T18:10:23.420553Z" + "iopub.execute_input": "2024-01-17T23:12:27.222804Z", + "iopub.status.busy": "2024-01-17T23:12:27.222337Z", + "iopub.status.idle": "2024-01-17T23:12:27.249283Z", + "shell.execute_reply": "2024-01-17T23:12:27.248679Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:23.423997Z", - "iopub.status.busy": "2024-01-17T18:10:23.423593Z", - "iopub.status.idle": "2024-01-17T18:10:24.787226Z", - "shell.execute_reply": "2024-01-17T18:10:24.786489Z" + "iopub.execute_input": "2024-01-17T23:12:27.251883Z", + "iopub.status.busy": "2024-01-17T23:12:27.251444Z", + "iopub.status.idle": "2024-01-17T23:12:28.555194Z", + "shell.execute_reply": "2024-01-17T23:12:28.554473Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:24.790031Z", - "iopub.status.busy": "2024-01-17T18:10:24.789628Z", - "iopub.status.idle": "2024-01-17T18:10:24.814871Z", - "shell.execute_reply": "2024-01-17T18:10:24.814207Z" + "iopub.execute_input": "2024-01-17T23:12:28.558034Z", + "iopub.status.busy": "2024-01-17T23:12:28.557654Z", + "iopub.status.idle": "2024-01-17T23:12:28.582599Z", + "shell.execute_reply": "2024-01-17T23:12:28.581962Z" }, "scrolled": true }, @@ -641,10 +641,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:24.817303Z", - "iopub.status.busy": "2024-01-17T18:10:24.816930Z", - "iopub.status.idle": "2024-01-17T18:10:25.718347Z", - "shell.execute_reply": "2024-01-17T18:10:25.717676Z" + "iopub.execute_input": "2024-01-17T23:12:28.584982Z", + "iopub.status.busy": "2024-01-17T23:12:28.584634Z", + "iopub.status.idle": "2024-01-17T23:12:29.463581Z", + "shell.execute_reply": "2024-01-17T23:12:29.462958Z" }, "id": "AaHC5MRKjruT" }, @@ -763,10 +763,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:25.721086Z", - "iopub.status.busy": "2024-01-17T18:10:25.720678Z", - "iopub.status.idle": "2024-01-17T18:10:25.735438Z", - "shell.execute_reply": "2024-01-17T18:10:25.734893Z" + "iopub.execute_input": "2024-01-17T23:12:29.466240Z", + "iopub.status.busy": "2024-01-17T23:12:29.465885Z", + "iopub.status.idle": "2024-01-17T23:12:29.480184Z", + "shell.execute_reply": "2024-01-17T23:12:29.479506Z" }, "id": "Wy27rvyhjruU" }, @@ -815,10 +815,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:25.738066Z", - "iopub.status.busy": "2024-01-17T18:10:25.737688Z", - "iopub.status.idle": "2024-01-17T18:10:25.834468Z", - "shell.execute_reply": "2024-01-17T18:10:25.833833Z" + "iopub.execute_input": "2024-01-17T23:12:29.482535Z", + "iopub.status.busy": "2024-01-17T23:12:29.482170Z", + "iopub.status.idle": "2024-01-17T23:12:29.563194Z", + "shell.execute_reply": "2024-01-17T23:12:29.562462Z" }, "id": "Db8YHnyVjruU" }, @@ -925,10 +925,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:25.837117Z", - "iopub.status.busy": "2024-01-17T18:10:25.836764Z", - "iopub.status.idle": "2024-01-17T18:10:26.040217Z", - "shell.execute_reply": "2024-01-17T18:10:26.039537Z" + "iopub.execute_input": "2024-01-17T23:12:29.565726Z", + "iopub.status.busy": "2024-01-17T23:12:29.565468Z", + "iopub.status.idle": "2024-01-17T23:12:29.770924Z", + "shell.execute_reply": "2024-01-17T23:12:29.770408Z" }, "id": "iJqAHuS2jruV" }, @@ -965,10 +965,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.042998Z", - "iopub.status.busy": "2024-01-17T18:10:26.042584Z", - "iopub.status.idle": "2024-01-17T18:10:26.060028Z", - "shell.execute_reply": "2024-01-17T18:10:26.059516Z" + "iopub.execute_input": "2024-01-17T23:12:29.773611Z", + "iopub.status.busy": "2024-01-17T23:12:29.773086Z", + "iopub.status.idle": "2024-01-17T23:12:29.790463Z", + "shell.execute_reply": "2024-01-17T23:12:29.789935Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.062644Z", - "iopub.status.busy": "2024-01-17T18:10:26.062148Z", - "iopub.status.idle": "2024-01-17T18:10:26.072694Z", - "shell.execute_reply": "2024-01-17T18:10:26.072095Z" + "iopub.execute_input": "2024-01-17T23:12:29.792922Z", + "iopub.status.busy": "2024-01-17T23:12:29.792556Z", + "iopub.status.idle": "2024-01-17T23:12:29.802644Z", + "shell.execute_reply": "2024-01-17T23:12:29.802136Z" }, "id": "0lonvOYvjruV" }, @@ -1180,10 +1180,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.075434Z", - "iopub.status.busy": "2024-01-17T18:10:26.074917Z", - "iopub.status.idle": "2024-01-17T18:10:26.191355Z", - "shell.execute_reply": "2024-01-17T18:10:26.190725Z" + "iopub.execute_input": "2024-01-17T23:12:29.805003Z", + "iopub.status.busy": "2024-01-17T23:12:29.804543Z", + "iopub.status.idle": "2024-01-17T23:12:29.898840Z", + "shell.execute_reply": "2024-01-17T23:12:29.898192Z" }, "id": "MfqTCa3kjruV" }, @@ -1264,10 +1264,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.194148Z", - "iopub.status.busy": "2024-01-17T18:10:26.193847Z", - "iopub.status.idle": "2024-01-17T18:10:26.344135Z", - "shell.execute_reply": "2024-01-17T18:10:26.343417Z" + "iopub.execute_input": "2024-01-17T23:12:29.901475Z", + "iopub.status.busy": "2024-01-17T23:12:29.901217Z", + "iopub.status.idle": "2024-01-17T23:12:30.040827Z", + "shell.execute_reply": "2024-01-17T23:12:30.040112Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1327,10 +1327,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.347074Z", - "iopub.status.busy": "2024-01-17T18:10:26.346637Z", - "iopub.status.idle": "2024-01-17T18:10:26.350908Z", - "shell.execute_reply": "2024-01-17T18:10:26.350355Z" + "iopub.execute_input": "2024-01-17T23:12:30.043470Z", + "iopub.status.busy": "2024-01-17T23:12:30.043221Z", + "iopub.status.idle": "2024-01-17T23:12:30.047307Z", + "shell.execute_reply": "2024-01-17T23:12:30.046685Z" }, "id": "0rXP3ZPWjruW" }, @@ -1368,10 +1368,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.353694Z", - "iopub.status.busy": "2024-01-17T18:10:26.352956Z", - "iopub.status.idle": "2024-01-17T18:10:26.358205Z", - "shell.execute_reply": "2024-01-17T18:10:26.357689Z" + "iopub.execute_input": "2024-01-17T23:12:30.049676Z", + "iopub.status.busy": "2024-01-17T23:12:30.049240Z", + "iopub.status.idle": "2024-01-17T23:12:30.053883Z", + "shell.execute_reply": "2024-01-17T23:12:30.053284Z" }, "id": "-iRPe8KXjruW" }, @@ -1426,10 +1426,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.360522Z", - "iopub.status.busy": "2024-01-17T18:10:26.360138Z", - "iopub.status.idle": "2024-01-17T18:10:26.400534Z", - "shell.execute_reply": "2024-01-17T18:10:26.399805Z" + "iopub.execute_input": "2024-01-17T23:12:30.056405Z", + "iopub.status.busy": "2024-01-17T23:12:30.055960Z", + "iopub.status.idle": "2024-01-17T23:12:30.095504Z", + "shell.execute_reply": "2024-01-17T23:12:30.094989Z" }, "id": "ZpipUliyjruW" }, @@ -1480,10 +1480,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.403784Z", - "iopub.status.busy": "2024-01-17T18:10:26.403295Z", - "iopub.status.idle": "2024-01-17T18:10:26.450103Z", - "shell.execute_reply": "2024-01-17T18:10:26.449493Z" + "iopub.execute_input": "2024-01-17T23:12:30.097960Z", + "iopub.status.busy": "2024-01-17T23:12:30.097577Z", + "iopub.status.idle": "2024-01-17T23:12:30.144004Z", + "shell.execute_reply": "2024-01-17T23:12:30.143423Z" }, "id": "SLq-3q4xjruX" }, @@ -1552,10 +1552,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.452754Z", - "iopub.status.busy": "2024-01-17T18:10:26.452361Z", - "iopub.status.idle": "2024-01-17T18:10:26.564403Z", - "shell.execute_reply": "2024-01-17T18:10:26.563611Z" + "iopub.execute_input": "2024-01-17T23:12:30.146635Z", + "iopub.status.busy": "2024-01-17T23:12:30.146169Z", + "iopub.status.idle": "2024-01-17T23:12:30.252527Z", + "shell.execute_reply": "2024-01-17T23:12:30.251862Z" }, "id": "g5LHhhuqFbXK" }, @@ -1587,10 +1587,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.567555Z", - "iopub.status.busy": "2024-01-17T18:10:26.567278Z", - "iopub.status.idle": "2024-01-17T18:10:26.680006Z", - "shell.execute_reply": "2024-01-17T18:10:26.679288Z" + "iopub.execute_input": "2024-01-17T23:12:30.255773Z", + "iopub.status.busy": "2024-01-17T23:12:30.255280Z", + "iopub.status.idle": "2024-01-17T23:12:30.355493Z", + "shell.execute_reply": "2024-01-17T23:12:30.354791Z" }, "id": "p7w8F8ezBcet" }, @@ -1647,10 +1647,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.682699Z", - "iopub.status.busy": "2024-01-17T18:10:26.682408Z", - "iopub.status.idle": "2024-01-17T18:10:26.885900Z", - "shell.execute_reply": "2024-01-17T18:10:26.885214Z" + "iopub.execute_input": "2024-01-17T23:12:30.358291Z", + "iopub.status.busy": "2024-01-17T23:12:30.358031Z", + "iopub.status.idle": "2024-01-17T23:12:30.561214Z", + "shell.execute_reply": "2024-01-17T23:12:30.560494Z" }, "id": "WETRL74tE_sU" }, @@ -1685,10 +1685,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.888642Z", - "iopub.status.busy": "2024-01-17T18:10:26.888408Z", - "iopub.status.idle": "2024-01-17T18:10:27.119260Z", - "shell.execute_reply": "2024-01-17T18:10:27.118551Z" + "iopub.execute_input": "2024-01-17T23:12:30.563781Z", + "iopub.status.busy": "2024-01-17T23:12:30.563569Z", + "iopub.status.idle": "2024-01-17T23:12:30.778738Z", + "shell.execute_reply": "2024-01-17T23:12:30.778106Z" }, "id": "kCfdx2gOLmXS" }, @@ -1850,10 +1850,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:27.121834Z", - "iopub.status.busy": "2024-01-17T18:10:27.121615Z", - "iopub.status.idle": "2024-01-17T18:10:27.128106Z", - "shell.execute_reply": "2024-01-17T18:10:27.127583Z" + "iopub.execute_input": "2024-01-17T23:12:30.781569Z", + "iopub.status.busy": "2024-01-17T23:12:30.781097Z", + "iopub.status.idle": "2024-01-17T23:12:30.787611Z", + "shell.execute_reply": "2024-01-17T23:12:30.787090Z" }, "id": "-uogYRWFYnuu" }, @@ -1907,10 +1907,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:27.130325Z", - "iopub.status.busy": "2024-01-17T18:10:27.130128Z", - "iopub.status.idle": "2024-01-17T18:10:27.340313Z", - "shell.execute_reply": "2024-01-17T18:10:27.339598Z" + "iopub.execute_input": "2024-01-17T23:12:30.789959Z", + "iopub.status.busy": "2024-01-17T23:12:30.789573Z", + "iopub.status.idle": "2024-01-17T23:12:30.995874Z", + "shell.execute_reply": "2024-01-17T23:12:30.995216Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1957,10 +1957,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:27.342786Z", - "iopub.status.busy": "2024-01-17T18:10:27.342557Z", - "iopub.status.idle": "2024-01-17T18:10:28.416510Z", - "shell.execute_reply": "2024-01-17T18:10:28.415789Z" + "iopub.execute_input": "2024-01-17T23:12:30.998644Z", + "iopub.status.busy": "2024-01-17T23:12:30.998256Z", + "iopub.status.idle": "2024-01-17T23:12:32.077472Z", + "shell.execute_reply": "2024-01-17T23:12:32.076842Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index cfe891b73..7aab0ca60 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:34.066939Z", - "iopub.status.busy": "2024-01-17T18:10:34.066726Z", - "iopub.status.idle": "2024-01-17T18:10:35.107469Z", - "shell.execute_reply": "2024-01-17T18:10:35.106848Z" + "iopub.execute_input": "2024-01-17T23:12:37.119091Z", + "iopub.status.busy": "2024-01-17T23:12:37.118893Z", + "iopub.status.idle": "2024-01-17T23:12:38.145112Z", + "shell.execute_reply": "2024-01-17T23:12:38.144486Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.110492Z", - "iopub.status.busy": "2024-01-17T18:10:35.110165Z", - "iopub.status.idle": "2024-01-17T18:10:35.113533Z", - "shell.execute_reply": "2024-01-17T18:10:35.112907Z" + "iopub.execute_input": "2024-01-17T23:12:38.148219Z", + "iopub.status.busy": "2024-01-17T23:12:38.147778Z", + "iopub.status.idle": "2024-01-17T23:12:38.151072Z", + "shell.execute_reply": "2024-01-17T23:12:38.150569Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.116141Z", - "iopub.status.busy": "2024-01-17T18:10:35.115710Z", - "iopub.status.idle": "2024-01-17T18:10:35.124258Z", - "shell.execute_reply": "2024-01-17T18:10:35.123628Z" + "iopub.execute_input": "2024-01-17T23:12:38.153453Z", + "iopub.status.busy": "2024-01-17T23:12:38.153123Z", + "iopub.status.idle": "2024-01-17T23:12:38.161595Z", + "shell.execute_reply": "2024-01-17T23:12:38.160994Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.126617Z", - "iopub.status.busy": "2024-01-17T18:10:35.126181Z", - "iopub.status.idle": "2024-01-17T18:10:35.174782Z", - "shell.execute_reply": "2024-01-17T18:10:35.174277Z" + "iopub.execute_input": "2024-01-17T23:12:38.163930Z", + "iopub.status.busy": "2024-01-17T23:12:38.163445Z", + "iopub.status.idle": "2024-01-17T23:12:38.215430Z", + "shell.execute_reply": "2024-01-17T23:12:38.214906Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.177183Z", - "iopub.status.busy": "2024-01-17T18:10:35.176965Z", - "iopub.status.idle": "2024-01-17T18:10:35.196729Z", - "shell.execute_reply": "2024-01-17T18:10:35.196205Z" + "iopub.execute_input": "2024-01-17T23:12:38.217958Z", + "iopub.status.busy": "2024-01-17T23:12:38.217555Z", + "iopub.status.idle": "2024-01-17T23:12:38.236753Z", + "shell.execute_reply": "2024-01-17T23:12:38.236121Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.199192Z", - "iopub.status.busy": "2024-01-17T18:10:35.198837Z", - "iopub.status.idle": "2024-01-17T18:10:35.202844Z", - "shell.execute_reply": "2024-01-17T18:10:35.202255Z" + "iopub.execute_input": "2024-01-17T23:12:38.239132Z", + "iopub.status.busy": "2024-01-17T23:12:38.238775Z", + "iopub.status.idle": "2024-01-17T23:12:38.242790Z", + "shell.execute_reply": "2024-01-17T23:12:38.242281Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.205415Z", - "iopub.status.busy": "2024-01-17T18:10:35.204931Z", - "iopub.status.idle": "2024-01-17T18:10:35.232341Z", - "shell.execute_reply": "2024-01-17T18:10:35.231693Z" + "iopub.execute_input": "2024-01-17T23:12:38.245093Z", + "iopub.status.busy": "2024-01-17T23:12:38.244847Z", + "iopub.status.idle": "2024-01-17T23:12:38.275707Z", + "shell.execute_reply": "2024-01-17T23:12:38.275228Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.234865Z", - "iopub.status.busy": "2024-01-17T18:10:35.234654Z", - "iopub.status.idle": "2024-01-17T18:10:35.262331Z", - "shell.execute_reply": "2024-01-17T18:10:35.261831Z" + "iopub.execute_input": "2024-01-17T23:12:38.277989Z", + "iopub.status.busy": "2024-01-17T23:12:38.277604Z", + "iopub.status.idle": "2024-01-17T23:12:38.304773Z", + "shell.execute_reply": "2024-01-17T23:12:38.304291Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.264679Z", - "iopub.status.busy": "2024-01-17T18:10:35.264478Z", - "iopub.status.idle": "2024-01-17T18:10:36.634552Z", - "shell.execute_reply": "2024-01-17T18:10:36.633890Z" + "iopub.execute_input": "2024-01-17T23:12:38.307191Z", + "iopub.status.busy": "2024-01-17T23:12:38.306725Z", + "iopub.status.idle": "2024-01-17T23:12:39.660035Z", + "shell.execute_reply": "2024-01-17T23:12:39.659311Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.637556Z", - "iopub.status.busy": "2024-01-17T18:10:36.637138Z", - "iopub.status.idle": "2024-01-17T18:10:36.644742Z", - "shell.execute_reply": "2024-01-17T18:10:36.644122Z" + "iopub.execute_input": "2024-01-17T23:12:39.663258Z", + "iopub.status.busy": "2024-01-17T23:12:39.662839Z", + "iopub.status.idle": "2024-01-17T23:12:39.670307Z", + "shell.execute_reply": "2024-01-17T23:12:39.669734Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.647074Z", - "iopub.status.busy": "2024-01-17T18:10:36.646869Z", - "iopub.status.idle": "2024-01-17T18:10:36.661069Z", - "shell.execute_reply": "2024-01-17T18:10:36.660517Z" + "iopub.execute_input": "2024-01-17T23:12:39.672727Z", + "iopub.status.busy": "2024-01-17T23:12:39.672379Z", + "iopub.status.idle": "2024-01-17T23:12:39.686172Z", + "shell.execute_reply": "2024-01-17T23:12:39.685544Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.663330Z", - "iopub.status.busy": "2024-01-17T18:10:36.663130Z", - "iopub.status.idle": "2024-01-17T18:10:36.670332Z", - "shell.execute_reply": "2024-01-17T18:10:36.669799Z" + "iopub.execute_input": "2024-01-17T23:12:39.688633Z", + "iopub.status.busy": "2024-01-17T23:12:39.688179Z", + "iopub.status.idle": "2024-01-17T23:12:39.694998Z", + "shell.execute_reply": "2024-01-17T23:12:39.694392Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.672921Z", - "iopub.status.busy": "2024-01-17T18:10:36.672547Z", - "iopub.status.idle": "2024-01-17T18:10:36.675600Z", - "shell.execute_reply": "2024-01-17T18:10:36.675078Z" + "iopub.execute_input": "2024-01-17T23:12:39.697375Z", + "iopub.status.busy": "2024-01-17T23:12:39.696998Z", + "iopub.status.idle": "2024-01-17T23:12:39.699962Z", + "shell.execute_reply": "2024-01-17T23:12:39.699338Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.677889Z", - "iopub.status.busy": "2024-01-17T18:10:36.677688Z", - "iopub.status.idle": "2024-01-17T18:10:36.682112Z", - "shell.execute_reply": "2024-01-17T18:10:36.681569Z" + "iopub.execute_input": "2024-01-17T23:12:39.702455Z", + "iopub.status.busy": "2024-01-17T23:12:39.702117Z", + "iopub.status.idle": "2024-01-17T23:12:39.706331Z", + "shell.execute_reply": "2024-01-17T23:12:39.705698Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.684614Z", - "iopub.status.busy": "2024-01-17T18:10:36.684230Z", - "iopub.status.idle": "2024-01-17T18:10:36.687195Z", - "shell.execute_reply": "2024-01-17T18:10:36.686658Z" + "iopub.execute_input": "2024-01-17T23:12:39.708839Z", + "iopub.status.busy": "2024-01-17T23:12:39.708410Z", + "iopub.status.idle": "2024-01-17T23:12:39.711306Z", + "shell.execute_reply": "2024-01-17T23:12:39.710774Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.689699Z", - "iopub.status.busy": "2024-01-17T18:10:36.689303Z", - "iopub.status.idle": "2024-01-17T18:10:36.693988Z", - "shell.execute_reply": "2024-01-17T18:10:36.693350Z" + "iopub.execute_input": "2024-01-17T23:12:39.713686Z", + "iopub.status.busy": "2024-01-17T23:12:39.713257Z", + "iopub.status.idle": "2024-01-17T23:12:39.717980Z", + "shell.execute_reply": "2024-01-17T23:12:39.717452Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.696492Z", - "iopub.status.busy": "2024-01-17T18:10:36.696127Z", - "iopub.status.idle": "2024-01-17T18:10:36.730677Z", - "shell.execute_reply": "2024-01-17T18:10:36.730063Z" + "iopub.execute_input": "2024-01-17T23:12:39.720498Z", + "iopub.status.busy": "2024-01-17T23:12:39.720135Z", + "iopub.status.idle": "2024-01-17T23:12:39.753497Z", + "shell.execute_reply": "2024-01-17T23:12:39.753003Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.733736Z", - "iopub.status.busy": "2024-01-17T18:10:36.733290Z", - "iopub.status.idle": "2024-01-17T18:10:36.739015Z", - "shell.execute_reply": "2024-01-17T18:10:36.738419Z" + "iopub.execute_input": "2024-01-17T23:12:39.755769Z", + "iopub.status.busy": "2024-01-17T23:12:39.755564Z", + "iopub.status.idle": "2024-01-17T23:12:39.760459Z", + "shell.execute_reply": "2024-01-17T23:12:39.759917Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 345c02d68..870f9da70 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:41.555662Z", - "iopub.status.busy": "2024-01-17T18:10:41.555447Z", - "iopub.status.idle": "2024-01-17T18:10:42.641450Z", - "shell.execute_reply": "2024-01-17T18:10:42.640766Z" + "iopub.execute_input": "2024-01-17T23:12:45.381897Z", + "iopub.status.busy": "2024-01-17T23:12:45.381706Z", + "iopub.status.idle": "2024-01-17T23:12:46.455370Z", + "shell.execute_reply": "2024-01-17T23:12:46.454763Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:42.644299Z", - "iopub.status.busy": "2024-01-17T18:10:42.643939Z", - "iopub.status.idle": "2024-01-17T18:10:42.934236Z", - "shell.execute_reply": "2024-01-17T18:10:42.933614Z" + "iopub.execute_input": "2024-01-17T23:12:46.458206Z", + "iopub.status.busy": "2024-01-17T23:12:46.457873Z", + "iopub.status.idle": "2024-01-17T23:12:46.742282Z", + "shell.execute_reply": "2024-01-17T23:12:46.741647Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:42.937365Z", - "iopub.status.busy": "2024-01-17T18:10:42.936893Z", - "iopub.status.idle": "2024-01-17T18:10:42.950979Z", - "shell.execute_reply": "2024-01-17T18:10:42.950488Z" + "iopub.execute_input": "2024-01-17T23:12:46.745006Z", + "iopub.status.busy": "2024-01-17T23:12:46.744797Z", + "iopub.status.idle": "2024-01-17T23:12:46.758584Z", + "shell.execute_reply": "2024-01-17T23:12:46.758067Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:42.953251Z", - "iopub.status.busy": "2024-01-17T18:10:42.953039Z", - "iopub.status.idle": "2024-01-17T18:10:45.626467Z", - "shell.execute_reply": "2024-01-17T18:10:45.625783Z" + "iopub.execute_input": "2024-01-17T23:12:46.761055Z", + "iopub.status.busy": "2024-01-17T23:12:46.760585Z", + "iopub.status.idle": "2024-01-17T23:12:49.437361Z", + "shell.execute_reply": "2024-01-17T23:12:49.436698Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:45.629098Z", - "iopub.status.busy": "2024-01-17T18:10:45.628708Z", - "iopub.status.idle": "2024-01-17T18:10:47.211836Z", - "shell.execute_reply": "2024-01-17T18:10:47.211233Z" + "iopub.execute_input": "2024-01-17T23:12:49.440037Z", + "iopub.status.busy": "2024-01-17T23:12:49.439727Z", + "iopub.status.idle": "2024-01-17T23:12:51.019074Z", + "shell.execute_reply": "2024-01-17T23:12:51.018452Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:47.214903Z", - "iopub.status.busy": "2024-01-17T18:10:47.214448Z", - "iopub.status.idle": "2024-01-17T18:10:47.220079Z", - "shell.execute_reply": "2024-01-17T18:10:47.219546Z" + "iopub.execute_input": "2024-01-17T23:12:51.021987Z", + "iopub.status.busy": "2024-01-17T23:12:51.021563Z", + "iopub.status.idle": "2024-01-17T23:12:51.026386Z", + "shell.execute_reply": "2024-01-17T23:12:51.025743Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:47.222591Z", - "iopub.status.busy": "2024-01-17T18:10:47.222214Z", - "iopub.status.idle": "2024-01-17T18:10:48.654551Z", - "shell.execute_reply": "2024-01-17T18:10:48.653628Z" + "iopub.execute_input": "2024-01-17T23:12:51.028795Z", + "iopub.status.busy": "2024-01-17T23:12:51.028423Z", + "iopub.status.idle": "2024-01-17T23:12:52.362154Z", + "shell.execute_reply": "2024-01-17T23:12:52.361435Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:48.658404Z", - "iopub.status.busy": "2024-01-17T18:10:48.657649Z", - "iopub.status.idle": "2024-01-17T18:10:51.504151Z", - "shell.execute_reply": "2024-01-17T18:10:51.503505Z" + "iopub.execute_input": "2024-01-17T23:12:52.365370Z", + "iopub.status.busy": "2024-01-17T23:12:52.364687Z", + "iopub.status.idle": "2024-01-17T23:12:55.189939Z", + "shell.execute_reply": "2024-01-17T23:12:55.189338Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:51.506885Z", - "iopub.status.busy": "2024-01-17T18:10:51.506474Z", - "iopub.status.idle": "2024-01-17T18:10:51.511559Z", - "shell.execute_reply": "2024-01-17T18:10:51.510930Z" + "iopub.execute_input": "2024-01-17T23:12:55.192359Z", + "iopub.status.busy": "2024-01-17T23:12:55.192152Z", + "iopub.status.idle": "2024-01-17T23:12:55.197237Z", + "shell.execute_reply": "2024-01-17T23:12:55.196716Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:51.514207Z", - "iopub.status.busy": "2024-01-17T18:10:51.513861Z", - "iopub.status.idle": "2024-01-17T18:10:51.518178Z", - "shell.execute_reply": "2024-01-17T18:10:51.517551Z" + "iopub.execute_input": "2024-01-17T23:12:55.199466Z", + "iopub.status.busy": "2024-01-17T23:12:55.199269Z", + "iopub.status.idle": "2024-01-17T23:12:55.203414Z", + "shell.execute_reply": "2024-01-17T23:12:55.202885Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:51.520433Z", - "iopub.status.busy": "2024-01-17T18:10:51.520221Z", - "iopub.status.idle": "2024-01-17T18:10:51.523664Z", - "shell.execute_reply": "2024-01-17T18:10:51.523119Z" + "iopub.execute_input": "2024-01-17T23:12:55.205569Z", + "iopub.status.busy": "2024-01-17T23:12:55.205370Z", + "iopub.status.idle": "2024-01-17T23:12:55.208734Z", + "shell.execute_reply": "2024-01-17T23:12:55.208218Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index dbc911529..8bd932980 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:56.270011Z", - "iopub.status.busy": "2024-01-17T18:10:56.269487Z", - "iopub.status.idle": "2024-01-17T18:10:57.381241Z", - "shell.execute_reply": "2024-01-17T18:10:57.380625Z" + "iopub.execute_input": "2024-01-17T23:13:00.015965Z", + "iopub.status.busy": "2024-01-17T23:13:00.015766Z", + "iopub.status.idle": "2024-01-17T23:13:01.088856Z", + "shell.execute_reply": "2024-01-17T23:13:01.088251Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:57.384088Z", - "iopub.status.busy": "2024-01-17T18:10:57.383700Z", - "iopub.status.idle": "2024-01-17T18:10:58.753470Z", - "shell.execute_reply": "2024-01-17T18:10:58.752605Z" + "iopub.execute_input": "2024-01-17T23:13:01.091695Z", + "iopub.status.busy": "2024-01-17T23:13:01.091313Z", + "iopub.status.idle": "2024-01-17T23:13:02.386388Z", + "shell.execute_reply": "2024-01-17T23:13:02.385615Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:58.756374Z", - "iopub.status.busy": "2024-01-17T18:10:58.756152Z", - "iopub.status.idle": "2024-01-17T18:10:58.759433Z", - "shell.execute_reply": "2024-01-17T18:10:58.758883Z" + "iopub.execute_input": "2024-01-17T23:13:02.389277Z", + "iopub.status.busy": "2024-01-17T23:13:02.388865Z", + "iopub.status.idle": "2024-01-17T23:13:02.392078Z", + "shell.execute_reply": "2024-01-17T23:13:02.391529Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:58.761637Z", - "iopub.status.busy": "2024-01-17T18:10:58.761440Z", - "iopub.status.idle": "2024-01-17T18:10:58.766806Z", - "shell.execute_reply": "2024-01-17T18:10:58.766335Z" + "iopub.execute_input": "2024-01-17T23:13:02.394243Z", + "iopub.status.busy": "2024-01-17T23:13:02.394041Z", + "iopub.status.idle": "2024-01-17T23:13:02.399439Z", + "shell.execute_reply": "2024-01-17T23:13:02.398974Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:58.768917Z", - "iopub.status.busy": "2024-01-17T18:10:58.768711Z", - "iopub.status.idle": "2024-01-17T18:10:59.379953Z", - "shell.execute_reply": "2024-01-17T18:10:59.379277Z" + "iopub.execute_input": "2024-01-17T23:13:02.401585Z", + "iopub.status.busy": "2024-01-17T23:13:02.401389Z", + "iopub.status.idle": "2024-01-17T23:13:03.000882Z", + "shell.execute_reply": "2024-01-17T23:13:03.000200Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:59.383016Z", - "iopub.status.busy": "2024-01-17T18:10:59.382511Z", - "iopub.status.idle": "2024-01-17T18:10:59.388670Z", - "shell.execute_reply": "2024-01-17T18:10:59.388096Z" + "iopub.execute_input": "2024-01-17T23:13:03.004104Z", + "iopub.status.busy": "2024-01-17T23:13:03.003684Z", + "iopub.status.idle": "2024-01-17T23:13:03.009713Z", + "shell.execute_reply": "2024-01-17T23:13:03.009212Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:59.391089Z", - "iopub.status.busy": "2024-01-17T18:10:59.390893Z", - "iopub.status.idle": "2024-01-17T18:10:59.394956Z", - "shell.execute_reply": "2024-01-17T18:10:59.394468Z" + "iopub.execute_input": "2024-01-17T23:13:03.011996Z", + "iopub.status.busy": "2024-01-17T23:13:03.011640Z", + "iopub.status.idle": "2024-01-17T23:13:03.015800Z", + "shell.execute_reply": "2024-01-17T23:13:03.015298Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:59.397137Z", - "iopub.status.busy": "2024-01-17T18:10:59.396930Z", - "iopub.status.idle": "2024-01-17T18:11:00.095222Z", - "shell.execute_reply": "2024-01-17T18:11:00.094559Z" + "iopub.execute_input": "2024-01-17T23:13:03.018314Z", + "iopub.status.busy": "2024-01-17T23:13:03.017851Z", + "iopub.status.idle": "2024-01-17T23:13:03.630150Z", + "shell.execute_reply": "2024-01-17T23:13:03.629427Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.098096Z", - "iopub.status.busy": "2024-01-17T18:11:00.097682Z", - "iopub.status.idle": "2024-01-17T18:11:00.189490Z", - "shell.execute_reply": "2024-01-17T18:11:00.188840Z" + "iopub.execute_input": "2024-01-17T23:13:03.632920Z", + "iopub.status.busy": "2024-01-17T23:13:03.632509Z", + "iopub.status.idle": "2024-01-17T23:13:03.740338Z", + "shell.execute_reply": "2024-01-17T23:13:03.739687Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.192112Z", - "iopub.status.busy": "2024-01-17T18:11:00.191749Z", - "iopub.status.idle": "2024-01-17T18:11:00.196425Z", - "shell.execute_reply": "2024-01-17T18:11:00.195812Z" + "iopub.execute_input": "2024-01-17T23:13:03.742826Z", + "iopub.status.busy": "2024-01-17T23:13:03.742438Z", + "iopub.status.idle": "2024-01-17T23:13:03.746983Z", + "shell.execute_reply": "2024-01-17T23:13:03.746385Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.198699Z", - "iopub.status.busy": "2024-01-17T18:11:00.198356Z", - "iopub.status.idle": "2024-01-17T18:11:00.573742Z", - "shell.execute_reply": "2024-01-17T18:11:00.573082Z" + "iopub.execute_input": "2024-01-17T23:13:03.749393Z", + "iopub.status.busy": "2024-01-17T23:13:03.749035Z", + "iopub.status.idle": "2024-01-17T23:13:04.126430Z", + "shell.execute_reply": "2024-01-17T23:13:04.125638Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.576878Z", - "iopub.status.busy": "2024-01-17T18:11:00.576638Z", - "iopub.status.idle": "2024-01-17T18:11:00.916426Z", - "shell.execute_reply": "2024-01-17T18:11:00.915786Z" + "iopub.execute_input": "2024-01-17T23:13:04.129102Z", + "iopub.status.busy": "2024-01-17T23:13:04.128646Z", + "iopub.status.idle": "2024-01-17T23:13:04.466798Z", + "shell.execute_reply": "2024-01-17T23:13:04.466140Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.919738Z", - "iopub.status.busy": "2024-01-17T18:11:00.919345Z", - "iopub.status.idle": "2024-01-17T18:11:01.302132Z", - "shell.execute_reply": "2024-01-17T18:11:01.301169Z" + "iopub.execute_input": "2024-01-17T23:13:04.469970Z", + "iopub.status.busy": "2024-01-17T23:13:04.469557Z", + "iopub.status.idle": "2024-01-17T23:13:04.855437Z", + "shell.execute_reply": "2024-01-17T23:13:04.854746Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:01.305447Z", - "iopub.status.busy": "2024-01-17T18:11:01.305205Z", - "iopub.status.idle": "2024-01-17T18:11:01.743265Z", - "shell.execute_reply": "2024-01-17T18:11:01.742611Z" + "iopub.execute_input": "2024-01-17T23:13:04.858407Z", + "iopub.status.busy": "2024-01-17T23:13:04.858151Z", + "iopub.status.idle": "2024-01-17T23:13:05.320000Z", + "shell.execute_reply": "2024-01-17T23:13:05.319330Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:01.747782Z", - "iopub.status.busy": "2024-01-17T18:11:01.747564Z", - "iopub.status.idle": "2024-01-17T18:11:02.177235Z", - "shell.execute_reply": "2024-01-17T18:11:02.176546Z" + "iopub.execute_input": "2024-01-17T23:13:05.324336Z", + "iopub.status.busy": "2024-01-17T23:13:05.323918Z", + "iopub.status.idle": "2024-01-17T23:13:05.792579Z", + "shell.execute_reply": "2024-01-17T23:13:05.791924Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:02.180504Z", - "iopub.status.busy": "2024-01-17T18:11:02.180026Z", - "iopub.status.idle": "2024-01-17T18:11:02.496037Z", - "shell.execute_reply": "2024-01-17T18:11:02.495341Z" + "iopub.execute_input": "2024-01-17T23:13:05.795897Z", + "iopub.status.busy": "2024-01-17T23:13:05.795682Z", + "iopub.status.idle": "2024-01-17T23:13:06.121035Z", + "shell.execute_reply": "2024-01-17T23:13:06.120426Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:02.499471Z", - "iopub.status.busy": "2024-01-17T18:11:02.498870Z", - "iopub.status.idle": "2024-01-17T18:11:02.702199Z", - "shell.execute_reply": "2024-01-17T18:11:02.701491Z" + "iopub.execute_input": "2024-01-17T23:13:06.123681Z", + "iopub.status.busy": "2024-01-17T23:13:06.123465Z", + "iopub.status.idle": "2024-01-17T23:13:06.322246Z", + "shell.execute_reply": "2024-01-17T23:13:06.321624Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:02.704604Z", - "iopub.status.busy": "2024-01-17T18:11:02.704393Z", - "iopub.status.idle": "2024-01-17T18:11:02.709155Z", - "shell.execute_reply": "2024-01-17T18:11:02.708516Z" + "iopub.execute_input": "2024-01-17T23:13:06.325012Z", + "iopub.status.busy": "2024-01-17T23:13:06.324597Z", + "iopub.status.idle": "2024-01-17T23:13:06.328427Z", + "shell.execute_reply": "2024-01-17T23:13:06.327899Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 4968673b9..bd88b2fad 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:05.142211Z", - "iopub.status.busy": "2024-01-17T18:11:05.141650Z", - "iopub.status.idle": "2024-01-17T18:11:07.187769Z", - "shell.execute_reply": "2024-01-17T18:11:07.187028Z" + "iopub.execute_input": "2024-01-17T23:13:08.406000Z", + "iopub.status.busy": "2024-01-17T23:13:08.405789Z", + "iopub.status.idle": "2024-01-17T23:13:10.340846Z", + "shell.execute_reply": "2024-01-17T23:13:10.340212Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:07.191099Z", - "iopub.status.busy": "2024-01-17T18:11:07.190494Z", - "iopub.status.idle": "2024-01-17T18:11:07.529231Z", - "shell.execute_reply": "2024-01-17T18:11:07.528438Z" + "iopub.execute_input": "2024-01-17T23:13:10.343878Z", + "iopub.status.busy": "2024-01-17T23:13:10.343422Z", + "iopub.status.idle": "2024-01-17T23:13:10.660493Z", + "shell.execute_reply": "2024-01-17T23:13:10.659800Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:07.532317Z", - "iopub.status.busy": "2024-01-17T18:11:07.531754Z", - "iopub.status.idle": "2024-01-17T18:11:07.536174Z", - "shell.execute_reply": "2024-01-17T18:11:07.535550Z" + "iopub.execute_input": "2024-01-17T23:13:10.663317Z", + "iopub.status.busy": "2024-01-17T23:13:10.663104Z", + "iopub.status.idle": "2024-01-17T23:13:10.667300Z", + "shell.execute_reply": "2024-01-17T23:13:10.666820Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:07.538835Z", - "iopub.status.busy": "2024-01-17T18:11:07.538474Z", - "iopub.status.idle": "2024-01-17T18:11:11.753022Z", - "shell.execute_reply": "2024-01-17T18:11:11.752366Z" + "iopub.execute_input": "2024-01-17T23:13:10.669596Z", + "iopub.status.busy": "2024-01-17T23:13:10.669232Z", + "iopub.status.idle": "2024-01-17T23:13:14.971485Z", + "shell.execute_reply": "2024-01-17T23:13:14.970803Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94ffd2c8ec814e019f2b36b808770db9", + "model_id": "6047426b013f47c49a17843cd40c0b2e", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:11.755600Z", - "iopub.status.busy": "2024-01-17T18:11:11.755226Z", - "iopub.status.idle": "2024-01-17T18:11:11.762083Z", - "shell.execute_reply": "2024-01-17T18:11:11.759899Z" + "iopub.execute_input": "2024-01-17T23:13:14.974264Z", + "iopub.status.busy": "2024-01-17T23:13:14.973841Z", + "iopub.status.idle": "2024-01-17T23:13:14.978950Z", + "shell.execute_reply": "2024-01-17T23:13:14.978415Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:11.764664Z", - "iopub.status.busy": "2024-01-17T18:11:11.764465Z", - "iopub.status.idle": "2024-01-17T18:11:12.328987Z", - "shell.execute_reply": "2024-01-17T18:11:12.328323Z" + "iopub.execute_input": "2024-01-17T23:13:14.981395Z", + "iopub.status.busy": "2024-01-17T23:13:14.980946Z", + "iopub.status.idle": "2024-01-17T23:13:15.518999Z", + "shell.execute_reply": "2024-01-17T23:13:15.518328Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:12.331547Z", - "iopub.status.busy": "2024-01-17T18:11:12.331336Z", - "iopub.status.idle": "2024-01-17T18:11:12.972317Z", - "shell.execute_reply": "2024-01-17T18:11:12.971642Z" + "iopub.execute_input": "2024-01-17T23:13:15.521673Z", + "iopub.status.busy": "2024-01-17T23:13:15.521449Z", + "iopub.status.idle": "2024-01-17T23:13:16.161297Z", + "shell.execute_reply": "2024-01-17T23:13:16.160609Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:12.974776Z", - "iopub.status.busy": "2024-01-17T18:11:12.974562Z", - "iopub.status.idle": "2024-01-17T18:11:12.978442Z", - "shell.execute_reply": "2024-01-17T18:11:12.977910Z" + "iopub.execute_input": "2024-01-17T23:13:16.164039Z", + "iopub.status.busy": "2024-01-17T23:13:16.163636Z", + "iopub.status.idle": "2024-01-17T23:13:16.167332Z", + "shell.execute_reply": "2024-01-17T23:13:16.166795Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:12.980858Z", - "iopub.status.busy": "2024-01-17T18:11:12.980485Z", - "iopub.status.idle": "2024-01-17T18:11:25.431905Z", - "shell.execute_reply": "2024-01-17T18:11:25.431175Z" + "iopub.execute_input": "2024-01-17T23:13:16.169667Z", + "iopub.status.busy": "2024-01-17T23:13:16.169312Z", + "iopub.status.idle": "2024-01-17T23:13:28.179162Z", + "shell.execute_reply": "2024-01-17T23:13:28.178540Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:25.434666Z", - "iopub.status.busy": "2024-01-17T18:11:25.434434Z", - "iopub.status.idle": "2024-01-17T18:11:26.998669Z", - "shell.execute_reply": "2024-01-17T18:11:26.997927Z" + "iopub.execute_input": "2024-01-17T23:13:28.182004Z", + "iopub.status.busy": "2024-01-17T23:13:28.181558Z", + "iopub.status.idle": "2024-01-17T23:13:29.717779Z", + "shell.execute_reply": "2024-01-17T23:13:29.716989Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:27.001780Z", - "iopub.status.busy": "2024-01-17T18:11:27.001137Z", - "iopub.status.idle": "2024-01-17T18:11:27.269493Z", - "shell.execute_reply": "2024-01-17T18:11:27.268620Z" + "iopub.execute_input": "2024-01-17T23:13:29.720707Z", + "iopub.status.busy": "2024-01-17T23:13:29.720296Z", + "iopub.status.idle": "2024-01-17T23:13:29.954475Z", + "shell.execute_reply": "2024-01-17T23:13:29.953698Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:27.272731Z", - "iopub.status.busy": "2024-01-17T18:11:27.272064Z", - "iopub.status.idle": "2024-01-17T18:11:27.957611Z", - "shell.execute_reply": "2024-01-17T18:11:27.956708Z" + "iopub.execute_input": "2024-01-17T23:13:29.957342Z", + "iopub.status.busy": "2024-01-17T23:13:29.957131Z", + "iopub.status.idle": "2024-01-17T23:13:30.610677Z", + "shell.execute_reply": "2024-01-17T23:13:30.610003Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:27.961024Z", - "iopub.status.busy": "2024-01-17T18:11:27.960734Z", - "iopub.status.idle": "2024-01-17T18:11:28.481913Z", - "shell.execute_reply": "2024-01-17T18:11:28.481164Z" + "iopub.execute_input": "2024-01-17T23:13:30.613503Z", + "iopub.status.busy": "2024-01-17T23:13:30.613295Z", + "iopub.status.idle": "2024-01-17T23:13:31.091930Z", + "shell.execute_reply": "2024-01-17T23:13:31.091231Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:28.485267Z", - "iopub.status.busy": "2024-01-17T18:11:28.484715Z", - "iopub.status.idle": "2024-01-17T18:11:28.738717Z", - "shell.execute_reply": "2024-01-17T18:11:28.737951Z" + "iopub.execute_input": "2024-01-17T23:13:31.094432Z", + "iopub.status.busy": "2024-01-17T23:13:31.094207Z", + "iopub.status.idle": "2024-01-17T23:13:31.340997Z", + "shell.execute_reply": "2024-01-17T23:13:31.340291Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:28.742501Z", - "iopub.status.busy": "2024-01-17T18:11:28.741853Z", - "iopub.status.idle": "2024-01-17T18:11:28.828263Z", - "shell.execute_reply": "2024-01-17T18:11:28.827679Z" + "iopub.execute_input": "2024-01-17T23:13:31.344339Z", + "iopub.status.busy": "2024-01-17T23:13:31.343982Z", + "iopub.status.idle": "2024-01-17T23:13:31.429054Z", + "shell.execute_reply": "2024-01-17T23:13:31.428488Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:28.831018Z", - "iopub.status.busy": "2024-01-17T18:11:28.830693Z", - "iopub.status.idle": "2024-01-17T18:12:06.785768Z", - "shell.execute_reply": "2024-01-17T18:12:06.784990Z" + "iopub.execute_input": "2024-01-17T23:13:31.431988Z", + "iopub.status.busy": "2024-01-17T23:13:31.431565Z", + "iopub.status.idle": "2024-01-17T23:14:09.484257Z", + "shell.execute_reply": "2024-01-17T23:14:09.483536Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:06.788676Z", - "iopub.status.busy": "2024-01-17T18:12:06.788248Z", - "iopub.status.idle": "2024-01-17T18:12:08.033479Z", - "shell.execute_reply": "2024-01-17T18:12:08.032852Z" + "iopub.execute_input": "2024-01-17T23:14:09.487213Z", + "iopub.status.busy": "2024-01-17T23:14:09.486711Z", + "iopub.status.idle": "2024-01-17T23:14:10.689009Z", + "shell.execute_reply": "2024-01-17T23:14:10.688273Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:08.036962Z", - "iopub.status.busy": "2024-01-17T18:12:08.036208Z", - "iopub.status.idle": "2024-01-17T18:12:08.232791Z", - "shell.execute_reply": "2024-01-17T18:12:08.232181Z" + "iopub.execute_input": "2024-01-17T23:14:10.692325Z", + "iopub.status.busy": "2024-01-17T23:14:10.691749Z", + "iopub.status.idle": "2024-01-17T23:14:10.883450Z", + "shell.execute_reply": "2024-01-17T23:14:10.882715Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:08.235701Z", - "iopub.status.busy": "2024-01-17T18:12:08.235355Z", - "iopub.status.idle": "2024-01-17T18:12:08.238889Z", - "shell.execute_reply": "2024-01-17T18:12:08.238378Z" + "iopub.execute_input": "2024-01-17T23:14:10.886396Z", + "iopub.status.busy": "2024-01-17T23:14:10.886034Z", + "iopub.status.idle": "2024-01-17T23:14:10.889447Z", + "shell.execute_reply": "2024-01-17T23:14:10.888823Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:08.241261Z", - "iopub.status.busy": "2024-01-17T18:12:08.241030Z", - "iopub.status.idle": "2024-01-17T18:12:08.250335Z", - "shell.execute_reply": "2024-01-17T18:12:08.249660Z" + "iopub.execute_input": "2024-01-17T23:14:10.891982Z", + "iopub.status.busy": "2024-01-17T23:14:10.891602Z", + "iopub.status.idle": "2024-01-17T23:14:10.900135Z", + "shell.execute_reply": "2024-01-17T23:14:10.899657Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "44fda716909e43628352ea6c49c2ff41": { + "2f9ad96375eb43b79434c86af5089657": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1069,132 +1069,105 @@ "width": null } }, - "4acca3f4f43345808ed1160cde907360": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "3115519043034972b905b0c53494f868": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a13d518f6ab14929a70a4234ad51590d", + "placeholder": "​", + "style": "IPY_MODEL_f57e4dbd7d6c44deadc2f7b94af1255d", + "value": "100%" } }, - "4b5c786cd0e44554a0b38a7e4e5e83b0": { + "3802f1bde2bf44b184140a42223935a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "6a7a1a6e1cd0483ba26f35bf8df07850": { + "3919f9bbffe84644b5c28740e1b586f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "79cb6e9a3ba74463934eec2b0b276fa5": { + "549fd896bf6d492d98bc17a3cadcec46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ecae7d3da8404315949ba1e79252c7e9", - "placeholder": "​", - "style": "IPY_MODEL_9cfcbc6781604ce8bf02eff15dd91a94", - "value": "100%" + "layout": "IPY_MODEL_e2da266fb3f04ca79e2519f380d7a53a", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3919f9bbffe84644b5c28740e1b586f4", + "value": 170498071.0 } }, - "888ff16121af4053a4f316377395b6e9": { + "6047426b013f47c49a17843cd40c0b2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_44fda716909e43628352ea6c49c2ff41", - "placeholder": "​", - "style": "IPY_MODEL_6a7a1a6e1cd0483ba26f35bf8df07850", - "value": " 170498071/170498071 [00:01<00:00, 113387794.23it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3115519043034972b905b0c53494f868", + "IPY_MODEL_549fd896bf6d492d98bc17a3cadcec46", + "IPY_MODEL_a16534c9be87478dbdc9bfae4ae7566b" + ], + "layout": "IPY_MODEL_c2c04344033844fca8dd2955e2dce8d8" } }, - "8a1ccbf8e4d1474ca5594d36a574b20a": { + "a13d518f6ab14929a70a4234ad51590d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1246,68 +1219,80 @@ "width": null } }, - "94ffd2c8ec814e019f2b36b808770db9": { + "a16534c9be87478dbdc9bfae4ae7566b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_79cb6e9a3ba74463934eec2b0b276fa5", - "IPY_MODEL_a012aefd9d514d26aacefc9b267c3824", - "IPY_MODEL_888ff16121af4053a4f316377395b6e9" - ], - "layout": "IPY_MODEL_8a1ccbf8e4d1474ca5594d36a574b20a" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2f9ad96375eb43b79434c86af5089657", + "placeholder": "​", + "style": "IPY_MODEL_3802f1bde2bf44b184140a42223935a4", + "value": " 170498071/170498071 [00:01<00:00, 97316208.25it/s]" } }, - "9cfcbc6781604ce8bf02eff15dd91a94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "c2c04344033844fca8dd2955e2dce8d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a012aefd9d514d26aacefc9b267c3824": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4acca3f4f43345808ed1160cde907360", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4b5c786cd0e44554a0b38a7e4e5e83b0", - "value": 170498071.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ecae7d3da8404315949ba1e79252c7e9": { + "e2da266fb3f04ca79e2519f380d7a53a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,6 +1343,21 @@ "visibility": null, "width": null } + }, + "f57e4dbd7d6c44deadc2f7b94af1255d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index eafa96774..3de0c3413 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:12.975780Z", - "iopub.status.busy": "2024-01-17T18:12:12.975329Z", - "iopub.status.idle": "2024-01-17T18:12:14.087240Z", - "shell.execute_reply": "2024-01-17T18:12:14.086667Z" + "iopub.execute_input": "2024-01-17T23:14:15.960182Z", + "iopub.status.busy": "2024-01-17T23:14:15.959654Z", + "iopub.status.idle": "2024-01-17T23:14:17.062152Z", + "shell.execute_reply": "2024-01-17T23:14:17.061449Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.090216Z", - "iopub.status.busy": "2024-01-17T18:12:14.089748Z", - "iopub.status.idle": "2024-01-17T18:12:14.105993Z", - "shell.execute_reply": "2024-01-17T18:12:14.105493Z" + "iopub.execute_input": "2024-01-17T23:14:17.065102Z", + "iopub.status.busy": "2024-01-17T23:14:17.064826Z", + "iopub.status.idle": "2024-01-17T23:14:17.081276Z", + "shell.execute_reply": "2024-01-17T23:14:17.080798Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.108511Z", - "iopub.status.busy": "2024-01-17T18:12:14.108131Z", - "iopub.status.idle": "2024-01-17T18:12:14.111275Z", - "shell.execute_reply": "2024-01-17T18:12:14.110730Z" + "iopub.execute_input": "2024-01-17T23:14:17.083754Z", + "iopub.status.busy": "2024-01-17T23:14:17.083378Z", + "iopub.status.idle": "2024-01-17T23:14:17.086439Z", + "shell.execute_reply": "2024-01-17T23:14:17.085896Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.113627Z", - "iopub.status.busy": "2024-01-17T18:12:14.113255Z", - "iopub.status.idle": "2024-01-17T18:12:14.211397Z", - "shell.execute_reply": "2024-01-17T18:12:14.210759Z" + "iopub.execute_input": "2024-01-17T23:14:17.088732Z", + "iopub.status.busy": "2024-01-17T23:14:17.088379Z", + "iopub.status.idle": "2024-01-17T23:14:17.163683Z", + "shell.execute_reply": "2024-01-17T23:14:17.163047Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.214337Z", - "iopub.status.busy": "2024-01-17T18:12:14.213937Z", - "iopub.status.idle": "2024-01-17T18:12:14.499529Z", - "shell.execute_reply": "2024-01-17T18:12:14.498832Z" + "iopub.execute_input": "2024-01-17T23:14:17.166444Z", + "iopub.status.busy": "2024-01-17T23:14:17.166096Z", + "iopub.status.idle": "2024-01-17T23:14:17.450591Z", + "shell.execute_reply": "2024-01-17T23:14:17.449863Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.502466Z", - "iopub.status.busy": "2024-01-17T18:12:14.502090Z", - "iopub.status.idle": "2024-01-17T18:12:14.756785Z", - "shell.execute_reply": "2024-01-17T18:12:14.756135Z" + "iopub.execute_input": "2024-01-17T23:14:17.453500Z", + "iopub.status.busy": "2024-01-17T23:14:17.453276Z", + "iopub.status.idle": "2024-01-17T23:14:17.712310Z", + "shell.execute_reply": "2024-01-17T23:14:17.711570Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.759685Z", - "iopub.status.busy": "2024-01-17T18:12:14.759113Z", - "iopub.status.idle": "2024-01-17T18:12:14.763916Z", - "shell.execute_reply": "2024-01-17T18:12:14.763292Z" + "iopub.execute_input": "2024-01-17T23:14:17.715207Z", + "iopub.status.busy": "2024-01-17T23:14:17.714563Z", + "iopub.status.idle": "2024-01-17T23:14:17.719694Z", + "shell.execute_reply": "2024-01-17T23:14:17.719140Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.766230Z", - "iopub.status.busy": "2024-01-17T18:12:14.766027Z", - "iopub.status.idle": "2024-01-17T18:12:14.772493Z", - "shell.execute_reply": "2024-01-17T18:12:14.771995Z" + "iopub.execute_input": "2024-01-17T23:14:17.722020Z", + "iopub.status.busy": "2024-01-17T23:14:17.721636Z", + "iopub.status.idle": "2024-01-17T23:14:17.727795Z", + "shell.execute_reply": "2024-01-17T23:14:17.727294Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.774939Z", - "iopub.status.busy": "2024-01-17T18:12:14.774604Z", - "iopub.status.idle": "2024-01-17T18:12:14.777371Z", - "shell.execute_reply": "2024-01-17T18:12:14.776796Z" + "iopub.execute_input": "2024-01-17T23:14:17.730435Z", + "iopub.status.busy": "2024-01-17T23:14:17.729964Z", + "iopub.status.idle": "2024-01-17T23:14:17.732895Z", + "shell.execute_reply": "2024-01-17T23:14:17.732419Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.779648Z", - "iopub.status.busy": "2024-01-17T18:12:14.779287Z", - "iopub.status.idle": "2024-01-17T18:12:24.954125Z", - "shell.execute_reply": "2024-01-17T18:12:24.953475Z" + "iopub.execute_input": "2024-01-17T23:14:17.735253Z", + "iopub.status.busy": "2024-01-17T23:14:17.734894Z", + "iopub.status.idle": "2024-01-17T23:14:27.746313Z", + "shell.execute_reply": "2024-01-17T23:14:27.745534Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.957367Z", - "iopub.status.busy": "2024-01-17T18:12:24.956688Z", - "iopub.status.idle": "2024-01-17T18:12:24.964247Z", - "shell.execute_reply": "2024-01-17T18:12:24.963650Z" + "iopub.execute_input": "2024-01-17T23:14:27.749932Z", + "iopub.status.busy": "2024-01-17T23:14:27.749187Z", + "iopub.status.idle": "2024-01-17T23:14:27.757016Z", + "shell.execute_reply": "2024-01-17T23:14:27.756392Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.966582Z", - "iopub.status.busy": "2024-01-17T18:12:24.966381Z", - "iopub.status.idle": "2024-01-17T18:12:24.970309Z", - "shell.execute_reply": "2024-01-17T18:12:24.969793Z" + "iopub.execute_input": "2024-01-17T23:14:27.759616Z", + "iopub.status.busy": "2024-01-17T23:14:27.759241Z", + "iopub.status.idle": "2024-01-17T23:14:27.763155Z", + "shell.execute_reply": "2024-01-17T23:14:27.762627Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.972387Z", - "iopub.status.busy": "2024-01-17T18:12:24.972195Z", - "iopub.status.idle": "2024-01-17T18:12:24.976119Z", - "shell.execute_reply": "2024-01-17T18:12:24.975605Z" + "iopub.execute_input": "2024-01-17T23:14:27.765475Z", + "iopub.status.busy": "2024-01-17T23:14:27.765102Z", + "iopub.status.idle": "2024-01-17T23:14:27.768912Z", + "shell.execute_reply": "2024-01-17T23:14:27.768381Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.978399Z", - "iopub.status.busy": "2024-01-17T18:12:24.978063Z", - "iopub.status.idle": "2024-01-17T18:12:24.981351Z", - "shell.execute_reply": "2024-01-17T18:12:24.980720Z" + "iopub.execute_input": "2024-01-17T23:14:27.771349Z", + "iopub.status.busy": "2024-01-17T23:14:27.770935Z", + "iopub.status.idle": "2024-01-17T23:14:27.774415Z", + "shell.execute_reply": "2024-01-17T23:14:27.773861Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.983590Z", - "iopub.status.busy": "2024-01-17T18:12:24.983226Z", - "iopub.status.idle": "2024-01-17T18:12:24.991687Z", - "shell.execute_reply": "2024-01-17T18:12:24.991176Z" + "iopub.execute_input": "2024-01-17T23:14:27.776712Z", + "iopub.status.busy": "2024-01-17T23:14:27.776344Z", + "iopub.status.idle": "2024-01-17T23:14:27.785189Z", + "shell.execute_reply": "2024-01-17T23:14:27.784641Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.993898Z", - "iopub.status.busy": "2024-01-17T18:12:24.993700Z", - "iopub.status.idle": "2024-01-17T18:12:25.140874Z", - "shell.execute_reply": "2024-01-17T18:12:25.140179Z" + "iopub.execute_input": "2024-01-17T23:14:27.787704Z", + "iopub.status.busy": "2024-01-17T23:14:27.787338Z", + "iopub.status.idle": "2024-01-17T23:14:27.937319Z", + "shell.execute_reply": "2024-01-17T23:14:27.936622Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:25.143690Z", - "iopub.status.busy": "2024-01-17T18:12:25.143247Z", - "iopub.status.idle": "2024-01-17T18:12:25.277016Z", - "shell.execute_reply": "2024-01-17T18:12:25.276372Z" + "iopub.execute_input": "2024-01-17T23:14:27.940162Z", + "iopub.status.busy": "2024-01-17T23:14:27.939715Z", + "iopub.status.idle": "2024-01-17T23:14:28.073020Z", + "shell.execute_reply": "2024-01-17T23:14:28.072323Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:25.280112Z", - "iopub.status.busy": "2024-01-17T18:12:25.279620Z", - "iopub.status.idle": "2024-01-17T18:12:25.869524Z", - "shell.execute_reply": "2024-01-17T18:12:25.868796Z" + "iopub.execute_input": "2024-01-17T23:14:28.075914Z", + "iopub.status.busy": "2024-01-17T23:14:28.075472Z", + "iopub.status.idle": "2024-01-17T23:14:28.663372Z", + "shell.execute_reply": "2024-01-17T23:14:28.662637Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:25.872698Z", - "iopub.status.busy": "2024-01-17T18:12:25.872237Z", - "iopub.status.idle": "2024-01-17T18:12:25.955671Z", - "shell.execute_reply": "2024-01-17T18:12:25.954697Z" + "iopub.execute_input": "2024-01-17T23:14:28.666533Z", + "iopub.status.busy": "2024-01-17T23:14:28.666263Z", + "iopub.status.idle": "2024-01-17T23:14:28.748208Z", + "shell.execute_reply": "2024-01-17T23:14:28.747515Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:25.958459Z", - "iopub.status.busy": "2024-01-17T18:12:25.958243Z", - "iopub.status.idle": "2024-01-17T18:12:25.968660Z", - "shell.execute_reply": "2024-01-17T18:12:25.968158Z" + "iopub.execute_input": "2024-01-17T23:14:28.750983Z", + "iopub.status.busy": "2024-01-17T23:14:28.750598Z", + "iopub.status.idle": "2024-01-17T23:14:28.760804Z", + "shell.execute_reply": "2024-01-17T23:14:28.760302Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 277db8411..6376839e6 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:31.125213Z", - "iopub.status.busy": "2024-01-17T18:12:31.124971Z", - "iopub.status.idle": "2024-01-17T18:12:32.801405Z", - "shell.execute_reply": "2024-01-17T18:12:32.800636Z" + "iopub.execute_input": "2024-01-17T23:14:34.017881Z", + "iopub.status.busy": "2024-01-17T23:14:34.017503Z", + "iopub.status.idle": "2024-01-17T23:14:36.066016Z", + "shell.execute_reply": "2024-01-17T23:14:36.065243Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:32.804526Z", - "iopub.status.busy": "2024-01-17T18:12:32.804011Z", - "iopub.status.idle": "2024-01-17T18:13:26.043168Z", - "shell.execute_reply": "2024-01-17T18:13:26.042378Z" + "iopub.execute_input": "2024-01-17T23:14:36.068785Z", + "iopub.status.busy": "2024-01-17T23:14:36.068574Z", + "iopub.status.idle": "2024-01-17T23:15:29.432226Z", + "shell.execute_reply": "2024-01-17T23:15:29.431512Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:26.046070Z", - "iopub.status.busy": "2024-01-17T18:13:26.045857Z", - "iopub.status.idle": "2024-01-17T18:13:27.779303Z", - "shell.execute_reply": "2024-01-17T18:13:27.778617Z" + "iopub.execute_input": "2024-01-17T23:15:29.435338Z", + "iopub.status.busy": "2024-01-17T23:15:29.434915Z", + "iopub.status.idle": "2024-01-17T23:15:30.460838Z", + "shell.execute_reply": "2024-01-17T23:15:30.460233Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.782397Z", - "iopub.status.busy": "2024-01-17T18:13:27.781842Z", - "iopub.status.idle": "2024-01-17T18:13:27.785561Z", - "shell.execute_reply": "2024-01-17T18:13:27.784975Z" + "iopub.execute_input": "2024-01-17T23:15:30.463806Z", + "iopub.status.busy": "2024-01-17T23:15:30.463391Z", + "iopub.status.idle": "2024-01-17T23:15:30.467069Z", + "shell.execute_reply": "2024-01-17T23:15:30.466497Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.787782Z", - "iopub.status.busy": "2024-01-17T18:13:27.787576Z", - "iopub.status.idle": "2024-01-17T18:13:27.791812Z", - "shell.execute_reply": "2024-01-17T18:13:27.791287Z" + "iopub.execute_input": "2024-01-17T23:15:30.469583Z", + "iopub.status.busy": "2024-01-17T23:15:30.469112Z", + "iopub.status.idle": "2024-01-17T23:15:30.473211Z", + "shell.execute_reply": "2024-01-17T23:15:30.472586Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.794277Z", - "iopub.status.busy": "2024-01-17T18:13:27.793928Z", - "iopub.status.idle": "2024-01-17T18:13:27.797585Z", - "shell.execute_reply": "2024-01-17T18:13:27.797052Z" + "iopub.execute_input": "2024-01-17T23:15:30.475590Z", + "iopub.status.busy": "2024-01-17T23:15:30.475289Z", + "iopub.status.idle": "2024-01-17T23:15:30.479220Z", + "shell.execute_reply": "2024-01-17T23:15:30.478614Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.799879Z", - "iopub.status.busy": "2024-01-17T18:13:27.799457Z", - "iopub.status.idle": "2024-01-17T18:13:27.802639Z", - "shell.execute_reply": "2024-01-17T18:13:27.802012Z" + "iopub.execute_input": "2024-01-17T23:15:30.481531Z", + "iopub.status.busy": "2024-01-17T23:15:30.481169Z", + "iopub.status.idle": "2024-01-17T23:15:30.484282Z", + "shell.execute_reply": "2024-01-17T23:15:30.483769Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.804808Z", - "iopub.status.busy": "2024-01-17T18:13:27.804477Z", - "iopub.status.idle": "2024-01-17T18:14:55.334560Z", - "shell.execute_reply": "2024-01-17T18:14:55.333875Z" + "iopub.execute_input": "2024-01-17T23:15:30.486493Z", + "iopub.status.busy": "2024-01-17T23:15:30.486198Z", + "iopub.status.idle": "2024-01-17T23:16:54.759811Z", + "shell.execute_reply": "2024-01-17T23:16:54.759104Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ec615bcedf144713a74c0755f4d4a017", + "model_id": "4fea53dd3c354db89dbd413a514598b1", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b6cb19a81c2a486b82141204a442d67b", + "model_id": "3addf8ea78984dc3bf5ed29c07556bb9", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:14:55.337672Z", - "iopub.status.busy": "2024-01-17T18:14:55.337209Z", - "iopub.status.idle": "2024-01-17T18:14:56.101511Z", - "shell.execute_reply": "2024-01-17T18:14:56.100932Z" + "iopub.execute_input": "2024-01-17T23:16:54.762950Z", + "iopub.status.busy": "2024-01-17T23:16:54.762598Z", + "iopub.status.idle": "2024-01-17T23:16:55.528775Z", + "shell.execute_reply": "2024-01-17T23:16:55.528081Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:14:56.104021Z", - "iopub.status.busy": "2024-01-17T18:14:56.103660Z", - "iopub.status.idle": "2024-01-17T18:14:58.199350Z", - "shell.execute_reply": "2024-01-17T18:14:58.198693Z" + "iopub.execute_input": "2024-01-17T23:16:55.531668Z", + "iopub.status.busy": "2024-01-17T23:16:55.531169Z", + "iopub.status.idle": "2024-01-17T23:16:57.626271Z", + "shell.execute_reply": "2024-01-17T23:16:57.625582Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:14:58.202064Z", - "iopub.status.busy": "2024-01-17T18:14:58.201668Z", - "iopub.status.idle": "2024-01-17T18:15:26.871400Z", - "shell.execute_reply": "2024-01-17T18:15:26.870736Z" + "iopub.execute_input": "2024-01-17T23:16:57.628737Z", + "iopub.status.busy": "2024-01-17T23:16:57.628517Z", + "iopub.status.idle": "2024-01-17T23:17:27.065044Z", + "shell.execute_reply": "2024-01-17T23:17:27.064412Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17362/4997817 [00:00<00:28, 173608.58it/s]" + " 0%| | 16923/4997817 [00:00<00:29, 169217.65it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34895/4997817 [00:00<00:28, 174610.72it/s]" + " 1%| | 33993/4997817 [00:00<00:29, 170085.88it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 52475/4997817 [00:00<00:28, 175150.77it/s]" + " 1%| | 51002/4997817 [00:00<00:29, 169503.62it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 69991/4997817 [00:00<00:28, 173938.91it/s]" + " 1%|▏ | 68012/4997817 [00:00<00:29, 169735.92it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 87813/4997817 [00:00<00:27, 175471.95it/s]" + " 2%|▏ | 84993/4997817 [00:00<00:28, 169759.89it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 105688/4997817 [00:00<00:27, 176578.81it/s]" + " 2%|▏ | 101970/4997817 [00:00<00:28, 169628.61it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 123543/4997817 [00:00<00:27, 177216.89it/s]" + " 2%|▏ | 118944/4997817 [00:00<00:28, 169663.19it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 141289/4997817 [00:00<00:27, 177290.20it/s]" + " 3%|▎ | 135911/4997817 [00:00<00:29, 163001.52it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 159076/4997817 [00:00<00:27, 177466.31it/s]" + " 3%|▎ | 152918/4997817 [00:00<00:29, 165147.19it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 176918/4997817 [00:01<00:27, 177754.44it/s]" + " 3%|▎ | 169974/4997817 [00:01<00:28, 166782.07it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 194876/4997817 [00:01<00:26, 178308.24it/s]" + " 4%|▎ | 187064/4997817 [00:01<00:28, 168021.67it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 212708/4997817 [00:01<00:26, 178223.48it/s]" + " 4%|▍ | 204038/4997817 [00:01<00:28, 168537.30it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 230531/4997817 [00:01<00:26, 178136.92it/s]" + " 4%|▍ | 220938/4997817 [00:01<00:28, 168672.47it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 248505/4997817 [00:01<00:26, 178619.00it/s]" + " 5%|▍ | 238130/4997817 [00:01<00:28, 169647.75it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 266377/4997817 [00:01<00:26, 178647.43it/s]" + " 5%|▌ | 255262/4997817 [00:01<00:27, 170147.90it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 284425/4997817 [00:01<00:26, 179193.60it/s]" + " 5%|▌ | 272284/4997817 [00:01<00:27, 170019.26it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 302378/4997817 [00:01<00:26, 179290.92it/s]" + " 6%|▌ | 289291/4997817 [00:01<00:27, 169797.69it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 320347/4997817 [00:01<00:26, 179407.53it/s]" + " 6%|▌ | 306465/4997817 [00:01<00:27, 170377.22it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 338297/4997817 [00:01<00:25, 179431.36it/s]" + " 6%|▋ | 323703/4997817 [00:01<00:27, 170975.52it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 356241/4997817 [00:02<00:25, 179348.77it/s]" + " 7%|▋ | 340851/4997817 [00:02<00:27, 171125.25it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 374208/4997817 [00:02<00:25, 179441.48it/s]" + " 7%|▋ | 357965/4997817 [00:02<00:27, 170735.16it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 392153/4997817 [00:02<00:26, 175413.81it/s]" + " 8%|▊ | 375079/4997817 [00:02<00:27, 170854.49it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 410009/4997817 [00:02<00:26, 176338.11it/s]" + " 8%|▊ | 392275/4997817 [00:02<00:26, 171182.95it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 427853/4997817 [00:02<00:25, 176958.47it/s]" + " 8%|▊ | 409485/4997817 [00:02<00:26, 171454.31it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 445826/4997817 [00:02<00:25, 177779.06it/s]" + " 9%|▊ | 426631/4997817 [00:02<00:26, 171181.61it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 463613/4997817 [00:02<00:25, 177528.30it/s]" + " 9%|▉ | 443750/4997817 [00:02<00:26, 170479.76it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 481507/4997817 [00:02<00:25, 177946.35it/s]" + " 9%|▉ | 460916/4997817 [00:02<00:26, 170828.33it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 499307/4997817 [00:02<00:25, 177661.06it/s]" + " 10%|▉ | 478000/4997817 [00:02<00:27, 167094.77it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 517142/4997817 [00:02<00:25, 177861.59it/s]" + " 10%|▉ | 495446/4997817 [00:02<00:26, 169263.15it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 535037/4997817 [00:03<00:25, 178184.28it/s]" + " 10%|█ | 512890/4997817 [00:03<00:26, 170794.12it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 552923/4997817 [00:03<00:24, 178382.09it/s]" + " 11%|█ | 530383/4997817 [00:03<00:25, 172020.72it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 570763/4997817 [00:03<00:25, 171086.58it/s]" + " 11%|█ | 547934/4997817 [00:03<00:25, 173058.88it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 588402/4997817 [00:03<00:25, 172627.47it/s]" + " 11%|█▏ | 565248/4997817 [00:03<00:25, 171739.41it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 606160/4997817 [00:03<00:25, 174079.34it/s]" + " 12%|█▏ | 582430/4997817 [00:03<00:25, 171635.25it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 623955/4997817 [00:03<00:24, 175220.83it/s]" + " 12%|█▏ | 599599/4997817 [00:03<00:25, 171434.03it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 641860/4997817 [00:03<00:24, 176352.97it/s]" + " 12%|█▏ | 616746/4997817 [00:03<00:25, 171242.34it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659728/4997817 [00:03<00:24, 177041.83it/s]" + " 13%|█▎ | 633873/4997817 [00:03<00:25, 171131.74it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 677498/4997817 [00:03<00:24, 177235.53it/s]" + " 13%|█▎ | 650988/4997817 [00:03<00:25, 167888.38it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 695298/4997817 [00:03<00:24, 177460.17it/s]" + " 13%|█▎ | 667980/4997817 [00:03<00:25, 168487.13it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 713108/4997817 [00:04<00:24, 177648.89it/s]" + " 14%|█▎ | 685095/4997817 [00:04<00:25, 169274.32it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 731013/4997817 [00:04<00:23, 178065.71it/s]" + " 14%|█▍ | 702365/4997817 [00:04<00:25, 170291.66it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 748824/4997817 [00:04<00:23, 177652.38it/s]" + " 14%|█▍ | 719508/4997817 [00:04<00:25, 170628.16it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 766599/4997817 [00:04<00:23, 177677.08it/s]" + " 15%|█▍ | 736576/4997817 [00:04<00:25, 169810.36it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 784420/4997817 [00:04<00:23, 177831.64it/s]" + " 15%|█▌ | 753562/4997817 [00:04<00:24, 169771.99it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 802279/4997817 [00:04<00:23, 178056.61it/s]" + " 15%|█▌ | 770715/4997817 [00:04<00:24, 170294.50it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 820264/4997817 [00:04<00:23, 178591.12it/s]" + " 16%|█▌ | 787747/4997817 [00:04<00:24, 169972.43it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 838197/4997817 [00:04<00:23, 178808.60it/s]" + " 16%|█▌ | 804872/4997817 [00:04<00:24, 170350.25it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 856111/4997817 [00:04<00:23, 178905.08it/s]" + " 16%|█▋ | 821909/4997817 [00:04<00:24, 170342.59it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 874002/4997817 [00:04<00:23, 178854.94it/s]" + " 17%|█▋ | 838945/4997817 [00:04<00:24, 170326.57it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 891888/4997817 [00:05<00:22, 178769.86it/s]" + " 17%|█▋ | 856345/4997817 [00:05<00:24, 171423.84it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 909766/4997817 [00:05<00:22, 177999.88it/s]" + " 17%|█▋ | 873794/4997817 [00:05<00:23, 172340.75it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 927567/4997817 [00:05<00:23, 175332.09it/s]" + " 18%|█▊ | 891355/4997817 [00:05<00:23, 173318.17it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 945109/4997817 [00:05<00:23, 172027.61it/s]" + " 18%|█▊ | 908761/4997817 [00:05<00:23, 173536.69it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 962858/4997817 [00:05<00:23, 173626.11it/s]" + " 19%|█▊ | 926115/4997817 [00:05<00:23, 173374.72it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 980440/4997817 [00:05<00:23, 174271.59it/s]" + " 19%|█▉ | 943534/4997817 [00:05<00:23, 173615.78it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 998071/4997817 [00:05<00:22, 174873.76it/s]" + " 19%|█▉ | 960987/4997817 [00:05<00:23, 173888.18it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1015609/4997817 [00:05<00:22, 175019.90it/s]" + " 20%|█▉ | 978376/4997817 [00:05<00:23, 173759.83it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1033146/4997817 [00:05<00:22, 175119.66it/s]" + " 20%|█▉ | 995883/4997817 [00:05<00:22, 174150.86it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1050707/4997817 [00:05<00:22, 175263.37it/s]" + " 20%|██ | 1013363/4997817 [00:05<00:22, 174342.29it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1068310/4997817 [00:06<00:22, 175489.78it/s]" + " 21%|██ | 1030818/4997817 [00:06<00:22, 174402.88it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1086006/4997817 [00:06<00:22, 175925.40it/s]" + " 21%|██ | 1048303/4997817 [00:06<00:22, 174534.90it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1103856/4997817 [00:06<00:22, 176693.74it/s]" + " 21%|██▏ | 1065757/4997817 [00:06<00:22, 174515.39it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1121527/4997817 [00:06<00:21, 176653.73it/s]" + " 22%|██▏ | 1083209/4997817 [00:06<00:22, 174141.01it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1139194/4997817 [00:06<00:21, 175610.49it/s]" + " 22%|██▏ | 1100652/4997817 [00:06<00:22, 174222.63it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1156758/4997817 [00:06<00:21, 175340.14it/s]" + " 22%|██▏ | 1118075/4997817 [00:06<00:22, 173614.04it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1174423/4997817 [00:06<00:21, 175726.52it/s]" + " 23%|██▎ | 1135437/4997817 [00:06<00:22, 173273.09it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1192038/4997817 [00:06<00:21, 175849.70it/s]" + " 23%|██▎ | 1152765/4997817 [00:06<00:22, 173078.85it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1209681/4997817 [00:06<00:21, 176020.95it/s]" + " 23%|██▎ | 1170074/4997817 [00:06<00:22, 172769.04it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227284/4997817 [00:06<00:21, 175879.77it/s]" + " 24%|██▍ | 1187352/4997817 [00:06<00:22, 166605.50it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1244924/4997817 [00:07<00:21, 176033.24it/s]" + " 24%|██▍ | 1204651/4997817 [00:07<00:22, 168465.26it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1262528/4997817 [00:07<00:21, 175800.45it/s]" + " 24%|██▍ | 1221930/4997817 [00:07<00:22, 169735.51it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1280128/4997817 [00:07<00:21, 175857.50it/s]" + " 25%|██▍ | 1239241/4997817 [00:07<00:22, 170729.82it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1297844/4997817 [00:07<00:20, 176243.66it/s]" + " 25%|██▌ | 1256336/4997817 [00:07<00:21, 170593.49it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1315598/4997817 [00:07<00:20, 176628.10it/s]" + " 25%|██▌ | 1273736/4997817 [00:07<00:21, 171604.75it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1333326/4997817 [00:07<00:20, 176821.58it/s]" + " 26%|██▌ | 1291095/4997817 [00:07<00:21, 172192.76it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1351011/4997817 [00:07<00:20, 176827.24it/s]" + " 26%|██▌ | 1308323/4997817 [00:07<00:21, 171512.26it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1368694/4997817 [00:07<00:20, 176802.46it/s]" + " 27%|██▋ | 1325481/4997817 [00:07<00:21, 170300.82it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1386390/4997817 [00:07<00:20, 176847.35it/s]" + " 27%|██▋ | 1342592/4997817 [00:07<00:21, 170538.44it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1404075/4997817 [00:07<00:20, 176737.99it/s]" + " 27%|██▋ | 1359667/4997817 [00:07<00:21, 170596.95it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1421749/4997817 [00:08<00:20, 176144.34it/s]" + " 28%|██▊ | 1376730/4997817 [00:08<00:21, 170584.52it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1439364/4997817 [00:08<00:20, 175538.08it/s]" + " 28%|██▊ | 1393808/4997817 [00:08<00:21, 170640.10it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1456919/4997817 [00:08<00:20, 175153.28it/s]" + " 28%|██▊ | 1410890/4997817 [00:08<00:21, 170689.62it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1474435/4997817 [00:08<00:20, 170969.49it/s]" + " 29%|██▊ | 1428041/4997817 [00:08<00:20, 170932.83it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1491823/4997817 [00:08<00:20, 171820.74it/s]" + " 29%|██▉ | 1445136/4997817 [00:08<00:20, 170912.74it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1509255/4997817 [00:08<00:20, 172556.44it/s]" + " 29%|██▉ | 1462229/4997817 [00:08<00:20, 170913.08it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1526644/4997817 [00:08<00:20, 172949.51it/s]" + " 30%|██▉ | 1479321/4997817 [00:08<00:20, 170499.01it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1544068/4997817 [00:08<00:19, 173330.43it/s]" + " 30%|██▉ | 1496372/4997817 [00:08<00:20, 170482.52it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1561511/4997817 [00:08<00:19, 173656.01it/s]" + " 30%|███ | 1513421/4997817 [00:08<00:20, 170395.25it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1578882/4997817 [00:08<00:19, 173600.68it/s]" + " 31%|███ | 1530461/4997817 [00:08<00:20, 167319.27it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1596246/4997817 [00:09<00:19, 173421.86it/s]" + " 31%|███ | 1547481/4997817 [00:09<00:20, 168168.22it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1613759/4997817 [00:09<00:19, 173930.01it/s]" + " 31%|███▏ | 1564657/4997817 [00:09<00:20, 169231.06it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1631217/4997817 [00:09<00:19, 174122.33it/s]" + " 32%|███▏ | 1581588/4997817 [00:09<00:20, 169022.41it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1648631/4997817 [00:09<00:19, 170877.37it/s]" + " 32%|███▏ | 1598553/4997817 [00:09<00:20, 169205.69it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1666045/4997817 [00:09<00:19, 171838.32it/s]" + " 32%|███▏ | 1615478/4997817 [00:09<00:20, 168976.78it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1683650/4997817 [00:09<00:19, 173084.46it/s]" + " 33%|███▎ | 1632488/4997817 [00:09<00:19, 169311.06it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1701219/4997817 [00:09<00:18, 173858.01it/s]" + " 33%|███▎ | 1649496/4997817 [00:09<00:19, 169537.42it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1718873/4997817 [00:09<00:18, 174654.48it/s]" + " 33%|███▎ | 1666516/4997817 [00:09<00:19, 169734.29it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1736344/4997817 [00:09<00:18, 174622.09it/s]" + " 34%|███▎ | 1683770/4997817 [00:09<00:19, 170570.66it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1753942/4997817 [00:09<00:18, 175023.95it/s]" + " 34%|███▍ | 1700828/4997817 [00:09<00:19, 170107.59it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1771448/4997817 [00:10<00:18, 174993.57it/s]" + " 34%|███▍ | 1718095/4997817 [00:10<00:19, 170870.72it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1788950/4997817 [00:10<00:18, 174751.67it/s]" + " 35%|███▍ | 1735554/4997817 [00:10<00:18, 171982.68it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1806535/4997817 [00:10<00:18, 175076.18it/s]" + " 35%|███▌ | 1752844/4997817 [00:10<00:18, 172253.27it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1824044/4997817 [00:10<00:18, 174947.92it/s]" + " 35%|███▌ | 1770192/4997817 [00:10<00:18, 172616.19it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1841882/4997817 [00:10<00:17, 175973.50it/s]" + " 36%|███▌ | 1787471/4997817 [00:10<00:18, 172664.15it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1859592/4997817 [00:10<00:17, 176306.73it/s]" + " 36%|███▌ | 1804738/4997817 [00:10<00:18, 172460.42it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1877279/4997817 [00:10<00:17, 176473.74it/s]" + " 36%|███▋ | 1822303/4997817 [00:10<00:18, 173414.99it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1894943/4997817 [00:10<00:17, 176520.23it/s]" + " 37%|███▋ | 1839775/4997817 [00:10<00:18, 173804.36it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1912596/4997817 [00:10<00:17, 176219.44it/s]" + " 37%|███▋ | 1857168/4997817 [00:10<00:18, 173839.96it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1930263/4997817 [00:10<00:17, 176352.95it/s]" + " 38%|███▊ | 1874674/4997817 [00:10<00:17, 174204.13it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1947942/4997817 [00:11<00:17, 176481.33it/s]" + " 38%|███▊ | 1892095/4997817 [00:11<00:17, 173973.19it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1965591/4997817 [00:11<00:17, 175961.68it/s]" + " 38%|███▊ | 1909493/4997817 [00:11<00:17, 173652.09it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1983188/4997817 [00:11<00:17, 175748.07it/s]" + " 39%|███▊ | 1926956/4997817 [00:11<00:17, 173942.04it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2000787/4997817 [00:11<00:17, 175815.61it/s]" + " 39%|███▉ | 1944351/4997817 [00:11<00:17, 173676.68it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2018369/4997817 [00:11<00:17, 168730.26it/s]" + " 39%|███▉ | 1961719/4997817 [00:11<00:17, 173544.32it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2035840/4997817 [00:11<00:17, 170467.93it/s]" + " 40%|███▉ | 1979205/4997817 [00:11<00:17, 173936.66it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2053380/4997817 [00:11<00:17, 171912.16it/s]" + " 40%|███▉ | 1996632/4997817 [00:11<00:17, 174033.21it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2070874/4997817 [00:11<00:16, 172804.36it/s]" + " 40%|████ | 2014036/4997817 [00:11<00:17, 173984.33it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2088397/4997817 [00:11<00:16, 173519.94it/s]" + " 41%|████ | 2031435/4997817 [00:11<00:17, 173931.39it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2105931/4997817 [00:11<00:16, 174057.90it/s]" + " 41%|████ | 2048829/4997817 [00:11<00:16, 173817.50it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2123526/4997817 [00:12<00:16, 174619.28it/s]" + " 41%|████▏ | 2066211/4997817 [00:12<00:16, 173089.88it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2140999/4997817 [00:12<00:16, 174636.87it/s]" + " 42%|████▏ | 2083521/4997817 [00:12<00:16, 173048.80it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2158470/4997817 [00:12<00:16, 174638.99it/s]" + " 42%|████▏ | 2100866/4997817 [00:12<00:16, 173165.42it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2175968/4997817 [00:12<00:16, 174737.78it/s]" + " 42%|████▏ | 2118183/4997817 [00:12<00:16, 173142.49it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2193446/4997817 [00:12<00:16, 174633.60it/s]" + " 43%|████▎ | 2135542/4997817 [00:12<00:16, 173274.37it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211104/4997817 [00:12<00:15, 175212.99it/s]" + " 43%|████▎ | 2152870/4997817 [00:12<00:16, 172932.60it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2228891/4997817 [00:12<00:15, 176005.69it/s]" + " 43%|████▎ | 2170164/4997817 [00:12<00:16, 172786.75it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246705/4997817 [00:12<00:15, 176642.54it/s]" + " 44%|████▍ | 2187443/4997817 [00:12<00:16, 172758.80it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2264371/4997817 [00:12<00:15, 176477.26it/s]" + " 44%|████▍ | 2204719/4997817 [00:12<00:16, 172489.32it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2282020/4997817 [00:12<00:15, 176270.92it/s]" + " 44%|████▍ | 2221969/4997817 [00:12<00:16, 172209.27it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2299648/4997817 [00:13<00:15, 176268.65it/s]" + " 45%|████▍ | 2239236/4997817 [00:13<00:16, 172342.87it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2317443/4997817 [00:13<00:15, 176769.77it/s]" + " 45%|████▌ | 2256471/4997817 [00:13<00:15, 171712.51it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2335287/4997817 [00:13<00:15, 177266.82it/s]" + " 45%|████▌ | 2273643/4997817 [00:13<00:15, 171115.35it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2353014/4997817 [00:13<00:14, 177237.67it/s]" + " 46%|████▌ | 2290884/4997817 [00:13<00:15, 171500.07it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2370811/4997817 [00:13<00:14, 177454.13it/s]" + " 46%|████▌ | 2308082/4997817 [00:13<00:15, 171641.01it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2388644/4997817 [00:13<00:14, 177713.67it/s]" + " 47%|████▋ | 2325509/4997817 [00:13<00:15, 172425.40it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2406515/4997817 [00:13<00:14, 178008.59it/s]" + " 47%|████▋ | 2342779/4997817 [00:13<00:15, 172505.46it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2424382/4997817 [00:13<00:14, 178202.69it/s]" + " 47%|████▋ | 2360266/4997817 [00:13<00:15, 173212.74it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2442203/4997817 [00:13<00:14, 176953.39it/s]" + " 48%|████▊ | 2377746/4997817 [00:13<00:15, 173684.69it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2460064/4997817 [00:13<00:14, 177445.01it/s]" + " 48%|████▊ | 2395275/4997817 [00:13<00:14, 174160.30it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2478011/4997817 [00:14<00:14, 178046.47it/s]" + " 48%|████▊ | 2412692/4997817 [00:14<00:14, 173545.01it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2495859/4997817 [00:14<00:14, 178170.66it/s]" + " 49%|████▊ | 2430069/4997817 [00:14<00:14, 173608.65it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2513719/4997817 [00:14<00:13, 178294.71it/s]" + " 49%|████▉ | 2447462/4997817 [00:14<00:14, 173701.94it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2531550/4997817 [00:14<00:13, 177984.78it/s]" + " 49%|████▉ | 2464833/4997817 [00:14<00:14, 173310.39it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2549350/4997817 [00:14<00:13, 177765.45it/s]" + " 50%|████▉ | 2482165/4997817 [00:14<00:14, 172931.85it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2567127/4997817 [00:14<00:13, 177467.75it/s]" + " 50%|█████ | 2499563/4997817 [00:14<00:14, 173242.08it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2584875/4997817 [00:14<00:13, 177135.41it/s]" + " 50%|█████ | 2516888/4997817 [00:14<00:14, 173011.66it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2602589/4997817 [00:14<00:13, 176761.69it/s]" + " 51%|█████ | 2534190/4997817 [00:14<00:14, 172835.54it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2620266/4997817 [00:14<00:13, 176400.10it/s]" + " 51%|█████ | 2551474/4997817 [00:14<00:14, 172684.40it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2637907/4997817 [00:14<00:13, 176353.99it/s]" + " 51%|█████▏ | 2568743/4997817 [00:14<00:14, 171725.95it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2655543/4997817 [00:15<00:13, 175946.08it/s]" + " 52%|█████▏ | 2586056/4997817 [00:15<00:14, 172142.42it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2673138/4997817 [00:15<00:13, 175874.49it/s]" + " 52%|█████▏ | 2603272/4997817 [00:15<00:13, 172009.73it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2690726/4997817 [00:15<00:13, 175848.48it/s]" + " 52%|█████▏ | 2620507/4997817 [00:15<00:13, 172106.86it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2708319/4997817 [00:15<00:13, 175869.29it/s]" + " 53%|█████▎ | 2637748/4997817 [00:15<00:13, 172193.71it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2725906/4997817 [00:15<00:13, 170165.16it/s]" + " 53%|█████▎ | 2655228/4997817 [00:15<00:13, 172969.91it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2743530/4997817 [00:15<00:13, 171941.91it/s]" + " 53%|█████▎ | 2672594/4997817 [00:15<00:13, 173172.78it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2761055/4997817 [00:15<00:12, 172913.09it/s]" + " 54%|█████▍ | 2689912/4997817 [00:15<00:13, 172973.25it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2778599/4997817 [00:15<00:12, 173657.51it/s]" + " 54%|█████▍ | 2707210/4997817 [00:15<00:13, 172673.04it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2796132/4997817 [00:15<00:12, 174152.13it/s]" + " 55%|█████▍ | 2724649/4997817 [00:15<00:13, 173183.95it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2813713/4997817 [00:15<00:12, 174642.51it/s]" + " 55%|█████▍ | 2742045/4997817 [00:15<00:13, 173411.99it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2831215/4997817 [00:16<00:12, 174751.85it/s]" + " 55%|█████▌ | 2759387/4997817 [00:16<00:12, 172797.03it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2848781/4997817 [00:16<00:12, 175020.18it/s]" + " 56%|█████▌ | 2776675/4997817 [00:16<00:12, 172818.44it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2866288/4997817 [00:16<00:12, 174922.90it/s]" + " 56%|█████▌ | 2793958/4997817 [00:16<00:12, 172443.43it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2883784/4997817 [00:16<00:12, 174867.39it/s]" + " 56%|█████▌ | 2811203/4997817 [00:16<00:12, 172181.49it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2901274/4997817 [00:16<00:12, 174518.53it/s]" + " 57%|█████▋ | 2828422/4997817 [00:16<00:12, 171875.31it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2918784/4997817 [00:16<00:11, 174687.97it/s]" + " 57%|█████▋ | 2845610/4997817 [00:16<00:12, 171605.12it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2936508/4997817 [00:16<00:11, 175446.36it/s]" + " 57%|█████▋ | 2862771/4997817 [00:16<00:12, 171158.71it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2954190/4997817 [00:16<00:11, 175855.21it/s]" + " 58%|█████▊ | 2880043/4997817 [00:16<00:12, 171620.59it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2971867/4997817 [00:16<00:11, 176126.05it/s]" + " 58%|█████▊ | 2897206/4997817 [00:16<00:12, 171545.78it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2989607/4997817 [00:16<00:11, 176504.50it/s]" + " 58%|█████▊ | 2914479/4997817 [00:16<00:12, 171897.64it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3007465/4997817 [00:17<00:11, 177122.98it/s]" + " 59%|█████▊ | 2931670/4997817 [00:17<00:12, 171468.11it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3025371/4997817 [00:17<00:11, 177699.75it/s]" + " 59%|█████▉ | 2948818/4997817 [00:17<00:12, 164907.42it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3043142/4997817 [00:17<00:11, 177526.55it/s]" + " 59%|█████▉ | 2965819/4997817 [00:17<00:12, 166389.56it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3060895/4997817 [00:17<00:10, 177261.36it/s]" + " 60%|█████▉ | 2983140/4997817 [00:17<00:11, 168389.32it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3078730/4997817 [00:17<00:10, 177583.27it/s]" + " 60%|██████ | 3000413/4997817 [00:17<00:11, 169668.46it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3096489/4997817 [00:17<00:10, 173439.53it/s]" + " 60%|██████ | 3017703/4997817 [00:17<00:11, 170624.06it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3114319/4997817 [00:17<00:10, 174869.70it/s]" + " 61%|██████ | 3034960/4997817 [00:17<00:11, 171201.38it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3132167/4997817 [00:17<00:10, 175934.19it/s]" + " 61%|██████ | 3052094/4997817 [00:17<00:11, 171123.09it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3150036/4997817 [00:17<00:10, 176751.52it/s]" + " 61%|██████▏ | 3069455/4997817 [00:17<00:11, 171864.37it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3167884/4997817 [00:18<00:10, 177263.84it/s]" + " 62%|██████▏ | 3086755/4997817 [00:18<00:11, 172200.09it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3185698/4997817 [00:18<00:10, 177523.48it/s]" + " 62%|██████▏ | 3104106/4997817 [00:18<00:10, 172590.10it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3203568/4997817 [00:18<00:10, 177872.39it/s]" + " 62%|██████▏ | 3121414/4997817 [00:18<00:10, 172732.84it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3221360/4997817 [00:18<00:09, 177711.90it/s]" + " 63%|██████▎ | 3138690/4997817 [00:18<00:10, 172414.93it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3239134/4997817 [00:18<00:09, 177577.15it/s]" + " 63%|██████▎ | 3155966/4997817 [00:18<00:10, 172513.49it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3256894/4997817 [00:18<00:09, 176368.10it/s]" + " 63%|██████▎ | 3173316/4997817 [00:18<00:10, 172807.21it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3274697/4997817 [00:18<00:09, 176860.96it/s]" + " 64%|██████▍ | 3190786/4997817 [00:18<00:10, 173371.43it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3292438/4997817 [00:18<00:09, 177021.85it/s]" + " 64%|██████▍ | 3208124/4997817 [00:18<00:10, 173368.22it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3310162/4997817 [00:18<00:09, 177081.84it/s]" + " 65%|██████▍ | 3225462/4997817 [00:18<00:10, 173291.90it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3327911/4997817 [00:18<00:09, 177201.04it/s]" + " 65%|██████▍ | 3242799/4997817 [00:18<00:10, 173312.39it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3345632/4997817 [00:19<00:09, 177070.11it/s]" + " 65%|██████▌ | 3260131/4997817 [00:19<00:10, 173229.77it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3363340/4997817 [00:19<00:09, 176560.09it/s]" + " 66%|██████▌ | 3277459/4997817 [00:19<00:09, 173241.78it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3380997/4997817 [00:19<00:09, 176297.50it/s]" + " 66%|██████▌ | 3294784/4997817 [00:19<00:10, 168720.26it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3398628/4997817 [00:19<00:09, 175923.15it/s]" + " 66%|██████▋ | 3311836/4997817 [00:19<00:09, 169246.65it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3416444/4997817 [00:19<00:08, 176583.41it/s]" + " 67%|██████▋ | 3329185/4997817 [00:19<00:09, 170499.74it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3434103/4997817 [00:19<00:08, 176134.50it/s]" + " 67%|██████▋ | 3346525/4997817 [00:19<00:09, 171358.37it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3451738/4997817 [00:19<00:08, 176195.20it/s]" + " 67%|██████▋ | 3363981/4997817 [00:19<00:09, 172310.29it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3469358/4997817 [00:19<00:08, 176027.78it/s]" + " 68%|██████▊ | 3381408/4997817 [00:19<00:09, 172891.73it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3486962/4997817 [00:19<00:08, 175916.89it/s]" + " 68%|██████▊ | 3398883/4997817 [00:19<00:09, 173444.12it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3504554/4997817 [00:19<00:08, 175282.26it/s]" + " 68%|██████▊ | 3416395/4997817 [00:19<00:09, 173944.67it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3522083/4997817 [00:20<00:08, 175175.68it/s]" + " 69%|██████▊ | 3433866/4997817 [00:20<00:08, 174170.71it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3539798/4997817 [00:20<00:08, 175762.45it/s]" + " 69%|██████▉ | 3451295/4997817 [00:20<00:08, 174202.78it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3557423/4997817 [00:20<00:08, 175905.54it/s]" + " 69%|██████▉ | 3468717/4997817 [00:20<00:08, 173871.49it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3575120/4997817 [00:20<00:08, 176219.37it/s]" + " 70%|██████▉ | 3486106/4997817 [00:20<00:08, 173730.48it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3592743/4997817 [00:20<00:07, 176124.71it/s]" + " 70%|███████ | 3503480/4997817 [00:20<00:08, 173576.14it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3610402/4997817 [00:20<00:07, 176260.53it/s]" + " 70%|███████ | 3520839/4997817 [00:20<00:08, 172430.10it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3628029/4997817 [00:20<00:07, 176148.24it/s]" + " 71%|███████ | 3538084/4997817 [00:20<00:08, 172099.73it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3645692/4997817 [00:20<00:07, 176289.26it/s]" + " 71%|███████ | 3555296/4997817 [00:20<00:08, 171901.03it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3663322/4997817 [00:20<00:07, 176222.00it/s]" + " 71%|███████▏ | 3572487/4997817 [00:20<00:08, 171608.38it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3680980/4997817 [00:20<00:07, 176324.07it/s]" + " 72%|███████▏ | 3589757/4997817 [00:20<00:08, 171930.02it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3698735/4997817 [00:21<00:07, 176687.64it/s]" + " 72%|███████▏ | 3606959/4997817 [00:21<00:08, 171954.77it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3716404/4997817 [00:21<00:07, 176628.29it/s]" + " 73%|███████▎ | 3624245/4997817 [00:21<00:07, 172222.71it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3734091/4997817 [00:21<00:07, 176697.15it/s]" + " 73%|███████▎ | 3641468/4997817 [00:21<00:08, 165178.06it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3751761/4997817 [00:21<00:07, 176640.21it/s]" + " 73%|███████▎ | 3658590/4997817 [00:21<00:08, 166933.37it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3769457/4997817 [00:21<00:06, 176732.49it/s]" + " 74%|███████▎ | 3675846/4997817 [00:21<00:07, 168580.91it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3787209/4997817 [00:21<00:06, 176965.92it/s]" + " 74%|███████▍ | 3692949/4997817 [00:21<00:07, 169301.80it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3804906/4997817 [00:21<00:06, 176115.13it/s]" + " 74%|███████▍ | 3710095/4997817 [00:21<00:07, 169941.03it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3822589/4997817 [00:21<00:06, 176324.35it/s]" + " 75%|███████▍ | 3727212/4997817 [00:21<00:07, 170305.46it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3840267/4997817 [00:21<00:06, 176456.98it/s]" + " 75%|███████▍ | 3744383/4997817 [00:21<00:07, 170721.03it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3857949/4997817 [00:21<00:06, 176561.33it/s]" + " 75%|███████▌ | 3761585/4997817 [00:21<00:07, 171106.29it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3875608/4997817 [00:22<00:06, 176566.31it/s]" + " 76%|███████▌ | 3778703/4997817 [00:22<00:07, 171043.71it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3893265/4997817 [00:22<00:06, 176410.01it/s]" + " 76%|███████▌ | 3795890/4997817 [00:22<00:07, 171287.44it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3910907/4997817 [00:22<00:06, 176281.59it/s]" + " 76%|███████▋ | 3813023/4997817 [00:22<00:06, 170783.59it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3928536/4997817 [00:22<00:06, 176164.37it/s]" + " 77%|███████▋ | 3830175/4997817 [00:22<00:06, 171001.66it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3946173/4997817 [00:22<00:05, 176221.61it/s]" + " 77%|███████▋ | 3847278/4997817 [00:22<00:06, 170875.44it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3963796/4997817 [00:22<00:05, 175821.79it/s]" + " 77%|███████▋ | 3864410/4997817 [00:22<00:06, 171005.16it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3981379/4997817 [00:22<00:05, 175679.25it/s]" + " 78%|███████▊ | 3881633/4997817 [00:22<00:06, 171370.89it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 3999029/4997817 [00:22<00:05, 175919.84it/s]" + " 78%|███████▊ | 3898771/4997817 [00:22<00:06, 170584.23it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4016746/4997817 [00:22<00:05, 176291.45it/s]" + " 78%|███████▊ | 3915831/4997817 [00:22<00:06, 169965.52it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4034376/4997817 [00:22<00:05, 176165.06it/s]" + " 79%|███████▊ | 3932869/4997817 [00:22<00:06, 170087.91it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4051993/4997817 [00:23<00:05, 176084.45it/s]" + " 79%|███████▉ | 3949879/4997817 [00:23<00:06, 169990.31it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4069602/4997817 [00:23<00:05, 175885.63it/s]" + " 79%|███████▉ | 3966879/4997817 [00:23<00:06, 169949.51it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4087191/4997817 [00:23<00:05, 175394.53it/s]" + " 80%|███████▉ | 3983875/4997817 [00:23<00:05, 169772.79it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4104731/4997817 [00:23<00:05, 175012.49it/s]" + " 80%|████████ | 4000853/4997817 [00:23<00:05, 169718.68it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4122236/4997817 [00:23<00:05, 175020.26it/s]" + " 80%|████████ | 4017853/4997817 [00:23<00:05, 169799.69it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4139739/4997817 [00:23<00:04, 174861.56it/s]" + " 81%|████████ | 4034999/4997817 [00:23<00:05, 170291.45it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4157233/4997817 [00:23<00:04, 174879.84it/s]" + " 81%|████████ | 4052095/4997817 [00:23<00:05, 170489.07it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4174722/4997817 [00:23<00:04, 167593.86it/s]" + " 81%|████████▏ | 4069145/4997817 [00:23<00:05, 170353.71it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4192083/4997817 [00:23<00:04, 169341.24it/s]" + " 82%|████████▏ | 4086208/4997817 [00:23<00:05, 170433.51it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4209474/4997817 [00:23<00:04, 170677.23it/s]" + " 82%|████████▏ | 4103252/4997817 [00:23<00:05, 169878.09it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4226976/4997817 [00:24<00:04, 171956.01it/s]" + " 82%|████████▏ | 4120406/4997817 [00:24<00:05, 170373.48it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4244411/4997817 [00:24<00:04, 172661.73it/s]" + " 83%|████████▎ | 4137520/4997817 [00:24<00:05, 170600.48it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4261828/4997817 [00:24<00:04, 173107.14it/s]" + " 83%|████████▎ | 4154679/4997817 [00:24<00:04, 170894.40it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4279356/4997817 [00:24<00:04, 173752.22it/s]" + " 83%|████████▎ | 4171769/4997817 [00:24<00:04, 170333.58it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4296896/4997817 [00:24<00:04, 174242.38it/s]" + " 84%|████████▍ | 4188803/4997817 [00:24<00:04, 169923.43it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4314328/4997817 [00:24<00:03, 173327.93it/s]" + " 84%|████████▍ | 4205796/4997817 [00:24<00:04, 169523.93it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4331919/4997817 [00:24<00:03, 174094.65it/s]" + " 84%|████████▍ | 4222817/4997817 [00:24<00:04, 169724.32it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4349427/4997817 [00:24<00:03, 174384.04it/s]" + " 85%|████████▍ | 4239790/4997817 [00:24<00:04, 169579.63it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4367051/4997817 [00:24<00:03, 174935.33it/s]" + " 85%|████████▌ | 4256818/4997817 [00:24<00:04, 169786.18it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4384595/4997817 [00:24<00:03, 175083.73it/s]" + " 86%|████████▌ | 4273871/4997817 [00:24<00:04, 170006.16it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4402158/4997817 [00:25<00:03, 175244.18it/s]" + " 86%|████████▌ | 4291017/4997817 [00:25<00:04, 170438.96it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4419786/4997817 [00:25<00:03, 175552.04it/s]" + " 86%|████████▌ | 4308086/4997817 [00:25<00:04, 170511.81it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4437371/4997817 [00:25<00:03, 175636.52it/s]" + " 87%|████████▋ | 4325138/4997817 [00:25<00:03, 169547.73it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4455003/4997817 [00:25<00:03, 175837.48it/s]" + " 87%|████████▋ | 4342095/4997817 [00:25<00:04, 163414.55it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4472798/4997817 [00:25<00:02, 176468.40it/s]" + " 87%|████████▋ | 4359299/4997817 [00:25<00:03, 165924.16it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4490560/4997817 [00:25<00:02, 176808.91it/s]" + " 88%|████████▊ | 4376343/4997817 [00:25<00:03, 167246.68it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4508294/4997817 [00:25<00:02, 176965.60it/s]" + " 88%|████████▊ | 4393409/4997817 [00:25<00:03, 168254.06it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4525991/4997817 [00:25<00:02, 176542.13it/s]" + " 88%|████████▊ | 4410560/4997817 [00:25<00:03, 169219.14it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4543710/4997817 [00:25<00:02, 176732.28it/s]" + " 89%|████████▊ | 4427598/4997817 [00:25<00:03, 169562.46it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4561463/4997817 [00:25<00:02, 176966.16it/s]" + " 89%|████████▉ | 4444705/4997817 [00:25<00:03, 170009.98it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4579245/4997817 [00:26<00:02, 177220.61it/s]" + " 89%|████████▉ | 4461912/4997817 [00:26<00:03, 170621.62it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4597064/4997817 [00:26<00:02, 177506.60it/s]" + " 90%|████████▉ | 4478981/4997817 [00:26<00:03, 170378.09it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4614841/4997817 [00:26<00:02, 177581.31it/s]" + " 90%|████████▉ | 4496051/4997817 [00:26<00:02, 170472.86it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4632600/4997817 [00:26<00:02, 177414.75it/s]" + " 90%|█████████ | 4513109/4997817 [00:26<00:02, 170500.24it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4650342/4997817 [00:26<00:01, 176810.52it/s]" + " 91%|█████████ | 4530422/4997817 [00:26<00:02, 171284.56it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4668024/4997817 [00:26<00:02, 163789.41it/s]" + " 91%|█████████ | 4547617/4997817 [00:26<00:02, 171480.12it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4685720/4997817 [00:26<00:01, 167519.88it/s]" + " 91%|█████████▏| 4564863/4997817 [00:26<00:02, 171770.24it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4703228/4997817 [00:26<00:01, 169696.70it/s]" + " 92%|█████████▏| 4582041/4997817 [00:26<00:02, 171252.29it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4720997/4997817 [00:26<00:01, 172024.75it/s]" + " 92%|█████████▏| 4599168/4997817 [00:26<00:02, 170751.33it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4738747/4997817 [00:26<00:01, 173631.53it/s]" + " 92%|█████████▏| 4616245/4997817 [00:26<00:02, 170236.58it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4756401/4997817 [00:27<00:01, 174489.53it/s]" + " 93%|█████████▎| 4633367/4997817 [00:27<00:02, 170526.11it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4774026/4997817 [00:27<00:01, 175007.15it/s]" + " 93%|█████████▎| 4650476/4997817 [00:27<00:02, 170690.98it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4791625/4997817 [00:27<00:01, 175295.19it/s]" + " 93%|█████████▎| 4667696/4997817 [00:27<00:01, 171138.38it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4809276/4997817 [00:27<00:01, 175653.18it/s]" + " 94%|█████████▎| 4684811/4997817 [00:27<00:01, 166416.31it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4827007/4997817 [00:27<00:00, 176143.70it/s]" + " 94%|█████████▍| 4702063/4997817 [00:27<00:01, 168205.75it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4844714/4997817 [00:27<00:00, 176418.08it/s]" + " 94%|█████████▍| 4719283/4997817 [00:27<00:01, 169383.99it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4862493/4997817 [00:27<00:00, 176823.46it/s]" + " 95%|█████████▍| 4736314/4997817 [00:27<00:01, 169655.39it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4880182/4997817 [00:27<00:00, 176751.65it/s]" + " 95%|█████████▌| 4753543/4997817 [00:27<00:01, 170435.52it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4897903/4997817 [00:27<00:00, 176884.36it/s]" + " 95%|█████████▌| 4770597/4997817 [00:27<00:01, 170424.55it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4915661/4997817 [00:27<00:00, 177087.36it/s]" + " 96%|█████████▌| 4787647/4997817 [00:27<00:01, 170176.12it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4933428/4997817 [00:28<00:00, 177258.92it/s]" + " 96%|█████████▌| 4804723/4997817 [00:28<00:01, 170346.92it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4951156/4997817 [00:28<00:00, 177082.23it/s]" + " 96%|█████████▋| 4821848/4997817 [00:28<00:01, 170613.16it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4968913/4997817 [00:28<00:00, 177225.04it/s]" + " 97%|█████████▋| 4838912/4997817 [00:28<00:00, 170004.32it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4986697/4997817 [00:28<00:00, 177405.38it/s]" + " 97%|█████████▋| 4856169/4997817 [00:28<00:00, 170767.84it/s]" ] }, { @@ -2802,7 +2802,71 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:28<00:00, 175774.30it/s]" + " 98%|█████████▊| 4873248/4997817 [00:28<00:00, 170274.10it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4890277/4997817 [00:28<00:00, 170191.72it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4907298/4997817 [00:28<00:00, 170155.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4924593/4997817 [00:28<00:00, 170988.03it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4941723/4997817 [00:28<00:00, 171077.12it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4958832/4997817 [00:28<00:00, 170246.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4975925/4997817 [00:29<00:00, 170448.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4992971/4997817 [00:29<00:00, 170315.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:29<00:00, 171134.52it/s]" ] }, { @@ -3041,10 +3105,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:26.873997Z", - "iopub.status.busy": "2024-01-17T18:15:26.873608Z", - "iopub.status.idle": "2024-01-17T18:15:34.500725Z", - "shell.execute_reply": "2024-01-17T18:15:34.500119Z" + "iopub.execute_input": "2024-01-17T23:17:27.067514Z", + "iopub.status.busy": "2024-01-17T23:17:27.067292Z", + "iopub.status.idle": "2024-01-17T23:17:33.987753Z", + "shell.execute_reply": "2024-01-17T23:17:33.987100Z" } }, "outputs": [], @@ -3058,10 +3122,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:34.503481Z", - "iopub.status.busy": "2024-01-17T18:15:34.503250Z", - "iopub.status.idle": "2024-01-17T18:15:37.645465Z", - "shell.execute_reply": "2024-01-17T18:15:37.644802Z" + "iopub.execute_input": "2024-01-17T23:17:33.990761Z", + "iopub.status.busy": "2024-01-17T23:17:33.990234Z", + "iopub.status.idle": "2024-01-17T23:17:37.063049Z", + "shell.execute_reply": "2024-01-17T23:17:37.062361Z" } }, "outputs": [ @@ -3130,17 +3194,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:37.648166Z", - "iopub.status.busy": "2024-01-17T18:15:37.647687Z", - "iopub.status.idle": "2024-01-17T18:15:38.942832Z", - "shell.execute_reply": "2024-01-17T18:15:38.942205Z" + "iopub.execute_input": "2024-01-17T23:17:37.065626Z", + "iopub.status.busy": "2024-01-17T23:17:37.065237Z", + "iopub.status.idle": "2024-01-17T23:17:38.361596Z", + "shell.execute_reply": "2024-01-17T23:17:38.360967Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7dceb22a611b4605b26d5be95c8f7516", + "model_id": "3f014168fa4346d1a5243faf468a81d2", "version_major": 2, "version_minor": 0 }, @@ -3170,10 +3234,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:38.945502Z", - "iopub.status.busy": "2024-01-17T18:15:38.945301Z", - "iopub.status.idle": "2024-01-17T18:15:39.161394Z", - "shell.execute_reply": "2024-01-17T18:15:39.160716Z" + "iopub.execute_input": "2024-01-17T23:17:38.364721Z", + "iopub.status.busy": "2024-01-17T23:17:38.364114Z", + "iopub.status.idle": "2024-01-17T23:17:38.581707Z", + "shell.execute_reply": "2024-01-17T23:17:38.581139Z" } }, "outputs": [], @@ -3187,10 +3251,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:39.164077Z", - "iopub.status.busy": "2024-01-17T18:15:39.163834Z", - "iopub.status.idle": "2024-01-17T18:15:43.933619Z", - "shell.execute_reply": "2024-01-17T18:15:43.932997Z" + "iopub.execute_input": "2024-01-17T23:17:38.584628Z", + "iopub.status.busy": "2024-01-17T23:17:38.584131Z", + "iopub.status.idle": "2024-01-17T23:17:43.223493Z", + "shell.execute_reply": "2024-01-17T23:17:43.222781Z" } }, "outputs": [ @@ -3263,10 +3327,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:43.935930Z", - "iopub.status.busy": "2024-01-17T18:15:43.935733Z", - "iopub.status.idle": "2024-01-17T18:15:43.992260Z", - "shell.execute_reply": "2024-01-17T18:15:43.991692Z" + "iopub.execute_input": "2024-01-17T23:17:43.226244Z", + "iopub.status.busy": "2024-01-17T23:17:43.225777Z", + "iopub.status.idle": "2024-01-17T23:17:43.282179Z", + "shell.execute_reply": "2024-01-17T23:17:43.281446Z" }, "nbsphinx": "hidden" }, @@ -3310,7 +3374,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1772cf6eace14f4f8a042982d8d016a8": { + "017b88b766dd4b1eb6d2b1e38318808d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "11f01422601b4fbfb274288e4cabc8dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3362,7 +3442,7 @@ "width": null } }, - "1a4a06ef208a4aea96192270ec7fb84a": { + "1a11c07d013c43bb8d5c2a9a9f51b77c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3414,22 +3494,31 @@ "width": null } }, - "1cf620e1d88a4e37b2d34ea1fb5e1535": { + "1c9e243742194e9f93f1f1d0f4ade627": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fcc677509e4047feacf1ee2612eb3bf6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d9bd9df2ade4a83ab6231049c45a53b", + "value": 30.0 } }, - "1ed919af8e7844faabecb7a8dd47f285": { + "25a7aae549ff4d1fa03ce9aa556d8fc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3444,23 +3533,7 @@ "description_width": "" } }, - "254221792aff42ce82df1c22b6a17fe7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c30e1b3212d44fcb51934e93bf256f4": { + "2641df8a6b10468c84fd7d0cf8fe4b7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3512,7 +3585,60 @@ "width": null } }, - "2cef6291580545a795374bc03a6013f9": { + "2d9bd9df2ade4a83ab6231049c45a53b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "337a4acbdc614129ab2ee0180f730c19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3addf8ea78984dc3bf5ed29c07556bb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_540cfd5273004c949a94947f00084b1e", + "IPY_MODEL_6c0f1a6b8b0941eb890e179ab021fa32", + "IPY_MODEL_e15b5be74c0c4d29bdfda502583c695b" + ], + "layout": "IPY_MODEL_606e484d407447bcb09578773cd22d5d" + } + }, + "3bf0e062325848e38433cfd0a1c1e64e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3564,64 +3690,7 @@ "width": null } }, - "3d5158c48b6d4e3587ff508936ad7386": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4109ef68aa164157869d8efce1002420": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1a4a06ef208a4aea96192270ec7fb84a", - "placeholder": "​", - "style": "IPY_MODEL_98e1388d51f34102aacc21ba7bc431eb", - "value": " 30/30 [00:01<00:00, 23.76it/s]" - } - }, - "464b5bb258bd409ab318e6ecab337861": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7b875172cd764fa9ab4b1d7fdcd93b46", - "placeholder": "​", - "style": "IPY_MODEL_3d5158c48b6d4e3587ff508936ad7386", - "value": "images processed using softmin: 100%" - } - }, - "587d5b941fbc465faf4eb95923831929": { + "3eedef9a02374d1e96abed5e91673616": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3673,38 +3742,51 @@ "width": null } }, - "6422f763cda64280af2c3e65257aeadf": { + "3f014168fa4346d1a5243faf468a81d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba97605c2b714aaeae151edc68655c4e", + "IPY_MODEL_a29c9371170a4cf195f0623a90a22046", + "IPY_MODEL_b75dd4684dc541648d9d07c71d611dde" + ], + "layout": "IPY_MODEL_3bf0e062325848e38433cfd0a1c1e64e" } }, - "6493300865974b87a00b6d58ce9d45d3": { + "4fea53dd3c354db89dbd413a514598b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_579262aaf92e43c8b403d67fcdbb69de", + "IPY_MODEL_1c9e243742194e9f93f1f1d0f4ade627", + "IPY_MODEL_f8958214798d4aaea3392a34c1132c86" + ], + "layout": "IPY_MODEL_e66280fc5b9544d3b2997f0895b86556" } }, - "660cb6ce052f47b4b6cbe492bceef787": { + "540cfd5273004c949a94947f00084b1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3719,29 +3801,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9c7f519c6e4e43a983bbd8764c156460", + "layout": "IPY_MODEL_1a11c07d013c43bb8d5c2a9a9f51b77c", "placeholder": "​", - "style": "IPY_MODEL_6422f763cda64280af2c3e65257aeadf", + "style": "IPY_MODEL_25a7aae549ff4d1fa03ce9aa556d8fc3", "value": "number of examples processed for checking labels: 100%" } }, - "70503413664647f98537eb6ceb24c397": { + "579262aaf92e43c8b403d67fcdbb69de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68e0315ddeeb47aaa3eed64bc0a781bb", + "placeholder": "​", + "style": "IPY_MODEL_c0d493b322dc419dbe87e7a6b2af79ce", + "value": "number of examples processed for estimating thresholds: 100%" } }, - "7b875172cd764fa9ab4b1d7fdcd93b46": { + "606e484d407447bcb09578773cd22d5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3793,50 +3880,7 @@ "width": null } }, - "7daa21d4a2364d38ad2a974e382c6322": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_813659abd0ae4858b70121d8e5e42c7a", - "placeholder": "​", - "style": "IPY_MODEL_1cf620e1d88a4e37b2d34ea1fb5e1535", - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "7dceb22a611b4605b26d5be95c8f7516": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_464b5bb258bd409ab318e6ecab337861", - "IPY_MODEL_e065034c12da4de986d452fa8e88a13a", - "IPY_MODEL_4109ef68aa164157869d8efce1002420" - ], - "layout": "IPY_MODEL_a4c1ccb6ff5b40f5b2a9448cc2d9a89d" - } - }, - "813659abd0ae4858b70121d8e5e42c7a": { + "68e0315ddeeb47aaa3eed64bc0a781bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3888,7 +3932,7 @@ "width": null } }, - "92db28b2f6594a47bbecaa39c185f8fd": { + "6c0f1a6b8b0941eb890e179ab021fa32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3904,30 +3948,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cdcc7203a1d34765831634720bdbf052", + "layout": "IPY_MODEL_3eedef9a02374d1e96abed5e91673616", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_254221792aff42ce82df1c22b6a17fe7", + "style": "IPY_MODEL_bbeae6affcaf40c7b85b3a80bc472488", "value": 30.0 } }, - "98e1388d51f34102aacc21ba7bc431eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9c7f519c6e4e43a983bbd8764c156460": { + "75f17e33a67d4d759b4cd9037c2e49dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3979,7 +4008,104 @@ "width": null } }, - "a4c1ccb6ff5b40f5b2a9448cc2d9a89d": { + "851b95992b3f4ad4a8670c0230fcd73f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a29c9371170a4cf195f0623a90a22046": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2641df8a6b10468c84fd7d0cf8fe4b7f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_017b88b766dd4b1eb6d2b1e38318808d", + "value": 30.0 + } + }, + "b75dd4684dc541648d9d07c71d611dde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bc89283dc7174f93b8b234407daf2a1d", + "placeholder": "​", + "style": "IPY_MODEL_dacdbf7e5c0a4c5a8b089b152056890c", + "value": " 30/30 [00:01<00:00, 23.70it/s]" + } + }, + "ba97605c2b714aaeae151edc68655c4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_75f17e33a67d4d759b4cd9037c2e49dc", + "placeholder": "​", + "style": "IPY_MODEL_dc529557e2e64fcba50b373e9f823e42", + "value": "images processed using softmin: 100%" + } + }, + "bbeae6affcaf40c7b85b3a80bc472488": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bc89283dc7174f93b8b234407daf2a1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4031,7 +4157,7 @@ "width": null } }, - "ab4466bce4fc4e29a5451793442f63f0": { + "c0d493b322dc419dbe87e7a6b2af79ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4046,29 +4172,7 @@ "description_width": "" } }, - "b6cb19a81c2a486b82141204a442d67b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_660cb6ce052f47b4b6cbe492bceef787", - "IPY_MODEL_ef63b67382614e458109cee4652d44da", - "IPY_MODEL_d603c968a93c4cc180f3f615cff5aa17" - ], - "layout": "IPY_MODEL_2c30e1b3212d44fcb51934e93bf256f4" - } - }, - "cdcc7203a1d34765831634720bdbf052": { + "c2042fce4b7149fbb89d176082a3c94f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4120,52 +4224,58 @@ "width": null } }, - "d603c968a93c4cc180f3f615cff5aa17": { + "dacdbf7e5c0a4c5a8b089b152056890c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e77f234650f04aceb92afed644f9afbf", - "placeholder": "​", - "style": "IPY_MODEL_ab4466bce4fc4e29a5451793442f63f0", - "value": " 30/30 [00:39<00:00, 1.18s/it]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e065034c12da4de986d452fa8e88a13a": { + "dc529557e2e64fcba50b373e9f823e42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e15b5be74c0c4d29bdfda502583c695b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1772cf6eace14f4f8a042982d8d016a8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6493300865974b87a00b6d58ce9d45d3", - "value": 30.0 + "layout": "IPY_MODEL_c2042fce4b7149fbb89d176082a3c94f", + "placeholder": "​", + "style": "IPY_MODEL_851b95992b3f4ad4a8670c0230fcd73f", + "value": " 30/30 [00:34<00:00, 1.15s/it]" } }, - "e77f234650f04aceb92afed644f9afbf": { + "e66280fc5b9544d3b2997f0895b86556": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4217,53 +4327,28 @@ "width": null } }, - "ec615bcedf144713a74c0755f4d4a017": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7daa21d4a2364d38ad2a974e382c6322", - "IPY_MODEL_92db28b2f6594a47bbecaa39c185f8fd", - "IPY_MODEL_fbe3025786e94c99ab6c633251923c57" - ], - "layout": "IPY_MODEL_f26f2446131342a1b208ddec0b71c771" - } - }, - "ef63b67382614e458109cee4652d44da": { + "f8958214798d4aaea3392a34c1132c86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_587d5b941fbc465faf4eb95923831929", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_70503413664647f98537eb6ceb24c397", - "value": 30.0 + "layout": "IPY_MODEL_11f01422601b4fbfb274288e4cabc8dd", + "placeholder": "​", + "style": "IPY_MODEL_337a4acbdc614129ab2ee0180f730c19", + "value": " 30/30 [00:00<00:00, 415.09it/s]" } }, - "f26f2446131342a1b208ddec0b71c771": { + "fcc677509e4047feacf1ee2612eb3bf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4314,27 +4399,6 @@ "visibility": null, "width": null } - }, - "fbe3025786e94c99ab6c633251923c57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2cef6291580545a795374bc03a6013f9", - "placeholder": "​", - "style": "IPY_MODEL_1ed919af8e7844faabecb7a8dd47f285", - "value": " 30/30 [00:00<00:00, 414.89it/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 5466270db..17bc8ee87 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:48.780485Z", - "iopub.status.busy": "2024-01-17T18:15:48.780288Z", - "iopub.status.idle": "2024-01-17T18:15:49.889722Z", - "shell.execute_reply": "2024-01-17T18:15:49.889148Z" + "iopub.execute_input": "2024-01-17T23:17:47.734952Z", + "iopub.status.busy": "2024-01-17T23:17:47.734771Z", + "iopub.status.idle": "2024-01-17T23:17:48.739120Z", + "shell.execute_reply": "2024-01-17T23:17:48.738432Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.892898Z", - "iopub.status.busy": "2024-01-17T18:15:49.892481Z", - "iopub.status.idle": "2024-01-17T18:15:49.912635Z", - "shell.execute_reply": "2024-01-17T18:15:49.912039Z" + "iopub.execute_input": "2024-01-17T23:17:48.742367Z", + "iopub.status.busy": "2024-01-17T23:17:48.741768Z", + "iopub.status.idle": "2024-01-17T23:17:48.758449Z", + "shell.execute_reply": "2024-01-17T23:17:48.757950Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.915208Z", - "iopub.status.busy": "2024-01-17T18:15:49.914856Z", - "iopub.status.idle": "2024-01-17T18:15:49.961568Z", - "shell.execute_reply": "2024-01-17T18:15:49.960846Z" + "iopub.execute_input": "2024-01-17T23:17:48.760735Z", + "iopub.status.busy": "2024-01-17T23:17:48.760537Z", + "iopub.status.idle": "2024-01-17T23:17:48.800098Z", + "shell.execute_reply": "2024-01-17T23:17:48.799507Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.964144Z", - "iopub.status.busy": "2024-01-17T18:15:49.963669Z", - "iopub.status.idle": "2024-01-17T18:15:49.967418Z", - "shell.execute_reply": "2024-01-17T18:15:49.966851Z" + "iopub.execute_input": "2024-01-17T23:17:48.802608Z", + "iopub.status.busy": "2024-01-17T23:17:48.802234Z", + "iopub.status.idle": "2024-01-17T23:17:48.805857Z", + "shell.execute_reply": "2024-01-17T23:17:48.805334Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.969921Z", - "iopub.status.busy": "2024-01-17T18:15:49.969441Z", - "iopub.status.idle": "2024-01-17T18:15:49.978117Z", - "shell.execute_reply": "2024-01-17T18:15:49.977519Z" + "iopub.execute_input": "2024-01-17T23:17:48.808362Z", + "iopub.status.busy": "2024-01-17T23:17:48.807900Z", + "iopub.status.idle": "2024-01-17T23:17:48.817003Z", + "shell.execute_reply": "2024-01-17T23:17:48.816545Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.980561Z", - "iopub.status.busy": "2024-01-17T18:15:49.980192Z", - "iopub.status.idle": "2024-01-17T18:15:49.983567Z", - "shell.execute_reply": "2024-01-17T18:15:49.983071Z" + "iopub.execute_input": "2024-01-17T23:17:48.819529Z", + "iopub.status.busy": "2024-01-17T23:17:48.819050Z", + "iopub.status.idle": "2024-01-17T23:17:48.821755Z", + "shell.execute_reply": "2024-01-17T23:17:48.821267Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.985926Z", - "iopub.status.busy": "2024-01-17T18:15:49.985561Z", - "iopub.status.idle": "2024-01-17T18:15:50.575769Z", - "shell.execute_reply": "2024-01-17T18:15:50.575063Z" + "iopub.execute_input": "2024-01-17T23:17:48.824069Z", + "iopub.status.busy": "2024-01-17T23:17:48.823696Z", + "iopub.status.idle": "2024-01-17T23:17:49.401999Z", + "shell.execute_reply": "2024-01-17T23:17:49.401363Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:50.578728Z", - "iopub.status.busy": "2024-01-17T18:15:50.578362Z", - "iopub.status.idle": "2024-01-17T18:15:51.817403Z", - "shell.execute_reply": "2024-01-17T18:15:51.816705Z" + "iopub.execute_input": "2024-01-17T23:17:49.404884Z", + "iopub.status.busy": "2024-01-17T23:17:49.404494Z", + "iopub.status.idle": "2024-01-17T23:17:50.628963Z", + "shell.execute_reply": "2024-01-17T23:17:50.628183Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.820386Z", - "iopub.status.busy": "2024-01-17T18:15:51.819691Z", - "iopub.status.idle": "2024-01-17T18:15:51.829994Z", - "shell.execute_reply": "2024-01-17T18:15:51.829415Z" + "iopub.execute_input": "2024-01-17T23:17:50.632065Z", + "iopub.status.busy": "2024-01-17T23:17:50.631351Z", + "iopub.status.idle": "2024-01-17T23:17:50.641752Z", + "shell.execute_reply": "2024-01-17T23:17:50.641138Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.832550Z", - "iopub.status.busy": "2024-01-17T18:15:51.832105Z", - "iopub.status.idle": "2024-01-17T18:15:51.836560Z", - "shell.execute_reply": "2024-01-17T18:15:51.835934Z" + "iopub.execute_input": "2024-01-17T23:17:50.644372Z", + "iopub.status.busy": "2024-01-17T23:17:50.643967Z", + "iopub.status.idle": "2024-01-17T23:17:50.648354Z", + "shell.execute_reply": "2024-01-17T23:17:50.647831Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.839202Z", - "iopub.status.busy": "2024-01-17T18:15:51.838732Z", - "iopub.status.idle": "2024-01-17T18:15:51.847634Z", - "shell.execute_reply": "2024-01-17T18:15:51.847116Z" + "iopub.execute_input": "2024-01-17T23:17:50.650701Z", + "iopub.status.busy": "2024-01-17T23:17:50.650342Z", + "iopub.status.idle": "2024-01-17T23:17:50.659466Z", + "shell.execute_reply": "2024-01-17T23:17:50.658916Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.849889Z", - "iopub.status.busy": "2024-01-17T18:15:51.849543Z", - "iopub.status.idle": "2024-01-17T18:15:51.974011Z", - "shell.execute_reply": "2024-01-17T18:15:51.973351Z" + "iopub.execute_input": "2024-01-17T23:17:50.662055Z", + "iopub.status.busy": "2024-01-17T23:17:50.661674Z", + "iopub.status.idle": "2024-01-17T23:17:50.784615Z", + "shell.execute_reply": "2024-01-17T23:17:50.783929Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.976584Z", - "iopub.status.busy": "2024-01-17T18:15:51.976090Z", - "iopub.status.idle": "2024-01-17T18:15:51.979227Z", - "shell.execute_reply": "2024-01-17T18:15:51.978616Z" + "iopub.execute_input": "2024-01-17T23:17:50.787531Z", + "iopub.status.busy": "2024-01-17T23:17:50.787142Z", + "iopub.status.idle": "2024-01-17T23:17:50.790141Z", + "shell.execute_reply": "2024-01-17T23:17:50.789587Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.981454Z", - "iopub.status.busy": "2024-01-17T18:15:51.981098Z", - "iopub.status.idle": "2024-01-17T18:15:53.416387Z", - "shell.execute_reply": "2024-01-17T18:15:53.415644Z" + "iopub.execute_input": "2024-01-17T23:17:50.792562Z", + "iopub.status.busy": "2024-01-17T23:17:50.792169Z", + "iopub.status.idle": "2024-01-17T23:17:52.221345Z", + "shell.execute_reply": "2024-01-17T23:17:52.220630Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:53.419589Z", - "iopub.status.busy": "2024-01-17T18:15:53.419145Z", - "iopub.status.idle": "2024-01-17T18:15:53.433267Z", - "shell.execute_reply": "2024-01-17T18:15:53.432699Z" + "iopub.execute_input": "2024-01-17T23:17:52.224659Z", + "iopub.status.busy": "2024-01-17T23:17:52.224238Z", + "iopub.status.idle": "2024-01-17T23:17:52.238083Z", + "shell.execute_reply": "2024-01-17T23:17:52.237541Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:53.435679Z", - "iopub.status.busy": "2024-01-17T18:15:53.435296Z", - "iopub.status.idle": "2024-01-17T18:15:53.480212Z", - "shell.execute_reply": "2024-01-17T18:15:53.479691Z" + "iopub.execute_input": "2024-01-17T23:17:52.240512Z", + "iopub.status.busy": "2024-01-17T23:17:52.240154Z", + "iopub.status.idle": "2024-01-17T23:17:52.269107Z", + "shell.execute_reply": "2024-01-17T23:17:52.268431Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index af64e12b3..c78dd02a5 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:58.681081Z", - "iopub.status.busy": "2024-01-17T18:15:58.680544Z", - "iopub.status.idle": "2024-01-17T18:16:00.775060Z", - "shell.execute_reply": "2024-01-17T18:16:00.774440Z" + "iopub.execute_input": "2024-01-17T23:17:57.742875Z", + "iopub.status.busy": "2024-01-17T23:17:57.742428Z", + "iopub.status.idle": "2024-01-17T23:17:59.830312Z", + "shell.execute_reply": "2024-01-17T23:17:59.829658Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.778036Z", - "iopub.status.busy": "2024-01-17T18:16:00.777514Z", - "iopub.status.idle": "2024-01-17T18:16:00.781173Z", - "shell.execute_reply": "2024-01-17T18:16:00.780639Z" + "iopub.execute_input": "2024-01-17T23:17:59.833303Z", + "iopub.status.busy": "2024-01-17T23:17:59.832848Z", + "iopub.status.idle": "2024-01-17T23:17:59.836479Z", + "shell.execute_reply": "2024-01-17T23:17:59.835915Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.783257Z", - "iopub.status.busy": "2024-01-17T18:16:00.782964Z", - "iopub.status.idle": "2024-01-17T18:16:00.786185Z", - "shell.execute_reply": "2024-01-17T18:16:00.785673Z" + "iopub.execute_input": "2024-01-17T23:17:59.838723Z", + "iopub.status.busy": "2024-01-17T23:17:59.838522Z", + "iopub.status.idle": "2024-01-17T23:17:59.842419Z", + "shell.execute_reply": "2024-01-17T23:17:59.841936Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.788633Z", - "iopub.status.busy": "2024-01-17T18:16:00.788231Z", - "iopub.status.idle": "2024-01-17T18:16:00.838714Z", - "shell.execute_reply": "2024-01-17T18:16:00.838154Z" + "iopub.execute_input": "2024-01-17T23:17:59.844709Z", + "iopub.status.busy": "2024-01-17T23:17:59.844354Z", + "iopub.status.idle": "2024-01-17T23:17:59.883168Z", + "shell.execute_reply": "2024-01-17T23:17:59.882480Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.840975Z", - "iopub.status.busy": "2024-01-17T18:16:00.840666Z", - "iopub.status.idle": "2024-01-17T18:16:00.844276Z", - "shell.execute_reply": "2024-01-17T18:16:00.843733Z" + "iopub.execute_input": "2024-01-17T23:17:59.885656Z", + "iopub.status.busy": "2024-01-17T23:17:59.885435Z", + "iopub.status.idle": "2024-01-17T23:17:59.889383Z", + "shell.execute_reply": "2024-01-17T23:17:59.888880Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.846573Z", - "iopub.status.busy": "2024-01-17T18:16:00.846282Z", - "iopub.status.idle": "2024-01-17T18:16:00.849977Z", - "shell.execute_reply": "2024-01-17T18:16:00.849375Z" + "iopub.execute_input": "2024-01-17T23:17:59.891833Z", + "iopub.status.busy": "2024-01-17T23:17:59.891353Z", + "iopub.status.idle": "2024-01-17T23:17:59.895138Z", + "shell.execute_reply": "2024-01-17T23:17:59.894518Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire'}\n" + "Classes: {'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.852267Z", - "iopub.status.busy": "2024-01-17T18:16:00.851974Z", - "iopub.status.idle": "2024-01-17T18:16:00.855468Z", - "shell.execute_reply": "2024-01-17T18:16:00.854975Z" + "iopub.execute_input": "2024-01-17T23:17:59.897309Z", + "iopub.status.busy": "2024-01-17T23:17:59.897107Z", + "iopub.status.idle": "2024-01-17T23:17:59.901064Z", + "shell.execute_reply": "2024-01-17T23:17:59.900538Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.857729Z", - "iopub.status.busy": "2024-01-17T18:16:00.857390Z", - "iopub.status.idle": "2024-01-17T18:16:00.860942Z", - "shell.execute_reply": "2024-01-17T18:16:00.860317Z" + "iopub.execute_input": "2024-01-17T23:17:59.903420Z", + "iopub.status.busy": "2024-01-17T23:17:59.903221Z", + "iopub.status.idle": "2024-01-17T23:17:59.907092Z", + "shell.execute_reply": "2024-01-17T23:17:59.906454Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.863348Z", - "iopub.status.busy": "2024-01-17T18:16:00.862895Z", - "iopub.status.idle": "2024-01-17T18:16:09.532434Z", - "shell.execute_reply": "2024-01-17T18:16:09.531800Z" + "iopub.execute_input": "2024-01-17T23:17:59.909625Z", + "iopub.status.busy": "2024-01-17T23:17:59.909179Z", + "iopub.status.idle": "2024-01-17T23:18:08.513069Z", + "shell.execute_reply": "2024-01-17T23:18:08.512429Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:09.535736Z", - "iopub.status.busy": "2024-01-17T18:16:09.535212Z", - "iopub.status.idle": "2024-01-17T18:16:09.538358Z", - "shell.execute_reply": "2024-01-17T18:16:09.537737Z" + "iopub.execute_input": "2024-01-17T23:18:08.516221Z", + "iopub.status.busy": "2024-01-17T23:18:08.516011Z", + "iopub.status.idle": "2024-01-17T23:18:08.519002Z", + "shell.execute_reply": "2024-01-17T23:18:08.518428Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:09.540756Z", - "iopub.status.busy": "2024-01-17T18:16:09.540303Z", - "iopub.status.idle": "2024-01-17T18:16:09.543296Z", - "shell.execute_reply": "2024-01-17T18:16:09.542675Z" + "iopub.execute_input": "2024-01-17T23:18:08.521479Z", + "iopub.status.busy": "2024-01-17T23:18:08.521036Z", + "iopub.status.idle": "2024-01-17T23:18:08.524037Z", + "shell.execute_reply": "2024-01-17T23:18:08.523424Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:09.545603Z", - "iopub.status.busy": "2024-01-17T18:16:09.545232Z", - "iopub.status.idle": "2024-01-17T18:16:11.774377Z", - "shell.execute_reply": "2024-01-17T18:16:11.773545Z" + "iopub.execute_input": "2024-01-17T23:18:08.526322Z", + "iopub.status.busy": "2024-01-17T23:18:08.525946Z", + "iopub.status.idle": "2024-01-17T23:18:10.782125Z", + "shell.execute_reply": "2024-01-17T23:18:10.781246Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.777880Z", - "iopub.status.busy": "2024-01-17T18:16:11.777134Z", - "iopub.status.idle": "2024-01-17T18:16:11.785059Z", - "shell.execute_reply": "2024-01-17T18:16:11.784473Z" + "iopub.execute_input": "2024-01-17T23:18:10.785663Z", + "iopub.status.busy": "2024-01-17T23:18:10.784971Z", + "iopub.status.idle": "2024-01-17T23:18:10.793126Z", + "shell.execute_reply": "2024-01-17T23:18:10.792564Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.787623Z", - "iopub.status.busy": "2024-01-17T18:16:11.787145Z", - "iopub.status.idle": "2024-01-17T18:16:11.791785Z", - "shell.execute_reply": "2024-01-17T18:16:11.791195Z" + "iopub.execute_input": "2024-01-17T23:18:10.795673Z", + "iopub.status.busy": "2024-01-17T23:18:10.795173Z", + "iopub.status.idle": "2024-01-17T23:18:10.799534Z", + "shell.execute_reply": "2024-01-17T23:18:10.799023Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.794363Z", - "iopub.status.busy": "2024-01-17T18:16:11.793879Z", - "iopub.status.idle": "2024-01-17T18:16:11.797824Z", - "shell.execute_reply": "2024-01-17T18:16:11.797308Z" + "iopub.execute_input": "2024-01-17T23:18:10.801761Z", + "iopub.status.busy": "2024-01-17T23:18:10.801399Z", + "iopub.status.idle": "2024-01-17T23:18:10.804803Z", + "shell.execute_reply": "2024-01-17T23:18:10.804175Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.800118Z", - "iopub.status.busy": "2024-01-17T18:16:11.799769Z", - "iopub.status.idle": "2024-01-17T18:16:11.802932Z", - "shell.execute_reply": "2024-01-17T18:16:11.802404Z" + "iopub.execute_input": "2024-01-17T23:18:10.807088Z", + "iopub.status.busy": "2024-01-17T23:18:10.806776Z", + "iopub.status.idle": "2024-01-17T23:18:10.809992Z", + "shell.execute_reply": "2024-01-17T23:18:10.809457Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.805206Z", - "iopub.status.busy": "2024-01-17T18:16:11.804854Z", - "iopub.status.idle": "2024-01-17T18:16:11.812281Z", - "shell.execute_reply": "2024-01-17T18:16:11.811672Z" + "iopub.execute_input": "2024-01-17T23:18:10.812343Z", + "iopub.status.busy": "2024-01-17T23:18:10.811976Z", + "iopub.status.idle": "2024-01-17T23:18:10.818970Z", + "shell.execute_reply": "2024-01-17T23:18:10.818388Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.814814Z", - "iopub.status.busy": "2024-01-17T18:16:11.814358Z", - "iopub.status.idle": "2024-01-17T18:16:12.075466Z", - "shell.execute_reply": "2024-01-17T18:16:12.074804Z" + "iopub.execute_input": "2024-01-17T23:18:10.821471Z", + "iopub.status.busy": "2024-01-17T23:18:10.821021Z", + "iopub.status.idle": "2024-01-17T23:18:11.086279Z", + "shell.execute_reply": "2024-01-17T23:18:11.085605Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:12.079661Z", - "iopub.status.busy": "2024-01-17T18:16:12.078502Z", - "iopub.status.idle": "2024-01-17T18:16:12.366162Z", - "shell.execute_reply": "2024-01-17T18:16:12.365485Z" + "iopub.execute_input": "2024-01-17T23:18:11.089474Z", + "iopub.status.busy": "2024-01-17T23:18:11.089026Z", + "iopub.status.idle": "2024-01-17T23:18:11.370620Z", + "shell.execute_reply": "2024-01-17T23:18:11.369959Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:12.370837Z", - "iopub.status.busy": "2024-01-17T18:16:12.369694Z", - "iopub.status.idle": "2024-01-17T18:16:12.375305Z", - "shell.execute_reply": "2024-01-17T18:16:12.374713Z" + "iopub.execute_input": "2024-01-17T23:18:11.373903Z", + "iopub.status.busy": "2024-01-17T23:18:11.373450Z", + "iopub.status.idle": "2024-01-17T23:18:11.377667Z", + "shell.execute_reply": "2024-01-17T23:18:11.377072Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 8f1cbce7d..8126f8625 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:17.683980Z", - "iopub.status.busy": "2024-01-17T18:16:17.683539Z", - "iopub.status.idle": "2024-01-17T18:16:18.840240Z", - "shell.execute_reply": "2024-01-17T18:16:18.839548Z" + "iopub.execute_input": "2024-01-17T23:18:16.631328Z", + "iopub.status.busy": "2024-01-17T23:18:16.631138Z", + "iopub.status.idle": "2024-01-17T23:18:17.707067Z", + "shell.execute_reply": "2024-01-17T23:18:17.706406Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-17 18:16:17-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-01-17 23:18:16-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,9 +94,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.99, 2400:52e0:1a00::718:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "185.93.1.244, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.07s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-01-17 18:16:17 (14.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-01-17 23:18:17 (6.54 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,15 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-01-17 18:16:18-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.69.41, 52.216.35.73, 3.5.25.134, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.69.41|:443... connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-01-17 23:18:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.49, 52.216.244.132, 52.217.89.156, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.49|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -160,10 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 56.8MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 58.4MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-01-17 18:16:18 (58.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-01-17 23:18:17 (134 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -180,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:18.843321Z", - "iopub.status.busy": "2024-01-17T18:16:18.842924Z", - "iopub.status.idle": "2024-01-17T18:16:19.868315Z", - "shell.execute_reply": "2024-01-17T18:16:19.867697Z" + "iopub.execute_input": "2024-01-17T23:18:17.709578Z", + "iopub.status.busy": "2024-01-17T23:18:17.709371Z", + "iopub.status.idle": "2024-01-17T23:18:18.727351Z", + "shell.execute_reply": "2024-01-17T23:18:18.726727Z" }, "nbsphinx": "hidden" }, @@ -194,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -220,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:19.871321Z", - "iopub.status.busy": "2024-01-17T18:16:19.870738Z", - "iopub.status.idle": "2024-01-17T18:16:19.874378Z", - "shell.execute_reply": "2024-01-17T18:16:19.873888Z" + "iopub.execute_input": "2024-01-17T23:18:18.730451Z", + "iopub.status.busy": "2024-01-17T23:18:18.729940Z", + "iopub.status.idle": "2024-01-17T23:18:18.733621Z", + "shell.execute_reply": "2024-01-17T23:18:18.733015Z" } }, "outputs": [], @@ -273,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:19.876654Z", - "iopub.status.busy": "2024-01-17T18:16:19.876350Z", - "iopub.status.idle": "2024-01-17T18:16:19.879488Z", - "shell.execute_reply": "2024-01-17T18:16:19.878934Z" + "iopub.execute_input": "2024-01-17T23:18:18.735946Z", + "iopub.status.busy": "2024-01-17T23:18:18.735620Z", + "iopub.status.idle": "2024-01-17T23:18:18.739293Z", + "shell.execute_reply": "2024-01-17T23:18:18.738779Z" }, "nbsphinx": "hidden" }, @@ -294,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:19.881736Z", - "iopub.status.busy": "2024-01-17T18:16:19.881370Z", - "iopub.status.idle": "2024-01-17T18:16:27.772463Z", - "shell.execute_reply": "2024-01-17T18:16:27.771773Z" + "iopub.execute_input": "2024-01-17T23:18:18.741545Z", + "iopub.status.busy": "2024-01-17T23:18:18.741197Z", + "iopub.status.idle": "2024-01-17T23:18:26.628775Z", + "shell.execute_reply": "2024-01-17T23:18:26.628162Z" } }, "outputs": [], @@ -371,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:27.775590Z", - "iopub.status.busy": "2024-01-17T18:16:27.775061Z", - "iopub.status.idle": "2024-01-17T18:16:27.781127Z", - "shell.execute_reply": "2024-01-17T18:16:27.780571Z" + "iopub.execute_input": "2024-01-17T23:18:26.631735Z", + "iopub.status.busy": "2024-01-17T23:18:26.631355Z", + "iopub.status.idle": "2024-01-17T23:18:26.637292Z", + "shell.execute_reply": "2024-01-17T23:18:26.636788Z" }, "nbsphinx": "hidden" }, @@ -414,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:27.783496Z", - "iopub.status.busy": "2024-01-17T18:16:27.783123Z", - "iopub.status.idle": "2024-01-17T18:16:28.214355Z", - "shell.execute_reply": "2024-01-17T18:16:28.213734Z" + "iopub.execute_input": "2024-01-17T23:18:26.639706Z", + "iopub.status.busy": "2024-01-17T23:18:26.639338Z", + "iopub.status.idle": "2024-01-17T23:18:27.069318Z", + "shell.execute_reply": "2024-01-17T23:18:27.068667Z" } }, "outputs": [], @@ -454,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:28.217259Z", - "iopub.status.busy": "2024-01-17T18:16:28.216794Z", - "iopub.status.idle": "2024-01-17T18:16:28.223233Z", - "shell.execute_reply": "2024-01-17T18:16:28.222714Z" + "iopub.execute_input": "2024-01-17T23:18:27.072250Z", + "iopub.status.busy": "2024-01-17T23:18:27.071829Z", + "iopub.status.idle": "2024-01-17T23:18:27.078274Z", + "shell.execute_reply": "2024-01-17T23:18:27.077724Z" } }, "outputs": [ @@ -529,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:28.225511Z", - "iopub.status.busy": "2024-01-17T18:16:28.225305Z", - "iopub.status.idle": "2024-01-17T18:16:30.205162Z", - "shell.execute_reply": "2024-01-17T18:16:30.204242Z" + "iopub.execute_input": "2024-01-17T23:18:27.080782Z", + "iopub.status.busy": "2024-01-17T23:18:27.080396Z", + "iopub.status.idle": "2024-01-17T23:18:29.029614Z", + "shell.execute_reply": "2024-01-17T23:18:29.028849Z" } }, "outputs": [], @@ -554,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:30.208772Z", - "iopub.status.busy": "2024-01-17T18:16:30.207942Z", - "iopub.status.idle": "2024-01-17T18:16:30.215461Z", - "shell.execute_reply": "2024-01-17T18:16:30.214886Z" + "iopub.execute_input": "2024-01-17T23:18:29.033316Z", + "iopub.status.busy": "2024-01-17T23:18:29.032451Z", + "iopub.status.idle": "2024-01-17T23:18:29.039639Z", + "shell.execute_reply": "2024-01-17T23:18:29.038988Z" } }, "outputs": [ @@ -593,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:30.218139Z", - "iopub.status.busy": "2024-01-17T18:16:30.217665Z", - "iopub.status.idle": "2024-01-17T18:16:30.243112Z", - "shell.execute_reply": "2024-01-17T18:16:30.242491Z" + "iopub.execute_input": "2024-01-17T23:18:29.042085Z", + "iopub.status.busy": "2024-01-17T23:18:29.041709Z", + "iopub.status.idle": "2024-01-17T23:18:29.066441Z", + "shell.execute_reply": "2024-01-17T23:18:29.065766Z" } }, "outputs": [ @@ -774,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:30.245621Z", - "iopub.status.busy": "2024-01-17T18:16:30.245250Z", - "iopub.status.idle": "2024-01-17T18:16:30.277918Z", - "shell.execute_reply": "2024-01-17T18:16:30.277281Z" + "iopub.execute_input": "2024-01-17T23:18:29.068812Z", + "iopub.status.busy": "2024-01-17T23:18:29.068604Z", + "iopub.status.idle": "2024-01-17T23:18:29.100697Z", + "shell.execute_reply": "2024-01-17T23:18:29.099970Z" } }, "outputs": [ @@ -879,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:30.280522Z", - "iopub.status.busy": "2024-01-17T18:16:30.280142Z", - "iopub.status.idle": "2024-01-17T18:16:30.291143Z", - "shell.execute_reply": "2024-01-17T18:16:30.290517Z" + "iopub.execute_input": "2024-01-17T23:18:29.103479Z", + "iopub.status.busy": "2024-01-17T23:18:29.103200Z", + "iopub.status.idle": "2024-01-17T23:18:29.112931Z", + "shell.execute_reply": "2024-01-17T23:18:29.112353Z" } }, "outputs": [ @@ -956,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:30.293427Z", - "iopub.status.busy": "2024-01-17T18:16:30.293061Z", - "iopub.status.idle": "2024-01-17T18:16:32.143940Z", - "shell.execute_reply": "2024-01-17T18:16:32.143364Z" + "iopub.execute_input": "2024-01-17T23:18:29.115284Z", + "iopub.status.busy": "2024-01-17T23:18:29.115081Z", + "iopub.status.idle": "2024-01-17T23:18:30.973062Z", + "shell.execute_reply": "2024-01-17T23:18:30.972404Z" } }, "outputs": [ @@ -1131,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:32.146497Z", - "iopub.status.busy": "2024-01-17T18:16:32.146092Z", - "iopub.status.idle": "2024-01-17T18:16:32.150481Z", - "shell.execute_reply": "2024-01-17T18:16:32.149957Z" + "iopub.execute_input": "2024-01-17T23:18:30.975447Z", + "iopub.status.busy": "2024-01-17T23:18:30.975239Z", + "iopub.status.idle": "2024-01-17T23:18:30.979718Z", + "shell.execute_reply": "2024-01-17T23:18:30.979194Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index da6a100baeb6c82443990a2c689d014dfdb3ae9e..ff4dccfb75ea6d0c6e1959bde45e2e72ebabe9d3 100644 GIT binary patch delta 8743 zcmeHM&5NB^8TWc$km;(DXpz9&m(hi`lg#;e&X-t9r7aW;X{w-tAwAFeAfOAOv~gi= zgJ4AkTPeJ{P{=~+caw!&s&356wyTQWG%MFG3}#VE7WMbedneur?VLZrJ1{WJoSEl5 zAHR?D%y8@2&u$&N@|!Jr{+s4o7cV?bd)k-4B^4h-^vP6Rm8{uFD^&8*BxiK=Io9u9 z-+KP~)(oE?US8jtfAXH$kC*TD^X=znPY&C^nm@Ww)(I!c6bAD`j=1bi_W_{xVarn!X`I#>_VvC*Ke&^}g zR#DVBW<$l*XjziAUM6J|3bw>W9_tp~B4-g@VmY3+K`6&Tg(NAasD^lTeth{}>b^7U zOLkFl@g^2a_%m!1t164H?1dp7Uc7-S^#AOBIqO@|hkyTdF8W4rGyLw=`DYehS6qo} zRV9(AGDK}W?oa~SSM^$-dag1jqUa^6Ur2ZzY}L+0wwclG<(u!!Uz{!2YLd~Fpp7Dx zRLn_g{6cb4OUcX2FL!^M^^Lf3%Apl1dCsypX)hflpW|M(-Vlvar&M<7CD(wJ&4j0B0T*CJK4tE>`d9b~mm+iVF9 zH^I4rZjo?CYQ=KG5a9O1Sx-W0XKmq(!<=%A#(ATRQq?=>XgWLLZJeN^!VjOj*nP2Y zMt|jEccND$ahY+#vLv9u7iTh1Q*#h8hy7H}cH4@ww@GOk4CyLZWC^~A#rc$tSibqk z`A=pGpY48cqbL=q)4>-*PL~R30feh@Y(<>Lk&ce&hu^ zWDVkCBL)EAfci9#WQst!xYuEkYR^ z)(N6s`0K_>~>k1Dl~umx+D5DyP|RZz5uubn2N z$#Ic6PV_qgtQCFu^MB@N`eyK}Kke?>F2z&>j%Q^vQBr|}55`$iY!VO8y^HohoFC}6 z8RD8)kPRcPaMf1i3h)H)WImvLZ)DVfU8Mx6PYTGgIb>Ze^ik{Kg&Q5(y{}zIM=o{+ zw0Lyf;kUQudp*2}3DF9dbs*3Wri~*SQh|RB=d$XDs8!$tG-n;ui=bL1TPtlr#jOr2 z-9kr&sfDXI0GLjma*iZ4RSrp{<)wG$(5+U?>He*d!yCWuc6X&*)2)<*O+LdQMOcX} zAzloqSLMmk$lh1yXS;=|*%Lq{s!o_KbOHEJg7M2hWLcupzW}C=?ngR|lEw_i!>1c% zvIm%YsF9GFFa^$tAr(xc0@Vk&qL_teRZN6JFF_QKcMAXxwoyW&py@D?UXsp9gZopW zK<(dF>bZB9R2VaF^HDbr%`vCc|Qwm{JZ54}070_ErQaQO=8~nZ1~*^FR3rGxOSR$-;ac};q>IYIubHvPp>TwgklrhJTL6t${N4*Kj5k5Z zBq9*6gR@1$LCFY)EJaR9^uYv1dzCYu$=Mo6!76eA7QqWit%=t5(UFH64|i(O2s^y~ zdbhjh!zsU}Siu^kp`@}hQ&c4sxCyCC(ptlts^z6?9gyY0Bw$4qBV4OOGacrza0*66 zr^?C?Ho9^LvKqt4hmqAP)&a5}X=OAaD-nEKsTjoyLXm`i!W6<)#A@(Rp@|(AAWH$u z1S>>|T!m5x51RvOO*Y}7whx#ITLm_rVNf&-7121X5I;ww`%<8-$*lleZ_O5s*u#Tw zcW3)XXddn}-6wh&P=ZIT5oUw316*M8d~`129a3FhUV3iqpH7gmiq!B-Q*e186*-EK z137{_Rs-p?M}j$Ha4q3s7Gb(%)=C>)BHk%$1KA8bQoU@&9sY2Cckcp1qMcBFeE1P; zUdZ4wL<9pAoy!TRhwWC zoze`n-cIA?+4hl<&6LE^kRVg#{Dz8x0>dIl9G{*1_$Ji>>0jl~&LOgu!bQkWv^~#6# zKQ4Ua+)Ece`jySLW3%npY&+h68+RDBn{CJY>{>S4j?K1XeH(R$c5SvDAGmATY&$mF tj?K2C@xa_{J3esBve|ZQwjG;o$J#%YTWglhw&VY9+u@fdZg$_k>%U(g?}`8b delta 8779 zcmeHL%d1^y758{H$aQ2$T9KM_wpRyQZ*IQF`d)=7h#eFSNvil5g!Fr?kARLUwg~nS z6zdC75jGApP<+y4&>m_WXa)ssCoPVezn~~c%s?~){q3{Qy}75wvq#QOAP|zByVm;F z`aRbA>D}Yq-Q(AOwIlTtkEgG>%Y3?M@=@4eNo6H;tYl>tk#o|%T4#JTgg^Rk+}e5W z*3JaK-?_N8GyULuCqG#Hr=8B8n>^mleldMyo^uk;kgnQiQi@ZwY<%IItBTrpw|~~0 zSX^tGk2N!sqfLnrT2fIWNLIz>?1+j`s=IO%U;glg=6jPCNfi#7qo_ni+Qg|S@2s=d zWmRJr?@W&`&VRP~%cLDiAauXKHa+(_vpKli-D`KBh+qCH?>^KjL2_R_^%VZfXXVM) z;spmP71b$ag*4haQBCSzdtrLw#ak$D?sOqhYK^QY1sRO6IvAym6qJ--y!OxOk0x^$ zLUF!G!_rW|LuqF#IecMk(zUz>vbRbo28`I}+M-m(DbDENu6im!=N&AcR&Z6@JskmO1Y(G;TUtM@i0yFh9`p3IGAQw>^@Wgx-H zQ#L^hQ@smG>n>iO9u%-SYEDA|o1@C^<2R>!dq#cf6Q{p&ad+7ht(=ubdsmYtj(K_|uohCUpJlkyk6b7x%gk{b_pt!y~nY;RRAkA|eC8f+zzS!YLmzn!&Qu2%9+N;X^7TFuBK_xJyFC|f;;3c>)`W#AkP!jzTnvDc^fFWQ~vyOU=&H^zo_tc;9eS^s+M z!48o%QrHSvSroP!SisOg(;PI26(}ReoH>>SI(4C$qd*^0O_6OsavZJ6r9>mpdvEYa zJ&O-YmP3riE2S$Js>OvUYXnXqu^h6dH6_~|Ty;18F+KPBk>E?7I#4pL#DS7wd=f)y zgkVhpc{ng&l^L`FLeOaeNxjg_q}CR)-Af>;AVRUlO3=L(Nef=w{w74AwUDkv7JRFT zbSz2KqLo#FwdKrqHKk)A2dvTNkhS~u-RbGpN>`)w0X{{ch#0g>%nX?|AZ`Ey>7Q?A zq2{RA%Ib;*BJr8X9tI_qoU-ZS>(l#|K$|0DDWMG(ZKH~*6#?EthCnQpGu@SE4}^F= z61t1;Z)CeUaNzFMUp9NEC>+tTtdj)aYedIeI~zd;Maw7(U}vM~OM0|9iS&~Y@DY)G zlBwuSwI-opwgfFXW(BjcuB-!RY%tfq9(k^M2(z)G1_5IOl1>?q?leJjlJLTU^^=j# zfvaH!0W)a=c+x6q6f9!y1-d9x;ILR=1_n_Y^s8p0;B7#$uwgK;9uBL*KYFWk3U0C?z}`vcG1uJ8(2V_{do+8j1_58Z4&+-5EC zvyBN+TY|1YysQyX8j&p6Z3V2kB8HbB$>0Y-9`*wqK=6VDorr31hixx_sY<0Cr-7O=Rul?M9(EjveiB&@c497L zt{Eg@vV+m>$*_{<6c}Qga_FwU+1$7Cgk$|!2g%3~s`anO-s%uiZgW+3fRqCngP}d> zG*Pyw7(P7~P$ot%yXBBA+Uv_b%m(lXi>w1$2ljLhnho++Y;-t;)%Pb*gWd(gbfMjN z)&yjg0>|lKtC^3YY9xH_ZcuZf#g?-vbm{g?^S-u3&lOHeqzn|mv=^1JCK<@FQluCagT#R;=T-3C^<&M7>m}q{3Xv29fueJ8usIu;oGJrL*sp%^TrOSn zkd~-8e>0*F4$5v zo?ICgq8BWzQ-ff+7^6|xEh`g=UZn9|zx?!y<%dmlwK;B%oZLVUBcV(8%3qrY_w~L! z0x)H=wh484g^7qV)*zTO&IZ_rlcYg~=avfle*H&`UZ$`lVrCR+usB$upTz@&jr3-@ zm*3mE+~$FN3&KX8%p4#LW4XDk?&8@dyyxG~zhn99^1Cknsq(Hf4uGZvb}$7?;p#<)b{>yc*)=1Ki+&0bz|5#mhw)cHIC-b}`n&%NSqjLW diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index ad877e99d08ac991888d1745df5a8cb414209c07..b4ad8df368e2468fa50674881329fafddeae4646 100644 GIT binary patch delta 1931 zcmeH{yK7ZJ5XL!+2*%rpqJ>3{7q1`$-N($?U27EtAGfiv2+6(%OKp5aF1|_&HAT+9 zAy^!=GNiGL;6(@#BVrp+#6|;dNDu{K!8*;du*=SGzWKggn(r;m_ns~95i{5D*3GLo z;G{Ci`V^9J)|r5$ND7K58ZLto7&IzpqN9h^L|08z^W&Oq0BBs}5>H@+GXx+}=3R(+ zmF@En)q~=#?($moZl#vNrifCd#t1+itkz0-FhCfk;<9_c%7(ipV@%ORut_8b%0)}U zd0_#Flar>sK4u5H*^lf|HK0tNC^*v20!C}{vm#1oNpjRK_D|J!`t6rb>}Wf;&W^NC zR#>lFUSvm(^sUX1n;7@nXq^ zb!O^DC&iPC4axvXXyb*GS!(nS1lX{RACp1HLw1Q*fX;X>QAee;CFQNu+xR-@e5Rbz zn!s3*hZ3v_0ZblsZfX<%MO7@i#b2t~?i;h?yA{|IlDBWZv;C7Xd255{m zMFPtmm~D>@O1|DQ&hRHY{D*N~{b0lDZfQLIsk(n|cxC3orPF85&lDZ{*X@#a{pqRp x@di6ID0JB$jYd=T!di8#on2+qMYHcDZzp-byg4hO>V50$7o{A#4V4Y@|feYtz&zYt9-qL*U$?_h+>(~5Dbv2!g zNS38>hEz}zIg^1PIR%e4n@U^O)L!k~Vyr2~iusi?BpI_xrXr5yva-&*V2pCfJ9g;n zr|*h8om0)F_2TtvX|*Crm`nno1kOceR1DVo9F&UOyj>H+T_rJ~4$ekxGhxdp=g0^$ zD>i`9HIp0SQ8ADje0D7vyFyc=MA!DjNf~dRlUn4RB19+rF#wL%7*fLib zBBjwf23@%xg=hFx9R4jl&%cOaG1s-C{zTb7H@rMOdGYj_^V6Lv{d4-?{;B@dM16l- v92#_}?9a~5PLvDl#j*OznwaVg{7&nJI(w1=laj)^_uN%adz)FV0uWp diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 8f84f6c953b8f7ccae7de58d5cb36bd521c785da..4c01f4b1408782128a5ab93b93694f0d0486ec67 100644 GIT binary patch delta 72 zcmex5gY)YQ&J9;M4dV+;E6OvF%>ug0HhffP5=M^ delta 72 zcmex5gY)YQ&J9;M4UNl+k}AzJQuR}eO)L@(%q-1JjFOEEj1$vL%nXwa5>u0tj4jg4 a%uOv4O-+DIi)L1?c2+LN?W|l(1x^5aOch7~ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index bd3f92e85b265a4034b3b39bac1353cb0f730017..608b5e9b42f91c78b609ab76cbd792ca589137a2 100644 GIT binary patch delta 62 zcmew){z-g8BBNn^foVl~MwyAeu|=w7QfhLlMWSV*MY3s{ahj1~T8gQmnSoKVg`sJ( Rxv6oYMM`4Y=1GhRTmYC&6UG1l delta 62 zcmew){z-g8BBP;kSy57@c}A*!im{1BqJf#EnTb)dk%4hynu(cVvO!{Ma+0w{nwhz& QMWU$*kZG}b5@P}v0C%twzyJUM diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index a17ae61b9bb010e82e100667a8f2ece22b460961..d074408f60b11e90b6ea8f009e381539adfe6676 100644 GIT binary patch delta 68 zcmdnHnSJkO_6_?u4dV+;E6OvOV delta 68 zcmdnHnSJkO_6_?u4UNl+k}AzJQuR}eO)L@(%q-1JjFOEEj1$vL%nXwa5>u0tj4jg4 X%uOv4O-+DIi{|&7+uw6Co;wc!AUqct diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 8180ca07da92da4d44fd1f5a6047fa33af63b787..2d756bc8c6d0c8f45dc29ac1669297574887ae66 100644 GIT binary patch delta 14811 zcmeHOS*%@E8O|9ZRHQ-dM38&7MP#tOUGo6334|deP+CC)0W525OB-mJ31_a{}hG23Kd4Op2#Tbb4U}6x6LxNIcF1< z@WAdh!~ULiwfkvj-SC;+e8u>M#_zNL>b1kOcFX_zho4G&78eG|CESD$R2n9nqgKcy zoYllS9lRcrgSS_OHDS2#vDHsqefK*@R4)0XgW%2zFDUg!%PeIuGD+{VwL^OFw(_Fp zaqO$VJ)-iCMHwZJws{~mR#CycbewpP)Dh#y6&E#+d*dJ;M~ISI5^qe7f+%j4(2XX`at*mipSs+_ln0Tgj2y`yV8k-?FJ#D9qoI#dtSf(`=h<1 z21$e@43F7(A+nG*P^B$rRRxbhA+B1#p;~{F+jC=De|kk0$t}0w?}34iG~FwynPxpSY@kDhdGR9<)?bO@s zJ&RTX>XByOZffsux}WG*hAG@1#lZ(6NU+|3q6xzXPuh7hdiC4guXF}N1!bg2Oedtg zLdp|~i_{h2upqUK091&=ML~g5!L_mgn^QD~df%UW zt4Hk)G?!AVXsoojj?D3RhnpiNWQ~MNqj$RfuXk=O-AQwd=Wo4i`-K;sea;2jOL@6` zb>Vd4`YSiozuVkfbI$Bt1=?PpMZ)A9oB}riKgK6wJpq7dBt+=Z-iN!}`h!eOWWhc+_4Amf!?}FgiM~ zt+kTa28*$FtMG0us)R)@a1x!)Mt~-e&pAn_y*3mF!6v9ug}7r>4Q7W;^}Rpup1Kg7 zBrZS@fsK%o$0r7GL`tHkr%0q)!~7Ued>DZl0V6p(t{?B9Dut{EFLh7ZC>G`Jvo>9SWt&;x?Wp0kIQI_3 zs8}c~XqKm>XL3u?GI8`bB-RHsj_) zfL;q?Q}i@OABm2Mfj(RPD#R7__y5ql2%cwVTwQlw@2;(&r7=4xQ04!8n2K%8P zW%#mDV&F>Hm@<^i@Wh2O-ouY&MO|Vd8D1ZA7w)gcRU#P>)DF~6MFO~}4-rPjP%y97 zdV;G`+(}l>468+b@Grgf11o)_B$N}vg-O{5?V{2tMi@RnQQa}J2GOO)9O=k$!V#Xv zDrX3&LV?3189jMy|3K#i(GU$pJUJ%-3=gtFt&y}zSXt9Qb=Qop`da@{5Zvs@twdFY zpt)Z8*Y1Xm)-Hh-s0cKaybg_##_2(TDHK#E3m8b)W8f8G}R>X z3C$QwlBHI|pd*7Lvm8D>7^qw}sNiUgGy2fzg?sz=bQVyXp+Uoh2mMQzVLMT0!`0(@ zQ8$jRx}*07N}594`rgI<#Z@Wn{hRv74 zv>378y{UKFfN`ZciYB}T3OeD?Qm_HEphX6mxg{2=!i7Mkg2&cy>SAa+Yh(zH)P%S=#oz9Fq5w23m`X9PCID>v{&kbh~aylU! zDnS?Rh3`5VAv&69s6#i05tgI1ll&SK`Y9un%}}vWxSi!lakCSVEni(a zwL`cn?Wo07Xrvo;7TP5og)O#fL6VWfLpd4M#8nNXgsWhhW?ZdE4m6k)O{-oLefTt)Hr5%m*8 z2zYylGTv2~5E^oZO`R}m1_Q7Wrsc=tM}iB;;r?BrNHebN^$GI zUD`W!6X%O;37j}_4n-|TjfBo#K${gEqm-d}=%C<*+dT~m&B6(sN_TP?KxXIPVQ?xO zSD3=-oYIb3I0;UXERYgnh{&LENE1rUjJ^y91GX)U3Yz7#LS+>|hfcsIM~2JPk-{lT zK2fO_PKHuw8s!4zifA$#?OU`pJUA2nm$diUHZcmpb$#v5-j+)Wv75u3`a)(Wwh*P3 z2)H)fA{54;xRP8_?g;940Y5jzSP~j7=HOsKP;H^Eiym!2sFr5%V3Vd=)z}v__n1TP zrg>)zafT`D6WNJiaC2Ubt&j#x&a9( zMm@|(km%1^m_>)51fBqWu*(!<_y?j?;sNX7Ns#JjA1YW)kR}p*1W%84Mk!|d{-u!h z(YN(KzEO!KMv(ian}SX!_)IiCWVFsT%sMhpMVZHy$F}|nGh6JVcb@Kk1Kq*GRV;^A zAs55))rC`%??S7vpB7r^N1(6dI7)jZWN;`VFo!TCf!i=mJJglh+#gs2+DwoH3`{I! zjSv}x#!4$}Ld`Wcfi1jbM%jYY!*w?U67Ur|)=63hQFdhN0t>Nyz4OlAwoBnzX2x9x zEsn~;OyC8b(bAyQL)irb8c?ijitZccKxlSM1_y1`#S(@k68*(Y(a@mDDELUsh7u^k zdD+^qN#77HCol?u!l8<5x?UI~p}!4v^svNZe}!&*A^4=^D#Ug56$g6jD~39#8CPMH zfj*yf_>g1E5F;=(Em0~Aq0pE|gBv9lTDYhOJ-SB>9c^fuq^b3|3&G=UHHu^u)$kpb zP=h8XN@7e@b!xV{di30ry+=C5xKkyY9kzbsf!=8w^&(j!WEPx+`VIyOgDS4j$drmw z2y?XBz#g?d>B4BKDe_m3{+RlAqH9>VmE{;Jq~~E`7G|HAn`K=k{%+sYr$5v? zWms?&%xe1f1A(2=5w&guZzv+V5msu zbFldwtR272=U|7%d-FNid=B>S=Wp{l*kRMdX|Lnl`5bIM2b<5q-ZO_itaUh_gB>=5 qTh^?f&%x$%uqD4GKc9pB>lxg94mO{I&H8^>|95k+5$0f{qy7mj3Xo+0 delta 14815 zcmeHOU8tpH6=wg44(3>+Gh>Noe;&(GXPkNee-w$y9FcUKNt1>~hWGc(IHS#2_vN-onegK&y7*kO<-a|R*(sSVv!bglT^>QzkSAY2H7t}T?G5?czn;d z-u15ato5vCF|WL}>gBgq9sAx2%I`Yp@7BB1rpSeHL|G+RV1&CY6b;0s;JL|4OXH-# zkLJXiD}K16e(rOfwZqfmWy7DvwZnaJ%kVE@P#-z3bMEOEU&QT|8>->au&H)G?VLAU zh-ay{@9teYe0}eE_1kN@bN%L; z?JNHIw$qlp;^w{TzxJ^cao?u7N=O$Fbe3p}B8y;Rj?O2^q|1p%Hl&Z=Up{o;+0`d* zd+43ht3-`VGGrNu6efEgIPnze6%|q1>hb4_hnml^um0}zig+u$l9p-~a5rM4(vC_J zGB;H6F#cTeQ1iJr9>?c`3xrz1lQ&vWX)Mt(G96 zt5k?Ss>F;oQMgDPCoYI2G9iqp;713((Y>}`zx#CW%!*3oS+dA4vsqXbRm+a1O zsOIl-`|eEhS5#ypx#u4Ix0F0v&TwDdJeV>;2kRWqoJp;@Zv5KTuV{!i8Ac?Jz=}$i zX&Fp*N_Zk76Qf7g_a5yGgb0i!?tFG45#p7HFUYngKSGeB5B;Y1gU+B}vOcz^M{X)v zTQ%)D2X8zU<^Qo{)niB(xs1uSf&%Mo*27H3DkbI4t zK4*fgf^k-V{m0#{Rlzu^SN^2CcFvLYxLSPU1T5U(F0;UCN4y_-a4Z)bEy3;L~2u;eFHV!WKI9nr6r5? z!$0p{I#9`L10*DnB8p-hl@&@F6_D~eiAfoNGdu+5yptNmFS_R5K66gAWnSjd@1N;D z(y3?)L?;AD(Z7gbit^oZS<2mP_Q|MPE|5l4_@hBve9m|dq1)1(5-Dop^_;o zh1IBI!dv2^4%*Y8P`qWvHOED5P#^&H=F5AlN58nY_h9F~QaqLeq?CZmPnTY65l&l5 zZcUsw4!kCEk|{c~%pOI8Q!t$n5{O719p8pLoQoL+T~mSHg9Hnn1m$9&=x~HOJvw%E z?`WrrNICRQ9W$t~VBRGJTu5aliTF`2MUpDmt-tff-i?)-Za3DQKXlht)+?uN)}T5l zYk(3(?^Qu71%E6W$vA*>Xu{D^isHwVh{#_;!9L)E2bqxd=9T@`qhojW@9oT`I z@ZnTwDN+BC-ob!pFdFM4&v#dkUO3)+8g;*5y3NYzmb0p#_*-wjLV_#mnBtT$0jyw{ z5CoJ2*g_N0Y7&a9K^+yx(?m2P5J$W=fUUBnF@>fg3_EiyD5kw+JOFn@p$qAR$`{cD zgz_WgDmrVyV141r9<9(SrrC@2%D;CvtT$!}ptLh6Ry-SHkOl;85>&wpi_RkztB_o{x81y9=3^mqii93iDNTz*Fx2AYD!5oKHv}a)C*T2~&YCgXkI=mG<6i3;3i|zjO=Q zSWEg!hU=qe^|yYeWVd;nMbZcOOlV(nnS#;^VO`r$SG zk5);_%+L*GN(z1iBNVLRmINag+Uumsqk(7xGQd(I=vf&0*f^XZ1t7C@LicE96unwC zZA?gwIZ$XHK@kPKiB?VMUdiUko;A%R`P$mvC6}{}VhO^Op&-@Z$uwe0L!vnWj4|sZ z!FZ5cdNU5lpfL0`v0H3grJ$Swoawn4mY*)Y*h!cbTq7;aoMlvNjA;%Xi3ACbffzWn z@J6Ho<7s<#Gic)16iFoox|$*A4H?sWj)`Wwlm2bfaxvmTcC0H}x(9 z*>w#11sENJWhPhZZeBtn8TVVvKbxfNw9>g)B8^QBzQI zhryYFkwAk$^zb|D_@V@yNJk7!piTklfC*--TU4p3xfFPVP%5(ImU|Tg znwql|#3fB|H5M*PhU-Ue>~G)U3x=DwS?pl~L%3p-Hl_&W2CbNbFF~pWl8}-F^NVC) ziC&K`T-VH8$TXF>Va$T>Lf)`YI3gxOZG)0jPoQQ^3dSa?ARu92!9?n%j?D<}BLmr; zw1AS$HdA@QW_{bX-nt5d7N#ew5C2i7l1;>%7Dw+~)dxu|*lh1#GFkuQv%O0Yuz&!TfDrLWWXerAKHZ<2E*?(MRf@)Pyp(cs`RUR_Eu!lh^rNW` zwde{Eoh*PDz~BVl8;v^)PJ)jPB3Nz*e+(9ySZkRS46`$s5kunY$ia;mX^yq%@=b4| zubR?*+5O>kPM}Tz%j@=;L0c+h%Iz;+r-GncGetEkb{Elb_gq24)xjh_t#&p z$r6gl98@n3C{vpoK?RHnw*-j@U_QjecAC6ks-WIZx-Z__`(o!lS_sQ>%#`wS`RVDe zmDM7`wv?QjAS|GCqpo1C(gM!_pn+ikMFeuJML0KqyeTYL-h_nziI_vLFdo7Wu%o%q z;PP}bfjM+5DiUUBKoK$n_B4)zu&LnC`SQqpq4x%K-Gaq>&x5_~m6X#>*1vwR_mK<0 zkurp4FR2%lGYtQNg4!!6p3K!hdIxm9W%dbcqKuvZ!Q6xM8H060Bfg-%5Dc43(y?m# zhHycn?{T3rfi#$*mq0Ca-mqF3L&F{ zB4;2=%RFzz+=f2%H^_5TcJ~-QI&9+*zt=1_pn{Bn0uheE+ zt=U#<>5_Q1)q0<8+H9*e+iF=o+iK0WTGQ5Pv#r)_t2Ntd&9+*nuF_gbbGFr*>;e~+ zj4iXR)@-Xa+iLBaZMEKKoi^KQ&9+*n{4?W96@Gi)^WJ^)6p|=5khCfwAp;=^K?n(;1_WiWKo^UKh~Og%1Pek%ngEh8 zQ@DvI0;?uSt5U|Y1#d}n!l8?)J_ydLp%m{~cavVFup{J(tEY)CZ*UufcO zmqNS|z4jFk_J9QZv6XmUQ;063e{+88yvHJL5KN4uD^0w{fUv;Z$sV_+-hh)v|cAMjtfeYE=7Z4SH z{$V-f>2-vt0^orP*aQFKJ2;eKoz5GBkcr!Mp4hBqnj35JE#!CaL8vMbLpqKJDZ^bJ)v{iA*3Snb}*x?ZHg3r5<}a z7Lal7E+}^63r@bN7t7T@RYs=@3ff4_M4nawZ6)xa3P=SzPhShEd|(5%#t7p}ro#Z- z$<%Fx_ld)=6^Bf7ST~pnSVbK4y%Kqu(@gFT*8%@PB=o;q*0*wD65tk##SyX+izO{s z2x!4#Ha0O{$DtI?lgBeoQd(<(jBG@gjHLsQCP1v?qJ+99x5e-!0Zf70Kft+_swfVt z$eLti1#p^A2x0|hxG0HfE+r^mn4rC8`k%pDVSXe{8zCQA4EA>^f%VTF!b@KlU))El zmP^;dd_f_`@_`FcH~sx_MGTGl}-6<$MZ5DipyBVLc2=g6rWErvo(-;)+zs<)O9_L&0Tu!CX%KvkOZU8LkEma`fUDfv<(y1NCyCOWnFnNca6{aL|Lx#;~Q=9eDQb&CSE zbQK6i8(11oYQR)#J-uBd>Lts^1r<=1DN1Giv*_?r@6kO1Q8O3y(fYK*c&{n~eVj6S z`PD)kX`W2bn#1O}Qf){Kw)0XS+GlN0chKgg;DiI2S~x37^aUHgYG|)uvX^xIrI&Oa zA$*7y$ZpBro=~NoG{tlmyrxML4GQ5K3WbY&MAw^6Vt~r4>R%0vk_$q;e z58HBoueCv(OL4Ux@K}^a$;7@~I|OcivKnK}lb>rhfKQBSVyZoE5fG~_A>JfJx?+F+t>Gf@Rm}!`l0yNu_EE`{`Dn0|6OGx5hE*}}@dFxqg+yNI zv#Ms}10MQstrb-|u!D$vL`EX=Q41o%gA%sZNAsnb97lbonB;T9==DDsE&3XX;_{QG z4u6Xt6t&{Hq~ftA^(Q_mmmYq)r``M{>OXXL$c;n&RR39i0XoEQ-U_qr9$xkV*zrxV zQB02DP_a~%cS%*QP3{S_WqaK?RdLGI-=&juQwAzJxhR|{WwZUHY^q-=3spR+3mcE? zEiQjlTr$n1;pXIr5HM{k+h@;`xd6pK^&g5;!}YX zBZYCw3ZvfgyjOWHz^ehOg^D1xxx64Sc_0%1<0B{v~$E_hgasPb@r(50ytQcCYs=C{!z^*U;WS^#i zW_D!uGa4QZ@ffFl5grQhRZjb$=Z}VLwt2;u#4MgyTrOtByy8RBG9~h)_z$i4#jwp5 zDJXtP{3#wL_7oS$r>K1D8#Ys1c2Rxf!$#S$WXA}>xj4*IJ@!1D9_Eug_D(3?YdrQL M7zy+Lc*C=0RR91 delta 4104 zcmZ`+X;f9$6=v^y9{0Wb=Jya3Cmf0rHO^=fgT7R|usF}Qb~!~uh}I#CEVEn+nm8b6 zfCnD6T1i`@CT0mzy(V#3Ni@z88!TC}oQFWvN=>R*jrN?gFM}@YAJ6^Xx!iwv1*!fVg@sFRyba@d z_gA4y*ijYD`*vi_F{cr*Hw#;Z^Q%G-4Euj*0#V@sH=-PM6zVB_xcaxyywvxj3!rVd z?Ai#P8G@GKRX69XU4t#c7q6%ALxtMf()G6zfXC-P4YdV+XBjxctM3erNr2SowEZk1 zB7It_Ghs==qJoa8wh1YGWDnLaoKgK7{#Bv2F1-HMP(FK;R>h0kgAV`a*MEoa{S?w) zCPMxx$GEVkdXORzaWsScdv<ftlhN%{qPkxOsk423^;F?5#U`?s;K;hnW( z@Lw7~vqj6mPIjJ`0ll%KotNFzdYg_v<6Fp2-vvL9`x)BuOoS%9`G*i~mT@@Y#erhK z6O;7&QY2*Ok7Kj}m}KW?wz34CF&3QAk>?#3h7~V{miQ|>hg|JN{;3O_VU5OXnrh22 z-IAPdS8kd|w?n#tYwXIi$oH8b&Ng%Z4u%sq+m#oQMFd_x2x$iHw97Oj_bE(@^~9Ab zfFzjTNPCXbPR2!y=PiVxSi$OxiZ`qfuG&pe&^>@pEcFYL^pUyvTc`!}IY|8n0{54} ze84z|Qm;`MsXwsPuhy&2!&*lEj&_j0BOK)Kq;lxl2WIhHC-&FDCe+?^kcl%L4JM-4 zE=z?&9gPh9FCzmtS)3ajWZ*tG?u^Gh4l?jSq#!Ld5A?!;9q@>iLY%I^!ISWB@mQf! z(3dLAq51@im3k5iP9@Bha59>a%00Ns=e>`!dERRLqbW}4dEmqHaj5>IZvKogo%rhv9Si2xzV}6*A zhZz3Fph9#aa0kb340kDJy`RDi$|Bp49wwpStnc(8qB^qEuUmRojQUP52;gIZ%6=Xz zX&xF>idscO{fuJ2a^#}Xs1(EOsua+bFFA{e*x5-r9N&f61|;*j6*xq{A}I$s&F%ZK zwG$^gRSx=N3-ukt32c+FPUS`tffNLZVz4aQ2*wz8Fbivrfo zry`1Alao3bJ|ppdl5vmI%=i}W10E;w$UzD<;T(!iK1bTaXeVixHqzci+G<>k6YU{P z1UDb~k(P*ti##kkkH*X1DH=q`e~Su)X1q%o8aY|gwv*d~+}Bil5#r=prDdo=AxV_6 zx~suhn85Ee)mDfbQ|XLxDPOth@Ui9xU9^V*?rMX-mrEAJxh~Z!dJCtJn(g8Td*M1W zBcy#2k4s$CF^knt=Dbu*^nIR7nSIIHuI6J}eN?ScsHuQPs(_NQiIeOOiTCR4K1zWd zR)HnL4W3z`U6MDIr*19pD!fdg#U#5#Xct^hUqcgOdC5wAjdxn79cj46;2E?P-lZgB z#yyWDr<`ZzXmZTioHI(Ohl$bc1{{ zAMDdA#m(%Yp_bwnq)*Ha$Fw~z40@to(Iiz`Zbfijo}SU>@M zO&|p@+e03X_tblcCqz(ksvaRhJmfLO_rtOPUJ`&buv{{n_mF|-6oX~pA)>)AJ&g=J z#oPw@!O4qo#UCp+Nu6|TCi#tzM$SG+V|Gp#)bW7shR zQ@qO0A_A%3+w-!mtUq|TZyW0dP9ECE2IE8#wlEV8@-v;;Y+P!Ek)gs!G^^UPD}aBp z;`m0=t@E0#I>aC}nxZ;10>%vgE2MYjZ~z7Gh}g zQQG$;2l~uV54M|Ow2u`vwV%dO2+x914sKBRZbK~eb)We;w<7B+XZLdG?pEW`>Yh& z`UK}^K6CE7taS{YvQijjp%u9-BO1?B3QGy3*4v}xld#BA-lUY1vAGbFyWrC6?G? zKi!0Hl(5G^+#pbCVWp(uezLGY(NOdAX|*hhzKs|98<|+{BNIBj$19+4{u{OJm-aiJ}s(%7mnKc#WON<(m}`EghYC*u^MB|ZE` zq+aJ?zW{moQb6h_n!mowiU7w3$jFnDc2vOZ^Ru{pab|#wtgz7hdn_C99g5%zffT{; z02wJ*#ibj?Z`HDNxNS~*z!qpwVOBn3H#95`6n<@6joSiz6xc?-QXGhg$V$5{zAUoR zmW!F6m9|YH>8Z`cpRH-J!H9^|^aCnfnVYV(Po<}g-XzUl{TbOP9{{V*cXY2p~ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 665956f18ba0382d739dd0e3cdce7144e5c8d53a..5c77ae728abe35f9f05631abe4c240b6d4a83d47 100644 GIT binary patch delta 3687 zcmeHJzl+^P5a)eKVFDr++UY$Xdg2jsyR$R9J60n8AjD{dG$Qfb*&oC%pd^}b2qs`B z94EXgR|+-~Nb#@{to;L0gtN3upVE1G-zOeI7W>x^`lG#2BiRg@rxTSotlynX~8NxVJzTM6&EeGf-xI{ws`c?a5Q<% zByQ-KM4LgbsPD!Uz0+x>2tuH=~qQF3)4F=(q611^r=9}cuLsmp@wIe7#M zA|dEY-s*IuR9O6Qe)x6L1)YDmGni=)bAGflT-ai75(NU|eM8GubjA`g1kNScy7>L_ z@bRgs&b?tRs+ydUoeGL1LZ|=|3h2hh{;e!oH5+vn7z{H6Q>_6NNpl#-{yUg;)qf9j z-YyTXBU=}pJxBP(SG!+cneFeNoz5z;Ex>6xYec2Or9sFRT9ecm$EEcAv3NNScPHQW zmNHYs^Oru^yZF&N?|!h?RpW_jo%d4*HoJ0mZZ8ZkzSpC)A`YG)c=D)cOv! z)k9wyt9VG_vI#AFR7;6+P)8;8v>}sVq~cv*S3|BG1YMD6^^P=;m>GNxZ4{=}yGJS3 z)bx}HCl+f9Cm=uRf5?WD@Z0( zkKF9~MCdIKfO?yXN2lEx6!Fz6qfoWek%<7)n*=bS(%GpTdW5zj O|B+#f&yR-vXa5GI_4@<> delta 3721 zcmeHJzl&W(6y{x0n1G0&f`#t&VIqdGIWu$S%p5@wQI`;-DbfUqaekaZJ5dpmunHz% zC$1~J$}I&O38Z+~2-f}qDdJk%1uRo~Ufx^SCFrykuX)^J?)~OF=lk*Y@1EGdd*b$w z$Bp~^lYA|FC}*p~n1Gnj77H#lBvT+s$u2euJ|>U)7qD8b668e%N1#^Rb#jf)4aZT`pB@ZDq-Vq>Y0 zfVX<8q$W9L6ycVba+!Z~Zun)=#hkr!dVsM5*=BpEhx4Ov;2nFfLMiAdBq1!66DKs{ z0v+7n+6KUsYHcW>GHSUf8`UI2OtarE4NuMg-WtA`j7q)4mVH952*D=IAYw?@;T$U0 zC5ayJio}28npwLvyo8L=fY}82=(Dq*UYTxhpBbkj5SbIV<^u-nBUxhtLFF1!@NT8C zo=4`-$Ki*`m%YtQ74h7~%U3VF`^KAZU+pUL$m!m|rdQ6)%=zJ&w|bP8#L0kqE9L~% zqga!4w>1T%00?AdMLZFJGb*oW8*^TJq5 zC9IE_s|UX{R}cN6xi%=|rtTp20EksX$EyrcT9(pmn3>C}x^JHyUOl!Ui`)px)HR2} zXi|cZ_eAQ*7~Eljwjh~JVYI;LbO400RZC#m2G!|GpdIkA6le$6EL^s^`_tD?o?LDx zMMy-(Xqq<+;4?PR`!uDe=x~VAXr(oY$yrG{ezqy6?Dl)Z`|DC$m)g424k~b6YL8ax Xy3~%XOYPtPcl^&vZT`XDu>JTy_wE{P diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index 00378d52e96929fd1812b1d555b3a6fb9d427f9a..7e624656857789a2ff5498e4ec617ef24284483e 100644 GIT binary patch delta 33196 zcmeHwX<${w*)TKb+@0ppC4Z&34g;kNGXv#WJrCqgz#W6K9nl;~k_|%&YZ}Z(S0YwK ziRn=}>ev<)?83}Il-x&E#{xk!9Mw$Cj@XK7YFb#bLlMK&qfuMaLXP7^*gP}AP-@rL z-_|!j9Fs$!V_OP`O-&8Uc39FhMYTdG_~K<31v9`%aZ0Vv@>z=n-H_s|Uzo~% z|M7*_=x=hOUKkj^qNbSC&c@y1)i3mkcY3K4gODrot8C3sWs6Px2ri}xEmltC} z)oe0h0Ukt-U4ur(?>*W(zTil9Qg0`+YCg`2XCHmCrTfD8Jx7PMG{%q%wxO)}W3Oy) z=@~>0?m_vd(t=)*lr6$p2j2SgZ@P6DF7U)n~KZHVQ8_zYx-fELw)u2UlGY4fQvY_=>xFE2gZH-M_<jxiVj&*ojiTXrOzY^6e)NrxOdW+yK`${$UL87tu@esT*g zMK;-SA6`mUyo*XjyF^vU;al+(_T+xlkMdb@2et(mA;-t#P3&QD8J^4`#tfnyel-!a z$Z%JEfGYUNO+oaafDN55*r>^PoT!vQbM<6AjXk+FXP_MzAei_U3=qa}fP({sDh}}5 zLR3rvNL>v`M6ulwMQBamfHE>DTO|^yL&BNlv(u zm6QMe77cFeny?-eLowZ5QxF(nE9~B>XjE&t>sT`_}~o6u<1wW0})p|oI5RQCUD#X8nyB5lJH;kSF$ zLUa)&2wh-76{PG+EYtBT9W;)0yN4ar&4YM;2Odw6hDA`epHz>+x}d-+wOI|cxYZ!V ztvw4hVY2;Ntb!s{E-y0~21HE;fNofUK1Adu9V-loP z%G6kon#TlD#_-L{D8J z-L6IudEp@`^3w4>WKkSJ>;(*ny<~eFLGT4Y2)<+KgF9~*T8y!(#*ZA$r*XF?;h9HU zvXG!BdGE#K-94x`IrwYTiFb@;0he^&gSNNeL1ZmUc;->oEx8u;=$2=lvGK3hYz?;j zw=qc2ZMb_t9vM{h5}O=<2`~8xm|-4_zI5HFwF`DF3Bdp7ZI{y%?AQYAmfnjR@Ca*u zDqnS!CI#n7(r8HUAPedrz8o|K0KJWrMM3~1VOjo zB8BTTjR=RHLERZB^@M(U`+!BK$N&gT>+Ml?-+u(+dSC4)r$=Qtb$ac?^XbWtL9`M; zy+r;BcNc@8RkFVq?&UMo62oQzz*nlBI^LU&CuuVs7$@V_Jq6)Nq$*@=e3Xq%P#)79 zu%Xd4?Qm}@MG_ZVqxwoq#=ZJkh-s~pN#N4!6f#!poD#r5C5G*O^gIpVN1Kr@Xe|N! za5FNIMmnB_CX3LixjkQ@0rrmNNM&sn1q)Un9e|ovK+(Ti4v(9lUaE)2=1G znr|E)-}3DE2Q3`VA`4dI5fC$J^?4@w+-uPMPo}TIei(6gW#a}+u53y8kZ2$^Ce;9} z3u*v^g1b5RJw)bjz{4on)&hXSxZifgmLE%Ac7obdq7A4#$HH&7Q*V3$CV$EkDrmh~ z0$osTmeP^2{cu-IL7~bVO*^&@z#aX&XCN8UtF4kFAL282e~cvF%14mnX}^2d5DaD4 z0RfF-ZKk>5qSqqxMMNtlfctnThT`jdKa|Fd-u-?k;n>K;;lPNLpTwF^H%law=hgSx z+5^7A6Znw3LZaM$_cc_u43@Dg`KF~wqTk^09_Yg=Ww`BIEPG@ReT&C=WBm-uvL_O3 zs6tqIvzI-bM8aec3hI>lv6RtHQ7~DX@#*RlOa@lv6Dl~^-DQ-?x`1G?fqMf&IUndY z2|pnCbi2f~TI+#~_PTGV z!4tBuX0uY^coXhJf=##+bdcgE{5t)eSS=V7l9mW}%m#)qNVjJs5zRe&4rZG)qji&3 zMEWlPy7w={beq=J&kBc^TDop)dEnbKQnC=!{h0?2^}?WZWatjfg&o?!pDG(zmN!cj zgSkz6bpr)T3WDv`4HVd&wFcbnXVwi&1nP@Fvu-#=nx9!WFu{Jg9vu7U)eWcc`FV8% zWAn%cobB)3Zq=Z}wiJrAnIE8Ne)dC~ia53(bzF5#oz~ksyz)utlbUaCo>5Byl=C0d@(-#Xp z$&q!q!VeX|sf9$(o+%8{)(Jf!Ft`t1iPKgIJ$s~(NLM2;3Y~X?b&*3ogx(!#HM%jV zm_%NPdcjs(;zuHQypd+SI~`9_Ls~FK#sCZ zZ1C!Gy8XqIP8sVCb#Ss@oeDz>RLvc58$>c>Uo$|+AHZm*?0lq=L6ZW~O>Q}dD{2oe zN&ORSayS!Vcm16Zvb^d2e9~on&h5(V9=i*}R@*Fre8>*cSk1%4fFVd`!zHXzn;4v!f-| z%|Avfkg<(u6o9eG!I4cdhkAMo9?hQIY46ekAk8o5l97&;vIA!d~z3=ao&r`p`GJ}(b;!1jyGm68(VGcc2`RHTHhU~x+?}p=? zu^fHOKPj70&1f{au^;l2CL}lnHUzBMh4eX#KLyBV{ZO{M<|{ZmBDXC^7P&D9(B}*Qcin9X@8BI4_1=NLt<>g8-cblb;0`7`7s8WH8SFs^Yr?8wHDukoQ;w)(Vf}H3k^odJfO~GT!K)I1%SSNRd_i5ML8+R1wclup!}Mtcsljpgl!pZ z5$fV;g<0(hqf(;FsW4aIOPL^KZ+F3mFZ2YF==kRHxbx-U_~QQr@N$nY!z(B!t3N{* zF~;nSE-kBj7+Iu~m-B^sGNqTW0zXwAKQvLtkC(@fOf$$2LD2TQ@chEGz{s_3a-lRNxL3WwsN8p>;P~Xcd zI&@ecfzH}tqMl+*zDG^CQXPYk2SZBDY`J$8>_?{ zTf0Bjg{7@1D-D?Sm91kh8N#mCF($^|*0DECVIdu>%NDi36XqU2H&Y<8ho~rYw!?giffRPlJ7v}sam_%T~{h} z#1M&B=|Vq3#tNfw*U3yjfyw0CvBEZQh#5^m>j*U(J~EKmjM_S~bG*>pLatXCkgI4N z`em6=h=J^N(|vu(BW1!~+(gF;$yK$!j^xS-!liVy*F?c+A;9EW)=J>HiJ%7nVT!t` zO;M?{x~-qj04F|~>JIH7`-+6o_*av;>XwxQ$9pC-)uG?ev0ub@M6>Yj$y|K^ zCrjd}pVHlZ%y02)lUZvp3_sk3{Q^DUdg_>P^zV#PDlgctA}c!pSUm{OcI z#r=D=(1dU^=lweGB$rJW4&ie>-hbhpjCaEn#vACh!~1>C`!3G=4$eDVC)|!7=e$3r z6c0{u7t{+n!hhzxzvP|dtp)+=Z;$tXcqiliDCZ6I+Tr~p=iQ@<&Ku>Cozn!<-7!m$ z5H7A_6ZdBW^AS~UkJ-YL2#>2`O3(2+3+4)EAUwT_YrO~WW!#5Vv6<&pC34S8i7)-K z<7E>!<1LIkKEEnnPTh}aIa!lQf>QO7^SZd5x_^bK$Vc4sAd~Fqx z`}oEM22-&}70u**;;UZnhj&$xE&mWT%8;t&ysG#Y6Dm8_44`n}({*FS@#OwH;Pvlw zTrE#CwU9R#gK59VwNgxBk5`eyU!gJNGe>w7pJbZJQTYH1^PR}M7QEgczb20yy9MQt z@1yXS0JOE~Dco5E0wOuoBy^A8U*DVT*oArqY>vzn_zqX#(_F?UK>Ua>B`}oB7!TIk zsmdIe9j`mQ43|!2CTvZmChR^L70MB6q{4Sr|+|EGv*fjT&{|X-<{5hXo#Or+E2f;z81KIhkFgzZN_VTY_ z1AKmO^7%cUNrnwv2C16GnPRf~YoSPJCesM|NW7RlfW?~!-U`#(w5$1c_|@E4ojm7C z^7%J#F z@^U)EbF1B_1L7=%_f*qDX8D)hv-i-<~Y-_jHUU&aE7SnQ#j29i6!ePwOl8 zN6%0-c8^mNezKaI@Sm!w3EzuOupw@}f2n5H`&>1%-rPTdwCh9B-MHmXS;i9(<=kp+ z%PIV>?F>P6EUgf83FV3NYFLrerH1qCR73X3qVAF|;-D;CT*HIpEp!4SYG{xw!@~e0 zTA0_p2H1k(jTM;Tb*f=n?^wgb<@J2ZG+fT$j2zBrp~q-m4RfP`{lxJC-UJPBqfZ!8 zjeGw<@i75kS;O4uYp>HS5LE%+Si`dk&Y_D?!@|x6CJ+wSkVE}^eGnI9Hb_fj;s;z1 z8WVF9`&qqf|ZMLWf zx-n6z$=(s-->^8H)7n=g%DD4%N-JBO?$z~WX#m=0oqwD0wi;yn7B z*-Z~lIi20~%i(sjcMRA~1v!x;mg9-j*%~6qPo2b}Js$YFM}V~kjYuH@vmdE_rAP8ZQ|Uz0^G3*AM>Xp$NkD5lch0ishQ zxpg`TO1HIpx`%9PTL$!IwM;sboW1H;sF77n!yZZi`RLwTpT9g{xf*I-OhR$-}vWEL41-4hL3w%cq2ig zS3!1aGAp@6ERCj^49OvzpA%I)V+MDO>p3Xd*VWgZbbekOiWhk!d%ck!U3@ATKTRwm z$DbDmksV!pLE1F%${BQ9*N8XF03-2sbSr1H?C1iwwoxv{+dQJT^G^4HYH?5iUpIs7 z>+P!!+|>r!i)?;FJOkhD!9U4I(izZ;Iq@%~L8SXk@htrG3>NmDn2{9rULgl(iZ|g` zXAox=$omeJQ=-l1XNjY|?g3;-lh_Y`);hMjNgPYZnEk#=**`IZu}>lXwr9UBv?gWhm>bbQ%bL(@&t!NY*X0Z>Aq~mPR|9uYG z|8H?L85M=q_)ptv{F|@FzxZmnUqr>Z2z4U|=ZI5r*E$wXzVlY$Uu~;!cP(Fq6ebKR|hQ_q+>o_a1`Ds~Itg>~G+^18r8=hgA3G8-@;^_15oMU^pi zEcMuRJfLJ#43Gf=%5=`?YR>2?kJ0uzTIAgE;~Ej;``{Te&vb@U=QgYtFT(h-Iu=mo zc%6gJ5x+wCe;%bKyK>7!%0l1}Qkx^Qc& z-wpN0?e*-S;1;qY3Vy%0p8I`|Ys9PZWA*%u<&k=3X?NChEdvaz*5Ry>IeUsu-s{4g z{iFK$mZuF=pX}@R?Gdv`{vL5plEddTBs=_%_1xkAThA-XzkzOGU4bF<^%RDmbRn-? zD=y4US>p9%!gXR*s;~cxhuw#+6UXCm4b0a|fqR0lf7!(?y&m!cu5Mt=NKQ-{xdaQx27P^}RiP#4N z3|p*H_)Q~o3i(c5+hPKF5MsiYoW*Azi%%Ndyt~9NvT&D1X5s!GT|pb2NZz$jMtr_U z^pmBfVj=2CI|{osp9EDVlpCKkz`7Zzfyad$iVAYDxWJfAY~%r`(F;J0tlDV)y|~hc z7eWI9!vcyluhA`jMC|RyD;rs0Sm||c|C1Q@;mwUaFl^zyG%%pqOdz4Typh}Nm_{C= z8hK=x#YJHiMv6w_U0E`??pbjT{(U1ekOPfL2C}DX{KOe%Zc6V>I@hPWRdu#dEW9 z-~Awk-e1I0Cu07bq3W9-6NghAcUGbUN6XTL5mJtdmT6x&_!wvis^Dk9ND`9W!6s(#k2dja zHpq*WUG8jJ1s5M3vuaIrT(t#7A;-7c6~G$WY25E zE7wG`RSizv$-a$3_bw8AmZjQ?lC4XM2_H&9Uk>flbj!+CZTiPKzZZLSf-YH=Y%AM@ zk4VbJUY%)&X;?>S@LpN?a2u6U{EkQ9QQqke z$@Ogv;7@@EJ)1hz2I`fC-+S9GnP$vH$~9hx*pE0=z!dHwmM;tl;=? zjyrvrZxX|1MMVy$$%_6I0lMe$qCczH*B=+oWh;BeT)wh{=kkK0&j{aEgeT19OFM2Z zTiOwG`O*RqTiRz}iD^ZVLO+<-R#9{;2J2bPd93hwoHdtM6mJ*%ItI|Mh}6e7-ankm zyOr!82a;^SIWh&tqC2J&$W0 zVA|9Ajy$&6I&U7^lbkaz(U~qLFID=o$oR?>XS!)#vNP?R$2TTd&f^=CbLO$h!8%h< zN;Tv?9Y){;^^(q#7|tl}%l-;d7F(WvON?YAEy$3Eff@-Ie`;8&Q4? zM&*bc2^*TEg=N{+A|bey!H^sy3>6w#eU-0=`{S+tKcis#yp0I?VUoWgBVV$*+}}Sx z6jfp&Iii_iJETP-VMmMUaKnOSDA5Rfgg}n`8`$!Rz~sX42lti|qSsHTvSme04d(Ae zLQt2&XZeS=`@6gM5A&aof|g^NhGv=3m=3T`IAj8_qlFbM7FMK~C{QZ~HA{|}VbxT_lCHrm9F7%@ zm|??IVR6EaoiqnECL2~bq{3Ytwic2@4&1pRo8gF|8D=CDHuxMeawhu^`=rc_ubAo2 zFO`QbTUW|H_=T_SjS{nFB78?Yc+;kl!NGD^Q}rlZr(wy4M%TgA9Yu?TZK&{_kYsuj z%yiobU8EjFy20O>G&lR^klN3EYiV=;=1faA7=);*owKNBMtMc`q73F5O@_{-%E1dp zl9PS?y(%-!lIsGTEUYPxt*er%MPi|ls#uEdNGhntkzy^nuwzavs%uIVY#D6Aa-5KC z#+c3|dLawAdPs&VT&OEc5yOr~WzCkYa72p0f=9SrbJxqn`I@M|KA4FwLFfDW z1=SGz8I`7+k*K6-aCwZQn!2uroT#Iy3YaKg(0m!JIIP*=qYw{5V0baf0v=B?lA|)g@hzNiZqNmO>C~>}Xg~B2L8NA>{Z}|LrIvb8fU5csu0Z)&Al6 zz)3PeYl@{xnrd4iRgxfzND$qesN%Q~x$4BAB}KvC3`+-t)g(C*lIZL~L>q30vD7fv zGLIgyh~k7GYJ$0kG?-2(6ozYdq6S>Uh$88Uvr=NV2{|HcN1`#v$S@%b?n*MPSR@30 z^ax*wCgeR$qdDFTh2?NeQw+nBB9N7UINXU8lEPlz3ufT%aQDl|_#apLM-BpkG&5pY zjsh1WneZ2wx*XQ+SU6@H5qd$(J^q$TM1wo4w1_OL;9Z&-QtdDx+OngEWys?#dS@;; z$chn*?9+0<)Nf~{xP^|faSkTye}aBAre$jC5p+u zT;ay2!yQ>xEM%(m)+f!eAS^_!uoR8NB-64?x8MYeEipZ;%XZX?z?D`?#B?l(=eBAa zk^w0}Wf44m(#y17$)2TUFx+J5_El)eEq+*;VUh}0MU39e<=AEn5{3qu%!Z4$WQag^ z81CzW%du!onk??Pn?OR!Fg{O%0LGk!ibq6 z-IV2USPDadAe*)qUW;;CSA5TXhnvZI$o@T zfT_Ty$95n;hQM?~iUTL>64-GVuG4GPhb9&!IH|5EkSZKV@iEw7NTvf7emE4BA*3m= zvXYlGb;y;ljf~oKO9S!Ek|C07Mg%rFY8dK5ZX>KnEz;W;#7XtihDbGqi^X-UaNeaFG5I!4-!cG%PE7gL;s2i|(fscCEw3e{3 z5EzsJiPeF9u<7V9Q6ucAumiTBP%fWCqI(_bnh6Vddmx*UMzi$4VY3Ok3p+&$UAo@!&*#Wb0!Vp$mc5IW8CpXy)Ea79}Z2#~eoC`%lAuvbX z(cz*`sOli2!Bw9|C<-kwOfEl&ZA(z-D6osyqAI-Rgxf}KC#2{S_$VB>(Q_*9dqzx! zP$SXGUecma2ud={GHlqPkfiEx5lbA-=2nG$x4|)02IhPs8FC6;-rFGA%Vjz)}-1m;5PF$d}{xZD&97}bD0;8nGmt~dQDUwmM5hE+^g(@WnPHM%RSQe$n6NR?!DTc}kJ?6r)^V`1bc-mpEWZYu7Bd=_ zOmIF3)e&1a!5+aHY%2=8Q=VJF54WLwQ-e*J43-R;1dem`5Nsd7WFS+*5v>~ImcmbS zGBM|Vn1Q#${4ig3Y#UrZ7K1ty;;Rnl9dJqqo8<_c2um7g%c`M#$uQxnU`dWa+|?wA zL@_w;g%e?@MJ=dM6Y^m&1c?TYXbm{rgens5{8gbk4?~oLImxo-Ib=rWkPDTW?Q;#$ zb#B=u50)kA3?3|L*=)kTLo*FsGqjj3n~>{alW#>~iy7v^@_E@%yV$VXhyTHO35~0< zNJO@5BNmomH<{?8FatR4a%5V*!(u}%u0b_mg`ixHNHI0xsA^FA0+1bFKq;GnbDM|u z9c3sjm;LbhX))D?9X%8-7S!f&C~s+?bb7L?*l?q>mlrd9^T^JP(-*LrRxsJUG8k_x z89IX&qb&vO&9-rHuU1aK-O$({ptSu}>*==}sc%+JzuoZu{5?OzJBHJ5 zH`2YIN`7DQzkj>&yTO5;aP8LqGT(@J?Z0{k9^xN*klZ2geQ(O;mv@oKkidF$iTl=& z0DLsGZN7WU(7*=*j?5=pM+CmY11iauqQF!5ACOHOrlKOINOFg=(Bn3W@{yn+L8WzBa8lApG|)bfP00nXr9kt z=sd1qqF({R(q}5_70nX+*$+N>zM{Ds`$>hm0_31SsT5Z{gwK*Ajskey2c5_y!%foK)up=He zw9{eV+cgP$vxmLW!~T_r4efN;U*;xZ-|1oB=3)Qd!-jS`Y_nSu_7M;JB@g>u4;$L) zus3#3!v5C7{+eUMO)`h{KnaE>MK*>l0P_}?EnN}aRr9^D-M@C_`ZeL`uH8Yf5BlGd z;q(i9Z$Z}eNFupFz`wk^kzWZY_wTeXmx z0fO%!DQ;C8ZsJll_e$csp5w0Za4+JxYtrNXws#WljU4wn5BDC9dtG|mlYNqKpXRtv zc(|`}+$YlG+WnGnKj*lgdbmGu+)vZvp5H$Sw=damfu4IU;x0365qBAAr(6HW2P7d+ zyRYmuH;}Pjc0MJage0fDl$R!?fk%v5nBSSMC@~n|b z$W0z{qlX;j$k0rOd|h!8@&z99CJ*^ajttFo$j3{PkbmPL-|iv192uJFkk62kkdJ!E zFMG(xIWjaUa?<*D3#4EFfpQYX?>I&D4Y{f*Fac$eBTcXZ-?T}Sxb*KQ;i6xVLvtZq z6@>We!JlzbTxh17$%kqpUj#SYQrxK??mUhQ&2+dU^(5T0Iqq5y_hOC<&2+e{jU?Qg zIPUcx?!6orn(1(VZzkbB!*QSVa9`uN&`gK>ot1?91;_oThx;SPg=RY3veAjSxF3Ag z2c;DJW4t?-K%^=Rvq%Nax-$bht%eS+ZVT*IX%g-vj*H8}JhIn$$Yrg_i3_|t8F`t< zcqwOmu7|s{6*tkhOU5QK-tFOD&2ew>aIa2_yLMa>?jJqehdJ&G9`3_wasMzr3HL(} z_kE80m52L&THNo;l5lh3D;-+1=0tb`9u(o4&VhfFh-*4=!V@PZA=@4@`~^EJcqe{CM6+>NZ5C7Z$d;?ahJ^!>5*s52_crjCw|f*UF>;L5oCeP31G?oKx`eg1FGd;jy^fisi7RrUSq`>N{O zs=9Ca#>ZVBzPdzQ>)YC5mw0cktX{Apbg{WGIv}EImLnOqp($ZSQk|G)$YIHehC`|q zGfdrbbPXP@-EZce-#=(8vK4Z4N!Ij`7M7h*NYWKckEph0*)cN|cNVYDO0>JsD$faO zvK%!-vZ6~7NsEP}PAIH7x)D(w#|-Nshjo>esL*P+yI?rZ394Eo5{jA87znFHqnd3< zj%iAkEn8+xF)h|zRwCNn$79|K1Z6cOTe2l-Mp)5o)v%1HBs->Vhn$EMjmB7aS&3+O zx7Xj(snj%Ls$^+eSc88dI~>vtBdUZ#wqk_LkQQIC_=;c_8YxbD>v-O@`GRE|@#Xu* zvd<^?y+%LD^2c#kGH3=K79YQ_W4z_dEm^BvRT{Tm-pD8>%*0)wu^TPy4(wlmv0;#- z+fg^Nb`H)V^CT1?6$EvT|KU)F_}qhejhhSOd550$DoW!g4qemexr97*J<5&mIlR%U z9GcNX_uU6y`O{eetzR%`S4gC;H99AL@>tItuR@ELe551`yJvi~3MWhPy6;BDJ092H^jN8=Il#o$lWMbv^DdN0H_<#a!-;i$uzsj;({z3{^R$ zN@ESwEt>6fH#+q$YA-iE9?H4bX?-?B%*5P1;rl0j@dIDx=WZ2RpceGs)*fgO`DZsQ zi)MuiIs|h_R&`Glf7=}oWex6y2-RaU^lUtU6D~g+ui#I|&c=f|&7&fE7m?iFxPrF~ z>Wv5Smiz$9@#75!DfW|`-S$l?iWFH zk3in3#`pLPrNXqxf=|#mP)XBrZ|I3OVGLEnKSOJfLOvOb$8jR}i*nSTHC3KKqd9d$ zU$mlAj@&OO+ZD1!b}q-~kOlj3k5tvh{a8ts++9@&Tu_3ZssXvZHSV6QA-fJ?DOqw~ z8I8aTCCJH$RImD!XwF*opGW2&OEddlY^ab4f*47 ztU=q$4jM|l^k$k1by!#gAO4bS!DSkv_rHiRE;e72G_VZpNpnq z^5b{FLt_&5eT|Vhuc0brx&K;%jv;d6>qr6U-q+D6s2jW-wf4gxocB<%eTM+dM+otn(x6fdY z%oOO8`@wp2Bj)YY82Hm?WASKC>DFA0`g-lmA{glDYf)vcV5%0R5#{8_X4H)qNd3*| zHTIB9CTLqna#tL+WYmyOkbQBqkrB~+B8hcx+kzHg!B7=)ayA}ADsKVYe1h^4RlUg{ z9|M%$CjZAQ`N2k>4A)BN@|%4Km8(rEqn%g}IMpZf+H=@+aDn|J@| zg=i4?AKM~*F9O$1pWNX`(Dj%-vcAV$ifm3Y={;1<}G^UF~cuS6eGt5GVX zgw?P|FMvq4`@kpEYFH(+8urAkhCaH5pHr)0wO$;7%8e(`J^5r=E9}E}_KvT6zE|$n z7G6dacV6!J@LC+sjn6;UBS(i!*R0SbrjYS38`ZE>H_`0Am4_$e`0qaH7VxU#lfE0p z(%l3}oTj^pg8Or8{2q$W`>ZTk6{k6GvVBAWw)|M(xe?PqwL+1Z2GR$2atFK?Lp#jn zQV0b=2&y*-D%`6&<9ymeK;s6|ibKUX$G>$x)i0yM;=Y@!8!K{kqmS;V-7%>3^8(c` zTG2?|7%5jbM%t?v2KBzxj|OEm-GgPWN8C31(in2*62?5F!o$nQ>fA09TH`9 z1E?A+CzMTRWWx*5NKST4rA!(?+gQWSB2YtyA7M}qUvy$xrtl#VPwAlODV?IY=MP~c zx`gSP!UyDO9?*H32Xud{q?|7M09l}P(Bi2dwDcK?|0MVfxk8mZugxBr{?RA*^%{Hw z_6V2)vUaY3j9}n6+$TZ6G?3LkT#JY2V#8!^J2)M8hi6hX9sh%VCY*Md5>QXQX9h5V z25{6v;nTfwCI%O+>oRrG=O!LJ$GmwCewI}=cFdtf&A|jUb;n)EgY$5=R1I~<&V0<> zaXI)a%}%;vuLy3~Kqe{MjEmgWEAU9>gv&|cjktuEssU9a7G2hCH%(v1fchW7C5%^Y> z5hfL$!x(Ae0yrQ1(HTf~h(Mx;NYho`+oi0R#Zn5vY0%#eV%;41QLvfUwWA6ZXjToIbg~ zdH{o;WtB|L*%McD)-LYG;AdGa({fh1=3zXc6LX~egh1C*jxpC4rqk{veNF5vi;NwFHPnzs7b$S5p{ayuM(cJNYsA=9&M)Ri!K&7Q6mCc?WP-?gG zEpR{0A0JRUI>P3U4^HFV?C}BPz3LrsY0aJ=oYrY`=Lf9MXO6;LcDY)$5+@hzKxP9! zkGU);>*Qb^YAV{FtNpsY9-HQPLsrW0u^yd;H+X) zmu#f{Pm=`F=;R5_FZb^D{1oQ7i_y$LsU)WlG#i2s^s>)sq+34#YjjgAd!epON|t9y zcsOrz@B4-ZyDt^2@CxPt7OROOxm(4|k{JlTny_#X8|qvB;J z`v*#M7q)Nsc_djLz*VScBhqe^bTUL1KZzKWG1m#D2zP4sVHMaK+=LN{{)pbf+uNG!+DYq=fJtBRY0YZ zJT@v`cj{Vnm=8&!Rr|dmvBEwWvmf=wk8$xiXvrwD`4!x|=+sC$jD>TOV;IqB`o-ih z3NvJFnyLwD|4pSDh)z*uD2kt$9wfb53R?U~bt`gCOQ9`!Y98p&0TE9n7Z(XjaIdQP z-Vr+PQAG}RLz7V@+1v?W3;u2gD(Sd}RFR#(5j&B~AH_jDuqy6MRESiKTT#HeQ)n2u zyc*B<8B&FjNHN(X4ZZE@6W5^BT%K1IKl-&97(@GBRK-*Sudj-uBU+$})~yCPsA{mn zrBDFXK-;KLm4O;c0Ch|?08CYb_Y|ulUwn!tKw<-8un5ndXoT;;WXlxe5iZ6=+T)+9 z=xX8@xfJ7R)!#fRSm7BEldk5UJdO+$tBP;Bq=77icc$Oml}OM}3m@jq7sB zPqnxXO(8pTh4XOBYBu#b)$xPl3^J{)FbVg7=Y8V>v#Ahe)#UrO!r!o7%?!iw>T=r) zRk(`QmB)k8_JMPFeSGH-1(#IA0u9AE)pTvHK#Mt_Rh-WX&gV!!RDo~gd{$EI_0{C( z8__-ZF3#s-uWtEQ$i~;w4!sozeA!B!Ja`J^-`GvaC&xPr@8OrK$$>7y2>fbwyf7#g zzf{e%yKti~=q!l@x1?4c2p1F!)%X}A?35(L6&X|~i-pJVzbREe|5A|eCE$CqEWY-V zT)cr#AnDLg7))*{5xU^wn)vdWBXOr1va3wAar+vW%Z_C2c(FB^RVv(yb=qDOKeEWc zN=?svQYFe~d*mt3@uzX?fg?(yw zx;Jza<|4eRhUw|ubb=x^Zm%9f4C5d_1X?Hb5{&e=JCbb=^b(@! zZ4V^dHk1oPXd6sbG5Mfe=!5qr+eY>l7A0|i>n-%fhgn<8D?nawDTN!?^@}enZ%gjz zDJ&)r^buMnshM;iBzuzj3iD{&roMs}xQCA?ez4Dw%#r_|Do|f?5~+fzO6y+d)+*r)|SW`Z|%eny>@kKAJ2a;giURns7C3S)#+*!Y5mICgm=M zE=`J%6Fe_^{=%h^ibnbm05;u^|MGP2Z8Y6*08xxyPfho$-gF;oG~Lgb!qwBCOSO#lJM;FL3|RWeoL0a8SByj9`*s1BDy0Hir43gH%>|j9WHH=!9_9 z80Lsx=apprVBrcpmDVvwF2Yq@g!Np6 z;4onyzLSgaDed*PF>Yn0Fdg9sxCmeIO7hNdVK3g365)GRpAz8~F2ed|MQA~W&j4@y z1@K#9Z~-14CESa1#~u~ zbj7e{S$E;AXO3loU>YzSXSg4Y5hR3HaPHk`hfBx0i^mDiB7DVIa#BW>ey{T4TA?Sx z@f3TBH!${#$Ff)eo$j1CATj-g8LrL9BkR5uhmaG$fp6fR<6``EY`m=Q*Fnv+te7Ri z4;NypCdFhMep{i)rW{jERgOgXFB!5D!H)&-J6u3%cKg6kD&SjVX-?5GzHEPI{05b> zcf4|POALIeq)&|{^0#75z@ns}HNz(h>u~-!Hbbq(u}~>b0YfZ@X9$&JC|S>Oq~%oM z-`F0;$JboHPg`8>+Flm%i{mQ-b6wEF@P|Ni5*K~+` zYRSPT#Ui)&55h=<->&6J(1sr&3Hq>>C00=P(T~C-w2j5mdpV4%bzugB-?t*0$B6?; zS0r}9ttU{GMtNj-cdO{wrVk8#hX`I#M6st)SVE#4tb0n7L;uRB^@={;8hYG)R0`-NJcrn1D<%KgQ zK%N6SI7DDNNTD$8wG+5YeAJtzo%e|oIJbK_x4To^cF=+8?yA<}FabXe1yH=4)^v6! zxH*O59swVwA`A-@d6oI?L{-4=ak=P*qJ%dvb$fz|h41520ew?(?wFADl!(#R66Ps0 zR-m`Lzms?m!W|~^OzEaB;s9Jak>zt8CVKhYLnObm_z?MHvDlIl20QtR$v=uk1>4uImkQgJe^X89T88cwzi2#WB%u-BQy zJ7ZokLwJL18Yd1S6U#t*HcVs=@tTR;AznE#r8?`oi4EkY<6?lo(@K0drR1)0$3*5D zH%??q1eh#JRN0y<(S$NkqQjiy0gvNL6PX6}?AoX&7tcNc>P8k4L-e67dM#Mmc*a5^!drK7(^^8#1a+T%Q?uz96sFiB*|- z@UL32wHaG4%J?g`HiakB*CxM>`((ZNAi}7gMXbU$Frz2x+}}+RHzAx~&t2EdY2dm# z)U#lfU+?ajCJL;PEkY58#D}jQnxEczC$i%f@HTmKz}pP1XA3c?o-c$|pIC_2?wFb4 zEQF_10=^tm>e+Hs*0bfX;75s~gim-YkuiWCZK#8(WlYGM*NAP|F8)f7&ANK#V&0r1 z76tI#^+^}gpUS+Wp1YVkfOE9G;JW%W7qgDCEn?@2cy&GZGiURm67Vw<`LO=MhxLlb z?_j-K784DOzk>0BlWAapdiQq=#Vg;t;aIW|b!fk0KPvqCK2F913aN^IH zVE7F_4+k3w^m2XD+k`!tsJF>n-Rs-1_3yA$tU=>Q-A$rgFnV&DZEkjVEETUoXeMp# zPnIo4Ie|Fsar9(nRT<>l$*$$#zm{>CssFl@6BFjY)~4!z<<&F)wP%I+EZ#IZ>AKJ@ zj2$}%+cY`py6*KbDcAM;REPKRMtAS|;)b*E6Of4{z1HtjxIuVd3i3IxZ)zala@G9p zwV;~ECsWl#ACX_(O z44ygpr0lbl=^(Ni0V0 zd3itM{wumF~Z>BKU0d-ew5qBlqCTu zyt{xMiv%x_T_1=SlWXE)eXG~SSYs?sWe(`X6t=!Vl~~`kQ~3I3 z^xi9nXLqH?ZrxNElI}izzqr(g?}h?+p^GW~ zj;Zcd4~QN7_#rC8u)y_R<@*ndVIO{m3q}*=J9q<4bc=h0A-p9(cq=Uf&r_tQVw-jIsL2rU1KQdkH82GzKpYkvhQk}h!Xr#$e z&R#K+hv!Xe5KjV98 z6AycLPh(nl(=-G=po5lG}Px5nNyMH!H8{6s(UdudQ=cRZ7z8PMnoY!5P*X>DO z^l0H4a`=smvHdlJ-@_iiKc)CVAI+C!T%C_lZi*faL2QO19QKq@!>v@vlP!LVCL79 zh7Tt7N5$m@8K(a*Ieb){o*8A@aECDSU9m5UGUnUHh&crz;N8e6jBuZOS8RvTN=9+> z#jOIPDErV1x8n!m3ka{9!6VC0ABqFeb$kp5is363XjpJeJfD5i@0q?lCia1pnhnw; za3_5vR56DDxM<~kR$R1l<*H~Nyw<5%luD|A*E(%Q@euT5$_gORCB>9z zi4thK#fWJc{xJd-UVCIEAdpqbW(2jY#-lJ*l@}?63GYaHjr4K7UDy0yAA~0+6VX)b|HDD#4IV(3#5)*(#lH|%3UZn|=!%{{llX;KJeI$BK|W4bQ@5RQTxKy zsdOHF&JFP(}`)Vd|j|Ji-r1m zvv{bVJu8_`kdCc=SK~`)JI^LAoW=G8;aP0|1(b03Pj(f_FYxV5OP>EeD?Pb~4A+WAf*Tr!*S?M3;vp6#j~e8&;)H=7<{PQco1dH|8v51=f|olh2Y@XaT^x5D=` zK*N9P)Y&%@S2IGWbMJ*B>wsm7y?M86X)^>E;4SSRi(zTcn@yJ%H4xeG4aDcnPOhxG ztgCMW!dKIFwzTL9O2ZG5md<9zbq?8O`XtuefIQ_x{=j2=8kj|8P(MX(80?#wX*)d& znd5CY#McY;pdIxm56&0Fg0i`32K1b}dWdhOh?Ti?Z+ICRNJ-hYFo%3G(pN(pJ{jSg znk0a4<}wLfYn1O-$fM{)zNzv}N0CNktE<5pl(|Xw`*%8)vbk(58RG0GR*i2)iD`vG zQAv%)qNb)fGF;@L%VyY=BGITW#oV&x{(3Pe86hPUvlK;%#*Wl5el z{au0)$&x~mkgl4sm?m3cI~-PZNrO9IU`!!+hplXYf07t9BZd-&3rkc1?mX|ZBX zBnFZiiYn_7i2zxVyW=k38dMq$OQs2}aA}Mdj_6icHr0?OSq6+92IB6#-~VSAY8J+1 z-K{>UGz(u+Tj}pp5)DVgsu9tQkgaOE8MR~uRs=RPF-?Wv*l(WVZ|6$4`G$yaC5>iD zjuz1!xXwn2!i_d?t&1MfqfRs?nX=tz7$uewv0xZsGb(E#dJ9ZM)?kfQRX0p{m!j~$ zd~My*o&MjT(q`Gido9b`1mx0eoR5z7my*BL;MNsdgUOHs!F zC37@KkwQ{THQ+`bxPL~Eh84?OplmntxI4e}-+|UxSr(@oa2zvf=KR`;qpHTw&!&#) z)K>E|7Vb8;A35~CuR~Rq5%F>BmJP~g*-=d~;PxF81|NxmJ{ckSziP_fxFt&33nWYG{XP`l7J$jSnwk|Ii!+Z*TKoepdbD1 z-DN-cpG3iI+{ug?{`z1x=H!JL{?5TzL{;oq2-H$mG$RTkz^y;<9F0nfWQ1*RB(X>Y z?m#lbvZ^auSPfg20tRPkc36sqY&m6Ot5K;Q3(GKWdLxmhMa{4SrfO*+Jrsi-e#9ZW z7INjh7iHzn?JNs(W@kZ5r)~mPzyuHBMBqjx__Q^{R(0?i@U}4b6;{Xsi-BvSBw5l- zT?t8AC<1pnsj?Ib86lY@d<6`|fUBP5aLkhRP*{`Y5co)#R9lxLj;+NcQg|{skZjz^ z=0$$FG#l@ui~M~D=t_mr$iytT*D9)qCD5#hrWraozpxy!W8eWnMps;Fr;R_s}1cJOnh$HD;27xBB`86-hQFZ~-uFVNF+~wrz%O z$JWEDqpBfG@{G)h(cb_^z@I}xp*s+;EhFYw5W6KERuL{-@dEN{RHDI+W#COLOH-js zQ-Q^UHH(@tRn?*~vhzh>I~vKrS!83*oJBAz@7Fi@yUVI(RLC}a@rP@gCEHHKibcbk zA!(pnR+Kv7F!=^iQ6Jmj5Lc(Omj0lZnccL{}7ADBV_4Ud4tSMYhy18+eUKW^ePi z48}|)45^5z7^q z0##EWca)t7*o|pKbdWjLI26DccFb0zs$qf~hLKAU`E3o<+m;|E#J~$D^2X*la}~|X zSijrfx0GJ$XN6SNj7VS@kYz={$~7sZYNn#8CXYTWb1ao2kqFEt4xGPg$%Y++8zHq=%!IhE!)kyFmmt4V zLUh;(yOSc|9>Y=93Bg_^s>_hESl~6``wlR#STwOg12?SN;J0Mhm}y~%goXmwWJV() z1Fm!o8I~8}vT^2ymyKsrh6h)1Le?cg5(%kc*s@_IjYu>ShATTEtZIq<8b}@?>LncyVssBVNT+kshW6dr;Q?IGW?Wyk|y3kV?|@>L}a8`&s?&5)GXuw~=S^))MF z{TY9s(y$d)fUBWVTQ_Ch4(ky!;wa$==qPZ6q@zv@hNDpkv?0}zVlcY~=$&cHu`on! z70fS|+O0vL4#zYp3~4AV5bPM>BGVXzcyLHIB+-!8z*Ro)`5%LwbF+L+K8CD(pWo;2 zHAt6X_T>sqIo;m$hy_E5!i}RkDVQ7VO&}mSa2abD6bX(!Y$>r}jhV1%3&W`bO(sK< zY1@VxgN1`kjb1yOFgOL)G#pWEaK4Z?sG0+t2`LPh&H@o+1c{Uq_J++eB@=$~PlDju zJWulEPyUXq^AXA)AOO zF@v9R@F76zt4lhZM8Q?Pnx+~Mywwm~t_!pw6Eab62wC_>xPfKi8>T_6gdG3O-`aw7 z8!iphPq(oMWE`;Tjj9S5d<6J9Y9t27SF%hK2$Q>zY!~jjJ6JB6ZGF=1C7ViSP-mIA zgmsO|G9c5lE(5Y6Rf$HdFzmr$LjXQT4;xWA9D-cTEge8l8{v4t2&pu@z^j9%qJU3@ z^T-Hn&cZ63d3Z@=sjR3*IHowZ71cCdhto3&u6>5c8ntx@70mxMJ`{19If+~(<*b&1r;UErl53cs)5deHB9G#e!$!<;7A+w6Xd8i$e;K(2b z2MUeCSZTzPfKHZmPy}$f8jao&P;diorU}C>MvcxyvM~3;Kvw3J{y+z~Av&tSdO*$q z2T-sfbJUpQKz0#>qbu04c>A?dxG~x=VCA%k3Y#A|{e=m3AeRJ>qQR(0*?Dl#!Az|b z8esbqk{lWCua1T+a4c|y0#P5%NMJ9NJb8ruS~lj~+_Lc2sk!y<5BFrMYNPF1$kyo= z%z<+ea1LrL1iAzFgGZw(aCL)|{FBA3@2Dm+#^#qM<2WRXTE^1tE6Z#pP956^n;nk? z+wUXo0v7pAg@4wWBmFZ+`ptc#aOOzg`w}E!TxX8-&m8IVum8>*>GN;S&K&8deT#7B zNdL@{{+T2FGe`Poj`V#}@XV2Z+Segxj`YtQ>7O~$KmBW$jAM>0Up%E#pE=S`e2sAC zNdL@{ep6q$q}$7xBmE}7PB?R2iS~h2Xs4@m2*BGS2j;pzbP9YR;QQy2ce@6@!A=c%qa-jkuoK=&*w|$i z+220UrBA~XaIfCRmKQ9FUf6#{blK7s=Wl8F3@#Vi*lMv8iZ1TY-t1htrQw4*va~cH zcf1^K582pe>8kS=FN&^6wyv5&9xV-&;`uYk8>N9Rc=`{&=Hl#+Ezw_a3_Ujs^v%i$lbEBfgJHd_e4Mp?dJ&e%}ZQ-LK2g9Fs^yy*x z)Sf<_$bml{=+m2Pa^Y`B`gl@molV=7tbTh^+4wYcww6~@NFLW77o7O1K-j#_z(GM;AcGWUJgFwf%i5I z{<0tq{Fw*-goA(Zz@Ib?HqUAdM(v3-A|S(m^YN%1sDjsUDu)FsaM64^SEr5mvZ6HT zFb*Bep|u=3m_v=lFvArZ=2Tf zLf&zdb_}n64G2`A3wZC*lwdcFOD)C0bo^$HzmW@e7l+=Mf;L{ohW2T!ALCG$L;ud9 zZqv{QI;270HuHGbH1vZW z`VR}po|S=0{G^A5asu6Wnb()3q2KV(uX((Wd1xpn(2ZC6s$gR@yt=loE+FHdIT#g? z%@aWLq1Y7mg|akkUydzz*m5D8W1-j-Hotosb_&PVdDsxgLa{0Alpbl=%Q^NE4|_ew zLa{0A_MU0jdpY)Q5Bm_uLa{0A+h?a?_jBw%5Bo2Ug<=Bx_L$Tfzt$@adx~SfarhGZ zLtM3?oB%goVzs<67?*{(FE1gJ=7TREz`>}56wV9inGShh?=b{WU6^RUaB#7^s%hP~axZs*wFdf4qvVsGo8hJDtVvkg$VL$h< z$2s;#4|}{xY)>f-+ab*7xh*+(4$O1UFk2+lmK=@ndA@XdYJt1TY1m2+JA{kkH z4?84@ZM?qkr(+j+*cj(~p@)qnv5gJ*n3~4-W)FK4$L{d3H#Ldvr>9{b_ppz0?DHP> z(I&CWjWq209`-25e(7P4Hi>=2OvAR0@OjQ7JD0#bcZqOg$crS6q49u!u+qS=FJp;~ z%E6;Nu-Y`Za$p*Gz6YMe!RLA4IUL--akw6mlML5sQQ8`m*5kEak5|zid6>rAyl$^b z$<%oDx2E^7%j@BfT&6u9_>U=Y($M`pbZ-wm&_hGHDfCa3Y3QjQy52*FJv5Y?LXQ}chF{~r{Vz26$1wl^ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 3d0b7ea4285868b54f1f55a17c522f6b35ceb58d..471f079948b34b5f63ff64c9f45f8ec462bf5dff 100644 GIT binary patch delta 76 zcmdn|k7x5go(%^$4dV+;E6Ovu0tj4jg4 d%uOv4O-+DIi{_7u0tj4jg4 b%uOv4O-+DIi{`hS?Qc05x4-3Nn!pDDouC*G diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 4d515cf726eaabfac5151d0825af57677ce60d64..b7aba0798382a7a02d50744befd86a7cd7e19650 100644 GIT binary patch delta 80 zcmaESkooaJ<_(uPZQ~0}E6Ov!{k}AzJQuR}eO)L@(%q-1JjFOEEj1$vL%nXwa5>u0tj4jg4 j%uOv4O-+DI3;mS*u0tj4jg4 X%uOv4O-+DIi{_7<+dpzLb}k11S6df| diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 9852ed813082407b3604bd04600274fa517d977c..1edff8894626f1d94cea517eaf0ab78c8b3346a8 100644 GIT binary patch delta 1984 zcmeHIJ8Km|6lNp@f|Vp%33s_5Ho?ryIcFY%*eDoKt^vUZgzG#tA}EO_X`-Mh#FQ4> z7|=rNK+s!>m_H&`TKW^5%ch7}Ol5bw-NRwO^S#(_2h(2xZ+GFsz<&<=u&Aq7+;F?5n+@arYxH*4tq`KG__9zIR| z^G#oHex|>*RYo#f7p($K$s>4e5il6#GV!7`=_3St#W|UUk4gGmj1mR~j^&UNERgH0 z>i9XK3YSn~SiIDxs8XJ@OX!j&rTkHT)f2}2nhH3!W}AVs8ibPEoRhTjWMOT&BN=2U zN+WUrgP21}f0UM}B&D<@9;)5BSgS*K`MZ1UHG5ujajf~`_1nX1gG-mM4r}rKd%LD! oe|f$=w!}^~RdU}~*u_aFC!MS%YSPJne<}a5lVI9_=MQ(79f#<- zXhC!iN%#IJ2#S*kc_bYkd8pP^N7`7DT2gTai}ge-l~cApFhq;P{@7jBp8jn~-DnTi z%j#q&OcDwdil`BcOPDel3CTLkLDCpW;>wwQh&?H?#9XzNT8%3u8A`Y>9X@)Yo~bS* z&R!Bhrhw=n0gABAI@{nYxsmqMs`{eZ7It4LeX})vFx?GS=)n^ioa+Wg>(hg^wf+@i zEfkDTIthZe5u6qBjEQZnXvX+F1v2Et^jTpa4Ow5o@%y>fFUkR~A~^`?tDvgM<0$jYHSfiLS}^b5UJ5 dDCR*i_dh(XwK^!~zrU6LSj;$lzpg$X{|)c*E5QH& diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index f3c52425b01be27f1c053a93c1d17c1f0566f020..343d5e92af174163d6ff7f54a8d3c22429e19686 100644 GIT binary patch delta 64 zcmaFR#`vI(af213VSIsUMR`V^V%p|x#;=Y5z=Rb5 delta 64 zcmaFR#`vI(af213p>bJJQl)uDs(y;GiAAD;nWdSDQL>SNablW@nPIX)Vrp`du|=Ah Sxv52>sR@v2u{oRZt0MrP=M(w> diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 2c2ce2334aa4961e55ecccc6bbf59eb289083aa6..cb2aa701bd8e05a2254c93f50f5ad4ceba80346e 100644 GIT binary patch delta 68 zcmezVjph3{mJM4t4dV+;E6OvY8vpu0tj4jg4 X%uOv4O-+DIi{_`C+n;hWPBH`lTPhb7 diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 3d40bc76b8e09203a21286e8e396acdba27fc661..57bb53e96c59d7dc652165107b39eea1ed547f33 100644 GIT binary patch delta 100188 zcmb4s2e?(m^}Vlyba|Bbc(>O_dE8#a0v1380X0!#g>#B$opbg%g(<};g|oBgrq4|!&z+i0<`Sv13(4%+`D}Vh zVd|7~ul%UhM>OzXtp@;;#vRo$yC-4#Zy<{B^}&H~e+SUl08C#9uG` z9fZH$_-n>rAN=*jUqAfy$6pKnTJbkPe$=_`^U?myx#vvDrl(F#pPkNTrk+(OPCaXC zCYhd+O=hyi!dXf2?FnsHd~Ymy`-yGuck-vFOr3ge;hZV?La~sUdUpD(bF=46O%=~h z)H;ouns5X^dArX(HXa#*Mz@biw;g4 z5SiyU|IA~*h|cAOJb8WF=QS3a3lg&)X!BM?OeH3gU)`pt>?9UwDXA10*-QkTPv1wmlj4JDEtNxU|{DTrrzScjUx~2O`r%-zTBm;5s`QPl@B7g!0Om zy!lBeS76QFwr00s%`wp<#hIJi4zeQ*RmHBD|F`@sCt1cSU*3!iuo>M+?tI4bwcIfA zY}?7`P43o@qu7r52u zvqiCTZFIW$-8;wvgC-2xQ7F2zAXS zBE^n^Sa>xW$5;PqYj(k%G+Y!N+uH&zsDUBHd*$}F_i9|IZMf+DHopsU8ou*>TUWG& zVm_gIKILyNRS>Iov`-g5`xHfD(5?pU$R)+1J#GGmgaNfwGTque-dlFv*>*A-12I#1 zvsk1|_=H{P|2FSx>r(>5XTZe$`gd&s&0T8DzObilTCE06+9={2TXGRY zcXQPkuYK1RtOiQ|-nOr5s-a5{_E=t(CH%+vp0>t@bhemGI>xtjB9RnZKle=+?M5|_1Y~=`$8>nn6f8OkwR$C9V z0@r9YZYW~adRZ;;stE3sp*Cn6yD+)6pXaNZDj;bMRKaAT)zi6AT+`?|2u-V)&xqZA zPd`;7bNNE5BOwBpV?g5qwj-ztuOj4C0apR#=>gA)wPIgqR1g(qO48HpN??xHf0Qa` zJAyj_F6SzsTod;Et46%h)hM6@-1c19)$BXPJlz|`VSZ1yhC)7(Q#qjeqCz5t3O*SV zxL5t~--Z=E!5z80Xbzw*RRLwD!!xn=pc@?HTT(@}^Fi?l&WC|v)OS0AJE60~sP9!k zxiIPZu%=o+;SkPHnzRs3@$FW*UfFx(|FiL}@@*VA7WVj-K(ccjJoU!s;= zb1<5P!L>2t39(~{$Jdam49c#eH6Zj|T9S~2NR)HaIa$_Upomfp;}{M=>Glrx~w^ zxzu>#G|$%!V(w&Aj(jRr;NGyU9wT{inGgLSYqfzU0y|6OMzhZO2a z6Q*M2&GC_f#oDm;S2MHNDxmz!9P0a@J=b{a$SiHodaKz7e(Y&&Y)BP~siIgo%F|zr z4|wWnc3aGgIZL5;^IU2rZk#5@#e7GuD2B|!Q17xem>hel=bYL`HchHNjfz2=s?mPH z<(}To7%be7&zpnc9^}f}g~?xC?)jpoy6GD~!hm1J^y>vQ+zp-U>0X!1r>l;%`(#faU80;o zN`0z9dmm1r9EWi951aylx`vt*uDH(gN{zVtNB<)Q=(l{V#IWsps^hg+VX#W)F_=+{ zu20}AN=;^eeHHpH12hpp)7Uq!LZ+4l%kOTX8ou%}Pouc}T2FTs!%@qLmS?h`UyFW= z?H!d=a}T}_WnCGQ$NrM)_z$kPye+q0biL(S879~KipJ~=t;wukg)y7^f@Ct4rJ|;u zdhRVCHn=J&g=fX}t2}-iQw2eoSlEv5v-eh^7gKP}Z#;cm)Z9})Es&8+O}Lx-jl1Bp z!Ahx9zd;vf!*0_f~a~Qb@5Qg3DY$a!^r|u?v%X*3;NzQ@cd9nLRPk-H73fYX<^eVp0UV9Q9SlYmv7jQ?WC=PuXIcYG5Y2X!qZ@Khg z8l?y>3QE_3&%Zi0QVe<;-4|0U+|9jc0|u#z#!UY11{$Pn+-l#QfOQgo>AnSNzV;(PZ*qDxgF$g9fUUWKeWVny`F|qU-HI z8nL{c!A$!Q6k21Z)M8NqtxBE5E-UiX{MH*#t_&Pw>BW`@i(?GeKR4YTjf04!*CrJ5) z52~d2^hJ!TE~pNW*wQ`TEIsei0CU63nwh!)v0#J6%nL(xuh7^6W&;}LLta5ixFDN( z#(Old%y_Mo*%+^QO}k}yZR4jtpl&Ba&4J6YF_Fm^F&pL{=h|&NqG+f|K{;{TPSkSS z#0r=1?WBH20i55Oi@TWDxAQOpE`lr@v12!yn{8r+%hbQAV<`v3m@iD?P9nMF3r{C} z;=F@VA(z19W7RgR=n@62ysbSBi+a#giZ&72kxrASK%L9bg5<_;JSX7eW;-e&QRi4e zJ=4xPHZW2^niH|?NLvu&vo^4TWzT({cWcBUAE36|bQVhb0u_wr)OfLyl`kX`2_7D} zYsux&D8#~%nD7nz20qv@cS{U+V21OPZ>Uc*wk}Yv?BvDDokC4_shBVH`bUbzdp&&| zu*+CHwbv7@2FhJsyjZrgncb#?YP^;j{dsHVn`Unx8}I7CQzG97+{V_0$;mud z$8_3G4!JwyMekD#c$*v0f2K23h;6XW7Sxs^#5j>gLa_DG7eX8cI#@;y@nUZN`>?l< z26xB2EtU=MB|=Fh>^w+un6#>73Tol(7q=|DWoZMiCmnErTzt3}qsC1!i)y%FH!Qn~TI(>K9)sAhsdH$@M*`$5( z7^=I|M|hh{xUCrC*CWu zH*5#jQ?U9X@%_+y3MS~pMh&#pBIAx|*Kywdbrxc{29NPZOsIqE;)&i5Fd;Wo#^9#o zz2Qm*ubt-Y1|`KJ{->2>(iyCuuRpGRnt+nN4K~)4WGqcmLXL3E$jC)l!qT*JBOy6FF8e1AFvkOo# zWx?XCi>+iG6!KSBcn@q8f4CHFJW<2}3Y5u!2JFD#U*GW!!eNVfNZ25q80kP4eak!~ zT^=r76eqlgUu8=8U15Pz3Dl`Y!NrP!FG6&GWfS7U-me!wN<~^!b z9C;CSlAxsyqDA91e}`BuIfK}gTy`eh$r$;S_r)5~elc}@7NhZV0up75g{dhehvDKDxh3@r}vCnF?f-; zYmlQ1#c_drA({7|mPj0&$Q*+IPZ>6`YAUAQD;IhDMZQ0BM>-|mSmX`wUsT!fTknn< zF>$fC>;4&tBNlr@`xjNtSVOhs=f6fRNu<(P?4exjOtSI`S~Tso8MFE5oybEQ<~(G$ zBbO6X??fKjpu=|S53u~Pb{*B1y4Bu3L5@@{7gcgY7yCwv1*?&Z-yfM0e`K{cyg$6` zO2Z$hqJ8u`Z}Wb#2iJH*`^`S%L7F!sC;QZ*G9G@Xw}mSs_CoPRr`ODok^L-G=OUw= zi{XlhT>L2YFv!5Zz?ZG@_I1(n$1F0ezXsi`$eu_gK)$z;x)x*wIZLE&I|wIl$^d!n z!>+fmM%=r-%Rc8 z+uwV;g(ya~ilVs$E1&&^aH46omrpd2wb~^a|13(y9l@qw^el?S4LXzf=WEn({`@?8Xm=!= z;or~Gcc?3UC&R&SQsZFd`9wa+-3&GhQdlq8H3?I77H%U=gmhqWhIN;R%Sqd*QIO~c zg?d(FGQ@mKK0rrIY8{B-BcT<-t_yOI|E9)=db|81OrTs*jP*Z0f>;;ius*Qf2d&{<(3&hJid4F7u*7T}ClmQ} z+7r7Vwj8V94Y4K|jF{E0Uxc~S;az+Xd*|m63s`J@9^aQ}sU((IRYUcE0kJOFBzpQ6 z5bJ^*E*nS{bElU?9 zdqjNbYOd_&>*q%V_o$TRNuXg8v+s|OT-M#!68gTF9XJwjNOxa!eDlOd}=4)$Ar8B(fMZ22I`uXq~W`7j1FW?UF!w{1GJWn1R|+XZ$M$ zYHu8Y@`0mB*oz5dMIn!E9a2`G&SEyjXDcpAqKpjCL;xMC_(KwzR2D2hJdVof#0<)a zL6*TLs`uHFK^YmOQImDeqKryIXAbpY`k2Hl zKo=6e*7Pdtq~m-CirI%baTFEdDRJ9zzJB82ikN)m6yF)Oy{@&62hQ_jZJiQO`Kau9 z&Go4f&{qaE907f$p|az2A0~naA7y#tB%65@^p#oMe5Mb3k&hfpEg*|!S5;IwII`+D zSR{cuG$#vaN(1P~7f2ZDb7`>r`#C-=yAC_vvO)3#>d8Xg-}v+K)SAeOfCfeN2^!r=Sg3 zNRvVe;`&p3YAu4|TcPq#7mNVl_ssWUJFfLS6ceFh0@?#h#Lhe2C*ZZl<>hdr=Kbe+C<3>o zhGhMfzISVu%|y9X#Ko|gzEEXI&in=GylxJ>$`;@~M#Q$pOcHY{ta;J#jiDD+g3iAP z^~V_0lYtoV7*44?u*i2rtvK*v)H#NCUX1Qf(ea1aHIo8~9Vp0SdHDesmK}#xA>@>Tnv{W~8SHtGuZWoH^skn14RChcax^d}FbB{S_SOTFZ>O9_)G@(qWA(>&*d(pi4eN{HEy{t?67E5;qsTOsmXnM zD`f}hMDk-)$dzk+4LXAAJ}y{Mh8yC$S5Tf+vX%c?LoM&ECDdk}+{U)`CTg@!$nxu~ zd#PJtnVAB1+E`{|2A!341eAr^Sd+pMN~j%PPvPp2=K2SyT9VcVg}?Kluf^izBcPXk_LNjRA+etWH+Ik$c7!|ZF8woA(Q|%7O(c)`F_j|B&@p2}imT{>t9`8% zu;W(yVs60N>qcLHC)AVy)R9Pv z(>D4dl>oW^S>McB3!x%J&jYrtmt%am>~WN+PKY4G_Q>PDXeB`Q-0Is?Qwb6NKO?8v zWhaxo^aYw>UG@x0JdwZ_o35FuR0=l{c~F3))_MaqWf)46pqL$8Pr+jAEOeJoy+$SX z-Cv-DtyHyCgcuOc)afWMG#T{7?br^o_*+y`JN|}>RYo@S1z*fT=CHc?9qutnRI-43 zxT=&e=g5d21uVHhQi}s=Bn10xr$SPBu-y28?*}ZXzXr+mI@pL^Bict%Az?V+WLT;u zdl-_+gQf2i-+L^`a*gvr*Y|=`ZuXXIYEo>={J4tZp3iL|Lgk( zyHGAO3lzgYrE#MoCU4$DmGAoZQM#!-7T~Gdzz%nwHstwO38b|&WDVA&u&kK*8uF<; zTyCxLV`%I4Ci*>vsuEF*_z=Sx8aHMbpLr8yZ`)YmGST420Qc?Ns7mE1iHj-MRWWix zS$S)dU+JQSxC9oncvORoqN;xfe?d*k0-6ZuNMyvNUr>`O4VJHVCsCgNpwa;p6TE&k zrcuI0v3mq|o^JaOip>QY(l`Etj<6ym3kQ+5u6t-ea}qZyhs5Eejs)0gTD0=cW=LFm zo4+4!6QxzRf#uv>E|FEMn#Xqc_iw~KB@64s7_Dnw*WDkfh{$aNNa&DW{(csYTLKQOYiE`9O!!ok|vQsDgBNVQED=;*6{LFJOHH(pwtr2#P~R z!2Q(j{%AE&?#^oQ{dE*uJ=rh&);~(zkAilfZg!}TRRiVtqL$yUS`@8c`EKjizRQP) z`ERWgzc|`ELaaR8Kg?bR5j7*dEP8tUOpnr6bAL}seM0t#F2O*Pe zur!T1BmEdy2X`15;0a(nL|{{5W!=wNeDd!AG@Q$LrkaDt4UU@7h3#VfSsMAM*=Jh)WEu1JPq_Aq2cX~Jy0{Rbu&@@X1Htz5v#p#-n( z&|)HLLpLSU9SLWGC{osu50xXxgU+BvgF2yefugBguoA-Xc4mVeY^ZJZ<)EB1nOX~~ zf!1zEv1l(GhI(WNTeR|xvuKQaZUlh7V54i<7+ELbx_Rm>S~7#Ggfx{QltX2GN^QqgY5JbwT;*0LFVsFEmbcO+@C}rmYhg?8iIHyD5 z4!-4A`9G;~K*oht^Nb56CiT}+8{By@`m#(aTf}z=l~p2(vrDu6*o$OQHiA~2E_C25 zGmEmrl|}O3*jPSd3H3R%&PNZdaFrr4?jC?MS}e;(3?s|3!ySyPZlO-*j0=sA#Mr1j z5i92*H!7NS6Mzqck~XCw(64JsIhVt>6OPHy1^9c=jbhlg zVsvxHz!i9CuZqfJ|3syG!%EDbnE|V5b_O5~v2v1swCK6Yjq40x9}+qPD1Bw^Lgku= zsk|?{lgg(`9F+@IK-s*3a-lm4y&;*PBlcAOU34xKiq`8#$OU|$n+TQ@6oD%MK9Vbg z@`S(XJix~~M{$&KPT6zEgld4V_9`(@3$PGS8IP@cl3b*Ko{?AxC9V=d70 zSB&JZuk&}q!$35Nyqh}WVj7E^YSraoi5Y_%$30TQ)8bo+NmFG^p85|zRzPoi2-a<@ zFqug)JzPX*qv){)Gg9~;M)D;Q4F4GqW4>hbld*-#KmXH@MbJf$y1aMB5L-99ymMkQ z{EF6&el?rK1cr3uY$*mo9HpHp9+lKT8U(3gRK@o*6h|H5Y#}GT?f)T5ZP5@VrO5ao zt@mLRu_Dt>C^E=HZ_9}o3%TK4|NE@V^2}udO;-B0N&9>Lu3V7VRio9fEqD7p$mAqe zX4Ga8%CNq9^{mhSBcPJ+9o0DzJW^~K!f=$FmNBx@yn~t|o2Dmvv50`N1;OwVb+SkC#{k5#k#UxXgURK5`xFKu@G6H_(89QR z%y%~IggS*&vX~e$Cq68W7KeXkIF(D9^RmyVtK_sO+`+lKZvZo%`*u@TZ*b!a6t+4= zlo+4h68LX}IOM-bG>z347Ds zuvz&`rvSd08Ag)0X{PMx>71j*xXy-@Kw~Se?;OC#w6QXP{4x~44Z?@JRI%H=7dc+Z zZfZ1ueJ|FR$vNX%fi|cfQux!5 z05*sqctDsUxsUG@`S^|_J^iY}@tyZKI`SkQ_+Db=iYFPsz7n#jb^lzUd<$~M{7R1~+r@6k#JELw?x+H?fM8N(`&b3)t7FTC2$Z#tB zB=X4Mr=$czoy>N?xyi9lOq zf1)SFV~Iff{za7|kE5Rb)kvUa|6Cb2JP?m&_sb3W$FVd3AR}Ar3)yVim5(Vbz4NIk z&c~v`t$YMdhod+jtD*AilXN}~@DV}vY)pyaokF7pvd|O$o|r0KSCdo$D1^CTxrO`fi~=(Y1ry_ z0n?$S*#`&OtAVoDSvm(>A}WEZ?o(>ki6-RZfare3FHl{K?`K?j$vHYN`|qcPKxVdw zN%{BqU6AihqpW=FL>l{W1(kDh0Nx>{dvWM;#qpz%hX%kg>vWR3TCrplvd@I$h&IAi zw_3cArXgcbrXiXm>^eDs{U44%U8s2ee-PSV>iqIt-`v1l`f(>7di zD!P@j#JCUbb}{u@(1%HH1}h|}D7Zvcq$lO@8U~HdP&l9=V?eMni05oafwcl4N6e$z z0fm_S5+@0?&G^d{8aa+m1 zr8T8(#f4YNYRF;|_t^!o%H#1@lw4aay2l=yLo>zwmj-%@1wRhZH3J13j^KlgosL8t^ILePz9?Wte~psyBcMT$FcE<1}VZbaf!S>kUveVy%cq-9D}5G zI~Xs>VKarP;w)!qDO%xs3%^HHMck@^;W^5c2H$VHvWNXCQ6czlEC?LcE}!B#ron0sfLdG zHR{36r2*`ZW%0xgrz}QQV+;>QO4v zH-8i8;oyW<*hV2ve<(0o9J3tNgpCO>oGVucycLa@xMLF)?L)VsCoDJZxdx5K)?lZ{ zrnfy#1q_|&eG6D~Cy8|_e2jW8kIWF=*P&#y251D3#;4Etb*N)@aFYto%dMNKI3aL= zBBQh{8$O9XX*K#zrek&5PC(tj@?e>Jj!N+3KcWOxVlE@-!Z1ZXJA>tKw&;Ru!PyS% zbg`l)9J$Wvw|%FH9#DmrR*Fr4s`6m@(aTy?t0q*cm{7GusA_XyCNaoruMjSee_iWB zOC&Fp|Jp;yidQmv^i9$={}B`v?sFwsR$~g^Dp;B3vp9!sMtjZ|3GdAf$Zi{vA8eX`H*U2>y|)&D@83%xib85 zWN{_C_dcd-2zC7%uppXGiy`X*p2k!rm$1fi$ZM;!kS2v-`DJsUy)0C={F{mlvRWFM zt)R1*>GX#*lntneLR-8NATR%tiVfOuq$H1>CZ$YsLRqY$)u;cVa$EZnH846^%6&*0 zX9(4`O33OdhQEm(#-L4v(#=YU^ORuqY{{1^N9?1rJM=YbY(z}%;Mgvis%rVzYt+~* z$YNdgI<++`)WNs9HmHiOyCY53X!$eyO=@u!O#3thQF?FhLPJd#^Vlv|B9Zs%+U>0E z=tgX$2D`Pl1bd4OWx@WX!M<{0*C2#l@CD5>nN2AJ8!pcC{_c%ua`f6x(iQiOA{8p4$Vf^Z;n zdjN;}N`vK;mLTdQ6rq`6@kkeyqO$~{nOTsbOMFSqtTb3Y(H2BSWI>dcu8EcpEB`}n ztTb3=eL>X29$kXy7c+SCL)@@EfMfSKW<*mEeE$Z*duF_Mv$;MW#>J%Z>J4PqrVsYh_2BiQEK*-phYw?0TGw%{Mp zSw_$I3Zf@9!M4#EgQ=XL3ayLgALDNg_T$I1@SYBiV5+zJr-?iEqB0e$#DKtfHBc@| zQ_(>sS{Ws~GoeY`f!Sbsd6&*yj=oE?17;S;f3P$G?gAI-1 zz%D^gBQASpaHfW2cH*}w>0N{g9o~tZm)7eQB=Knf;9zswheeQH3SVtGR;(V0Oc!xym5&Mgh6j6!ErWtx9C56|$E65V#1ZMB=YPhK zo5u#RANNc=I6#w-F#K!{(%_Su17&oo`mEWL}4rySvT z^QL0*4edC$MC?ksCbp$3b|)w&&C~^6!P3&LCAsXLyMX%R8^=(8jGjq#T~-ap&MUue zGVWAWR9zf#tQt;tDRW}(SctAjz#qlIi>X0-$D>$OB&E2B1o%CZmE)w^NR;7&h z`03Mv&#v0CtHfGzDk>u7Mi zFR1Ibg_lPWEWA8i?!79A-J}iYqV6IUcV~t}HT>cxG~*-Mz*Z?2Q1#Q|?r9hpDr0i= z;vn|T#>~Jl#4&W1gBMS3juL-9!|>`tQk1=BVt_IR7=k!hK5$bI8)og3D;q7m!1BY% zC8JA8-_8XvO5+(b_b`l?ws6TPxiGk}D)`z$R2bXRw1T9%YqVfR5F2IlevYcDB5_%w zN`jdO;bp&YK@g)79q|j)V%vmjv8MdwjvzL?CeEeagdEm#l-c^Lj5`$WFgx?tL2P@n zP%Nlo84mT=Q;Y4v&n87@i1|N82H4?^g(Q}L5`xv)!Pq20uoP>kLt;@1LsHFR{vAQw zKgEyA;W+&$@zGBVp+PNH)>dMvscY|}E(zi+Z_12WVP)fs*9NgK-{}Sz=W;2m{I2|C zu&oXUAI0oL2hI@dZwPuE0PbPn&<@s?zq$d_x)Os4Szoi<@*wp11nnAId zy6)${Dd=@zhVty2Fqqjk>;qE{dx*Lqaf@-0D2>_6w-`?-+%~)a5$b#rx1!8(>p=;F zBN@8Q!e_f)y)}qmtg|2x5|j|$6~RH}!Sch$sfXEdPjCR;=OQbuj0yRI-|TxaWpjXr z^13^MgB7KAol}x0K1p57W2-C=ouJsa%5uXQET4Fa#*qbo#K?sOyqvh>k4Q6}%w??) z=k^EDGZ?5zK`AloLA3v}U|dkssyw(UnG+q41Y3;>FUCQWuN->)&v1^}oEGxZ7fDc$ zM=a-@pcwav<$*I;?tIA-gk{4dj#E(utVb)x`-Ak}Iq7jA@D4LF991Vlj&NncXTV3l zMO6?b)uwUEz&hB8%dd`&5>VuI0EUn>Il>);4{W0fNU|Kbu_IlMaED!VJJrA~&%+Kc zFF+7UqYGR#zu}i4ezpbTY>aMc0n3XGTfk|D(~U6vaK{S#(#Y&jNZcV$P!GtQB+laG zMYoMlK%b2n&Ot9ipB?Vte0?YBoAi?LlQ@mt9WNPQDBNLp{BEre`$|~;RVA0g(H}AS zgO^?#`*vM{XvfsKVJBf-s!h1r-Pgs{Pikp0%_$j`r_ z$_Q232`4BZN;}~UmgnxJ%E%>#)kG|tafzk!1=<zWn+es%d0$G4(J?Gx(3j?A$(K{v>#kr<>B&%E+HuMe~dE5nqfvYGu$lW z*LJx(eClJ=#d56MC#W`dFx(@PgnZ>7686R(^oO_sMvPh+Gjf4V{sw(h1#s?8e6iX# zhVsb1q-^aj6ueD*vg()dT+O90B#}y&W>p%?Or8|QIEk5O>N=VKOX=TPqCoDeOW&7a-D%UGR_8A_$D9FR9B zY<1ri={f2fp#X51qZ`PO_yTgig{#P>*!02zha4LkK-( zWl)Ykn6wV=6QboqN?_NRP_ueLTqnRi=DI#1^q3}sJAtP=h0twQ2Ia$thW>zdW(Gr8ZDHRo9XZ_##I7i{8G8rVLwDohk^Re_~{=HIAG~AUgF`OIFpwR5B;@4 zZ1jR3Cxr6&4WW@Cyseza8CrbHIm!J~hJ@#B%GGMx9tvIrfcLV+rn+%hGEv%K?$ zqFO6M%1B&!VrHt*%Mz&2<vEDmfz743$wDjRE3SWc<3 z!|N$r?7jx8NE5FKVb;pJ6iz8xoV+E%+HA~lvNk*1!THxkAZUvQE=c}m&=J9BzB@371=@{ZnvFK7%0~^7UUswUcgyQ*2Q4Q>H zJibBU@|Sl~A9LGv)aVq-MW#@-74r4vsE#&f7!R3`>S%{sjCH@I9%lAJ;|A9{%Z+sl zjT?@HA!xQh!MHXk0*df3c#8aWRT8wIs ztqom31=i{W@Sa{KOBXy)V(pax`O%{xtTC;)4*8+@7HmQ90loCx zffk<=kSA>lVPWY)lvpL0bQwQfc27P|!V*g{@Znx6W?fHV=uYF)Z(K2SzIbCP24WMA zT9d%Ttw&@V)V22)j(sr9D*cYY!nydtpn6Uk+>Ni+8C`Q07JXmjGVH=wT-;`-_#c#x)Ir{K$fKm z`5XSDXHj4_W(WsAhXS+1EyB;gq^@xC7ULlcv%FZj#dzUJNS^y&Dz4|BLQClR3H}v# zx9|jl5{DDB^vmA-CgR-96=Go2p%^%=ycsi^QhSV6Se@caXHV`6Ve$RC*D$5h39t`3 z0lxVLvCS?D_TEYWk^^O^BY{F)7)$YIZYgon#j$criIapnIMz0Vu`X|A#ew))5qiT> zwaNsYUfvvc1`*WeNlh;O=cXm&w z=yLPhwz%CYG5_Eo((Bt!t&yHhCZ+iGsI+)&JN6+qyTY3gj#pvuwAOpnKCI|gu#B~a zv48aX7pSl}=mRoJ3%@+ePswoaQ~Z$Hs0CSuV%~?L!R5j7m!9yuHRAq{E#HXF*zEe) z^1&G_d-%iHK!P58uqM%;=@v>e4?S^)CMSlIXoMw56h3B4ZRDA;Fh&U$r9jR=G7>`{ z#Qj=G@@g~Xh^B)ke8Msvh2wx7B_p377)E~zO_mQXBZ#tma2kyq62?^JqJ78+tZk`= zi7#oKt>mAvY}*&|+W@}Y@g-0cXYC7h*rE7@rcmq_Wx|-Fbg2#d6iDePE`AqaNo_b_ z0~XgmYr{kBP{Y-!5XR)BYeQK3#Xjrg$2Np@@~qHGe*VGX@9OKZ4Dqhmc4#;xc8&En zi3bi3zb)2u0S#W2!t`=PSU+r?;uU#18+=mdr7hO6lo4ISX*;HR$Xdn3gF9WrL#kl% zl@TQU(zdV%zaphlIw9Qbw&$IRr+Oe0szm7C6S^v6@|dG3Kj!(uZPgRl;0q6`ipq_n z!kBBfM8lp2yg;7E$L|!{KW>TeYYq>_>m4A^g@FL21z?7RFH>6OOY#_-Ner z1#YnU$A$5M1l2xmc0w2njs$Nyy&d&;U>Lt)uMB}0!pjGShd9C=giB5chyy!hE6E+)n##zTp%J6H1lomUv`Jij433c#2HA$<&SGD0YUO?7hN4Udo_*tZD z^H`J^zGm?IY+4y!J;F=>^nTW%BcRO2=;aw;N%6?>;IzZRiE~z~UdOXgH%=#QgO8#d zre7(Td_owjyKJWJvwb{)DuD$V#-S%r=3BuI!kP<6+>lXWj}05E3rB^qg;>GrrxzM& z_yu_!^e1WcDOxMO@P)SNBrJdv-YOgu6TEGQAJbu3c6=*b{^=5GeGuiZ#XUfhq^Oej zp%$_rGGf585iF=IShmllb_O{q;#IpQy@+YMwGu`_NDm(1uj?EIz2|C=ZrXuF`5e75HY2 zLNm0JvAE`&YVn7GN zx5EodsN$_S6FY^S%Ql5^UdVbhvjJaKD);rD*4|W0$)-|_K?YnIXnuyJ6+heu=5M5f6$1J88mEN{cw+49omCFZ(|-$v1te+IlYycA%R0|3oBSozMaYq;ylI* z0&wIUgnU8|+VIoaOvlPJ9h7yH2g|LisMw&Y%}HmaCLn82B|wh8i%Rb9E07yFdyeg9 zT^ljy;?dl53EH*+P~e3$J@m8UO6q~i!sRdTAyr*}hVET~q=}5wJ3pKM58b;qBT*Jz zkE>9x%EM*nwWO-sJmk5dGe+a)A!Eye<%0EE5t>&5KTM$nWiYkn-}`|eAKpB&5IR22 zKlcMgXkJz@ogc@M8v3!Hcm71R5R&kvs&IHt2hz>&{6G~N7@M*v%?MFwU{}U^I?E)?i1t!|v}Js0N~}n#IuD!=3Q}6a6yalE2ZIoG<3_UBqMZ^*2JHjbYc3 zur!rfsMOE`Wv3^o;O5;7mD=!pFyP}S)6wBT+aM>PZ1{l7#!t04kBPv=Mx^}wBE90cMl0X{qLxj8mAN)=bycAeTn)@l@>W^F;04k`b!h;V4S{})SdCP z?W5D~j;C!;OiJX*AK!^6XnabIow`TRhj5AIu*H+qy6_f+ zH64EQZ8SIoVQZ8iU1YWi_EXVTc{Y4rp9qTVnRoH!05fspOPCBRD>WIWBEu_38Zv}b zVs@~D@74Yh6xg%xp_?l+>hV5$Gb_|#GkyS-){Gq(7840{4^&zx5&Uwt^)p#x_fTuY z@4agjuWAx1PWu$OYeKQLh+8jwEq7&*WF7JyrX!XaO2sl;cr|{7`PyA5FlFn2p4)|w zaTDrb>=lKurH4k)%(Ne>nAyvv^CM_wcDTdt>bMq%E;65@d;8Rp;LQa6i!Mr<4dLZU zY!_gHeEO%gD1)kP&u!|XqssVOp~p_5dm?4_oBeiwC;W#O`zMr~Bu%2B1Q zJY25JMzFB?YGVYGBm73Vu8eq&0oS(q*RmkZhqKZahUQKf9*k^?V5VaQ*CBY>NwH?x z^Uw%Zp@)5E8?i1$$SYiX4vYk}AUBVyQiO%5GSN_I9@m6j7YPKkx$9b zh(!9?wAG^CABjXN#&W0r`>_!$qutx;RPCU2MHZj6MzAt#391%NwvVUEf}F&(vq00H zeV0Y_bJ&?8?%(UDAdrWc&YB3E6sGYMAteq8qLiwD@@FUOEVJw>quln~Pa~)Nnxs6& z+DK$bHBf$hs?HWmLb*LM!}72UlvBEKMSHUIcqPs2n&9 zUO9=Kt;j?hDuF{p&!6G?tFhdR!sV^FP4R66y`Z3^$BP^#*j;DE7cO%>wcx2V}OEToJ@GyY#O z0KI`Z=)*eJPq4Ej;#NBy9;MHDyJ4QO{@cqD|e94W?7OFoee zUWP%q;=KQg2zG`}KLX`6{uLDH#$zIlc1)WAnnRUhIJw$?5y6fL^kd+_^B^h%^xLyJ zoTmwF!$ZW7?}V*qO;h;s5!R2cypk=yMl*kr&H%rT1T}bWkGT119LRSfO@t6Fp`OX+Bb>^CL6Um=`HipzRy=y~FLaE0$NK*a2{98YCqDnlW^c(YM zOpRc*(Xw=5QZA2R1L^6B&_^-2)?;!`y!;#U*G+RFO%~^tX;5xkSmCncwg@(mo;e+5 zQI3k9XP_r650`81pbAb3@mK`znsN=-jwbO#n^-yLUt=MaRb!A$2dEyt#b+AK<=)ja z4zNs>02eTU>Ze&)rj1}mt5Ri|b~q-%On33!)akQI8#G3&(hj$bcHJAnmeRuaqWy%w zHe4@u{X9~S7o9NWn==RPjo<0T5V-r>*v#6o_yM`^ix{Yh_pYfPPuGwFrdE8{;N(Bh zhG0#@zrKI@SLQNfJ(B+ zfr`Y(R+dNc9mK~xL}SP6m!WPHu#AxvYoCquQ?&;tp>aS{*PbocMFQ1hTpsDD2Fk^o zXpp#cA=-jUVak&c{rEMdpz6?Ziz7h?>~`STD;K|G3k{ug|?I?CazWf}C?Xm)5 z6^i7rj0BY4xE?8>Gk~{;I2nShWL{knNjNMF-|_#TF%Q~s1lYE+U;$l2DgpAT7mX%t zHR8gL(v;_Sobf4vpPE_@y*7r`Ho~ykupC)c9xi=vSjwhra>!GqNMcIG7#q>KKFt8nOmK4Zw5GSR8}0 zp``}A7WLRyS{T+)h)-8U@bSVJR0TDku7|`Y0(YYxs$^^f=F9ETsxXKcLR4QiyA7%w z!OCwoTmP+=<->1v;Co9K8GcF3y7SD+Yz%9pge6s(m50m!)J4(6xWp8y{8x

Bib@ z%rJ71m50k&O;I#56qw~BF&ZnBScmrA87@ES97Sau@F6u#d`@BSmue%?O_^b%5PFbq;+Hc;XE<{r44;%oi|?Qjw}DF_2*gT~73?7F9@O&u0t_hQ{dulPG`0VvaC!89m1Bgmpsz_TmyKAEhs$nbZqOnp8=LoQ$TyrJvCcZt0 z6du9y8*oxqWSv*p(#qMLu)PaQ+O-Y^gH1xGNjnv8rwr$@gx#_!Xv>=_N> zEUyOWuw{~#UXxyAgKc1i%XKGG2E6V^1}GHb=n^kksg>6O&C!q|B*-!pcL$)@HnGBG z>}1mVtG-cx1*5n6Mu(OM%U@5_ny`_b#}tT)TD6p10ZY65yGqa%Xeb(3b#(K3YIy5Kp0MP<0ZTTTE$=CTz?$ zWa{}-sRcl-&yM0Yf0HB|>Jsxk=ThrOVfGUXPDCwEVjn(7^6>-$e!UIvbrkW_v5?+U zierTXIF_XoUNq4XV+)jr&x+!>FqHRqMnO5!Y6tNz$lx#y)VG%67KK<7Kp*JfCu0kg z56+3=^f2VR{HG{bBVqrt0%abpN|5|<6rYuCN24~QOUAipuFdpA5%jYk)5TLqqttCg z{e(kaY%EZjSn<^lKIAj<>Px9IKQbDXS=msH#kvjH`2NeHA4Y=?#Ih6D9fP`TTUg<8 z-{n-7yG%6R5ub&MaTC#`Dp<{3NVOT7u*;Oi`5BVbm`r2aim%#F7f-vOCI#iirULlz zV!Sq~r*QT4`_9!=fuRdK-~^K!79(F9Wns#cU9>16EMc2C7*AeA^_G=YFk@wQxWn!r zH&BJ;^2*`i7VeeXn(+F4!u;eo7g+_6<&}ra{>x0EDU{VIN;Nt`UAT@CV{KMqTxhn1 z<%C?kTo+ov*feUk<0nRwCeRohxPr>--bpAgtZEiid8G=NA>`F@jfs=dI~WM_Qi9Ur z;|ow;1rv@_&_(gi7x88}`%WsZF=wN{p=HuuKaS!<4Myq!W!oIEkr@MqZNSuM!bG>Z zK3Gi!b?cAN!Iay){i7((%vw~o(OGMv*yFheiW-VIj-FPM(iyyF#hb;`#c7jKr)>;J zTL?>$rbL}(VTH=yt&3s->Np6hCmXTqhG-u#|Cnfl6+ z^{XF6gS8cTp)gSqk-vH{irtrCbECmJoOV$C1|Cnt4~0!em-*3L%pR<8yvhT0*x`b@ zA-F$;N}~)cK<;{!1ipTmHsTtnjMP1Jlv%(s6wx_D<+M#&m9L@^L>V_+ zcJDq;nx4J|-Sx_=qn+#Vb(<4CH>3N=B>B-}J|FtCr5Fy}IIe{eo)mMhMqV2;oRP=& z8gGh^emaV6l$pPDnXZ2p{fMUK54U@-!&uMe1R2(0%Q42-DH7(Oe(bp@mVXA`fZ9=R zdf^S0LnT%RZ>2g4t(bfx|41c0;i!*TLSv{Tyy?zp5(nh1$n;7iow}3@UZJvsGG(AN zF{b7(hpa}Yuk4fyl*oeB(Uc?5kp1U%D!GS#hn7=n^6l?T`ov>QE_zEB8m5qiJRVSD zDLD6~kJUg*z=7b2P5KBeiUaRN&XgGN7yB#k>7ugC*li}{l>-REdI+V&epq}cBuqg~ zILZPZFyXk5sDL1fPU@GM?faeOhMf#sZT=*Rh5J+2B424uPN||F=G$~1HY_@?bA;o@ zSel;8-L@I^1Y1a*uvlo>;0hXH1=;uWC>HDY{2qNdVJbD^n{pH8AkS>X9K>O&q$yMJ z^aE&RmXRU6`Ku^a>yLRHRl1tt;>R)fr~=A^zK&wu{^O_6O()WLI`oKGi@5ORXhUN< zi-!ksb*B(LPyA|g)bECIS&`t3_|>D)p|ws!3;E-$7?fW7Ec$s6V+{W<1^}`W@9d4U zRP;?c+_Dj;J%@5I(XC+lNnK2dL^oGz0(C>nLgkFcn35I5V@X(fYl-z&vQilo1pk;I z%Yterj0G}+6C{fcMOMP(6Wz435S9UOHIECC4AtT)3K8=wgBVI^OV|chuspJt)`lrw zxe?T1dQ}!K|I(ZE&E1YxMZZOuQ5_^UUd)w;_V-*Et|$)xzoVV7;)?Gw z?oDt)t-u?Awd3&nrR5R&QUvS)y0&X7N2Swl6jeT#jo}jj8$bgbsc}AYYP2m_I~F}> zd4xWdQX4DQzfK*~zEFdBr#4oPqxIyz5~!0rt{B5tLW%zrqoV&~%A~r;HV=#StgoB# z+kRsG=z%B7;_%pA_=);`$a0(v%BqY*8KSA83~|j#)C`Y%#54O)kah%=7)3~l4gZcN zDum0SM^Y}$_|jM@AGFo_FQe16l`H(vuP_3tRGi`R-jS36&o{&@C!MHx^uNXjXSf`6 z4Al!r^G9X7p0QxCk`4Vbn!}$9z1UD1Qx^+W7T}Ie&V1T4mW+HqF?mvdlFrjAxl>Ml zLGM^%KgqBBA!YqDEwLcpv(AVv<70U79{*TJE-!73g$;s7mk3D;Z#(vJJ6s+c! zpPdoI_s-^lv7mx$PK@FD5nIuT%aLNQCl+EpLJZ$+gJMbBz`=L^lo-Bw=KHmKE+bEe zme5`%hk+G&qp#0z$)C<0TLTms&{poF@6e0Kt<2D@VbqR zg-c*NiTh8C4Xj{qBFL%NP#1UO=ol_hxsotZM8^-6o7E!7e_cmC+4ZN#{B>Ax6oJ3T zTKQ3Dlq{w>`gPSq&OlFM!Th|jhVioF_*k+=*|`9D_{};GLbzatueBRajM1{EVK zM<>TZjbODh`Yg9fkG9=?_H4BUKU~Yid@S&SOJg1Wx z9fl6#dF!b~@4C$Gw#)df*~TjhcNl;30JT_KGp_pJLrZCfmsWw=n(YWpbaRoW`>eS< zT#kB}sw^v3s8XzGxl}K_G&Vpfwj&r?R$Lw~|GI%{t*y5_ieSCv;qu5$RB@pe>(+EV zgC-g{Xof4->UZSM6%ZP-F&s7{Ox*B`SgNknK;H3p(l_jC)J(!qm*`#x8{qcC^s>Ni z*Tm8$&`MUeJ)`AlpPV$;U#HWhKx1+1bEM+aCDdH-8f;qJHaxDMj>nN8b8UOYP1M(# z21 z!=2PN4Op7O&tIi#yYiRR+gb^@2@YFL?bLv!1a)sv)#Yr!oil7~Q#R;GcqLa|`r}Nn zVVwYAy85Rw!A2d%d}VLazpP9M-;Vg~Av6ISR9V5c{Pazay_6NVK8hhhMcVrcI%mfDO`Xf0j)fgalSMmg1IB_< z3uatY6MwO0*>lEYA~a?@HyUs3gxIW0ecV!-$>Z5(hf@4_VOBLIR%*k#ZqS8A)MY45 z;*NQ_Dc9X;UE)e;s19+&oLBIr#KhcWNGA5mHPA!=Q9@;^Bs!CA@2)jguz|#6C7ZK* z8G*SB&RViS_1Y~mm98xEy%3gYM=*tn2)ZzEDrY`)!w8dboyl4`}e+Tj&7v2raAdfxjks;mub zm4G|2VR*+sQAupjVY_utTW{Gf8ppQHv9Dm1q)3j2n`8np;`12RYTOuhloh%6Rn!tU zhUQ133vu7l9>=!8+7Hp_-EoZl?XTlw+l@Kwdk>Cd2M6M5Hv;PeJS?i-2h({B<9r|# z>ccj!Ycb<#CBA5kb=Sq;0RXVjnsU@QWM~WfPZly*T&C>DP z3rOj?&++|XY)rU3^r$#Cw@~0lh1>4R6$iFbFmcpJyVc_tj^To~7*6mG8~ z8T#a0`er;_0ygSIF6$m2RLQtW;Yqo40?D6L7Y|lp_^zjRvjjH`%_mVtoZc^v!*ZyR zcp~vUOo6D%BkwUI;ydPD`^Q5Lm@|T5tbHIOQrHSFx8%F#3r?f@j!X!vILY(l%?@_H zZ+`uNcv!O&>|#d_q$^r7`*&wj)$ido&X?IkzxJ*qWwxI;C63*R)B3?X>@q6tR`MCT z>c^YYP+tv)_#}Q+#j>?p0NEzxbLYjeSFr}#brf=;QDv?8?i>Fx0?H#QWvAnuGK8lb zW^U#Q=f|;Y(cNqLRb~y@mS2RqtzVoK$8J-X6e{L|NW2s6s%EL!2cTKy>DeEBJ;O8n zf5ccDi6<*q%G@O+dSV>Hm>0?O&telVP05ZHcO2=Wr3iMy9qlMDV`#$VpMOS*eIx&e z>HUK&k6e`Uka=2e0KZCwhLcURSoAx2-0n%xZx2Ihh<>qILzFCD_Q26%sB9PSjEOfn zP;JOR)OP=saqO}|t;ZRQ($}%@D{v#l?MI>tD0<5^MGv(Ds~9qU@~SxY+@RX>&TS6G zF7F)aviTpbq3Vr-CgoTkb|}X-Al@xzMVnLG7!7J#5-h{-%cewV|+ZyD0E=OMbWK_$483sXQJ~_NfD;# z`iSEv#Bsh0=~JMCuIATNqR&q@{%NBrBQY*KcVawL$>`^IQ8_|Xm^OI1twIz1_=SGz z9-15wPV*6jBZXt*xOibqtZ@0#Jyd+q6xOIxr3iWD`1mu?e%X*9%TOFX0o{rsbcV}` zYpKMbN_*i1#bYNLFP!1>jrDP?L0mEo`JTj`J5^9={3JGJ_w;65?7Vo)AXvmABq@G; zUOZz$u?mGc&4+=G|1*6b1ZSe0h>cRh${4fpF`)Zr#^VMtY+uieXHBSsZR;cWKoHqk z+BfC5_TaKv+5-x8*qrnjeIUH`W9pQ#$FBututA{5k;NCsqc((0B`7K0xEMp6v9N;W z>L=)P;M$+k2tjlzHQ4Y^M_m4Y@d$nl%OIASnDVoD#x}5mW&37)3W(b-wVYFmvsFO#4PmRYWmm2qv%H7Fu-&BY~~ zU(<5nLI&q`rtHL2Crf*=37qIrhkz#Ch(a=GSA*iX4@rYBmZb}mmu%DWB6Wx%7Hp6A zaZuwt&}gyX|G0f<)MZXGGse&b$*;F-rC1NIXp7>*+I&S!&ijBQUw$|BH+i&Nr{)|k zO7g*{q4&fi4p=7-m_*OJ2NMz7)&~C+`JwBL^X2xQyHF&Rx#jjRw00~FibpjYA(j~l%-9B2uzYHtmZp7k z*+3Ld^08;ma5<*7-6~9+dBZ48iqOk(7qjr(cAPCIO*V#pjxb$_b~qXoKJ2$$h==Aj zbZ$q#$t9?8rHk{1(T@J}_`g8` z4%T8#8tUlI0Dc@u-F@5lH&jy_LSF!g?!JwA0{LYF+J-NwMf;JwJ%2|9RS_VMCMj&G zP7LjQ30-N@Ms41$PoZ+!fRlGkD~as(jB(b*`^c;Dl#|kFIoP9R;$%Srr(bsWZTG;T zETrJ@*>Nbu=`X~?wHkpljIc=Tq*)eVM7X+cdP7)i#J(QkOIq4n4I>|lg2Wgx5@It# z9`zeK+{xH0uGMKDU5pTyvB;E>#I4tEjZ}0&IwMiQc}yxh_<*BD_(YtrP^k(v*dW|s zFh!-8beb7NzMpJI?}EZ3L(qyTN3{15vp3~#>>ceVdT9V|!H^-Lweg}Y%ldLA3J6IivK`c`A*NTAEY z(KQDwJwW{cR`M8cUWSfrzqLlZ`M&YhmCm9ssxiq6j;89oa}Nx&IeIZjw_3WpI{#dB zv(WDm3p%$qI&dlh{IDNl@A!tgI%A0E7cd`KwFSSP{`?rK)xX+HlT^mZBZW_X7C+|- z*?uQ4!8Y%leek%{j(JZQPj&mgns&=!x8e0)#0QtsI=uSl2_$zzpY~9F9-paV#27rY z&~sZHyAJp*3~Lei!oKYo@mx3-TnNvJNBXv>s$ep9DpmLyE$v|yBQRdocfQ*514uL>I4ZSncyGSnzD5mAj#m-+wS`f~ra~I7vlLbc5B~+bGT^4wElb+>1Vmh4{ zcDH~?WaYPVwDflbEr$o2+Y;xKktN|4W34bWiW02FUuV%7;q_KQ1!;>R1&4Jn2^&{P zrvhphyb(-)mWRfK4bJJcz^^{G-_XpcO)sg!e52MJQO3FhVQb*@V%nWxXnHDbzNA4B z6vmFG-q=N(k;b$st$H=9){_1xHLZd6%W3C>f6~$(K@lq%-W>+TqcweYWiU42FkTaE zmw*pp-2nfluXV9Gh50XBSRM;)EJPxxP(h&KdUPCIIas3!!?dvG!$#TULH!g_7-9*H z5?Mju&?a;OTsA_DhB<1ptRP_Bs)haab3L_ba5k?Q7OT|4ayD4K*!bRKelLiRa8Y?y zME4%g_JStE1<0_Cy&b!>u&bWihhAl%QF4A69RsXQw&6G;2ii1;iej)$ax@353+G2R zsoST8t@MTc>7^&wWQc1r3{;VGdk<*gjv2GhX|}+lT--hfJvo3qj>_x{7r}#YP(;t_ zV)lg#;2}K9u*W;Az8bU-4hyD@(jLSL?EEikU^IMyK3EoR^;nM96j>74?6TuQ8zY(x zqfLj=*)`l~BwF)zYUYM9+H^85>+jqp#DnC6^|EoKOkOMO;wwL@m5k76f2wW7(F#jrX*0 z7pQM;BorzoV3tV(mzUz)uro9^hcD75ki|LLXgGNXUa_asGc0)E8zjaVNjW5Gu{N4+vlh0GsfFpZVUu{Nv9aYE4fjxE>_ks$ciN-WCv#`PrRh;> zngUI4X<_4;`sUG^u3V@!KVsAG{HBFF2~Bp=Io1J=E-0_7gFZ6T{ZHubfms7duK)yJ z!%f^0r!(BVfZm*mMYGMwf`bQ$+_;3dBt!`Rf?`>VsJpnsD)-HMOLE5a{4)^w!v(3L_Q~2 zvq$34WI-_j2E$EqxJf)Uy7JrXw*{O5Oy?R>?Vh$=G(6Twm%?l*cd~dnoKs25ZKU!$ z?8iqW3#VSfGcN4J-0i8<=A)-!>NFeZA^5DXv2E7Z`#%%PLhauBj4pXXOhlX6nbhD9 zKcGvcPk3I+*A<_ zmIW#sbuc9`Lun0oPlWbfkYp1nSeglIw4!BTsHJ#zV3kD&Lz-DBX%MW0{eq%x1?t;% z@RRNGe<1uV4tPY1MXwP~Yvs|q?6Nj1TmYX!gGaL<9swPwJY( z>x#`XYLNI*$+gMcmb%eo*Y%+K+=r;;?dw4;!$O&s`&#MX_uNN!q2C;Eqa?q)E&-y! zY6?Br{n*d2?^3+zp4L((^5H$2RSUnWa57g>TI}&VyyVtPybiO@?Dm^hC5U5e7;b4LrDZ0#Z za7PA<*+Jl}I2*Q&PSw;|!>CXe7(SLp;ScG$j3kDO3k*A3sj<`X;bQFS4c|cjtBy{a zMg{#%O%rTm8cD}Eo$Zlo2JTFNz$NqQ=`tRvKIy2{S<*{WmnjjLnoGkQoRRzO$y3UX}lzm^KRnin=fTQCrvQY^CeWep*Bq(%{?QP?rIh zD%iu#*VTs)e!vOUR}xhoc4ckB0(f@>HhQ7#ph0I1RS)I{`YjHI8b>2$9AXovm1I;JalsU~+A!l|azo2nz@{6d1me20~I#T@txjQ&+C6!vedd zqkhuyW4UcMI3R~U$vA}c?NF==JJpv}p`Xp!)j`*=NE_wZ$?nhw8F?wQX5hPZG%}v= ztV?F~%28QH(q)zob|{!2c&M>0xgjYpAChvSh0aivhEG0$i2NG$YXnAYqJ4h9CF&X> zBBF_IsAxoKL=%5(p=xzs01BtzK z_6UORj!?oH=)8+|Fqoam8ESB-J+}EcppPyKQSJ@a;I2M8M?`M8!HauoH~-i#q#=bu z#pFacnAezgLVlp%0qkm6-#Y16dZ}Tsc|u=0W8Yc>voa%!U@rlRvSDu#y4Dg=fDHTG z+UEf}`-5>ASb#`JS@fyF*8Z2Q4T*K!8;52S_ie~3` zsKxCELwDNX3kNKIVWWvP%nj~3L6^#emjmHg1DuJX*H3^5rm97hf&roSFTO`j|JNim zAfi^djlDymi$iTk(*4e$`EXUV!lo(oG5mb8nBg~L3XI}TerVP(Mi(6}rB6DsC&j_& zh9#5*j$EKI3`QqM)BxARFDKeIJcHhrd|A9S)HWDx<02^(%nmgBoJKO(irPjN5->7S zpUASnyI;^)hF*ppV1w1kuKx7NKG^-ny9dy@DOA^T5fwl#tzacVQ)PvL>?@JB2CGo< zK>=*gLN8}w+o&3E8%(uI@&kcuXlqbqfeIQMDK4mPpy{_@?W#p|1#7p#?Hbyt(Qvzu z-Zo{Q`)X7GBR56^JQS3q;TOf zFt2!ipy4fQ-kB94C50x}&j~3KnIAav8@DVi+Cldp%;aRETAN)q;K?$}s;A(yL+U!1 zY(r)IBzY*aWy34px$9sYgv$6)^t3Ec@4oIicsOSx3{qCyHCx3)=!0m`$jqSR;#I&@ zOJr$8``aGs;2k%xHl(-&-x5@gmPNp-My*V{Gl^8&2_w-6*Fk1C|IUNK28Vd#Egb0A zlp>YT0j!dZc5uVLs}NXKUgbTV98rzxBM4&~0np>{rK6BW5eA_!@Q2~=Dg+WMsXPWE zEi2v*1Vg0K#VQ0|tfIo`zWEZw5`2#a-UElIV4KVInHU!E^#XKZA1b4px=>~!IRS{X z;`xCpwWu5F9)p1Ar682;E#spwhP@E&;gV2$d3zz+i{}SO9JTcL{*Z>Wy)bnmq(x+Y zAR%6jSIEuhlFleo#u3-^nPz3uII_7{W=qW^qDfU#$(7yl6=SL=!za$ik0ZCbWVBY+ zVa3(s*daj5zHvm;Gs9Yr*4ag_CIe)cml&g29d01H25W$4&~KzGqsNgJy|Nl8=f;ub zp4txNK!RFMGn!X8xhE)c#5mIYh^`Yn{QS+wlB@A;70r0!dOE`rU7u?GCpF0& zb#I)8Tzyb~qEd4_S(>7@(%eI9+SQK%7<^?`u8$*&_UN8Kb$N$^O8g55tV6j{ybDlS z)}i72l9aWMC%4*V*kdxOPR8+M^U$n9r9D@aEJ+9NwIRt_Y9eWFO0LHGq9sos_%*(w z0>Hu6Sq-8YeVuDwty6N00v_JAUuTO@IpoDW8Z)IUHWGE{p9wmQAjU+sI=Okfeloe0 zpqfe7=i@68L!w%PjBJrSksQiYhif)a#cWY)$7{&aXHsq}r=SHId9Q<25P9rx^UMY@ z4XLTe!ET5;vbCYwfL!U2R9^WH*aC-7DZgPa8ECa%(Ac916={XdlxGFNFMTE>g|Mg# zjAv1&sZP3i)s8V1N;Hq$b9Of4dIO7D;O;sB!4JOd;tIdP0%>*87PO8k4q`(b*`0>u9s^wWmvk5Hh zCXp6B)aKERXq{%{l$-i^RsGtU2K?VAJJzok(}Wi4CXnG@LkMzZcnE@$`~bXa*XRO) znZ`p9)$e44zr6! z;CN8|TBd`kH5zOSMd5rXfGIEL8LH77Q2wdR2IW~|=0puSRUu)L2CRkc-k9fTjhW0O ztpaV(c_pS7%^We2#$F@XK!b-y)6}{l-PpMnUn*o`yrjtn0PcQ?*aW1gE#g{oo_=yUeMf9=2 z`#-@9SiJ1~WmuRx!}(mUtihvbk2m zB(CYn{qYTA#?VUdGkdfOG{bt4wfV{<8g|a0csftOfMF`LRU`ynrmV0J%zBae5jvO6 zZZ8^aQhvjkjYU@f3Pb*39*K{pm*;8ln)L0nMBKEJ`_ z%RR@Z>yYP~<&uKAIIlnhbXHRuO(L;V)J)R#c6@Cm9UK&#)|7mVtzo%5wsLYYww8e2 z^zyn8?4Xxd`j^Jm3~I+bu#_(94q&Cdpgp~~zKO=pq?KOJ<*@~YqweDv127y~v!McA z&3&EAR&z0hl!DA|53u%(Tv9DYZA-4)g`dAB`1}L=T?H3cICwjFs?d)yYD!5JoaI$R z(Xu!Wn~TnIWhRr@hd9SQV10*I+M1Jj2QH-A#ZKn&#u8N~!^hK7A>K}%gptAGZ85D> zWimBVt3WfXPnXinySb#_pKyugX7F(1X3%H2S3QJlY`7=}l_Z@WLN|x=OH#hwWFC2h zN@_isM_xZvd9R}i|$vhDEgLBzB?=xtI2I2)Uiv}Y7 zO9OEuZT2HDoCf0WSm{@=h6ZBH6y9l@Xr-trJP@Ifkt`F)a3r3Y%p);#3XjBX6oX7Q z!7)MaO{SsPshq`#zwY7d2L`)6xN!kdm?7f}|+IaAR9Y(0hd;a)1c z#gvE{?|C$4CoOq)3XedR=rKh@Tn4zxPGMKs=-sqN57O<^;7YFr|2JFdv4)#YA)V`} zPoO@u`(jWZzFl&&j+!MaY!athBl1f!Vi6kgGF4oBSHS%~kK7p0&c|06D!rvVzyKNqi zMkq_Jg(DKUa4=Sb3Upc=3Kif-Zp=yAGGuCMW9`a$G!{FTg-;srEd_YJ7@oyr-w1#} z%nBF4ikN;+#ZI0muUf;|upnmHMMH329ywJfi?8!$gI%F(?nbbOt{L8;s;q@tbe+c% zFXZ75+?T;by3jjKtGvMM(JIggn_S+fnKSZu=vkTGw5#A(68qc>d*hfzUbrlzI*Yt; zeo4B20%J-=EhcxpW@N0c^;Z1YYxm@)}fIRh z2rj}s6@8VKET=Z%Pg$0+1Z-kED7&Zf0J}!3EtyIOj8=h$Sb(usCr>5Q8o>30PPi#D zL)h)^u+{8*tV^k?R%(Y>nVLK@TQxp%y%LO8sd(I-S$_1ob~^h;7;`t?E?F(?Stmkq2e{X+?uF3m%`h7kSpPNKl%M za4QFIZ?U+1WQ4`#Bh_XHv?=~+JT5gUV1#>GL|jhhUWoaVnm1t@pY&K_ESN-Nl3YEe zPa;?9r6tGwMJtV+#-kFNVNuE2>_06Wm1#1?A_9$>&2PT3xO|lA&WN}yy*@X3KN=lF zjo!_SE>zw|d&|FAG?j>EtE!S}UFtunl+EXXsmbSoSwEi#W(}%+-Fz09weyPxrY65gV0IvXY1KN9 zi=hZlFu>~-^du~Z!&FwIX7L*Iger(U11pE`6XG%NY_6d#KzY%NZToy4c=f50ZSo@m zuYW!n)gsHveBV2t$6Xw))e|&kbK#hLJ{Q*GxjgEi4Hk8*!It?n>N;0-hNFvF!cN(O z*h)iN#bRm(%yRA0ieM7;m!tZrRE5P%{X*rXe16eOqM6&c>M<;_nI%%lfdlo+LpOn< z*_CLemia{@=-J1M%chaSUHb@%oy#Z2OBq%T#z|I0oP5vYBnkW4*0ecMs?yrb~Tl5WJc|U%&WcQ&4K*`)l1ctkC<6n zV(67pGiEIn^7cAZ+CjQbi&6tS)~gpa z%G&89f1~P9w(`2mmn4;?c|UCg`D>?Zmb)6&foJ1YJDK#AK08>tW|P_`M4lGO&YRWg zlqAVZ<6A11#KQJl)CR1u>r?UOm?hNcdDF?qud7X}6;W^%iM^mUB8|7I^`gqmK;Qq# zeb4&*9*6+n*Ir&NqcVB8RsB|pn?X)~qPA0N&7eJ`k5T|*?z=~o$f`l6CRI+30y$*! z?f8~O1#aR3o4yDF+XMx+WKHoPYYv$~fva|?SCsxJuMf&=i}Ipq&3})M&n{8cPAUs0 z{<$;w#6Nomxp_!EPM+VT9;&`~hNjFI8l3&2Sa5EH7B^3fcPi^<@Ue2>ids2pHssP_ zqJR%i?N*DKbSOg1ITUjS#f;kvVty?m=9{3HtC3>Plp^MMgqZ3xxi!^ha%+|x05SHN zqBYu?Xidh<2y3cA?%!GSc7&LoDCU`&0dU$dP4y{7L<|p#7!n~ud1fXb7e3cXbT9T%U2vjpQHxnA5qIH%FC>dCFV04&s%1a z4_{S(RoH&=i!CDT`&2rgHsOmN?<{`#Z~+DL_tqq{-(ZBt936g_1s)yo8eLZSh?U>v zhwp~C97eB+Jm?-j-CkO)l)T0b$9P5$9yzutdI;0E`chFu3x@4cw^E@&Y*|5qgDch!^1yR-P^_b$cWniY8Jv})EU z7iaOw|1X|P-h5BpuYAWeY8q26ja8*{lu0>>y0C5TU8u_rrVF3<%m0Q75tldKQPjN^ z(*h4ZP!&a~H+$7t^$8_)HVa=iao3wohM!eyN7b86Bdi|TdR9$Rtlwk3E2?0vG;*taWjmShk(v-S90+zX zA2K@}ZG#{)6m5+^R*xuiX7gy9$!h7NMnVlXu@9nJ1Sj^AA}$Ffwz~ilUkOS)7$I?A zq{J$ps0Wm@DDeZ7cmyRz(W-wN-`X^OqwCIWJ`vuYO(()viS={!aP@j~#EG!-9GnOr zn-h+}sM{ceO@!b=I;|IVp$SDap2I~r=Wr2SFM)^wMMQKDis%w4!U?$%BGN0Y)C7;X z-8?igp{T@0D6s$~PDP1Bz5oDw@MMw2}M*aJ3rF1IfQ*ZCT84a#9vgW$_T$118vDxibgVSe$XYc$zm&b4P`AjyW$>%n^{kA~t zw`#Yt30|k$>-73fF0aqxa+qCin+aabvp78#s|(H$Je97m5g0H+KVOq*^f-Mmb=ocP zcD2Rl^gGRdqu=N?_$|QNOyty`YK=g{W%^GwrOGBF4Ejz~Xj)2D8^@_j|lsY@*rj zvba2Mug3=0EtAvbHu-!8qr>2bFJyX*PHMz5O`-!ngkUmS>`sT*;&S<1X0y}eGFv?G zbJpZ>*wBX3L~9Dws!BJM4NFJdk>)*?yqpV$$ z2VMX)`8__1+inEyK!2wf9(p!7U}S&>e(VDW7z5uRbeh~|I(NaeXR{kT&~XsRURVio z0}_2ktJ~`K*)1M}$Ko}?Jn8qktOgUDw(fzG9_YjaAJ$0JR|@>Qr+&32u@vcKz)Za{ zsWjPisKqt5MC_C$8MBSnF%1Wg?aKoVzK7_uI4oX^!4BsrxIGXdR``&M-R$wgyk`y0 zA}+7j@9@DC>4dr-nDDJWumL(3y2?Oyj~h+ZkyKxf8bRYILgrA z@bUqcfUhLc#~qU$i3 zeHIfAF}KSJ(G5eC#yhw%*x zEwBWD8Oj77l!rOP1#1W+L?4^xye_zy`t3d|T%|1@s|)5ahtq9@gI3|}Ii~^aWLILh z9j@!pnGm5?_>E?9z*59uhqk>oqYl_TOnw!6Z@WHLZ-}^r!O$@HXy3!Y zwm2YA;P79VxC}0%#|YksMFYDkm+~tT$5UxNB94&Kf>5konzMrADWf!tU_8OKo80OX zpFx_n(^slED5mdo9UWWUh&-D6 z;r7&m1V5R47`EASCKZxKNA%g#=0YQLbLJ{#;J&oHyXc`rMp3a8r724khOT z0skF0C=T9G%=r!eJ*aKYZTOSZPgAB$&hPYJ3!s&pKj^>SgqCvd(0{F~2><#Y%Yznk z?$UqJyLvhI=)bmTW(IyZqJLkbB+MnrowE%}y}6{@Yx-7-el9U~$Znv4J8{VkEM(D9 zeNwf!xgZsuTdr0H?t4Av_%6 zX$TLO!e<^A;57&ngkM6KNa1QV1o$n4Pa=FC;geGMnVJIp6T&|rd=KFtr0|+r0$g(* zclG1&Ff?^_>OAi1$H~>~;tso9TY#G)+z8>02se_#X>kHP5MeLE;}G^r;lXtUcnQJ_ z5#E6CLMgnjo&X<3_z1$M5k4Y?e~TC3uMxhC@J)m-OJPTX09TyPy@E$3=G);iNK=?C+zeV^nDg1f50BaU-Z$Cu1>H_ZVhf=s+rU2^@&RoE|%7Jhu z>DID%R}IJ#;2sO;;{+*jp&NCu3y|D*1w11%s5eYnU9n9Uw%JwM=60>n<`h(D62kKk zo+O2D=mdB>!dno28R0EbxS?Kv&mnvU;ja)rBZbE{5a2rq-$uCHLf#4RFuKH#N3#Vu zX(8)DO?`5{bA#4OHfNRk3(0^E*_NWy`NM_++z#P39DWYrHgdS7QGiDyJc7gd2#=7% zg(d-Bi|`8^-ih!Fa`>!SfZs;=6o)S$d`b>KZWZ945x&9U`v~8V!_V0SxYi=>?doLn zGvMvCMXaZk>Wie_US}8JW(YUta3_Qt%i*gI0Um^~kHg~;_Q~OlCj@vY!izY(5#dF0 zct|4wK8A3B!|x#+ki!QW3-C3B;ni&Fuv-XUk;A_?5#UOTxwk8j79N1>F6Q2@uvqHt zCz=Vc6=67+mclI&Hp$^>%>}q0!o4{>6ye@-`0W+~JO|;K9A1g=OgUVkr2rp5crS-v zM|iIs?%Ya%FCqLnhrdJkb2+@cwE!zixVQh}aJ41e+keU7FWLyOif|UWIug9?L^x}S zw5#g372u~4?#5v^!rkPsyPW{%A)L$M`3UFA;T`P-_(g=ba`+X5x60w4ItcJb2!F`o ze%95!|m;Qt}~JBOo}a&P}GhsSpo;N+#es}jh;3E=I92q!F+di!`60d9}*QylJz z@KbWQOg8}@gYZZW7a%-R4!7768l>AS@OJt#-c>c0Nxj|cIRS2ta1#!9M!1O_-q2Hk2P5p~ z@C1bYa`;*=0bYjiVh(RYc(EML>Mg*>5q_1!?<4%G93Iw3fWJZbDu;hX_^KQ})K`Ej zFX!HVj3h4rZ`WJSz5Up7skiU+6JQ&{W)8PP*er(|4-nw~2>0ReFogTa;R2Tc7a|Og zOH#F0Av{YCzv~v@g9z{A@EZv4lfxCg0{kVy7diYr!WZRmSDye!t>E4+Lr$#*wPROs zZX>96m8pfX5;{io??p9wmpB(E_|4;WZrIjqn;d{L~l$ zeiz}lIQ%KXZ^_{WV+HsZgn#1jp9udXhtH1_;5w_gw`&sPKJa$ND&AE!S4q8HYk~l` zK)5M~yCB?D4)>lYz&QvH11lLUA!t|sb%ej>@NWozEr&ZTsbOAnu@O}=TM0md(es6{V{|n(SIQ#>`U&!Ig zvjn*83*6iAFz}n;?Z;o>-qySz^>+8!0^9&$9funstdqlJjsQQ4a1Rc95$+*}zbX{q zX$Zp+7F6wp2v3p2$@2vGC4{$g_z1$=<*d`=GUULe5t5Wd6V@~gSG z@5tes3k5iJHSek<_$)5iY(zL|wY00Oiv_qN!tFTxJi_hdaPATT9*6K~4$nY%v>bk8 zsQ_<4crAzbAiP!%mt8KvrxAXe!=EAiwj6G^LV#}~{4<9iBK)%)UIYh=Mcf;STf@Cw zi^N_8Z)dLIT~%w1)Z3q|65uBhZpPuR2se|%bzTtQAqWrR@Fau>$>F}M1$YI*OF6s+ z;iYnT%NhYbf$%X7pF#MT9R6;t0Dp_{H4fiK_?jHnuNUB|Yq_^8k%QlWx9hLv-mbJ( z>g`b*1lWPFmBVciw#wln8wJ>fa6b-@K)9bAzQ0L;=OH|Y!!IB_M-DgNBET;re1OBJ z5I!J>XKfYWuMmdwD5%43Abd#$$i8Cx`d$72ve>ysO}hkGs%SCI)B2aeuNc{a^P*uzR2q zy)Ue3&(Yo}x4oRTABbRgE8`h#ts2L*H^$_2Bj%6k!BCx=fR65#g`euu-K zuP2)B*(KQ<{ffZeLiWF${R;*ES1!22VF9kYf!ul;&I`Ns7wDX|f%j4E4N^ZZIU=Af z;p|)L=;j>mhH!H^{8>PNhaxIlHxzu#s%; z5B6@9Iy(DxfpsDa-wL7ZQyY0N+2rt;Hw4&?aDNVuM7X~ke)XgP&quhB!>bW4l*50X z65v-5KFHxWH0;cEo4^>gdRrnOHTfXV!xD&o%6OJHhL3r4Tc_e)c{}B*u;Gm zwMpve58n~chMRaN={ej4VZ9uVJuSdJ5q^fl{!OICFfdonKKq`)79a~}Fj1`+qu{A> zcy3@qC4d1l@A2;6O{WgmwOfAkL7UshXVWn;kz7uY%_@+TcW`^XM^mf zvCzSrxua8vCI##@Z|1#}vRT?o`_BbgHiSEGCYlLgFGKqv+Ch%q{zyP4pxm(>o`vvO zIqW_rs(t{i^r69N8pGdZ6ZG`P$b?yFzq zX!*|swB8o(=sIL`L(o}^aGfnuM|b*MfLkHlg2Uankb?zau$*0XF~~Nb4jqhW4o4@W z+#ET3@rxkKI(QYr%Q?Ia;pK8T{!0OV1L4;=d=}x?ERa#vR&qio>n#I3xas%(|I`p16@@Dp3fsQJ*v3~h_3U5*+q3#bR>4&d-8ga^ps zaaRO*0m5@Ryk;xuwipbSv&XIm*(-~oixEA<(YH|UAvyck*Flzb@qf0G7R!S6{)Fhi zmUgGdk zgkO@w>u(6~rwE_t@Ye{Rm&0HGD8PRre2>AJip0<%J6pLYXET3}WHlKisdKhbN!?B~ zKj~XDQj<#hcgQaGwB^wM3SbuwcHGXMuhR78Xh$h}@D~A{$kB0#&gSSiDf-7v0o}~e z4T$dN=msg;=vM*#fTO3klk>j@Ej=v-^M4b--#B=a%TzQkvar_Nl(O&Kj%1bi7uk?d z;$GyBq3JkG(*q=rKt1+{K(|KvNu+xq4QUzO<&HoPM|#MMWb<8pYt&nTqzqp1KLI8P zuRzh;Q8c7w^rgE3eG=&tNS{L*(lR>XzCizg^tVXgK^oFB+Veo5AK$@UUUkRHQ4Lya zcJN84>JBOU(w_p`2wBGt-d*jGhO|ub&kqIKi?j>r(MUsDMw{Rikcj=gg-FjsdM(nB zmeCV50(}JOmv@jBF=4YIDT7~A1o$$-U!mxqQ8c7ww5F^;mw$;nyxdFNX|-PBE{C*? zZc|R6jYwxB-3)0+%jo&h0{uMF&%vx)15FZb)}VxpD(w~xDAk956#QhKIUpr1mz71GZj4QZL|_iX|_66s+`PemHiGP;UGpjRWk3h5n4 zLs~}na0>LBNWX#f$4En3M!)ccK>vvJ_ekGG8qzZQ-;D&i#(wVe*!|q+Df@YkL0U$q zG!f_~NI!ve2c#h_qX#w>Xg|^(q{ku+X&JqznLsZ_dI8ewk%qL4zSUfyUq$*b((fV- zX&G&MQlPIQ{U4-%K^oFBdU8vFe(V7EdCURs^EwB(&mk?NPqq?hGtvg6TObW-8C|Z8 zK=(nq7t%RMLs~|+e@dWdAw3=Gpke1Q?ItsKF>5PNC$LvT$T1Ic}B+%WF?t=6Hq#-S%zwa#2 zlaZc?^jxGNEu$NB73gh9Z$|nM(vX(Xqq_<8S)@Ne`d>&xT1E%D3-ljI|AutgL)_<( zmeCJ-2z25h-ed8HxX&9P4QUzO;u(Q%i*#$GpG6wdGJ5v20zC@p;Yd$I8qzZQ%yR<0 z25ExyOGranMpx@4&~G7q66y0uLs~{Z^SnU+g!B(c-$NSGGI~vKfv)*7_xa;5bDyWa z%zF&dGWv2Kfo_U)BcwYb4QUyj2Jh2H?C=ak+Kco!q#-S%2lp4~B}gwsdIQpsmeKnL z2=q~;k05;-X-LcH-&_LyHPV-nzKJxXWwgU1&=p_dJ}>_Y_j%ka+~<&%(Rp5hwjgap z`bnfAEu-J`33OkipGSHK(vX(XF#`p9HqtYYUV${EWpu|u0=*yUJxHHG8qzX)>0p8W z0_o3?{uXIS%jnN@1X^>L`}`r&RS$EYLs~}H8!FH`q%#lm9&;cKX&F6Wm_YYHx+~Hy zq#-S%w+|QSDM(L3dLGh{meDsx2=sQOw;=s8(vX(X4Mz#|Ii$}Z{T0%XmeFHJ3-leN zZzEmq2=_UpW%SW80-bb(_gMWS+~?UyLs~{Z94pZ6kZyzYb4Wv4Mz(PKu88}0F}7^J12s=(t@E=?7hT#8LD!X`IjlaMafWORzW$rJF2rig3SF>Eq` zO}>XsLb_O!DJ3+yIbUe<8a8<)K=!W7Zm!(ICLv9mOph?ULshww@QIrV>$AK5A64A) A;Q#;t delta 98184 zcmb4s2b2{>_Wo}&IS$Og%*$~Gc)T2R6)=E{lFWz_jDQHDm@ojky9N+s70Q4Jx~^G4 zS4#y1b$3-11zANA1dJ;taE&PX|87-vb@vPS{&UVdXHI?h-n!qd(AAat`FmDZytL}s ziWN_{jU_I=;PlHf6VK{@W+IuL5KZUO$@m%ZXkxhbG=Ur+oR@N2}c7k<6*YvP}^ZT{a;?z7HF$5N-Can_k<$CAlREHNRIJR_P(rOr;C znVb-fW!PgaeXss~sZp(cd+;ZYYu?nxeR}$g(_^^_+1MHJ3CV2w^lUtqjK!nL3CU#q z%yi~-Y4LZZgvBwZH9tC{I+IAp*}^ZIo9ggiG#g2==kIGdhb?}jxvPn_QCOC}{z$X4 zNILKSX!Dts5~%pKxv@qlu-WZe2DA59GYvu5jzW zE8H=N#Tl8>dGnK2Hvg}}w4?zx^$Ei%yTXbmntRn&C$qVfVu;!ijbzyL&CTbq6Q2b` zjkU>0EY9XX3uA@peDkx!Pym!mH7T%lG3OArbPWhRTs!ujinU_6)VnS{V%Hn$Fq1+MsD@d8WTN^5JVLQ;c|{!jDSmC_XDkH#Rg={hcS z1Pg9yt~W8Q#KvxE_7q9y_iSnYuA&IQR=?ZqE|UJ#R^ph+#uCJ_p>3uw>VFD72Alqp zV-mZ6Cs=AUs?kU;WoH`CXPVVo9jscsWf!p(AlTMhGMv54J(zv}A^2+4rph88fpc+; zU-%L6E)KGJpMZODjBos;xw*DFmCj}@0Z6AZS?0Q+WfHsWOZcNv=?|fiY>ds@*X*u| zYOuZFDM9}8m(3F^r6SR^VoVh5`aR7(Ox$kxz5UG|WjJ4%AGNpnhl&!4iw<@e4i)I# z_doEgi6>G?Ye{F~u{0a7vsn=BZh@u41V^%L?mqZqs#-C=d0+E6l?pTqRM=hdVe?=H zp7j>ks>`SH*_KxrI0y6TMI0;1AALsM6I+BoGm0+CG0xDx65F^IuNDO7!9Pt=Q zvx@QI?);W|$4Tg$2&RlJ@Um0GgC$>S+2WV748Go?s>1TF2FEAps0_hm&~GM_PQMn?bFn8XA>Ak zVeCSbCl7ISvr2TZNF>?4LmaM>C{IQlqbs}JXbrB+Y6585vJ&K14Rv%kjFE&rt8a%o z+$B*yC+7HX1sgihq*G|&ih-uH1t{N{aNrRZi)W&u@Y_nB@pyvm*%O>Zap-QM$~B;o zWR{}fHnBE_CR_1wxSls3>^QNqhU{h;vMi?9l~xt$v#BVnxX#h2>SQ{Wi$rBN z57OODTxBirD6w{z!1%w8M<*}AQF9$VY=%W255Dy#ZZ{0Ro)Q@Eb~1YS5+G4k9#N(? zqkQ@)pjwkoCos6CrmpH?I+}8@KNA((0HtvPBk3sHeyzh*6VDa}`9)KyYA?G|X`AIN zwV5dArmGx1gmJS(4C8(0!gFc70OT)Br+R(mY~^=>0GoHCcC7&9o*9nbwKa)oJdv^V zW;qN`*tE?Urh#%d3oOfvV7!-XyVl{YG89!f1QO@NE_a+&Su4z1J2PQ-=i3;jfo*py zZZq6xuESRi!&235`SzfWfD)QN&31IEWjk)Bz9oTDHy>lUWHf`>08i)O zIc(-FXl@!;c?&$jp1g%R2t(I~@xXO>gs~HuVco3V%DSlCuQKYq$O7Ru3#|H9>b#0# z{DQgk)Vkz$t985fnYSCh6#gzFQcs zxYyC6t)v9QawY+cdkCup+H)norlJkw-g~Lz)>dsGBcdfRKIcB_xHHK(1`x|1LC38^ zoQ%nli6~zaR)&+w7!6HC`I?|bcjdmFL*5u+bj73JhW@6uaeLi~;NI!dRv=tEYa zs+jUdI{))3dfSq~^II|8mJ0IixzDSPp28F%h6FPw};qfs_t6<#O?{s%7<=>(>KV)C5|T)LGK_~JjPOm^KmsT<>`y^M}nDXx6Z z(St?bF)fRU0Z^m&Q_8wP;NW-ACD|cu`N3Dw5tmZDW2@nkwy71{zD~W-?w$08ltrnT zRW+SU;ZgULi1jnXXWOe&sb?t@U! z2NPY5s*Hg~5>a;NS7(0OXN{l51Zk99Qc%X?P6&UxB#?8`@c$9sy zmxhvBIp6qU--w~4#_gUR^R4#G5@{kOJX`*)zaGOtY@X`6jXM zZEUd00B|IcVk6o(Jr-RX$k+VrIJT1QZs+WwL@ex-e(Z$c;q09D2as6a-svr+&fERw z_@IKV@2EX2%%Q52_OJltlPa8;70cxkio2>V>2%Df=KrgA_Ndml;wSJl>)*qPi5x?> zjcg*AA&L$3)bsn>I8Q=1Env#nghx*I3}HhWojs+l#VciZPNUOjVy2?7`(u0OC+M@a zUAs#k_BLFy=P6W2cXIw#!?GS{r|L`$uMSkt72_-zr`VvKScKW^0b`9T^8(MY&R&?; zn5v7w*sdG;bm!Oga1O2PcAaH*Bo!0F?j6e=t9Ucp$t6+Cig{XpSK$h;dPjUl(_N zkMU+vkj)$9#6Yzu#y?9s+tjkHL#V>hyy~kFr=vC&&8Cf&)vJ!OLUj_#veidXHO$lC z4S#Ur(LMTTXM@B*v8f8ilN85%V}C&K8bA#>$eIp1uD9L_|Z<(5?%dAu~XUgoj+@3>Fc7 zd<^^#r{jrSDs`atn2N`vSVa=A^TaA#rbdFzo96U|%9Q4xobH@diHMUsY*4^iFB>G~ z&X)ZLYl{>ItSA|F9ytluo4L5zGc)1$`nLc*XyZ$`w~QePw6Bw@jmI-!uzVm7Jm)(?b%LF38G% z>nv0ojZ4agi~pI03SAuI{Vt@2P;oUL6vZXjL06+y7svQtFLFB3$LBKf?15sHiQ+X` z)v3t!&W2EV3JEsldZ)i!VgAw;s8ZGB3|l_j=;0}AS)s0*=WMJpKp7zESAzX>o-qD7LGI!wcV71nmLF;r6np~M033kjqs7d8Y zbACP5q|fg~O(Go;C0Ua)(gQKeHu3ND5HWB?Sl|ivx4)w%6~}nT8>uF3x*s*ExCCqW z06iayTILrlpm?47n6rBeUN+;u6R>1D8o{-W- zxMhu*a6-1elb=BMZwjcODKBq%0zFO%kng{ZqW1igPOJ(LZ;^prf8UcBV3h#*=}Vm5 zYS}X{I6GD+FhpR_>~}U}eH3$2Vxz!Ut5KL5s3RbP#rD2yP>u!3oZaI*t&;t?+S#!( z5o29mboP|JvalyM2pqM}*=S(OOJ(v;>zsk22>cykhOhp)el(3h!^WgWJ_p|YgeoJxOpe#v_0uuAsM+s+Qvq{UWtarI~`s(B`j zb(3K%`7ze$p1It8@S7?CC3_VyUXq8!_x} z^DTObGNhC2h;N;NvLyK|DM`RVPNw8NU{gNM^{*mB=5GJI_6(~f#rBSbHG}f z#hyFn*@bt#rTY=^a>OH;yVoRN?Nu&+afny$rlvf)i>qTW8c!dv6V0Y_F|1XH z?Z)%lxf(*{Dd1(goy%XYFwg9zr~9q#Tpc|{?3>krykWci*vi2o`8VHFrQFuj)zcTtWe(JHX0zy&#HNI+8eEORGNfsj z!s-TBpiEgF`jxtXF}+<4m9ZS#geItJByvWL6cg<4^mg?!P*o!Z8fEoOu3%AwUs>To zg&gE?^(>0BnGRQ=D8fIeav?ge`CL5%u~_VY(aA+q#&cz=pW;)Fe3m`zcLjW9$jWC* zsJ#mVsiQ-#26v&3r82@9`G9#jL9PaYeKp_JtC}>} zpth}p*~&q#UOHV{`f`vfSdhwxg{finK0O)#iM&oE}FxHsb`j} zv3;CgMlv`!06Jo120A?~0v#*@Sz_h2fNeF%o`1mAo&OM{HsT-d!m3OLYdC@*8E4B6 zMfbdXxU10w>SV52wtcuOU?x`!d0}o?ifVhiQ7$YV8RoRs;iFuBGufi`c*cd{)uNN| z49wtB9=pKhs7)mjdeS~~GNNxFbrQ+3i%v!bC`jFMsB3iHq8c&T%wm_gPp+&wmc<@# zPV#>Za80XV^slC$~q;nFwwgs*_NRt(gdJ1<5=(g1GITZ1_p$w2tpw!wqXPpF7Hhp~#if zT^+0AS?m%J+-4u@s;x*f_w?3tS;GZjW`{6?nvTR`?1T$o(hfl@c0p?ozVT!iUJLfm zFw8n9x|-O=8LdaL=@)^LP@=RNY3Y%RKu9M_6Twqm82h(gYBiz6yI*Q#EbNLL=Z9f z69q1o2q#?aYEbGT#)jEDuXgz@=@yGUC%Le9{FOgxr)_#wf7b4pIf*5~%g-gU$IqoM z2}{8fjyAd%>?2QLu0!;eKg^}RuNa)1N4=IpWVa&~(|p+lF02-9o{vI@K#cm8-c>Nl z#!tbU+^7X8Je^)6Gn==-6*LpkVZ(zo|NbHu_H;b65Oq6W;hTjhZJlT+jJec>Rjtqhxvq8KBs9FJFo|Jr~$0wUN<8M=*{f+24t^P6V5u$2F=JE*51P;`&N*w;_G zj$%WWP;)f^LyKL#1WXE&`6pMquxkJ4Qo}RR*BcJ(UTQdCP3A}cnb;hBFCJKlSW-Ly zWEY-_fzhD${z+`76_lkwU+dL_LcK*@v19C}d9K4M*_!)74HB~Fua$}{)(6k* zLmsd~b%xEE4}hH3K=%>L345O`aJ^Z}Uo0Kz6H1}y19LD<{2gdT6po<=(}?P)c^(M&hh4!_HV{U&|Z zx_VdReHR? zo|4_j3BkcE^`aHP?l)nV&3MrjmbOUVu=U~t)Xwhym*FE}T4m?IT%kgh)`wl#D0c9> zu0~p(jYiXoST2q;paIm(t*^nF2I^7(BIr?@Ho%%ruEcE5*H`&^@C%=y3c2bHI4wZw zozRhQGly)nLfYIF8^K3wXmhVUMfLH)Hw_mgA?3oJ9j<`kGyz&G@rXm>6z=SVP+w z4J9$_m0$yxqaq4!Cfq^85p>*rK6M3aN`QRQ2G_ZCHU_5IrWY`Er&U?(8XUYHwj0Hu zQM=)JyWwwfjK93mwXecrx4pKD^7xvFmQYM=rm@zr|DhbQOFwC$o5I0swrrbs(xQFt zUNs4gN~Z{oVBzZE3U{y+$fs|m@z(Y#H!2DASw&a3Vl0f0Jl1^_8&_>b?Z%f>yHP@h zrVZm8x6|P3wOTh8RSXHqTDr!5`^goqG7!7&!8;Y{h8hfTF$$wXR?3Ma*0V$v25+=V z16CFUoFv+4ng(W7<(GcyIzf=`RRsa|{6nrDR-E4R#^Rx;AiG%*4j0wpTXwrX7IYgm zZc|;nPdrMCWXKQu(&eS?)JdG|GHY`xgWkRCEe=_{CaSCgji8Q-;x$28U4`oNE6`>a ze(O4w-e<8{Y}1oQZ5HslHrT{Aw%XmxMD3PE*%s3jhWGs7`kdZqm0`PTmwIs@oZ2;^R+kVM+T;#dFqOMdj`Hg(+^E!FI#6v% z-CDrXyqHls&xy)Y9Dm5^4x5nO_vbS3Uz9OOoCtc#-Kw@GMU3+kx?Vucs5593FC;X zpl@Pz5=%0{yfB?F4;!SF#fszHy$p-u(R>pEV!^aUqFW^WslEo&BA{kz_)obR7Wugm zMX>=J&Sjg)3%qom5Hj2U0}NISvFQDzZ~36C041 zj&sxYHp)#fSGjE)=MGzvwZ%3$V%PC>RAf`hK#5(jNIJjpVD}wWZ5LG-+y6G5=pDpH z3~(RJQbWBX_y+^rf5U6TL>SFRaZF$E#%}c#c4hZ=pUZ|_j2CuNC}(9Unv@j&ozQDXEvRFmf8YenFs!{*n{i zcyb{I?b+qmyF1jxQmGs^;+v63qts`&4^3i-M8|xY4l){$iD2A@LhpS*3BLYRRr(#+ zYd7oMEN)S5H$96U9Wg18vFC=`&}7Yxtk@)Y%Xn2SY}^Xu80v@3?*a*a%jr~89=)2z zeKaSza*VrCl_PFeGIs2axd|f=jVoUSo@GmJa^uC^(6wRw%}ErMLvKbsB#FhxVZbT_ z3uU>3_qm(VyBnZQo9(|DoqJJ;$Ihbw^joalCc}2!3D+yH3Lw5@8c}|3iMz218(rA) zK^DdtqfZx%F-KVhzvCvjr6HXyRFiz`#hS2?=-S8KLx+=$i|&0L1*ACs%gw0L8nPSD z&D5leOR(wpU?@jUQ@(cPzg^+>;P`enjkgj@BgkUo^2%$mN<)M#u%R4{M=(i4Wo!YB zGK6l$3Tz$v<{I~@*!C-IQx$8Y$`~&^n_Gr3Dq;(2H%*0X0rO3dy4L+Ub^>eDc4aDM z3z)CG`g-aDUVjR;B%4lP+9T<1G-Q$)dEVyS2T`>(YM95ta~!vM_(4>n;uzn36P5Jv zNAR2@37r2oTWMCRi-+CokAQqBiH?tgdXn9OVC4O!XY> zdtw_lHezFT1f8F%jhRFSi)7+#!sY*@5v&$aArJyNw)&sQp#;dkxszfr_9Ysk3Vn)! zErY!;xCXPGb^&_^j+YSvQ`-jeQOhX=!`9OnR%c)nVF*FM;AbfU={{e5kK0{~8T6Rg zo4JVwZn%if*xN3cn^>L1l9F^`I^Xx8``k*y+Nif^&?c>kRxM~sEyA=l!LTr$kABp> zufl3gYe-H-RQ|bwiu9}9hzD-xN@IbQD5X+35URFI&3zw*X=2rcu}z=5TM81zGI6)3 z=|Mhq7fMhnk>^qgd!NQz66<6xS=R3Z6j;8nFgAS^J+V*wNPA}*Te??!U?vKsZEL8F z3Q8&5X@dnoK?&z`(OZgjMnTEMFt)n{9++Xd%HFC)$dJ_L0CV|); zKjN{cld%bwW`DN*h$l;4BJcL58?&uf{%pvDO%s{Hbk7j>n=M(HIph~SLxdTUm5F@% zTW(CWPWctZn+LI#?L9%|qeWrc7Uh4h>R1+Y9im+DA6*|PrX)cDulyRTlUR~i1TE>L z9hGyEtvlRUfdUmn583sqRW{LvjwC)-Oxpw{Od*K8NXKIH`VZV#g95Kc3$FD*EhOF7 zY8=y}9Yn!&VDAMy9q@J>Pl?iLuEjrT? z-ia zaNZ=H#(MyjVFivDpBC|yVMOJ5JByozXwD_;()^+=+Xey053vgpCXUM=(A_0D>lHWI(!mf5k-P(C#V%c!@^_F*azGySotsVZu`2 zrbJ#QhysRoTE8Hd2YRYF;Kg1`<=LP}SkM9+^}Re;<2q!pr>Q1`O*C<~kh^@*}9q$QSwCyNA%pXprl(b>TC8n2#M7suPE9Vc?+^7XWgnl7Ck?qornQ0SIS8j8j>#?g)Vj9xs_FRQ(S&+=%AL_wyr`-&MpYjrf3=hW7K}9T788(bc41BQL0?X&I zz8<4Pj%H~eJuRn$Qxh&8Q?P0w1k-vtm|@IffU0>3-Q_d!hPnKBDn2m8a&$TogG;on zBg58S78=aJ&Y_dBA43=fw^p4fWQC#Hlc~=Ew_Y`ro3Lc4fLluum5WZ%WtC1xlPTG{ zVp$BjQ6hAa^4RMlfyR~s3R8-~0bBNL#w?HM0IZfHVqL|z=W#3hz#w&`wi{*;t|Zz)qtttVn`m4GnxX^w>~bP^nm+w%^VeiCb8$q3_voC&A8$kN(7*( zCYGfwQ3Ol#1k+_th(Oo^O8Nxh=}{1K;NlByK#{3qall)Fn#ts zMZK5G-{fvM2kxyU_1~IL%=^EBD)ahk4-WGrFxn-8vV@Xp^q=Y~hUZq(qtL(&9|^~b z`WjS$;uvqcm^#@tuX#FKvarSgeYd!9VZa7Y*E|t>F0(gyoCgx%Q*WaV`1TjjfP^#F zU`R*zyn%LTGA$6`+wY(b8392X%wgHrtP3ez>L-^jzj_;WA*EsIB*C z_o~5_CaBc!qrB^IO-CYvwVgSmy%X7LfXxC)OS0huU;2b1sGP9c`x?xO>2!RGSdIG-j^on&s3291OYdWB<0?E_oqIjK zYccvXpgMvg*lavuFGfTbpo%Wak47Bze8L)P%wK*&PgGKqUI;bGYTBptR5c)NamA7NPbj7i`_H~lhL5nWJR<+5DOOr`0E>}yub{t zk+KuK3@^YdR8;GbjZ|U__KTOqB-_3k(M;wr>n!fi1g9>{UG43FH$VxZMq$=C$HwnP z=U_unaR`a?Ia`RDqr%%%iS2A-H_&j3EQ*^m@2c=RjATQD?X2*&<|pz`wkkfIL_YaA z8(Hmb$xq}bY$rNv8@w1d;qeh?O9NhPCd}bEg7wl#Y$wfvU7Ecur9l4cr^K?gt9F<&u3rp0#kWbCqYULW=EA1f ztp>6V6P3OicEPo^1jc)Qr>V-EO*V!)sJ4_+|ML&T^y?TRmC4}Dqo7)wPKvGAVy5pZ zDr*hZNhryl55TBSuBK!;&-d=H)VC}>%!@WCO_E2lbd_C9haJJ(hkMZ$O$kL=x#ny3nw&gIZbFM6C)`gnUwCoHU$g-u6#(Kt(6c%<5k&Iimf6^k2B74a0NII&Pi zx4wdSQw^q_^00LvZb?SBK)Zob*xkIhy;n1rdKTu=u(*msGB+g@b0LvX%uQ4=*SVb7 zSuw|4sc_ChU73*7O*G%czq%^wjkUR0Je5l;@)$T96QCg9+X~jD1t`irWCbvTfZ?{d zroL@2#lJUpPm)y&eQDY#_-2cMVz11j+*>T5@?2*zwONtZo?F-}6JU>ltac#Z#C9i< zA2{0EiS0PX+nz2m##<@%XjQmbhMoTsZXkT)7!$&-ytOknt_8Hf}+%< zj15h(T(M#yNSc_T$@VS;$-;EL<1{ap&_J=XHB-q`X38eq0-i-whmWTc1WP(jfyFzJ zY^qD+Eu0=T;<%H+vx6znMhT?Z4f9dkwIX&rK#?uK0yFh@pF;%+mdz4}H<+^*cz>}2 zYa!a4&?LmP2#y%WlPeYtVX^L9Rgi+Ea>uR=mdc%c<%`dwo^|7W)Fq{GW1T3?+GsLO zLtF7k9d`#+T?49?@Ze<6KZ5oLPV^#e zAa#U9a0Q+qWu_~Q-WVsmIftH;f|kSuEn%@@sX@y`v_(P7Ot)Cf{Fxq$AV#mv+ zyHTg{ zFOJq+v`TwIpjP6mv=dgP=WZc>onG)dQQdK?9noWt-tVogO3`M6w|(cbRWFFvV+FCe zkMns+_UjAYK6!cy;@{li#k$b?H@yy==n z&?;1_SxvN7d=I5$luo=8EhynjIC%Pr{q&=MK%k0%OMgJ13e)+>7paqM{u0C_s)&(E zIhnKUOAs?Lon8B%QC@}VeAU0Hn;fuTJE@pSCui-~epu6ag5M z+G+-3XodzvUI4-i=MPl9^OO0d8#OKT)v#yKB6}4}@KqQ=%fz%n&_W9{RE%W);bz53 z`DZvUoB%21gf*F;_%=8#?&|BxM(+2v!xtfOmO>E2^c&W##7W8ry8623!ehtt#tJeS8j!fV?wX3gpxynw| zWl(q01vXLpg-V6uIrdP0U!U?s`Iw(6Ks#c-rt%b+EADG8Pn5ro22sl%I1;sMPt4aI zSC8aa{};TC@&<7njm6hp@5b}>isSMnWGqP{f)VK2<4^@{7V6};8KP|ONuC}&T;s!F z>5xC7k&u)N`Pi@dvBn738M#ivhK!s3fN;itM^xtD_aro-vMdXCZf@hlNNfCPMao}R z9?M26j=$@@$fLHs594SfwC!pz-bFOcdWzj#aqPMhvvV_#L+=Cktx_t$LMo{PY?V-j z1PQjO88_jL>}CyeJHN=WWW`nai^&`j>2k!A%!qV5@9)b?w^sGA2D@G0_w^!J>NKKV zem;>#6>yvaPoiI^dMq#N$Al$q+!v!@gxX=^D#!v)Q;=ItOobPid{4X7rNZ0nCHn`c zzoa5w-4NG$wr;eqUEudMA{ZVaxP8hoF5dD!^s2Zvm1!LzZ7tjSi2;h{Pvg+TV)G{^ zN2%tjkkAJbDcEyFh-eqdAJs0{~%9Q0(<39AUh-5PkYGQU~@3Hs~ z7ueuCDO0cvv0lV5ry63ir03Y7k zK)Wj&Ki}7`3j6oj*T?#tb!oa!3oS&9lfk}w2^`hOT^!<{4OVrhn-Hjh?PNlP0Y}jB zI1-=xMhxonVVybR;3)<2mniq&kvFAs)o45u;cBS_|fQa2WHbmxDZpqWY`I8d*z0*3|pJ|qa60{Sj+k%eGw zg6gJda!+LOk24MGri|Ty;BSKY214iPAYhUMyK8k2YBNdf#KE_{Xz@veAy1%A3M6D0 z^1v#9Y*!y|J)b^RM?uO^6xxVy36RXPuy=?oa}zag=BE4;OoYG$O;urj+jJuWrifi% zM8E{|^heB~0DSf+Jsz^OFI@)!m#8CmQ41#Djar@uy6Ao2w2q(F}SwiGl#zOC=SbBKpadV83)6{&KI$h`s!IGmh~n_;M?XS;ld=&;4tb@7WB+CM?3F>t~B7 z7#m*mHCNFo=+`gwsaxPhHlCC4nWW3M`s&Gw7Enx7CabslJT_QGgWMEZ9Df@{W6w6} zYzZsT?b1~Z=UaK{4vNV2ANsJtgFYLw=U88(=p<`#Sw60clIQl?ZSgsAL$3v{lduRz zA3Ib{5R3g6Yd>A@p)fc;MdKjr;?bwNNM&BUk0KPVYK==5g^^vK`XUxh3nI*4@pl!1 zW>Z^6(eMuZ`_^3Bz_+sW29B+++GI1g`>s0}#RWQWl;CULuKjA{Zl%GyD? z`vmQa&Nk#$DEba*pQ>b?>KfUuwZ5V3@~sGsG+;Id!#b(}RtSZ4vof33|MrApZ}?Ye z0rU<3idkrQ%7+E96?@=A21om2EVdd$K1{{qc5nKy&?$S-9heAu0(=_|yMXT63$umk zeAF5rCUU1#_%TJb9Sul|blL8s4N{~k`@&bgMIT^d+H8mKz_&1+uU_ZFltY_%<(^0ez!kLOGEe`TmKBB6;x(VSE5~d5JE^nWk z)Z)ibR>OAd54ZR+o-GdYo_q*{iL0t7_R{jiTZBY3IeSe}PJ~`o!n5u2$hZfN7 zJ%2p*tG4{+!#ZNuv>zXNCF>U7gmvs#rjJ|RW)o2KWcJ(B{{E(Jp7~oU{a9P#mMcWW~u-PfO4?V0OsZx0?x5{7s0xzYXkY(gdcN!zfAVKg*N%7vX{oiDD~M( z5fy2{;=D5d+odS-5+ILe{Ft}ff1cl^&D-*41E!)t$nOHf{Jxxje|4uthpEe@Cia~C z!3MVc2ww|(^HBc|3W=*Kg;$K{hxzfOrjPHc>lqLWS4}EqVAvBz7_Ljd2zeQ)Sa3(L zCvHdRGRTjyI%427w8r{r-x+Z6Z5q(Wx1T8|q-$&7-Cw6#tj#&XkGB(0c37-wE%5DY zNw?_zIM|Q(5mC^YL=5NHh!^(HU{X$8W^m=zXf+zZKB^3k6RFZQ74VH}9KcwGzWk`+ z#A?c)X_z9+2~uPZml_OaqD+;Zpr!1I;xyAud(Vs_Ugup$!z#m`_TsVY&}?rSb`f>^S!n6s&Aa>OO{bd2-WTw+TqAU}qm}ZY5Ufb^SJG7!? z1_5zAs`X~nR;4PLNt4rVMnyH#EhhJlC2HI6Mm;iou`0UmL6>X+ESeK1D1MkcjAF}P zPSr+SrGw=Raq|l(y0H;OK_Ey_jtKU#>cA-a=auU*0DXF*V(3zOk{{qXbMg8NelD#k z{gfs_u&))cm~5G%7}5qEa>c3#e*Mg3i`KHK#BSyTDDqSeoARmfs-oC)weAt@dO3|# zm!^R_04ds#HRVB=)5%i4cetMKxrk^T^DLT~(js1@#l&{3+aJMWN9vJxhPfS&;DM@> zO>+}2BTB>8plX@swAO+()TI_td*^b+37bFAgQ3fy?gQ7z#?Y0D@dJ3Fp&1Z%g%K1Z zT74}lMmlf2hI&xYLOT;maNe*dMhoEOHWZ1NVGzXn6-npU|AqQY5JN*V3~D9tLPN_> ze(HKZM#Z~dL@aQ}Z3;KI4)Zt2k4eOHn9NhB^1!Soa~~P3W{>^TUtr85 zFg5MiKtA#&MYl(RrBO%t>*e*{WJ#XWYxgq9OIrlnY_Sn9BLXEr{`}1<4E04bvay@L z#_umGWy_Ce7gLx{c^_fQ;JsKh)&}WuB8^Q~E0Z{6vtbjpR|Ay>2#w$z*fBd0nWC!V z@{U{Yq#C~ZKd1`A05O(+N(1ur>dX%i5^2N?iIKzF4-gU)v^XbnXuF&${hBSP8#)KO zi@$B5#!T*;#UaQE{n__W?MDQhRXE$v)(!KkZ;m8!yR$JTjtIE0Y*h?DdIuh%1|l<- znhCz{L8=%a@5HqQF&xb{^CuCuJnS9Jz})F7WsQwFnLiMM2dog-YRUk>r^hOovSyWJYC06`JZSWNplQ-4F z9ve9ni-B#PR@I_MfwWmeD0kzE7euL{sHi=E)D?eGvAp~*Tcs*ZA$zj|%KT##$3jvh zmS=R&8mdX_f23IqoCIfkHsL=y5xHm~8qp)Q0UCCwba_BAn_{bfqKT3GWFGw&Rh=bm z12n0COTXEim(fp(Z1t~DOqeB2g;(~PE z_$t*CB87_!@X2|$cN2{*>7rqEP7=h>I~WkoH4=o+s)LwC#YpE9-&D-dBajji!xs%O zpS*Awb|4E@GABXVFeg|Qrt^2-QmoMY4Rc0b45ZNV^OO0=cZkzL-2+Z6Y2#P}QNl?q z9HbWC%%GCO^#ulkQ;j(MjBTrZ>tU@RnJ?R+i%Kd9M#7xfvU*BG01ce12||XoyBY$K z!erj{LtRRyHSK~ZrNVT6-N(e}!G0*)Yyvlv%2L8j6S$K?j=3Bjl#+((B$Q)IA}DrK zg|5QD`xH&r|Mv@Oq8l_dCv!q*0j^0D9u44#s zFEBYggmCCoi_*q#s8xYlb8QY+5MZz_YG5)Iqm?SLVtM1iC@>SNlURbt^|2}$0PnJo zitLI*(YmCXBqvRZgK{9}GE^ly0VarD-(motv!4nM6Si4k>qetumjLt1kvf|EEnlfcnJVntm!7LuZ3ZZqU!BQh0L`193s$6j1&NftaLU0_0D7G<_*z z@lR$TM&=>_rhq*I5r7gPZwcrCln`O(PeS>W0Qs_zjzA_xy^tA!bPS&{KuG9Xa1jAh zKsqP|QZfQ1K)xqpL;$m~*)*H|vcHF2T|8DP0;L2f03|R!A#U(5AtC6O!1z1K04A~5 zPeX5;OJnYb$g4Z~Q`jji&bmK(WuPb9d48asDWd#`2pxJ~b3WYD>Nbpr{}8}r-jdnM zL>0tD1lq_?j6i$SC(dN$q6&8OK!0!c`Go;Yo+%ldB^I3#!2DEE=(YiYH`$7#J++l@ zeImX>$5spsyv6RkCeTATUP5i>H38oNaNg@M3eG_{P@qoH&m$W0W8dQ zT&f+l>5W{fouPD#-fgD_uplQ0Ch>KwxFCpc1Y)}D>v^~sPtY@wIzl3NNf-1A)A_q+ zP=N_@5|w@^Et6akP>?H3=R?n-QWMk)Q6{Jrrt{|~Q7`q--_XscqqtXuU3FqW-EEAy zJe*OMk14^=6p&X3OM$c`Spwu;r&BN0@eUfBA_J;`>h5wQ-xfKqtX&>Vw<7-5XHD=s2x} zm2tok`sCv}4DpI%{Et@!u+H?#3jwc`m@q@rCgU5unB}`;W5A<~6Kpqr`-=grvQfqb z7=Lz70E6NMhlRB7l1tWCxbZNrs;EIW|=3F3A%+8qfmVQYi+<~5s>al zfrQ{*3gmO<8swEoY(zlaXRR_2V^ZQ@i*Krs3nXFBfdXJrw}Jed`9=gviHH!Cw9Y3j zq!>K&E=nMVW?_v1-U+DNTG@gaOx}tZm;%xXDG+5Vw+14mK>p0F6ob**170O!#z18t z4(cEVB?WeE3`8x;w#<3!5{kh1oti*_{nIuhfYNs}y2^LHd@1q&be!Rzt86ZA3py@ zuV=b;sH~s)5yXpX3iB5{5Wo`So_*SPlb$qy4?TW~)}xJEvK9tDdnkZcu%o}Fhhj95 z7Tnc+_H-2#eSV6q_!Q<-8kWJw=dtiD2h93|e^FKOt)~G`1n{Q$`44EGLf>Rh`V8No z670Royy?AR{#o!Zsw&Js^;7_FoezGAnkoG&GywV$3uxgcEX1Bs{9V|ojraKX-$f6K z?l{4IdpB?{+xIO-Z5p86$cYGE<3JiO_=dcZ%r99-9X!~g3ny^8JJ=iF0m8yt$TfsY z*=wd7N(>A!6KIGV$^5GqsY54fg&>uw%Ac~(I+OlQPq6no1sj;_zkxP2`0O9PPqO3P z0Iu3e;fgjaLQQ7ZcMdk@!}O3&i0k?~2ZQ+_zDyivD?Y}W#v2=`G%xRFH?VLsjStAa zSdcmz9$8HgtnCl&9t`D!rv1U2s5sYq?f%;gbn@99B+xYQ{AMam1i*=p1}9QD(m>>K zdsqf{owDg`1C!Vdo$X+q1o7SZ&cS|GEqda_<$OuQdy2Qq5TI-gvtq^stbJIiK#tN~ zkz^||R3EW6(6e1s+*FON%rQC7wXr$q z!6yz4yrYTJY?q{33g#pJOVt>~jA1GXu~DA~>aAIbxi2vGqF+&PUJk_DqHIU`zdxtC zjdI3r&=Lj^fJiBj5BiGg`ME7{5MLHVS4%PIpg5**whB|3^g=m4gD991h8IEt+df<2 zV=0ug?iPgju#G8`m&w+CRFH-NJIFizL~(d% zDC+wGjeI>6mHt2y{Q93&L~!!q$Y2|MJRpk=ewM0%v*6;>M3Y&sRy5x{Ar(6kLhQ!3 zqLJoFD9@!tl<%kv%IHW__*xpKmY7<0FIc5|}F`33~43>(555VA5m>kppGzxXOguwOVg8lI+14G-$ zU1+Cys0#(+i{pdXB1Ix-{oPelp$yoBiJ16aeR|NVOb~82!B(9RjGD@JkT2~{0XX<9 zRCVbC88D(K8C-RicCgSo@6}U900UUs=x(hPnP^-tV1U2J0vk;UFb)W9nu6-EVqCCo zwboZol71wc;?o=|2-t}rWGsFt8Cuskt2BxjV1!#jmw)0`LBK{TqEN*AECitx$S3$z z44k$2XmKnZw+8_$72;w4^C&zTECQM(E~vso|AujRK$L_zZ&g8X8A6t#qH`+c_xuG*p@T}3pstA#M`Pp5cH`3rUMnH-)OmX0D5$A0%YpWsgP zUf0qyMB_%K0FDW}UNcc?HD*u{Sd#yip-^`8n&BY z@7;h3VJh2Ee(}K+gjZ*wS!)A!|2oY!{Il|x{;|D>1YfqCESxahaSi{&fMBkIbvfC6 z2H!O>=&PdexY4g*@%H>tLE7+wZR0pbbpf6$hz#{<3aXP(jP;(02THOaosT?Hg##Nt zNU7@yK@1+GJux$jNO+YZVcH;q5H(edWd71oioL6tQs>#)3#&1H*wMPsank|z4-ze0 z$DL+V*9NArrfX3fOrRD3F2H9G+!Bmc8Pat!F~@H`Ru`~Tp`37MAv!#9U-32;^b0NF zfzpy?YRYSColhh_V{Q+6w2qPe(%V(`Rzv)TlZnbN%TPeL?j$3aV7(3hiOJLlmZNwy zfYYHl@tMVg9z$TV1?ha}I3ly;Z|K4WNLkfNB_>`>r#z10k&4m{W$@g4Q9N43$cLYF z2GRNaABblWrT$N9FRaG+n`bFb=%=$-Qk1n0*MugF(F|yzlhznE*%6jv;1$J5SDOY8 zofpK;ZjeHkEL147DyS@ObPi!)bo}RtpvXEtRN;!#GUENx@b`#=)pa%bP$jvI$9-S?B}(?n4xTk_@`H@!o%G*rPM(h zTbW9r{PfvWkj-ynP`Bq5JT#LroQI+q$P3D`XG6{Tzw&mlSDuJs3K5#~U;hf8X!yD3Sw-+lffQsWGFCT#hm{T_RDJ&Wrf)+u(@0DShwlgaNd6|MdI=| zg638h!xMg=ioBX5GE?39ntNK*Lpj?}e* zPc2f+y+RokPu-c1OP9#DXtMJ@MU#~VNWf-*n8&oP4dR#FN~GKGM%yi=Jz}@^t-v(@ z=5|FKeJKuXNcUC2M=?)2{_Wrm#gWcif-wuC+=32{u<)bqR-CcBOqivdEoOgxH#o64 za^2Qo+=AH6uDw^WbysVvHVFo@{Yzl{p!3C>Q(2KPn@sw1}9QR*}gXL=j6LGZ6 z0!!Nx&avIU;;m-(M|fMoETb}Dli)W!7R1uP(chvDlYmK@Ot2LnHVQLi>P3))+**q=CgkSw6#p2-hAxx1cu@_rZdD#}}o5Z^= za!+QTwGUyATcgSqTpvLxG)ju5j1$|E>;V{pY<-Av~cVBf7M9vP*;YxV+l~ zkw8;dsOr@SCF>7$4q=kc0NZL+Cd`jp7sN^s!hrs|xIO}armnDj^{p=iu^3?{ih>5MC+_2%otlD9hdJsn|hR>Fs(K zg9~907o&h@HnSIEtyPRC}EK&iP<{ID2EG+#H~LQ*-S7pA&f5wN)jP- z###k~h$!3G?62qRKB8&~N?6z-gOnS_0K%Yn(|Nc#gkD%<+9Fut<-t%f4QBpJ6%nl5 z#k4@n@Pl$P)gIp+#8IhNhlRW-pi~Uc4^aih71H7}L01g7Ll~;z#y?!XFl|sMiu>2> zD&nI)ZN3R&-oDonAwQ-zaVcllnh@^lryHa3eW0V*Z=+C-A~S(#gI^sHisdT^d$Ya^ zVxs=4<3&IWgIaCs5DJKqEb|d+`+hK~<*-3Ylv;zj_BNb>L*CB*uDipcTkfAuJ zSj#LHCc}fN?6FQIjF5oM2ty#ER&^W7f9o8=N)>8>;bWlzghBgQfbyB$LRhQ1d?F0s zW>XxjutXt-gCDrsU~AwU)_0OkKsg}<@QI{TQAf414dWYoQ4C%g8wyAXO9Z6(IUmv2 zv8EsbGJlJU%KXxCp}47RH$TKd{3Fw}cZKTC(+%$mF#du|vG?Px76ae9A;vS`!W~JOld>w+`ou*I4A);_7ghmhcekEg}FEj8wCh7a60~Qwrjw|oS zp&`f&2+Ygiu2yOX;IAAk)CYaT!6N#-`-QN+apgpGK6sDDrdDeN=rcZS`r|HD{HA~r z0usPgb`*jVAU``9!fVB=V^O|Rgq$#%fXv_)qXL)$_6$S_N`U;sOb7$)=rqm18UpE{ z2tg_R(+>)DsqV1IsgB7_zORApJ+AdQ{_>%rzv1ic*T61bx^Y)AMaH-xAAOj()O_1D zsCXu<+)khy#kQwE|s zdo9Ld258Ub*IPoZC6z@c#~&HOD%j5JF&ryy;wq**)wm^pVPf+Tswdm;#Df$ofY>H9Xnj0xfR8d@$| zy*PLVLVgoMUIgWcPk-$H(mK@y$b)Cso~jDdV+dR|E`(Vu5)envI^KPNavwTh~eB< zz)+%;Gpd9zi%FotZ0%~aQ%k)T%o#mlpP`3)5PLpFyz zek{I6a|et(J|i=AbMs{O#paMNT#k5(?r>bND-0=rQ8HzTHAHRqqx#wNHuN9YI^FPHKMRAO8W-3zd zFs|#tQP%^8Du!=gsO#epEpJP?DhUc#|FU!7k-I{eu|~K&zM@%JDjr;t2ka0(U$6{m zx_=Jwj0Vb*n_(g!ri}2YD62}N9{h1pB0va06MC<&G;G9i4Y{2SEi5&{Tw z>wzrr>J?OXmwijqMaA<#Fs1h;1o$`WLUv@%#eFmgzO^WtSCqyudB0Tew z5jetQi$dya6Ie5pUwGQkA?!CGyHSctQH1|vy$XWxl#JRniF9$z#0KIx%op}xS_m7d z*^S49G0sfkrc`Y7rLoE{zOc`N(IO_W7`rPLrl}-DhZaLI)E<`gU8v&8gS%-zAMU;fu=65jGT->TXC8MV1Z%2gt zm(sjrD~&b<$y_3iGZ#b>16?c=i7y%piY9^&WW~g{&_OX)ou?q~zx!dA!LTMvdaUbj z^nxJN=oI*1!4T^R3epydpG8IbAWY8qSg|XjMcj&O{qIv^w*QbYt^eYkPL^IAn zTu=GhHh zHc@rSI`%H&ZTGR!Cl-|$>0HHBlu`2 zYF4Zqv%-`A^j0;^6Zm~k$U3TBv~26gIl@@uS~DAMWcG#OHdVMyfz3N6tnTwqr86}9 zDE6G5Hz(X|mr(%~GWgW*jBre=t8fBh6}>#&`D6YtR#e(wf(RjpyrH3`Ldp!qXzU2~ z^`BIZ<>~CWBpmnru65~8-*6ZUGUs2bXqT74xS8Qtxfwjvs^aRdP2j^tnAWGLs<7m+ z+JcRFlNe%(9djnGA_|=L<#kyQ#)i2PDE}cA#=6_8g<(%n${Zl7!XU$p){zucPpCYF zBwO&;aQ||J`HWN;OLvH=yId94c~Ll0t}y>!CXAI!R8=fer0JX^HTqiFkFk|^gh#VB zgYbSobxu)%U3Z1MGsgmS2wK{_k)jiw_E4Mv?XVNw#Ej##SoQ zq*n(~S$!_yS7~_$Cwj1@f5q^)9K-yr!&F4QziWBI-LULjgf6@+%f}x{u{`gNFm|(L ztlcM`UAP!nt~WTAgaaB@!4fcTj(PySC(d~(T^q<(978qp+=s(HuMjC65V|yK)O0L; zFTE=q^ugKzMI*SoYQQ7mSm5`qLX`I#NzrrP9rl-HdF^9(VJOe?!^f)V(F|QKhvR$y zq``C)*RrZLbcD`l!RjQIqPWHIK|!TrB=a_>sEGL`IOo|gre%daRlV-IOB=L-h)29o zhyVFB#oh4GrUa_W3u`j39v{XUT=P@mP*s{P=_XRCY?gL4h$}1Jup+ntjgSOu=HaB4 zH&XfdbHZ3}d-<7gSYVV7ZY0AsFz$gZN3oNi4F`3)p~IFx8%`CZ^6ituSXz5;wem`M zY~&qSqw=<<@>9`|-6wT>Og*H3gLft`%0RsdsI%gLNqZCfFC7!ZE9s0r011 z5TWQx;Si3)!zATcE47$7>G+%tGW6K=x59D5p!8Da#8a0NuZOmnj#y!K3(`l=B(tg%b{>oQR?xDfW6&>)iSFVN zE1r{B+a2hyH6*Xd!K)SuDQ;1bH}Qy1^<26jd>C;GNiA|iqT(w-;A8=`ITTSsnKKoH zx$piO#cH+K`iDQPu${mAAoN;(Ta`)4hNF;7J zKzNd<$1Tb>kT*W4xT6`8I(cV=R+tz2bH?tcW@_Lz3k=*7%Dk1D$eS;EM3Fb#FAxEH zw9BHVdHo7{D;eu)aj=p5!nHWqlEIstjsT8+=5WeVmi`0vg;K&%C6#8UdRzMD+p$UT zi#fgKwF|U3t#ahD_)vhb#0IrRZRp?F;>wq?*T(%2GIS(ttrSs*5HtGYdl2`{U7XcmPQ5Q}&z^ZcXrDh&SWToQLg z=^$jHY4II3@zm|?Z9z9u6d&VlK{GZW`EdwRWz$o5g+1|2dWA*p2uK+n0K>d^Z2cNX z0HVT3fxyl{OUl&ExBu>2^kRzopxoE&mHhGcGrJ4QF*m4n@Vaqqsy9Q{Q;x-8mE$&5lV;G12zi4x)ebFfpzuC2yl z0L;jp)Z!5LP7hd)lgtKb3s{HSt}(BX(4>oCyyurx=?%(C;`uQxy{k!^#je57>s=KP z3tB5}p*EzBkO)3=g<{3dZmnUY^Q-nLc6fyY$|{Dp;6#zsk_XUGm_ZY3qcEJ57>K@Y z+R&ETA|S8$RnhYmK^e-iZzFTiTvS+Pa>5aK&m1tOB_vIX`evBCVGMNz zl#{5crp3$Jx1g#<&ecxZ)H;nt(G^qsrDF@)Cb;=4=?J&C#er|e#BsMJuG+j05AbJC zYN5UB5^AHMEHO(M3jeRY^Nx?I==wOjganWl=@3XGfh`H!cLO3sK|!R7AXs2`vjL(~ zrI%2o3DRLGQes1;2r91F!N-E-5gxlflvuE!AnId9e19`@?(R;QnEd^I^bgFrXTImm zIWu?e-FxTG#EwS$HnpH%BB~s&bLOCP8OFrYMTjX^7~`rK#t@VH;=|FSEiCAdh)7gT zMG%imgA8g-E!BoKoMTDmD`ucSI#1xXOzfP1DQ8%-PX5Zth+xF2P)aU#E=#$2koJlt zIezQt56_rBkIewd@1rE zgR0C3QX*>`FOXp5KnF|xWY)D5-2*G6;JFk}iqvDijz{jC_%uq0!?gZJpu^U$MZq14ZC$0@RISa9;qC{C=zbtqm!wu>ymEUPS@1YJcJ z``o;XUsw=}fxA!)>|TSBJZ`+A0gsP&c98^6froF$fh5RH1Nc|Db55m~Fp-0}mLhQD zCqE`_i5yg>T-e3(Y@Kz!ZEIvKsS&0%M z+F9}Q0}DQ4)_NIM5L&q(=SN&E{c|`FbodQC@}*CqAIKu{ejvtV9>>IME1FmRLF2(rkUXrB+RtX6O209$M)umiA_NH8jcGDW19>e#PQVJf0$t zd!mm`HlkEb8epHp7LOM6PUCTwe#3`GY+~;e?Z>~o#!ElG0+Qo2AK7D?WUj&UiJ7PQ zco{n^0kN#mjyZfdx1Hg`xzJzu%z{TO+@M(Vs9!lB#$y`8py@0h!DELL3|jBxgZJg< zVm0IjQ)E3{tnKIg;-cerFXUr3k1PqBXW@zULl$fThwpIxa!U#xSzLn-0}WpYXx3@; zh>C>Rk)q*pBQ&XZ?h<{ITg3W5J=p;S9oJyxA7PPgEXUX*3?=}=;ObRIXmNcEYx6le zv=(c+)`+Z@9}5Kp*k9uzo;^1km*gp%V}WuD z{3L8D*Kn5x$rCGntx^s0kR<*0m2Cs(%@brbe~-x`ZMRz~G{vsTW}Dzo67WZzoW z95(l`r7>$T!BU&*7r<7ZVtbq6F5JO}66UkX9Fc`ymV7PyAln zn#)Vj%K1KN8n42;v-IzDZC^=xZS zmMBtrGGR^5>wLk9R90P>PwTAfLMp3OG@A7)Pvx;(YrEs=!$aoZ}4EVwIy>wjRuW9;ubSv%Bp;!QIyE-h%3E5O{ggS&C*yti|L zk_E5aGdg&SrAf5(xCNhLZM)oR5hZZVXqsSI?4Z-JYl2d>JhQ9S z7vm~eHh*ft%Zh`AR4r~u`^2SIEUt$Sh*@Si zqTM`L(O_jhyaT~ArEdmXJqd(yJo>?D3*J#=Tx;z>+DC_3u{MmL9)Izm zZV98MJ@~PB@K;L<=ICs#m5h55zMQX^&xy!#@fb}h!0$d#Ks1}Xq7vWfV(y=qf*DP= zqLVfniGIlWeRZs@q!zO}uVUL1kH<`YHxgY_EiG(ys%u5Jw3JX~xvdz3_>5}AeF*Bg zdRFwuzO&KVm|ThbJKi6$D7BLvy%9?eEFF(#iyg<)BqzQY_Og%1BVVz@qWH=X))`1| zf_T=?LuZu6WHt#Bj~`Z6qC7Say)h2OP2Ss_ht+aHtb&To@1__P;fLc?PAdw_f)#;W ztl_V?vy+RN2QW!h+>#@-_E^``P}4f*Q1eAe5uhhQnZSy>^F^65POBMfv6P>|&=NN; zZqE^BOs85#pneS{%+}4JSS>~gl|{6;1xA%C`V{ot?PE=en=H)xM^m;=!CW?cxk_v1 z%vgrzjOl8V&dFY1hBRJ$JbEJEidWaX$)rUjxkVDE*s9)G97Z%|Tobn^T2rHlhFn$* zE}}IxYIbb3Q4j7ZW-t1M$BLgvK<8J=L--DtD@@wVR1;=xfVj0}8DZ*dI?@+f~=o zTf439>U)}eg%!W}knEf!2meGkb+EOCOmzXSu9)*FJ`qN$JJdAPGS5=&;Cc4yRndR< zvf?=ma@sx{Y@pJNk|(hg4|3Wehu5U4;@ITiDXX`7MWaLdSnq|5yXw>; zdb}U?)*P%Rf+hHa`RL1HfWR)Sa$H6BFhjyn%FzQ#4~y=w`s0c?C5G3*L#%ixfb8YU zB84t1?NY&6J}`?hmM5&T0z5-;T?P9mhFS59fafG$B%yAv?>6ej9amtBZ|1!w<85mO z>;HtcR+5`z`=<`Lq>kNAt_o%!8 zuYzJ)Ji8q6jx{^Me>_2kgWc~~9e-CKdi5yYFHXOw#Bs5m=U$_VUZjftyM#ACGJ&V4 z9=tyN>uqaVvIh&Z8}au(#;-gvU5eDX*`{OsqI1#lsBZ#~{F;-v&yd;`D{+rU7LBki z(ivC93?f+H#fPIWOrj8}f-3V_tP+XGqgPGkQ8oGoeZ!9@fb85-Ya2{f;;$0ryyecn zqJI9E4zqr^&dcul755$&ACK-S|PfQ+Nf<9K4EeP*o zS7LSctJd(d60L^k-VUt2Le1vGPRO)F8zSsb)6n2~AlC$Vc;1VSMz?OFCTlNrvcW*e z-PsUUd-5W)Otuh~M{_*dek(PZQ8$&kKs87_8r`#+rz?CH=oc6KL}%jikW-!F zcwX4f=B-}Q=(e3aInU(Ua;gWgyIa~k)him!-D4yX>nHkI`5|jd%Ap7QrqQm@Jcltg zrBJ8?B84#(t%nbl+#P!Be%||e4zpm~=}|B7i8ev+RIPGtfuuQ(MO-L;_0dAiar;1mM(wLN?V@z0$9sx-y(c;D>`CKOId_AAI~~O zM~vwxjhr;?#ezr8UW%oWm#Oe+QDPc7QuYoOi56+Bx-j=G(pYs-S(R-TAL?qvXF5bUi`JrxACFHP$z64fd{uG`8Gbj7|H}z zycl18glDpq)0Uef3RT`A@k@fgXczZT8C`K!SFik;Yi*wFK-FcLs7~{Dc{c6+Z0&NZ z!SMQAC`7NUuKBI+Q#x~N`mxL!@04_I2k;7=b|B*E9Xl+_M?d@3ipf4phuZMg z6P5yO-*TMo0~p;JtQC!pLGJ2ukhT;JK2lw1(kNrShYw_;XLT8S;A zqCQrSGdE#ismT3!!HS7IhsW7+ldy_}k9F&16PwxdNA%*?&CKz(4sjLM+~zB2y4f4! zZQl4{JoCg*C#H{%Nw#5pnsEnGAq?`s__p-ipt!lOGs$L&t6~O^kF<5 zKN`lTOdcK~CWk1bp^LuX*oOX&An~XaC9oryY(Cf(OSvOP{*1}c7#tHpUVJ<{ytxg% zR)l!5mK~phhP(K9^i)e*nwedA%T|}2U2aP^O<;xTwgKj`lh~2zHguNuHV=Dyg{_`> z@FbRbwY?*oGc>m@+xn&rU+b*2^W{MwgNyjTr9@;iZOdd+f%*0Hh&6C)gCnmA7Ub&u>HvHgTl(?>ao)mUZ zVh2~-rkP&j5j18e`(!p?+rMv?#bwKE;}RUjYL|I;EQ^0vf$Yg_)refLDU;RPU>m?5?qC~Z?lPHWcDH)XohGw` z18mlK^P2}x#y)kH-YFjL{JP1a6PWu?X6079g`K=EtB&jp059$gH?zLIYz>mIkqhST zb;64qw0}0+#B42u0;{(Aaout7=6A#o%krxp&u(m1T%z_RK7+mIU43a01{pCQRnW+03TVJ+ylI;?#WXfwG-E7NbK5Dr z5p8VT@U*(of{nK1)JE$fwdC{KS!+?NPE%x?_TyFbPl;}L#Aa$}?mdO29_Y|DWfUDP zKVU0uV7^ft?ZEnl)0!pE6)JYrfzv6YuuX;uuVc8|5&ZAA^7y!6X>DR-!ZqfNne1q< zjN4eqZOf3=TWnPCb#(aqsVZgMa@iF2=j*ly%==|cl6Q!MF?Y#q`U+d7X=}`96Vdlf zi?xm)%Vc8*q;+9OHl*3i-%erQd+k@&{CbLs75-H(Yt6}=X694yeYxEl#aQ=QV^eMB z>|~4*a|XAm%^W?lo25L%t59ny@AfTO;itCtX7g0u_uHqIoS9;(F=e{05QkKawtgJ@|mwBL!BB|tZ zct1Bgt(h5~p=rX#^+?Y&yCL+#wm}6&X&EU4IC!W58&QmQmI|d$OKPvVUNz`R-KHnqcP^ zY*30l-TdFFY^AYsa=QGRi<-ETf4%bVYw%6?3?U!@wW zF-;ib${i{8d0fddSEXHPzEmpWURtq!wd}3y$LFQ;qQNWD+_m@eU{P~6XTI&S)CwUy znZ?f4uJ327>)6|x3#Q3F<(rn!e(q_!{aUPPlv|$-scS!F9ypD4y~N(DWwoUJpQ%{82%D8^@8 z1RL1XD)o3cOPs5wLoBts&1ZgL8b3dtVtX6e_cuN@%~WF|@9wwM6y5zpST38IR$zLM z7tUZOC#5yz1iuQHUqUOjwqF#{f3leA%MQ1*@q>(^DrvfO@kV2~uuWH8w3$vWT1f(< z%q8rvo6{~aB{Ao9I9K^lQ<<+%D3)szy!9e)r<%drxC-7vhPUArz4fZv+vo6RvLr^f zoP2F>Wv|2PwzBVPyuX6O9frgED>_^*9cJ*Mq>@yAm&IOgZJ%P^lf^DivxiN`S!Q2b zo;dA3fuDra?#Ha?=V|sNv*}x2#GCRz-oZba&T`W2KbS7?V|LcyfAwmcf1l3!X4vy< z{*HPz`l()PwkgA&X==od4zuOeIV4*hWq!!8kL6{=IXpAd-qnQIhr!796niah3qc@{M zzsXvy+>w@UhMRb;PRd&GOGfR+R4W!NN(-b`$gnLtdcD(bHrE_9Q}&`cSEXf|ZeppU zZFy@}W+b)7ad|OF${0H#BjHjoXeK-9wqIr%6Dw=Rq5d9pIK!6ck#l1DmN8qVe8mtA z_YR|?Vz{qRQD3$k?vHpe0`Hh9hx_|yCUn5Eneh&|&S!tp{NhYG+&?Ev*=jzFKSbw4 zQ8C=Zhqm8!BWL#p;Oskc_D!O*FB6=NEU@o2C9{JQ(OE=quQ^Lp%U1KO;Sj~E?(My@ z<&ckkZN?gda^5W7<)2}WF7{;h+8t@@+49RUh~1ECuitpkEOm^&3U0+^;7VyAK1S!U z%rV9ojp0UI4=Ut$AUU5T+3!bXw=m6$!uRc_#v3a*T5332T+z{lsvX@(j-F14GD=Y% zxx)Tf)9WlJURnc3tYHvm4?Jvo8o6p0NDLvf-&a!8#Icz$ca(F2_H;qns)A_3X z+)jSFbIfNhoGpDM_kxd66?_acd<=>E;6&{7HCNI`le5{Y*VrF1FGN}V%&tA-?@pMx z+3b98`;d%qQ8 z3lVH-6ot_*O;!6oy58O=!-ZL}f8*EBUVO^lG$Vk0Q@sVjP>~}T@dUhqkRMA- zIEw-iZv>U~2V-$`Ny>1Bi+wIf1lmB*6LI@PF2o)QI*UWzh|`OYl0?iakK1RPaB&C* zVaF51LKB`McOY2g3KsZ51zch5UFV9He`P;ls@i?SMRrHkj=LVT_sc+TQ9nGA3^=?V zZ_r=hb^AS`FxtrHaJq{z@t&H5hY~5m*LT6~>`hpsyY2O&XV2PanM$i_t}IlbSO1~I`}FJH^;5NURr$-h z+0G^mvN!KhMSwC5-hdzXA_X4wy0FLREe;lYBB27l#T-t-0<6>?Z{>7+V}@CB=;8QS z0_|FWr4IcOv>tA5JYlQ@l5pyw>$pQ$NIT%d9L|UbQ!^a};Yb7?TtyyFQ7|e`y(+zn zQ?ClYbm|p^{l(}*VP6Ce-NAx@I}|Dk_HlwEgTBUo@U#oPCQ!k%2 z3Z|v9)3fb$Ga`PRKW?PWQS9&pk!e2eMT)S2UNKI$5LFc8B2L0!2;JF-YI%yoo`|a; zh|?AWrQ74d20^+N8fR??1V@@#=(%=<>bAiI2=MdVkj(dhl*WZUokf3 ziw!mDJpCAI0vPjyST81oH4i=5Cvy)%hnC zS5+0DOoP+!cj1~4K|4D=#h&6o(BW|v-~tyY!tS`iKw=tvczf-3I0CrZU{ntHgAPXs zzbXRZNI{XuTf~k|k6i{M4s;(kP6Jm_&{Gt_PLe3$Dh>uBxbR>wi^_AcO7G%atirEb zUIzWB5&E7hT!izlIEXRc6LJ>$i;KcVXjHt+jyGtAyU2@cOxP1Z{c%CVkbpkuz=E~D zU=aooDl5A!#+{Hi6vA7mP!Yba4u;&$K*WcuddQ9GvsgM*UIwdlFV4j(9Y43t?$2-r zF~s{K#kf4+uSl=}`x&}0F(rcGCKT`}SM-8F#OV$M5KuA3Nrx*K42NCLP|%OD)$NRg zWY`o6Mnv?s0M0h7$jdK>1-MNpM$(J$(P^xqW;D(V z)LEBqeBQqMQTu?ZZwQUv`_IkjKR2WDUihDzQT@&QKR2WQ+>HKnGaCC{_|MH~RoD4{ zZbmD)3;yS3)VS-yPu>5&H=~8-EwlOCl@4+?!6Nzals(iqZ@d{V=2|z&8(7o)_3Y@_ z=6PS#G#{GH2Di>zZ+?0zPM7!A!wJBEHT%>zb~Zlf1egdUcl6YB_%K71^bec5AmXCNeQ>J zWYVaXoU)hVZDG%nJp8ZZ7R(VT$>)D9gO!qw{I5f>RN~-&-E#^4a*AWHcxj1?|H)sF zm$>;~pG=Ql(I)S($vmW#1$*Z?%!5kV$}94_nA)e>q^B77`Gh}$ah<@Wzg?@+VBSe>jZk0*>h{1llSVx|4-MvM?~g0*>h{%t}`*+)frs$ij>S3pl2; za418uu%0ZeAq)2>Simuzg_JDC!V6^KS+amPU$IQ$n9jnr*@}g)$if$7;pYSkIHt3( zs-0pXbsjU}(<;+EIRGSmXKTVT`sBAZH<+iz-_KF-PV;0_`Xz7fIZvL2kaf;mw^!&e z(Ibc+KaZ9Ba2n|05ginG8No{k-bAh;>s&uzQRw|dKSuORL_^lm-&hs;IMJUF{Vmau zb#zC&LZ{4^NlTh9`+rlcuz-m|BJDV)vv5bAV!=Tc^2oyF2^MfnXW>A;VqxffR@M#e zP6kFM7#OTKaG_&@fn5N_C8tyv=#hZqh|d3&&IEj?c_;A?Q3VbpSimuzg~cw#!nF_~`%X5ZSAGwO;>rh6 z#}4rsthnsxEF`b1EuTm@&k%b^xn2=xr$8;9j^i(X|O&0DV3!4)x;F!)rsFz{k zU^t$H#}~5gMM@HIM2GLV#=u1qPEZB@OBMJop#nIjv+!+i#X{{xvKeYElHI=9B6-q4 z*3r&B3hg91pXjbcL)Oug`x^AB5(H21kVS0Vt?2i}Le#O(^fOoy`Fw)skmprIL)OtX z1}O9{q8}#uX`&(P=pF+V`aPomL-c1vL)OuEU1!k2@$sntSj4(bK-7z6z9H(^w+9)l zh`K%IO7UM}?H0?{@)8YMM>iR)(EW+-L-Z{~L)OtlhbZ(kq9+r*h-k<NPE&SNc25c%t(8OLT*+Il!sb_z=#b8CyV+p=Z!m|jzO%Go-LV-6B zyiURo61+|i&kZW@L4u!`@Y@7GuZLd=8Sv2s@sPii?61Ursb?=KGFTCE;8_qQI9Cj8D=zd=0?`dU##20!IiANq8c`AwB%@NCPfghLDL}D%pF8 zU8-l(M;ojNIZE&o5`LNBC-iVpi2|P__?U#x5PVDzKYXhK*I6o)oy_*Rk+0@UWwMi( zYLk8DHUl2N1|bvMQL^2L?WkwnV+>Y=d?Ud(NO&~CH|XK1V-@&Lg6B$jHNkWB@N?r7 zcsIe1Ncb6oAJN0+2?kuaDIW4WlKq_6cl7Ml6Ae~`{1-VsFJM!Bw!JVf-+W%rF1tfv zJ1mn!e$Fy^pM$-RISf%ZdL5mlzyk>GOYm?BL)5{|rWkN)86qZj$};wS8SYJlTL?Px z#;FD=;=Pa1?c{c!gdytS?b8(aO@a>-{IP@~>fkS?C%_M+t~1k20l7H+|H#%4(w4dA z-LjWM))}+TG>nz+$lt|A^v-jdTi?xIdL)O8U&yB%*jDTMN`e;00h&poqyco#?J}upT zMQ(p1w~%%4Yx5IfbCcz=i>EG^>B?FzTM4p`uD?K`yAa)p=-xy_*3knO8uZ-#=;Q>4 zm$MO1B4}bE>R7hOU`01yLGUv2yoG4UI{Lqh75XWn_Y?gJ(U5g?=3NS1PV{l2&k_w; zM;9+O=mF0n>J>8KDJz)cIYhle<{P4p-MP$QMbvJB9V=vO6%q|uM}L2}Lf=I6P@+qS zhODE#D-?PG(esF2Lo{R^J$^pFj{Rf1!HTF~BKSq}e3U#x*3sSWRp@Vt{+j6D ziH5AB7u=`NO;^i|U%FamJbSflFUUIj_4^GvcpOm^+<7(Yb^=io3sJ{5e9&M;)FTNl zBF~eEhODCp?NI2IMBh#HR-z&6=#394^Z}xuB>GjNA?xVl4;!@ei+I#0RGZ$xj&c(H{^s!R^{nyI24hlLSMs)DX zClz=m!P5x7i(Et2(eFhS`T?TvCHirqA?xT?2MoIGw|LNRtYve4j|UA=#}0qmU`5cs zkmsMsbFFo3d{4|+(8KpXqre&KWLvdaCo`76PPP?fo$IfkRp?%VcA5wtLhx03IRANq z*NyME3ygTWH+CKCZ|c|sqIl;6QRjE!3yR;(1aBb653gf|{SdMqe(FU9{ujXq3H}ec zhOBe_=Rt-3j_7ZQ{)1@9I{J#247xA{L9drVH(t*&Y9r|NGH8f8cG15KRw!eIwDg5e->KKl*QlUPSbrM6Y9PUl?KQ;h)}C;JpOzCir=B4O!>9;HW}> zgwn-mY=XZe_kL38LPhg=@d3 zz=H@LKyZj$L)N+O^S(mQB6>Q}ONoZ8qgQ{R&<_%QAJI<`4OvHj@S#G#P4t^YAKSnN zjIT88w2u||SAzdXaPmf(amYH?!A}%Ab0aIf1C6~=CcGoTZ8vJ+2mhRy-5pq|6GB)5!{8~zMEuYL)N)o@`XZ= z-o(o1qOl2{LU6Gj{`V;bUQMo75WSsf$U4`Jzf$ODh<=Lb!<*Q_1(im9!`BM@Il<)w z|3I!G>s)X7MxpC(mI<%BSth*oW|=d{I{MSo3hg7>O>}pnA?xV&-zoHPqHiMl_RVb7 zGK8&%Z#$#FiwRyp@Op9$S?7A+S%u!Wnay2+#wPd$g7@g*pTAe&kID51M1MszWS#5I zKPYs~dt}CI+#@rd3V98pzDEns`B8!G1X~F1bdPK<$U4_A|D@2@6FrdVFwu~8blsm7 zdN$EBh+alCWF6h_7lqzI^!-HdzlS+DRT}o%UlsTW!EX_KoLocJx&G)kh5iktwxF>I zPT3-J_Ol*t`-cK&ZIR8DzC|{dgJ{S)*WvRD-J9s1L=VN%LuH6s4?py$0^dRKc!KAV zYsfm+-(67XEkti3dMDA4b+ikwOA_X5ze4m&M88WkWF0-lq|j%H{+8%Jx3Hr-Dh>Nt zvjVr+Dl^`6tIT-rR@q*Vb*@cG3SGFB9ef0hO>jSgFW19YVeQ0(s7uK8NTR0_4O!=U zX|h7EA$ldzWuW&UYCU`;MS-6s_yEDLlWWL2*G=mv^cO^bO7xFJL)Ov5>MC@DZ8GDR zY?B#J+a@y(Sx0ZXM4|medx-9_jg8-ru=Vig^%Qsn!8a2;hFn9|xwbS==p~?^LSqxm z2wtd%$23&n$H?`gM88NhWS#5B8!7ZBM1M&1*V|a(vz12uYpMb#ZI=l*ZI=nZbh}JA zWS#3SjTJhNXe-g3iH5AB=QUC2!9-t2bP>^zb@Z!E6}pt@nMB{cou$5nu=Q}g<_i1} z!4DApB)NvHb3LGiLLc4EOs}A^2|hvazxD9?mJ0kkx&DRd+GR51kaeyK$3=u{|uhfn1x@LlA35z!lnhOBdK>!{F=6TO${ zgP^{sH0p5<1^zF=9})ZwxrVHBz2BKgn`&WoReTs>W-G49?_q9yzsMNGjGp=4il4*% z?o!ZviP|K38KE{U+SQ|=LnJy#qLKT>2Yg!aPOk!D;YD8ESrS}MK4)ps!#)LlSfUR~ zG)m}$TC_nxLH{Gsw=q9LSb96xi=us%^#F`?!Z=Ek32)vu`{kz*efO5jo1N_g{Wg+?5?o4Np>``(?e7NU;5=4yp~Ub4>+`=(?e>ev-M74}QXeopNFBnwf;zS~P-8?gby zk>~n5WS-kHXBc^gsAF69R@ef``iQ++vJiFbE!Qe+NV3C;9Vc0cI`+Ok3cFOYi;3MR zS%^CJtG){Rgk<*-dq}bnb!=XLg*_(OkBL1kS%^Az!T^O$X6J50o@+iN^W21)N|0xW zIyO2`VLM9JPHY#+Le#P6uT$6?Bzrxv#gc`nV+*fW*twFOP3#KELe#Mf2P^C&lHEb< zQ<8bFktr+9>N`*+y>3 zLe#OFZdBO5lI>0GO_GJEV^7?qu-Gzz`@Mr$d^yGI3{l6n!*~4g=N0%VB-ky)?vX4+ z9Xoos!XB3FE5v>vS%^Az&j^M6L9%Cwt-;36Mx7z**dK!m+nNREBHk8{$UIvl3sJ`g z!V246vW3JBlq^IYJF7@xZW8l#vSif@Gg1 z_ASXm)Unr&QrNE~`vtK-OBSMzT{T)^Q<-xy>fB(b%yT+RU4}YC)UofEC~POm`ibo+ zS%^Be^=%3pmh1>($4eHXjvaBk!Y-5S5@I(=7NU-QV2r}u0tj4jg4 T%uOv4O-+DIi_P~r`|bk(=>iqs diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index 4525c942678f5baa4a8620a925cb297ca7443ddf..751f3e9756d4887e61facb8b2af6c0ab5c0adfaa 100644 GIT binary patch delta 467 zcmX@RpY`m1)(tB-4dV+;E6OvG&*M5()8b55cxvp6v(KEEg?J~y$rB(*3xu_#4dM?ro10XatT$^CUQllRwZPIjv^ znygzVF}+@nQJMuTU8lq-DFk9AXC&sOr^dt=Wag>I)J|6XDKq(GT@=;LJ-9)BvR6a1 z5Xiki=OVdw^4catW}rhRI{<^BuF04$J+-7HGcP^9xFE48HGZ;Z6DVY)xgZV&xpVTa OMl-4ywE1q+hdThrm$Baf delta 429 zcmX@RpY`m1)(tB-4UNl+k}AzJQuR}eO)L@(%q-1JjFOEEj1$vL%nXwa5>u0tj4jg4 z%uOv4O-+DIi_JGVT?!_vRx3}guF{_DSsD5#fZ7AMBU=NHAq=Oz}Hq!vw%u2Yvt zPc13Q%uA1nFD^(d0;)|;EJ^_>p1x9%QF^j*oy7D5a*X1Wuhhyg#net#{3$c}WL*^P zEI7D9ezI3X^K=Dipr!nc>O5dCKz%UzeWUo~xlPiOQyRr4n>OlCe%zotd3U2J@v1l9 IYkGeN04718-v9sr diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 9cb85838fda42e5567bc8ff38d5e4c44f4b444bb..cf4f8d80e8125d9981095473cbb96a2f05d5f66d 100644 GIT binary patch delta 9639 zcmcgyd0kkoHn=&WYk!^Qm+vwQhk@U;{Dtcf4_?yI=cP=MVF@k4fpapbNYi zE*!`pR%)CxmwZC|4=R`c0RcWj59j<0ZQM~s*=CVsn|m*GlKJ#(=d^$x@;=A305Kyb zy*6zzd4($ji;T9Eq_65LUy}+N$doaCy{KcLN>M467R?+nQgS^+wWOJ)8u3eIv}jP7 zY%g98q^GKKVF1H&l1zGLtd1H=>!Iljx}wZZ=a(tz+0tROc#)3w9BQP>vOmKd89mV1 zteq|E)XAOU?&2wJxZG*)x;t@XW%00tJ2;eM+E* zhxMYaXa9Oa&xC7zx`E6Z)DEmk(pG>*5e0s?Pk&BVPhgR27?T|3o5K0V3|p3!?illC_vMl>H#O#1a`G}Q*_qk-#!yi!J$2`u zzXHgmp1brNP+z}G1q-<)^8ZFl=E|w;?x$e6Ncl>n>>t@#E2&&2H(O2H>1hAS8mV(Pu$_iM7~$5=kv{<666T zHW2#Phl_}w-zH8?BXr~3{_->i>0*$p=6w!5d;pd6YuIL>Cd=ut8S(zLA)n5e(PFmd zW#!~%XJr>yv+@eeMr%%1PPUD03|ZN^IllY+EPFv#w$(;$Gpp3n1GKHOFC9838mj(H z$VxhI!Kj2R=9O2`ezI4+M~jB^p-YRRqz>Iq6Y3`XKBu0pySu$pj}K0wue;3j)Wh+( zh{@sqLsL4OP~bDDuup!6zAhr2I%Q^dP@Dgv98R07NUHjGD_K7`5yDXg4G%H%`YQ4@;j=+_I3Bn_{Obbm=Y z9>5)@Fu^lJGS~f&&snn8=N1Bihh%iqq86x7vPGj$@bT*!&rr*itj0VYKYu%QqQlCI zp;jq&ZxuUGjmp#69ugaz(k{*!t85+fpIr#dMx$_`k73edl@#Y&gm1Sf=XZ(0$E;{W zsc6G28SVYZd1i0aqtC%wZf~ZA1n+2i7zjr6O>j>8|7 zJUNP5CcLqov8(xAti)JuK&dixDcHGa4P4|(X=Ag7&TA}z8NRgMK=n5GyCkh_9Y~1a zX;suSrTPfI5NIRVLcm0ECpOS0m-fY#;F@5jrORScGBdL>%ZmHd8S%d<(~Xua>3-l7 zqMgTt><0ZJSlZ~kb@IG+k44GsZ()cX^q4UtJC`n8zO-Arg`w)^k`6k3g~2fN<^pzO zV57N(5VfpSK_$0a?V7{FGcjbj=m%tgxgt$i>Sd*h&HQ5xfNFGf5<& zWR#>@=a5z75@q%EJPo%(&2x_@7fc%}dJmG-r5o}%?gc&Y~YK13< zhmizYv`r_>+e7j}A4yxDHbbXKTJ23>qU>c?@d<9}o`Q%~?j&lQ9!cMF4hGk=t#um` z2q~opwwhO|!?m7)k>V;Zz7e`MwZ7GIJq$)i(!X4ns2xS|)=|%^DhPZnT!8t!Zk}lrZl`ILt_{+w0cI20h{fNL=^r}G-$qwU- zrM9Vrl4s)S^=Go^8!xD&x;FWBm2bL=^wxfxlL*;^#GZ8Fmc2}}aH~yv;I#k1_gj1T z>3v@`ksAkI?E9J>Z6ll8nUG<@=Ts7|u~5hxk!$qb>Vxi;^54f+k?M z9C#xiCW>YtrO$pRa7I4dA0U3b-^hqe*%wUNV5W@Rpw$QZE4cQ7k*zNrI7DEb2w8C` z6`m1KuTu+}SBSySIfa~^oI}=8_rc?SIy-S#dO{zLde+gshb-`(U%vC0>ODC&fF*8@}usKn|4g)|d(HaKCI!urNg^Rq_ zwo^NmuraD#cPS<3Sa*3P=Q4b}4m`04)m@2w)dwl$UE1eD3A`O8w$|yWKx;*{zWISO z9Ii%*y>$g6h~xjgC_esC?tj-@rPO%-ONfu=6`JvBH%N=--4h=zmXnWzlO8O74o&+k zhaF+{G34exjNm@d*b6BzI+_oN5z(R-!=fc#yn}q087+D-4Glpr?uh1I42#Cs4V^Hw zA4$2%Y^Y{BdefN?6~j6_8vLRva22-JOPB3RXpI)%YbG;ex3}Kgwo3^I5xc%nzC4S+6jn>K}`hyI7Nd5l1m1JPOAgnFMtpL5)*htMhGSi z$wP`5QXdC{O_BqgpJk+k5W$o{tct^8Ouh5u@Kd_aF487?-NwBJxrWsy5}EA(l(iZbdrh9hFEv3WKp4mSv$L6=OJw8-gTZ zYbxpKXJy%u^v45taRb2G@RFu2UuUHp(F>)hbK8Tax7})E74@ZnM~a3;D=b0 zW9|1o^V6ka%L%wNLSsv$sz84DQLQoBP2}NQ9#V%3UW1QNvQO9tVu_KQOk!ws#Y8V zN!q{=P>&HKCqKMkmTnS7LcwIj#^k+K)Qh0&%RVZOlS$OovzGJv35c; z)=OCFz>HPK@{Co)iWzgoN;0 zl8x`@SRUak%%YAX{Ee_95z>W`yGS(-VpNvN$BbRqZp>U4uJ0nhkWwaKRs6`{>^j!$ z+7Lnf0TN#s9m3w-BpD{@c-m@oJZ)sWpiPDD-g&Q*D}>A!?%6{I!^1kBFE@f=-;dV? z^M&}>@S*roGVwRkO~SRk#73THkcs%%jpbjxz2o+g7gFJmId}L zu`y$nBF*#zk)^@~9nTp4Y{LYF^YIYJp0i{xL+4)_Q3Fzwe2-eYPHeUir{5OtNq|kD z(eoLcV*nEv^sGY+8huAuK|wY%-(yWZSqBoAn#z7c7k=Q{G$78IReZB$8Ya8Rz?hSy9Cq`e4HyVw#+QDkKe8 zq!*JHV%-u!TMTQpA@lPh{`QGa-}j5b1zqC;@ixV^i+7{fJpe3n$cf{b-&G2Q;E3aU zYfhYC9t^2|)@1zL0p)&{_p8AWNf?jS!BS>EzR$4rJ48XVFuxo|L0uegq?vJIex}9o z{CM#(IvSuUP8@v=XauIE9)Ylxro{!*g4pcY8G^k*_@n}+!7e-&%t|YV_KiL`6(=^* z^UT7xc0CA=?r^9i3qW$QW$jz zYC~(jQ8;l37Q#8;`IvebEw;o5@{t+eE+2OY$w%N4IOA!*&51(FQK*1{OgKYWa} z&wv#MYlPd+Kv(D$FWhqmdVo_eG@rrhOv9RKvP}|9#b68bbdFzh7CK|cbvX;g^B+Kq z8axB=gHwZNFz#3lo?e{d#J+Cuu#*jVg8iMr{?@w_@qe=Me2UlZL7va>AN~Q>bAes4 z?;@Uy?26U0=W}+&#){_>yJA)Exy-Iu*gapct4tE_{roH(BcM*eC}oAmdm<8qweR96 zNJ_vgvu`sB!SxO(0qN1_AXj+&9nctmXp+~>sJ{BGL^@*Tb+h2{rtqm#rq?#R8c4_3YlX?@VAwwZ_O?y{ delta 9780 zcmcIqd3@7Vw&$F-S(+|M)0FN_X;WI-hNMkbpk*m2lt9a(bwMalEU|O}VSr&+^uZG; z>#hAgL|OEK2m-|jQK$%lAfV6!iXsl1;2@6ylo55DVeY-ZUzUazna^|hC%@l0=br6* z&$;LR%C#odyW3QLbNya=5w`p7SDG`YO&&WVr?R5^_)JS~xhXp@+mbOZ!<1P*!IEtr zXDY84H#ReOLUvA8Zh4l4KIYngR%)^p=G=U9cD^}>Jk@t3`L4H$Ozs`!O>FWcOd(CR zauVG)-;;RW^JOGi)i0tA!LBJvLGtG%s%}5@tesp@;BU^(Gn%tZ#*EBtV_sgGKEq-% zXw$7I%kDQKseTgQ{B5R~*}&flBiLY7_PErs&^J5C1AC4_U z9vHD4yy8p#njJ=3b_M&`UZy*?e;64&+MgJoY=lAXKNT>?gFQ;viY^PO7hlN@&TXrFy7hvgCszJwDAKs z^qD%AK{j+uRG_o}>66VCBPku5NsJTvkZWUxChhjXxqeZGDZ`R(GN+q!^!F|y<)iLV zWFc#w*4{%cfGx}!Su=I!O+RvU>}uG}3425WOS#9cVPfn3$d_aW9;a#J<+M+vQON*L zNwREWI9Pcm?leS`;EG7k6b<2whbwZtQgfLa&&z6)7I*d4?_fRbzL6UzRJBdi%KM7{ zFyWbdQqobP{?7Aqh(>$IkK|SELZys%$ipIq#;^8>pUM5eiq11Bhged`pT~!jy%RIg zlta2z#M8%kGN~d&-FA;8aOGLYshW1}*6LiqSu$Q+^5UX_g=`7hicovyoW0l9TMOHbPY5fOzp{|eI zAieJyQU`Ty^g}8snDP%W(dCoKo6nA8<1Pt!?jR|dZY6tWsrZ=r%-ngMZL2&E7Uux5 z*4KXXc?6^b$nF1HhgalmQcQObAl8SO;fr#%C2bu{AUEe1;os%7M`kLly_xtOIh!Lx z++9*6-xv3sIkl`6mS%#Ce7m$KtXMH$hk4ng^rcWbr1ST%&~%*x@>{T5mFDx+a-_M~}WeJ?^3B zBoDQRwVY+Gqa*FL_7C`6eKJ)}%3sbUvzCu+d%!=|PK$So8&^btq9cgP!;4}`i$2R7Y7ZiLhQYqQtRw%1vk{6g{U>iv` z0z@vOx6biTj;@_tGj@uxx^^ZDoBqqoev&~JR?se9qy16 zg*sw=$?zLk#Vc7MkoOj=Q|VmlF@ViwUUro56^*vG&{TFT*@GNuOo}M&SRgOnIZbyc zM9PIC%;B!etu-v&ndE|C#r~Y6u-0*sl3g1-dk&ZEu4Jvq6PX&|6KlP@ayrN%E1RJ! z6Yqz_11tFr9O%`8;*evV#v7I4(de!gd4X;SwcnVg~z;SBClE7RJ&FwY?x4Hz^66Ps2u~ zU`mG0R7^Yvx2^TV;|fx~B$BkO9SKY9N$WZTo@0)rg%(pc&ML(lllZ~H+F+ma+D|@s zT}ftaD8xHT*7=oxV=`ejO1!aQG2@k997ylNnynW0^3OL6+UqVYLn^xsp-0${N|L=X z5u&J2y2twE8{^oL*6q>c*v5EBXKZpKT<*^l(2pOQ`XW-eA&hK(-5BU`!IMlDI!)ev z^9EI8zqyG{a;21*LM(4JyLBXxn)L}JW{b+{>jdY*O=vEuSs&ZGPK0nl!UuQ z@&<{lq2y1Srr=S3mm4RUx#*+*QVL}H2@|U-^d9jaCEGW~klDw3z-21RGsf26s){Fb z-&V>uNvh*pdf?BZwYNl)J;W|U3f1zRTGFBoAnG2zr00%q@+Q}cF!KBk14M9%+Lko= zdlILeDEGNH=CeDaA(yTx!Ymcvmykg;ju$8x%Xfx~8*+$>Z^(R=xFIuC-Ww9nDg}K3 z6nQ7}sQuk{<@BbbqI)lsLiD%y-pA?G3d5j9@~-?)BGK+%hbvViK0Y5;b6H%aB3+wP zVHN4KJ%-dar(%SGHOR_@4IrTvKyKLR>%#vjP1$);=R^YQ}`oT4X34@ANsi5m6M5lQYzmz>U* zDmIatgC?k!h@TxCO2xMC%aVWQ%H#XED1hcrN3uT7f@NHAF=j6F$FZ(@_`xMC)`OKT&>{^s=UzkscVllvTE6%55b)Z-Z69ON!6fETA`S0+pK;9|7x?sR}0$EW|if}v| z!WoCQVm#=ilGckEjLB;yuVeQMJ>383QZ!uW?tdq_|1Bx`D#`xBH_?c)AomI56T}Pp zh7`rORJs|uJFD0`LxY)#Dl`R&vv+!sbM}t4ul!4{0tW`M4;jU>Va&?`_QYE|75F%% zu~Dy9q{aV|r9fMdFs~05$d+)Lp!NYB`;LMAg7}=C&M1-65yyO~>x=!oJIY&*RXzX+ z0x7vT2-Xm|Xh9)JOrb#a(9?h>7q&YYO)@BA0z8e|#WXt1a+u}^r?^ZDjVcThv4t(p zfh&yY-x4JC2LmZgHVA71K_v=AlV8$O;3sJ%c|83wX(9Rtb2zEGTS3rAk`_vWAr7OR zEb@ghRpi8x#O~o}bTWiKYLGO=3A@#FJM?z3{59~fv`AzP<1Dw2JB4x;>=fpPfC^ez zT5!B;aiA7P(8Xf-b{7686nfee57VFI2*)`sTmyWO%fo`kFfibPV3r7cMYOUYSjxl* z0YYH}YlBXStcJ(4mZkvp&KR9jM7RLy+JTOFjNo4EJ`hFgg}e+{_J(8Kma8P$tHK z(aF>ZrExUNdKYtT92lI;6wKgs|J%;spB8RKL8Y))2a&=DdPtHVU{PM8b{F^3c=>qL zU64XuJVfJTYCiQnq86vV;c8kwi9%)b$2vBpKoeq!M(hsXGrxizThbue2NNifwTE9sVzdc1 zAZBWKe~_aOlhlauvj!2MVGRO*u*7_~k%6&UA8~%z3-}@ZGf9$?2H~nbbsW9t_4NC-M6{ zNEC@FLhpP?zz?0AmHE`*7>!sW!7RS^H;>MTA4WAjAQi7_*uH@)0whDCpdW@|cuB+d zj-z)^hyt2f*XDt{Oeh_$3Eh+Fw!TCS-3PKbW~2(!LPW??LKtKY`YlDBg#ANAv<%G0 zzK)kFAU_En5n2{OZ`nH{Evz1v8E`^~2v$EfoAeEFgH;&9!Ajwz-vaA|H8 zwV7j7p+}p!By4uTT|CDGXhmIS3Xf6KwAj5QulaJkM!!e#`jz3)4}Yd^u-n~_EUk$S z(=NCUsMETz!VoPl^nZqkh5jRzXJ8!*;nnSJ;U{LH3JbL&SUt7w`U=?t8)L9c%Mcsv z$DADL2s{gOV{js+vGOYLeLe9w9ay z-^2}c4K1Y0;TVrwwG6QE4chil*`O6s+0U$sNmP5OJS=<_fit`t%Owe`=Ob|*p3%Cn zI!(=ZV0GLvAPQsXWX~ihSgp*?Y3dOL%S-gM9|wzG$JIh|3`U_}C`SxKMa1s1+$K7% z#^5TzSjLlDb5tltOdiS+qs7+L3??`&Txf>=-bOAlBUSitsEAkpP&ZyP;_(rGC>L5N zT(Yao&!-$+((r^oP7W3E3X^eSj~p!Whv$U3eXvm8kJCcka6J*q;p)#xF1Su>MYz0T zt`!dS#g*QN9KlPk`<#sDU?q~tuWgFW|ZkfTzqsi zhXzOYAvg%3izraj3vw_{$8k~V#7gp^@~n~^p<*R@*;>SGRl(rKVVI2rnNF$cK?Tz} zSiYS3IacRrtbn{En8pp!ze$Ag@9uKFT;z7HhouHs;N(hwvDhYZ-6)OLag+w?7|Dqe zIE321SfuvytUyp6#0s_7K{id8eGuothmD7@9uMkVAnn(+0jWqhb_lQFDIK}FDMC2@ zF_z$2oe+N*Cx)M*lKe|dn?8Apriop^2PkMj`*jQ!wU^GpLboHh9Eu#xNAPO|i{s@_ z@rn-w3iDdA0KZfU`&#Ko`18TSPpz1Udv!wW3G9lew8BFtFb&@c6{eoRp7M98`TFQ7 zLc~FgMw_4T`3dYhCors2r-imJ={KTu##TMF5(Xw7>dxvhog*LWuq0Ns; zPOXff|AWT%2l`z3ux&d1;UD{KGuRWm$=PPICzd+fAK4S@Ew)+giB*E_Pwa`M+cuj$ z?FXIXe@^0Iz}LcPLXEy*wl!hG;L})yO=0XBDKwqNV5GEtr!iCL^*O5bpVZ5y)J&Z` zuA-qbWol(t+pAO&&D;=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 6e12112ee..b21340580 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index cf13abd88..5e8578194 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index f1282fdf3..91b7895b8 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 39da93648..b71884c46 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 38e87af2a..017ebcdad 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66, 91], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 33, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 76, 78, 79, 82, 83, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 43, 45, 48, 50, 59, 60, 72, 81, 82, 86], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 57, 58, 59, 60, 78, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 75, 76, 83, 85, 86], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 76, 78, 79, 82, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 83, 85, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 86, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "generate_noisy_label": [1, 75, 76, 83, 85, 86], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 75, 76, 80, 88], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "generate_noise_matrix_from_trac": [1, 75, 76, 83, 85, 86], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 82, 83, 87, 91], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 92], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 35, 49, 59, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 35, 41, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 88, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 55, 58, 62, 72, 81, 82, 83, 85, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 75, 81, 83, 85, 86, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85, 86], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 78, 79, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 62, 72, 81], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 86, 93, 94], "made": [2, 4, 14, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 80, 82, 86, 91, 92, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 81, 82, 83, 86, 89], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 86, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 86, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 54, 55, 57, 58, 62, 64, 66, 67, 68, 70, 71, 72, 73, 81, 86, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 34, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 86, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 41, 50, 52, 54, 55, 57, 60, 63, 66, 68, 70, 73, 83, 86, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 76, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 34, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 86, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 82, 86], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 88, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62], "longer": [2, 40, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 79, 81, 82, 83, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 35, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 35, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 35, 49, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 35, 62], "union": [2, 3, 4, 10, 34, 35, 41, 45, 46, 52, 58, 62, 66, 70, 81], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 35, 49, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 78, 79, 82, 83, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 76, 79, 80, 81, 82, 83, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 34], "amongst": [3, 8], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 82, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 82, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10, 88], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 14, 28], "logic": [4, 12, 34, 36, 64, 66, 91], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "usag": [4, 34, 49], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 88, 90, 92, 93, 94], "issue_summari": [4, 8, 11, 75], "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "dataissu": [4, 11, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84], "someth": [4, 5, 31, 35, 60], "123": [4, 75, 76], "456": [4, 74, 79, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 86, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 75, 79], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 82, 83], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 76, 78, 82, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 76, 78, 79, 82, 83], "violat": [8, 76, 78, 79, 82, 83], "assumpt": [8, 76, 78, 79, 82, 83], "changepoint": [8, 76, 78, 79, 82, 83], "shift": [8, 76, 78, 79, 82, 83], "drift": [8, 76, 78, 82, 83], "autocorrel": [8, 76, 78, 79, 82, 83], "almost": [8, 76, 78, 79, 82, 83], "adjac": [8, 76, 78, 79, 82, 83], "tend": [8, 30, 39, 76, 78, 79, 82, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 83, 89, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76, 78, 79, 82, 83], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 88], "subpar": 8, "special": [8, 44], "techniqu": 8, "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 76, 78, 79, 81, 82, 83, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 24, 75], "nearduplicateissuemanag": [8, 12, 17], "noniidissuemanag": [8, 12, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18], "underperforminggroupissuemanag": [8, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 75, 80, 82, 85, 87, 91], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 85, 86, 87, 91, 94], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 49, 60, 75, 76, 82, 85], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 82], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": 11, "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 24], "arxiv": [16, 83], "ab": [16, 83], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76, 78, 79, 82, 83], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "abc": 20, "believ": [20, 91], "priori": [20, 83], "global": 20, "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 57, 58], "_scalartype_co": 21, "covari": [21, 62, 90], "get_health_summari": 21, "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83], "simplified_kolmogorov_smirnov_test": 22, "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 82, 83], "null_track": 23, "extend": [23, 42, 82, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76, 79, 82, 83], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "ood": [24, 59, 60, 75, 76, 79, 82, 83, 88], "regressionlabelissuemanag": 26, "multipli": 26, "find_issues_with_predict": 26, "find_issues_with_featur": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 82, 83, 85, 87, 88, 91], "keepdim": [27, 81], "outlier_cluster_label": 27, "no_underperforming_cluster_id": 27, "signifi": 27, "absenc": 27, "set_knn_graph": 27, "find_issues_kwarg": 27, "perform_clust": 27, "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "int64": [27, 74, 85], "unique_cluster_id": 27, "get_worst_clust": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": 31, "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 35], "__call__": [31, 35, 41], "add_modul": [31, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 82, 88], "requires_grad": [31, 35], "bfloat16": [31, 35], "cast": [31, 35, 74], "buffer": [31, 35], "datatyp": [31, 35], "member": [31, 35, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "immedi": [31, 35, 88], "cpu": [31, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 35], "dump_patch": [31, 35], "eval": [31, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 35], "state_dict": [31, 35], "set_extra_st": [31, 35], "build": [31, 35, 82, 91], "pickleabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82], "pickl": [31, 35, 87], "get_paramet": [31, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 82, 87, 91], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82], "named_modul": [31, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 35], "load_state_dict": [31, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 35], "prefix": [31, 35, 74, 94], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "remove_dupl": [31, 35], "named_paramet": [31, 35], "register_backward_hook": [31, 35], "deprec": [31, 35, 38], "favor": [31, 35], "register_full_backward_hook": [31, 35], "removablehandl": [31, 35], "register_buff": [31, 35], "running_mean": [31, 35], "register_forward_hook": [31, 35], "won": [31, 35, 75, 76, 81, 86], "inplac": [31, 35, 85], "register_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 58, 83], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_load_state_dict_post_hook": [31, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "clearn": [31, 35], "register_modul": [31, 35], "register_paramet": [31, 35], "requires_grad_": [31, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 35], "share_memory_": [31, 35], "destin": [31, 35], "keep_var": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 81, 88], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 35], "storag": [31, 35], "dst_type": [31, 35], "xpu": [31, 35], "zero_grad": [31, 35, 82], "set_to_non": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": 32, "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 35, 81, 82], "initialize_lr_schedul": 32, "lr": [32, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87], "epoch_decay_start": 32, "80": [32, 78, 82, 86, 90, 91, 92], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": 32, "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": 32, "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "mnist_pytorch": 33, "coteach": [33, 73], "mini": [34, 64, 66, 81], "With": [34, 79, 83, 85, 90, 91, 93, 94], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 41, 52, 54, 60, 68, 70, 81, 83, 86, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labelinspector": [34, 81], "adj_confident_thresholds_shar": 34, "labels_shar": 34, "pred_probs_shar": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "batch_siz": [34, 35, 64, 66, 81, 82, 88, 91], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82, 91], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87, 91], "psutil": [34, 36, 64, 66, 91], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "update_confident_threshold": 34, "batch_result": 34, "score_label_qu": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 82, 88], "aggreg": [34, 41, 50, 54, 57, 60, 70, 81, 83, 85], "get_num_issu": 34, "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "get_quality_scor": 34, "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "split_arr": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "get_mnist_dataset": 35, "loader": [35, 82], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "get_sklearn_digits_dataset": 35, "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "simplenet": 35, "64": [35, 78, 82, 83, 87, 91, 92], "log_interv": 35, "01": [35, 60, 62, 74, 82, 83, 86, 87, 91, 94], "momentum": 35, "no_cuda": 35, "test_batch_s": [35, 82], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "set_predict_proba_request": 35, "set_predict_request": 35, "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81, 86], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "latent_algebra": [37, 73], "label_quality_util": 37, "multilabel_util": [37, 86], "multilabel_scor": [37, 54], "token_classification_util": [37, 94], "get_normalized_entropi": 38, "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "compute_ps_py_inv_noise_matrix": 39, "compute_py_inv_noise_matrix": 39, "compute_inv_noise_matrix": 39, "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "compute_noise_matrix_from_invers": 39, "compute_pi": 39, "true_labels_class_count": 39, "compute_pyx": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "classlabelscor": 41, "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 85, 86, 87, 90, 91, 94], "from_str": 41, "scorer": 41, "exponential_moving_averag": [41, 54], "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 83, 87], "softmin": [41, 54, 57, 66, 70], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "possible_method": 41, "aggregated_scor": 41, "multilabelscor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "get_class_label_quality_scor": 41, "42": [41, 80, 82, 87, 91, 94], "452": [41, 79], "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 54], "ml_scorer": 41, "multilabel_pi": 41, "binar": [41, 42], "get_cross_validated_multilabel_pred_prob": 41, "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "multiclass": [41, 45, 50, 86], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "stack_compl": 42, "pred_prob_slic": 42, "get_onehot_num_class": 42, "onehot": 42, "multilabel": [42, 86], "int2onehot": [42, 86], "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot2int": [42, 86], "onehot_matrix": 42, "transform_distances_to_scor": 43, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "get_sent": [44, 94], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "filter_sent": [44, 94], "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "process_token": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "merge_prob": 44, "probs_merg": 44, "55": [44, 80, 87, 90, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color_sent": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "remove_noise_from_class": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "clip_noise_r": 45, "clip_valu": 45, "new_sum": 45, "preserv": 45, "value_count": [45, 81], "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "value_counts_fill_missing_class": 45, "get_missing_class": 45, "round_preserving_sum": 45, "obviou": 45, "cgdeboer": 45, "iteround": 45, "round_preserving_row_tot": 45, "reach": 45, "estimate_pu_f1": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "confusion_matrix": 45, "BE": 45, "print_square_matrix": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "print_noise_matrix": [45, 83], "print_inverse_noise_matrix": 45, "print_joint_matrix": [45, 83], "joint_matrix": 45, "compress_int_arrai": 45, "num_possible_valu": 45, "train_val_split": 45, "holdout_idx": 45, "subset_x_i": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "subset_label": 45, "subset_data": 45, "extract_indices_tf": 45, "allow_shuffl": 45, "turn": [45, 72, 87], "unshuffle_tensorflow_dataset": 45, "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "is_torch_dataset": 45, "is_tensorflow_dataset": 45, "csr_vstack": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 88, 94], "bottom": [45, 55, 58, 87], "append_extra_datapoint": 45, "to_data": 45, "from_data": 45, "taken": 45, "get_num_class": 45, "label_matrix": 45, "canon": 45, "num_unique_class": 45, "get_unique_class": 45, "format_label": 45, "smart_display_datafram": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "force_two_dimens": 45, "html": [45, 59, 78, 81, 83], "assert_valid_input": 46, "allow_missing_class": 46, "allow_one_class": 46, "assert_valid_class_label": 46, "assert_nonempty_input": 46, "assert_indexing_work": 46, "length_x": 46, "labels_to_arrai": 46, "labellik": 46, "keraswrappermodel": [49, 72], "keraswrappersequenti": 49, "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "compil": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": 51, "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": 51, "overall_multilabel_health_scor": 51, "multilabel_health_summari": 51, "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": 52, "per_class_label_issu": 52, "label_issues_list": 52, "labels_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "mmdetect": [55, 58, 87], "corner": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "issues_from_scor": [57, 66, 67, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "compute_badloc_box_scor": 57, "low_probability_threshold": 57, "scores_badloc": 57, "compute_swap_box_scor": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "pool_box_scores_per_imag": 57, "box_scor": 57, "image_scor": [57, 66, 91], "object_counts_per_imag": 58, "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "bounding_box_size_distribut": 58, "down": 58, "bbox_siz": 58, "class_label_distribut": 58, "class_distribut": 58, "get_sorted_bbox_count_idx": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "plot_class_size_distribut": 58, "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "plot_class_distribut": 58, "visual": [58, 75, 76, 82, 90, 92, 94], "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "get_average_per_class_confusion_matrix": 58, "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 76, 78, 80, 83, 90, 91], "calculate_per_class_metr": 58, "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": 60, "AND": [60, 79], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "get_epistemic_uncertainti": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "get_aleatoric_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "display_issu": [66, 67, 68, 70, 71, 91, 94], "highlight": [67, 71, 75, 76, 78, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "common_label_issu": [67, 71, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "filter_by_class": [67, 91], "class_index": 67, "issues_subset": [67, 71], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 90, 91], "02": [70, 75, 76, 82, 83, 87, 91], "03": [70, 78, 80, 83, 87, 91, 94], "04": [70, 78, 82, 87, 91], "08": [70, 79, 83, 87, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "filter_by_token": [71, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "26": [74, 75, 80, 82, 83, 85, 87, 91], "huggingface_hub": 74, "12": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "link": [74, 80, 87], "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "io": [74, 80], "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196315": 74, "3194594": 74, "478977": 74, "2890828": 74, "8170278": 74, "892647": 74, "24": [74, 80, 82, 83, 85, 87, 91], "898054": 74, "256194": 74, "559642": 74, "559715": 74, "620667": 74, "285246": 74, "21": [74, 75, 80, 81, 83, 87, 91, 94], "709623": 74, "5033712": 74, "913803": 74, "8198366": 74, "1831512": 74, "208761": 74, "08426": 74, "3210406": 74, "005453": 74, "2161605": 74, "478239": 74, "682179": 74, "0538025": 74, "242471": 74, "0914207": 74, "7833488": 74, "039538": 74, "23": [74, 80, 82, 83, 87, 91], "56918": 74, "19": [74, 79, 80, 81, 82, 83, 88, 90, 91, 93], "761095": 74, "1258287": 74, "753235": 74, "3508894": 74, "598273": 74, "237122": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9772": 74, "probabilit": [74, 93], "9980": 74, "176": [74, 80, 83, 86], "006488": 74, "2318": 74, "008269": 74, "986": 74, "010354": 74, "469": 74, "013459": 74, "516": 74, "013478": 74, "investig": 74, "100541": 74, "998729": 74, "998768": 74, "980980": 74, "998217": 74, "18": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93, 94], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85], "1946": 74, "1871": 74, "1955": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_35": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_theo_27": 74, "4_george_31": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "boundari": [75, 76], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 82, 83, 87, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "regardless": [75, 76], "132": [75, 76, 83, 87], "9318": 75, "77": [75, 76, 78, 87, 91, 92], "006939": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91], "014826": 75, "107": [75, 76, 83, 86], "021220": 75, "120": [75, 76, 92], "026403": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 91, 92], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 91, 94], "51": [75, 76, 78, 80, 83, 87, 91], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 88, 93], "runner": [75, 76, 79, 88, 93], "300": [75, 85, 94], "userwarn": [75, 76], "330": [75, 82, 87], "309": 75, "34": [75, 80, 82, 83, 85, 87, 88, 91, 94], "54": [75, 80, 82, 83, 87, 91], "039117": 75, "53": [75, 76, 78, 80, 86, 87, 91, 92], "044594": 75, "105": 75, "105121": 75, "133588": 75, "43": [75, 80, 82, 83, 87, 91, 93], "168035": 75, "125": 75, "101107": 75, "37": [75, 80, 91], "183382": 75, "109": [75, 80, 87], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 82, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91], "92": [75, 83, 87, 91, 92], "259024": 75, "583757e": 75, "91": [75, 87, 91, 93], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 83, 87, 91], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "047581": 75, "090635": 75, "129591": 75, "65": [75, 82, 87, 91, 92], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "opt": 76, "hostedtoolcach": 76, "x64": 76, "lib": 76, "python3": 76, "site": 76, "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001894": 76, "58": [76, 78, 80, 83, 87, 91, 92, 94], "003565": 76, "007326": 76, "008974": 76, "009699": 76, "0227": 76, "is_class_imbalance_issu": [76, 78, 79, 82, 83], "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 90, 91, 93], "0000": [76, 79, 80, 82, 83], "is_null_issu": [76, 79, 82, 83], "96": [76, 78, 80, 83, 86, 87, 90, 91, 94], "94": [76, 78, 80, 83, 87, 90, 91, 92], "93": [76, 80, 87, 90, 91, 92], "8218": 76, "is_non_iid_issu": [76, 78, 79, 82, 83], "810274": 76, "826147": 76, "849587": 76, "855359": 76, "855485": 76, "821750488732925": 76, "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "859109": 76, "417707": 76, "664083": 76, "970324": 76, "816965": 76, "375317": 76, "641516": 76, "890575": 76, "530924": 76, "460593": 76, "601188": 76, "752776": 76, "321635": 76, "562539": 76, "948362": 76, "090224": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013444": 76, "025173": 76, "026416": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "possibli": [78, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 82, 83, 87, 91, 92], "78": [78, 80, 82, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 83, 87, 91, 92], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79, 82], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87], "187": [78, 80], "27": [78, 80, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "1562": 78, "393": 78, "156217": 78, "391": 78, "806": 78, "805": 78, "156": [78, 83], "na": [78, 79, 82, 83, 85], "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 86, 87, 90, 91, 94], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 82, 90, 91, 94], "lt": [78, 79, 80, 82, 85, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 82, 87, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "system": [78, 79, 82, 91], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "apple_pay_or_google_pai": [79, 93], "getting_spare_card": [79, 93], "visa_or_mastercard": [79, 93], "beneficiary_not_allow": [79, 93], "card_about_to_expir": [79, 93], "lost_or_stolen_phon": [79, 93], "supported_cards_and_curr": [79, 93], "card_payment_fee_charg": [79, 93], "change_pin": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "400": [79, 93], "data_dict": [79, 83, 85], "84": [79, 87, 91], "41": [79, 80, 87, 90, 91, 94], "38": [79, 80, 82, 87, 91], "9720": 79, "981": 79, "974": 79, "000150": 79, "982": [79, 80], "000218": 79, "971": 79, "000512": 79, "980": [79, 80], "000947": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 83], "095724": 79, "148": 79, "006237": 79, "546": 79, "099340": 79, "514": 79, "006485": 79, "481": 79, "123416": 79, "008165": 79, "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 91, 94], "574915": 79, "31": [79, 80, 82, 83, 85, 87, 91], "575507": 79, "575874": 79, "658": 79, "659": [79, 90], "660": 79, "661": 79, "0800": 79, "454": 79, "453": 79, "455": 79, "791961": 79, "258508": 79, "699010": 79, "183136": 79, "771112": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "fire": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 91], "88": [80, 82, 83, 86, 87, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 91, 92], "32635": 80, "32636": 80, "47": [80, 82, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 91, 94], "44": [80, 82, 86, 87, 91], "71": [80, 82, 83, 87, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": 80, "035": 80, "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87], "98": [80, 81, 82, 90, 91], "452381": 80, "459770": 80, "72": [80, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 91], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92, 94], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 82, 83, 87, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "cleanlearningcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "483": 82, "835": 82, "896": 82, "331": 82, "310": 82, "667": 82, "stderr": [82, 91], "sphinxverbatim": [82, 91, 94], "04it": [82, 91], "57it": [82, 91], "36it": [82, 91], "11it": [82, 91], "31it": [82, 91], "62": [82, 83, 87, 90, 91], "78it": [82, 91], "18it": [82, 91], "54it": [82, 91], "63": [82, 83, 87, 91], "06it": [82, 91], "34it": [82, 91], "85": [82, 87, 90, 91], "92it": [82, 91], "99it": [82, 91], "492": 82, "085": 82, "738": 82, "290": [82, 87], "632": 82, "17it": [82, 91], "23it": [82, 91], "67it": [82, 91], "28it": [82, 91], "98it": [82, 91], "09it": [82, 91], "50it": [82, 91], "21it": [82, 91], "82it": [82, 91], "22it": [82, 91], "30it": [82, 91], "476": 82, "305": [82, 90], "767": 82, "328": [82, 87], "335": 82, "551": 82, "49it": [82, 91], "44it": [82, 91], "96it": [82, 91], "69it": [82, 91], "32it": [82, 91], "55it": [82, 91], "25it": [82, 91], "12it": [82, 91], "69": [82, 83, 90, 91, 94], "60it": [82, 91], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7620": 82, "3692": 82, "3521": 82, "225": [82, 86], "166": 82, "3691": 82, "40378": 82, "943831e": 82, "54473": 82, "066211e": 82, "06": [82, 83, 87, 91, 94], "29412": 82, "899069e": 82, "25316": 82, "984817e": 82, "52247": 82, "245879e": 82, "9581": 82, "19228": 82, "dress": 82, "54078": 82, "000010": 82, "pullov": 82, "32657": 82, "21282": 82, "000011": 82, "11262": 82, "000014": 82, "6294": 82, "30659": 82, "000798": 82, "30968": 82, "000015": 82, "258": 82, "000907": 82, "9762": 82, "54565": 82, "47139": 82, "000017": 82, "001423": 82, "000026": 82, "39992": 82, "39993": 82, "39994": 82, "39995": 82, "7834": 82, "42819": 82, "629362": 82, "51431": 82, "654330": 82, "55548": 82, "658364": 82, "51191": 82, "668572": 82, "50081": 82, "669703": 82, "7834321613629787": 82, "13732": 82, "13733": 82, "13734": 82, "47635": 82, "110901": 82, "974390": 82, "998733": 82, "937117": 82, "998755": 82, "53564": 82, "5473": 82, "trouser": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "638483e": 83, "897052e": 83, "548986e": 83, "924634e": 83, "374580e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87, 94], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "158": 83, "159": [83, 86, 87], "161": 83, "1960": 83, "196": [83, 87], "223": [83, 87], "221": 83, "219": [83, 87], "695174": 83, "323529": 83, "522929": 83, "013722": 83, "675606": 83, "646438": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "121": [83, 93], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": 83, "194": 83, "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87, 94], "169": [83, 94], "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736157": 85, "757738": 85, "782255": 85, "715585": 85, "824273": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070551": 85, "216064": 85, "119178": 85, "alongisd": 85, "244982": 85, "208333": 85, "295978": 85, "294118": 85, "324194": 85, "310345": 85, "355315": 85, "346154": 85, "439728": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "607002": 85, "a0015": 85, "609527": 85, "678571": 85, "a0011": 85, "621101": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "ranked_label_issu": [86, 92, 93], "multioutput": 86, "multioutputclassifi": 86, "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 91], "275": 86, "267": 86, "171": 86, "234": 86, "165": 86, "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87], "216": [86, 87, 94], "265": 86, "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "begin": 87, "detectron2": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "286": 87, "285": 87, "224": 87, "231": 87, "293": 87, "235": 87, "289": [87, 90], "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": 87, "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "239": 87, "240": 87, "209": 87, "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "217": 87, "237": 87, "207": 87, "204": 87, "205": 87, "153": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": 87, "173": 87, "297": 87, "317": 87, "192": 87, "329": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "337": [87, 93], "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "113": [87, 90], "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "suppli": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000154004": 87, "38300759625496356": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "rwightman": 88, "v0": 88, "rsb": 88, "resnet50_a1_0": 88, "14fe96d1": 88, "pth": 88, "checkpoint": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "unusu": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "629763": 90, "521450": 90, "954607": 90, "547234": 90, "338296": 90, "754531": 90, "619090": 90, "312295": 90, "806626": 90, "784048": 90, "identified_issu": [90, 93], "367": 90, "560": 90, "318": 90, "688": 90, "657": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "925": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "area": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "17362": 91, "173608": 91, "58it": 91, "34895": 91, "174610": 91, "72it": 91, "52475": 91, "175150": 91, "77it": 91, "69991": 91, "173938": 91, "91it": 91, "87813": 91, "175471": 91, "95it": 91, "105688": 91, "176578": 91, "81it": 91, "123543": 91, "177216": 91, "89it": 91, "141289": 91, "177290": 91, "20it": 91, "159076": 91, "177466": 91, "176918": 91, "177754": 91, "194876": 91, "178308": 91, "24it": 91, "212708": 91, "178223": 91, "48it": 91, "230531": 91, "178136": 91, "248505": 91, "178619": 91, "00it": 91, "266377": 91, "178647": 91, "43it": 91, "284425": 91, "179193": 91, "302378": 91, "179290": 91, "320347": 91, "179407": 91, "53it": 91, "338297": 91, "179431": 91, "356241": 91, "179348": 91, "374208": 91, "179441": 91, "392153": 91, "175413": 91, "410009": 91, "176338": 91, "427853": 91, "176958": 91, "47it": 91, "445826": 91, "177779": 91, "463613": 91, "177528": 91, "481507": 91, "177946": 91, "35it": 91, "499307": 91, "177661": 91, "517142": 91, "177861": 91, "59it": 91, "535037": 91, "178184": 91, "552923": 91, "178382": 91, "570763": 91, "171086": 91, "588402": 91, "172627": 91, "606160": 91, "174079": 91, "623955": 91, "175220": 91, "83it": 91, "641860": 91, "176352": 91, "97it": 91, "659728": 91, "177041": 91, "677498": 91, "177235": 91, "695298": 91, "177460": 91, "713108": 91, "177648": 91, "731013": 91, "178065": 91, "71it": 91, "748824": 91, "177652": 91, "38it": 91, "766599": 91, "177677": 91, "08it": 91, "784420": 91, "177831": 91, "64it": 91, "802279": 91, "178056": 91, "61it": 91, "820264": 91, "178591": 91, "838197": 91, "178808": 91, "856111": 91, "178905": 91, "874002": 91, "178854": 91, "94it": 91, "891888": 91, "178769": 91, "86it": 91, "909766": 91, "177999": 91, "88it": 91, "927567": 91, "175332": 91, "945109": 91, "172027": 91, "962858": 91, "173626": 91, "980440": 91, "174271": 91, "998071": 91, "174873": 91, "76it": 91, "1015609": 91, "175019": 91, "90it": 91, "1033146": 91, "175119": 91, "66it": 91, "1050707": 91, "175263": 91, "37it": 91, "1068310": 91, "175489": 91, "1086006": 91, "175925": 91, "40it": 91, "1103856": 91, "176693": 91, "74it": 91, "1121527": 91, "176653": 91, "73it": 91, "1139194": 91, "175610": 91, "1156758": 91, "175340": 91, "14it": 91, "1174423": 91, "175726": 91, "52it": 91, "1192038": 91, "175849": 91, "70it": 91, "1209681": 91, "176020": 91, "1227284": 91, "175879": 91, "1244924": 91, "176033": 91, "1262528": 91, "175800": 91, "45it": 91, "1280128": 91, "175857": 91, "1297844": 91, "176243": 91, "1315598": 91, "176628": 91, "10it": 91, "1333326": 91, "176821": 91, "1351011": 91, "176827": 91, "1368694": 91, "176802": 91, "46it": 91, "1386390": 91, "176847": 91, "1404075": 91, "176737": 91, "1421749": 91, "176144": 91, "1439364": 91, "175538": 91, "1456919": 91, "175153": 91, "1474435": 91, "170969": 91, "1491823": 91, "171820": 91, "1509255": 91, "172556": 91, "1526644": 91, "172949": 91, "51it": 91, "1544068": 91, "173330": 91, "1561511": 91, "173656": 91, "01it": 91, "1578882": 91, "173600": 91, "68it": 91, "1596246": 91, "173421": 91, "1613759": 91, "173930": 91, "1631217": 91, "174122": 91, "33it": 91, "1648631": 91, "170877": 91, "1666045": 91, "171838": 91, "1683650": 91, "173084": 91, "1701219": 91, "173858": 91, "1718873": 91, "174654": 91, "1736344": 91, "174622": 91, "1753942": 91, "175023": 91, "1771448": 91, "174993": 91, "1788950": 91, "174751": 91, "1806535": 91, "175076": 91, "1824044": 91, "174947": 91, "1841882": 91, "175973": 91, "1859592": 91, "176306": 91, "1877279": 91, "176473": 91, "1894943": 91, "176520": 91, "1912596": 91, "176219": 91, "1930263": 91, "1947942": 91, "176481": 91, "1965591": 91, "175961": 91, "1983188": 91, "175748": 91, "07it": 91, "2000787": 91, "175815": 91, "2018369": 91, "168730": 91, "26it": 91, "2035840": 91, "170467": 91, "93it": 91, "2053380": 91, "171912": 91, "16it": 91, "2070874": 91, "172804": 91, "2088397": 91, "173519": 91, "2105931": 91, "174057": 91, "2123526": 91, "174619": 91, "2140999": 91, "174636": 91, "87it": 91, "2158470": 91, "174638": 91, "2175968": 91, "174737": 91, "2193446": 91, "174633": 91, "2211104": 91, "175212": 91, "2228891": 91, "176005": 91, "2246705": 91, "176642": 91, "2264371": 91, "176477": 91, "2282020": 91, "176270": 91, "2299648": 91, "176268": 91, "65it": 91, "2317443": 91, "176769": 91, "2335287": 91, "177266": 91, "2353014": 91, "177237": 91, "2370811": 91, "177454": 91, "13it": 91, "2388644": 91, "177713": 91, "2406515": 91, "178008": 91, "2424382": 91, "178202": 91, "2442203": 91, "176953": 91, "39it": 91, "2460064": 91, "177445": 91, "2478011": 91, "178046": 91, "2495859": 91, "178170": 91, "2513719": 91, "178294": 91, "2531550": 91, "177984": 91, "2549350": 91, "177765": 91, "2567127": 91, "177467": 91, "75it": 91, "2584875": 91, "177135": 91, "41it": 91, "2602589": 91, "176761": 91, "2620266": 91, "176400": 91, "2637907": 91, "176353": 91, "2655543": 91, "175946": 91, "2673138": 91, "175874": 91, "2690726": 91, "175848": 91, "2708319": 91, "175869": 91, "29it": 91, "2725906": 91, "170165": 91, "2743530": 91, "171941": 91, "2761055": 91, "172913": 91, "2778599": 91, "173657": 91, "2796132": 91, "174152": 91, "2813713": 91, "174642": 91, "2831215": 91, "85it": 91, "2848781": 91, "175020": 91, "2866288": 91, "174922": 91, "2883784": 91, "174867": 91, "2901274": 91, "174518": 91, "2918784": 91, "174687": 91, "2936508": 91, "175446": 91, "2954190": 91, "175855": 91, "2971867": 91, "176126": 91, "05it": 91, "2989607": 91, "176504": 91, "3007465": 91, "177122": 91, "3025371": 91, "177699": 91, "3043142": 91, "177526": 91, "3060895": 91, "177261": 91, "3078730": 91, "177583": 91, "27it": 91, "3096489": 91, "173439": 91, "3114319": 91, "174869": 91, "3132167": 91, "175934": 91, "19it": 91, "3150036": 91, "176751": 91, "3167884": 91, "177263": 91, "84it": 91, "3185698": 91, "177523": 91, "3203568": 91, "177872": 91, "3221360": 91, "177711": 91, "3239134": 91, "177577": 91, "15it": 91, "3256894": 91, "176368": 91, "3274697": 91, "176860": 91, "3292438": 91, "177021": 91, "3310162": 91, "177081": 91, "3327911": 91, "177201": 91, "3345632": 91, "177070": 91, "3363340": 91, "176560": 91, "3380997": 91, "176297": 91, "3398628": 91, "175923": 91, "3416444": 91, "176583": 91, "3434103": 91, "176134": 91, "3451738": 91, "176195": 91, "3469358": 91, "176027": 91, "3486962": 91, "175916": 91, "3504554": 91, "175282": 91, "3522083": 91, "175175": 91, "3539798": 91, "175762": 91, "3557423": 91, "175905": 91, "3575120": 91, "3592743": 91, "176124": 91, "3610402": 91, "176260": 91, "3628029": 91, "176148": 91, "3645692": 91, "176289": 91, "3663322": 91, "176222": 91, "3680980": 91, "176324": 91, "3698735": 91, "176687": 91, "3716404": 91, "3734091": 91, "176697": 91, "3751761": 91, "176640": 91, "3769457": 91, "176732": 91, "3787209": 91, "176965": 91, "3804906": 91, "176115": 91, "3822589": 91, "3840267": 91, "176456": 91, "3857949": 91, "176561": 91, "3875608": 91, "176566": 91, "3893265": 91, "176410": 91, "3910907": 91, "176281": 91, "3928536": 91, "176164": 91, "3946173": 91, "176221": 91, "3963796": 91, "175821": 91, "79it": 91, "3981379": 91, "175679": 91, "3999029": 91, "175919": 91, "4016746": 91, "176291": 91, "4034376": 91, "176165": 91, "4051993": 91, "176084": 91, "4069602": 91, "175885": 91, "63it": 91, "4087191": 91, "175394": 91, "4104731": 91, "175012": 91, "4122236": 91, "4139739": 91, "174861": 91, "56it": 91, "4157233": 91, "174879": 91, "4174722": 91, "167593": 91, "4192083": 91, "169341": 91, "4209474": 91, "170677": 91, "4226976": 91, "171956": 91, "4244411": 91, "172661": 91, "4261828": 91, "173107": 91, "4279356": 91, "173752": 91, "4296896": 91, "174242": 91, "4314328": 91, "173327": 91, "4331919": 91, "174094": 91, "4349427": 91, "174384": 91, "4367051": 91, "174935": 91, "4384595": 91, "175083": 91, "4402158": 91, "175244": 91, "4419786": 91, "175552": 91, "4437371": 91, "175636": 91, "4455003": 91, "175837": 91, "4472798": 91, "176468": 91, "4490560": 91, "176808": 91, "4508294": 91, "4525991": 91, "176542": 91, "4543710": 91, "4561463": 91, "176966": 91, "4579245": 91, "177220": 91, "4597064": 91, "177506": 91, "4614841": 91, "177581": 91, "4632600": 91, "177414": 91, "4650342": 91, "176810": 91, "4668024": 91, "163789": 91, "4685720": 91, "167519": 91, "4703228": 91, "169696": 91, "4720997": 91, "172024": 91, "4738747": 91, "173631": 91, "4756401": 91, "174489": 91, "4774026": 91, "175007": 91, "4791625": 91, "175295": 91, "4809276": 91, "175653": 91, "4827007": 91, "176143": 91, "4844714": 91, "176418": 91, "4862493": 91, "176823": 91, "4880182": 91, "4897903": 91, "176884": 91, "4915661": 91, "177087": 91, "4933428": 91, "177258": 91, "4951156": 91, "177082": 91, "4968913": 91, "177225": 91, "4986697": 91, "177405": 91, "175774": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "aim": [91, 94], "domin": 91, "extratreesclassifi": 92, "extratre": 92, "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858050": 93, "545854": 93, "826194": 93, "965814": 93, "791923": 93, "646": 93, "390": 93, "628": 93, "702": 93, "863": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a00": 94, "718": 94, "connect": 94, "443": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "mb": 94, "directori": 94, "inflat": 94, "182": 94, "134": 94, "17045998": 94, "16m": 94, "octet": 94, "71m": 94, "8mb": 94, "26m": 94, "4mb": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "000022": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 3, 1, "", "children"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 3, 1, "", "children"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 73, 75, 76, 83, 85, 86], "helper": [1, 14, 34, 38, 40, 41, 42, 43, 44, 45, 57, 80, 82, 94], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 26, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 72, 73, 75, 80, 84, 89], "benchmark": [1, 31, 72, 73, 75, 76, 83, 85, 86], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89], "": [1, 2, 3, 8, 16, 30, 31, 35, 38, 41, 43, 45, 50, 51, 55, 57, 58, 59, 60, 62, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "core": [1, 4, 34, 36, 64, 66, 91], "algorithm": [1, 2, 6, 8, 27, 32, 45, 50, 59, 68, 70, 72, 81, 83, 85, 94], "These": [1, 2, 3, 6, 8, 19, 33, 36, 37, 48, 50, 51, 54, 58, 59, 63, 67, 68, 70, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "introduc": [1, 74, 81, 83], "synthet": [1, 85, 86, 91], "nois": [1, 2, 3, 30, 36, 39, 45, 51, 75, 76, 80, 85], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 19, 20, 25, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 80, 84, 88, 89], "classif": [1, 3, 4, 5, 8, 12, 14, 28, 30, 34, 36, 39, 41, 42, 45, 50, 51, 52, 53, 54, 59, 60, 68, 69, 70, 71, 72, 73, 75, 76, 84, 85, 88, 89, 90, 91], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 34, 35, 36, 39, 41, 45, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 84, 85, 89, 92], "specif": [1, 3, 4, 7, 12, 13, 14, 23, 28, 33, 48, 52, 55, 58, 67, 71, 76, 78, 79, 82, 83, 94], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "modul": [1, 3, 11, 12, 13, 14, 19, 25, 28, 30, 31, 32, 33, 34, 35, 36, 43, 45, 48, 50, 59, 60, 72, 81, 82, 86], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 26, 30, 31, 32, 34, 35, 36, 39, 45, 49, 50, 51, 52, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 92, 93, 94], "gener": [1, 2, 3, 5, 8, 16, 21, 28, 30, 41, 45, 46, 59, 60, 62, 67, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94], "valid": [1, 2, 3, 4, 8, 10, 30, 36, 37, 39, 40, 41, 43, 45, 50, 52, 55, 58, 60, 62, 63, 71, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "matric": [1, 3, 39, 81], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 16, 20, 22, 28, 30, 31, 35, 36, 39, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 26, 28, 32, 33, 34, 35, 36, 38, 40, 45, 48, 50, 52, 59, 61, 63, 66, 70, 72, 74, 75, 78, 79, 80, 82, 84, 85, 90, 93], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "possibl": [1, 2, 3, 8, 30, 31, 35, 36, 38, 39, 41, 52, 53, 54, 55, 57, 58, 59, 60, 62, 68, 70, 71, 76, 81, 83, 85, 86, 87, 90, 91, 94], "noisi": [1, 2, 3, 8, 30, 32, 35, 36, 39, 45, 51, 52, 54, 60, 62, 63, 64, 66, 67, 73, 75, 76, 78, 79, 81, 84, 85], "given": [1, 2, 3, 8, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "matrix": [1, 2, 3, 4, 8, 14, 16, 27, 30, 36, 38, 39, 42, 45, 46, 52, 57, 58, 59, 60, 78, 88], "trace": [1, 75, 76, 83, 85, 86], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 22, 23, 30, 31, 32, 34, 35, 36, 38, 39, 41, 43, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 71, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "more": [1, 2, 3, 4, 5, 8, 11, 14, 16, 22, 30, 31, 34, 35, 38, 41, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 70, 72, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 91, 94], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 22, 26, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 80, 81, 83, 85, 86, 87, 91, 92, 93, 94], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 39, 45, 75, 76, 83, 85, 86], "py": [1, 3, 28, 31, 32, 36, 39, 41, 75, 76, 83, 85, 86], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 34, 36, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 75, 83, 85], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 74, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88, 90, 91, 93], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71], "prior": [1, 2, 3, 30, 36, 39, 41], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 22, 30, 34, 36, 39, 42, 43, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "p": [1, 2, 3, 8, 30, 36, 38, 39, 45, 50, 58, 59, 60, 64, 76, 78, 79, 82, 83, 85, 94], "true_label": [1, 2, 3, 30, 39, 45, 83, 85], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 75, 76, 81, 83, 85, 86, 87, 88, 91, 92, 94], "check": [1, 2, 4, 7, 8, 10, 14, 23, 31, 34, 35, 40, 46, 49, 55, 58, 62, 72, 74, 75, 76, 81, 82, 83, 85, 86, 90, 92, 93], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 22, 32, 35, 39, 41, 43, 57, 62, 76, 79, 81, 83, 85, 86, 88, 90, 93], "achiev": [1, 2, 31, 32, 35, 62, 81, 85, 94], "better": [1, 4, 36, 50, 52, 60, 62, 63, 72, 74, 76, 78, 79, 81, 83, 86, 87, 88, 93, 94], "than": [1, 2, 3, 5, 8, 22, 24, 27, 30, 36, 45, 49, 50, 55, 57, 59, 60, 62, 66, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 94], "random": [1, 2, 3, 5, 8, 16, 27, 34, 41, 50, 60, 62, 74, 75, 76, 78, 81, 82, 83, 85, 86, 88, 92], "perform": [1, 2, 5, 8, 22, 24, 27, 31, 35, 41, 58, 62, 72, 75, 81, 83, 85, 86, 89, 90, 92, 93], "averag": [1, 3, 8, 20, 24, 30, 31, 35, 41, 43, 50, 51, 58, 59, 60, 81, 85, 88], "amount": [1, 3, 82], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 76, 79, 82, 92, 93], "np": [1, 2, 3, 4, 5, 14, 16, 27, 30, 32, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 91, 92, 93, 94], "ndarrai": [1, 2, 3, 4, 14, 21, 22, 26, 27, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 94], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 22, 30, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "shape": [1, 2, 3, 4, 14, 16, 30, 32, 34, 36, 38, 39, 40, 41, 43, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 80, 81, 83, 86, 87, 88, 91, 94], "condit": [1, 2, 3, 39, 44, 45, 60, 82, 83, 94], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 24, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 91, 94], "k_": [1, 2, 3, 39, 45], "k_y": [1, 2, 3, 39, 45], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93], "fraction": [1, 2, 3, 8, 18, 32, 39, 45, 50, 62, 78, 81], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93, 94], "everi": [1, 2, 3, 4, 14, 31, 35, 36, 39, 44, 45, 52, 60, 62, 63, 74, 75, 76, 78, 79, 81, 82, 85, 87, 89, 91, 92, 94], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94], "other": [1, 2, 3, 4, 8, 14, 20, 23, 30, 31, 33, 34, 35, 36, 39, 42, 45, 46, 48, 50, 51, 54, 58, 59, 60, 62, 67, 74, 75, 76, 78, 79, 81, 82, 83, 86, 88, 91, 94], "assum": [1, 2, 3, 10, 36, 39, 44, 45, 60, 64, 67, 81, 88, 91, 94], "column": [1, 2, 3, 4, 8, 10, 11, 26, 30, 34, 36, 39, 41, 42, 44, 45, 50, 51, 52, 54, 55, 58, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 79, 80, 81, 82, 83, 85, 87, 90, 91, 92, 93, 94], "sum": [1, 2, 3, 22, 27, 30, 39, 41, 45, 51, 52, 54, 57, 62, 75, 76, 81, 82, 83, 85, 86, 91, 94], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 80, 81, 89], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 18, 20, 21, 22, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 86, 87, 91, 92, 94], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 34, 35, 36, 41, 44, 45, 50, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 71], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 31, 34, 35, 36, 45, 50, 51, 52, 54, 55, 71, 74, 76, 78, 79, 80, 81, 82, 83, 90, 93, 94], "generate_noisy_label": [1, 75, 76, 83, 85, 86], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 60, 62, 63, 68, 70, 71, 72, 74, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 91, 94], "perfect": [1, 2, 30, 62, 83, 87], "exactli": [1, 3, 8, 30, 31, 35, 36, 53, 59, 75, 76, 78, 79, 82, 83], "yield": [1, 31, 35], "between": [1, 4, 8, 13, 14, 19, 20, 22, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 43, 48, 50, 51, 54, 57, 59, 60, 62, 63, 66, 70, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94], "below": [1, 3, 4, 8, 30, 31, 34, 35, 36, 38, 41, 50, 51, 52, 57, 58, 66, 70, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "we": [1, 2, 3, 4, 5, 8, 11, 20, 31, 34, 35, 36, 41, 45, 46, 50, 57, 58, 60, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "loop": [1, 3, 39, 45, 82], "implement": [1, 2, 3, 4, 7, 12, 20, 31, 32, 34, 35, 39, 45, 62, 72, 74, 75, 78, 88, 89, 92], "what": [1, 4, 7, 8, 14, 28, 30, 32, 34, 36, 50, 51, 55, 57, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "doe": [1, 2, 3, 8, 34, 35, 36, 41, 46, 57, 58, 62, 64, 66, 70, 74, 75, 76, 78, 79, 82, 86, 90, 91, 93], "do": [1, 2, 4, 8, 30, 34, 35, 45, 46, 59, 60, 64, 74, 75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "fast": 1, "explain": [1, 8], "python": [1, 2, 35, 49, 62, 75, 76, 80, 88], "pseudocod": [1, 89], "happen": [1, 8, 36, 52, 79, 85, 91], "n": [1, 2, 3, 4, 5, 30, 31, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 74, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "without": [1, 2, 4, 8, 10, 12, 18, 31, 35, 54, 62, 72, 74, 79, 83, 87, 88, 93], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 40, 43, 44, 45, 49, 50, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "distinct": [1, 16, 45, 94], "natur": [1, 8, 85, 88], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 91, 94], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "count_joint": 1, "len": [1, 2, 3, 5, 30, 34, 39, 44, 45, 46, 59, 60, 62, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93, 94], "y": [1, 2, 3, 4, 6, 16, 26, 27, 35, 39, 41, 45, 46, 49, 58, 62, 63, 74, 75, 76, 78, 81, 83, 85, 86, 88, 90, 93], "round": [1, 34, 36, 45, 62, 81, 90], "astyp": [1, 85], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 41, 42, 43, 44, 45, 51, 52, 54, 58, 59, 60, 62, 64, 66, 67, 68, 71, 74, 75, 82, 88], "rang": [1, 3, 4, 5, 10, 39, 41, 43, 45, 58, 62, 63, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 94], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 30, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94], "pragma": 1, "cover": [1, 3, 73, 80], "choic": [1, 6, 36, 43, 81, 82, 86, 88], "replac": [1, 44, 49, 60, 75, 76, 79, 80, 81, 82, 85, 88, 92, 93], "generate_noise_matrix_from_trac": [1, 75, 76, 83, 85, 86], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 60, 74, 75, 76], "05": [1, 8, 22, 26, 44, 58, 62, 68, 70, 78, 80, 81, 83, 87, 91], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 75, 76, 83, 85, 86], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 81, 82, 83, 85, 86, 91], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 22, 35, 41, 62, 74, 75, 76, 78, 80, 83, 85, 86, 92], "max_it": [1, 74, 79, 88, 93], "10000": [1, 34, 80, 81], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 46, 49, 50, 52, 58, 59, 60, 62, 64, 74, 75, 76, 78, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "diagon": [1, 3, 4, 36, 39, 45], "equal": [1, 3, 8, 10, 52, 57, 67, 89], "creat": [1, 2, 7, 14, 16, 31, 34, 35, 36, 45, 62, 72, 74, 78, 79, 81, 82, 91, 93, 94], "impli": [1, 8, 30, 51, 58], "float": [1, 2, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 40, 41, 43, 44, 45, 50, 51, 52, 54, 57, 58, 62, 66, 70, 74, 75, 76, 83, 85, 86], "entri": [1, 3, 4, 30, 31, 35, 36, 38, 42, 43, 45, 50, 51, 52, 55, 78, 79, 83, 86, 87, 92, 93], "maximum": [1, 8, 59, 67, 71, 91], "minimum": [1, 6, 8, 18, 36, 38, 52, 57, 70], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 22, 31, 35, 36, 57, 62, 75, 81, 83, 85, 87, 88], "default": [1, 2, 3, 4, 5, 8, 12, 14, 24, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 81, 82, 91], "If": [1, 2, 3, 4, 8, 10, 11, 14, 22, 24, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 49, 50, 51, 52, 55, 57, 58, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "have": [1, 2, 3, 4, 8, 14, 19, 22, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 63, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 28, 30, 31, 34, 35, 36, 39, 41, 42, 44, 45, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "necessari": [1, 2, 3, 5, 8, 10, 44, 75], "In": [1, 2, 3, 8, 30, 31, 34, 35, 50, 51, 53, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 22, 23, 24, 27, 31, 35, 45, 50, 54, 58, 62, 67, 71, 72, 74, 76, 79, 81, 85, 86, 88, 90, 92, 93], "satisfi": [1, 3, 30], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 26, 29, 31, 32, 33, 34, 35, 36, 39, 45, 48, 49, 52, 59, 60, 62, 64, 72, 73, 74, 80, 81, 83, 89], "argument": [1, 2, 3, 4, 8, 14, 21, 23, 26, 27, 31, 34, 35, 36, 41, 46, 49, 50, 51, 52, 54, 57, 58, 59, 60, 62, 66, 67, 68, 70, 76, 79, 80, 81, 82, 87, 90, 93, 94], "when": [1, 2, 3, 4, 8, 10, 12, 21, 22, 31, 35, 36, 39, 41, 45, 49, 52, 54, 55, 57, 59, 60, 62, 63, 75, 76, 78, 79, 82, 85, 89, 90, 91, 92, 93, 94], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 49, 50, 51, 52, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "rate": [1, 2, 3, 8, 32, 45, 74, 94], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 40, 41, 43, 45, 49, 50, 52, 55, 57, 58, 59, 60, 62, 64, 66, 67, 75, 76, 78, 79, 81, 85, 86, 88, 89, 90, 91, 92, 93, 94], "note": [1, 2, 3, 5, 6, 8, 23, 27, 31, 34, 35, 36, 41, 45, 50, 55, 57, 58, 59, 60, 62, 63, 67, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "you": [1, 2, 3, 4, 5, 8, 12, 14, 30, 31, 33, 34, 35, 36, 41, 48, 49, 50, 52, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "high": [1, 2, 14, 34, 36, 45, 57, 60, 62, 75, 76, 80, 82, 83, 87, 90, 91, 92, 93, 94], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 25, 30, 31, 33, 34, 35, 36, 39, 41, 45, 50, 51, 55, 57, 58, 59, 60, 62, 64, 67, 71, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94], "imposs": [1, 8, 83], "also": [1, 2, 3, 4, 5, 8, 20, 30, 31, 34, 35, 36, 44, 49, 50, 59, 62, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "low": [1, 8, 45, 50, 72, 75, 76, 79, 83, 87, 91], "zero": [1, 3, 4, 31, 35, 38, 45, 46, 75, 82, 86, 87, 88], "forc": [1, 2, 3, 4, 35, 75, 94], "instead": [1, 2, 3, 8, 11, 14, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 52, 54, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 93, 94], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 22, 26, 30, 31, 34, 35, 36, 38, 39, 44, 45, 49, 50, 59, 60, 62, 64, 66, 70, 71, 72, 74, 75, 76, 79, 82, 85, 86, 87, 88, 89, 90, 91, 93, 94], "guarante": [1, 3, 4, 13, 19, 25, 31, 33, 35, 37, 39, 48, 73], "produc": [1, 2, 4, 8, 14, 41, 50, 60, 62, 64, 66, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "higher": [1, 4, 8, 30, 36, 38, 39, 41, 43, 50, 51, 62, 76, 79, 81, 87], "opposit": [1, 94], "occur": [1, 3, 8, 30, 44, 57, 75, 76, 81, 82, 88], "small": [1, 3, 8, 30, 34, 41, 45, 51, 58, 79, 80, 82, 86, 88, 93], "numpi": [1, 3, 4, 5, 8, 10, 16, 27, 34, 35, 41, 43, 44, 46, 49, 54, 57, 62, 63, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "max": [1, 36, 59, 60, 76, 82, 88], "tri": [1, 31, 35, 89], "befor": [1, 2, 3, 31, 35, 43, 45, 59, 62, 67, 79, 81, 83, 85, 88, 90, 92, 93], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 22, 26, 30, 31, 34, 35, 36, 39, 41, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 90, 91, 92], "left": [1, 2, 36, 38, 43, 45, 52, 55, 58, 75, 76, 86, 87, 88, 91], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 31, 35, 40, 41, 50, 55, 57, 58, 59, 75, 76, 80, 85, 86, 87, 94], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 31, 35, 49, 81, 83, 91], "length": [1, 4, 10, 22, 23, 30, 32, 36, 45, 52, 55, 59, 60, 62, 64, 67, 71, 74, 86, 88, 91, 92, 94], "must": [1, 2, 3, 4, 14, 30, 31, 32, 33, 35, 36, 39, 41, 42, 45, 48, 49, 50, 51, 52, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 85, 89, 91, 94], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 30, 34, 36, 42, 45, 46, 50, 52, 58, 64, 66, 67, 68, 70, 71, 74, 81, 85, 86, 87, 91, 92, 93, 94], "ball": [1, 80], "bin": [1, 3, 52, 75, 76, 88], "ensur": [1, 2, 8, 31, 35, 45, 46, 57, 60, 62, 74, 75, 76, 79, 81, 82, 83, 88, 89, 90, 92, 93], "most": [1, 3, 4, 5, 8, 14, 30, 34, 36, 41, 49, 50, 51, 52, 55, 57, 58, 59, 60, 63, 66, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93], "least": [1, 8, 16, 27, 30, 34, 50, 51, 57, 60, 70, 76, 81, 82, 85, 88, 91], "int_arrai": [1, 45], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 28, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 67, 68, 71, 72, 73, 74, 75, 78, 79, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "model": [2, 3, 4, 8, 14, 16, 26, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 44, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 73, 75, 76, 80, 84, 89, 91, 94], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 29, 30, 31, 34, 35, 36, 39, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 66, 68, 70, 71, 72, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94], "regular": [2, 3, 34, 49], "multi": [2, 3, 8, 30, 31, 34, 35, 36, 40, 41, 42, 45, 46, 51, 52, 53, 54, 59, 60, 72, 81, 83, 84], "task": [2, 4, 5, 8, 10, 12, 13, 14, 26, 28, 30, 34, 39, 41, 42, 43, 45, 50, 52, 60, 62, 72, 74, 79, 80, 81, 83, 86, 88, 91, 93, 94], "cleanlearn": [2, 3, 8, 21, 26, 31, 45, 49, 62, 63, 72, 73, 90, 92, 93], "wrap": [2, 31, 35, 49, 59, 62, 72, 75, 76, 78, 79, 83, 90, 92, 93], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49, 58, 59, 62, 67, 74, 75, 76, 78, 79, 82, 83, 92], "sklearn": [2, 3, 4, 6, 8, 16, 27, 30, 35, 41, 45, 49, 59, 62, 63, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93], "classifi": [2, 3, 35, 41, 45, 50, 53, 59, 60, 72, 73, 74, 78, 79, 81, 85, 86, 88, 89, 91, 92, 93, 94], "adher": [2, 35, 62], "estim": [2, 3, 4, 7, 11, 20, 30, 34, 35, 36, 39, 45, 50, 51, 52, 57, 59, 62, 64, 66, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 94], "api": [2, 3, 12, 49, 59, 62, 73, 81, 90], "defin": [2, 3, 4, 5, 8, 12, 20, 30, 31, 32, 34, 35, 36, 60, 62, 64, 75, 76, 78, 81, 85, 88, 94], "four": [2, 8, 80, 83, 94], "clf": [2, 3, 4, 41, 62, 72, 78, 81, 83, 86, 92], "fit": [2, 3, 4, 6, 8, 16, 35, 49, 59, 62, 72, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94], "sample_weight": [2, 35, 62, 83], "predict_proba": [2, 4, 30, 35, 41, 49, 74, 75, 76, 78, 79, 81, 83, 85, 86, 88, 92], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 24, 26, 30, 34, 35, 36, 38, 39, 41, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 80, 81, 83, 84, 88, 90, 91, 93, 94], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 36, 38, 41, 43, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 88, 90, 92, 93], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 41, 42, 45, 48, 49, 50, 51, 52, 53, 57, 59, 60, 61, 62, 67, 68, 69, 70, 71, 73, 77, 82, 84, 89, 93], "e": [2, 3, 4, 8, 10, 20, 30, 31, 34, 35, 36, 39, 41, 42, 45, 46, 50, 51, 52, 53, 59, 60, 62, 64, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 22, 23, 24, 26, 27, 41, 45, 59, 62, 72, 75, 76, 78, 79, 81, 83, 85, 90, 92], "element": [2, 3, 4, 30, 36, 38, 45, 50, 52, 60, 67, 68, 70, 74, 79, 81, 93, 94], "first": [2, 4, 8, 15, 22, 23, 30, 34, 41, 45, 50, 51, 55, 58, 60, 62, 74, 75, 78, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "index": [2, 8, 22, 30, 36, 44, 45, 46, 51, 60, 62, 67, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "should": [2, 3, 4, 5, 8, 12, 20, 22, 27, 30, 31, 34, 35, 36, 38, 39, 41, 43, 44, 45, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 67, 68, 70, 71, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 38, 39, 41, 44, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 64, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 23, 25, 30, 31, 33, 34, 35, 36, 37, 41, 45, 46, 48, 50, 55, 57, 59, 62, 74, 75, 76, 78, 79, 82, 83, 85, 88, 89, 92], "sampl": [2, 3, 4, 6, 8, 14, 18, 36, 38, 41, 52, 55, 58, 60, 62, 63, 72, 73, 80, 81, 83, 84, 86, 87, 90, 91, 93, 94], "size": [2, 8, 27, 31, 34, 35, 36, 41, 52, 57, 58, 62, 64, 66, 78, 81, 82, 83, 85, 86, 89, 91, 93], "here": [2, 4, 5, 8, 12, 34, 36, 39, 49, 50, 51, 52, 54, 55, 58, 59, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "re": [2, 4, 31, 35, 44, 50, 62, 72, 74, 75, 78, 79, 81, 90, 91, 92, 93, 94], "weight": [2, 8, 31, 32, 35, 41, 50, 57, 60, 62, 74, 75, 76, 79, 88, 93], "loss": [2, 32, 49, 60, 62, 82], "while": [2, 3, 8, 31, 34, 35, 40, 41, 45, 55, 58, 62, 72, 81, 82, 83, 85, 90], "train": [2, 3, 4, 8, 14, 16, 31, 32, 35, 41, 45, 49, 50, 55, 58, 59, 62, 63, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 94], "support": [2, 3, 4, 10, 34, 41, 45, 46, 59, 60, 70, 72, 73, 74, 75, 76, 81, 82], "your": [2, 3, 4, 7, 8, 14, 30, 31, 33, 34, 35, 36, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 66, 67, 73, 74, 78, 80, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "recommend": [2, 4, 8, 11, 14, 34, 36, 50, 75, 76, 81, 82, 89, 90], "furthermor": 2, "correctli": [2, 3, 8, 30, 31, 35, 36, 39, 46, 51, 52, 57, 58, 62, 64, 79, 81, 86, 87, 90, 91, 93], "clonabl": [2, 62], "via": [2, 4, 8, 11, 14, 16, 20, 30, 32, 34, 35, 41, 45, 50, 55, 58, 59, 60, 62, 63, 66, 70, 74, 75, 76, 78, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 57, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 94], "clone": [2, 62, 86], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 54, 58, 62, 68, 73, 75, 81, 83, 85, 86, 88, 94], "multipl": [2, 3, 4, 10, 11, 30, 36, 44, 50, 51, 52, 54, 57, 58, 62, 72, 75, 76, 81, 82, 84, 86, 87, 90], "g": [2, 3, 4, 8, 10, 20, 30, 31, 35, 36, 42, 45, 52, 53, 59, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93], "manual": [2, 62, 74, 81, 88, 89, 90, 92, 93, 94], "pytorch": [2, 31, 32, 35, 62, 72, 74, 81, 84, 86, 91], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 41, 45, 49, 59, 62, 74, 75, 76, 79, 81, 83, 88, 89, 91, 93, 94], "__init__": [2, 32, 62, 82], "independ": [2, 3, 8, 51, 62, 79, 89, 94], "compat": [2, 31, 34, 35, 49, 62, 63, 66, 70, 72, 81, 89, 90, 92, 93], "neural": [2, 32, 49, 59, 62, 74, 81, 82, 86, 88], "network": [2, 31, 32, 35, 49, 59, 62, 74, 79, 81, 82, 86, 88, 93], "typic": [2, 31, 35, 59, 62, 74, 76, 78, 79, 82, 88, 89, 92, 93], "initi": [2, 3, 11, 16, 31, 35, 50, 62, 79, 81, 92], "insid": [2, 35, 62, 81, 83], "There": [2, 3, 72, 83, 85, 86], "two": [2, 3, 8, 16, 22, 30, 31, 34, 35, 42, 45, 55, 57, 58, 73, 75, 76, 78, 79, 81, 82, 83, 86, 90, 91, 93, 94], "new": [2, 5, 12, 20, 31, 34, 35, 40, 44, 45, 50, 62, 74, 75, 79, 80, 81, 88, 89, 93, 94], "notion": 2, "confid": [2, 3, 8, 20, 30, 34, 36, 39, 41, 45, 50, 51, 52, 55, 57, 58, 59, 60, 62, 66, 70, 72, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92, 94], "packag": [2, 4, 5, 7, 8, 9, 13, 29, 33, 36, 37, 45, 48, 55, 58, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "prune": [2, 3, 36, 52, 62, 73, 87], "everyth": [2, 58, 83], "els": [2, 58, 75, 80, 81, 82, 85, 86], "mathemat": [2, 3, 8, 39], "keep": [2, 11, 12, 45, 72, 75, 80, 81, 91], "belong": [2, 3, 8, 30, 36, 38, 39, 51, 52, 53, 54, 59, 60, 64, 68, 70, 71, 76, 78, 79, 82, 83, 86, 88, 91, 94], "2": [2, 3, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 49, 51, 52, 54, 59, 60, 62, 63, 67, 68, 70, 71, 80, 81, 89], "error": [2, 3, 4, 8, 31, 35, 36, 38, 39, 45, 51, 52, 54, 55, 57, 58, 60, 62, 64, 66, 67, 70, 73, 74, 75, 76, 78, 79, 80, 84, 92], "erron": [2, 3, 30, 36, 39, 45, 51, 52, 60, 62, 63, 64, 88, 90], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 34, 41, 43, 44, 50, 54, 57, 62, 63, 68, 70, 71, 72, 78, 79, 81, 86, 87, 88, 90, 91, 92, 93, 94], "linear_model": [2, 4, 30, 45, 62, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logisticregress": [2, 3, 4, 30, 45, 72, 74, 75, 76, 79, 81, 83, 85, 88, 93], "logreg": 2, "cl": [2, 12, 26, 62, 72, 81, 83, 90, 92, 93], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 26, 28, 31, 34, 35, 36, 40, 41, 45, 49, 50, 52, 59, 60, 62, 68, 72, 74, 75, 76, 79, 80, 81, 83, 85, 87, 88, 90, 93], "x_train": [2, 75, 76, 83, 85, 86, 90, 92], "labels_maybe_with_error": 2, "had": [2, 3, 62, 87], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 36, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 77, 84, 85, 89, 90, 93], "pred": [2, 36, 45, 89, 90, 92, 93], "x_test": [2, 75, 76, 83, 86, 90, 92], "might": [2, 50, 62, 67, 75, 76, 81, 82, 92, 93], "case": [2, 3, 11, 30, 41, 50, 62, 74, 75, 76, 78, 80, 81, 82, 83, 88, 90, 92, 93, 94], "standard": [2, 3, 4, 26, 30, 36, 49, 51, 52, 54, 60, 62, 72, 75, 76, 78, 80, 83, 92], "adapt": [2, 31, 33, 45, 48, 62, 88], "skorch": [2, 62, 72, 81], "kera": [2, 48, 62, 72, 81], "scikera": [2, 49, 62, 81], "open": [2, 34, 80, 87, 94], "doesn": [2, 62, 72], "t": [2, 3, 8, 15, 23, 31, 32, 34, 35, 36, 41, 43, 44, 54, 59, 60, 62, 68, 70, 71, 72, 75, 76, 78, 79, 80, 82, 83, 86, 87, 94], "alreadi": [2, 4, 8, 14, 31, 34, 35, 39, 49, 50, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 92, 93], "exist": [2, 4, 8, 10, 16, 31, 34, 35, 44, 49, 55, 57, 59, 62, 72, 73, 75, 76, 79, 85, 86, 93, 94], "made": [2, 4, 14, 62, 79, 81, 82, 85, 87, 89, 90, 92, 93], "easi": [2, 39, 62, 75, 76, 80, 81, 83, 86], "inherit": [2, 5, 32, 62], "baseestim": [2, 35, 62], "yourmodel": [2, 62], "def": [2, 5, 12, 31, 35, 49, 62, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 27, 31, 32, 34, 35, 36, 41, 59, 60, 62, 75, 80, 82, 86, 91, 92, 94], "refer": [2, 8, 14, 31, 35, 51, 52, 54, 55, 57, 58, 62, 66, 67, 75, 76, 78, 79, 81, 82, 83, 89, 90], "origin": [2, 4, 8, 35, 36, 44, 45, 49, 51, 52, 55, 58, 59, 62, 63, 66, 68, 70, 75, 78, 79, 81, 82, 83, 87, 88, 90, 92, 93, 94], "total": [2, 3, 30, 34, 45, 51, 71, 81, 82, 91], "state": [2, 3, 4, 31, 32, 35, 40, 62, 83, 86, 87, 94], "art": [2, 32, 83, 86], "northcutt": [2, 3, 30, 59, 60], "et": [2, 3, 30, 32, 59, 60], "al": [2, 3, 30, 32, 59, 60], "2021": [2, 3, 30, 59, 60], "weak": [2, 58], "supervis": [2, 8, 75, 76, 81, 85], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 33, 34, 35, 36, 40, 44, 45, 48, 55, 58, 59, 60, 62, 64, 68, 70, 73, 75, 84, 89], "uncertainti": [2, 8, 38, 59, 62, 81, 88, 90], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 23, 26, 28, 31, 35, 36, 39, 41, 50, 57, 58, 62, 72, 75, 76, 81, 82, 83, 86, 89], "work": [2, 3, 4, 5, 8, 10, 26, 30, 31, 34, 35, 36, 39, 44, 45, 46, 49, 50, 60, 62, 72, 73, 75, 76, 80, 88, 90, 93], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 33, 34, 35, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 94], "deep": [2, 33, 35, 48, 49, 62, 79], "see": [2, 3, 4, 11, 30, 31, 34, 35, 36, 41, 45, 49, 51, 52, 54, 55, 58, 59, 60, 62, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "subfield": 2, "theori": [2, 83], "machin": [2, 4, 12, 14, 28, 33, 48, 62, 75, 76, 80, 85], "across": [2, 3, 4, 5, 8, 11, 20, 30, 34, 41, 51, 58, 59, 75, 76, 78, 79, 80, 81, 82, 83, 87, 89], "varieti": [2, 81, 92, 93], "like": [2, 3, 4, 5, 8, 12, 28, 30, 31, 34, 35, 36, 39, 45, 49, 50, 51, 54, 55, 57, 60, 62, 63, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "pu": [2, 45], "input": [2, 3, 4, 8, 14, 22, 30, 31, 34, 35, 39, 41, 44, 45, 46, 49, 58, 62, 72, 73, 76, 79, 80, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "discret": [2, 36, 39, 45, 59, 60, 64, 66, 67], "vector": [2, 3, 4, 8, 14, 36, 39, 41, 42, 45, 59, 60, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 93, 94], "would": [2, 3, 4, 31, 34, 35, 36, 45, 52, 62, 72, 75, 81, 82, 83, 88, 90, 93, 94], "obtain": [2, 4, 6, 8, 14, 36, 50, 52, 55, 58, 60, 63, 74, 76, 79, 81, 85, 87, 89, 91, 94], "been": [2, 30, 36, 39, 44, 45, 50, 51, 55, 57, 59, 60, 62, 74, 75, 78, 81, 83, 85, 86, 87, 88, 91, 94], "dure": [2, 8, 14, 59, 62, 74, 78, 79, 81, 83, 86, 89, 90, 92, 93, 94], "denot": [2, 3, 39, 41, 45, 52, 59, 60, 70], "tild": 2, "paper": [2, 8, 50, 59, 68, 70, 80, 83, 85, 88, 90, 94], "cv_n_fold": [2, 3, 62, 93], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 35, 36, 38, 40, 41, 45, 50, 51, 54, 55, 58, 62, 63, 70, 75, 79, 80, 81, 86, 87, 88, 89, 91, 93, 94], "converge_latent_estim": [2, 3], "pulearn": [2, 45], "find_label_issues_kwarg": [2, 8, 62, 73, 81, 83], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 52, 68, 81], "clean": [2, 57, 60, 62, 63, 72, 75, 76, 80, 90, 92, 93], "even": [2, 3, 30, 34, 38, 39, 45, 62, 74, 81, 83, 85, 86, 87], "messi": [2, 62, 83], "ridden": [2, 62], "autom": [2, 62, 72, 76, 80, 81], "robust": [2, 39, 62, 76, 81], "prone": [2, 62], "out": [2, 3, 4, 8, 14, 24, 31, 35, 36, 41, 49, 52, 53, 55, 58, 59, 60, 62, 63, 71, 72, 73, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94], "current": [2, 3, 5, 8, 11, 12, 20, 31, 35, 36, 41, 50, 57, 62, 75, 76, 81, 85], "intend": [2, 11, 12, 13, 14, 28, 37, 50, 66, 70, 74, 75, 76, 79, 83], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 54, 57, 58, 59, 60, 62, 64, 66, 67, 71, 73, 74, 75, 78, 79, 80, 81, 82, 83, 85, 87, 89, 92, 93, 94], "follow": [2, 3, 8, 12, 26, 30, 31, 34, 35, 41, 43, 50, 51, 55, 57, 58, 59, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "experiment": [2, 31, 32, 34, 35, 52, 73, 81], "wrapper": [2, 4, 49, 74, 90, 92, 93], "around": [2, 4, 57, 75, 76, 87, 88, 94], "fasttext": [2, 48], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 59, 62, 78, 79, 80, 81, 91, 92, 93, 94], "along": [2, 41, 52, 70, 75, 76, 81, 82, 88], "dimens": [2, 45, 64, 67, 81, 82, 88, 91], "select": [2, 7, 8, 22, 50, 60, 82, 85, 88], "split": [2, 3, 4, 8, 10, 34, 41, 44, 45, 62, 74, 75, 76, 78, 79, 80, 82, 83, 86, 89, 92, 94], "cross": [2, 3, 8, 30, 36, 39, 40, 41, 52, 55, 58, 60, 62, 63, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 90, 91, 92, 93, 94], "fold": [2, 3, 30, 36, 39, 62, 74, 78, 80, 81, 87, 91, 92], "By": [2, 4, 30, 51, 52, 62, 75, 81, 91], "need": [2, 3, 8, 30, 31, 34, 35, 36, 51, 52, 54, 59, 62, 72, 74, 75, 76, 79, 81, 83, 85, 86, 87, 91, 93], "holdout": [2, 3, 62], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 22, 23, 24, 27, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 45, 50, 51, 52, 54, 57, 58, 59, 60, 62, 63, 64, 66, 72, 73, 75, 76, 80, 83, 84, 86, 87, 88, 90, 91, 93], "them": [2, 3, 4, 5, 7, 8, 9, 10, 23, 29, 31, 33, 34, 35, 36, 48, 50, 59, 62, 73, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94], "numer": [2, 3, 4, 8, 11, 20, 26, 41, 57, 59, 62, 67, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 88, 90, 92, 93], "consist": [2, 3, 31, 35, 45, 50, 91, 94], "latent": [2, 3, 39], "thei": [2, 3, 4, 13, 19, 22, 25, 31, 32, 33, 35, 36, 37, 43, 45, 49, 52, 57, 60, 62, 63, 66, 70, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93, 94], "relat": [2, 3, 11, 17, 18, 22, 23, 24, 27, 39, 45, 51, 62, 76, 79], "close": [2, 3, 8, 34, 39, 59, 74, 75, 76, 78, 79, 81, 82, 83, 87], "form": [2, 3, 8, 31, 32, 35, 39, 44, 45, 60, 62, 81], "equival": [2, 3, 31, 35, 39, 59, 88], "iter": [2, 3, 30, 31, 35, 36, 45, 51, 52, 62, 81, 85, 91], "enforc": [2, 31, 35, 45], "perfectli": [2, 30, 51, 83], "certain": [2, 3, 4, 31, 35, 49, 58, 62, 75, 76, 80, 88], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 34, 35, 36, 40, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 70, 75, 76, 81, 82, 94], "keyword": [2, 3, 4, 8, 14, 21, 23, 26, 31, 34, 35, 36, 38, 41, 44, 49, 50, 52, 59, 60, 62, 68, 70, 75], "filter": [2, 3, 8, 34, 44, 51, 53, 54, 56, 58, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 79, 80, 81, 82, 86, 87, 90, 91, 92, 93, 94], "find_label_issu": [2, 3, 8, 26, 34, 36, 51, 52, 54, 55, 57, 58, 62, 64, 66, 67, 68, 70, 71, 72, 73, 81, 86, 87, 90, 91, 92, 93, 94], "particularli": [2, 72, 85, 88], "filter_bi": [2, 3, 34, 36, 52, 73, 81], "frac_nois": [2, 36, 52, 68, 81], "min_examples_per_class": [2, 36, 52, 76, 81, 83], "impact": [2, 8, 75, 76, 82], "ml": [2, 4, 8, 13, 62, 72, 75, 76, 78, 79, 82, 85, 92, 93], "accuraci": [2, 32, 60, 74, 81, 82, 83, 85, 88, 90, 91, 92, 93], "n_job": [2, 34, 36, 52, 64, 66, 68, 81, 88, 91], "disabl": [2, 31, 35, 36, 88], "process": [2, 3, 5, 11, 14, 34, 36, 44, 50, 52, 58, 64, 66, 68, 74, 75, 81, 85, 89, 93], "caus": [2, 36, 41, 75, 76, 81], "rank": [2, 3, 8, 30, 34, 36, 41, 51, 52, 53, 55, 56, 58, 59, 61, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 81, 86, 87, 88, 90, 91, 92, 93, 94], "get_label_quality_scor": [2, 34, 36, 41, 50, 52, 54, 55, 57, 60, 63, 66, 68, 70, 73, 83, 86, 87, 90, 91, 94], "adjust_pred_prob": [2, 8, 54, 59, 60, 83], "control": [2, 4, 7, 8, 14, 34, 36, 50, 58, 59, 62, 68, 70, 75, 76, 80, 81], "how": [2, 3, 4, 8, 11, 12, 14, 20, 30, 31, 32, 34, 35, 39, 45, 50, 51, 54, 55, 57, 59, 60, 62, 66, 70, 72, 75, 76, 78, 79, 80, 82, 87, 88, 89, 90, 91, 92, 93], "much": [2, 8, 30, 34, 36, 62, 81, 83, 85, 88], "output": [2, 3, 4, 8, 14, 31, 32, 35, 39, 45, 49, 50, 51, 55, 57, 58, 59, 62, 66, 67, 70, 71, 72, 73, 74, 75, 79, 80, 81, 82, 87, 88, 89, 90, 93], "print": [2, 4, 5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 45, 50, 51, 52, 57, 59, 60, 62, 64, 66, 67, 71, 73, 74, 76, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "suppress": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67, 91, 94], "statement": [2, 34, 50, 57, 59, 60, 62, 64, 66, 67], "big": [2, 34, 52, 58, 62, 83], "limit": [2, 4, 14, 34, 52, 87, 91, 94], "memori": [2, 31, 34, 35, 52, 58, 64, 66, 75, 91], "label_issues_batch": [2, 33, 52, 81], "find_label_issues_batch": [2, 34, 52, 81], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 22, 24, 27, 30, 34, 36, 38, 39, 40, 41, 42, 45, 46, 50, 51, 52, 54, 55, 58, 59, 60, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 92, 93], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 24, 26, 27, 34, 57, 58, 59, 60, 66, 70, 75, 87, 88, 91, 94], "inverse_noise_matrix": [2, 3, 8, 39, 45, 73, 83], "label_issu": [2, 34, 36, 52, 55, 62, 64, 73, 74, 79, 81, 82, 83, 90, 92, 93], "clf_kwarg": [2, 3, 8, 62], "clf_final_kwarg": [2, 62], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 30, 34, 36, 38, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 70, 72, 74, 78, 79, 82, 83, 85, 87, 89, 90], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 34, 35, 36, 38, 43, 45, 52, 54, 55, 58, 60, 62, 63, 64, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 92, 93, 94], "identifi": [2, 3, 4, 5, 8, 10, 14, 23, 28, 30, 34, 36, 52, 55, 58, 60, 62, 63, 64, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 90, 91, 92, 93, 94], "final": [2, 8, 62, 78, 87, 89, 90, 92], "remain": [2, 62, 73, 82, 90, 92, 93, 94], "datasetlik": [2, 45, 62], "beyond": [2, 4, 5, 7, 9, 29, 72, 91], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 40, 49, 50, 51, 62, 70, 74, 75, 76, 78, 79, 81, 83, 85, 90, 92, 93, 94], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 34, 40, 45, 46, 49, 50, 51, 62, 67, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 90, 91, 93, 94], "scipi": [2, 4, 11, 45], "spars": [2, 4, 8, 11, 14, 16, 27, 45, 46, 78], "csr_matrix": [2, 4, 11, 14, 16, 27], "torch": [2, 31, 32, 35, 74, 79, 80, 82, 88, 93], "util": [2, 4, 8, 14, 28, 31, 32, 35, 37, 50, 62, 72, 73, 74, 75, 76, 81, 82, 83, 88], "tensorflow": [2, 45, 49, 72, 74, 81], "object": [2, 4, 8, 10, 11, 14, 28, 31, 32, 34, 35, 41, 45, 46, 49, 52, 55, 56, 57, 58, 59, 62, 70, 72, 74, 76, 78, 82, 83, 84, 90, 93], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 36, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 66, 67, 68, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 86, 87, 90, 93, 94], "index_list": 2, "subset": [2, 3, 4, 14, 30, 34, 36, 45, 60, 67, 71, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 92, 93, 94], "wa": [2, 3, 10, 12, 34, 45, 50, 51, 57, 59, 71, 74, 75, 76, 78, 79, 81, 83, 86, 87, 89, 91, 92, 93, 94], "abl": [2, 3, 8, 62, 74, 81, 83, 85, 86], "format": [2, 3, 4, 8, 10, 31, 34, 35, 36, 39, 40, 41, 42, 45, 46, 49, 50, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 70, 71, 75, 76, 78, 80, 82, 85, 90, 91, 92, 94], "make": [2, 3, 16, 31, 34, 35, 41, 49, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "sure": [2, 34, 36, 41, 74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 92, 93], "shuffl": [2, 8, 45, 74, 79, 82, 86, 88], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 35, 39, 41, 44, 45, 50, 55, 57, 62, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "batch": [2, 34, 45, 49, 50, 64, 66, 81, 82, 88], "order": [2, 4, 8, 30, 31, 35, 36, 39, 40, 41, 45, 50, 51, 52, 55, 58, 59, 60, 64, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 87, 90, 91, 93, 94], "destroi": [2, 45], "oper": [2, 31, 34, 35, 45, 49, 60, 72, 79, 88, 92, 93], "eg": [2, 8, 45, 55, 58, 75, 76, 81], "repeat": [2, 45, 50, 85, 88], "appli": [2, 31, 35, 36, 41, 42, 44, 45, 54, 59, 68, 74, 75, 76, 78, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93], "array_lik": [2, 3, 30, 36, 45, 52, 59, 63], "some": [2, 3, 4, 8, 12, 20, 30, 31, 33, 35, 36, 39, 44, 45, 48, 50, 51, 52, 54, 55, 58, 59, 60, 62, 64, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "seri": [2, 3, 34, 45, 46, 62, 70, 81], "row": [2, 3, 4, 8, 11, 23, 30, 34, 36, 38, 39, 45, 50, 51, 52, 54, 59, 60, 62, 67, 68, 70, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 88, 92, 94], "rather": [2, 3, 22, 30, 45, 49, 50, 57, 66, 70, 85, 89, 91, 93, 94], "leav": [2, 36], "per": [2, 3, 11, 30, 34, 36, 41, 44, 50, 51, 52, 54, 57, 58, 60, 63, 64, 66, 70, 76, 81, 87, 94], "determin": [2, 3, 8, 14, 20, 22, 26, 30, 34, 36, 41, 45, 50, 52, 55, 57, 60, 66, 70, 75, 81, 85, 88, 90], "cutoff": [2, 3, 88], "consid": [2, 3, 4, 8, 11, 14, 21, 22, 24, 27, 30, 31, 35, 36, 45, 50, 57, 59, 60, 63, 66, 70, 74, 76, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 93], "section": [2, 3, 5, 8, 73, 78, 82], "3": [2, 3, 4, 5, 8, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 45, 49, 52, 59, 60, 62, 63, 68, 70, 80, 81, 89], "equat": [2, 3, 39], "advanc": [2, 3, 4, 7, 8, 14, 57, 59, 70, 73, 76, 77, 83], "user": [2, 3, 4, 8, 12, 14, 23, 28, 31, 35, 36, 57, 59, 60, 62, 66, 70, 83], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 27, 28, 31, 34, 35, 36, 41, 44, 50, 51, 52, 55, 57, 59, 60, 62, 63, 71, 73, 74, 76, 79, 82, 85, 87, 90, 93], "automat": [2, 3, 4, 22, 30, 72, 78, 79, 80, 81, 82, 85, 87, 90, 91, 92, 93, 94], "greater": [2, 3, 4, 7, 8, 24, 34, 45, 57, 76, 80, 81, 94], "count": [2, 20, 22, 30, 34, 36, 39, 45, 51, 52, 58, 73, 81, 82], "observ": [2, 3, 39, 74, 75, 76, 85, 88, 90], "mislabel": [2, 8, 30, 34, 36, 39, 50, 51, 52, 55, 57, 60, 66, 68, 70, 72, 74, 78, 79, 81, 82, 83, 86, 87, 90, 92, 93], "one": [2, 3, 4, 8, 22, 30, 31, 34, 35, 36, 41, 45, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 82, 85, 88, 89, 90, 92, 93, 94], "get_label_issu": [2, 34, 62, 83, 90, 92, 93], "either": [2, 3, 5, 8, 31, 34, 35, 36, 50, 52, 57, 59, 60, 64, 66, 76, 86, 87], "boolean": [2, 5, 8, 20, 34, 36, 44, 50, 52, 55, 60, 62, 64, 66, 67, 72, 74, 76, 79, 81, 82, 87, 90, 91, 93], "label_issues_mask": [2, 36, 60, 62, 73], "indic": [2, 3, 4, 5, 8, 11, 20, 30, 34, 35, 36, 38, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "its": [2, 4, 7, 8, 14, 31, 34, 35, 36, 43, 44, 52, 55, 58, 59, 60, 62, 64, 68, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93, 94], "return_indices_ranked_bi": [2, 34, 36, 52, 68, 73, 81, 83, 86, 92, 93], "significantli": [2, 82, 83, 85, 89], "reduc": [2, 34, 36, 45, 74, 81], "time": [2, 8, 31, 34, 35, 45, 50, 73, 75, 80, 81, 82, 83, 87, 88, 90, 91, 92, 93, 94], "take": [2, 4, 8, 30, 31, 35, 40, 41, 45, 49, 60, 78, 82, 85, 92, 94], "run": [2, 4, 5, 7, 9, 12, 14, 22, 23, 29, 31, 34, 35, 62, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "skip": [2, 8, 31, 35, 62, 74, 81, 86, 94], "slow": [2, 3], "step": [2, 5, 22, 41, 58, 81, 82, 83, 85, 89], "caution": [2, 4, 81], "previous": [2, 4, 11, 45, 59, 62, 73, 74, 75, 78, 79, 85, 89, 92], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 40, 41, 45, 62, 75, 78, 81, 82, 90, 91, 92, 94], "individu": [2, 8, 11, 22, 31, 35, 50, 54, 57, 60, 62, 68, 70, 73, 76, 78, 81, 85, 86, 87, 92, 94], "still": [2, 34, 35, 45, 59, 81, 82, 88, 92], "extra": [2, 31, 35, 45, 49, 50, 51, 62, 79, 81, 82, 85, 88], "receiv": [2, 8, 31, 35, 51, 54, 55, 62, 64, 68, 76, 87], "overwritten": [2, 62], "callabl": [2, 3, 41, 44, 49, 54, 81], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 34, 35, 40, 44, 45, 58, 60, 62, 67, 74, 75, 76, 81, 82, 83, 86, 94], "appropri": [2, 8, 14, 52, 60, 75, 78, 86, 87], "earli": [2, 82], "stop": [2, 82], "x_valid": 2, "y_valid": 2, "could": [2, 8, 20, 30, 45, 59, 75, 78, 82, 86, 90, 92, 94], "f": [2, 5, 74, 75, 78, 79, 80, 81, 82, 83, 85, 86, 88, 90, 92, 93], "ignor": [2, 31, 35, 44, 49, 62, 67, 71, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "allow": [2, 30, 31, 34, 35, 38, 45, 50, 58, 59, 62, 64, 66, 74, 81, 82, 89, 91, 93], "access": [2, 8, 11, 31, 35, 62, 76, 82, 86], "hyperparamet": [2, 54, 59, 82], "purpos": [2, 75, 76, 81, 86, 90], "want": [2, 4, 8, 30, 34, 46, 50, 52, 62, 75, 79, 80, 82, 85, 87, 88, 89, 91, 93, 94], "explicitli": [2, 6, 8, 35, 62], "yourself": [2, 4, 34, 76], "altern": [2, 5, 8, 41, 45, 49, 50, 60, 73, 74, 78, 79, 81, 82, 83, 85, 86, 88, 90, 93], "same": [2, 3, 4, 5, 8, 10, 12, 14, 22, 26, 31, 34, 35, 36, 45, 49, 50, 52, 59, 60, 62, 66, 67, 70, 71, 72, 75, 76, 78, 79, 81, 82, 87, 88, 89, 90, 91, 92, 93], "effect": [2, 8, 23, 31, 35, 50, 59, 62, 78, 79, 81, 82, 88], "offer": [2, 4, 74, 75, 76, 79, 81, 83, 86, 93], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 50, 62, 75, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 93], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 59, 62, 75, 92], "label_issues_df": [2, 62, 82], "similar": [2, 8, 30, 31, 35, 45, 50, 54, 55, 57, 59, 62, 66, 70, 75, 76, 78, 79, 81, 82, 83, 87, 88, 91], "document": [2, 3, 4, 8, 12, 14, 30, 31, 34, 35, 36, 41, 44, 49, 51, 52, 54, 57, 58, 59, 62, 66, 67, 68, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "descript": [2, 4, 5, 8, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 45, 55, 62, 75, 76], "were": [2, 3, 4, 30, 35, 51, 57, 70, 74, 78, 81, 83, 85, 87, 89, 91, 92], "present": [2, 3, 4, 8, 10, 11, 18, 30, 45, 59, 67, 72, 78, 81, 82, 88], "actual": [2, 3, 4, 30, 50, 51, 60, 76, 81, 83, 94], "num_class": [2, 30, 34, 45, 49, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 92, 93], "uniqu": [2, 27, 45, 67, 75, 81, 86, 88], "given_label": [2, 4, 26, 30, 39, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93, 94], "normal": [2, 3, 16, 22, 27, 36, 38, 41, 43, 44, 45, 60, 81, 83, 88], "trick": [2, 81], "distribut": [2, 3, 4, 8, 22, 24, 30, 35, 36, 40, 43, 50, 58, 59, 60, 72, 75, 76, 78, 79, 82, 88], "account": [2, 30, 50, 54, 59, 60, 79, 81, 83, 85, 86, 88, 90, 93], "word": [2, 3, 44, 70, 71, 81], "remov": [2, 8, 27, 30, 31, 35, 36, 62, 72, 79, 80, 81, 82, 88, 90, 92, 93], "so": [2, 3, 4, 5, 8, 12, 22, 30, 31, 34, 35, 36, 45, 50, 51, 57, 60, 62, 66, 70, 74, 75, 76, 79, 82, 83, 88, 91], "proportion": [2, 8, 36], "just": [2, 3, 4, 8, 11, 30, 32, 34, 45, 49, 60, 62, 64, 72, 73, 74, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 93], "procedur": 2, "get": [2, 3, 4, 6, 11, 27, 31, 32, 35, 36, 41, 44, 45, 50, 52, 54, 59, 60, 62, 63, 64, 72, 74, 79, 80, 81, 82, 83, 88, 89, 90, 92, 93], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 24, 43, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 69, 72, 75, 77, 82, 84, 86, 90, 91, 92, 93, 94], "arg": [2, 10, 20, 23, 27, 31, 32, 35, 41, 45, 60, 62], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 41, 49, 62, 64, 66, 68, 81], "test": [2, 8, 22, 35, 41, 49, 62, 72, 75, 76, 78, 79, 82, 89, 90, 92, 93, 94], "expect": [2, 3, 31, 35, 36, 41, 50, 59, 60, 62, 81, 83, 85, 86, 87, 90, 92, 93, 94], "class_predict": 2, "evalu": [2, 8, 31, 32, 34, 35, 58, 62, 74, 75, 76, 81, 82, 83, 85, 89, 90, 91, 92, 93], "simpli": [2, 30, 60, 75, 76, 78, 79, 81, 83, 90, 91, 93, 94], "quantifi": [2, 4, 5, 8, 11, 36, 54, 59, 62, 72, 76, 78, 79, 82, 83, 87], "save_spac": [2, 8, 62], "potenti": [2, 8, 30, 36, 44, 52, 55, 58, 60, 62, 64, 66, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "cach": [2, 79, 88, 93], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 45, 46, 49, 50, 51, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 90, 91, 92, 93], "unlik": [2, 8, 36, 38, 41, 49, 51, 52, 54, 70, 75, 85, 86, 88, 90], "both": [2, 4, 8, 14, 22, 30, 31, 35, 36, 45, 50, 52, 60, 64, 66, 71, 72, 75, 81, 82, 83, 85, 94], "mask": [2, 34, 36, 44, 45, 52, 55, 60, 62, 64, 66, 67, 72, 80, 81, 85, 87, 91, 94], "prefer": [2, 60, 68], "plan": 2, "subsequ": [2, 3, 31, 35, 79, 81, 83, 87, 93], "invok": [2, 31, 35, 83, 89], "scratch": [2, 62], "To": [2, 4, 5, 7, 8, 9, 11, 14, 22, 29, 31, 34, 35, 36, 49, 50, 52, 54, 58, 59, 60, 62, 63, 64, 66, 72, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "share": [2, 60, 62], "mostli": [2, 45, 57, 62], "longer": [2, 40, 44, 62, 73, 79, 81, 87, 93], "info": [2, 4, 5, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 62, 70, 75, 76, 80, 81, 94], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 32, 34, 38, 50, 51, 54, 58, 62, 67, 70, 74, 75, 78, 79, 80, 81, 82, 83, 85, 88], "docstr": [2, 30, 31, 35, 45, 62, 80, 83], "unless": [2, 31, 35, 62, 81], "our": [2, 3, 8, 49, 50, 60, 62, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "is_label_issu": [2, 26, 62, 74, 75, 76, 78, 79, 82, 83, 90, 93], "entir": [2, 8, 22, 34, 36, 39, 51, 52, 57, 60, 62, 64, 66, 67, 72, 75, 76, 79, 81, 82, 83, 87, 88, 89, 91, 94], "accur": [2, 3, 4, 8, 14, 30, 34, 36, 50, 51, 52, 55, 58, 60, 62, 63, 64, 66, 67, 73, 76, 78, 79, 81, 82, 85, 90], "label_qu": [2, 50, 62, 83, 85, 90, 93], "measur": [2, 30, 50, 51, 62, 72, 80, 81, 83, 85, 86, 91, 92, 94], "qualiti": [2, 3, 4, 5, 8, 11, 26, 27, 30, 34, 36, 38, 41, 50, 51, 52, 54, 55, 57, 60, 62, 63, 66, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 84, 90, 92, 93], "lower": [2, 4, 5, 8, 11, 24, 34, 41, 43, 50, 51, 54, 57, 58, 60, 62, 63, 66, 70, 74, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 93, 94], "eas": 2, "comparison": [2, 31, 35, 58, 83, 85, 90], "against": [2, 31, 35, 75, 78, 81, 85, 86], "predicted_label": [2, 4, 26, 62, 67, 71, 74, 75, 76, 78, 79, 82, 83, 90, 91, 93], "ad": [2, 31, 35, 76, 85, 90], "precis": [2, 52, 55, 58, 81, 83, 91, 94], "definit": [2, 5, 62, 78, 92], "accessor": [2, 62], "describ": [2, 8, 16, 50, 59, 60, 62, 68, 70, 83, 85, 86, 87, 89, 94], "precomput": [2, 4, 39, 62, 80], "clear": [2, 62, 79, 90, 93], "save": [2, 4, 14, 31, 34, 35, 58, 62, 81, 87, 91, 94], "space": [2, 8, 59, 62, 78, 80, 82], "place": [2, 31, 35, 45, 62, 85, 92], "larg": [2, 34, 62, 78, 79, 81, 82, 88, 91, 94], "deploi": [2, 62, 78, 79, 81, 82], "care": [2, 8, 31, 35, 62, 79, 81, 83], "avail": [2, 4, 5, 10, 12, 28, 35, 62, 81, 83, 85, 87, 90], "cannot": [2, 4, 10, 12, 45, 89, 94], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 35, 41, 62], "__init_subclass__": [2, 35, 62], "set_": [2, 35, 62], "_request": [2, 35, 62], "pep": [2, 35, 62], "487": [2, 35, 62], "look": [2, 4, 5, 14, 31, 35, 45, 62, 67, 75, 76, 78, 79, 81, 83, 85, 86, 87, 88, 91, 92, 94], "inform": [2, 4, 5, 8, 11, 14, 28, 31, 35, 45, 50, 51, 55, 58, 62, 67, 70, 71, 72, 74, 75, 78, 79, 83, 85, 88, 91, 94], "__metadata_request__": [2, 35, 62], "infer": [2, 35, 45, 62, 67, 71, 82, 85, 86, 90, 92, 93], "signatur": [2, 31, 35, 62], "accept": [2, 31, 35, 60, 62, 75, 76], "metadata": [2, 35, 62, 78, 79, 82, 94], "through": [2, 4, 5, 35, 62, 74, 76, 79, 80, 81, 85, 88, 90, 93], "develop": [2, 7, 35, 62, 81, 83, 94], "request": [2, 35, 62, 76, 79, 80, 86, 92, 93, 94], "those": [2, 3, 8, 34, 35, 36, 49, 50, 52, 58, 62, 66, 70, 71, 72, 74, 81, 82, 87, 91], "http": [2, 4, 5, 7, 8, 9, 16, 29, 31, 32, 34, 35, 38, 45, 59, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "www": [2, 35, 62, 88], "org": [2, 16, 31, 32, 35, 45, 59, 62, 81, 83, 94], "dev": [2, 35, 62], "0487": [2, 35, 62], "get_metadata_rout": [2, 35, 62], "rout": [2, 35, 62], "pleas": [2, 31, 35, 49, 62, 72, 74, 75, 76, 79, 80, 81, 82, 83, 85, 86, 88, 90, 93, 94], "guid": [2, 5, 35, 62, 73, 82], "mechan": [2, 31, 35, 62], "metadatarequest": [2, 35, 62], "encapsul": [2, 14, 35, 57, 62], "get_param": [2, 35, 49, 62], "subobject": [2, 35, 62], "param": [2, 8, 31, 35, 49, 59, 62, 81], "name": [2, 4, 5, 8, 10, 11, 30, 31, 35, 40, 41, 45, 49, 50, 51, 58, 62, 67, 71, 74, 76, 79, 80, 81, 82, 83, 86, 91, 93, 94], "set_fit_request": [2, 35, 62], "union": [2, 3, 4, 10, 34, 35, 41, 45, 46, 52, 58, 62, 66, 70, 81], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 34, 35, 36, 39, 41, 44, 45, 49, 50, 51, 55, 57, 58, 60, 62, 67, 71, 74, 75, 81, 85, 86, 94], "unchang": [2, 31, 35, 62, 94], "relev": [2, 14, 22, 35, 62, 82], "enable_metadata_rout": [2, 35, 62], "set_config": [2, 35, 62], "meta": [2, 35, 62], "rais": [2, 4, 10, 11, 31, 35, 38, 41, 62, 81], "alia": [2, 31, 35, 62], "metadata_rout": [2, 35, 62], "retain": [2, 35, 45, 62], "chang": [2, 31, 34, 35, 38, 62, 70, 74, 75, 79, 81, 87, 88, 93, 94], "version": [2, 4, 5, 7, 8, 9, 13, 19, 25, 29, 31, 33, 35, 37, 38, 45, 48, 49, 60, 62, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93, 94], "sub": [2, 35, 57, 62], "pipelin": [2, 35, 62], "otherwis": [2, 8, 30, 31, 34, 35, 36, 42, 44, 45, 52, 59, 62, 64, 66, 67, 71, 79, 81, 93], "updat": [2, 11, 31, 34, 35, 62, 73, 75, 82], "set_param": [2, 35, 49, 62], "simpl": [2, 31, 35, 36, 50, 60, 62, 75, 76, 78, 79, 82, 85, 88, 90, 92, 93], "well": [2, 3, 8, 31, 35, 38, 39, 50, 52, 58, 60, 62, 67, 70, 71, 73, 75, 76, 78, 79, 81, 82, 83, 85, 87, 88], "nest": [2, 31, 35, 62, 68, 70, 71, 94], "latter": [2, 31, 35, 62, 88], "compon": [2, 35, 62], "__": [2, 35, 62], "set_score_request": [2, 62], "structur": [3, 59, 78, 92], "unobserv": 3, "less": [3, 4, 8, 27, 34, 41, 50, 59, 60, 64, 66, 70, 76, 78, 80, 81, 82, 83, 87, 94], "channel": [3, 74, 83], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 30, 39, 45, 51, 76, 80, 93], "inv": 3, "confident_joint": [3, 20, 30, 36, 45, 51, 52, 73, 81, 83], "un": 3, "under": [3, 8, 31, 35, 51, 58, 59, 76, 78, 79, 82, 83, 88], "joint": [3, 30, 36, 39, 45, 51, 52, 80], "num_label_issu": [3, 34, 36, 52, 67, 71, 73], "estimation_method": [3, 34], "off_diagon": 3, "multi_label": [3, 30, 36, 45, 46, 52, 86], "don": [3, 72, 76, 78, 79, 82, 83, 87], "statis": 3, "compute_confident_joint": [3, 30, 36, 45, 52, 83], "off": [3, 36, 45, 57, 82, 83, 87, 88], "j": [3, 4, 30, 31, 35, 36, 52, 55, 58, 59, 68, 70, 71, 75, 76, 83, 91, 94], "confident_learn": [3, 36, 52, 83], "off_diagonal_calibr": 3, "calibr": [3, 36, 45, 50, 85], "cj": [3, 39, 45], "axi": [3, 27, 39, 41, 43, 64, 67, 74, 75, 76, 81, 82, 83, 85, 86, 88, 90, 91], "bincount": [3, 75, 76, 83, 85, 86], "alwai": [3, 8, 31, 35, 45, 74, 83, 90, 92, 93], "estimate_issu": 3, "over": [3, 8, 31, 34, 35, 57, 58, 64, 66, 76, 78, 80, 81, 82, 83, 88, 90, 92], "As": [3, 5, 72, 75, 76, 79, 83, 90, 94], "add": [3, 4, 5, 11, 31, 35, 49, 58, 74, 75, 76, 79, 81, 82, 83, 86, 93], "approach": [3, 30, 34, 36, 78, 83, 86, 88, 90, 92], "custom": [3, 5, 8, 9, 26, 31, 34, 35, 41, 44, 60, 76, 79, 83, 93], "know": [3, 75, 76, 78, 79, 81, 82, 83, 85], "cut": [3, 57, 72, 83], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 88, 94], "underestim": 3, "few": [3, 58, 72, 76, 81, 85, 86, 87, 88, 94], "4": [3, 4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 40, 41, 44, 54, 55, 57, 58, 60, 63, 70, 80, 81, 86, 91, 94], "detail": [3, 4, 8, 12, 14, 30, 31, 35, 41, 45, 49, 50, 51, 52, 54, 55, 57, 58, 59, 66, 67, 68, 72, 73, 74, 86, 88, 94], "num_issu": [3, 5, 34, 74, 75, 76, 78, 79, 82, 83], "calibrate_confident_joint": 3, "up": [3, 8, 15, 22, 23, 26, 36, 41, 50, 80, 81, 87, 90, 93, 94], "p_": [3, 30, 36], "pair": [3, 4, 8, 30, 36, 83], "v": [3, 8, 34, 51, 52, 54, 60, 75, 76, 86, 88, 89], "rest": [3, 4, 5, 7, 8, 9, 29, 51, 52, 54, 62, 75, 76, 78, 79, 81, 82, 83, 85, 90, 92, 93], "fashion": [3, 4, 64, 92], "2x2": 3, "incorrectli": [3, 30, 51, 52, 55, 78, 94], "calibrated_cj": 3, "c": [3, 8, 44, 52, 60, 72, 74, 75, 76, 78, 79, 81, 83, 86, 88, 89, 90, 92], "whose": [3, 4, 8, 24, 31, 35, 39, 44, 50, 54, 57, 63, 66, 70, 71, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 91, 94], "truli": [3, 88, 91], "estimate_joint": [3, 30, 83], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 52, 58, 83, 87, 89, 91, 94], "return_indices_of_off_diagon": 3, "frequenc": [3, 22, 50, 51, 58, 67, 88], "done": [3, 8, 62, 75, 81, 83, 86, 88, 89], "overfit": [3, 8, 55, 58, 74, 75, 76, 78, 79, 82, 89, 92], "classifict": 3, "singl": [3, 4, 22, 30, 31, 35, 41, 42, 45, 50, 51, 57, 58, 59, 60, 70, 74, 75, 81, 83, 86, 87, 92], "baselin": [3, 31, 36, 88, 90, 93], "proxi": 3, "tupl": [3, 27, 31, 35, 39, 40, 42, 44, 45, 50, 52, 58, 66, 68, 70, 71, 74, 94], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 34, 39, 50, 64, 66, 72, 81, 82, 91, 93], "practic": [3, 76, 82, 83, 88, 90, 92, 93], "complet": [3, 74, 75, 76, 78, 79, 81, 82, 83, 87], "gist": 3, "cj_ish": 3, "guess": [3, 39, 83, 85], "8": [3, 4, 5, 6, 40, 41, 42, 44, 54, 68, 70, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "parallel": [3, 36, 58, 68, 80], "again": [3, 49, 81, 88, 92], "simplifi": [3, 12], "understand": [3, 7, 30, 51, 58, 76, 83, 90, 91, 94], "100": [3, 31, 35, 60, 75, 76, 78, 80, 81, 82, 83, 86, 91, 92, 93, 94], "optim": [3, 31, 32, 35, 49, 82, 85], "speed": [3, 36, 80, 81, 90, 93], "dtype": [3, 21, 22, 27, 31, 35, 44, 45, 54, 70, 74, 87], "enumer": [3, 31, 35, 74, 75, 76, 82, 94], "s_label": 3, "confident_bin": 3, "6": [3, 4, 35, 41, 45, 70, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "num_confident_bin": 3, "argmax": [3, 36, 60, 64, 67, 74, 81, 83, 88, 91], "elif": 3, "estimate_lat": 3, "py_method": [3, 39], "cnt": [3, 39], "1d": [3, 4, 14, 34, 36, 41, 42, 45, 46, 54, 63, 74, 92], "eqn": [3, 39], "margin": [3, 36, 39, 41, 60], "marginal_p": [3, 39], "shorthand": [3, 11], "proport": [3, 8, 30, 51, 83, 89], "poorli": [3, 39, 92], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 83], "variabl": [3, 5, 12, 23, 45, 62, 63, 74, 75, 78, 83, 86, 90], "exact": [3, 39, 75, 76, 78, 82, 92], "within": [3, 4, 8, 13, 31, 32, 35, 37, 52, 57, 66, 68, 70, 75, 76, 81, 82, 87, 91], "percent": 3, "often": [3, 30, 39, 51, 81, 83, 89, 91], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 45, 46, 58, 74, 75, 78, 79, 81, 82, 87, 88, 93], "wai": [3, 4, 49, 72, 73, 74, 75, 76, 78, 79, 81, 83, 85, 86, 87, 89, 92, 93], "pro": 3, "con": 3, "pred_proba": [3, 89], "combin": [3, 30, 75, 80, 81, 82, 83, 89, 90], "becaus": [3, 39, 45, 57, 79, 81, 83, 85, 87], "littl": [3, 34, 80, 87, 94], "uniform": [3, 60, 80, 81, 83], "20": [3, 5, 71, 74, 76, 79, 80, 81, 82, 83, 91, 94], "Such": [3, 82, 88], "bound": [3, 21, 31, 35, 55, 57, 58, 87], "reason": [3, 20, 31, 35], "comment": [3, 44, 94], "end": [3, 4, 31, 35, 58, 82, 91, 94], "file": [3, 4, 10, 33, 34, 48, 58, 74, 75, 78, 79, 80, 81, 87, 88, 91, 92, 94], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 83], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 34, 35, 73, 75, 76, 78, 79, 82, 83, 91, 92, 94], "five": [3, 55, 58, 83, 87], "estimate_cv_predicted_prob": [3, 83], "estimate_noise_matric": 3, "get_confident_threshold": [3, 34], "amongst": [3, 8], "confident_threshold": [3, 8, 20, 34, 59], "unifi": 4, "audit": [4, 7, 10, 11, 14, 74, 77, 78, 79, 81, 82, 83, 87], "kind": [4, 5, 74, 75, 78, 79, 80, 82, 83], "addit": [4, 5, 7, 8, 9, 11, 28, 29, 31, 35, 41, 46, 50, 58, 68, 74, 75, 78, 79, 82, 83, 85, 88, 89, 92, 93], "depend": [4, 5, 7, 8, 9, 10, 11, 29, 33, 36, 38, 45, 48, 52, 59, 62, 63, 72], "instal": [4, 5, 7, 8, 9, 29, 31, 33, 34, 35, 36, 48, 49, 64, 66], "pip": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "development": [4, 5, 7, 9, 29], "git": [4, 5, 7, 9, 29, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "github": [4, 5, 7, 9, 29, 31, 32, 45, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "com": [4, 5, 7, 9, 29, 31, 32, 34, 38, 45, 59, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "egg": [4, 5, 7, 9, 29, 72, 80], "label_nam": [4, 5, 6, 8, 10, 16, 27, 72, 74, 75, 76, 78, 79, 81, 82, 83], "image_kei": [4, 82], "interfac": [4, 72, 81, 83], "librari": [4, 8, 35, 55, 58, 59, 72, 75, 79, 80, 81, 93], "goal": 4, "track": [4, 11, 12, 72, 75, 80, 81, 83], "intermedi": [4, 7, 76], "statist": [4, 8, 11, 20, 22, 30, 50, 51, 58, 76, 78, 79, 82, 83], "convert": [4, 10, 31, 35, 42, 43, 46, 50, 57, 66, 70, 73, 74, 79, 80, 81, 82, 85, 86, 87, 93], "hug": [4, 10, 82], "face": [4, 10, 14, 80, 82, 86], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 41, 50, 51, 57, 59, 75, 76, 79, 81, 82, 83, 85, 87], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 35, 45, 50, 51, 63, 67, 70, 71, 78, 79, 81, 85, 86, 93, 94], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 40, 45, 50, 51, 54, 55, 57, 58, 75, 76, 78, 79, 83, 85, 86, 87], "path": [4, 10, 31, 34, 35, 58, 74, 75, 81, 87], "local": [4, 10, 31, 32, 35, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 41, 59, 68, 70, 71, 72, 75, 76, 77, 80, 81, 83, 84, 85, 88], "txt": [4, 10, 94], "csv": [4, 10, 78, 79, 90, 92, 93], "json": [4, 10], "hub": [4, 10, 88], "regress": [4, 5, 10, 12, 14, 19, 26, 28, 75, 76, 79, 84, 85, 88, 93], "imag": [4, 7, 30, 35, 55, 57, 58, 59, 64, 66, 67, 72, 75, 76, 80, 81, 84, 85, 86, 87, 89, 91], "point": [4, 5, 8, 16, 22, 31, 35, 75, 76, 78, 79, 81, 82, 83, 85], "field": [4, 8, 31, 35], "themselv": [4, 90, 92, 93], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 30, 44, 68, 70, 76, 82, 84, 91], "load_dataset": [4, 10, 82], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 18, 30, 51, 58, 67, 71, 72, 80, 83, 87, 91, 94], "empti": [4, 10, 39, 50, 76, 81, 86], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 72, 74, 75, 76, 78, 79, 81, 82, 83], "knn_graph": [4, 8, 14, 16, 17, 22, 24, 27, 78], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 74, 75, 76, 78, 79, 81, 82, 83], "sort": [4, 14, 34, 36, 41, 50, 52, 55, 57, 58, 60, 66, 68, 70, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "common": [4, 11, 14, 76, 77, 80, 81, 83, 86, 87, 91], "real": [4, 14, 72, 75, 76, 81, 83, 85, 86, 90, 91], "world": [4, 14, 72, 75, 76, 81, 83, 85, 90, 91], "interact": [4, 14, 79, 81], "embed": [4, 8, 14, 59, 72, 74, 75, 76, 78, 79, 83, 93], "thereof": [4, 14], "insight": [4, 14, 58, 85], "act": [4, 8, 57, 75], "issuefind": [4, 14, 28], "logic": [4, 12, 34, 36, 64, 66, 91], "best": [4, 14, 40, 50, 60, 75, 76, 78, 79, 81, 82, 85, 86, 88, 90, 92, 93, 94], "2d": [4, 14, 34, 41, 42, 44, 45, 50, 74, 86, 92], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 51, 74, 75, 76, 78, 79, 82, 83], "represent": [4, 8, 14, 31, 35, 42, 52, 72, 74, 75, 76, 79, 81, 82, 83, 88, 93], "num_featur": [4, 14, 31, 35, 49], "distanc": [4, 8, 14, 16, 22, 24, 27, 43, 57, 59, 78, 88], "nearest": [4, 8, 14, 21, 22, 24, 43, 59, 76, 79, 88], "neighbor": [4, 8, 14, 16, 21, 22, 24, 43, 59, 75, 76, 78, 79, 81, 82, 88], "graph": [4, 8, 11, 14, 16, 22, 27], "squar": [4, 45, 62, 80, 90], "csr": 4, "evenli": 4, "omit": [4, 57, 58, 82, 87], "itself": [4, 31, 35, 87], "three": [4, 8, 30, 50, 51, 62, 67, 74, 75, 76, 78, 80, 83, 85, 89, 90, 91, 92, 94], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 32, 35, 72, 78, 86, 94], "th": [4, 40, 44, 45, 50, 52, 55, 57, 58, 59, 68, 70, 71, 79, 86, 87, 94], "ascend": [4, 30, 51, 82, 83], "segment": [4, 64, 66, 67, 84], "reflect": [4, 78, 79, 85, 87, 88, 90, 92, 93], "maintain": 4, "posit": [4, 31, 35, 43, 45, 58, 80, 88], "nearestneighbor": [4, 8, 16, 59, 78, 88], "kneighbors_graph": [4, 16, 78], "illustr": 4, "todens": 4, "second": [4, 41, 45, 58, 60, 75, 81, 83, 94], "duplic": [4, 7, 19, 20, 31, 35, 72, 75, 83], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 31, 35, 41, 49], "neither": [4, 8, 12, 87], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 50, 81, 85, 94], "unspecifi": [4, 14, 36, 52], "interest": [4, 14, 20, 67, 71, 79, 83, 91, 92, 93, 94], "constructor": [4, 8, 14, 21, 26], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "respons": [4, 14, 20, 62, 63, 80, 90, 94], "random_st": [4, 74, 75, 76, 82, 83, 86, 88, 92], "lab": [4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 34, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86], "comprehens": [4, 72, 82], "nbr": 4, "n_neighbor": [4, 8, 16, 59], "metric": [4, 8, 17, 22, 27, 45, 49, 58, 59, 74, 78, 79, 82, 83, 90, 92, 93], "euclidean": [4, 8, 57, 59, 78], "mode": [4, 16, 31, 34, 35, 88], "4x4": 4, "float64": [4, 22, 31, 35, 70], "compress": [4, 8, 45, 64, 66], "toarrai": 4, "NOT": [4, 34, 79], "23606798": 4, "41421356": 4, "configur": [4, 14, 41, 76], "suppos": [4, 8, 55, 88, 90, 92, 93], "who": [4, 57, 78, 83, 92, 94], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "clean_learning_kwarg": [4, 8, 21, 26], "labelissuemanag": [4, 8, 21], "prune_method": [4, 73], "prune_by_noise_r": [4, 36, 52, 83], "report": [4, 5, 9, 13, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 71, 72, 74, 75, 76, 78, 79, 83, 94], "include_descript": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28], "show_summary_scor": [4, 28], "summari": [4, 5, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 49, 51, 56, 65, 66, 68, 69, 70, 73, 74, 75, 76, 78, 79, 80, 82, 83, 87, 91, 94], "show": [4, 22, 31, 35, 40, 45, 58, 67, 71, 76, 78, 79, 80, 81, 82, 83, 85, 88, 90, 91, 92, 94], "top": [4, 8, 30, 34, 36, 45, 52, 55, 58, 60, 67, 71, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 90, 93, 94], "suffer": [4, 8, 11, 20, 52, 60, 71, 94], "onc": [4, 20, 30, 31, 35, 75, 81, 83, 86, 87, 92], "familiar": 4, "usag": [4, 34, 49], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 31, 35, 45, 72, 74, 75, 76, 78, 79, 81, 82, 88, 90, 92, 93, 94], "issue_summari": [4, 8, 11, 75], "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 41, 50, 51, 54, 57, 58, 62, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 87, 94], "sever": [4, 5, 8, 10, 11, 20, 31, 34, 35, 36, 54, 57, 59, 60, 66, 70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 87, 88, 92, 93, 94], "dataissu": [4, 11, 14, 28], "outlier": [4, 7, 12, 19, 20, 27, 37, 60, 72, 75, 76, 83, 84], "someth": [4, 5, 31, 35, 60], "123": [4, 75, 76], "456": [4, 74, 79, 92, 93], "nearest_neighbor": 4, "7": [4, 41, 42, 49, 68, 70, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93, 94], "9": [4, 16, 17, 18, 20, 21, 22, 24, 26, 27, 41, 42, 54, 68, 70, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "distance_to_nearest_neighbor": [4, 75, 76, 78, 79, 82, 83], "789": 4, "get_issu": [4, 8, 11, 74, 76, 78, 79, 81, 82], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75, 76], "focu": [4, 11, 79, 91, 94], "full": [4, 8, 11, 34, 58, 82, 94], "summar": [4, 11, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 30, 51, 67, 71, 72, 91], "valueerror": [4, 10, 11, 38, 41, 81], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 67, 76, 78, 79, 82, 83, 87], "lie": [4, 8, 59, 60, 74, 75, 76, 78, 79, 82, 83, 93], "directli": [4, 12, 14, 28, 34, 49, 50, 76, 79, 86, 87, 90, 93], "compar": [4, 50, 59, 70, 75, 76, 78, 83], "get_issue_summari": [4, 11, 76], "get_info": [4, 11, 76, 79], "yet": [4, 15, 19, 23, 80, 85], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 23, 31, 35, 75], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 74, 75, 82], "load": [4, 10, 34, 58, 80, 81, 82, 83, 87, 88, 91, 94], "futur": [4, 8, 20, 31, 35, 50, 72, 75, 79], "overwrit": [4, 75], "separ": [4, 30, 41, 54, 75, 76, 81, 82, 87, 89], "static": 4, "rememb": [4, 79, 81, 83], "part": [4, 8, 31, 35, 36, 55, 57, 58, 74, 75, 80, 91, 94], "ident": [4, 8, 20, 45, 79], "walk": 5, "alongsid": [5, 31, 35, 75, 81], "pre": [5, 6, 8, 31, 35, 75, 76, 82, 91, 94], "runtim": [5, 31, 34, 35, 62, 64, 66, 74, 81, 82], "issue_manager_factori": [5, 12, 75], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "thing": [5, 35, 83, 90, 93], "next": [5, 50, 72, 74, 78, 79, 81, 85, 87, 90, 92, 93, 94], "dummi": 5, "randint": [5, 27, 41, 75, 76, 81], "mark": [5, 8, 73, 87, 88, 90], "regard": [5, 76, 83], "rand": [5, 41, 75, 76], "is_": [5, 8, 75], "_issu": [5, 8, 75], "issue_score_kei": [5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "whole": [5, 22, 31, 35, 76], "make_summari": [5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 75], "popul": [5, 76, 79], "verbosity_level": [5, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 34, 67, 71, 81, 86], "intermediate_arg": 5, "min": [5, 41, 57, 70, 75, 81, 88], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 22, 23, 24, 26, 27, 75], "instanti": [5, 14, 34, 49, 59, 74, 76, 78, 93], "477762": 5, "286455": 5, "term": [5, 8, 39, 45, 58, 74, 75, 76, 78, 79, 82, 83], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 24, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "003042": 5, "058117": 5, "11": [5, 49, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "121908": 5, "15": [5, 43, 62, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "169312": 5, "17": [5, 74, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 75, 76, 80, 83], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 27], "group": [6, 7, 22, 27, 80, 87, 94], "dbscan": [6, 8, 27, 81], "hdbscan": [6, 81], "etc": [6, 8, 20, 31, 35, 39, 49, 50, 68, 72, 75, 76, 78, 79, 81, 82, 83], "sensit": [6, 8, 43], "ep": [6, 27, 58], "radiu": 6, "min_sampl": [6, 27], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 72, 74, 81, 82, 85, 92, 93], "kmean": [6, 81], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 27, 81], "cluster_id": [6, 8, 27, 81], "labels_": 6, "underperforming_group": [6, 8, 19, 81], "search": [7, 8, 18, 22, 23, 44, 62, 81, 89], "nondefault": 7, "Near": [7, 81], "iid": [7, 22, 76, 78, 82, 83], "imbal": [7, 19, 54, 59, 60, 76], "null": [7, 19, 76, 79, 82, 83], "valuat": [7, 16], "togeth": [7, 8, 39, 75, 76, 78, 79, 82, 83, 90, 93, 94], "built": [7, 41], "own": [7, 31, 33, 35, 48, 54, 55, 58, 64, 68, 74, 76, 78, 79, 81, 82, 85, 86, 90, 91, 92, 93, 94], "prerequisit": 7, "basic": [7, 35, 49, 78, 79, 88], "page": [8, 76, 81, 83], "variou": [8, 11, 26, 33, 46, 48, 72, 75, 76, 78, 79, 80, 83, 85, 87, 92], "sai": [8, 31, 35, 86, 91], "why": [8, 79], "matter": [8, 30, 51], "_score": 8, "flag": [8, 20, 22, 36, 41, 51, 52, 55, 62, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 90, 91, 93], "badli": [8, 57, 94], "code": [8, 31, 35, 39, 45, 49, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "issue_scor": 8, "outlier_scor": [8, 24, 75, 76, 78, 79, 82, 83, 88], "atyp": [8, 59, 75, 76, 78, 79, 82, 83, 88], "datapoint": [8, 27, 36, 41, 45, 60, 63, 72, 74, 75, 76, 78, 79, 81, 89, 90, 92, 93], "is_issu": [8, 20], "is_outlier_issu": [8, 75, 76, 78, 79, 82, 83], "annot": [8, 30, 40, 50, 51, 52, 54, 55, 57, 58, 67, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 84, 87, 91], "transform": [8, 41, 43, 45, 59, 60, 76, 79, 82, 88, 92, 93, 94], "dissimilar": [8, 78, 79], "preced": 8, "cosin": [8, 59, 88], "incorrect": [8, 57, 60, 63, 74, 75, 76, 78, 79, 82, 83, 87, 90, 92], "due": [8, 34, 36, 60, 64, 66, 74, 75, 76, 78, 79, 82, 83], "appear": [8, 30, 40, 51, 52, 55, 63, 76, 78, 79, 82, 90, 91], "likelihood": [8, 34, 36, 52, 57, 59, 60, 64, 68], "now": [8, 34, 73, 74, 76, 85, 87, 88, 90, 92, 93, 94], "u": [8, 74, 75, 78, 81, 82, 83, 85, 86, 89, 90, 91, 92, 93, 94], "token": [8, 44, 66, 67, 68, 69, 70, 71, 81, 83, 84], "calcul": [8, 16, 22, 34, 41, 50, 54, 55, 57, 58, 59, 62, 66, 80, 82], "hamper": [8, 80, 82], "analyt": [8, 72, 81, 85], "lead": [8, 57, 60, 82, 87], "draw": [8, 75, 76], "conclus": [8, 79], "try": [8, 34, 36, 49, 50, 64, 66, 72, 76, 78, 79, 81, 82, 83, 91], "veri": [8, 30, 51, 55, 57, 75, 76, 78, 79, 81, 82, 83, 85, 88, 90, 93], "rare": [8, 36, 58, 75, 76, 78, 79, 81, 82, 83], "anomal": [8, 60, 75, 76, 78, 79, 82, 83], "articl": [8, 34, 81], "ai": [8, 72, 74, 75, 76, 78, 79, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94], "blog": 8, "unexpect": [8, 31, 35, 79], "consequ": 8, "inspect": [8, 74, 76, 82, 83, 87, 90, 93], "neg": [8, 57, 58, 75, 76, 80], "affect": [8, 31, 35, 64, 70, 79, 81], "extrem": [8, 75, 76, 78, 79, 81, 82, 83], "rel": [8, 30, 50, 51, 59, 75, 76, 78, 79, 82, 83, 88], "record": [8, 31, 35, 74, 78, 90], "abbrevi": 8, "misspel": 8, "typo": [8, 71], "resolut": 8, "video": [8, 80], "audio": [8, 75, 76, 81, 84], "minor": [8, 44], "variat": 8, "translat": 8, "d": [8, 43, 78, 79, 83, 86, 92, 94], "constant": [8, 27, 62], "median": [8, 26, 43], "question": [8, 20, 72, 83], "nearli": [8, 20, 76, 78, 79, 82], "awar": [8, 73, 83], "presenc": [8, 83], "signific": [8, 76, 78, 79, 82, 83], "violat": [8, 76, 78, 79, 82, 83], "assumpt": [8, 76, 78, 79, 82, 83], "changepoint": [8, 76, 78, 79, 82, 83], "shift": [8, 76, 78, 79, 82, 83], "drift": [8, 76, 78, 82, 83], "autocorrel": [8, 76, 78, 79, 82, 83], "almost": [8, 76, 78, 79, 82, 83], "adjac": [8, 76, 78, 79, 82, 83], "tend": [8, 30, 39, 76, 78, 79, 82, 83, 91, 94], "sequenti": [8, 31, 35, 49, 82], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 22, 24, 26, 27, 30, 44, 45, 70, 78, 79, 80, 83, 89, 92, 94], "x1": [8, 55, 58, 87], "x2": [8, 55, 58, 87], "10th": 8, "100th": 8, "90": [8, 70, 78, 82, 83, 89, 91, 92], "similarli": [8, 31, 35, 75, 78, 81, 82, 87], "math": [8, 82], "behind": [8, 59, 83], "fundament": 8, "proper": [8, 45, 50, 55, 58, 79, 82, 85, 87, 92], "closer": [8, 57, 87], "scenario": [8, 60, 75, 76], "underli": [8, 59, 68, 70, 94], "stem": [8, 59, 88], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 86, 88], "partit": [8, 89], "ahead": 8, "good": [8, 31, 35, 43, 49, 51, 57, 60, 64, 66, 67, 72, 78, 79, 82], "fix": [8, 50, 79, 83, 90, 93], "problem": [8, 34, 41, 67, 72, 75, 76, 79, 81, 82], "deploy": [8, 83, 90, 92, 93], "overlook": [8, 57, 87], "fact": 8, "thu": [8, 30, 35, 51, 74, 78, 79, 83, 89, 92, 94], "diagnos": [8, 76, 81], "rarest": [8, 76, 78, 79, 82, 83], "q": [8, 87], "fall": [8, 57, 66, 70, 83, 88], "subpar": 8, "special": [8, 44], "techniqu": 8, "smote": 8, "asymmetr": [8, 30], "properli": [8, 34, 40, 45, 46, 64, 81, 86, 88, 90, 91], "too": [8, 36, 41, 59, 76, 81, 82, 87], "dark": [8, 91], "bright": [8, 94], "blurri": [8, 82], "abnorm": [8, 58, 82], "cluster": [8, 16, 27], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 50, 58, 76, 81, 82, 85, 86, 87, 91], "get_self_confidence_for_each_label": [8, 41, 60], "power": [8, 78, 79, 80, 82, 83, 94], "r": [8, 34, 62, 75, 76, 90, 91], "tabular": [8, 72, 75, 76, 77, 81, 84, 85], "categor": [8, 59, 75, 76, 77, 81, 90, 92], "encod": [8, 42, 58, 64, 67, 78, 79, 81, 90, 91, 92, 93], "miss": [8, 23, 31, 35, 45, 55, 57, 76, 78, 79, 81, 82, 83, 87, 90], "pattern": 8, "contribut": [8, 16, 87], "isn": [8, 15, 23], "approxim": [8, 16, 34, 59, 85], "shaplei": [8, 16], "knn": [8, 11, 16, 22, 27, 59, 78, 88], "scalabl": 8, "sacrific": 8, "One": [8, 45, 59, 81], "quantif": 8, "exert": [8, 76], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 75, 76, 78, 79, 81, 82, 83], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 22, 76, 78, 79, 82, 83], "non_iid_kwarg": 8, "class_imbal": [8, 18, 76, 78, 79, 82, 83], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 21, 26], "health_summari": [8, 21, 30, 72, 80], "health_summary_kwarg": 8, "tandem": [8, 80], "view": [8, 31, 35, 36, 66, 68, 70, 72, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94], "ood_kwarg": 8, "outofdistribut": [8, 24, 59, 88], "outsid": 8, "outlierissuemanag": [8, 12, 24, 75], "nearduplicateissuemanag": [8, 12, 17], "noniidissuemanag": [8, 12, 22], "num_permut": [8, 22], "permut": [8, 22], "significance_threshold": [8, 22], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 18], "underperforminggroupissuemanag": [8, 27], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 27], "filter_cluster_id": [8, 27], "clustering_kwarg": [8, 27], "faq": [8, 72, 76, 78, 79, 82, 84], "nullissuemanag": [8, 23], "data_valuation_kwarg": 8, "data_valu": [8, 19], "datavaluationissuemanag": [8, 16], "codeblock": 8, "demonstr": [8, 34, 75, 76, 79, 81, 82, 83, 85, 86, 87, 90, 91], "howev": [8, 31, 35, 45, 74, 78, 79, 82, 85, 89, 91, 92, 93], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 75, 80, 85, 87, 91], "fewer": [8, 36, 45, 87], "vice": [8, 51], "versa": [8, 51], "light": [8, 80, 82, 87, 91], "29": [8, 80, 82, 85, 86, 87, 91, 94], "low_inform": [8, 82], "odd_aspect_ratio": [8, 82], "35": [8, 75, 80, 82, 85, 86, 87, 91], "odd_siz": [8, 82], "10": [8, 16, 17, 21, 22, 27, 31, 32, 58, 59, 60, 71, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], "doc": [8, 31, 35, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "data_issu": [9, 13, 14, 28, 75], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 49, 60, 75, 76, 82, 85], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 28, 82, 85, 90], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 82], "serv": [11, 14, 85], "central": [11, 94], "repositori": 11, "strategi": [11, 41, 81], "being": [11, 30, 31, 35, 36, 41, 44, 45, 60, 78, 81, 83, 90, 91, 92], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 31, 34, 35, 36, 45, 52, 55, 58, 62, 64, 66, 75, 76, 81], "recomput": [11, 93], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 30, 51, 72], "get_data_statist": 11, "concret": 12, "subclass": [12, 31, 35, 59, 75], "my_issu": 12, "stabl": [13, 19, 25, 33, 37, 45, 48, 59, 73], "unregist": 13, "instati": 14, "public": [14, 83, 87, 91, 94], "creation": [14, 35], "execut": [14, 31, 35, 75, 81, 87], "coordin": [14, 55, 57, 58, 87, 94], "behavior": [14, 30, 31, 35, 58], "At": [14, 58, 81], "associ": [14, 31, 35, 58, 85], "get_available_issue_typ": 14, "direct": [15, 23, 31, 35], "valuabl": 16, "vstack": [16, 45, 80, 81, 82, 83, 85, 86], "25": [16, 22, 31, 41, 43, 76, 80, 82, 83, 85, 86, 87, 91, 94], "classvar": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "short": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 44, 45], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 45, 75, 76, 81, 82, 83, 85, 86], "some_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "additional_info_kei": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "default_threshold": [16, 24], "arxiv": [16, 83], "ab": [16, 83], "1911": 16, "07128": 16, "larger": [16, 62, 64, 66, 79, 80, 81, 82], "collect_info": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27], "info_to_omit": [16, 17, 18, 20, 21, 22, 24, 26, 27], "compos": [16, 17, 18, 20, 21, 22, 24, 26, 27, 31, 35, 79, 88, 93], "is_x_issu": [16, 17, 18, 20, 21, 22, 24, 26, 27], "x_score": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_a": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b1": [16, 17, 18, 20, 21, 22, 24, 26, 27], "val_b2": [16, 17, 18, 20, 21, 22, 24, 26, 27], "report_str": [16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28], "_": [17, 20, 21, 22, 23, 26, 27, 41, 44, 45, 74, 75, 80, 82, 83, 86, 92], "near_duplicate_set": [17, 75, 76, 78, 79, 81, 82, 83], "occurr": [17, 18, 20, 22, 23, 24, 27, 44], "median_nn_dist": 17, "near_duplicate_scor": [17, 75, 76, 78, 79, 81, 82, 83], "class_imbalance_scor": [18, 76, 78, 79, 82, 83], "bleed": [19, 25, 33], "edg": [19, 25, 33, 57, 72, 83, 94], "sharp": [19, 25, 33], "abc": 20, "believ": [20, 91], "priori": [20, 83], "global": 20, "anoth": [20, 30, 34, 44, 57, 60, 78, 79, 81, 83, 85, 88, 93], "abstract": 20, "applic": [21, 50, 81, 83, 85, 86, 94], "typevar": [21, 31, 35, 57, 58], "_scalartype_co": 21, "covari": [21, 62, 90], "get_health_summari": 21, "summary_dict": 21, "label_scor": [21, 26, 74, 75, 76, 78, 79, 82, 83], "simplified_kolmogorov_smirnov_test": 22, "neighbor_histogram": 22, "non_neighbor_histogram": 22, "kolmogorov": 22, "smirnov": 22, "largest": [22, 34, 41, 60, 64, 66, 91], "empir": [22, 40, 50], "cumul": 22, "ecdf": 22, "histogram": [22, 78, 90], "absolut": [22, 26], "dimension": [22, 45, 74, 83, 88], "trial": 22, "non_iid_scor": [22, 76, 78, 79, 82, 83], "null_track": 23, "extend": [23, 42, 82, 88, 94], "superclass": 23, "arbitrari": [23, 30, 66, 70, 75, 88, 90], "prompt": 23, "address": [23, 75, 76, 79, 81, 93], "enabl": [23, 35], "null_scor": [23, 76, 79, 82, 83], "37037": 24, "q3_avg_dist": 24, "iqr_avg_dist": 24, "median_outlier_scor": 24, "ood": [24, 59, 60, 75, 76, 79, 82, 83, 88], "regressionlabelissuemanag": 26, "multipli": 26, "find_issues_with_predict": 26, "find_issues_with_featur": 26, "deleg": 26, "confus": [27, 30, 31, 35, 36, 45, 58, 93, 94], "50": [27, 35, 81, 82, 83, 85, 87, 88, 91], "keepdim": [27, 81], "outlier_cluster_label": 27, "no_underperforming_cluster_id": 27, "signifi": 27, "absenc": 27, "set_knn_graph": 27, "find_issues_kwarg": 27, "perform_clust": 27, "npt": 27, "int_": 27, "id": [27, 50, 75, 81, 82, 85], "int64": [27, 74, 85], "unique_cluster_id": 27, "get_worst_clust": 27, "_description_": 27, "performed_clust": 27, "worst_cluster_id": 27, "underperforming_group_scor": 27, "exclud": [28, 67, 71, 75, 94], "get_report": 28, "overview": [30, 74, 76, 78, 79, 82, 85, 87, 88, 90, 92, 93, 94], "modifi": [30, 31, 34, 35, 45, 81, 83], "help": [30, 31, 35, 58, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94], "rank_classes_by_label_qu": [30, 76], "merg": [30, 44, 72, 80, 81, 94], "find_overlapping_class": [30, 81, 83], "problemat": [30, 51, 67, 71, 74, 87, 94], "unnorm": [30, 51, 83], "abov": [30, 31, 34, 35, 45, 50, 57, 58, 60, 66, 70, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94], "model_select": [30, 41, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 92, 93], "cross_val_predict": [30, 35, 74, 75, 76, 78, 79, 81, 83, 85, 89, 90, 92, 93], "get_data_labels_from_dataset": 30, "yourfavoritemodel": [30, 83], "cv": [30, 41, 74, 75, 76, 78, 83, 85, 92], "df": [30, 45, 71, 74, 81], "overall_label_qu": [30, 51], "col": 30, "prob": [30, 44, 83, 89], "divid": [30, 51, 60], "label_nois": [30, 51], "human": [30, 80, 91, 94], "clearli": [30, 60, 82, 87, 91], "num": [30, 51, 80, 83], "overlap": [30, 72, 80, 81, 83], "ontolog": 30, "publish": [30, 94], "therefor": [30, 60], "vehicl": [30, 80], "truck": [30, 80, 88, 91], "intuit": [30, 51], "car": [30, 80, 87, 91], "frequent": [30, 50, 78, 81, 90], "characterist": 30, "l": [30, 31, 35, 55, 57, 58], "class1": 30, "class2": 30, "relationship": 30, "match": [30, 31, 35, 36, 50, 51, 60, 75, 76, 80, 82, 87, 89, 91], "dog": [30, 45, 51, 53, 67, 80, 81, 88, 89, 94], "cat": [30, 45, 51, 53, 80, 81, 88, 89], "captur": [30, 74, 87, 88, 91], "co": [30, 31, 32], "noisy_label": [30, 75, 76, 86], "overlapping_class": 30, "descend": [30, 31, 35, 41, 51, 58], "overall_label_health_scor": [30, 51, 83], "suggest": [30, 50, 51, 57, 79, 81, 82, 90, 93], "half": [30, 31, 35, 51, 80, 94], "health_scor": [30, 51], "classes_by_label_qu": [30, 76], "cnn": [31, 35, 82], "cifar": [31, 32, 80, 88], "teach": [31, 32], "bhanml": 31, "blob": 31, "master": [31, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "call_bn": 31, "bn": 31, "input_channel": 31, "n_output": 31, "dropout_r": 31, "top_bn": 31, "architectur": [31, 35], "shown": [31, 58, 75, 81, 85, 88, 89, 91, 94], "forward": [31, 32, 35, 82, 85], "overridden": [31, 35], "although": [31, 35, 59, 78, 92], "recip": [31, 35], "afterward": [31, 35], "sinc": [31, 35, 38, 46, 51, 58, 66, 70, 81, 85, 86, 87, 89, 94], "former": [31, 35], "hook": [31, 35, 80], "silent": [31, 34, 35], "t_destin": [31, 35], "__call__": [31, 35, 41], "add_modul": [31, 35], "child": [31, 35], "fn": [31, 35, 58], "recurs": [31, 35, 41], "submodul": [31, 35], "children": [31, 35, 94], "nn": [31, 32, 35, 82], "init": [31, 35, 83], "no_grad": [31, 35, 82, 88], "init_weight": [31, 35], "linear": [31, 35, 79, 82, 93], "fill_": [31, 35], "net": [31, 35, 74, 80, 82], "in_featur": [31, 35], "out_featur": [31, 35], "bia": [31, 35, 82], "tensor": [31, 32, 35, 74, 82, 88], "requires_grad": [31, 35], "bfloat16": [31, 35], "cast": [31, 35, 74], "buffer": [31, 35], "datatyp": [31, 35], "member": [31, 35, 75, 76], "xdoctest": [31, 35], "undefin": [31, 35], "var": [31, 35], "buf": [31, 35], "20l": [31, 35], "1l": [31, 35], "5l": [31, 35], "immedi": [31, 35, 88], "cpu": [31, 35, 36, 74, 82], "move": [31, 35, 41, 73, 80], "cuda": [31, 35, 74, 82], "devic": [31, 35, 74, 82], "gpu": [31, 35, 74, 79, 93], "live": [31, 35], "copi": [31, 35, 62, 74, 75, 76, 78, 81, 86, 89, 90, 92], "doubl": [31, 35], "dump_patch": [31, 35], "eval": [31, 35, 82, 86, 88], "dropout": [31, 35], "batchnorm": [31, 35], "grad": [31, 35], "extra_repr": [31, 35], "line": [31, 35, 72, 75, 80, 85, 88, 94], "get_buff": [31, 35], "target": [31, 32, 35, 62, 63, 88, 90], "throw": [31, 35], "get_submodul": [31, 35], "explan": [31, 35], "fulli": [31, 35, 49, 81], "qualifi": [31, 35], "referenc": [31, 35], "attributeerror": [31, 35], "invalid": [31, 35, 79], "resolv": [31, 35, 94], "get_extra_st": [31, 35], "state_dict": [31, 35], "set_extra_st": [31, 35], "build": [31, 35, 82, 91], "pickleabl": [31, 35], "serial": [31, 35], "backward": [31, 35, 82], "break": [31, 35, 82], "pickl": [31, 35, 87], "get_paramet": [31, 35], "let": [31, 35, 59, 60, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "net_b": [31, 35], "net_c": [31, 35], "conv": [31, 35], "conv2d": [31, 35, 82], "16": [31, 35, 41, 66, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 93, 94], "33": [31, 35, 80, 82, 87, 91], "kernel_s": [31, 35], "stride": [31, 35], "200": [31, 35, 60, 80, 87, 94], "diagram": [31, 35, 89], "degre": [31, 35, 90], "queri": [31, 35, 76, 81, 82], "named_modul": [31, 35], "o": [31, 35, 43, 44, 74, 75, 76, 80, 81, 83, 86, 87, 94], "transit": [31, 35], "ipu": [31, 35], "load_state_dict": [31, 35], "strict": [31, 35, 41], "persist": [31, 35], "strictli": [31, 35], "namedtupl": [31, 35], "missing_kei": [31, 35], "unexpected_kei": [31, 35], "runtimeerror": [31, 35], "idx": [31, 35, 45, 46, 58, 75, 81, 82, 83, 85, 87, 88], "named_buff": [31, 35], "prefix": [31, 35, 74, 94], "prepend": [31, 35], "running_var": [31, 35], "named_children": [31, 35], "conv4": [31, 35], "conv5": [31, 35], "memo": [31, 35], "remove_dupl": [31, 35], "named_paramet": [31, 35], "register_backward_hook": [31, 35], "deprec": [31, 35, 38], "favor": [31, 35], "register_full_backward_hook": [31, 35], "removablehandl": [31, 35], "register_buff": [31, 35], "running_mean": [31, 35], "register_forward_hook": [31, 35], "won": [31, 35, 75, 76, 81, 86], "inplac": [31, 35, 85], "register_forward_pre_hook": [31, 35], "gradient": [31, 35, 78, 82, 90], "respect": [31, 35, 58, 83], "grad_input": [31, 35], "grad_output": [31, 35], "technic": [31, 35], "caller": [31, 35], "register_load_state_dict_post_hook": [31, 35], "post": [31, 35], "incompatible_kei": [31, 35], "modif": [31, 35], "thrown": [31, 35], "clearn": [31, 35], "register_modul": [31, 35], "register_paramet": [31, 35], "requires_grad_": [31, 35], "autograd": [31, 35], "freez": [31, 35, 74, 79, 93], "finetun": [31, 35], "gan": [31, 35], "share_memori": [31, 35], "share_memory_": [31, 35], "destin": [31, 35], "keep_var": [31, 35], "shallow": [31, 35], "releas": [31, 35, 73, 81, 88], "design": [31, 35], "ordereddict": [31, 35], "detach": [31, 35, 82], "non_block": [31, 35], "memory_format": [31, 35], "channels_last": [31, 35], "Its": [31, 35, 41, 51, 57], "complex": [31, 35], "integr": [31, 35, 72], "asynchron": [31, 35], "host": [31, 35], "pin": [31, 35, 79, 80, 93], "desir": [31, 35, 44, 58], "4d": [31, 35], "ignore_w": [31, 35], "determinist": [31, 35, 74], "1913": [31, 35], "3420": [31, 35], "5113": [31, 35], "2325": [31, 35], "env": [31, 35], "torch_doctest_cuda1": [31, 35], "gpu1": [31, 35], "1914": [31, 35], "5112": [31, 35], "2324": [31, 35], "float16": [31, 35], "cdoubl": [31, 35], "3741": [31, 35], "2382": [31, 35], "5593": [31, 35], "4443": [31, 35], "complex128": [31, 35], "6122": [31, 35], "1150": [31, 35], "to_empti": [31, 35], "storag": [31, 35], "dst_type": [31, 35], "xpu": [31, 35], "zero_grad": [31, 35, 82], "set_to_non": [31, 35], "context": [31, 35, 87], "noisili": [32, 83], "han": 32, "2018": 32, "cifar_cnn": [32, 33], "loss_coteach": 32, "y_1": 32, "y_2": 32, "forget_r": 32, "class_weight": 32, "logit": [32, 49, 82], "decim": [32, 45], "quickli": [32, 74, 78, 79, 81, 82, 86, 88, 91, 92, 94], "forget": [32, 41, 94], "rate_schedul": 32, "epoch": [32, 35, 81, 82], "initialize_lr_schedul": 32, "lr": [32, 35], "001": [32, 60, 81], "250": [32, 75, 76, 83, 87], "epoch_decay_start": 32, "80": [32, 78, 86, 90, 91, 92], "schedul": 32, "adjust": [32, 36, 54, 59, 60, 72, 83], "beta": 32, "adam": 32, "adjust_learning_r": 32, "alpha_plan": 32, "beta1_plan": 32, "forget_rate_schedul": 32, "num_gradu": 32, "expon": 32, "tell": [32, 79, 82, 83, 93], "train_load": [32, 35], "model1": [32, 83], "optimizer1": 32, "model2": [32, 83], "optimizer2": 32, "dataload": [32, 82, 88], "parser": 32, "parse_arg": 32, "num_iter_per_epoch": 32, "print_freq": 32, "topk": 32, "top1": 32, "top5": 32, "test_load": 32, "offici": [33, 48, 94], "wish": [33, 48, 88, 91, 94], "mnist_pytorch": 33, "coteach": [33, 73], "mini": [34, 64, 66, 81], "With": [34, 79, 83, 85, 90, 91, 93, 94], "low_self_confid": [34, 36, 52], "self_confid": [34, 36, 41, 52, 54, 60, 68, 70, 81, 83, 86, 92, 93], "conveni": [34, 74, 79, 93], "script": 34, "labelinspector": [34, 81], "adj_confident_thresholds_shar": 34, "labels_shar": 34, "pred_probs_shar": 34, "labels_fil": [34, 81], "pred_probs_fil": [34, 81], "batch_siz": [34, 35, 64, 66, 81, 82, 88, 91], "quality_score_kwarg": 34, "num_issue_kwarg": 34, "return_mask": 34, "variant": [34, 50, 91], "read": [34, 38, 76, 81, 83, 88, 94], "zarr": [34, 81], "memmap": [34, 91], "pythonspe": 34, "mmap": [34, 81], "hdf5": 34, "further": [34, 51, 52, 54, 57, 58, 66, 67, 74, 81], "yourfil": 34, "npy": [34, 80, 81, 91], "mmap_mod": [34, 91], "tip": [34, 36, 49, 81], "save_arrai": 34, "your_arrai": 34, "disk": [34, 80, 81], "npz": [34, 94], "maxim": [34, 50, 64, 66, 91], "multiprocess": [34, 36, 52, 64, 66, 81, 82, 91], "linux": [34, 64, 66], "physic": [34, 36, 64, 66, 87, 91], "psutil": [34, 36, 64, 66, 91], "labels_arrai": [34, 46], "predprob": 34, "pred_probs_arrai": 34, "back": [34, 58, 75, 81, 87, 88], "store_result": 34, "becom": [34, 88], "verifi": [34, 81, 85, 88], "long": [34, 50, 59, 85], "enough": [34, 45, 81], "chunk": [34, 89], "ram": [34, 80], "faster": [34, 59, 62, 64, 66, 81, 83], "end_index": 34, "labels_batch": 34, "pred_probs_batch": 34, "update_confident_threshold": 34, "batch_result": 34, "score_label_qu": 34, "indices_of_examples_with_issu": [34, 81], "shortcut": 34, "encount": [34, 36, 64], "1000": [34, 74, 79, 81, 82, 88], "aggreg": [34, 41, 50, 54, 57, 60, 70, 81, 83, 85], "get_num_issu": 34, "fetch": [34, 74, 76], "seen": [34, 81, 88, 94], "far": [34, 50], "get_quality_scor": 34, "label_quality_scor": [34, 54, 57, 60, 63, 83, 87, 90], "method1": 34, "method2": 34, "normalized_margin": [34, 36, 41, 52, 54, 60, 68, 70], "low_normalized_margin": [34, 36, 52], "issue_indic": [34, 57, 82], "update_num_issu": 34, "split_arr": 34, "arr": [34, 81], "chunksiz": 34, "convnet": 35, "bespok": [35, 49], "get_mnist_dataset": 35, "loader": [35, 82], "download": [35, 74, 81, 88], "mnist": [35, 72, 74, 80], "get_sklearn_digits_dataset": 35, "handwritten": 35, "digit": [35, 74, 80], "last": [35, 41, 55, 58, 75, 76, 81, 85, 94], "sklearn_digits_test_s": 35, "hard": [35, 80, 88], "simplenet": 35, "64": [35, 78, 82, 83, 87, 91, 92], "log_interv": 35, "01": [35, 60, 62, 74, 82, 83, 86, 87, 91, 94], "momentum": 35, "no_cuda": 35, "test_batch_s": [35, 82], "templat": 35, "flexibli": 35, "among": [35, 50, 83], "test_set": 35, "Be": 35, "overrid": 35, "train_idx": [35, 45, 88], "train_label": [35, 88, 93], "scikit": [35, 45, 59, 72, 74, 75, 76, 78, 79, 81, 84, 90, 93], "set_predict_proba_request": 35, "set_predict_request": 35, "encourag": [36, 52, 60, 63], "multilabel_classif": [36, 51, 52, 54, 60, 81, 86], "pred_probs_by_class": 36, "prune_count_matrix_col": 36, "rank_by_kwarg": [36, 52, 60, 83], "num_to_remove_per_class": [36, 52], "bad": [36, 52, 57, 60, 79, 81, 93], "seem": [36, 83, 86], "aren": 36, "confidence_weighted_entropi": [36, 41, 52, 54, 60, 68, 70], "label_issues_idx": [36, 60], "entropi": [36, 38, 40, 41, 59, 60], "prune_by_class": [36, 52, 83], "predicted_neq_given": [36, 52, 83], "prune_counts_matrix": 36, "smallest": [36, 60], "unus": 36, "number_of_mislabeled_examples_in_class_k": 36, "delet": [36, 72, 81, 93], "thread": [36, 52], "window": [36, 80], "shorter": [36, 55], "find_predicted_neq_given": 36, "find_label_issues_using_argmax_confusion_matrix": 36, "latent_algebra": [37, 73], "label_quality_util": 37, "multilabel_util": [37, 86], "multilabel_scor": [37, 54], "token_classification_util": [37, 94], "get_normalized_entropi": 38, "min_allowed_prob": 38, "wikipedia": 38, "activ": [38, 40, 50, 72, 85], "towardsdatasci": 38, "cheatsheet": 38, "ec57bc067c0b": 38, "clip": [38, 45, 74], "behav": 38, "unnecessari": [38, 81], "slightli": [38, 92, 93], "interv": [38, 41, 88], "herein": 39, "inexact": 39, "cours": 39, "propag": 39, "throughout": [39, 45, 62, 74, 85, 91, 94], "compute_ps_py_inv_noise_matrix": 39, "compute_py_inv_noise_matrix": 39, "compute_inv_noise_matrix": 39, "easili": [39, 73, 74, 76, 78, 79, 83, 85, 86, 88, 89, 90, 91, 92, 93], "increas": [39, 57, 59, 60, 74, 75, 81, 85, 86, 94], "dot": [39, 70, 81], "compute_noise_matrix_from_invers": 39, "compute_pi": 39, "true_labels_class_count": 39, "compute_pyx": 39, "pyx": 39, "multiannot": 40, "assert_valid_inputs_multiannot": 40, "labels_multiannot": [40, 50], "ensembl": [40, 41, 50, 60, 78, 81, 86, 88, 90, 92], "allow_single_label": 40, "annotator_id": 40, "assert_valid_pred_prob": 40, "pred_probs_unlabel": [40, 50], "format_multiannotator_label": [40, 50, 85], "lexicograph": [40, 45], "formatted_label": [40, 45], "old": [40, 45, 73, 80], "check_consensus_label_class": 40, "consensus_label": [40, 50, 85], "consensus_method": [40, 50], "consensu": [40, 50, 72, 84, 94], "establish": [40, 90, 93], "compute_soft_cross_entropi": 40, "soft": [40, 80], "find_best_temp_scal": 40, "coarse_search_rang": [40, 62, 81], "fine_search_s": [40, 62, 81], "temperatur": [40, 41, 57, 66, 70], "scale": [40, 43, 80, 81, 88, 91, 92], "factor": [40, 41, 43, 64, 66], "minim": [40, 57, 88], "temp_scale_pred_prob": 40, "temp": 40, "sharpen": [40, 80], "smoothen": 40, "classlabelscor": 41, "enum": 41, "get_normalized_margin_for_each_label": [41, 60], "get_confidence_weighted_entropy_for_each_label": [41, 60], "75": [41, 75, 76, 80, 85, 86, 87, 90, 91, 94], "from_str": 41, "scorer": 41, "exponential_moving_averag": [41, 54], "alpha": [41, 54, 57, 75, 76, 83, 86, 90], "exponenti": 41, "ema": 41, "s_1": 41, "s_k": 41, "ema_k": 41, "accord": [41, 52, 78, 79, 83, 94], "formula": [41, 43], "_t": 41, "cdot": 41, "s_t": 41, "qquad": 41, "leq": 41, "_1": 41, "give": [41, 60, 83, 85, 91], "recent": [41, 94], "success": 41, "previou": [41, 81, 82, 87], "discount": 41, "s_ema": 41, "175": [41, 83, 87], "softmin": [41, 54, 57, 66, 70], "underflow": 41, "nan": [41, 50, 78, 85, 90, 92], "possible_method": 41, "aggregated_scor": 41, "multilabelscor": 41, "base_scor": 41, "base_scorer_kwarg": 41, "aggregator_kwarg": [41, 54], "n_sampl": 41, "n_label": 41, "binari": [41, 45, 52, 54, 83, 94], "worst": [41, 85], "class_label_quality_scor": 41, "get_class_label_quality_scor": 41, "42": [41, 80, 82, 87, 91, 94], "452": [41, 79], "new_scor": 41, "575": 41, "get_label_quality_scores_per_class": [41, 54], "ml_scorer": 41, "multilabel_pi": 41, "binar": [41, 42], "get_cross_validated_multilabel_pred_prob": 41, "reformat": [41, 74], "wider": 41, "splitter": 41, "kfold": [41, 82], "multiclass": [41, 45, 50, 86], "onevsrestclassifi": [41, 86], "randomforestclassifi": [41, 83, 86], "n_split": [41, 76, 82, 86], "stack_compl": 42, "pred_prob_slic": 42, "get_onehot_num_class": 42, "onehot": 42, "multilabel": [42, 86], "int2onehot": [42, 86], "hot": [42, 52, 58, 64, 67, 78, 80, 81, 90, 91, 92], "onehot2int": [42, 86], "onehot_matrix": 42, "transform_distances_to_scor": 43, "avg_dist": 43, "scaling_factor": 43, "exp": [43, 59, 60, 75], "dt": 43, "right": [43, 55, 58, 79, 86, 87, 88, 93], "strength": [43, 58], "pronounc": 43, "differenti": 43, "ly": 43, "rule": [43, 44, 80], "thumb": 43, "ood_features_scor": [43, 59, 88], "88988177": 43, "80519832": 43, "token_classif": [44, 68, 70, 71, 81], "get_sent": [44, 94], "sentenc": [44, 68, 70, 71, 79, 93], "readabl": 44, "filter_sent": [44, 94], "lambda": [44, 74, 75, 81, 85], "long_sent": 44, "headlin": 44, "process_token": 44, "charact": [44, 45], "s1": 44, "s2": 44, "processed_token": 44, "alecnlcb": 44, "entiti": [44, 72, 81, 94], "mapped_ent": 44, "unique_ident": 44, "loc": [44, 75, 76, 82, 94], "merge_prob": 44, "probs_merg": 44, "55": [44, 80, 82, 87, 90, 91], "0125": [44, 70], "0375": 44, "075": 44, "025": 44, "color_sent": 44, "color": [44, 67, 75, 76, 78, 83, 86, 88, 90, 91], "red": [44, 58, 75, 76, 80, 83, 86, 87, 88, 91], "colored_sent": 44, "termcolor": 44, "31msentenc": 44, "0m": 44, "ancillari": 45, "remove_noise_from_class": 45, "class_without_nois": 45, "any_other_class": 45, "choos": [45, 60, 78, 81, 83, 90, 92], "tradition": 45, "clip_noise_r": 45, "clip_valu": 45, "new_sum": 45, "preserv": 45, "value_count": [45, 81], "fill": 45, "wherea": [45, 52, 89], "come": [45, 75, 76, 81, 82, 91], "major": [45, 50, 73, 82, 88], "versu": [45, 83], "value_counts_fill_missing_class": 45, "get_missing_class": 45, "round_preserving_sum": 45, "obviou": 45, "cgdeboer": 45, "iteround": 45, "round_preserving_row_tot": 45, "reach": 45, "estimate_pu_f1": 45, "prob_s_eq_1": 45, "claesen": 45, "f1": [45, 58, 79, 83], "confusion_matrix": 45, "BE": 45, "print_square_matrix": 45, "left_nam": 45, "top_nam": 45, "titl": [45, 75, 76, 83, 86, 88], "short_titl": 45, "round_plac": 45, "pretti": [45, 83], "print_noise_matrix": [45, 83], "print_inverse_noise_matrix": 45, "print_joint_matrix": [45, 83], "joint_matrix": 45, "compress_int_arrai": 45, "num_possible_valu": 45, "train_val_split": 45, "holdout_idx": 45, "subset_x_i": 45, "extract": [45, 59, 74, 79, 85, 88, 91, 93], "subset_label": 45, "subset_data": 45, "extract_indices_tf": 45, "allow_shuffl": 45, "turn": [45, 72, 87], "unshuffle_tensorflow_dataset": 45, "shuffledataset": 45, "histori": 45, "pre_x": 45, "buffer_s": 45, "is_torch_dataset": 45, "is_tensorflow_dataset": 45, "csr_vstack": 45, "csr_matric": 45, "append": [45, 74, 80, 81, 82, 83, 85, 86, 88, 94], "bottom": [45, 55, 58, 87], "append_extra_datapoint": 45, "to_data": 45, "from_data": 45, "taken": 45, "get_num_class": 45, "label_matrix": 45, "canon": 45, "num_unique_class": 45, "get_unique_class": 45, "format_label": 45, "smart_display_datafram": 45, "displai": [45, 58, 67, 71, 74, 79, 83, 93, 94], "jupyt": [45, 74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "notebook": [45, 50, 74, 76, 80, 81, 83, 85, 86, 87, 91, 94], "consol": 45, "force_two_dimens": 45, "html": [45, 59, 78, 81, 83], "assert_valid_input": 46, "allow_missing_class": 46, "allow_one_class": 46, "assert_valid_class_label": 46, "assert_nonempty_input": 46, "assert_indexing_work": 46, "length_x": 46, "labels_to_arrai": 46, "labellik": 46, "keraswrappermodel": [49, 72], "keraswrappersequenti": 49, "tf": [49, 74], "legaci": 49, "lack": 49, "keraswrapp": 49, "huggingface_keras_imdb": 49, "unit": [49, 94], "model_kwarg": [49, 62], "compile_kwarg": 49, "sparsecategoricalcrossentropi": 49, "layer": [49, 74, 79, 88, 93], "dens": 49, "my_keras_model": 49, "from_logit": 49, "compil": 49, "declar": 49, "apply_softmax": 49, "analysi": 50, "analyz": [50, 72, 83, 85, 86], "get_label_quality_multiannot": [50, 85], "vote": 50, "crowdsourc": [50, 72, 85], "dawid": [50, 85], "skene": [50, 85], "analog": [50, 80, 85], "chosen": [50, 60, 81, 85], "crowdlab": [50, 85], "unlabel": [50, 78, 79, 82, 85, 88, 91], "decid": [50, 79, 80, 85, 90, 93, 94], "get_active_learning_scor": [50, 85], "activelab": [50, 85], "priorit": [50, 57, 87, 91, 94], "showcas": 50, "main": 50, "best_qual": 50, "quality_method": 50, "calibrate_prob": 50, "return_detailed_qu": 50, "return_annotator_stat": 50, "return_weight": 50, "label_quality_score_kwarg": 50, "necessarili": [50, 58, 79, 83], "did": [50, 51, 74, 78, 83, 85, 90, 92, 93], "majority_vot": 50, "ti": 50, "broken": [50, 58, 80], "highest": [50, 58, 75, 82, 89], "0th": 50, "consensus_quality_scor": [50, 85], "annotator_agr": [50, 85], "reman": 50, "1st": 50, "2nd": [50, 64], "3rd": 50, "consensus_label_suffix": 50, "consensus_quality_score_suffix": 50, "suffix": 50, "emsembl": 50, "weigh": [50, 80], "agreement": [50, 85], "agre": 50, "prevent": [50, 81], "overconfid": [50, 89], "wrong": [50, 55, 57, 73, 75, 76, 79, 81, 83, 87, 93], "detailed_label_qu": [50, 85], "annotator_stat": [50, 85], "model_weight": 50, "annotator_weight": 50, "warn": [50, 75, 76], "labels_info": 50, "num_annot": [50, 85], "deriv": [50, 85], "quality_annotator_1": 50, "quality_annotator_2": 50, "quality_annotator_m": 50, "annotator_qu": [50, 85], "num_examples_label": [50, 85], "agreement_with_consensu": [50, 85], "worst_class": [50, 85], "trustworthi": [50, 85, 90], "get_label_quality_multiannotator_ensembl": 50, "weigtht": 50, "budget": 50, "retrain": [50, 90, 93], "active_learning_scor": 50, "improv": [50, 76, 80, 81, 82, 83, 90, 91, 92, 93], "active_learning_scores_unlabel": 50, "get_active_learning_scores_ensembl": 50, "henc": [50, 74, 75, 85], "get_majority_vote_label": [50, 85], "event": 50, "lastli": [50, 78], "convert_long_to_wide_dataset": 50, "labels_multiannotator_long": 50, "wide": [50, 74, 92, 93], "suitabl": [50, 78, 92], "labels_multiannotator_wid": 50, "common_multilabel_issu": 51, "mutual": [51, 86], "exclus": [51, 86], "rank_classes_by_multilabel_qu": 51, "overall_multilabel_health_scor": 51, "multilabel_health_summari": 51, "classes_by_multilabel_qu": 51, "inner": [52, 66], "find_multilabel_issues_per_class": 52, "per_class_label_issu": 52, "label_issues_list": 52, "labels_list": 52, "pred_probs_list": [52, 60, 82, 83], "anim": [53, 88], "rat": 53, "predat": 53, "pet": 53, "reptil": 53, "manner": [54, 85, 90, 92, 93], "box": [55, 57, 58, 80, 87], "object_detect": [55, 57, 58, 87], "return_indices_ranked_by_scor": [55, 87], "overlapping_label_check": [55, 57], "suboptim": [55, 57], "locat": [55, 57, 87, 91, 94], "bbox": [55, 58, 87], "image_nam": [55, 58], "y1": [55, 58, 87], "y2": [55, 58, 87], "later": [55, 58, 59, 93, 94], "mmdetect": [55, 58, 87], "corner": [55, 58, 87], "swap": [55, 57, 67, 71], "penal": [55, 57], "concern": [55, 57, 72, 76], "aggregation_weight": 57, "imperfect": [57, 81], "chose": [57, 85, 87], "imperfectli": [57, 87], "dirti": [57, 60, 63, 90], "subtyp": 57, "badloc": 57, "nonneg": 57, "issues_from_scor": [57, 66, 67, 70, 71, 87, 91, 94], "compute_overlooked_box_scor": 57, "high_probability_threshold": 57, "auxiliary_input": [57, 58], "vari": [57, 76], "iou": [57, 58], "heavili": 57, "auxiliarytypesdict": 57, "pred_label": [57, 93], "pred_label_prob": 57, "pred_bbox": 57, "lab_label": 57, "lab_bbox": 57, "similarity_matrix": 57, "min_possible_similar": 57, "scores_overlook": 57, "compute_badloc_box_scor": 57, "low_probability_threshold": 57, "scores_badloc": 57, "compute_swap_box_scor": 57, "accident": [57, 78, 79, 81, 93], "scores_swap": 57, "pool_box_scores_per_imag": 57, "box_scor": 57, "image_scor": [57, 66, 91], "object_counts_per_imag": 58, "discov": [58, 76, 94], "auxiliari": [58, 88, 91], "_get_valid_inputs_for_compute_scor": 58, "object_count": 58, "bounding_box_size_distribut": 58, "down": 58, "bbox_siz": 58, "class_label_distribut": 58, "class_distribut": 58, "get_sorted_bbox_count_idx": 58, "plot": [58, 75, 76, 83, 86, 88, 90, 91], "sorted_idx": [58, 88], "plot_class_size_distribut": 58, "class_to_show": 58, "hidden": [58, 88], "max_class_to_show": 58, "plot_class_distribut": 58, "visual": [58, 75, 76, 82, 90, 92, 94], "prediction_threshold": 58, "overlai": [58, 87], "figsiz": [58, 75, 76, 82, 83, 86, 88], "save_path": [58, 87], "blue": [58, 80, 83, 87], "overlaid": 58, "side": [58, 80, 87], "figur": [58, 83, 86, 88, 90], "extens": [58, 83, 85], "png": [58, 87], "pdf": [58, 59], "svg": 58, "matplotlib": [58, 75, 76, 82, 83, 86, 87, 88, 90], "get_average_per_class_confusion_matrix": 58, "num_proc": [58, 82], "intersect": [58, 81], "tp": 58, "fp": 58, "ground": [58, 80, 83, 85, 90], "truth": [58, 83, 85, 90], "bias": 58, "avg_metr": 58, "distionari": 58, "95": [58, 68, 70, 76, 78, 80, 83, 90, 91], "calculate_per_class_metr": 58, "per_class_metr": 58, "Of": 59, "li": 59, "smaller": [59, 86, 87], "find_top_issu": [59, 60, 88], "reli": [59, 74, 75, 76, 79, 87, 88, 93], "dist_metr": 59, "dim": [59, 82, 91], "subtract": [59, 60], "renorm": [59, 60, 81], "least_confid": 59, "sum_": 59, "log": [59, 60, 73], "softmax": [59, 66, 70, 82], "literatur": 59, "gen": 59, "liu": 59, "lochman": 59, "zach": 59, "openaccess": 59, "thecvf": 59, "content": [59, 74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "cvpr2023": 59, "liu_gen_pushing_the_limits_of_softmax": 59, "based_out": 59, "distribution_detection_cvpr_2023_pap": 59, "fit_scor": [59, 88], "ood_predictions_scor": 59, "pretrain": [59, 74, 79, 88, 93], "adjust_confident_threshold": 59, "probabilist": [59, 74, 75, 76, 78, 79, 88, 89, 92], "order_label_issu": [60, 73], "whichev": [60, 89], "argsort": [60, 79, 82, 83, 88, 90, 93], "max_": 60, "get_label_quality_ensemble_scor": [60, 81, 83], "weight_ensemble_members_bi": 60, "custom_weight": 60, "log_loss_search_t_valu": 60, "0001": [60, 80], "scheme": 60, "log_loss_search": 60, "log_loss": [60, 79], "1e0": 60, "1e1": 60, "1e2": 60, "2e2": 60, "quality_scor": [60, 88], "forth": 60, "top_issue_indic": 60, "rank_bi": [60, 73], "weird": [60, 71], "minu": 60, "prob_label": 60, "max_prob_not_label": 60, "idea": 60, "AND": [60, 79], "corrupt": [62, 90], "linearregress": [62, 81, 90], "y_with_nois": 62, "n_boot": [62, 81], "include_aleatoric_uncertainti": [62, 81], "sole": [62, 75, 85, 88, 92], "bootstrap": [62, 81, 90], "resampl": [62, 74, 81], "epistem": [62, 81, 88, 90], "aleator": [62, 81, 90], "model_final_kwarg": 62, "coars": 62, "thorough": [62, 81], "fine": [62, 74, 79, 88, 93], "grain": 62, "grid": 62, "get_epistemic_uncertainti": 62, "varianc": [62, 83], "epistemic_uncertainti": 62, "get_aleatoric_uncertainti": 62, "residu": [62, 63, 81], "deviat": [62, 90], "ie": 62, "aleatoric_uncertainti": 62, "outr": 63, "contin": 63, "raw": [63, 72, 73, 76, 80, 82, 85, 87, 88], "aka": [63, 74, 83, 94], "00323821": 63, "33692597": 63, "00191686": 63, "semant": [64, 66, 67, 84], "pixel": [64, 66, 67, 88, 91], "h": [64, 66, 67, 91], "height": [64, 66, 67, 91], "w": [64, 66, 67, 91], "width": [64, 66, 67, 91], "labels_one_hot": [64, 67, 91], "stream": [64, 88, 94], "downsampl": [64, 66, 91], "shrink": [64, 66], "divis": [64, 66, 75], "segmant": [66, 67], "num_pixel_issu": [66, 91], "product": [66, 81, 82], "pixel_scor": [66, 91], "display_issu": [66, 67, 68, 70, 71, 91, 94], "highlight": [67, 71, 75, 76, 78, 91], "enter": 67, "legend": [67, 75, 76, 86, 87, 90, 91], "colormap": 67, "background": 67, "person": [67, 81, 87, 91, 94], "common_label_issu": [67, 71, 91, 94], "ambigu": [67, 71, 74, 79, 80, 83, 93, 94], "systemat": [67, 71, 85], "misunderstood": [67, 71], "issues_df": [67, 82], "filter_by_class": [67, 91], "class_index": 67, "issues_subset": [67, 71], "token_score_method": 70, "sentence_score_method": 70, "sentence_score_kwarg": 70, "compris": [70, 71], "token_scor": [70, 94], "converg": 70, "toward": 70, "_softmin_sentence_scor": 70, "sentence_scor": [70, 94], "token_info": 70, "70": [70, 78, 90, 91], "02": [70, 75, 76, 82, 83, 87, 91], "03": [70, 78, 80, 82, 83, 87, 91, 94], "04": [70, 78, 87, 91], "08": [70, 79, 83, 87, 91, 94], "commonli": [71, 73, 75, 76, 86, 94], "filter_by_token": [71, 94], "But": [71, 79, 83, 94], "restrict": [71, 81], "reliabl": [72, 74, 81, 85, 91, 92], "thousand": 72, "imagenet": [72, 80], "popular": [72, 85, 87], "centric": [72, 78, 79, 82, 84], "capabl": 72, "minut": [72, 74, 78, 79, 80, 85, 86, 87, 90, 91, 92, 93, 94], "conda": 72, "feature_embed": [72, 88], "Then": [72, 81, 82, 90, 92, 93], "your_dataset": [72, 74, 75, 76, 78, 79, 81, 82], "column_name_of_label": [72, 74, 75, 76, 78, 79, 82], "plagu": [72, 76], "untrain": 72, "\u30c4": 72, "label_issues_info": [72, 76], "sklearn_compatible_model": 72, "framework": [72, 86, 87], "complianc": 72, "tag": [72, 86, 94], "sequenc": 72, "recognit": [72, 74, 81, 94], "train_data": [72, 88, 90, 92, 93], "gotten": 72, "test_data": [72, 83, 86, 88, 90, 92, 93], "deal": [72, 76], "tutori": [72, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "feel": [72, 74, 76, 81], "free": [72, 74, 76, 78, 79, 81, 82, 83], "ask": [72, 81], "slack": [72, 81], "project": [72, 90], "welcom": 72, "commun": [72, 81], "guidelin": [72, 87], "piec": 72, "studio": [72, 76, 78, 79, 81, 82], "platform": [72, 78, 79, 81, 82], "automl": [72, 81], "foundat": 72, "smart": [72, 78, 79, 81, 82], "edit": [72, 81], "easier": [72, 83], "unreli": [72, 74, 78, 79, 92], "older": 73, "outlin": 73, "substitut": 73, "v2": [73, 78, 92], "get_noise_indic": 73, "psx": 73, "sorted_index_method": 73, "order_label_error": 73, "label_errors_bool": 73, "latent_estim": 73, "num_label_error": 73, "learningwithnoisylabel": 73, "neatli": 73, "organ": [73, 78, 80, 92, 94], "reorgan": 73, "baseline_method": 73, "incorpor": [73, 83], "research": [73, 83], "polyplex": 73, "terminologi": 73, "label_error": 73, "quickstart": [74, 75, 76, 78, 79, 80, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "spoken": 74, "500": [74, 88, 94], "english": [74, 80], "pronunci": 74, "wav": 74, "huggingfac": [74, 75, 76, 82], "voxceleb": 74, "speech": [74, 94], "your_pred_prob": [74, 75, 76, 78, 79], "tensorflow_io": 74, "26": [74, 75, 80, 82, 83, 85, 87, 91], "huggingface_hub": 74, "12": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 88, 90, 91, 92, 93, 94], "branch": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 92, 93], "reproduc": [74, 78, 83, 85], "command": 74, "wget": [74, 87, 91, 94], "navig": 74, "link": [74, 80, 87], "browser": 74, "jakobovski": 74, "archiv": [74, 94], "v1": 74, "tar": [74, 88], "gz": [74, 88], "mkdir": [74, 94], "spoken_digit": 74, "xf": 74, "6_nicolas_32": 74, "data_path": 74, "listdir": 74, "nondeterminist": 74, "file_nam": 74, "endswith": 74, "file_path": 74, "join": [74, 81, 82], "39": [74, 75, 79, 80, 81, 82, 87, 90, 91, 93, 94], "7_george_26": 74, "0_nicolas_24": 74, "0_nicolas_6": 74, "listen": 74, "display_exampl": 74, "click": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "expand": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "pulldown": [74, 75, 76, 80, 82, 83, 85, 86, 88, 90, 94], "colab": [74, 75, 76, 80, 81, 82, 83, 85, 86, 88, 90, 94], "tfio": 74, "pathlib": 74, "ipython": 74, "load_wav_16k_mono": 74, "filenam": 74, "khz": 74, "file_cont": 74, "io": [74, 80], "read_fil": 74, "sample_r": 74, "decode_wav": 74, "desired_channel": 74, "squeez": 74, "rate_in": 74, "rate_out": 74, "16000": 74, "wav_file_nam": 74, "audio_r": 74, "wav_file_exampl": 74, "plai": [74, 80, 81], "button": 74, "wav_file_name_exampl": 74, "7_jackson_43": 74, "hear": 74, "extractor": 74, "encoderclassifi": 74, "spkrec": 74, "xvect": 74, "feature_extractor": 74, "from_hparam": 74, "run_opt": 74, "uncom": 74, "wav_audio_file_path": 74, "head": [74, 76, 78, 79, 80, 82, 83, 85, 90, 92, 93], "torchaudio": 74, "extract_audio_embed": 74, "emb": [74, 82], "signal": 74, "encode_batch": 74, "embeddings_list": [74, 82], "embeddings_arrai": 74, "512": [74, 82], "14": [74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "196315": 74, "3194594": 74, "478977": 74, "2890828": 74, "8170278": 74, "892647": 74, "24": [74, 80, 83, 85, 87, 91], "898054": 74, "256194": 74, "559642": 74, "559715": 74, "620667": 74, "285246": 74, "21": [74, 75, 80, 81, 83, 87, 91, 94], "709623": 74, "5033712": 74, "913803": 74, "8198366": 74, "1831512": 74, "208761": 74, "08426": 74, "3210406": 74, "005453": 74, "2161605": 74, "478239": 74, "682179": 74, "0538025": 74, "242471": 74, "0914207": 74, "7833488": 74, "039538": 74, "23": [74, 80, 82, 83, 87, 91, 94], "56918": 74, "19": [74, 79, 80, 81, 82, 83, 88, 90, 91, 93], "761095": 74, "1258287": 74, "753235": 74, "3508894": 74, "598273": 74, "237122": 74, "2500": 74, "leverag": [74, 79, 81, 83, 85, 93], "tune": [74, 79, 80, 88, 93], "computation": [74, 79, 93], "intens": [74, 79, 93], "held": [74, 78, 79, 80, 87, 88, 89, 92], "straightforward": [74, 78, 92], "benefit": [74, 89, 91, 92], "tol": 74, "num_crossval_fold": [74, 78, 85, 92], "decreas": [74, 81], "never": [74, 83, 86, 88, 89], "accuracy_scor": [74, 79, 83, 92, 93], "cv_accuraci": 74, "9772": 74, "probabilit": [74, 93], "9980": 74, "176": [74, 80, 83, 86], "006488": 74, "2318": 74, "008269": 74, "986": 74, "010354": 74, "469": 74, "013459": 74, "516": 74, "013478": 74, "investig": 74, "100541": 74, "998729": 74, "998768": 74, "980980": 74, "998217": 74, "18": [74, 79, 80, 81, 82, 83, 87, 88, 90, 91, 93, 94], "identified_label_issu": [74, 79], "lowest_quality_label": [74, 79, 83, 90, 93], "sort_valu": [74, 76, 78, 79, 81, 82, 83, 85], "1946": 74, "1871": 74, "1955": 74, "2132": 74, "worth": [74, 83], "iloc": [74, 78, 79, 90, 92, 93], "6_yweweler_35": 74, "6_yweweler_36": 74, "6_yweweler_14": 74, "6_theo_27": 74, "4_george_31": 74, "6_nicolas_8": 74, "sound": 74, "quit": [74, 88], "22": [74, 75, 80, 82, 83, 86, 87, 91, 94], "blindli": [74, 81, 90, 92, 93], "trust": [74, 81, 83, 85, 89, 90, 92, 93], "underneath": 75, "hood": 75, "alert": 75, "introduct": 75, "mayb": [75, 76, 79], "examin": [75, 76, 78, 92], "your_feature_matrix": [75, 76], "toi": [75, 76, 80, 82, 83, 85], "train_test_split": [75, 76, 88, 92, 93], "inf": [75, 76], "mid": [75, 76], "bins_map": [75, 76], "create_data": [75, 76], "y_bin": [75, 76], "y_i": [75, 76], "y_bin_idx": [75, 76], "y_train": [75, 76, 83, 90], "y_test": [75, 76, 83, 90], "y_train_idx": [75, 76], "y_test_idx": [75, 76], "test_siz": [75, 76, 92, 93], "slide": [75, 76, 80], "decis": [75, 76, 92], "boundari": [75, 76], "frame": [75, 76], "x_out": [75, 76], "tini": [75, 76], "concaten": [75, 76, 81, 89], "y_out": [75, 76], "y_out_bin": [75, 76], "y_out_bin_idx": [75, 76], "exact_duplicate_idx": [75, 76], "x_duplic": [75, 76], "y_duplic": [75, 76], "y_duplicate_idx": [75, 76], "noisy_labels_idx": [75, 76, 86], "scatter": [75, 76, 83, 86, 90], "black": [75, 76, 80, 90], "cyan": [75, 76], "pyplot": [75, 76, 82, 83, 86, 88, 90], "plt": [75, 76, 82, 83, 86, 88, 90], "plot_data": [75, 76, 83, 86, 90], "fig": [75, 76, 80, 82, 88, 90], "ax": [75, 76, 82, 88, 90], "subplot": [75, 76, 82, 88], "set_titl": [75, 76, 82, 88], "set_xlabel": [75, 76], "x_1": [75, 76], "fontsiz": [75, 76, 82, 83, 86], "set_ylabel": [75, 76], "x_2": [75, 76], "set_xlim": [75, 76], "set_ylim": [75, 76], "linestyl": [75, 76], "circl": [75, 76, 83, 86], "misclassifi": [75, 76], "zip": [75, 76, 82, 87, 94], "label_err": [75, 76], "180": [75, 76, 87], "marker": [75, 76], "facecolor": [75, 76], "edgecolor": [75, 76], "linewidth": [75, 76, 88], "dup": [75, 76], "first_legend": [75, 76], "align": [75, 76], "title_fontproperti": [75, 76], "semibold": [75, 76], "second_legend": [75, 76], "45": [75, 76, 80, 82, 83, 87, 91], "gca": [75, 76], "add_artist": [75, 76], "tight_layout": [75, 76], "ideal": [75, 76], "logist": [75, 76, 79, 85, 88, 93], "remaind": 75, "modal": [75, 76, 81, 85], "regardless": [75, 76], "132": [75, 76, 83, 87, 94], "9318": 75, "77": [75, 76, 78, 87, 91, 92], "006939": 75, "007830": 75, "40": [75, 76, 79, 80, 82, 91], "014826": 75, "107": [75, 76, 83, 86], "021220": 75, "120": [75, 76, 92], "026403": 75, "notic": [75, 83, 85, 87], "3558": [75, 76], "126": [75, 76, 83, 87], "006636": [75, 76], "130": [75, 76], "012571": [75, 76], "129": [75, 76], "127": [75, 76], "014909": [75, 76], "128": [75, 76, 82], "017443": [75, 76], "6160": [75, 76], "is_near_duplicate_issu": [75, 76, 78, 79, 81, 82, 83], "131": [75, 76, 91], "000000e": [75, 76], "00": [75, 76, 78, 80, 82, 91, 92], "000002": [75, 76], "463180e": [75, 76], "07": [75, 76, 78, 82, 83, 87, 91], "51": [75, 76, 78, 80, 83, 87, 91], "161148": [75, 76], "859087e": [75, 76], "30": [75, 76, 80, 81, 82, 86, 91, 94], "3453": 75, "029542": 75, "031182": 75, "057961": 75, "058244": 75, "home": [75, 76, 79, 80, 88, 93], "runner": [75, 76, 79, 88, 93], "300": [75, 85, 94], "userwarn": [75, 76], "330": [75, 82, 87], "309": 75, "34": [75, 80, 83, 85, 87, 88, 91, 94], "54": [75, 80, 83, 87, 91, 94], "039117": 75, "53": [75, 76, 78, 80, 82, 86, 87, 91, 92], "044594": 75, "105": 75, "105121": 75, "133588": 75, "43": [75, 80, 82, 83, 87, 91, 93], "168035": 75, "125": 75, "101107": 75, "37": [75, 80, 91], "183382": 75, "109": [75, 80, 87], "209259": 75, "211042": 75, "221316": 75, "average_ood_scor": 75, "34530442089193386": 75, "52": [75, 80, 82, 87, 91, 94], "169820": 75, "087324e": 75, "89": [75, 78, 87, 90, 91, 94], "92": [75, 83, 87, 91, 92], "259024": 75, "583757e": 75, "91": [75, 87, 91, 93], "346458": 75, "341292e": 75, "specfi": 75, "new_lab": 75, "scoring_funct": 75, "div": 75, "rem": 75, "inv_scal": 75, "49": [75, 80, 83, 87, 91, 94], "superstitionissuemanag": 75, "unlucki": 75, "superstit": 75, "to_seri": 75, "issues_mask": 75, "summary_scor": 75, "9242": 75, "is_superstition_issu": 75, "superstition_scor": 75, "047581": 75, "090635": 75, "129591": 75, "65": [75, 82, 87, 91, 92], "164840": 75, "demo": [76, 78, 86, 92], "lurk": [76, 82, 83], "opt": 76, "hostedtoolcach": 76, "x64": 76, "lib": 76, "python3": 76, "site": 76, "_split": 76, "737": 76, "thoroughli": 76, "preprocess": [76, 78, 88, 90, 92, 93], "904": 76, "review": [76, 78, 79, 80, 81, 83, 87, 90, 91, 92, 93, 94], "8561": 76, "001894": 76, "58": [76, 78, 80, 83, 87, 91, 92], "003565": 76, "007326": 76, "008974": 76, "009699": 76, "0227": 76, "is_class_imbalance_issu": [76, 78, 79, 82, 83], "022727": 76, "86": [76, 78, 82, 83, 87, 90, 91, 92], "87": [76, 82, 87, 90, 91, 93], "0000": [76, 79, 80, 82, 83], "is_null_issu": [76, 79, 82, 83], "96": [76, 78, 80, 83, 86, 87, 90, 91], "94": [76, 78, 80, 83, 87, 90, 91, 92], "93": [76, 80, 87, 90, 91, 92, 94], "8218": 76, "is_non_iid_issu": [76, 78, 79, 82, 83], "810274": 76, "826147": 76, "849587": 76, "855359": 76, "855485": 76, "821750488732925": 76, "auto": [76, 80, 81, 90, 92, 93], "conceptu": 76, "856061": 76, "355772": 76, "616034": 76, "821750": 76, "betweeen": 76, "859109": 76, "417707": 76, "664083": 76, "970324": 76, "816965": 76, "375317": 76, "641516": 76, "890575": 76, "530924": 76, "460593": 76, "601188": 76, "752776": 76, "321635": 76, "562539": 76, "948362": 76, "090224": 76, "472909": 76, "746763": 76, "878267": 76, "examples_w_issu": [76, 81], "013444": 76, "025173": 76, "026416": 76, "inde": [76, 79], "miscellan": [76, 94], "428571": 76, "111111": 76, "571429": 76, "407407": 76, "592593": 76, "337838": 76, "092593": 76, "662162": 76, "333333": [76, 80], "952381": 76, "666667": 76, "portion": 76, "huge": [76, 83], "worri": [76, 79], "critic": 76, "highli": [76, 82], "sql": [78, 92], "databas": [78, 92], "excel": [78, 92], "parquet": [78, 92], "student": [78, 90, 92, 94], "grade": [78, 90, 92], "900": [78, 90, 92], "exam": [78, 90, 92], "letter": [78, 92, 94], "hundr": [78, 92], "histgradientboostingclassifi": 78, "standardscal": [78, 88, 92], "possibli": [78, 92], "grades_data": [78, 92], "read_csv": [78, 79, 90, 92, 93], "stud_id": [78, 92], "exam_1": [78, 90, 92], "exam_2": [78, 90, 92], "exam_3": [78, 90, 92], "letter_grad": [78, 92], "f48f73": [78, 92], "0bd4e7": [78, 92], "81": [78, 79, 87, 90, 91, 92, 94], "great": [78, 80, 92], "particip": [78, 92], "cb9d7a": [78, 92], "61": [78, 83, 87, 91, 92], "78": [78, 80, 82, 83, 87, 90, 91, 92], "9acca4": [78, 92], "48": [78, 80, 82, 83, 87, 91, 92], "x_raw": [78, 92], "cat_featur": 78, "x_encod": [78, 92], "get_dummi": [78, 90, 92], "drop_first": [78, 92], "numeric_featur": [78, 92], "scaler": [78, 88, 92], "x_process": [78, 92], "fit_transform": [78, 92], "bring": [78, 79, 82, 85, 90, 92, 93], "byod": [78, 79, 82, 85, 90, 92, 93], "boost": [78, 81, 85, 90], "xgboost": [78, 81, 90], "think": [78, 79, 81, 86, 91, 94], "carefulli": [78, 79, 82, 92], "nonzero": 78, "suspici": [78, 92], "tabl": [78, 80, 85, 92], "358": 78, "294": [78, 87], "46": [78, 80, 83, 87, 91], "941": 78, "7109": 78, "000005": [78, 79, 82], "886": 78, "000059": 78, "709": 78, "000104": 78, "723": 78, "000169": 78, "689": 78, "000181": 78, "3590": 78, "051882e": 78, "683133e": 78, "536582e": 78, "406589e": 78, "324246e": 78, "6165": 78, "582": 78, "185": [78, 80, 87, 94], "187": [78, 80], "27": [78, 80, 82, 83, 87, 91, 94], "898": 78, "637": [78, 92], "0014": [78, 80], "595": 78, "702427": 78, "147": [78, 83, 87], "711186": 78, "157": [78, 83], "721394": 78, "771": 78, "731979": 78, "740335": 78, "0014153602099278074": 78, "1562": 78, "393": 78, "156217": 78, "391": 78, "806": 78, "805": 78, "156": [78, 83, 94], "na": [78, 79, 82, 83, 85], "issue_result": 78, "000842": 78, "555944": 78, "004374": 78, "sorted_issu": 78, "73": [78, 80, 82, 86, 87, 90, 91], "deserv": 78, "outlier_result": 78, "sorted_outli": 78, "56": [78, 80, 90, 91], "lt": [78, 79, 80, 82, 85, 91], "style": [78, 91], "font": 78, "18px": 78, "ff00ff": 78, "bac": 78, "unintend": [78, 79], "mistak": [78, 79, 82, 92, 93], "duplicate_result": 78, "690": 78, "246": [78, 87], "perhap": [78, 83, 85], "twice": 78, "67": [78, 80, 82, 87, 90, 91], "wari": [78, 79, 81], "super": [78, 79, 82], "system": [78, 79, 82, 91], "intent": [79, 93], "servic": [79, 81, 93], "onlin": [79, 93], "bank": [79, 80, 93], "banking77": [79, 93], "oo": [79, 93], "000": [79, 80, 82, 93, 94], "categori": [79, 82, 93], "scope": [79, 93], "dive": 79, "your_featur": 79, "sentence_transform": [79, 93], "sentencetransform": [79, 93], "payment": [79, 93], "cancel_transf": [79, 93], "transfer": [79, 93], "fund": [79, 93], "cancel": [79, 93], "transact": [79, 93], "my": [79, 93], "revert": [79, 93], "morn": [79, 93], "realis": [79, 93], "yesterdai": [79, 93], "rent": [79, 93], "realli": [79, 85, 91, 93], "tomorrow": [79, 93], "raw_text": [79, 93], "supported_cards_and_curr": [79, 93], "apple_pay_or_google_pai": [79, 93], "card_about_to_expir": [79, 93], "getting_spare_card": [79, 93], "lost_or_stolen_phon": [79, 93], "card_payment_fee_charg": [79, 93], "beneficiary_not_allow": [79, 93], "change_pin": [79, 93], "visa_or_mastercard": [79, 93], "utter": [79, 93], "continu": [79, 81, 82, 85, 90, 92, 93, 94], "suit": [79, 80, 81, 93], "electra": [79, 93], "discrimin": [79, 93], "googl": [79, 93], "text_embed": 79, "No": [79, 81, 93], "google_electra": [79, 93], "pool": [79, 81, 88, 93], "400": [79, 93], "data_dict": [79, 83, 85], "84": [79, 87, 91], "41": [79, 80, 87, 90, 91], "38": [79, 80, 87, 91], "9720": 79, "981": 79, "974": 79, "000150": 79, "982": [79, 80], "000218": 79, "971": 79, "000512": 79, "980": [79, 80], "000947": 79, "3584": 79, "994": 79, "009642": 79, "999": 79, "013067": 79, "013841": 79, "433": 79, "014722": 79, "989": 79, "018224": 79, "6070": 79, "160": [79, 83], "095724": 79, "148": 79, "006237": 79, "546": 79, "099340": 79, "514": 79, "006485": 79, "481": 79, "123416": 79, "008165": 79, "313": [79, 87], "564102": 79, "572258": 79, "28": [79, 80, 82, 83, 85, 91, 94], "574915": 79, "31": [79, 80, 82, 83, 85, 87, 91], "575507": 79, "575874": 79, "658": 79, "659": [79, 90], "660": 79, "661": 79, "0800": 79, "454": 79, "453": 79, "455": 79, "791961": 79, "258508": 79, "699010": 79, "183136": 79, "771112": 79, "to_numpi": [79, 81, 90, 93], "data_with_suggested_label": 79, "suggested_label": 79, "charg": [79, 93], "cash": [79, 93], "holidai": [79, 93], "sent": [79, 93, 94], "card": [79, 80, 93], "mine": [79, 93], "expir": [79, 93], "me": [79, 93], "withdraw": 79, "monei": 79, "whoever": [79, 93], "outlier_issu": [79, 82], "lowest_quality_outli": 79, "OR": 79, "636c65616e6c616220697320617765736f6d6521": 79, "phone": [79, 80], "gone": 79, "gt": [79, 85, 94], "samp": 79, "br": 79, "press": [79, 94], "nonsens": 79, "sens": 79, "detriment": 79, "duplicate_issu": 79, "fee": 79, "pai": 79, "go": [79, 80, 83], "strongli": 79, "p_valu": 79, "benign": 79, "shortlist": [79, 90, 93], "curat": [79, 84], "mnist_test_set": 80, "imagenet_val_set": 80, "tench": 80, "goldfish": 80, "white": [80, 94], "shark": 80, "tiger": 80, "hammerhead": 80, "electr": 80, "rai": 80, "stingrai": 80, "cock": 80, "hen": 80, "ostrich": 80, "brambl": 80, "goldfinch": 80, "hous": 80, "finch": 80, "junco": 80, "indigo": 80, "bunt": 80, "american": [80, 94], "robin": 80, "bulbul": 80, "jai": 80, "magpi": 80, "chickade": 80, "dipper": 80, "kite": 80, "bald": 80, "eagl": 80, "vultur": 80, "grei": 80, "owl": 80, "fire": 80, "salamand": 80, "smooth": 80, "newt": 80, "spot": [80, 87], "axolotl": 80, "bullfrog": 80, "tree": 80, "frog": [80, 88], "tail": 80, "loggerhead": 80, "sea": 80, "turtl": 80, "leatherback": 80, "mud": 80, "terrapin": 80, "band": 80, "gecko": 80, "green": [80, 94], "iguana": 80, "carolina": 80, "anol": 80, "desert": 80, "grassland": 80, "whiptail": 80, "lizard": 80, "agama": 80, "frill": 80, "neck": 80, "allig": 80, "gila": 80, "monster": 80, "european": 80, "chameleon": 80, "komodo": 80, "dragon": 80, "nile": 80, "crocodil": 80, "triceratop": 80, "worm": 80, "snake": 80, "ring": 80, "eastern": 80, "hog": 80, "nose": 80, "kingsnak": 80, "garter": 80, "water": 80, "vine": 80, "night": 80, "boa": 80, "constrictor": 80, "african": 80, "rock": 80, "indian": 80, "cobra": 80, "mamba": 80, "saharan": 80, "horn": 80, "viper": 80, "diamondback": 80, "rattlesnak": 80, "sidewind": 80, "trilobit": 80, "harvestman": 80, "scorpion": 80, "yellow": 80, "garden": 80, "spider": 80, "barn": 80, "southern": 80, "widow": 80, "tarantula": 80, "wolf": 80, "tick": 80, "centiped": 80, "grous": 80, "ptarmigan": 80, "ruf": 80, "prairi": 80, "peacock": 80, "quail": 80, "partridg": 80, "parrot": 80, "macaw": 80, "sulphur": 80, "crest": 80, "cockatoo": 80, "lorikeet": 80, "coucal": 80, "bee": 80, "eater": 80, "hornbil": 80, "hummingbird": 80, "jacamar": 80, "toucan": 80, "duck": [80, 93], "breast": 80, "mergans": 80, "goos": 80, "swan": 80, "tusker": 80, "echidna": 80, "platypu": 80, "wallabi": 80, "koala": 80, "wombat": 80, "jellyfish": 80, "anemon": 80, "brain": 80, "coral": 80, "flatworm": 80, "nematod": 80, "conch": 80, "snail": 80, "slug": 80, "chiton": 80, "chamber": 80, "nautilu": 80, "dung": 80, "crab": 80, "fiddler": 80, "king": 80, "lobster": 80, "spini": 80, "crayfish": 80, "hermit": 80, "isopod": 80, "stork": 80, "spoonbil": 80, "flamingo": 80, "heron": 80, "egret": 80, "bittern": 80, "crane": 80, "bird": [80, 88], "limpkin": 80, "gallinul": 80, "coot": 80, "bustard": 80, "ruddi": 80, "turnston": 80, "dunlin": 80, "redshank": 80, "dowitch": 80, "oystercatch": 80, "pelican": 80, "penguin": 80, "albatross": 80, "whale": 80, "killer": 80, "dugong": 80, "lion": 80, "chihuahua": 80, "japanes": 80, "chin": 80, "maltes": 80, "pekinges": 80, "shih": 80, "tzu": 80, "charl": 80, "spaniel": 80, "papillon": 80, "terrier": 80, "rhodesian": 80, "ridgeback": 80, "afghan": [80, 94], "hound": 80, "basset": 80, "beagl": 80, "bloodhound": 80, "bluetick": 80, "coonhound": 80, "tan": 80, "walker": 80, "foxhound": 80, "redbon": 80, "borzoi": 80, "irish": 80, "wolfhound": 80, "italian": 80, "greyhound": 80, "whippet": 80, "ibizan": 80, "norwegian": 80, "elkhound": 80, "otterhound": 80, "saluki": 80, "scottish": 80, "deerhound": 80, "weimaran": 80, "staffordshir": 80, "bull": 80, "bedlington": 80, "border": 80, "kerri": 80, "norfolk": 80, "norwich": 80, "yorkshir": 80, "wire": 80, "fox": 80, "lakeland": 80, "sealyham": 80, "airedal": 80, "cairn": 80, "australian": 80, "dandi": 80, "dinmont": 80, "boston": 80, "miniatur": 80, "schnauzer": 80, "giant": 80, "tibetan": 80, "silki": 80, "coat": [80, 82], "wheaten": 80, "west": 80, "highland": 80, "lhasa": 80, "apso": 80, "flat": 80, "retriev": 80, "curli": 80, "golden": 80, "labrador": 80, "chesapeak": 80, "bai": 80, "german": [80, 94], "shorthair": 80, "pointer": 80, "vizsla": 80, "setter": 80, "gordon": 80, "brittani": 80, "clumber": 80, "springer": 80, "welsh": 80, "cocker": 80, "sussex": 80, "kuvasz": 80, "schipperk": 80, "groenendael": 80, "malinoi": 80, "briard": 80, "kelpi": 80, "komondor": 80, "sheepdog": 80, "shetland": 80, "colli": 80, "bouvier": 80, "de": 80, "flandr": 80, "rottweil": 80, "shepherd": 80, "dobermann": 80, "pinscher": 80, "swiss": [80, 94], "mountain": 80, "bernes": 80, "appenzel": 80, "sennenhund": 80, "entlebuch": 80, "boxer": 80, "bullmastiff": 80, "mastiff": 80, "french": 80, "bulldog": 80, "dane": 80, "st": 80, "bernard": 80, "huski": 80, "alaskan": 80, "malamut": 80, "siberian": 80, "dalmatian": 80, "affenpinsch": 80, "basenji": 80, "pug": 80, "leonberg": 80, "newfoundland": 80, "pyrenean": 80, "samoi": 80, "pomeranian": 80, "chow": 80, "keeshond": 80, "griffon": 80, "bruxelloi": 80, "pembrok": 80, "corgi": 80, "cardigan": 80, "poodl": 80, "mexican": 80, "hairless": 80, "tundra": 80, "coyot": 80, "dingo": 80, "dhole": 80, "wild": 80, "hyena": 80, "kit": 80, "arctic": 80, "tabbi": 80, "persian": 80, "siames": 80, "egyptian": 80, "mau": 80, "cougar": 80, "lynx": 80, "leopard": 80, "snow": 80, "jaguar": 80, "cheetah": 80, "brown": [80, 91], "bear": 80, "polar": 80, "sloth": 80, "mongoos": 80, "meerkat": 80, "beetl": 80, "ladybug": 80, "longhorn": 80, "leaf": 80, "rhinocero": 80, "weevil": 80, "fly": 80, "ant": 80, "grasshopp": 80, "cricket": 80, "stick": 80, "insect": 80, "cockroach": 80, "manti": 80, "cicada": 80, "leafhopp": 80, "lacew": 80, "dragonfli": 80, "damselfli": 80, "admir": 80, "ringlet": 80, "monarch": 80, "butterfli": 80, "gossam": 80, "wing": 80, "starfish": 80, "urchin": 80, "cucumb": 80, "cottontail": 80, "rabbit": 80, "hare": 80, "angora": 80, "hamster": 80, "porcupin": 80, "squirrel": 80, "marmot": 80, "beaver": 80, "guinea": 80, "pig": 80, "sorrel": 80, "zebra": 80, "boar": 80, "warthog": 80, "hippopotamu": 80, "ox": 80, "buffalo": 80, "bison": 80, "bighorn": 80, "sheep": 80, "alpin": 80, "ibex": 80, "hartebeest": 80, "impala": 80, "gazel": 80, "dromedari": 80, "llama": 80, "weasel": 80, "mink": 80, "polecat": 80, "foot": 80, "ferret": 80, "otter": 80, "skunk": 80, "badger": 80, "armadillo": 80, "toed": 80, "orangutan": 80, "gorilla": 80, "chimpanze": 80, "gibbon": 80, "siamang": 80, "guenon": 80, "pata": 80, "monkei": 80, "baboon": 80, "macaqu": 80, "langur": 80, "colobu": 80, "probosci": 80, "marmoset": 80, "capuchin": 80, "howler": 80, "titi": 80, "geoffroi": 80, "lemur": 80, "indri": 80, "asian": 80, "eleph": 80, "bush": 80, "snoek": 80, "eel": 80, "coho": 80, "salmon": 80, "beauti": 80, "clownfish": 80, "sturgeon": 80, "garfish": 80, "lionfish": 80, "pufferfish": 80, "abacu": 80, "abaya": 80, "academ": 80, "gown": 80, "accordion": 80, "acoust": 80, "guitar": 80, "aircraft": 80, "carrier": 80, "airlin": 80, "airship": 80, "altar": 80, "ambul": 80, "amphibi": 80, "clock": [80, 94], "apiari": 80, "apron": 80, "wast": 80, "assault": 80, "rifl": 80, "backpack": 80, "bakeri": 80, "balanc": 80, "beam": 80, "balloon": 80, "ballpoint": 80, "pen": 80, "aid": 80, "banjo": 80, "balust": 80, "barbel": 80, "barber": 80, "chair": [80, 87], "barbershop": 80, "baromet": 80, "barrel": 80, "wheelbarrow": 80, "basebal": 80, "basketbal": 80, "bassinet": 80, "bassoon": 80, "swim": 80, "cap": 80, "bath": 80, "towel": 80, "bathtub": 80, "station": 80, "wagon": 80, "lighthous": 80, "beaker": 80, "militari": 80, "beer": 80, "bottl": 80, "glass": 80, "bell": 80, "cot": 80, "bib": 80, "bicycl": [80, 91], "bikini": 80, "binder": 80, "binocular": 80, "birdhous": 80, "boathous": 80, "bobsleigh": 80, "bolo": 80, "tie": 80, "poke": 80, "bonnet": 80, "bookcas": 80, "bookstor": 80, "bow": 80, "brass": 80, "bra": 80, "breakwat": 80, "breastplat": 80, "broom": 80, "bucket": 80, "buckl": 80, "bulletproof": 80, "vest": 80, "butcher": 80, "shop": 80, "taxicab": 80, "cauldron": 80, "candl": 80, "cannon": 80, "cano": 80, "mirror": [80, 87], "carousel": 80, "tool": [80, 83, 85], "carton": 80, "wheel": 80, "teller": 80, "cassett": 80, "player": 80, "castl": 80, "catamaran": 80, "cd": 80, "cello": 80, "mobil": [80, 94], "chain": 80, "fenc": [80, 91], "mail": 80, "chainsaw": 80, "chest": 80, "chiffoni": 80, "chime": 80, "china": 80, "cabinet": 80, "christma": 80, "stock": 80, "church": 80, "movi": 80, "theater": 80, "cleaver": 80, "cliff": 80, "dwell": 80, "cloak": 80, "clog": 80, "cocktail": 80, "shaker": 80, "coffe": 80, "mug": 80, "coffeemak": 80, "coil": 80, "lock": 80, "keyboard": 80, "confectioneri": 80, "ship": [80, 88], "corkscrew": 80, "cornet": 80, "cowboi": 80, "boot": 80, "hat": 80, "cradl": 80, "crash": 80, "helmet": 80, "crate": 80, "infant": 80, "bed": 80, "crock": 80, "pot": 80, "croquet": 80, "crutch": 80, "cuirass": 80, "dam": 80, "desk": 80, "desktop": 80, "rotari": 80, "dial": 80, "telephon": 80, "diaper": 80, "watch": 80, "dine": 80, "dishcloth": 80, "dishwash": 80, "disc": 80, "brake": 80, "dock": 80, "sled": 80, "dome": 80, "doormat": 80, "drill": 80, "rig": 80, "drum": 80, "drumstick": 80, "dumbbel": 80, "dutch": 80, "oven": 80, "fan": 80, "locomot": 80, "entertain": 80, "center": 80, "envelop": 80, "espresso": 80, "powder": 80, "feather": 80, "fireboat": 80, "engin": [80, 91], "screen": 80, "sheet": 80, "flagpol": 80, "flute": 80, "footbal": 80, "forklift": 80, "fountain": 80, "poster": 80, "freight": 80, "fry": 80, "pan": 80, "fur": 80, "garbag": 80, "ga": 80, "pump": 80, "goblet": 80, "kart": 80, "golf": 80, "cart": 80, "gondola": 80, "gong": 80, "grand": 80, "piano": 80, "greenhous": 80, "grill": 80, "groceri": 80, "guillotin": 80, "barrett": 80, "hair": 80, "sprai": 80, "hammer": 80, "dryer": 80, "hand": [80, 83], "handkerchief": 80, "drive": 80, "harmonica": 80, "harp": 80, "harvest": 80, "hatchet": 80, "holster": 80, "honeycomb": 80, "hoop": 80, "skirt": 80, "horizont": 80, "bar": 80, "hors": [80, 88, 93], "drawn": 80, "hourglass": 80, "ipod": 80, "cloth": 80, "iron": 80, "jack": 80, "lantern": 80, "jean": 80, "jeep": 80, "shirt": [80, 82], "jigsaw": 80, "puzzl": 80, "pull": 80, "rickshaw": 80, "joystick": 80, "kimono": 80, "knee": 80, "pad": 80, "knot": 80, "ladl": 80, "lampshad": 80, "laptop": 80, "lawn": 80, "mower": 80, "knife": 80, "lifeboat": 80, "lighter": 80, "limousin": 80, "ocean": 80, "liner": 80, "lipstick": 80, "slip": 80, "shoe": 80, "lotion": 80, "speaker": 80, "loup": 80, "sawmil": 80, "magnet": 80, "compass": 80, "bag": [80, 82, 88, 89], "mailbox": 80, "tight": 80, "tank": 80, "manhol": 80, "maraca": 80, "marimba": 80, "maypol": 80, "maze": 80, "cup": [80, 87], "medicin": 80, "megalith": 80, "microphon": 80, "microwav": 80, "milk": 80, "minibu": 80, "miniskirt": 80, "minivan": 80, "missil": 80, "mitten": 80, "mix": 80, "bowl": 80, "modem": 80, "monasteri": 80, "monitor": 80, "mope": 80, "mortar": 80, "mosqu": 80, "mosquito": 80, "scooter": 80, "bike": 80, "tent": 80, "mous": [80, 81], "mousetrap": 80, "van": 80, "muzzl": 80, "nail": 80, "brace": 80, "necklac": 80, "nippl": 80, "obelisk": 80, "obo": 80, "ocarina": 80, "odomet": 80, "oil": 80, "oscilloscop": 80, "overskirt": 80, "bullock": 80, "oxygen": 80, "packet": 80, "paddl": 80, "padlock": 80, "paintbrush": 80, "pajama": 80, "palac": [80, 94], "parachut": 80, "park": 80, "bench": 80, "meter": 80, "passeng": 80, "patio": 80, "payphon": 80, "pedest": 80, "pencil": 80, "perfum": 80, "petri": 80, "dish": 80, "photocopi": 80, "plectrum": 80, "pickelhaub": 80, "picket": 80, "pickup": 80, "pier": 80, "piggi": 80, "pill": 80, "pillow": 80, "ping": 80, "pong": 80, "pinwheel": 80, "pirat": 80, "pitcher": 80, "plane": 80, "planetarium": 80, "plastic": 80, "plate": 80, "rack": 80, "plow": 80, "plunger": 80, "polaroid": 80, "camera": 80, "pole": [80, 91], "polic": 80, "poncho": 80, "billiard": 80, "soda": 80, "potter": 80, "prayer": 80, "rug": 80, "printer": 80, "prison": 80, "projectil": 80, "projector": 80, "hockei": 80, "puck": 80, "punch": 80, "purs": 80, "quill": 80, "quilt": 80, "race": 80, "racket": 80, "radiat": 80, "radio": 80, "telescop": 80, "rain": 80, "recreat": 80, "reel": 80, "reflex": 80, "refriger": 80, "remot": 80, "restaur": 80, "revolv": 80, "rotisseri": 80, "eras": 80, "rugbi": 80, "ruler": 80, "safe": 80, "safeti": 80, "salt": 80, "sandal": [80, 82], "sarong": 80, "saxophon": 80, "scabbard": 80, "school": 80, "bu": [80, 91], "schooner": 80, "scoreboard": 80, "crt": 80, "screw": 80, "screwdriv": 80, "seat": 80, "belt": 80, "sew": 80, "shield": 80, "shoji": 80, "basket": 80, "shovel": 80, "shower": 80, "curtain": 80, "ski": 80, "sleep": 80, "door": 80, "slot": 80, "snorkel": 80, "snowmobil": 80, "snowplow": 80, "soap": 80, "dispens": 80, "soccer": [80, 94], "sock": 80, "solar": 80, "thermal": 80, "collector": 80, "sombrero": 80, "soup": 80, "heater": 80, "shuttl": 80, "spatula": 80, "motorboat": 80, "web": 80, "spindl": 80, "sport": [80, 94], "spotlight": 80, "stage": 80, "steam": 80, "arch": 80, "bridg": 80, "steel": 80, "stethoscop": 80, "scarf": 80, "stone": 80, "wall": [80, 91], "stopwatch": 80, "stove": 80, "strainer": 80, "tram": 80, "stretcher": 80, "couch": 80, "stupa": 80, "submarin": 80, "sundial": 80, "sunglass": 80, "sunscreen": 80, "suspens": 80, "mop": 80, "sweatshirt": 80, "swimsuit": 80, "swing": 80, "switch": 80, "syring": 80, "lamp": 80, "tape": 80, "teapot": 80, "teddi": 80, "televis": [80, 94], "tenni": 80, "thatch": 80, "roof": 80, "front": 80, "thimbl": 80, "thresh": 80, "throne": 80, "tile": 80, "toaster": 80, "tobacco": 80, "toilet": 80, "totem": 80, "tow": 80, "tractor": 80, "semi": 80, "trailer": 80, "trai": 80, "trench": 80, "tricycl": 80, "trimaran": 80, "tripod": 80, "triumphal": 80, "trolleybu": 80, "trombon": 80, "tub": 80, "turnstil": 80, "typewrit": 80, "umbrella": 80, "unicycl": 80, "upright": 80, "vacuum": 80, "cleaner": 80, "vase": 80, "vault": 80, "velvet": 80, "vend": 80, "vestment": 80, "viaduct": 80, "violin": 80, "volleybal": 80, "waffl": 80, "wallet": 80, "wardrob": 80, "sink": 80, "wash": 80, "jug": 80, "tower": 80, "whiskei": 80, "whistl": 80, "wig": 80, "shade": [80, 91], "windsor": 80, "wine": 80, "wok": 80, "wooden": 80, "spoon": 80, "wool": 80, "rail": 80, "shipwreck": 80, "yawl": 80, "yurt": 80, "websit": 80, "comic": 80, "book": 80, "crossword": 80, "traffic": [80, 87, 91], "sign": [80, 91, 94], "dust": 80, "jacket": [80, 87], "menu": 80, "guacamol": 80, "consomm": 80, "trifl": 80, "ic": 80, "cream": 80, "pop": 80, "baguett": 80, "bagel": 80, "pretzel": 80, "cheeseburg": 80, "mash": 80, "potato": 80, "cabbag": 80, "broccoli": 80, "cauliflow": 80, "zucchini": 80, "spaghetti": 80, "squash": 80, "acorn": 80, "butternut": 80, "artichok": 80, "pepper": 80, "cardoon": 80, "mushroom": 80, "granni": 80, "smith": 80, "strawberri": 80, "orang": 80, "lemon": 80, "pineappl": 80, "banana": 80, "jackfruit": 80, "custard": 80, "appl": 80, "pomegran": 80, "hai": 80, "carbonara": 80, "chocol": 80, "syrup": 80, "dough": 80, "meatloaf": 80, "pizza": 80, "pie": 80, "burrito": 80, "eggnog": 80, "alp": 80, "bubbl": 80, "reef": 80, "geyser": 80, "lakeshor": 80, "promontori": 80, "shoal": 80, "seashor": 80, "vallei": 80, "volcano": 80, "bridegroom": 80, "scuba": 80, "diver": 80, "rapese": 80, "daisi": 80, "ladi": 80, "slipper": 80, "corn": 80, "rose": 80, "hip": 80, "chestnut": 80, "fungu": 80, "agar": 80, "gyromitra": 80, "stinkhorn": 80, "earth": 80, "star": 80, "wood": 80, "bolet": 80, "ear": 80, "cifar10_test_set": 80, "airplan": [80, 88], "automobil": [80, 88], "deer": [80, 88], "cifar100_test_set": 80, "aquarium_fish": 80, "babi": 80, "boi": 80, "camel": 80, "caterpillar": 80, "cattl": [80, 94], "cloud": 80, "dinosaur": 80, "dolphin": 80, "flatfish": 80, "forest": 80, "girl": 80, "kangaroo": 80, "lawn_mow": 80, "man": 80, "maple_tre": 80, "motorcycl": [80, 91], "oak_tre": 80, "orchid": 80, "palm_tre": 80, "pear": 80, "pickup_truck": 80, "pine_tre": 80, "plain": 80, "poppi": 80, "possum": 80, "raccoon": 80, "road": [80, 91], "rocket": 80, "seal": 80, "shrew": 80, "skyscrap": 80, "streetcar": 80, "sunflow": 80, "sweet_pepp": 80, "trout": 80, "tulip": 80, "willow_tre": 80, "woman": [80, 87], "caltech256": 80, "ak47": 80, "bat": 80, "glove": 80, "birdbath": 80, "blimp": 80, "bonsai": 80, "boom": 80, "breadmak": 80, "buddha": 80, "bulldoz": 80, "cactu": 80, "cake": 80, "tire": 80, "cartman": 80, "cereal": 80, "chandeli": 80, "chess": 80, "board": 80, "chimp": 80, "chopstick": 80, "coffin": 80, "coin": 80, "comet": 80, "cormor": 80, "globe": 80, "diamond": 80, "dice": 80, "doorknob": 80, "drink": 80, "straw": 80, "dumb": 80, "eiffel": 80, "elk": 80, "ewer": 80, "eyeglass": 80, "fern": 80, "fighter": 80, "jet": [80, 90], "extinguish": 80, "hydrant": 80, "firework": 80, "flashlight": 80, "floppi": 80, "fri": 80, "frisbe": 80, "galaxi": 80, "giraff": 80, "goat": 80, "gate": 80, "grape": 80, "pick": [80, 81], "hamburg": 80, "hammock": 80, "harpsichord": 80, "hawksbil": 80, "helicopt": 80, "hibiscu": 80, "homer": 80, "simpson": 80, "horsesho": 80, "air": 80, "skeleton": 80, "ibi": 80, "cone": 80, "iri": 80, "jesu": 80, "christ": 80, "joi": 80, "kayak": 80, "ketch": 80, "ladder": 80, "lath": 80, "licens": 80, "lightbulb": 80, "lightn": 80, "mandolin": 80, "mar": 80, "mattress": 80, "megaphon": 80, "menorah": 80, "microscop": 80, "minaret": 80, "minotaur": 80, "motorbik": 80, "mussel": 80, "neckti": 80, "octopu": 80, "palm": 80, "pilot": 80, "paperclip": 80, "shredder": 80, "pci": 80, "peopl": [80, 87], "pez": 80, "picnic": 80, "pram": 80, "prai": 80, "pyramid": 80, "rainbow": 80, "roulett": 80, "saddl": 80, "saturn": 80, "segwai": 80, "propel": 80, "sextant": 80, "music": 80, "skateboard": 80, "smokestack": 80, "sneaker": 80, "boat": 80, "stain": 80, "steer": 80, "stirrup": 80, "superman": 80, "sushi": 80, "armi": [80, 94], "sword": 80, "tambourin": 80, "teepe": 80, "court": 80, "theodolit": 80, "tomato": 80, "tombston": 80, "tour": 80, "pisa": 80, "treadmil": 80, "fork": 80, "tweezer": 80, "unicorn": 80, "vcr": 80, "waterfal": 80, "watermelon": 80, "weld": 80, "windmil": 80, "xylophon": 80, "yarmulk": 80, "yo": 80, "toad": 80, "twenty_news_test_set": 80, "alt": 80, "atheism": 80, "comp": 80, "graphic": [80, 91], "misc": [80, 94], "sy": 80, "ibm": 80, "pc": 80, "hardwar": 80, "mac": 80, "forsal": 80, "rec": 80, "sci": 80, "crypt": 80, "electron": 80, "med": 80, "soc": 80, "religion": 80, "christian": [80, 94], "talk": [80, 94], "polit": 80, "gun": 80, "mideast": 80, "amazon": 80, "neutral": 80, "imdb_test_set": 80, "all_class": 80, "20news_test_set": 80, "_load_classes_predprobs_label": 80, "dataset_nam": 80, "labelerror": 80, "url_bas": 80, "5392f6c71473055060be3044becdde1cbc18284d": 80, "url_label": 80, "original_test_label": 80, "_original_label": 80, "url_prob": 80, "cross_validated_predicted_prob": 80, "_pyx": 80, "num_part": 80, "datatset": 80, "bytesio": 80, "allow_pickl": 80, "pred_probs_part": 80, "url": 80, "_of_": 80, "nload": 80, "imdb": 80, "ve": [80, 81, 83, 85, 87], "interpret": [80, 81, 83], "capit": 80, "29780": 80, "256": [80, 81, 87], "780": 80, "medic": [80, 94], "doctor": 80, "254": [80, 87], "359223": 80, "640777": 80, "184": [80, 83], "258427": 80, "341176": 80, "263158": 80, "658824": 80, "337349": 80, "246575": 80, "662651": 80, "248": 80, "330000": 80, "355769": 80, "670000": 80, "251": [80, 87], "167": [80, 83, 87], "252": 80, "112": 80, "253": [80, 87], "022989": 80, "255": [80, 82], "049505": 80, "190": [80, 83, 87], "66": [80, 91], "002216": 80, "000974": 80, "59": [80, 82, 87, 91], "88": [80, 82, 83, 86, 87, 90, 91], "000873": 80, "000739": 80, "79": [80, 87, 91, 92], "32635": 80, "32636": 80, "47": [80, 87, 91], "32637": 80, "32638": 80, "32639": 80, "32640": 80, "051": 80, "002242": 80, "997758": 80, "002088": 80, "001045": 80, "997912": 80, "002053": 80, "997947": 80, "001980": 80, "000991": 80, "998020": 80, "001946": 80, "002915": 80, "998054": 80, "001938": 80, "002904": 80, "998062": 80, "001020": 80, "998980": 80, "001018": 80, "002035": 80, "998982": 80, "999009": 80, "0003": 80, "0002": 80, "36": [80, 82, 91, 94], "44": [80, 86, 87, 91], "71": [80, 83, 87, 91], "071": 80, "067269": 80, "929": 80, "046": 80, "058243": 80, "954": 80, "035": 80, "032096": 80, "965": 80, "031": 80, "012232": 80, "969": 80, "022": 80, "025896": 80, "978": 80, "020": [80, 83], "013092": 80, "018": 80, "013065": 80, "016": 80, "030542": 80, "984": 80, "013": 80, "020833": 80, "987": 80, "012": 80, "010020": 80, "988": 80, "0073": 80, "0020": 80, "0016": 80, "0015": 80, "0013": 80, "0012": 80, "0010": 80, "0008": 80, "0007": 80, "0006": 80, "0005": 80, "0004": 80, "244": [80, 87, 94], "98": [80, 81, 90, 91], "452381": 80, "459770": 80, "72": [80, 83, 86, 90, 91], "523364": 80, "460784": 80, "446602": 80, "57": [80, 82, 83, 91], "68": [80, 82, 83, 87, 91, 92], "103774": 80, "030612": 80, "97": [80, 81, 83, 87, 90, 91, 92, 94], "110092": 80, "049020": 80, "99": [80, 83, 91, 92], "0034": 80, "0032": 80, "0026": 80, "0025": 80, "4945": 80, "4946": 80, "4947": 80, "4948": 80, "4949": 80, "4950": 80, "846": 80, "82": [80, 82, 83, 87, 91], "7532": 80, "532": 80, "034483": 80, "009646": 80, "965517": 80, "030457": 80, "020513": 80, "969543": 80, "028061": 80, "035443": 80, "971939": 80, "025316": 80, "005168": 80, "974684": 80, "049751": 80, "979487": 80, "019920": 80, "042802": 80, "980080": 80, "017677": 80, "005115": 80, "982323": 80, "012987": 80, "005236": 80, "987013": 80, "012723": 80, "025126": 80, "987277": 80, "010989": 80, "008264": 80, "989011": 80, "010283": 80, "027778": 80, "989717": 80, "009677": 80, "990323": 80, "007614": 80, "010127": 80, "992386": 80, "005051": 80, "994949": 80, "005025": 80, "994975": 80, "005013": 80, "994987": 80, "001859": 80, "001328": 80, "000929": 80, "000664": 80, "186": [80, 83], "188": [80, 83, 86], "189": [80, 83], "snippet": 81, "nlp": [81, 94], "mind": [81, 83], "number_of_class": 81, "total_number_of_data_point": 81, "drop": [81, 85, 90, 93], "feed": 81, "alphabet": 81, "labels_proper_format": 81, "your_classifi": 81, "issues_datafram": 81, "class_predicted_for_flagged_exampl": 81, "class_predicted_for_all_exampl": 81, "grant": 81, "datataset": 81, "fair": [81, 83], "game": 81, "speedup": [81, 88], "flexibl": 81, "tempfil": 81, "mkdtemp": 81, "sped": 81, "anywai": 81, "pred_probs_merg": 81, "merge_rare_class": 81, "count_threshold": 81, "class_mapping_orig2new": 81, "heath_summari": 81, "num_examples_per_class": 81, "rare_class": 81, "num_classes_merg": 81, "other_class": 81, "labels_merg": 81, "new_c": 81, "merged_prob": 81, "hstack": [81, 82, 83, 85], "new_class": 81, "original_class": 81, "num_check": 81, "ones_array_ref": 81, "isclos": 81, "though": [81, 83, 94], "successfulli": 81, "meaning": [81, 88], "virtuou": [81, 85], "cycl": [81, 85], "jointli": 81, "junk": 81, "clutter": 81, "unknown": 81, "caltech": 81, "combined_boolean_mask": 81, "mask1": 81, "mask2": 81, "gradientboostingclassifi": [81, 83], "true_error": [81, 83, 86], "101": [81, 87], "102": [81, 86, 87], "104": [81, 83, 87], "model_to_find_error": 81, "model_to_return": 81, "cl0": 81, "randomizedsearchcv": 81, "expens": 81, "param_distribut": 81, "learning_r": [81, 83], "max_depth": [81, 83], "magnitud": 81, "coeffici": [81, 90], "optin": 81, "environ": [81, 83], "rerun": [81, 83], "cell": [81, 83], "On": [81, 83, 87], "unabl": [81, 83], "render": [81, 83], "nbviewer": [81, 83], "cleanlearningcleanlearn": [81, 83], "linearregressionlinearregress": 81, "n_init": 81, "fit_predict": 81, "continuous_column": 81, "categorical_column": 81, "data_df": 81, "feature_a": 81, "feature_b": 81, "unexpectedli": 81, "emphas": 81, "especi": [81, 82, 90, 92, 93], "crucial": 81, "merge_duplicate_set": 81, "merge_kei": 81, "construct_group_kei": 81, "merged_set": 81, "consolidate_set": 81, "tolist": [81, 86], "issubset": 81, "frozenset": 81, "sets_list": 81, "mutabl": 81, "new_set": 81, "current_set": 81, "intersecting_set": 81, "lowest_score_strategi": 81, "sub_df": 81, "idxmin": 81, "filter_near_dupl": 81, "strategy_fn": 81, "strategy_kwarg": 81, "duplicate_row": 81, "group_kei": 81, "to_keep_indic": 81, "groupbi": 81, "explod": 81, "to_remov": 81, "isin": [81, 88], "kept": 81, "near_duplicate_issu": [81, 82], "ids_to_remove_seri": 81, "assist": 81, "streamlin": 81, "ux": 81, "agpl": 81, "compani": 81, "commerci": 81, "alter": 81, "email": 81, "discuss": 81, "anywher": 81, "profession": 81, "expert": 81, "60": [82, 83, 91], "excess": 82, "torchvis": [82, 88], "tensordataset": 82, "stratifiedkfold": [82, 86], "tqdm": 82, "fashion_mnist": 82, "num_row": 82, "60000": 82, "pil": 82, "transformed_dataset": 82, "with_format": 82, "unsqueez": 82, "cpu_count": 82, "torch_dataset": 82, "quick": [82, 86], "relu": 82, "batchnorm2d": 82, "maxpool2d": 82, "lazylinear": 82, "flatten": 82, "get_test_accuraci": 82, "testload": [82, 88], "energi": 82, "trainload": [82, 88], "n_epoch": 82, "patienc": 82, "criterion": 82, "crossentropyloss": 82, "adamw": 82, "best_test_accuraci": 82, "start_epoch": 82, "running_loss": 82, "best_epoch": 82, "end_epoch": 82, "3f": [82, 90], "acc": [82, 83], "time_taken": 82, "compute_embed": 82, "compute_pred_prob": 82, "train_batch_s": 82, "num_work": 82, "worker": [82, 94], "train_id_list": 82, "test_id_list": 82, "train_id": 82, "test_id": 82, "embeddings_model": 82, "ntrain": 82, "trainset": 82, "testset": 82, "pin_memori": 82, "fold_embed": 82, "fold_pred_prob": 82, "finish": 82, "483": 82, "835": 82, "560": [82, 90], "331": 82, "310": 82, "349": 82, "stderr": [82, 91], "sphinxverbatim": [82, 91, 94], "97it": 82, "20it": 82, "18it": [82, 91], "62": [82, 83, 87, 90, 91], "74it": [82, 91], "69": [82, 83, 90, 91], "32it": [82, 91], "65it": [82, 91], "01it": [82, 91], "14it": [82, 91], "51it": [82, 91], "34it": [82, 91], "31it": [82, 91], "63": [82, 83, 87, 91], "76it": [82, 91], "492": 82, "085": 82, "550": 82, "290": [82, 87], "337": [82, 87, 93], "95it": [82, 91], "82it": [82, 91], "69it": [82, 91], "40it": [82, 91], "33it": [82, 91], "06it": [82, 91], "93it": [82, 91], "07it": [82, 91], "78it": [82, 91], "476": 82, "305": [82, 90], "749": 82, "328": [82, 87], "335": 82, "346": 82, "26it": [82, 91], "24it": [82, 91], "49it": [82, 91], "00it": 82, "84it": [82, 91], "59it": [82, 91], "63it": [82, 91], "02it": [82, 91], "71it": [82, 91], "reorder": 82, "vision": 82, "grayscal": 82, "exce": 82, "max_preval": 82, "7620": 82, "3692": 82, "3521": 82, "225": [82, 86], "166": 82, "3691": 82, "40378": 82, "943831e": 82, "54473": 82, "066211e": 82, "06": [82, 83, 87, 91, 94], "29412": 82, "899069e": 82, "25316": 82, "984817e": 82, "52247": 82, "245879e": 82, "9581": 82, "19228": 82, "dress": 82, "54078": 82, "000010": 82, "pullov": 82, "32657": 82, "21282": 82, "000011": 82, "11262": 82, "000014": 82, "6294": 82, "30659": 82, "000798": 82, "30968": 82, "000015": 82, "258": 82, "000907": 82, "9762": 82, "54565": 82, "47139": 82, "000017": 82, "001423": 82, "000026": 82, "39992": 82, "39993": 82, "39994": 82, "39995": 82, "7834": 82, "42819": 82, "629362": 82, "51431": 82, "654330": 82, "55548": 82, "658364": 82, "51191": 82, "668572": 82, "50081": 82, "669703": 82, "7834321613629787": 82, "13732": 82, "13733": 82, "13734": 82, "47635": 82, "110901": 82, "974390": 82, "998733": 82, "937117": 82, "998755": 82, "53564": 82, "5473": 82, "trouser": 82, "plot_label_issue_exampl": 82, "ncol": [82, 88], "nrow": [82, 88], "ceil": 82, "axes_list": 82, "label_issue_indic": 82, "gl": 82, "sl": 82, "fontdict": 82, "imshow": [82, 88], "cmap": [82, 90], "grai": 82, "subplots_adjust": 82, "hspace": 82, "outsiz": 82, "outlier_issues_df": 82, "depict": [82, 86, 87, 88, 89, 91], "plot_outlier_issues_exampl": 82, "n_comparison_imag": 82, "sample_from_class": 82, "number_of_sampl": 82, "non_outlier_indic": 82, "isnul": 82, "non_outlier_indices_excluding_curr": 82, "sampled_indic": 82, "label_scores_of_sampl": 82, "top_score_indic": 82, "top_label_indic": 82, "sampled_imag": 82, "get_image_given_label_and_sampl": 82, "image_from_dataset": 82, "corresponding_label": 82, "comparison_imag": 82, "images_to_plot": 82, "idlist": 82, "iterrow": 82, "closest": 82, "counterpart": 82, "near_duplicate_issues_df": 82, "plot_near_duplicate_issue_exampl": 82, "seen_id_pair": 82, "get_image_and_given_label_and_predicted_label": 82, "duplicate_imag": 82, "nd_set": 82, "challeng": 82, "dark_issu": 82, "reveal": [82, 91], "dark_scor": 82, "dark_issues_df": 82, "is_dark_issu": 82, "34848": 82, "203922": 82, "50270": 82, "204588": 82, "3936": 82, "213098": 82, "733": 82, "217686": 82, "8094": 82, "230118": 82, "plot_image_issue_exampl": 82, "difficult": 82, "disproportion": 82, "lowinfo_issu": 82, "low_information_scor": 82, "lowinfo_issues_df": 82, "is_low_information_issu": 82, "53050": 82, "067975": 82, "40875": 82, "089929": 82, "9594": 82, "092601": 82, "34825": 82, "107744": 82, "37530": 82, "108516": 82, "lot": 82, "depth": 83, "survei": [83, 94], "focus": [83, 85], "scienc": 83, "multivariate_norm": [83, 85, 86], "make_data": [83, 85], "cov": [83, 85, 86], "avg_trac": [83, 86], "test_label": [83, 86, 88, 93], "py_tru": 83, "noise_matrix_tru": 83, "noise_marix": 83, "s_test": 83, "noisy_test_label": 83, "purpl": 83, "val": 83, "namespac": 83, "exec": 83, "markerfacecolor": [83, 86], "markeredgecolor": [83, 86, 90], "markers": [83, 86, 90], "markeredgewidth": [83, 86, 90], "realist": 83, "7560": 83, "638483e": 83, "897052e": 83, "548986e": 83, "924634e": 83, "374580e": 83, "3454": 83, "014051": 83, "020451": 83, "249": [83, 87], "042594": 83, "043859": 83, "045954": 83, "6120": 83, "023714": 83, "007136": 83, "119": [83, 87], "107266": 83, "103": [83, 87], "033738": 83, "238": [83, 87], "119505": 83, "236": [83, 87], "037843": 83, "222": 83, "614915": 83, "122": [83, 87], "624422": 83, "625965": 83, "626079": 83, "118": 83, "627675": 83, "158": 83, "159": [83, 86, 87], "161": 83, "1960": 83, "196": [83, 87], "223": [83, 87], "221": 83, "219": [83, 87], "695174": 83, "323529": 83, "522929": 83, "013722": 83, "675606": 83, "646438": 83, "anyth": 83, "enhanc": [83, 85, 87], "magic": 83, "83": [83, 87, 90, 91, 92, 94], "liter": 83, "identif": 83, "x27": 83, "logisticregressionlogisticregress": 83, "ever": 83, "092": 83, "040": 83, "024": 83, "004": 83, "surpris": 83, "1705": 83, "01936": 83, "ton": 83, "yourfavoritemodel1": 83, "merged_label": 83, "merged_test_label": 83, "newli": [83, 85], "yourfavoritemodel2": 83, "yourfavoritemodel3": 83, "cl3": 83, "takeawai": 83, "That": [83, 86], "randomli": 83, "my_test_pred_prob": 83, "my_test_pr": 83, "issues_test": 83, "corrected_test_label": 83, "pretend": 83, "cl_test_pr": 83, "fairli": 83, "label_acc": 83, "percentag": 83, "offset": 83, "nquestion": 83, "overestim": 83, "answer": 83, "experienc": 83, "76": [83, 86, 87, 90, 91, 92], "knowledg": 83, "quantiti": [83, 90], "prioiri": 83, "known": 83, "versatil": 83, "label_issues_indic": 83, "213": [83, 87], "212": [83, 92], "218": [83, 87], "152": 83, "197": [83, 87], "170": 83, "214": 83, "164": [83, 86], "198": [83, 87], "191": [83, 87], "121": [83, 93], "117": [83, 90], "206": [83, 87], "115": [83, 87], "193": 83, "194": 83, "201": [83, 87], "174": 83, "163": 83, "150": [83, 85, 87], "169": 83, "151": [83, 87], "168": 83, "precision_scor": 83, "recall_scor": 83, "f1_score": 83, "true_label_issu": 83, "filter_by_list": 83, "718750": [83, 85], "807018": 83, "912": 83, "733333": 83, "800000": 83, "721311": 83, "792793": 83, "908": 83, "676923": 83, "765217": 83, "892": 83, "567901": 83, "702290": 83, "844": 83, "gaug": 83, "label_issues_count": 83, "155": [83, 87], "172": [83, 86], "easiest": 83, "modular": 83, "penalti": 83, "l2": 83, "model3": 83, "n_estim": 83, "cv_pred_probs_1": 83, "cv_pred_probs_2": 83, "cv_pred_probs_3": 83, "label_quality_scores_best": 83, "cv_pred_probs_ensembl": 83, "label_quality_scores_bett": 83, "superior": [83, 89], "workflow": [84, 90], "speechbrain": 84, "timm": 84, "glad": 85, "multiannotator_label": 85, "noisier": 85, "111": [85, 90], "local_data": [85, 86], "true_labels_train": [85, 86], "noise_matrix_bett": 85, "noise_matrix_wors": 85, "transpos": [85, 88], "dropna": 85, "zfill": 85, "row_na_check": 85, "notna": 85, "reset_index": 85, "a0001": 85, "a0002": 85, "a0003": 85, "a0004": 85, "a0005": 85, "a0006": 85, "a0007": 85, "a0008": 85, "a0009": 85, "a0010": 85, "a0041": 85, "a0042": 85, "a0043": 85, "a0044": 85, "a0045": 85, "a0046": 85, "a0047": 85, "a0048": 85, "a0049": 85, "a0050": 85, "60856743": 85, "41693214": 85, "40908785": 85, "87147629": 85, "64941785": 85, "10774851": 85, "0524466": 85, "71853246": 85, "37169848": 85, "66031048": 85, "multiannotator_util": 85, "crude": 85, "straight": 85, "majority_vote_label": 85, "736157": 85, "757738": 85, "782255": 85, "715585": 85, "824273": 85, "quality_annotator_a0001": 85, "quality_annotator_a0002": 85, "quality_annotator_a0003": 85, "quality_annotator_a0004": 85, "quality_annotator_a0005": 85, "quality_annotator_a0006": 85, "quality_annotator_a0007": 85, "quality_annotator_a0008": 85, "quality_annotator_a0009": 85, "quality_annotator_a0010": 85, "quality_annotator_a0041": 85, "quality_annotator_a0042": 85, "quality_annotator_a0043": 85, "quality_annotator_a0044": 85, "quality_annotator_a0045": 85, "quality_annotator_a0046": 85, "quality_annotator_a0047": 85, "quality_annotator_a0048": 85, "quality_annotator_a0049": 85, "quality_annotator_a0050": 85, "070551": 85, "216064": 85, "119178": 85, "alongisd": 85, "244982": 85, "208333": 85, "295978": 85, "294118": 85, "324194": 85, "310345": 85, "355315": 85, "346154": 85, "439728": 85, "480000": 85, "a0031": 85, "523205": 85, "580645": 85, "a0034": 85, "535313": 85, "607143": 85, "a0021": 85, "607002": 85, "a0015": 85, "609527": 85, "678571": 85, "a0011": 85, "621101": 85, "692308": 85, "wors": 85, "improved_consensus_label": 85, "majority_vote_accuraci": 85, "cleanlab_label_accuraci": 85, "8581081081081081": 85, "9797297297297297": 85, "besid": 85, "sorted_consensus_quality_scor": 85, "worst_qual": 85, "better_qu": 85, "worst_quality_accuraci": 85, "better_quality_accuraci": 85, "9893238434163701": 85, "improved_pred_prob": 85, "treat": [85, 86, 90, 94], "analzi": 85, "copyright": 86, "advertis": 86, "violenc": 86, "nsfw": 86, "ranked_label_issu": [86, 92, 93], "multioutput": 86, "multioutputclassifi": 86, "celeba": 86, "make_multilabel_data": 86, "boxes_coordin": 86, "box_multilabel": 86, "make_multi": 86, "bx1": 86, "by1": 86, "bx2": 86, "by2": 86, "label_list": 86, "ur": 86, "upper": 86, "inidx": 86, "logical_and": 86, "inv_d": 86, "labels_idx": 86, "true_labels_test": 86, "dict_unique_label": 86, "get_color_arrai": 86, "dcolor": 86, "aa4400": 86, "55227f": 86, "55a100": 86, "00ff00": 86, "007f7f": 86, "386b55": 86, "0000ff": 86, "simplic": 86, "advis": 86, "y_onehot": 86, "single_class_label": 86, "stratifi": [86, 89], "kf": 86, "train_index": 86, "test_index": 86, "clf_cv": 86, "x_train_cv": 86, "x_test_cv": 86, "y_train_cv": 86, "y_test_cv": 86, "y_pred_cv": 86, "saw": 86, "num_to_displai": 86, "09": [86, 87, 91], "275": 86, "267": 86, "171": 86, "234": 86, "165": 86, "227": [86, 87], "262": [86, 87], "263": [86, 87], "266": [86, 87], "139": 86, "143": [86, 87], "216": [86, 87, 94], "265": 86, "despit": [86, 94], "suspect": 86, "888": 86, "8224": 86, "9632": 86, "968": 86, "6512": 86, "0444": 86, "774": 86, "labels_binary_format": 86, "labels_list_format": 86, "surround": 87, "scene": 87, "coco": 87, "everydai": 87, "has_label_issu": 87, "insal": 87, "nc": [87, 91, 94], "s3": [87, 91, 94], "amazonaw": [87, 91, 94], "objectdetectionbenchmark": 87, "tutorial_obj": 87, "pkl": 87, "example_imag": 87, "unzip": [87, 94], "begin": 87, "detectron2": 87, "image_path": 87, "rb": 87, "image_to_visu": 87, "seg_map": 87, "334": 87, "float32": 87, "bboxes_ignor": 87, "286": 87, "285": 87, "224": 87, "231": [87, 94], "293": 87, "235": 87, "289": [87, 90], "282": 87, "74": [87, 90, 91, 92], "281": 87, "271": 87, "280": 87, "277": 87, "279": 87, "287": 87, "299": 87, "276": 87, "307": 87, "321": 87, "326": 87, "333": 87, "261": 87, "319": 87, "257": 87, "295": 87, "283": 87, "243": 87, "303": 87, "316": 87, "247": 87, "323": 87, "327": 87, "226": 87, "228": 87, "232": 87, "239": 87, "240": 87, "209": 87, "242": 87, "202": 87, "230": 87, "215": 87, "220": 87, "229": 87, "85": [87, 90, 91], "217": [87, 94], "237": 87, "207": 87, "204": 87, "205": 87, "153": 87, "149": 87, "140": 87, "124": 87, "268": 87, "273": 87, "108": 87, "284": 87, "110": 87, "136": 87, "145": 87, "173": 87, "297": 87, "317": 87, "192": 87, "329": 87, "332": 87, "324": 87, "203": 87, "320": 87, "314": 87, "199": 87, "291": 87, "000000481413": 87, "jpg": 87, "42398": 87, "44503": 87, "29968": 87, "336": 87, "21005": 87, "9978472": 87, "forgot": 87, "drew": 87, "label_issue_idx": 87, "num_examples_to_show": 87, "113": [87, 90], "candid": 87, "97489622": 87, "70610878": 87, "98764951": 87, "88899237": 87, "99085805": 87, "issue_idx": 87, "95569726e": 87, "03354841e": 87, "57510169e": 87, "58447666e": 87, "39755858e": 87, "suppli": 87, "issue_to_visu": 87, "000000009483": 87, "95569726168054e": 87, "addition": [87, 91], "visibl": 87, "missmatch": 87, "likelei": 87, "agnost": 87, "vaidat": 87, "inconsist": 87, "000000395701": 87, "033548411774308e": 87, "armchair": 87, "tv": 87, "000000154004": 87, "38300759625496356": 87, "foreground": 87, "000000448410": 87, "0008575101690203273": 87, "crowd": 87, "alon": 87, "explor": [87, 88], "resembl": [87, 88], "000000499768": 87, "9748962231208227": 87, "000000521141": 87, "8889923658893665": 87, "000000143931": 87, "9876495074395956": 87, "train_feature_embed": 88, "ood_train_feature_scor": 88, "test_feature_embed": 88, "ood_test_feature_scor": 88, "ood_train_predictions_scor": 88, "train_pred_prob": 88, "ood_test_predictions_scor": 88, "test_pred_prob": 88, "pylab": 88, "rcparam": 88, "baggingclassifi": 88, "therebi": 88, "rescal": 88, "transform_norm": 88, "totensor": 88, "root": 88, "animal_class": 88, "non_animal_class": 88, "animal_idx": 88, "test_idx": 88, "toronto": 88, "edu": 88, "kriz": 88, "5000": 88, "plot_imag": 88, "visualize_outli": 88, "txt_class": 88, "img": [88, 90], "npimg": 88, "show_label": 88, "data_subset": 88, "resnet50": 88, "corpu": 88, "2048": 88, "embed_imag": 88, "create_model": 88, "rwightman": 88, "v0": 88, "rsb": 88, "resnet50_a1_0": 88, "14fe96d1": 88, "pth": 88, "checkpoint": 88, "strang": 88, "odd": 88, "train_ood_features_scor": 88, "top_train_ood_features_idx": 88, "fun": 88, "negat": 88, "homogen": 88, "bottom_train_ood_features_idx": 88, "test_ood_features_scor": 88, "top_ood_features_idx": 88, "inevit": 88, "trade": 88, "5th": 88, "percentil": 88, "fifth_percentil": 88, "plt_rang": 88, "hist": 88, "train_outlier_scor": 88, "ylabel": 88, "axvlin": 88, "test_outlier_scor": 88, "ood_features_indic": 88, "revisit": 88, "unusu": 88, "return_invers": 88, "train_feature_embeddings_sc": 88, "test_feature_embeddings_sc": 88, "train_pred_label": 88, "9702": 88, "train_ood_predictions_scor": 88, "test_ood_predictions_scor": 88, "mainli": [88, 94], "lost": 88, "unsuit": 89, "ok": [89, 94], "convention": 89, "aforement": 89, "hypothet": 89, "contrast": 89, "tradit": 89, "disjoint": 89, "out_of_sample_pred_probs_for_a": 89, "out_of_sample_pred_probs_for_b": 89, "out_of_sample_pred_probs_for_c": 89, "out_of_sample_pred_prob": 89, "price": 90, "incom": 90, "ag": 90, "histgradientboostingregressor": 90, "r2_score": 90, "student_grades_r": 90, "final_scor": 90, "true_final_scor": 90, "homework": 90, "3d": 90, "hue": 90, "mpl_toolkit": 90, "mplot3d": 90, "axes3d": 90, "errors_idx": 90, "add_subplot": 90, "z": 90, "colorbar": 90, "errors_mask": 90, "feature_column": 90, "predicted_column": 90, "x_train_raw": 90, "x_test_raw": 90, "categorical_featur": [90, 92], "randomforestregressor": 90, "629763": 90, "521450": 90, "954607": 90, "547234": 90, "338296": 90, "754531": 90, "619090": 90, "312295": 90, "806626": 90, "784048": 90, "identified_issu": [90, 93], "367": 90, "318": 90, "688": 90, "657": 90, "view_datapoint": 90, "concat": 90, "consum": [90, 93], "baseline_model": [90, 93], "preds_og": 90, "r2_og": 90, "838": 90, "robustli": [90, 92, 93], "acceler": [90, 93], "found_label_issu": 90, "preds_cl": 90, "r2_cl": 90, "925": 90, "effort": [90, 92, 93], "favorit": 90, "13091885": 90, "48412548": 90, "00695165": 90, "44421119": 90, "43029854": 90, "synthia": 91, "imagesegment": 91, "given_mask": 91, "predicted_mask": 91, "set_printopt": [91, 94], "sky": 91, "sidewalk": 91, "veget": 91, "terrain": 91, "rider": 91, "pred_probs_filepath": 91, "1088": 91, "1920": 91, "label_filepath": 91, "synthia_class": 91, "maunal": 91, "100000": 91, "244800": 91, "leftmost": 91, "area": 91, "middl": [91, 94], "infact": 91, "rightmost": 91, "discrep": 91, "4997817": 91, "16923": 91, "169217": 91, "33993": 91, "170085": 91, "88it": 91, "51002": 91, "169503": 91, "62it": 91, "68012": 91, "169735": 91, "92it": 91, "84993": 91, "169759": 91, "89it": 91, "101970": 91, "169628": 91, "61it": 91, "118944": 91, "169663": 91, "19it": 91, "135911": 91, "163001": 91, "52it": 91, "152918": 91, "165147": 91, "169974": 91, "166782": 91, "187064": 91, "168021": 91, "67it": 91, "204038": 91, "168537": 91, "30it": 91, "220938": 91, "168672": 91, "47it": 91, "238130": 91, "169647": 91, "75it": 91, "255262": 91, "170147": 91, "90it": 91, "272284": 91, "170019": 91, "289291": 91, "169797": 91, "306465": 91, "170377": 91, "22it": 91, "323703": 91, "170975": 91, "340851": 91, "171125": 91, "25it": 91, "357965": 91, "170735": 91, "16it": 91, "375079": 91, "170854": 91, "392275": 91, "171182": 91, "409485": 91, "171454": 91, "426631": 91, "171181": 91, "443750": 91, "170479": 91, "460916": 91, "170828": 91, "478000": 91, "167094": 91, "77it": 91, "495446": 91, "169263": 91, "15it": 91, "512890": 91, "170794": 91, "12it": 91, "530383": 91, "172020": 91, "72it": 91, "547934": 91, "173058": 91, "565248": 91, "171739": 91, "41it": 91, "582430": 91, "171635": 91, "599599": 91, "171434": 91, "03it": 91, "616746": 91, "171242": 91, "633873": 91, "171131": 91, "650988": 91, "167888": 91, "38it": 91, "667980": 91, "168487": 91, "13it": 91, "685095": 91, "169274": 91, "702365": 91, "170291": 91, "66it": 91, "719508": 91, "170628": 91, "736576": 91, "169810": 91, "36it": 91, "753562": 91, "169771": 91, "99it": 91, "770715": 91, "170294": 91, "50it": 91, "787747": 91, "169972": 91, "43it": 91, "804872": 91, "170350": 91, "821909": 91, "170342": 91, "838945": 91, "170326": 91, "57it": 91, "856345": 91, "171423": 91, "873794": 91, "172340": 91, "891355": 91, "173318": 91, "17it": 91, "908761": 91, "173536": 91, "926115": 91, "173374": 91, "943534": 91, "173615": 91, "960987": 91, "173888": 91, "978376": 91, "173759": 91, "83it": 91, "995883": 91, "174150": 91, "86it": 91, "1013363": 91, "174342": 91, "29it": 91, "1030818": 91, "174402": 91, "1048303": 91, "174534": 91, "1065757": 91, "174515": 91, "39it": 91, "1083209": 91, "174141": 91, "1100652": 91, "174222": 91, "1118075": 91, "173614": 91, "04it": 91, "1135437": 91, "173273": 91, "09it": 91, "1152765": 91, "173078": 91, "85it": 91, "1170074": 91, "172769": 91, "1187352": 91, "166605": 91, "1204651": 91, "168465": 91, "1221930": 91, "1239241": 91, "170729": 91, "1256336": 91, "170593": 91, "1273736": 91, "171604": 91, "1291095": 91, "172192": 91, "1308323": 91, "171512": 91, "1325481": 91, "170300": 91, "1342592": 91, "170538": 91, "44it": 91, "1359667": 91, "170596": 91, "1376730": 91, "170584": 91, "1393808": 91, "170640": 91, "10it": 91, "1410890": 91, "170689": 91, "1428041": 91, "170932": 91, "1445136": 91, "170912": 91, "1462229": 91, "170913": 91, "08it": 91, "1479321": 91, "170499": 91, "1496372": 91, "170482": 91, "1513421": 91, "170395": 91, "1530461": 91, "167319": 91, "27it": 91, "1547481": 91, "168168": 91, "1564657": 91, "169231": 91, "1581588": 91, "169022": 91, "1598553": 91, "169205": 91, "1615478": 91, "168976": 91, "1632488": 91, "169311": 91, "1649496": 91, "169537": 91, "42it": 91, "1666516": 91, "169734": 91, "1683770": 91, "170570": 91, "1700828": 91, "170107": 91, "1718095": 91, "170870": 91, "1735554": 91, "171982": 91, "68it": 91, "1752844": 91, "172253": 91, "1770192": 91, "172616": 91, "1787471": 91, "172664": 91, "1804738": 91, "172460": 91, "1822303": 91, "173414": 91, "1839775": 91, "173804": 91, "1857168": 91, "173839": 91, "96it": 91, "1874674": 91, "174204": 91, "1892095": 91, "173973": 91, "1909493": 91, "173652": 91, "1926956": 91, "173942": 91, "1944351": 91, "173676": 91, "1961719": 91, "173544": 91, "1979205": 91, "173936": 91, "1996632": 91, "174033": 91, "21it": 91, "2014036": 91, "173984": 91, "2031435": 91, "173931": 91, "2048829": 91, "173817": 91, "2066211": 91, "173089": 91, "2083521": 91, "173048": 91, "80it": 91, "2100866": 91, "173165": 91, "2118183": 91, "173142": 91, "2135542": 91, "173274": 91, "37it": 91, "2152870": 91, "172932": 91, "60it": 91, "2170164": 91, "172786": 91, "2187443": 91, "172758": 91, "2204719": 91, "172489": 91, "2221969": 91, "172209": 91, "2239236": 91, "172342": 91, "87it": 91, "2256471": 91, "171712": 91, "2273643": 91, "171115": 91, "35it": 91, "2290884": 91, "171500": 91, "2308082": 91, "171641": 91, "2325509": 91, "172425": 91, "2342779": 91, "172505": 91, "46it": 91, "2360266": 91, "173212": 91, "2377746": 91, "173684": 91, "2395275": 91, "174160": 91, "2412692": 91, "173545": 91, "2430069": 91, "173608": 91, "2447462": 91, "173701": 91, "94it": 91, "2464833": 91, "173310": 91, "2482165": 91, "172931": 91, "2499563": 91, "173242": 91, "2516888": 91, "173011": 91, "2534190": 91, "172835": 91, "54it": 91, "2551474": 91, "172684": 91, "2568743": 91, "171725": 91, "2586056": 91, "172142": 91, "2603272": 91, "172009": 91, "73it": 91, "2620507": 91, "172106": 91, "2637748": 91, "172193": 91, "2655228": 91, "172969": 91, "91it": 91, "2672594": 91, "173172": 91, "2689912": 91, "172973": 91, "2707210": 91, "172673": 91, "2724649": 91, "173183": 91, "2742045": 91, "173411": 91, "2759387": 91, "172797": 91, "2776675": 91, "172818": 91, "2793958": 91, "172443": 91, "2811203": 91, "172181": 91, "2828422": 91, "171875": 91, "2845610": 91, "171605": 91, "2862771": 91, "171158": 91, "2880043": 91, "171620": 91, "2897206": 91, "171545": 91, "2914479": 91, "171897": 91, "64it": 91, "2931670": 91, "171468": 91, "11it": 91, "2948818": 91, "164907": 91, "2965819": 91, "166389": 91, "56it": 91, "2983140": 91, "168389": 91, "3000413": 91, "169668": 91, "3017703": 91, "170624": 91, "3034960": 91, "171201": 91, "3052094": 91, "171123": 91, "3069455": 91, "171864": 91, "3086755": 91, "172200": 91, "3104106": 91, "172590": 91, "3121414": 91, "172732": 91, "3138690": 91, "172414": 91, "3155966": 91, "172513": 91, "3173316": 91, "172807": 91, "3190786": 91, "173371": 91, "3208124": 91, "173368": 91, "3225462": 91, "173291": 91, "3242799": 91, "173312": 91, "3260131": 91, "173229": 91, "3277459": 91, "173241": 91, "3294784": 91, "168720": 91, "3311836": 91, "169246": 91, "3329185": 91, "3346525": 91, "171358": 91, "3363981": 91, "172310": 91, "3381408": 91, "172891": 91, "3398883": 91, "173444": 91, "3416395": 91, "173944": 91, "3433866": 91, "174170": 91, "3451295": 91, "174202": 91, "3468717": 91, "173871": 91, "3486106": 91, "173730": 91, "48it": 91, "3503480": 91, "173576": 91, "3520839": 91, "172430": 91, "3538084": 91, "172099": 91, "3555296": 91, "171901": 91, "3572487": 91, "171608": 91, "3589757": 91, "171930": 91, "3606959": 91, "171954": 91, "3624245": 91, "172222": 91, "3641468": 91, "165178": 91, "3658590": 91, "166933": 91, "3675846": 91, "168580": 91, "3692949": 91, "169301": 91, "3710095": 91, "169941": 91, "3727212": 91, "170305": 91, "3744383": 91, "170721": 91, "3761585": 91, "171106": 91, "3778703": 91, "171043": 91, "3795890": 91, "171287": 91, "3813023": 91, "170783": 91, "3830175": 91, "171001": 91, "3847278": 91, "170875": 91, "3864410": 91, "171005": 91, "3881633": 91, "171370": 91, "3898771": 91, "23it": 91, "3915831": 91, "169965": 91, "3932869": 91, "170087": 91, "3949879": 91, "169990": 91, "3966879": 91, "169949": 91, "3983875": 91, "169772": 91, "79it": 91, "4000853": 91, "169718": 91, "4017853": 91, "169799": 91, "4034999": 91, "45it": 91, "4052095": 91, "170489": 91, "4069145": 91, "170353": 91, "4086208": 91, "170433": 91, "4103252": 91, "169878": 91, "4120406": 91, "170373": 91, "4137520": 91, "170600": 91, "4154679": 91, "170894": 91, "4171769": 91, "170333": 91, "58it": 91, "4188803": 91, "169923": 91, "4205796": 91, "169523": 91, "4222817": 91, "169724": 91, "4239790": 91, "169579": 91, "4256818": 91, "169786": 91, "4273871": 91, "170006": 91, "4291017": 91, "170438": 91, "4308086": 91, "170511": 91, "81it": 91, "4325138": 91, "169547": 91, "4342095": 91, "163414": 91, "55it": 91, "4359299": 91, "165924": 91, "4376343": 91, "167246": 91, "4393409": 91, "168254": 91, "4410560": 91, "169219": 91, "4427598": 91, "169562": 91, "4444705": 91, "170009": 91, "98it": 91, "4461912": 91, "170621": 91, "4478981": 91, "170378": 91, "4496051": 91, "170472": 91, "4513109": 91, "170500": 91, "4530422": 91, "171284": 91, "4547617": 91, "171480": 91, "4564863": 91, "171770": 91, "4582041": 91, "171252": 91, "4599168": 91, "170751": 91, "4616245": 91, "170236": 91, "4633367": 91, "170526": 91, "4650476": 91, "170690": 91, "4667696": 91, "171138": 91, "4684811": 91, "166416": 91, "4702063": 91, "168205": 91, "4719283": 91, "169383": 91, "4736314": 91, "169655": 91, "4753543": 91, "170435": 91, "4770597": 91, "170424": 91, "4787647": 91, "170176": 91, "4804723": 91, "170346": 91, "4821848": 91, "170613": 91, "4838912": 91, "170004": 91, "4856169": 91, "170767": 91, "4873248": 91, "170274": 91, "4890277": 91, "170191": 91, "4907298": 91, "170155": 91, "4924593": 91, "170988": 91, "4941723": 91, "171077": 91, "4958832": 91, "170246": 91, "4975925": 91, "170448": 91, "4992971": 91, "170315": 91, "171134": 91, "3263230": 91, "783379": 91, "275110": 91, "255792": 91, "78225": 91, "55990": 91, "54427": 91, "33591": 91, "24645": 91, "21308": 91, "15045": 91, "14171": 91, "13832": 91, "13498": 91, "11490": 91, "9164": 91, "8769": 91, "6999": 91, "6031": 91, "5011": 91, "mistakenli": 91, "class_issu": 91, "aim": [91, 94], "domin": 91, "extratreesclassifi": 92, "extratre": 92, "labelencod": [92, 93], "labels_raw": 92, "interg": [92, 93], "tress": 92, "827": 92, "cheat": 92, "0pt": 92, "233": 92, "labels_train": 92, "labels_test": 92, "acc_og": [92, 93], "783068783068783": 92, "acc_cl": [92, 93], "8095238095238095": 92, "earlier": [93, 94], "raw_label": 93, "raw_train_text": 93, "raw_test_text": 93, "raw_train_label": 93, "raw_test_label": 93, "encond": 93, "train_text": 93, "test_text": 93, "858050": 93, "545854": 93, "826194": 93, "965814": 93, "791923": 93, "646": 93, "390": 93, "628": 93, "702": 93, "863": 93, "135": 93, "735": 93, "print_as_df": 93, "inverse_transform": 93, "fight": 93, "bunch": 94, "conll": 94, "2003": 94, "love": 94, "n_i": 94, "optional_list_of_ordered_class_nam": 94, "deepai": 94, "conll2003": 94, "rm": 94, "tokenclassif": 94, "2024": 94, "2400": 94, "52e0": 94, "1a00": 94, "871": 94, "connect": 94, "443": 94, "await": 94, "982975": 94, "960k": 94, "kb": 94, "959": 94, "94k": 94, "mb": 94, "directori": 94, "inflat": 94, "195": 94, "17045998": 94, "16m": 94, "octet": 94, "26m": 94, "134": 94, "bert": 94, "read_npz": 94, "filepath": 94, "corrsespond": 94, "iob2": 94, "given_ent": 94, "entity_map": 94, "readfil": 94, "sep": 94, "startswith": 94, "docstart": 94, "isalpha": 94, "isupp": 94, "indices_to_preview": 94, "nsentenc": 94, "eu": 94, "reject": 94, "boycott": 94, "british": 94, "lamb": 94, "00030412": 94, "00023826": 94, "99936208": 94, "00007009": 94, "00002545": 94, "99998795": 94, "00000401": 94, "00000218": 94, "00000455": 94, "00000131": 94, "00000749": 94, "99996115": 94, "00001371": 94, "0000087": 94, "00000895": 94, "99998936": 94, "00000382": 94, "00000178": 94, "00000366": 94, "00000137": 94, "99999101": 94, "00000266": 94, "00000174": 94, "0000035": 94, "00000109": 94, "99998768": 94, "00000482": 94, "00000202": 94, "00000438": 94, "0000011": 94, "00000465": 94, "99996392": 94, "00001105": 94, "0000116": 94, "00000878": 94, "99998671": 94, "00000364": 94, "00000213": 94, "00000472": 94, "00000281": 94, "99999073": 94, "00000211": 94, "00000159": 94, "00000442": 94, "00000115": 94, "peter": 94, "blackburn": 94, "00000358": 94, "00000529": 94, "99995623": 94, "000022": 94, "0000129": 94, "0000024": 94, "00001812": 94, "99994141": 94, "00001645": 94, "00002162": 94, "brussel": 94, "1996": 94, "00001172": 94, "00000821": 94, "00004661": 94, "0000618": 94, "99987167": 94, "99999061": 94, "00000201": 94, "00000195": 94, "00000408": 94, "00000135": 94, "2254": 94, "2907": 94, "19392": 94, "9962": 94, "8904": 94, "19303": 94, "12918": 94, "9256": 94, "11855": 94, "18392": 94, "20426": 94, "19402": 94, "14744": 94, "19371": 94, "4645": 94, "10331": 94, "9430": 94, "6143": 94, "18367": 94, "12914": 94, "todai": 94, "weather": 94, "march": 94, "scalfaro": 94, "northern": 94, "himself": 94, "said": 94, "germani": 94, "nastja": 94, "rysich": 94, "north": 94, "spla": 94, "fought": 94, "khartoum": 94, "govern": 94, "south": 94, "1983": 94, "autonomi": 94, "animist": 94, "region": 94, "moslem": 94, "arabis": 94, "mayor": 94, "antonio": 94, "gonzalez": 94, "garcia": 94, "revolutionari": 94, "parti": 94, "wednesdai": 94, "troop": 94, "raid": 94, "farm": 94, "stole": 94, "rape": 94, "women": 94, "spring": 94, "chg": 94, "hrw": 94, "12pct": 94, "princ": 94, "photo": 94, "moment": 94, "spokeswoman": 94, "rainier": 94, "told": 94, "reuter": 94, "danila": 94, "carib": 94, "w224": 94, "equip": 94, "radiomet": 94, "earn": 94, "19996": 94, "london": 94, "denom": 94, "sale": 94, "uk": 94, "jp": 94, "fr": 94, "maccabi": 94, "hapoel": 94, "haifa": 94, "tel": 94, "aviv": 94, "hospit": 94, "rever": 94, "roman": 94, "cathol": 94, "nun": 94, "admit": 94, "calcutta": 94, "week": 94, "ago": 94, "fever": 94, "vomit": 94, "allianc": 94, "embattl": 94, "kabul": 94, "salang": 94, "highwai": 94, "mondai": 94, "tuesdai": 94, "suprem": 94, "council": 94, "led": 94, "jumbish": 94, "milli": 94, "movement": 94, "warlord": 94, "abdul": 94, "rashid": 94, "dostum": 94, "dollar": 94, "exchang": 94, "3570": 94, "12049": 94, "born": 94, "1937": 94, "provinc": 94, "anhui": 94, "dai": 94, "came": 94, "shanghai": 94, "citi": 94, "prolif": 94, "author": 94, "teacher": 94, "chines": 94, "16764": 94, "1990": 94, "historian": 94, "alan": 94, "john": 94, "percival": 94, "taylor": 94, "di": 94, "20446": 94, "pace": 94, "bowler": 94, "ian": 94, "harvei": 94, "claim": 94, "victoria": 94, "15514": 94, "cotti": 94, "osc": 94, "foreign": 94, "minist": 94, "7525": 94, "sultan": 94, "specter": 94, "met": 94, "crown": 94, "abdullah": 94, "defenc": 94, "aviat": 94, "jeddah": 94, "saudi": 94, "agenc": 94, "2288": 94, "hi": 94, "customari": 94, "outfit": 94, "champion": 94, "damp": 94, "scalp": 94, "canada": 94, "reign": 94, "olymp": 94, "donovan": 94, "bailei": 94, "1992": 94, "linford": 94, "christi": 94, "britain": 94, "1984": 94, "1988": 94, "carl": 94, "lewi": 94, "ambigi": 94, "punctuat": 94, "chicago": 94, "digest": 94, "philadelphia": 94, "usda": 94, "york": 94, "token_issu": 94, "471": 94, "kean": 94, "year": 94, "contract": 94, "manchest": 94, "19072": 94, "societi": 94, "million": 94, "bite": 94, "deliv": 94, "19910": 94, "father": 94, "clarenc": 94, "woolmer": 94, "renam": 94, "uttar": 94, "pradesh": 94, "india": 94, "ranji": 94, "trophi": 94, "nation": 94, "championship": 94, "captain": 94, "1949": 94, "15658": 94, "19879": 94, "iii": 94, "brian": 94, "shimer": 94, "randi": 94, "jone": 94, "19104": 94}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [30, 0, 0, "-", "dataset"], [33, 0, 0, "-", "experimental"], [36, 0, 0, "-", "filter"], [37, 0, 0, "-", "internal"], [48, 0, 0, "-", "models"], [50, 0, 0, "-", "multiannotator"], [53, 0, 0, "-", "multilabel_classification"], [56, 0, 0, "-", "object_detection"], [59, 0, 0, "-", "outlier"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "regression"], [65, 0, 0, "-", "segmentation"], [69, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [28, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [22, 0, 0, "-", "noniid"], [23, 0, 0, "-", "null"], [24, 0, 0, "-", "outlier"], [27, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[22, 2, 1, "", "NonIIDIssueManager"], [22, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[23, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[24, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[24, 6, 1, "", "DEFAULT_THRESHOLDS"], [24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 6, 1, "", "ood"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[26, 2, 1, "", "RegressionLabelIssueManager"], [26, 1, 1, "", "find_issues_with_features"], [26, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[27, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[27, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [27, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "filter_cluster_ids"], [27, 3, 1, "", "find_issues"], [27, 3, 1, "", "get_worst_cluster"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "perform_clustering"], [27, 3, 1, "", "report"], [27, 3, 1, "", "set_knn_graph"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[28, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[28, 3, 1, "", "get_report"], [28, 3, 1, "", "report"]], "cleanlab.dataset": [[30, 1, 1, "", "find_overlapping_classes"], [30, 1, 1, "", "health_summary"], [30, 1, 1, "", "overall_label_health_score"], [30, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[31, 0, 0, "-", "cifar_cnn"], [32, 0, 0, "-", "coteaching"], [34, 0, 0, "-", "label_issues_batched"], [35, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[31, 2, 1, "", "CNN"], [31, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[31, 6, 1, "", "T_destination"], [31, 3, 1, "", "__call__"], [31, 3, 1, "", "add_module"], [31, 3, 1, "", "apply"], [31, 3, 1, "", "bfloat16"], [31, 3, 1, "", "buffers"], [31, 3, 1, "", "children"], [31, 3, 1, "", "cpu"], [31, 3, 1, "", "cuda"], [31, 3, 1, "", "double"], [31, 6, 1, "", "dump_patches"], [31, 3, 1, "", "eval"], [31, 3, 1, "", "extra_repr"], [31, 3, 1, "", "float"], [31, 3, 1, "id0", "forward"], [31, 3, 1, "", "get_buffer"], [31, 3, 1, "", "get_extra_state"], [31, 3, 1, "", "get_parameter"], [31, 3, 1, "", "get_submodule"], [31, 3, 1, "", "half"], [31, 3, 1, "", "ipu"], [31, 3, 1, "", "load_state_dict"], [31, 3, 1, "", "modules"], [31, 3, 1, "", "named_buffers"], [31, 3, 1, "", "named_children"], [31, 3, 1, "", "named_modules"], [31, 3, 1, "", "named_parameters"], [31, 3, 1, "", "parameters"], [31, 3, 1, "", "register_backward_hook"], [31, 3, 1, "", "register_buffer"], [31, 3, 1, "", "register_forward_hook"], [31, 3, 1, "", "register_forward_pre_hook"], [31, 3, 1, "", "register_full_backward_hook"], [31, 3, 1, "", "register_load_state_dict_post_hook"], [31, 3, 1, "", "register_module"], [31, 3, 1, "", "register_parameter"], [31, 3, 1, "", "requires_grad_"], [31, 3, 1, "", "set_extra_state"], [31, 3, 1, "", "share_memory"], [31, 3, 1, "", "state_dict"], [31, 3, 1, "", "to"], [31, 3, 1, "", "to_empty"], [31, 3, 1, "", "train"], [31, 6, 1, "", "training"], [31, 3, 1, "", "type"], [31, 3, 1, "", "xpu"], [31, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[32, 1, 1, "", "adjust_learning_rate"], [32, 1, 1, "", "evaluate"], [32, 1, 1, "", "forget_rate_scheduler"], [32, 1, 1, "", "initialize_lr_scheduler"], [32, 1, 1, "", "loss_coteaching"], [32, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[34, 2, 1, "", "LabelInspector"], [34, 7, 1, "", "adj_confident_thresholds_shared"], [34, 1, 1, "", "find_label_issues_batched"], [34, 7, 1, "", "labels_shared"], [34, 7, 1, "", "pred_probs_shared"], [34, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[34, 3, 1, "", "get_confident_thresholds"], [34, 3, 1, "", "get_label_issues"], [34, 3, 1, "", "get_num_issues"], [34, 3, 1, "", "get_quality_scores"], [34, 3, 1, "", "score_label_quality"], [34, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[35, 2, 1, "", "CNN"], [35, 2, 1, "", "SimpleNet"], [35, 1, 1, "", "get_mnist_dataset"], [35, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[35, 3, 1, "", "__init_subclass__"], [35, 6, 1, "", "batch_size"], [35, 6, 1, "", "dataset"], [35, 6, 1, "", "epochs"], [35, 3, 1, "id0", "fit"], [35, 3, 1, "", "get_metadata_routing"], [35, 3, 1, "", "get_params"], [35, 6, 1, "", "loader"], [35, 6, 1, "", "log_interval"], [35, 6, 1, "", "lr"], [35, 6, 1, "", "momentum"], [35, 6, 1, "", "no_cuda"], [35, 3, 1, "id1", "predict"], [35, 3, 1, "id4", "predict_proba"], [35, 6, 1, "", "seed"], [35, 3, 1, "", "set_fit_request"], [35, 3, 1, "", "set_params"], [35, 3, 1, "", "set_predict_proba_request"], [35, 3, 1, "", "set_predict_request"], [35, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[35, 6, 1, "", "T_destination"], [35, 3, 1, "", "__call__"], [35, 3, 1, "", "add_module"], [35, 3, 1, "", "apply"], [35, 3, 1, "", "bfloat16"], [35, 3, 1, "", "buffers"], [35, 3, 1, "", "children"], [35, 3, 1, "", "cpu"], [35, 3, 1, "", "cuda"], [35, 3, 1, "", "double"], [35, 6, 1, "", "dump_patches"], [35, 3, 1, "", "eval"], [35, 3, 1, "", "extra_repr"], [35, 3, 1, "", "float"], [35, 3, 1, "", "forward"], [35, 3, 1, "", "get_buffer"], [35, 3, 1, "", "get_extra_state"], [35, 3, 1, "", "get_parameter"], [35, 3, 1, "", "get_submodule"], [35, 3, 1, "", "half"], [35, 3, 1, "", "ipu"], [35, 3, 1, "", "load_state_dict"], [35, 3, 1, "", "modules"], [35, 3, 1, "", "named_buffers"], [35, 3, 1, "", "named_children"], [35, 3, 1, "", "named_modules"], [35, 3, 1, "", "named_parameters"], [35, 3, 1, "", "parameters"], [35, 3, 1, "", "register_backward_hook"], [35, 3, 1, "", "register_buffer"], [35, 3, 1, "", "register_forward_hook"], [35, 3, 1, "", "register_forward_pre_hook"], [35, 3, 1, "", "register_full_backward_hook"], [35, 3, 1, "", "register_load_state_dict_post_hook"], [35, 3, 1, "", "register_module"], [35, 3, 1, "", "register_parameter"], [35, 3, 1, "", "requires_grad_"], [35, 3, 1, "", "set_extra_state"], [35, 3, 1, "", "share_memory"], [35, 3, 1, "", "state_dict"], [35, 3, 1, "", "to"], [35, 3, 1, "", "to_empty"], [35, 3, 1, "", "train"], [35, 6, 1, "", "training"], [35, 3, 1, "", "type"], [35, 3, 1, "", "xpu"], [35, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[36, 1, 1, "", "find_label_issues"], [36, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [36, 1, 1, "", "find_predicted_neq_given"], [36, 7, 1, "", "pred_probs_by_class"], [36, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[38, 0, 0, "-", "label_quality_utils"], [39, 0, 0, "-", "latent_algebra"], [40, 0, 0, "-", "multiannotator_utils"], [41, 0, 0, "-", "multilabel_scorer"], [42, 0, 0, "-", "multilabel_utils"], [43, 0, 0, "-", "outlier"], [44, 0, 0, "-", "token_classification_utils"], [45, 0, 0, "-", "util"], [46, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[38, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[39, 1, 1, "", "compute_inv_noise_matrix"], [39, 1, 1, "", "compute_noise_matrix_from_inverse"], [39, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [39, 1, 1, "", "compute_py"], [39, 1, 1, "", "compute_py_inv_noise_matrix"], [39, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[40, 1, 1, "", "assert_valid_inputs_multiannotator"], [40, 1, 1, "", "assert_valid_pred_probs"], [40, 1, 1, "", "check_consensus_label_classes"], [40, 1, 1, "", "compute_soft_cross_entropy"], [40, 1, 1, "", "find_best_temp_scaler"], [40, 1, 1, "", "format_multiannotator_labels"], [40, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[41, 2, 1, "", "Aggregator"], [41, 2, 1, "", "ClassLabelScorer"], [41, 2, 1, "", "MultilabelScorer"], [41, 1, 1, "", "exponential_moving_average"], [41, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [41, 1, 1, "", "get_label_quality_scores"], [41, 1, 1, "", "multilabel_py"], [41, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[41, 3, 1, "", "__call__"], [41, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[41, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [41, 6, 1, "", "NORMALIZED_MARGIN"], [41, 6, 1, "", "SELF_CONFIDENCE"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[41, 3, 1, "", "__call__"], [41, 3, 1, "", "aggregate"], [41, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[42, 1, 1, "", "get_onehot_num_classes"], [42, 1, 1, "", "int2onehot"], [42, 1, 1, "", "onehot2int"], [42, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[43, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[44, 1, 1, "", "color_sentence"], [44, 1, 1, "", "filter_sentence"], [44, 1, 1, "", "get_sentence"], [44, 1, 1, "", "mapping"], [44, 1, 1, "", "merge_probs"], [44, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[45, 1, 1, "", "append_extra_datapoint"], [45, 1, 1, "", "clip_noise_rates"], [45, 1, 1, "", "clip_values"], [45, 1, 1, "", "compress_int_array"], [45, 1, 1, "", "confusion_matrix"], [45, 1, 1, "", "csr_vstack"], [45, 1, 1, "", "estimate_pu_f1"], [45, 1, 1, "", "extract_indices_tf"], [45, 1, 1, "", "force_two_dimensions"], [45, 1, 1, "", "format_labels"], [45, 1, 1, "", "get_missing_classes"], [45, 1, 1, "", "get_num_classes"], [45, 1, 1, "", "get_unique_classes"], [45, 1, 1, "", "is_tensorflow_dataset"], [45, 1, 1, "", "is_torch_dataset"], [45, 1, 1, "", "num_unique_classes"], [45, 1, 1, "", "print_inverse_noise_matrix"], [45, 1, 1, "", "print_joint_matrix"], [45, 1, 1, "", "print_noise_matrix"], [45, 1, 1, "", "print_square_matrix"], [45, 1, 1, "", "remove_noise_from_class"], [45, 1, 1, "", "round_preserving_row_totals"], [45, 1, 1, "", "round_preserving_sum"], [45, 1, 1, "", "smart_display_dataframe"], [45, 1, 1, "", "subset_X_y"], [45, 1, 1, "", "subset_data"], [45, 1, 1, "", "subset_labels"], [45, 1, 1, "", "train_val_split"], [45, 1, 1, "", "unshuffle_tensorflow_dataset"], [45, 1, 1, "", "value_counts"], [45, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[46, 1, 1, "", "assert_indexing_works"], [46, 1, 1, "", "assert_nonempty_input"], [46, 1, 1, "", "assert_valid_class_labels"], [46, 1, 1, "", "assert_valid_inputs"], [46, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[49, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[49, 2, 1, "", "KerasWrapperModel"], [49, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[49, 3, 1, "", "fit"], [49, 3, 1, "", "get_params"], [49, 3, 1, "", "predict"], [49, 3, 1, "", "predict_proba"], [49, 3, 1, "", "set_params"], [49, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[50, 1, 1, "", "convert_long_to_wide_dataset"], [50, 1, 1, "", "get_active_learning_scores"], [50, 1, 1, "", "get_active_learning_scores_ensemble"], [50, 1, 1, "", "get_label_quality_multiannotator"], [50, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [50, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[51, 0, 0, "-", "dataset"], [52, 0, 0, "-", "filter"], [54, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[51, 1, 1, "", "common_multilabel_issues"], [51, 1, 1, "", "multilabel_health_summary"], [51, 1, 1, "", "overall_multilabel_health_score"], [51, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[52, 1, 1, "", "find_label_issues"], [52, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[54, 1, 1, "", "get_label_quality_scores"], [54, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"], [58, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[55, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[57, 1, 1, "", "compute_badloc_box_scores"], [57, 1, 1, "", "compute_overlooked_box_scores"], [57, 1, 1, "", "compute_swap_box_scores"], [57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "issues_from_scores"], [57, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[58, 1, 1, "", "bounding_box_size_distribution"], [58, 1, 1, "", "calculate_per_class_metrics"], [58, 1, 1, "", "class_label_distribution"], [58, 1, 1, "", "get_average_per_class_confusion_matrix"], [58, 1, 1, "", "get_sorted_bbox_count_idxs"], [58, 1, 1, "", "object_counts_per_image"], [58, 1, 1, "", "plot_class_distribution"], [58, 1, 1, "", "plot_class_size_distributions"], [58, 1, 1, "", "visualize"]], "cleanlab.outlier": [[59, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[59, 3, 1, "", "fit"], [59, 3, 1, "", "fit_score"], [59, 3, 1, "", "score"]], "cleanlab.rank": [[60, 1, 1, "", "find_top_issues"], [60, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [60, 1, 1, "", "get_label_quality_ensemble_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "get_normalized_margin_for_each_label"], [60, 1, 1, "", "get_self_confidence_for_each_label"], [60, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[62, 0, 0, "-", "learn"], [63, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[62, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[62, 3, 1, "", "__init_subclass__"], [62, 3, 1, "", "find_label_issues"], [62, 3, 1, "", "fit"], [62, 3, 1, "", "get_aleatoric_uncertainty"], [62, 3, 1, "", "get_epistemic_uncertainty"], [62, 3, 1, "", "get_label_issues"], [62, 3, 1, "", "get_metadata_routing"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "save_space"], [62, 3, 1, "", "score"], [62, 3, 1, "", "set_fit_request"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[63, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"], [67, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[64, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[67, 1, 1, "", "common_label_issues"], [67, 1, 1, "", "display_issues"], [67, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[71, 1, 1, "", "common_label_issues"], [71, 1, 1, "", "display_issues"], [71, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 74, 78, 79, 81, 82, 83, 86, 92, 93, 94], "count": [3, 83], "datalab": [4, 5, 7, 8, 9, 75, 76, 77, 78, 79, 83], "creat": [5, 75, 76, 83, 85], "your": [5, 72, 75, 76, 79, 81, 83], "own": 5, "issu": [5, 7, 8, 19, 26, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 91, 92, 94], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 75], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 75], "us": [5, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "gener": 6, "cluster": [6, 81], "id": 6, "guid": [7, 9], "type": [7, 8, 83], "custom": [7, 75], "can": [8, 76, 80, 81, 83, 85], "detect": [8, 76, 78, 79, 81, 83, 87, 88], "estim": [8, 83, 85], "each": 8, "label": [8, 21, 26, 72, 74, 76, 78, 79, 81, 82, 83, 85, 86, 87, 90, 91, 92, 93, 94], "outlier": [8, 24, 43, 59, 78, 79, 82, 88], "Near": [8, 76, 78, 79, 82], "duplic": [8, 17, 76, 78, 79, 81, 82], "non": [8, 79], "iid": [8, 79], "class": [8, 73, 83, 91], "imbal": [8, 18], "imag": [8, 82, 88], "specif": [8, 19, 91], "underperform": [8, 81], "group": [8, 81], "null": [8, 23], "data": [8, 10, 72, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 88, 90, 91, 92, 94], "valuat": 8, "option": 8, "paramet": [8, 83], "get": [9, 75, 76, 85, 86, 87, 91, 94], "start": [9, 80], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 37], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 81, 83], "task": 19, "noniid": 22, "regress": [25, 61, 62, 63, 81, 90], "prioriti": 26, "order": 26, "find": [26, 72, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "underperforming_group": 27, "report": [28, 82], "dataset": [30, 51, 72, 76, 79, 80, 81, 82, 83, 86, 87, 88, 90, 91, 93, 94], "cifar_cnn": 31, "coteach": 32, "experiment": 33, "label_issues_batch": 34, "mnist_pytorch": 35, "filter": [36, 52, 55, 64, 68, 83], "label_quality_util": 38, "latent_algebra": 39, "multiannotator_util": 40, "multilabel_scor": 41, "multilabel_util": 42, "token_classification_util": 44, "util": 45, "valid": [46, 82, 89], "fasttext": 47, "model": [48, 72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 92, 93], "kera": 49, "multiannot": [50, 85], "multilabel_classif": 53, "rank": [54, 57, 60, 63, 66, 70, 83], "object_detect": 56, "summari": [58, 67, 71], "learn": [62, 76, 81, 83, 92], "segment": [65, 91], "token_classif": [69, 94], "cleanlab": [72, 74, 78, 79, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "open": [72, 81], "sourc": [72, 81], "document": 72, "quickstart": 72, "1": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "instal": [72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "2": [72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "common": [72, 73, 94], "3": [72, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "handl": [72, 81], "error": [72, 81, 82, 83, 85, 86, 87, 90, 91, 93, 94], "train": [72, 74, 81, 88, 90, 92, 93], "robust": [72, 83, 90, 92, 93], "noisi": [72, 83, 90, 92, 93], "4": [72, 74, 75, 76, 78, 79, 82, 83, 85, 87, 88, 90, 92, 93], "curat": [72, 80], "fix": [72, 81], "level": [72, 80, 83, 94], "5": [72, 74, 76, 78, 82, 83, 85, 90, 92], "improv": [72, 85], "via": [72, 83, 85], "mani": [72, 83], "other": [72, 85, 87, 90], "techniqu": 72, "contribut": 72, "easi": [72, 78, 79, 82], "mode": [72, 78, 79, 82], "how": [73, 81, 83, 85, 86, 94], "migrat": 73, "version": 73, "0": 73, "from": [73, 75, 76, 83, 90, 92, 93], "pre": [73, 74, 81, 88], "function": [73, 75], "name": 73, "chang": 73, "modul": [73, 83], "new": 73, "remov": 73, "argument": [73, 75], "variabl": 73, "audio": 74, "speechbrain": 74, "depend": [74, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94], "import": [74, 75, 76, 80, 82, 83, 85], "them": [74, 80, 83], "load": [74, 75, 76, 78, 79, 90, 92, 93], "featur": [74, 82, 88], "fit": 74, "linear": 74, "comput": [74, 78, 79, 81, 82, 85, 89, 92], "out": [74, 75, 76, 78, 79, 82, 85, 89, 92], "sampl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "predict": [74, 75, 76, 78, 79, 82, 85, 86, 87, 89, 92], "probabl": [74, 75, 76, 78, 79, 82, 85, 89, 92], "workflow": [75, 83], "audit": [75, 76], "requir": [75, 76, 78, 79, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94], "classifi": [75, 76], "instanti": 75, "object": [75, 87], "increment": 75, "search": 75, "specifi": [75, 81], "nondefault": 75, "save": 75, "ad": 75, "A": 76, "unifi": 76, "all": [76, 83], "kind": [76, 87], "skip": [76, 80, 83, 85], "detail": [76, 80, 83, 85], "more": [76, 83, 90, 92, 93], "about": 76, "addit": 76, "inform": [76, 82], "tutori": [77, 80, 84], "tabular": [78, 92], "numer": 78, "categor": 78, "column": 78, "process": [78, 88, 90, 92], "select": [78, 92], "construct": 78, "k": [78, 82, 89], "nearest": 78, "neighbour": 78, "graph": 78, "text": [79, 93, 94], "format": [79, 81, 86, 87, 93], "defin": [79, 82, 90, 93], "drift": 79, "fetch": [80, 82], "evalu": 80, "health": [80, 83], "8": [80, 83], "popular": 80, "faq": 81, "what": [81, 83, 89], "do": [81, 83], "i": [81, 83, 89], "infer": 81, "correct": 81, "exampl": [81, 82, 83, 88], "ha": 81, "flag": 81, "should": 81, "v": 81, "test": [81, 83, 88], "big": 81, "limit": 81, "memori": 81, "why": 81, "isn": 81, "t": 81, "cleanlearn": [81, 83], "work": [81, 83, 85, 94], "me": 81, "differ": [81, 87], "clean": [81, 83], "final": 81, "hyperparamet": 81, "tune": 81, "onli": 81, "one": [81, 83, 86, 91], "doe": [81, 85, 94], "take": 81, "so": 81, "long": 81, "slice": 81, "when": [81, 83], "identifi": [81, 87], "run": 81, "licens": 81, "under": 81, "an": 81, "answer": 81, "question": 81, "pytorch": [82, 88], "normal": 82, "fashion": 82, "mnist": 82, "prepar": 82, "fold": [82, 89], "cross": [82, 89], "embed": [82, 88], "7": [82, 83], "view": 82, "most": [82, 94], "like": 82, "sever": 82, "set": [82, 83], "dark": 82, "top": [82, 91], "low": 82, "The": 83, "centric": 83, "ai": 83, "machin": 83, "find_label_issu": 83, "line": 83, "code": 83, "visual": [83, 87, 88, 91], "twenti": 83, "lowest": 83, "qualiti": [83, 85, 86, 87, 91, 94], "see": 83, "now": 83, "let": 83, "": 83, "happen": 83, "we": 83, "merg": 83, "seafoam": 83, "green": 83, "yellow": 83, "too": 83, "you": 83, "re": 83, "6": 83, "One": 83, "score": [83, 85, 86, 87, 91, 94], "rule": 83, "overal": [83, 91], "accur": 83, "thi": 83, "directli": 83, "fulli": 83, "character": 83, "nois": 83, "matrix": [83, 86], "joint": 83, "prior": 83, "true": 83, "distribut": 83, "flip": 83, "rate": 83, "ani": 83, "again": 83, "support": 83, "lot": 83, "method": 83, "filter_bi": 83, "automat": 83, "everi": 83, "uniqu": 83, "num_label_issu": 83, "threshold": 83, "found": 83, "Not": 83, "sure": 83, "ensembl": 83, "multipl": [83, 85], "predictor": 83, "consensu": 85, "annot": 85, "initi": 85, "major": 85, "vote": 85, "better": 85, "statist": 85, "compar": 85, "inspect": 85, "potenti": [85, 90, 93], "retrain": 85, "further": 85, "multi": 86, "given": 86, "hot": 86, "binari": 86, "download": [87, 91, 94], "objectlab": 87, "timm": 88, "cifar10": 88, "some": 88, "pred_prob": [88, 91, 94], "wai": 90, "semant": 91, "which": 91, "ar": 91, "commonli": 91, "mislabel": [91, 94], "focus": 91, "scikit": 92, "token": 94, "word": 94, "sentenc": 94, "contain": 94, "particular": 94}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index d3d09f5b9..9a5a27e14 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1504,7 +1504,7 @@

5. Use cleanlab to find label issues -{"state": {"ccb07543f38c422eba6e58deccf2a389": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55ca6bb4d3414d2091e2d6cc744d0227": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "42cde93ea0f44516bebd28767667c2fa": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ccb07543f38c422eba6e58deccf2a389", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_55ca6bb4d3414d2091e2d6cc744d0227", "value": 2041.0}}, "8c2848fd80e94dfeba2260153670f5b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d73d40dffae24b919506395235104b28": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "799d78d15e1549e58376f474b256b3f1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8c2848fd80e94dfeba2260153670f5b5", "placeholder": "\u200b", "style": "IPY_MODEL_d73d40dffae24b919506395235104b28", "value": "hyperparams.yaml: 100%"}}, "5105284d7b9346b09f3d678a6f15a3cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db5c6c408f9147df9a5d44f8f886ab61": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "53e5f5516c1940eb84c59305f879b33d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5105284d7b9346b09f3d678a6f15a3cb", "placeholder": "\u200b", "style": "IPY_MODEL_db5c6c408f9147df9a5d44f8f886ab61", "value": " 2.04k/2.04k [00:00<00:00, 352kB/s]"}}, "32761d387fb34f55a8662c19898e2e19": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2cd93bedff346d4b94c8c101e88352e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_799d78d15e1549e58376f474b256b3f1", "IPY_MODEL_42cde93ea0f44516bebd28767667c2fa", "IPY_MODEL_53e5f5516c1940eb84c59305f879b33d"], "layout": "IPY_MODEL_32761d387fb34f55a8662c19898e2e19"}}, "bbb0a42cbeb44cd2807289cb84e06c66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "660387b90c454207a12955625f60a888": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "886f26d855ae49049a473788aaf13fdd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bbb0a42cbeb44cd2807289cb84e06c66", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_660387b90c454207a12955625f60a888", "value": 16887676.0}}, "e38a6eaeba49436d880afec59461ee06": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9a471f99ebec460f82f340da4bf084a3": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "04545eb82c614214a57ff48711e5ef69": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e38a6eaeba49436d880afec59461ee06", "placeholder": "\u200b", "style": "IPY_MODEL_9a471f99ebec460f82f340da4bf084a3", "value": "embedding_model.ckpt: 100%"}}, "5836728e785d44ce8ebe512cb1ffe735": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dae854f92b7548ddb4b4981bb4a8c9d2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2fb3c50dfd544cf297447c4dd5e4bdfa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5836728e785d44ce8ebe512cb1ffe735", "placeholder": "\u200b", "style": "IPY_MODEL_dae854f92b7548ddb4b4981bb4a8c9d2", "value": " 16.9M/16.9M [00:00<00:00, 96.3MB/s]"}}, "77fefa233aa04e3ba284da2418760799": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69f5f977755e4a4b82b5ca684955dd9e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_04545eb82c614214a57ff48711e5ef69", "IPY_MODEL_886f26d855ae49049a473788aaf13fdd", "IPY_MODEL_2fb3c50dfd544cf297447c4dd5e4bdfa"], "layout": "IPY_MODEL_77fefa233aa04e3ba284da2418760799"}}, "c0de636f211e43f793ee2c8ccaccead2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95589bfbae6545eea65cdda502cb8591": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c9aad8223fed4fd79a1fa84e675e9c34": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c0de636f211e43f793ee2c8ccaccead2", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_95589bfbae6545eea65cdda502cb8591", "value": 3201.0}}, "4bdbef4700e34979a7835f1c9cb5f63b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41336a38204142909d6d6151660b30ef": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "649eb4698e3443adb0fd32629e36ece6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4bdbef4700e34979a7835f1c9cb5f63b", "placeholder": "\u200b", "style": "IPY_MODEL_41336a38204142909d6d6151660b30ef", "value": "mean_var_norm_emb.ckpt: 100%"}}, "617fa189f462470a937beee9505799fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9fca2e61f7d64cea930c8b07bdcbc59e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0fd11d936da54fa68096671994e1275f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_617fa189f462470a937beee9505799fa", "placeholder": "\u200b", "style": "IPY_MODEL_9fca2e61f7d64cea930c8b07bdcbc59e", "value": " 3.20k/3.20k [00:00<00:00, 549kB/s]"}}, "c3b13273fa614276aa8cd31a0d3ba6a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a8b0b00351a48b1bd3c4ffb02422045": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_649eb4698e3443adb0fd32629e36ece6", "IPY_MODEL_c9aad8223fed4fd79a1fa84e675e9c34", "IPY_MODEL_0fd11d936da54fa68096671994e1275f"], "layout": "IPY_MODEL_c3b13273fa614276aa8cd31a0d3ba6a0"}}, "e52c6bc80973455ab0806594b5177ef7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "159b496215244dc799dd25dae2e0470d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fc52934f923d48f6815ef3ea863cb962": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e52c6bc80973455ab0806594b5177ef7", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_159b496215244dc799dd25dae2e0470d", "value": 15856877.0}}, "a70c7781a1174beb8b08bdb996fa2bc8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d632ff2b07b4dffa2ead315843c6e6c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "db86af8139ff41018b497ff1758537de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a70c7781a1174beb8b08bdb996fa2bc8", "placeholder": "\u200b", "style": "IPY_MODEL_4d632ff2b07b4dffa2ead315843c6e6c", "value": "classifier.ckpt: 100%"}}, "c30853559a364583b1f650a150b6654a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "24e87b41e33643a0a449e4e5f4a04a21": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ebe5bf1237e54a5cb31a7953735ed040": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c30853559a364583b1f650a150b6654a", "placeholder": "\u200b", "style": "IPY_MODEL_24e87b41e33643a0a449e4e5f4a04a21", "value": " 15.9M/15.9M [00:00<00:00, 302MB/s]"}}, "7fda371c9fba45549d352696e38b0c16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1acfc2e65c71473497f43eb9e974bc92": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_db86af8139ff41018b497ff1758537de", "IPY_MODEL_fc52934f923d48f6815ef3ea863cb962", "IPY_MODEL_ebe5bf1237e54a5cb31a7953735ed040"], "layout": "IPY_MODEL_7fda371c9fba45549d352696e38b0c16"}}, "78e330e8413b4c638b5f5ad1892ffc7c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25691bde0c394a299f774959e32e539d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7137378c46a441c9b8f6dd4cd7cd9ee2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_78e330e8413b4c638b5f5ad1892ffc7c", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_25691bde0c394a299f774959e32e539d", "value": 128619.0}}, "da8efe510bcf414b9d2c76f5f791e9ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "220c65a6f5bb442e8b509643c78298cb": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "1cca100b2cea4a77bbbcc5a23f19e1d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_da8efe510bcf414b9d2c76f5f791e9ea", "placeholder": "\u200b", "style": "IPY_MODEL_220c65a6f5bb442e8b509643c78298cb", "value": "label_encoder.txt: 100%"}}, "61d06a92b987421cb46d8a89d1975bb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f1827a2afaa3497796df337825e00c5d": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7aaa5224bfe44036a333755a894e18b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_61d06a92b987421cb46d8a89d1975bb7", "placeholder": "\u200b", "style": "IPY_MODEL_f1827a2afaa3497796df337825e00c5d", "value": " 129k/129k [00:00<00:00, 13.1MB/s]"}}, "25c36bd0682a44a1af90eecaec670b14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64de8f2a3f18422084ccd72434dca5cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1cca100b2cea4a77bbbcc5a23f19e1d7", "IPY_MODEL_7137378c46a441c9b8f6dd4cd7cd9ee2", "IPY_MODEL_7aaa5224bfe44036a333755a894e18b5"], "layout": "IPY_MODEL_25c36bd0682a44a1af90eecaec670b14"}}}, "version_major": 2, "version_minor": 0} +{"state": {"26707147e6f24b498f499aec25d3879a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d21e1fb2327a464b8b743384ffa08cc0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cc503c61cdb6438ea915c9aa1032c63c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_26707147e6f24b498f499aec25d3879a", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d21e1fb2327a464b8b743384ffa08cc0", "value": 2041.0}}, "1eb624a3dad54e7fa6b146681c26c1fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8699a0a7cb124a369027b929c14aca25": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ed7a2be85ae641c2b6cb2f1e8fb8054b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1eb624a3dad54e7fa6b146681c26c1fd", "placeholder": "\u200b", "style": "IPY_MODEL_8699a0a7cb124a369027b929c14aca25", "value": "hyperparams.yaml: 100%"}}, "83f7b9bff2ec40f19a358ae6e9071f3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf1dc44a81b64e408396f375ab6db707": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b6341a7e935242c2adc1364ec71311bf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_83f7b9bff2ec40f19a358ae6e9071f3a", "placeholder": "\u200b", "style": "IPY_MODEL_bf1dc44a81b64e408396f375ab6db707", "value": " 2.04k/2.04k [00:00<00:00, 337kB/s]"}}, "fa264daf6009497ca63787f2eb2c7503": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5b91c7d529d4e1a9a36a41238ba0244": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ed7a2be85ae641c2b6cb2f1e8fb8054b", "IPY_MODEL_cc503c61cdb6438ea915c9aa1032c63c", "IPY_MODEL_b6341a7e935242c2adc1364ec71311bf"], "layout": "IPY_MODEL_fa264daf6009497ca63787f2eb2c7503"}}, "ff2eea9324ab4fdebb914b6830cf4e4e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b391f6736d6440f5977ea7e4075132b1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4013766ebdd64bcdaa57852522f87774": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ff2eea9324ab4fdebb914b6830cf4e4e", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b391f6736d6440f5977ea7e4075132b1", "value": 16887676.0}}, "2415134083d142f18e75d9c1fd90ad9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "424d86c2319543f0b0d18ccae78cd508": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8d69a36aa0ef4ac398e5473efe8facaf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2415134083d142f18e75d9c1fd90ad9e", "placeholder": "\u200b", "style": "IPY_MODEL_424d86c2319543f0b0d18ccae78cd508", "value": "embedding_model.ckpt: 100%"}}, "3b6ccb1c3d224e82864d450d361cb50f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3bfd515955e24904b4dc7bac5512c42f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7b3c7b951bc643fea2c2d55d50e02569": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3b6ccb1c3d224e82864d450d361cb50f", "placeholder": "\u200b", "style": "IPY_MODEL_3bfd515955e24904b4dc7bac5512c42f", "value": " 16.9M/16.9M [00:00<00:00, 74.2MB/s]"}}, "46c6f6135bb9449482ba0294d1515087": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1bdf3168328746ddb97b58d22771e706": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8d69a36aa0ef4ac398e5473efe8facaf", "IPY_MODEL_4013766ebdd64bcdaa57852522f87774", "IPY_MODEL_7b3c7b951bc643fea2c2d55d50e02569"], "layout": "IPY_MODEL_46c6f6135bb9449482ba0294d1515087"}}, "d3db5175210c48839bd72a54bbd9e709": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa7002ac34ad461c971cb567fbaed7c7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b3b1a6b802c2438aa6b7345347be1daa": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d3db5175210c48839bd72a54bbd9e709", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aa7002ac34ad461c971cb567fbaed7c7", "value": 3201.0}}, "ee5f56e9b26d44c29b98957642b5cbe6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4aba10cb04694ab4bf360dfefe9871d7": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "851a3e78f4cb49c28fa6d9d3f6ad533c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ee5f56e9b26d44c29b98957642b5cbe6", "placeholder": "\u200b", "style": "IPY_MODEL_4aba10cb04694ab4bf360dfefe9871d7", "value": "mean_var_norm_emb.ckpt: 100%"}}, "53a59a607d394f2e832ba2a5f8cd33f2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ff00007ea674a8496fed6616e438639": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "48805febf856433c84dda4034fb9c0c6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_53a59a607d394f2e832ba2a5f8cd33f2", "placeholder": "\u200b", "style": "IPY_MODEL_0ff00007ea674a8496fed6616e438639", "value": " 3.20k/3.20k [00:00<00:00, 511kB/s]"}}, "cc06c8dc25a146d1949bbc6f284744e5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5fd842770f3c46198750ec0bc065bbec": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_851a3e78f4cb49c28fa6d9d3f6ad533c", "IPY_MODEL_b3b1a6b802c2438aa6b7345347be1daa", "IPY_MODEL_48805febf856433c84dda4034fb9c0c6"], "layout": "IPY_MODEL_cc06c8dc25a146d1949bbc6f284744e5"}}, "508a9cef5621429ca2ad08b2e5a5b906": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2105d31075094aec8143dc36c2cc4c8a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7694a31ea9a04edcb6864f25b28b15cb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_508a9cef5621429ca2ad08b2e5a5b906", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2105d31075094aec8143dc36c2cc4c8a", "value": 15856877.0}}, "7eb2a98375b74c91b45dc5b5accd9bca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "609ef4dd1eb940adb8bd7ff656af9b5e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f2c87a26b3e843afa6644bed13f5508c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7eb2a98375b74c91b45dc5b5accd9bca", "placeholder": "\u200b", "style": "IPY_MODEL_609ef4dd1eb940adb8bd7ff656af9b5e", "value": "classifier.ckpt: 100%"}}, "21a9a1365c8149ebafde1882681607b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "030585901c0a49c3976e336a1ab51ee1": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "959ba9c2758b476f942db7be7ea533c2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_21a9a1365c8149ebafde1882681607b7", "placeholder": "\u200b", "style": "IPY_MODEL_030585901c0a49c3976e336a1ab51ee1", "value": " 15.9M/15.9M [00:00<00:00, 89.8MB/s]"}}, "965eba21261d4a2e9ee7513ec333adc2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "289a6e5f2aa24222a97d08ebc952a72e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f2c87a26b3e843afa6644bed13f5508c", "IPY_MODEL_7694a31ea9a04edcb6864f25b28b15cb", "IPY_MODEL_959ba9c2758b476f942db7be7ea533c2"], "layout": "IPY_MODEL_965eba21261d4a2e9ee7513ec333adc2"}}, "c4ebdef1b4f14614814debc42af581c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8c0ae7aca4c47fdb99824d3a5c6c79b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e364bdc739a344f9b5a54749543225af": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c4ebdef1b4f14614814debc42af581c4", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f8c0ae7aca4c47fdb99824d3a5c6c79b", "value": 128619.0}}, "766477efa9484d7b8b8cc8a77a1b6f7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3cc29ff5820423989ce16d9d70bcd31": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8d8b99dd01c64a7ca9041d32353eac13": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_766477efa9484d7b8b8cc8a77a1b6f7d", "placeholder": "\u200b", "style": "IPY_MODEL_d3cc29ff5820423989ce16d9d70bcd31", "value": "label_encoder.txt: 100%"}}, "da437028c14a404b9d0753eab94e3c55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df6099d96cc04692aa1804b28f0d3165": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "320bad48fde04048bd4f6c3c7723b882": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_da437028c14a404b9d0753eab94e3c55", "placeholder": "\u200b", "style": "IPY_MODEL_df6099d96cc04692aa1804b28f0d3165", "value": " 129k/129k [00:00<00:00, 12.9MB/s]"}}, "d9416e2443dc46e89ea2b97a96b892cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a7fe1b9aff24fc7a7e179b7f11d5bbd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8d8b99dd01c64a7ca9041d32353eac13", "IPY_MODEL_e364bdc739a344f9b5a54749543225af", "IPY_MODEL_320bad48fde04048bd4f6c3c7723b882"], "layout": "IPY_MODEL_d9416e2443dc46e89ea2b97a96b892cb"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 5d67baf75..a64acbf25 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:03:56.246621Z", - "iopub.status.busy": "2024-01-17T18:03:56.246426Z", - "iopub.status.idle": "2024-01-17T18:03:59.462158Z", - "shell.execute_reply": "2024-01-17T18:03:59.461536Z" + "iopub.execute_input": "2024-01-17T23:06:03.241225Z", + "iopub.status.busy": "2024-01-17T23:06:03.241029Z", + "iopub.status.idle": "2024-01-17T23:06:06.464107Z", + "shell.execute_reply": "2024-01-17T23:06:06.463420Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:03:59.465517Z", - "iopub.status.busy": "2024-01-17T18:03:59.464868Z", - "iopub.status.idle": "2024-01-17T18:03:59.468353Z", - "shell.execute_reply": "2024-01-17T18:03:59.467776Z" + "iopub.execute_input": "2024-01-17T23:06:06.467168Z", + "iopub.status.busy": "2024-01-17T23:06:06.466788Z", + "iopub.status.idle": "2024-01-17T23:06:06.470304Z", + "shell.execute_reply": "2024-01-17T23:06:06.469673Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:03:59.470782Z", - "iopub.status.busy": "2024-01-17T18:03:59.470350Z", - "iopub.status.idle": "2024-01-17T18:03:59.475553Z", - "shell.execute_reply": "2024-01-17T18:03:59.475067Z" + "iopub.execute_input": "2024-01-17T23:06:06.472648Z", + "iopub.status.busy": "2024-01-17T23:06:06.472216Z", + "iopub.status.idle": "2024-01-17T23:06:06.477236Z", + "shell.execute_reply": "2024-01-17T23:06:06.476626Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-17T18:03:59.477904Z", - "iopub.status.busy": "2024-01-17T18:03:59.477550Z", - "iopub.status.idle": "2024-01-17T18:04:01.172783Z", - "shell.execute_reply": "2024-01-17T18:04:01.171901Z" + "iopub.execute_input": "2024-01-17T23:06:06.479737Z", + "iopub.status.busy": "2024-01-17T23:06:06.479248Z", + "iopub.status.idle": "2024-01-17T23:06:07.960092Z", + "shell.execute_reply": "2024-01-17T23:06:07.959366Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:01.175803Z", - "iopub.status.busy": "2024-01-17T18:04:01.175584Z", - "iopub.status.idle": "2024-01-17T18:04:01.187892Z", - "shell.execute_reply": "2024-01-17T18:04:01.187256Z" + "iopub.execute_input": "2024-01-17T23:06:07.963314Z", + "iopub.status.busy": "2024-01-17T23:06:07.962895Z", + "iopub.status.idle": "2024-01-17T23:06:07.975189Z", + "shell.execute_reply": "2024-01-17T23:06:07.974586Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:01.221136Z", - "iopub.status.busy": "2024-01-17T18:04:01.220534Z", - "iopub.status.idle": "2024-01-17T18:04:01.227460Z", - "shell.execute_reply": "2024-01-17T18:04:01.226813Z" + "iopub.execute_input": "2024-01-17T23:06:08.007234Z", + "iopub.status.busy": "2024-01-17T23:06:08.006813Z", + "iopub.status.idle": "2024-01-17T23:06:08.013562Z", + "shell.execute_reply": "2024-01-17T23:06:08.013029Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:01.230129Z", - "iopub.status.busy": "2024-01-17T18:04:01.229643Z", - "iopub.status.idle": "2024-01-17T18:04:01.936049Z", - "shell.execute_reply": "2024-01-17T18:04:01.935379Z" + "iopub.execute_input": "2024-01-17T23:06:08.015975Z", + "iopub.status.busy": "2024-01-17T23:06:08.015602Z", + "iopub.status.idle": "2024-01-17T23:06:08.737027Z", + "shell.execute_reply": "2024-01-17T23:06:08.736373Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:01.938750Z", - "iopub.status.busy": "2024-01-17T18:04:01.938361Z", - "iopub.status.idle": "2024-01-17T18:04:02.839523Z", - "shell.execute_reply": "2024-01-17T18:04:02.838812Z" + "iopub.execute_input": "2024-01-17T23:06:08.739545Z", + "iopub.status.busy": "2024-01-17T23:06:08.739230Z", + "iopub.status.idle": "2024-01-17T23:06:10.120689Z", + "shell.execute_reply": "2024-01-17T23:06:10.120102Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:02.842451Z", - "iopub.status.busy": "2024-01-17T18:04:02.842179Z", - "iopub.status.idle": "2024-01-17T18:04:02.864885Z", - "shell.execute_reply": "2024-01-17T18:04:02.864263Z" + "iopub.execute_input": "2024-01-17T23:06:10.123621Z", + "iopub.status.busy": "2024-01-17T23:06:10.123219Z", + "iopub.status.idle": "2024-01-17T23:06:10.145672Z", + "shell.execute_reply": "2024-01-17T23:06:10.145076Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:02.867335Z", - "iopub.status.busy": "2024-01-17T18:04:02.866965Z", - "iopub.status.idle": "2024-01-17T18:04:02.870237Z", - "shell.execute_reply": "2024-01-17T18:04:02.869668Z" + "iopub.execute_input": "2024-01-17T23:06:10.148144Z", + "iopub.status.busy": "2024-01-17T23:06:10.147843Z", + "iopub.status.idle": "2024-01-17T23:06:10.151186Z", + "shell.execute_reply": "2024-01-17T23:06:10.150643Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:02.872601Z", - "iopub.status.busy": "2024-01-17T18:04:02.872244Z", - "iopub.status.idle": "2024-01-17T18:04:21.805805Z", - "shell.execute_reply": "2024-01-17T18:04:21.805139Z" + "iopub.execute_input": "2024-01-17T23:06:10.153485Z", + "iopub.status.busy": "2024-01-17T23:06:10.153191Z", + "iopub.status.idle": "2024-01-17T23:06:28.541137Z", + "shell.execute_reply": "2024-01-17T23:06:28.540500Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:21.809284Z", - "iopub.status.busy": "2024-01-17T18:04:21.808690Z", - "iopub.status.idle": "2024-01-17T18:04:21.813229Z", - "shell.execute_reply": "2024-01-17T18:04:21.812575Z" + "iopub.execute_input": "2024-01-17T23:06:28.544247Z", + "iopub.status.busy": "2024-01-17T23:06:28.543816Z", + "iopub.status.idle": "2024-01-17T23:06:28.548440Z", + "shell.execute_reply": "2024-01-17T23:06:28.547908Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:21.815784Z", - "iopub.status.busy": "2024-01-17T18:04:21.815395Z", - "iopub.status.idle": "2024-01-17T18:04:27.285963Z", - "shell.execute_reply": "2024-01-17T18:04:27.285265Z" + "iopub.execute_input": "2024-01-17T23:06:28.550975Z", + "iopub.status.busy": "2024-01-17T23:06:28.550597Z", + "iopub.status.idle": "2024-01-17T23:06:34.059947Z", + "shell.execute_reply": "2024-01-17T23:06:34.059266Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.289545Z", - "iopub.status.busy": "2024-01-17T18:04:27.289071Z", - "iopub.status.idle": "2024-01-17T18:04:27.294502Z", - "shell.execute_reply": "2024-01-17T18:04:27.293903Z" + "iopub.execute_input": "2024-01-17T23:06:34.063475Z", + "iopub.status.busy": "2024-01-17T23:06:34.062997Z", + "iopub.status.idle": "2024-01-17T23:06:34.068792Z", + "shell.execute_reply": "2024-01-17T23:06:34.068163Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.297552Z", - "iopub.status.busy": "2024-01-17T18:04:27.297119Z", - "iopub.status.idle": "2024-01-17T18:04:27.391354Z", - "shell.execute_reply": "2024-01-17T18:04:27.390637Z" + "iopub.execute_input": "2024-01-17T23:06:34.071846Z", + "iopub.status.busy": "2024-01-17T23:06:34.071416Z", + "iopub.status.idle": "2024-01-17T23:06:34.185550Z", + "shell.execute_reply": "2024-01-17T23:06:34.184822Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.394410Z", - "iopub.status.busy": "2024-01-17T18:04:27.394019Z", - "iopub.status.idle": "2024-01-17T18:04:27.404313Z", - "shell.execute_reply": "2024-01-17T18:04:27.403781Z" + "iopub.execute_input": "2024-01-17T23:06:34.188375Z", + "iopub.status.busy": "2024-01-17T23:06:34.188110Z", + "iopub.status.idle": "2024-01-17T23:06:34.198290Z", + "shell.execute_reply": "2024-01-17T23:06:34.197648Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.406721Z", - "iopub.status.busy": "2024-01-17T18:04:27.406410Z", - "iopub.status.idle": "2024-01-17T18:04:27.414725Z", - "shell.execute_reply": "2024-01-17T18:04:27.414071Z" + "iopub.execute_input": "2024-01-17T23:06:34.200848Z", + "iopub.status.busy": "2024-01-17T23:06:34.200521Z", + "iopub.status.idle": "2024-01-17T23:06:34.208862Z", + "shell.execute_reply": "2024-01-17T23:06:34.208245Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.417120Z", - "iopub.status.busy": "2024-01-17T18:04:27.416724Z", - "iopub.status.idle": "2024-01-17T18:04:27.421580Z", - "shell.execute_reply": "2024-01-17T18:04:27.420916Z" + "iopub.execute_input": "2024-01-17T23:06:34.211398Z", + "iopub.status.busy": "2024-01-17T23:06:34.211050Z", + "iopub.status.idle": "2024-01-17T23:06:34.215872Z", + "shell.execute_reply": "2024-01-17T23:06:34.215362Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.423983Z", - "iopub.status.busy": "2024-01-17T18:04:27.423639Z", - "iopub.status.idle": "2024-01-17T18:04:27.429656Z", - "shell.execute_reply": "2024-01-17T18:04:27.429010Z" + "iopub.execute_input": "2024-01-17T23:06:34.218162Z", + "iopub.status.busy": "2024-01-17T23:06:34.217800Z", + "iopub.status.idle": "2024-01-17T23:06:34.224079Z", + "shell.execute_reply": "2024-01-17T23:06:34.223545Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.432082Z", - "iopub.status.busy": "2024-01-17T18:04:27.431713Z", - "iopub.status.idle": "2024-01-17T18:04:27.545999Z", - "shell.execute_reply": "2024-01-17T18:04:27.545312Z" + "iopub.execute_input": "2024-01-17T23:06:34.226655Z", + "iopub.status.busy": "2024-01-17T23:06:34.226193Z", + "iopub.status.idle": "2024-01-17T23:06:34.342868Z", + "shell.execute_reply": "2024-01-17T23:06:34.342208Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.548644Z", - "iopub.status.busy": "2024-01-17T18:04:27.548226Z", - "iopub.status.idle": "2024-01-17T18:04:27.658900Z", - "shell.execute_reply": "2024-01-17T18:04:27.658242Z" + "iopub.execute_input": "2024-01-17T23:06:34.345463Z", + "iopub.status.busy": "2024-01-17T23:06:34.345103Z", + "iopub.status.idle": "2024-01-17T23:06:34.452029Z", + "shell.execute_reply": "2024-01-17T23:06:34.451378Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.661353Z", - "iopub.status.busy": "2024-01-17T18:04:27.661065Z", - "iopub.status.idle": "2024-01-17T18:04:27.770988Z", - "shell.execute_reply": "2024-01-17T18:04:27.770337Z" + "iopub.execute_input": "2024-01-17T23:06:34.454818Z", + "iopub.status.busy": "2024-01-17T23:06:34.454245Z", + "iopub.status.idle": "2024-01-17T23:06:34.561699Z", + "shell.execute_reply": "2024-01-17T23:06:34.561010Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.773635Z", - "iopub.status.busy": "2024-01-17T18:04:27.773261Z", - "iopub.status.idle": "2024-01-17T18:04:27.880054Z", - "shell.execute_reply": "2024-01-17T18:04:27.879383Z" + "iopub.execute_input": "2024-01-17T23:06:34.564138Z", + "iopub.status.busy": "2024-01-17T23:06:34.563922Z", + "iopub.status.idle": "2024-01-17T23:06:34.673537Z", + "shell.execute_reply": "2024-01-17T23:06:34.672870Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:27.882841Z", - "iopub.status.busy": "2024-01-17T18:04:27.882447Z", - "iopub.status.idle": "2024-01-17T18:04:27.885966Z", - "shell.execute_reply": "2024-01-17T18:04:27.885407Z" + "iopub.execute_input": "2024-01-17T23:06:34.675986Z", + "iopub.status.busy": "2024-01-17T23:06:34.675761Z", + "iopub.status.idle": "2024-01-17T23:06:34.679368Z", + "shell.execute_reply": "2024-01-17T23:06:34.678729Z" }, "nbsphinx": "hidden" }, @@ -1377,65 +1377,37 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04545eb82c614214a57ff48711e5ef69": { + "030585901c0a49c3976e336a1ab51ee1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e38a6eaeba49436d880afec59461ee06", - "placeholder": "​", - "style": "IPY_MODEL_9a471f99ebec460f82f340da4bf084a3", - "value": "embedding_model.ckpt: 100%" - } - }, - "0fd11d936da54fa68096671994e1275f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_617fa189f462470a937beee9505799fa", - "placeholder": "​", - "style": "IPY_MODEL_9fca2e61f7d64cea930c8b07bdcbc59e", - "value": " 3.20k/3.20k [00:00<00:00, 549kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "159b496215244dc799dd25dae2e0470d": { + "0ff00007ea674a8496fed6616e438639": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "1acfc2e65c71473497f43eb9e974bc92": { + "1bdf3168328746ddb97b58d22771e706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1450,65 +1422,66 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_db86af8139ff41018b497ff1758537de", - "IPY_MODEL_fc52934f923d48f6815ef3ea863cb962", - "IPY_MODEL_ebe5bf1237e54a5cb31a7953735ed040" + "IPY_MODEL_8d69a36aa0ef4ac398e5473efe8facaf", + "IPY_MODEL_4013766ebdd64bcdaa57852522f87774", + "IPY_MODEL_7b3c7b951bc643fea2c2d55d50e02569" ], - "layout": "IPY_MODEL_7fda371c9fba45549d352696e38b0c16" - } - }, - "1cca100b2cea4a77bbbcc5a23f19e1d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da8efe510bcf414b9d2c76f5f791e9ea", - "placeholder": "​", - "style": "IPY_MODEL_220c65a6f5bb442e8b509643c78298cb", - "value": "label_encoder.txt: 100%" - } - }, - "220c65a6f5bb442e8b509643c78298cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "layout": "IPY_MODEL_46c6f6135bb9449482ba0294d1515087" } }, - "24e87b41e33643a0a449e4e5f4a04a21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "1eb624a3dad54e7fa6b146681c26c1fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "25691bde0c394a299f774959e32e539d": { + "2105d31075094aec8143dc36c2cc4c8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -1524,7 +1497,7 @@ "description_width": "" } }, - "25c36bd0682a44a1af90eecaec670b14": { + "21a9a1365c8149ebafde1882681607b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1576,28 +1549,7 @@ "width": null } }, - "2fb3c50dfd544cf297447c4dd5e4bdfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5836728e785d44ce8ebe512cb1ffe735", - "placeholder": "​", - "style": "IPY_MODEL_dae854f92b7548ddb4b4981bb4a8c9d2", - "value": " 16.9M/16.9M [00:00<00:00, 96.3MB/s]" - } - }, - "32761d387fb34f55a8662c19898e2e19": { + "2415134083d142f18e75d9c1fd90ad9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1649,68 +1601,102 @@ "width": null } }, - "41336a38204142909d6d6151660b30ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "26707147e6f24b498f499aec25d3879a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "42cde93ea0f44516bebd28767667c2fa": { + "289a6e5f2aa24222a97d08ebc952a72e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ccb07543f38c422eba6e58deccf2a389", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_55ca6bb4d3414d2091e2d6cc744d0227", - "value": 2041.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f2c87a26b3e843afa6644bed13f5508c", + "IPY_MODEL_7694a31ea9a04edcb6864f25b28b15cb", + "IPY_MODEL_959ba9c2758b476f942db7be7ea533c2" + ], + "layout": "IPY_MODEL_965eba21261d4a2e9ee7513ec333adc2" } }, - "4a8b0b00351a48b1bd3c4ffb02422045": { + "320bad48fde04048bd4f6c3c7723b882": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_649eb4698e3443adb0fd32629e36ece6", - "IPY_MODEL_c9aad8223fed4fd79a1fa84e675e9c34", - "IPY_MODEL_0fd11d936da54fa68096671994e1275f" - ], - "layout": "IPY_MODEL_c3b13273fa614276aa8cd31a0d3ba6a0" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da437028c14a404b9d0753eab94e3c55", + "placeholder": "​", + "style": "IPY_MODEL_df6099d96cc04692aa1804b28f0d3165", + "value": " 129k/129k [00:00<00:00, 12.9MB/s]" } }, - "4bdbef4700e34979a7835f1c9cb5f63b": { + "3b6ccb1c3d224e82864d450d361cb50f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1762,7 +1748,46 @@ "width": null } }, - "4d632ff2b07b4dffa2ead315843c6e6c": { + "3bfd515955e24904b4dc7bac5512c42f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4013766ebdd64bcdaa57852522f87774": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff2eea9324ab4fdebb914b6830cf4e4e", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b391f6736d6440f5977ea7e4075132b1", + "value": 16887676.0 + } + }, + "424d86c2319543f0b0d18ccae78cd508": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1777,7 +1802,7 @@ "description_width": "" } }, - "5105284d7b9346b09f3d678a6f15a3cb": { + "46c6f6135bb9449482ba0294d1515087": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1829,44 +1854,65 @@ "width": null } }, - "53e5f5516c1940eb84c59305f879b33d": { + "48805febf856433c84dda4034fb9c0c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_53a59a607d394f2e832ba2a5f8cd33f2", + "placeholder": "​", + "style": "IPY_MODEL_0ff00007ea674a8496fed6616e438639", + "value": " 3.20k/3.20k [00:00<00:00, 511kB/s]" + } + }, + "4a7fe1b9aff24fc7a7e179b7f11d5bbd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5105284d7b9346b09f3d678a6f15a3cb", - "placeholder": "​", - "style": "IPY_MODEL_db5c6c408f9147df9a5d44f8f886ab61", - "value": " 2.04k/2.04k [00:00<00:00, 352kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8d8b99dd01c64a7ca9041d32353eac13", + "IPY_MODEL_e364bdc739a344f9b5a54749543225af", + "IPY_MODEL_320bad48fde04048bd4f6c3c7723b882" + ], + "layout": "IPY_MODEL_d9416e2443dc46e89ea2b97a96b892cb" } }, - "55ca6bb4d3414d2091e2d6cc744d0227": { + "4aba10cb04694ab4bf360dfefe9871d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "5836728e785d44ce8ebe512cb1ffe735": { + "508a9cef5621429ca2ad08b2e5a5b906": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1918,7 +1964,7 @@ "width": null } }, - "617fa189f462470a937beee9505799fa": { + "53a59a607d394f2e832ba2a5f8cd33f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1970,7 +2016,44 @@ "width": null } }, - "61d06a92b987421cb46d8a89d1975bb7": { + "5fd842770f3c46198750ec0bc065bbec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_851a3e78f4cb49c28fa6d9d3f6ad533c", + "IPY_MODEL_b3b1a6b802c2438aa6b7345347be1daa", + "IPY_MODEL_48805febf856433c84dda4034fb9c0c6" + ], + "layout": "IPY_MODEL_cc06c8dc25a146d1949bbc6f284744e5" + } + }, + "609ef4dd1eb940adb8bd7ff656af9b5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "766477efa9484d7b8b8cc8a77a1b6f7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2022,112 +2105,52 @@ "width": null } }, - "649eb4698e3443adb0fd32629e36ece6": { + "7694a31ea9a04edcb6864f25b28b15cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4bdbef4700e34979a7835f1c9cb5f63b", - "placeholder": "​", - "style": "IPY_MODEL_41336a38204142909d6d6151660b30ef", - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "64de8f2a3f18422084ccd72434dca5cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1cca100b2cea4a77bbbcc5a23f19e1d7", - "IPY_MODEL_7137378c46a441c9b8f6dd4cd7cd9ee2", - "IPY_MODEL_7aaa5224bfe44036a333755a894e18b5" - ], - "layout": "IPY_MODEL_25c36bd0682a44a1af90eecaec670b14" - } - }, - "660387b90c454207a12955625f60a888": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "69f5f977755e4a4b82b5ca684955dd9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04545eb82c614214a57ff48711e5ef69", - "IPY_MODEL_886f26d855ae49049a473788aaf13fdd", - "IPY_MODEL_2fb3c50dfd544cf297447c4dd5e4bdfa" - ], - "layout": "IPY_MODEL_77fefa233aa04e3ba284da2418760799" + "layout": "IPY_MODEL_508a9cef5621429ca2ad08b2e5a5b906", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2105d31075094aec8143dc36c2cc4c8a", + "value": 15856877.0 } }, - "7137378c46a441c9b8f6dd4cd7cd9ee2": { + "7b3c7b951bc643fea2c2d55d50e02569": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_78e330e8413b4c638b5f5ad1892ffc7c", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_25691bde0c394a299f774959e32e539d", - "value": 128619.0 + "layout": "IPY_MODEL_3b6ccb1c3d224e82864d450d361cb50f", + "placeholder": "​", + "style": "IPY_MODEL_3bfd515955e24904b4dc7bac5512c42f", + "value": " 16.9M/16.9M [00:00<00:00, 74.2MB/s]" } }, - "77fefa233aa04e3ba284da2418760799": { + "7eb2a98375b74c91b45dc5b5accd9bca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2179,7 +2202,7 @@ "width": null } }, - "78e330e8413b4c638b5f5ad1892ffc7c": { + "83f7b9bff2ec40f19a358ae6e9071f3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2231,7 +2254,7 @@ "width": null } }, - "799d78d15e1549e58376f474b256b3f1": { + "851a3e78f4cb49c28fa6d9d3f6ad533c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2246,13 +2269,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8c2848fd80e94dfeba2260153670f5b5", + "layout": "IPY_MODEL_ee5f56e9b26d44c29b98957642b5cbe6", "placeholder": "​", - "style": "IPY_MODEL_d73d40dffae24b919506395235104b28", - "value": "hyperparams.yaml: 100%" + "style": "IPY_MODEL_4aba10cb04694ab4bf360dfefe9871d7", + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "8699a0a7cb124a369027b929c14aca25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7aaa5224bfe44036a333755a894e18b5": { + "8d69a36aa0ef4ac398e5473efe8facaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2267,89 +2305,55 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_61d06a92b987421cb46d8a89d1975bb7", + "layout": "IPY_MODEL_2415134083d142f18e75d9c1fd90ad9e", "placeholder": "​", - "style": "IPY_MODEL_f1827a2afaa3497796df337825e00c5d", - "value": " 129k/129k [00:00<00:00, 13.1MB/s]" + "style": "IPY_MODEL_424d86c2319543f0b0d18ccae78cd508", + "value": "embedding_model.ckpt: 100%" } }, - "7fda371c9fba45549d352696e38b0c16": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "8d8b99dd01c64a7ca9041d32353eac13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_766477efa9484d7b8b8cc8a77a1b6f7d", + "placeholder": "​", + "style": "IPY_MODEL_d3cc29ff5820423989ce16d9d70bcd31", + "value": "label_encoder.txt: 100%" } }, - "886f26d855ae49049a473788aaf13fdd": { + "959ba9c2758b476f942db7be7ea533c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bbb0a42cbeb44cd2807289cb84e06c66", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_660387b90c454207a12955625f60a888", - "value": 16887676.0 + "layout": "IPY_MODEL_21a9a1365c8149ebafde1882681607b7", + "placeholder": "​", + "style": "IPY_MODEL_030585901c0a49c3976e336a1ab51ee1", + "value": " 15.9M/15.9M [00:00<00:00, 89.8MB/s]" } }, - "8c2848fd80e94dfeba2260153670f5b5": { + "965eba21261d4a2e9ee7513ec333adc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2401,7 +2405,7 @@ "width": null } }, - "95589bfbae6545eea65cdda502cb8591": { + "aa7002ac34ad461c971cb567fbaed7c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -2417,59 +2421,83 @@ "description_width": "" } }, - "9a471f99ebec460f82f340da4bf084a3": { + "b391f6736d6440f5977ea7e4075132b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "9fca2e61f7d64cea930c8b07bdcbc59e": { + "b3b1a6b802c2438aa6b7345347be1daa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3db5175210c48839bd72a54bbd9e709", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa7002ac34ad461c971cb567fbaed7c7", + "value": 3201.0 } }, - "a2cd93bedff346d4b94c8c101e88352e": { + "b6341a7e935242c2adc1364ec71311bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83f7b9bff2ec40f19a358ae6e9071f3a", + "placeholder": "​", + "style": "IPY_MODEL_bf1dc44a81b64e408396f375ab6db707", + "value": " 2.04k/2.04k [00:00<00:00, 337kB/s]" + } + }, + "bf1dc44a81b64e408396f375ab6db707": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_799d78d15e1549e58376f474b256b3f1", - "IPY_MODEL_42cde93ea0f44516bebd28767667c2fa", - "IPY_MODEL_53e5f5516c1940eb84c59305f879b33d" - ], - "layout": "IPY_MODEL_32761d387fb34f55a8662c19898e2e19" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a70c7781a1174beb8b08bdb996fa2bc8": { + "c4ebdef1b4f14614814debc42af581c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2521,7 +2549,29 @@ "width": null } }, - "bbb0a42cbeb44cd2807289cb84e06c66": { + "c5b91c7d529d4e1a9a36a41238ba0244": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed7a2be85ae641c2b6cb2f1e8fb8054b", + "IPY_MODEL_cc503c61cdb6438ea915c9aa1032c63c", + "IPY_MODEL_b6341a7e935242c2adc1364ec71311bf" + ], + "layout": "IPY_MODEL_fa264daf6009497ca63787f2eb2c7503" + } + }, + "cc06c8dc25a146d1949bbc6f284744e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2573,7 +2623,62 @@ "width": null } }, - "c0de636f211e43f793ee2c8ccaccead2": { + "cc503c61cdb6438ea915c9aa1032c63c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_26707147e6f24b498f499aec25d3879a", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d21e1fb2327a464b8b743384ffa08cc0", + "value": 2041.0 + } + }, + "d21e1fb2327a464b8b743384ffa08cc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d3cc29ff5820423989ce16d9d70bcd31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d3db5175210c48839bd72a54bbd9e709": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2625,7 +2730,7 @@ "width": null } }, - "c30853559a364583b1f650a150b6654a": { + "d9416e2443dc46e89ea2b97a96b892cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2677,7 +2782,7 @@ "width": null } }, - "c3b13273fa614276aa8cd31a0d3ba6a0": { + "da437028c14a404b9d0753eab94e3c55": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2729,7 +2834,22 @@ "width": null } }, - "c9aad8223fed4fd79a1fa84e675e9c34": { + "df6099d96cc04692aa1804b28f0d3165": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e364bdc739a344f9b5a54749543225af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2745,82 +2865,36 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c0de636f211e43f793ee2c8ccaccead2", - "max": 3201.0, + "layout": "IPY_MODEL_c4ebdef1b4f14614814debc42af581c4", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_95589bfbae6545eea65cdda502cb8591", - "value": 3201.0 - } - }, - "ccb07543f38c422eba6e58deccf2a389": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "style": "IPY_MODEL_f8c0ae7aca4c47fdb99824d3a5c6c79b", + "value": 128619.0 } }, - "d73d40dffae24b919506395235104b28": { + "ed7a2be85ae641c2b6cb2f1e8fb8054b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1eb624a3dad54e7fa6b146681c26c1fd", + "placeholder": "​", + "style": "IPY_MODEL_8699a0a7cb124a369027b929c14aca25", + "value": "hyperparams.yaml: 100%" } }, - "da8efe510bcf414b9d2c76f5f791e9ea": { + "ee5f56e9b26d44c29b98957642b5cbe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2872,58 +2946,44 @@ "width": null } }, - "dae854f92b7548ddb4b4981bb4a8c9d2": { + "f2c87a26b3e843afa6644bed13f5508c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7eb2a98375b74c91b45dc5b5accd9bca", + "placeholder": "​", + "style": "IPY_MODEL_609ef4dd1eb940adb8bd7ff656af9b5e", + "value": "classifier.ckpt: 100%" } }, - "db5c6c408f9147df9a5d44f8f886ab61": { + "f8c0ae7aca4c47fdb99824d3a5c6c79b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "db86af8139ff41018b497ff1758537de": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a70c7781a1174beb8b08bdb996fa2bc8", - "placeholder": "​", - "style": "IPY_MODEL_4d632ff2b07b4dffa2ead315843c6e6c", - "value": "classifier.ckpt: 100%" - } - }, - "e38a6eaeba49436d880afec59461ee06": { + "fa264daf6009497ca63787f2eb2c7503": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2975,7 +3035,7 @@ "width": null } }, - "e52c6bc80973455ab0806594b5177ef7": { + "ff2eea9324ab4fdebb914b6830cf4e4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3026,66 +3086,6 @@ "visibility": null, "width": null } - }, - "ebe5bf1237e54a5cb31a7953735ed040": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c30853559a364583b1f650a150b6654a", - "placeholder": "​", - "style": "IPY_MODEL_24e87b41e33643a0a449e4e5f4a04a21", - "value": " 15.9M/15.9M [00:00<00:00, 302MB/s]" - } - }, - "f1827a2afaa3497796df337825e00c5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fc52934f923d48f6815ef3ea863cb962": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e52c6bc80973455ab0806594b5177ef7", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_159b496215244dc799dd25dae2e0470d", - "value": 15856877.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 3437f6583..2c01ab7db 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1453,7 +1453,7 @@

Functionality 3: Save and load Datalab objects
-
+
@@ -1718,7 +1718,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"8524043e6e114e199d262dc88bfc22da": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a135c98d58f4354bffda310f2a613d9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "051bf949fb4a4c34977914b2fdbd1a46": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8524043e6e114e199d262dc88bfc22da", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4a135c98d58f4354bffda310f2a613d9", "value": 132.0}}, "6ea64771986e42b6b69a518953aae518": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f0f68db532f4983830e8d3d0e1d9c55": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f247eef24dd44de39c6212b2720239c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6ea64771986e42b6b69a518953aae518", "placeholder": "\u200b", "style": "IPY_MODEL_5f0f68db532f4983830e8d3d0e1d9c55", "value": "Saving the dataset (1/1 shards): 100%"}}, "1bec11a906f14351943811da375f1b68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "328dc3e51eef4f61ada827866ade843a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "016da6d5adb14dfcab43c2faeffdcac2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1bec11a906f14351943811da375f1b68", "placeholder": "\u200b", "style": "IPY_MODEL_328dc3e51eef4f61ada827866ade843a", "value": " 132/132 [00:00<00:00, 11203.37 examples/s]"}}, "b3956bd3c1b34e468eb324a8aa73cd4e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce0df2e674ad49f289b9c6629eb9a93b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f247eef24dd44de39c6212b2720239c1", "IPY_MODEL_051bf949fb4a4c34977914b2fdbd1a46", "IPY_MODEL_016da6d5adb14dfcab43c2faeffdcac2"], "layout": "IPY_MODEL_b3956bd3c1b34e468eb324a8aa73cd4e"}}}, "version_major": 2, "version_minor": 0} +{"state": {"2c9ed523e681457c97733b484f5d2302": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dded8d49e1ea43ad9f1ab1944f0fa28e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ffd5efcaf7a945d984571d2a9f2057ad": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2c9ed523e681457c97733b484f5d2302", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dded8d49e1ea43ad9f1ab1944f0fa28e", "value": 132.0}}, "11eac3b2f4164e5694fdb5152fff54f1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d1d43035b6d471cbf16064de0792a70": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d48408d0b5804d8c8f562072e9542410": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_11eac3b2f4164e5694fdb5152fff54f1", "placeholder": "\u200b", "style": "IPY_MODEL_9d1d43035b6d471cbf16064de0792a70", "value": "Saving the dataset (1/1 shards): 100%"}}, "67e30ead652c4e178b1a2fa25ba4149c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de85a0cc75b345a8b0257d3379f3b927": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7c7a8b3a377f4891984c98cc48b480b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_67e30ead652c4e178b1a2fa25ba4149c", "placeholder": "\u200b", "style": "IPY_MODEL_de85a0cc75b345a8b0257d3379f3b927", "value": " 132/132 [00:00<00:00, 11349.20 examples/s]"}}, "bdeb99c1040f435d9ea59551e490a482": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9c446a6ae0e481a8f4425281acd2812": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d48408d0b5804d8c8f562072e9542410", "IPY_MODEL_ffd5efcaf7a945d984571d2a9f2057ad", "IPY_MODEL_7c7a8b3a377f4891984c98cc48b480b5"], "layout": "IPY_MODEL_bdeb99c1040f435d9ea59551e490a482"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 1d05a4ac7..90cafbf27 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:33.483819Z", - "iopub.status.busy": "2024-01-17T18:04:33.483262Z", - "iopub.status.idle": "2024-01-17T18:04:34.563147Z", - "shell.execute_reply": "2024-01-17T18:04:34.562532Z" + "iopub.execute_input": "2024-01-17T23:06:39.342500Z", + "iopub.status.busy": "2024-01-17T23:06:39.342321Z", + "iopub.status.idle": "2024-01-17T23:06:40.409562Z", + "shell.execute_reply": "2024-01-17T23:06:40.408997Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.566022Z", - "iopub.status.busy": "2024-01-17T18:04:34.565584Z", - "iopub.status.idle": "2024-01-17T18:04:34.568829Z", - "shell.execute_reply": "2024-01-17T18:04:34.568346Z" + "iopub.execute_input": "2024-01-17T23:06:40.412370Z", + "iopub.status.busy": "2024-01-17T23:06:40.412089Z", + "iopub.status.idle": "2024-01-17T23:06:40.415239Z", + "shell.execute_reply": "2024-01-17T23:06:40.414697Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.571312Z", - "iopub.status.busy": "2024-01-17T18:04:34.571026Z", - "iopub.status.idle": "2024-01-17T18:04:34.580263Z", - "shell.execute_reply": "2024-01-17T18:04:34.579715Z" + "iopub.execute_input": "2024-01-17T23:06:40.417686Z", + "iopub.status.busy": "2024-01-17T23:06:40.417328Z", + "iopub.status.idle": "2024-01-17T23:06:40.426661Z", + "shell.execute_reply": "2024-01-17T23:06:40.426085Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.582624Z", - "iopub.status.busy": "2024-01-17T18:04:34.582267Z", - "iopub.status.idle": "2024-01-17T18:04:34.587260Z", - "shell.execute_reply": "2024-01-17T18:04:34.586787Z" + "iopub.execute_input": "2024-01-17T23:06:40.429048Z", + "iopub.status.busy": "2024-01-17T23:06:40.428682Z", + "iopub.status.idle": "2024-01-17T23:06:40.433294Z", + "shell.execute_reply": "2024-01-17T23:06:40.432812Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.589869Z", - "iopub.status.busy": "2024-01-17T18:04:34.589376Z", - "iopub.status.idle": "2024-01-17T18:04:34.868264Z", - "shell.execute_reply": "2024-01-17T18:04:34.867632Z" + "iopub.execute_input": "2024-01-17T23:06:40.435792Z", + "iopub.status.busy": "2024-01-17T23:06:40.435424Z", + "iopub.status.idle": "2024-01-17T23:06:40.706242Z", + "shell.execute_reply": "2024-01-17T23:06:40.705511Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:34.871315Z", - "iopub.status.busy": "2024-01-17T18:04:34.870886Z", - "iopub.status.idle": "2024-01-17T18:04:35.179091Z", - "shell.execute_reply": "2024-01-17T18:04:35.178424Z" + "iopub.execute_input": "2024-01-17T23:06:40.709010Z", + "iopub.status.busy": "2024-01-17T23:06:40.708793Z", + "iopub.status.idle": "2024-01-17T23:06:41.078542Z", + "shell.execute_reply": "2024-01-17T23:06:41.077853Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:35.181786Z", - "iopub.status.busy": "2024-01-17T18:04:35.181405Z", - "iopub.status.idle": "2024-01-17T18:04:35.205575Z", - "shell.execute_reply": "2024-01-17T18:04:35.205040Z" + "iopub.execute_input": "2024-01-17T23:06:41.081271Z", + "iopub.status.busy": "2024-01-17T23:06:41.081043Z", + "iopub.status.idle": "2024-01-17T23:06:41.105700Z", + "shell.execute_reply": "2024-01-17T23:06:41.105204Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:35.208176Z", - "iopub.status.busy": "2024-01-17T18:04:35.207800Z", - "iopub.status.idle": "2024-01-17T18:04:35.219387Z", - "shell.execute_reply": "2024-01-17T18:04:35.218891Z" + "iopub.execute_input": "2024-01-17T23:06:41.108273Z", + "iopub.status.busy": "2024-01-17T23:06:41.107900Z", + "iopub.status.idle": "2024-01-17T23:06:41.119557Z", + "shell.execute_reply": "2024-01-17T23:06:41.119070Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:35.221936Z", - "iopub.status.busy": "2024-01-17T18:04:35.221576Z", - "iopub.status.idle": "2024-01-17T18:04:36.514513Z", - "shell.execute_reply": "2024-01-17T18:04:36.513826Z" + "iopub.execute_input": "2024-01-17T23:06:41.121850Z", + "iopub.status.busy": "2024-01-17T23:06:41.121645Z", + "iopub.status.idle": "2024-01-17T23:06:42.395090Z", + "shell.execute_reply": "2024-01-17T23:06:42.394350Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.517319Z", - "iopub.status.busy": "2024-01-17T18:04:36.516739Z", - "iopub.status.idle": "2024-01-17T18:04:36.540062Z", - "shell.execute_reply": "2024-01-17T18:04:36.539415Z" + "iopub.execute_input": "2024-01-17T23:06:42.397825Z", + "iopub.status.busy": "2024-01-17T23:06:42.397474Z", + "iopub.status.idle": "2024-01-17T23:06:42.421815Z", + "shell.execute_reply": "2024-01-17T23:06:42.421176Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.542755Z", - "iopub.status.busy": "2024-01-17T18:04:36.542357Z", - "iopub.status.idle": "2024-01-17T18:04:36.565338Z", - "shell.execute_reply": "2024-01-17T18:04:36.564636Z" + "iopub.execute_input": "2024-01-17T23:06:42.424433Z", + "iopub.status.busy": "2024-01-17T23:06:42.424030Z", + "iopub.status.idle": "2024-01-17T23:06:42.444464Z", + "shell.execute_reply": "2024-01-17T23:06:42.443784Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.568303Z", - "iopub.status.busy": "2024-01-17T18:04:36.567786Z", - "iopub.status.idle": "2024-01-17T18:04:36.582311Z", - "shell.execute_reply": "2024-01-17T18:04:36.581766Z" + "iopub.execute_input": "2024-01-17T23:06:42.446887Z", + "iopub.status.busy": "2024-01-17T23:06:42.446518Z", + "iopub.status.idle": "2024-01-17T23:06:42.461229Z", + "shell.execute_reply": "2024-01-17T23:06:42.460605Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.584583Z", - "iopub.status.busy": "2024-01-17T18:04:36.584386Z", - "iopub.status.idle": "2024-01-17T18:04:36.606116Z", - "shell.execute_reply": "2024-01-17T18:04:36.605481Z" + "iopub.execute_input": "2024-01-17T23:06:42.463847Z", + "iopub.status.busy": "2024-01-17T23:06:42.463265Z", + "iopub.status.idle": "2024-01-17T23:06:42.485045Z", + "shell.execute_reply": "2024-01-17T23:06:42.484382Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ce0df2e674ad49f289b9c6629eb9a93b", + "model_id": "f9c446a6ae0e481a8f4425281acd2812", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.608360Z", - "iopub.status.busy": "2024-01-17T18:04:36.608121Z", - "iopub.status.idle": "2024-01-17T18:04:36.623341Z", - "shell.execute_reply": "2024-01-17T18:04:36.622732Z" + "iopub.execute_input": "2024-01-17T23:06:42.487982Z", + "iopub.status.busy": "2024-01-17T23:06:42.487461Z", + "iopub.status.idle": "2024-01-17T23:06:42.502778Z", + "shell.execute_reply": "2024-01-17T23:06:42.502139Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.625892Z", - "iopub.status.busy": "2024-01-17T18:04:36.625457Z", - "iopub.status.idle": "2024-01-17T18:04:36.631828Z", - "shell.execute_reply": "2024-01-17T18:04:36.631217Z" + "iopub.execute_input": "2024-01-17T23:06:42.505343Z", + "iopub.status.busy": "2024-01-17T23:06:42.504854Z", + "iopub.status.idle": "2024-01-17T23:06:42.511266Z", + "shell.execute_reply": "2024-01-17T23:06:42.510747Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:36.634265Z", - "iopub.status.busy": "2024-01-17T18:04:36.633885Z", - "iopub.status.idle": "2024-01-17T18:04:36.652691Z", - "shell.execute_reply": "2024-01-17T18:04:36.652133Z" + "iopub.execute_input": "2024-01-17T23:06:42.513763Z", + "iopub.status.busy": "2024-01-17T23:06:42.513319Z", + "iopub.status.idle": "2024-01-17T23:06:42.532164Z", + "shell.execute_reply": "2024-01-17T23:06:42.531605Z" } }, "outputs": [ @@ -1430,52 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016da6d5adb14dfcab43c2faeffdcac2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1bec11a906f14351943811da375f1b68", - "placeholder": "​", - "style": "IPY_MODEL_328dc3e51eef4f61ada827866ade843a", - "value": " 132/132 [00:00<00:00, 11203.37 examples/s]" - } - }, - "051bf949fb4a4c34977914b2fdbd1a46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8524043e6e114e199d262dc88bfc22da", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4a135c98d58f4354bffda310f2a613d9", - "value": 132.0 - } - }, - "1bec11a906f14351943811da375f1b68": { + "11eac3b2f4164e5694fdb5152fff54f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1527,53 +1482,7 @@ "width": null } }, - "328dc3e51eef4f61ada827866ade843a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4a135c98d58f4354bffda310f2a613d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5f0f68db532f4983830e8d3d0e1d9c55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6ea64771986e42b6b69a518953aae518": { + "2c9ed523e681457c97733b484f5d2302": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1625,7 +1534,7 @@ "width": null } }, - "8524043e6e114e199d262dc88bfc22da": { + "67e30ead652c4e178b1a2fa25ba4149c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1677,7 +1586,43 @@ "width": null } }, - "b3956bd3c1b34e468eb324a8aa73cd4e": { + "7c7a8b3a377f4891984c98cc48b480b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_67e30ead652c4e178b1a2fa25ba4149c", + "placeholder": "​", + "style": "IPY_MODEL_de85a0cc75b345a8b0257d3379f3b927", + "value": " 132/132 [00:00<00:00, 11349.20 examples/s]" + } + }, + "9d1d43035b6d471cbf16064de0792a70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bdeb99c1040f435d9ea59551e490a482": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1729,7 +1674,59 @@ "width": null } }, - "ce0df2e674ad49f289b9c6629eb9a93b": { + "d48408d0b5804d8c8f562072e9542410": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_11eac3b2f4164e5694fdb5152fff54f1", + "placeholder": "​", + "style": "IPY_MODEL_9d1d43035b6d471cbf16064de0792a70", + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "dded8d49e1ea43ad9f1ab1944f0fa28e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "de85a0cc75b345a8b0257d3379f3b927": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f9c446a6ae0e481a8f4425281acd2812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1744,32 +1741,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f247eef24dd44de39c6212b2720239c1", - "IPY_MODEL_051bf949fb4a4c34977914b2fdbd1a46", - "IPY_MODEL_016da6d5adb14dfcab43c2faeffdcac2" + "IPY_MODEL_d48408d0b5804d8c8f562072e9542410", + "IPY_MODEL_ffd5efcaf7a945d984571d2a9f2057ad", + "IPY_MODEL_7c7a8b3a377f4891984c98cc48b480b5" ], - "layout": "IPY_MODEL_b3956bd3c1b34e468eb324a8aa73cd4e" + "layout": "IPY_MODEL_bdeb99c1040f435d9ea59551e490a482" } }, - "f247eef24dd44de39c6212b2720239c1": { + "ffd5efcaf7a945d984571d2a9f2057ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6ea64771986e42b6b69a518953aae518", - "placeholder": "​", - "style": "IPY_MODEL_5f0f68db532f4983830e8d3d0e1d9c55", - "value": "Saving the dataset (1/1 shards): 100%" + "layout": "IPY_MODEL_2c9ed523e681457c97733b484f5d2302", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dded8d49e1ea43ad9f1ab1944f0fa28e", + "value": 132.0 } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 1697ceead..d3df4ed89 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:41.467132Z", - "iopub.status.busy": "2024-01-17T18:04:41.466518Z", - "iopub.status.idle": "2024-01-17T18:04:42.555591Z", - "shell.execute_reply": "2024-01-17T18:04:42.554980Z" + "iopub.execute_input": "2024-01-17T23:06:47.569861Z", + "iopub.status.busy": "2024-01-17T23:06:47.569660Z", + "iopub.status.idle": "2024-01-17T23:06:48.641275Z", + "shell.execute_reply": "2024-01-17T23:06:48.640563Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.558508Z", - "iopub.status.busy": "2024-01-17T18:04:42.558086Z", - "iopub.status.idle": "2024-01-17T18:04:42.561388Z", - "shell.execute_reply": "2024-01-17T18:04:42.560867Z" + "iopub.execute_input": "2024-01-17T23:06:48.644454Z", + "iopub.status.busy": "2024-01-17T23:06:48.643822Z", + "iopub.status.idle": "2024-01-17T23:06:48.647145Z", + "shell.execute_reply": "2024-01-17T23:06:48.646571Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.563994Z", - "iopub.status.busy": "2024-01-17T18:04:42.563549Z", - "iopub.status.idle": "2024-01-17T18:04:42.573492Z", - "shell.execute_reply": "2024-01-17T18:04:42.572963Z" + "iopub.execute_input": "2024-01-17T23:06:48.649505Z", + "iopub.status.busy": "2024-01-17T23:06:48.649176Z", + "iopub.status.idle": "2024-01-17T23:06:48.658971Z", + "shell.execute_reply": "2024-01-17T23:06:48.658347Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.575559Z", - "iopub.status.busy": "2024-01-17T18:04:42.575357Z", - "iopub.status.idle": "2024-01-17T18:04:42.579953Z", - "shell.execute_reply": "2024-01-17T18:04:42.579468Z" + "iopub.execute_input": "2024-01-17T23:06:48.661358Z", + "iopub.status.busy": "2024-01-17T23:06:48.661025Z", + "iopub.status.idle": "2024-01-17T23:06:48.666186Z", + "shell.execute_reply": "2024-01-17T23:06:48.665652Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.582528Z", - "iopub.status.busy": "2024-01-17T18:04:42.582149Z", - "iopub.status.idle": "2024-01-17T18:04:42.863268Z", - "shell.execute_reply": "2024-01-17T18:04:42.862639Z" + "iopub.execute_input": "2024-01-17T23:06:48.668478Z", + "iopub.status.busy": "2024-01-17T23:06:48.668137Z", + "iopub.status.idle": "2024-01-17T23:06:48.950866Z", + "shell.execute_reply": "2024-01-17T23:06:48.950180Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:42.866012Z", - "iopub.status.busy": "2024-01-17T18:04:42.865802Z", - "iopub.status.idle": "2024-01-17T18:04:43.236893Z", - "shell.execute_reply": "2024-01-17T18:04:43.236235Z" + "iopub.execute_input": "2024-01-17T23:06:48.953576Z", + "iopub.status.busy": "2024-01-17T23:06:48.953323Z", + "iopub.status.idle": "2024-01-17T23:06:49.325530Z", + "shell.execute_reply": "2024-01-17T23:06:49.324859Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:43.239627Z", - "iopub.status.busy": "2024-01-17T18:04:43.239261Z", - "iopub.status.idle": "2024-01-17T18:04:43.242241Z", - "shell.execute_reply": "2024-01-17T18:04:43.241645Z" + "iopub.execute_input": "2024-01-17T23:06:49.328443Z", + "iopub.status.busy": "2024-01-17T23:06:49.327940Z", + "iopub.status.idle": "2024-01-17T23:06:49.331128Z", + "shell.execute_reply": "2024-01-17T23:06:49.330575Z" } }, "outputs": [], @@ -601,10 +601,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:43.244798Z", - "iopub.status.busy": "2024-01-17T18:04:43.244450Z", - "iopub.status.idle": "2024-01-17T18:04:43.282859Z", - "shell.execute_reply": "2024-01-17T18:04:43.282243Z" + "iopub.execute_input": "2024-01-17T23:06:49.333565Z", + "iopub.status.busy": "2024-01-17T23:06:49.333216Z", + "iopub.status.idle": "2024-01-17T23:06:49.371453Z", + "shell.execute_reply": "2024-01-17T23:06:49.370801Z" } }, "outputs": [ @@ -646,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:43.285162Z", - "iopub.status.busy": "2024-01-17T18:04:43.284947Z", - "iopub.status.idle": "2024-01-17T18:04:44.608959Z", - "shell.execute_reply": "2024-01-17T18:04:44.608186Z" + "iopub.execute_input": "2024-01-17T23:06:49.373991Z", + "iopub.status.busy": "2024-01-17T23:06:49.373529Z", + "iopub.status.idle": "2024-01-17T23:06:50.680046Z", + "shell.execute_reply": "2024-01-17T23:06:50.679378Z" } }, "outputs": [ @@ -701,10 +701,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.611888Z", - "iopub.status.busy": "2024-01-17T18:04:44.611313Z", - "iopub.status.idle": "2024-01-17T18:04:44.636218Z", - "shell.execute_reply": "2024-01-17T18:04:44.635671Z" + "iopub.execute_input": "2024-01-17T23:06:50.682695Z", + "iopub.status.busy": "2024-01-17T23:06:50.682347Z", + "iopub.status.idle": "2024-01-17T23:06:50.707371Z", + "shell.execute_reply": "2024-01-17T23:06:50.706854Z" } }, "outputs": [ @@ -878,10 +878,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.638722Z", - "iopub.status.busy": "2024-01-17T18:04:44.638518Z", - "iopub.status.idle": "2024-01-17T18:04:44.646754Z", - "shell.execute_reply": "2024-01-17T18:04:44.646231Z" + "iopub.execute_input": "2024-01-17T23:06:50.709806Z", + "iopub.status.busy": "2024-01-17T23:06:50.709606Z", + "iopub.status.idle": "2024-01-17T23:06:50.716253Z", + "shell.execute_reply": "2024-01-17T23:06:50.715721Z" } }, "outputs": [ @@ -985,10 +985,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.649051Z", - "iopub.status.busy": "2024-01-17T18:04:44.648690Z", - "iopub.status.idle": "2024-01-17T18:04:44.654993Z", - "shell.execute_reply": "2024-01-17T18:04:44.654393Z" + "iopub.execute_input": "2024-01-17T23:06:50.718504Z", + "iopub.status.busy": "2024-01-17T23:06:50.718307Z", + "iopub.status.idle": "2024-01-17T23:06:50.724463Z", + "shell.execute_reply": "2024-01-17T23:06:50.723963Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.657457Z", - "iopub.status.busy": "2024-01-17T18:04:44.657064Z", - "iopub.status.idle": "2024-01-17T18:04:44.667959Z", - "shell.execute_reply": "2024-01-17T18:04:44.667358Z" + "iopub.execute_input": "2024-01-17T23:06:50.726704Z", + "iopub.status.busy": "2024-01-17T23:06:50.726464Z", + "iopub.status.idle": "2024-01-17T23:06:50.737224Z", + "shell.execute_reply": "2024-01-17T23:06:50.736715Z" } }, "outputs": [ @@ -1231,10 +1231,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.670277Z", - "iopub.status.busy": "2024-01-17T18:04:44.670077Z", - "iopub.status.idle": "2024-01-17T18:04:44.679556Z", - "shell.execute_reply": "2024-01-17T18:04:44.679053Z" + "iopub.execute_input": "2024-01-17T23:06:50.739595Z", + "iopub.status.busy": "2024-01-17T23:06:50.739250Z", + "iopub.status.idle": "2024-01-17T23:06:50.748736Z", + "shell.execute_reply": "2024-01-17T23:06:50.748121Z" } }, "outputs": [ @@ -1350,10 +1350,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.681741Z", - "iopub.status.busy": "2024-01-17T18:04:44.681546Z", - "iopub.status.idle": "2024-01-17T18:04:44.689258Z", - "shell.execute_reply": "2024-01-17T18:04:44.688717Z" + "iopub.execute_input": "2024-01-17T23:06:50.751142Z", + "iopub.status.busy": "2024-01-17T23:06:50.750687Z", + "iopub.status.idle": "2024-01-17T23:06:50.758345Z", + "shell.execute_reply": "2024-01-17T23:06:50.757710Z" }, "scrolled": true }, @@ -1478,10 +1478,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:44.691411Z", - "iopub.status.busy": "2024-01-17T18:04:44.691219Z", - "iopub.status.idle": "2024-01-17T18:04:44.701261Z", - "shell.execute_reply": "2024-01-17T18:04:44.700743Z" + "iopub.execute_input": "2024-01-17T23:06:50.760695Z", + "iopub.status.busy": "2024-01-17T23:06:50.760357Z", + "iopub.status.idle": "2024-01-17T23:06:50.770230Z", + "shell.execute_reply": "2024-01-17T23:06:50.769519Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 4d347a0cb..89e9e8e2e 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:49.517933Z", - "iopub.status.busy": "2024-01-17T18:04:49.517732Z", - "iopub.status.idle": "2024-01-17T18:04:50.545443Z", - "shell.execute_reply": "2024-01-17T18:04:50.544850Z" + "iopub.execute_input": "2024-01-17T23:06:55.582283Z", + "iopub.status.busy": "2024-01-17T23:06:55.581731Z", + "iopub.status.idle": "2024-01-17T23:06:56.607603Z", + "shell.execute_reply": "2024-01-17T23:06:56.606957Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.548446Z", - "iopub.status.busy": "2024-01-17T18:04:50.547847Z", - "iopub.status.idle": "2024-01-17T18:04:50.564313Z", - "shell.execute_reply": "2024-01-17T18:04:50.563695Z" + "iopub.execute_input": "2024-01-17T23:06:56.610616Z", + "iopub.status.busy": "2024-01-17T23:06:56.610107Z", + "iopub.status.idle": "2024-01-17T23:06:56.627639Z", + "shell.execute_reply": "2024-01-17T23:06:56.627094Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.566981Z", - "iopub.status.busy": "2024-01-17T18:04:50.566555Z", - "iopub.status.idle": "2024-01-17T18:04:50.730069Z", - "shell.execute_reply": "2024-01-17T18:04:50.729433Z" + "iopub.execute_input": "2024-01-17T23:06:56.630524Z", + "iopub.status.busy": "2024-01-17T23:06:56.630127Z", + "iopub.status.idle": "2024-01-17T23:06:56.764165Z", + "shell.execute_reply": "2024-01-17T23:06:56.763459Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.732586Z", - "iopub.status.busy": "2024-01-17T18:04:50.732381Z", - "iopub.status.idle": "2024-01-17T18:04:50.736190Z", - "shell.execute_reply": "2024-01-17T18:04:50.735672Z" + "iopub.execute_input": "2024-01-17T23:06:56.766653Z", + "iopub.status.busy": "2024-01-17T23:06:56.766289Z", + "iopub.status.idle": "2024-01-17T23:06:56.770134Z", + "shell.execute_reply": "2024-01-17T23:06:56.769507Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.738648Z", - "iopub.status.busy": "2024-01-17T18:04:50.738199Z", - "iopub.status.idle": "2024-01-17T18:04:50.746501Z", - "shell.execute_reply": "2024-01-17T18:04:50.746013Z" + "iopub.execute_input": "2024-01-17T23:06:56.772612Z", + "iopub.status.busy": "2024-01-17T23:06:56.772309Z", + "iopub.status.idle": "2024-01-17T23:06:56.780263Z", + "shell.execute_reply": "2024-01-17T23:06:56.779767Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.749021Z", - "iopub.status.busy": "2024-01-17T18:04:50.748698Z", - "iopub.status.idle": "2024-01-17T18:04:50.751419Z", - "shell.execute_reply": "2024-01-17T18:04:50.750879Z" + "iopub.execute_input": "2024-01-17T23:06:56.782699Z", + "iopub.status.busy": "2024-01-17T23:06:56.782326Z", + "iopub.status.idle": "2024-01-17T23:06:56.785122Z", + "shell.execute_reply": "2024-01-17T23:06:56.784591Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:50.753826Z", - "iopub.status.busy": "2024-01-17T18:04:50.753466Z", - "iopub.status.idle": "2024-01-17T18:04:54.360252Z", - "shell.execute_reply": "2024-01-17T18:04:54.359622Z" + "iopub.execute_input": "2024-01-17T23:06:56.787751Z", + "iopub.status.busy": "2024-01-17T23:06:56.787454Z", + "iopub.status.idle": "2024-01-17T23:07:00.383276Z", + "shell.execute_reply": "2024-01-17T23:07:00.382535Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:54.363603Z", - "iopub.status.busy": "2024-01-17T18:04:54.363144Z", - "iopub.status.idle": "2024-01-17T18:04:54.373021Z", - "shell.execute_reply": "2024-01-17T18:04:54.372497Z" + "iopub.execute_input": "2024-01-17T23:07:00.386618Z", + "iopub.status.busy": "2024-01-17T23:07:00.386346Z", + "iopub.status.idle": "2024-01-17T23:07:00.396061Z", + "shell.execute_reply": "2024-01-17T23:07:00.395412Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:54.375544Z", - "iopub.status.busy": "2024-01-17T18:04:54.375164Z", - "iopub.status.idle": "2024-01-17T18:04:55.734156Z", - "shell.execute_reply": "2024-01-17T18:04:55.733429Z" + "iopub.execute_input": "2024-01-17T23:07:00.398720Z", + "iopub.status.busy": "2024-01-17T23:07:00.398246Z", + "iopub.status.idle": "2024-01-17T23:07:01.717594Z", + "shell.execute_reply": "2024-01-17T23:07:01.716841Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.738536Z", - "iopub.status.busy": "2024-01-17T18:04:55.737191Z", - "iopub.status.idle": "2024-01-17T18:04:55.765750Z", - "shell.execute_reply": "2024-01-17T18:04:55.765138Z" + "iopub.execute_input": "2024-01-17T23:07:01.722190Z", + "iopub.status.busy": "2024-01-17T23:07:01.720796Z", + "iopub.status.idle": "2024-01-17T23:07:01.749134Z", + "shell.execute_reply": "2024-01-17T23:07:01.748523Z" }, "scrolled": true }, @@ -624,10 +624,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.770227Z", - "iopub.status.busy": "2024-01-17T18:04:55.769054Z", - "iopub.status.idle": "2024-01-17T18:04:55.781862Z", - "shell.execute_reply": "2024-01-17T18:04:55.781261Z" + "iopub.execute_input": "2024-01-17T23:07:01.753395Z", + "iopub.status.busy": "2024-01-17T23:07:01.752274Z", + "iopub.status.idle": "2024-01-17T23:07:01.764948Z", + "shell.execute_reply": "2024-01-17T23:07:01.764266Z" } }, "outputs": [ @@ -731,10 +731,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.786261Z", - "iopub.status.busy": "2024-01-17T18:04:55.785118Z", - "iopub.status.idle": "2024-01-17T18:04:55.799914Z", - "shell.execute_reply": "2024-01-17T18:04:55.799303Z" + "iopub.execute_input": "2024-01-17T23:07:01.769149Z", + "iopub.status.busy": "2024-01-17T23:07:01.768032Z", + "iopub.status.idle": "2024-01-17T23:07:01.782499Z", + "shell.execute_reply": "2024-01-17T23:07:01.781898Z" } }, "outputs": [ @@ -863,10 +863,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.804376Z", - "iopub.status.busy": "2024-01-17T18:04:55.803247Z", - "iopub.status.idle": "2024-01-17T18:04:55.816361Z", - "shell.execute_reply": "2024-01-17T18:04:55.815747Z" + "iopub.execute_input": "2024-01-17T23:07:01.786729Z", + "iopub.status.busy": "2024-01-17T23:07:01.785586Z", + "iopub.status.idle": "2024-01-17T23:07:01.798260Z", + "shell.execute_reply": "2024-01-17T23:07:01.797656Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.820790Z", - "iopub.status.busy": "2024-01-17T18:04:55.819659Z", - "iopub.status.idle": "2024-01-17T18:04:55.832665Z", - "shell.execute_reply": "2024-01-17T18:04:55.832191Z" + "iopub.execute_input": "2024-01-17T23:07:01.802498Z", + "iopub.status.busy": "2024-01-17T23:07:01.801367Z", + "iopub.status.idle": "2024-01-17T23:07:01.814051Z", + "shell.execute_reply": "2024-01-17T23:07:01.813478Z" } }, "outputs": [ @@ -1094,10 +1094,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.835067Z", - "iopub.status.busy": "2024-01-17T18:04:55.834854Z", - "iopub.status.idle": "2024-01-17T18:04:55.842208Z", - "shell.execute_reply": "2024-01-17T18:04:55.841666Z" + "iopub.execute_input": "2024-01-17T23:07:01.816878Z", + "iopub.status.busy": "2024-01-17T23:07:01.816671Z", + "iopub.status.idle": "2024-01-17T23:07:01.823646Z", + "shell.execute_reply": "2024-01-17T23:07:01.823005Z" } }, "outputs": [ @@ -1181,10 +1181,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.844882Z", - "iopub.status.busy": "2024-01-17T18:04:55.844409Z", - "iopub.status.idle": "2024-01-17T18:04:55.851860Z", - "shell.execute_reply": "2024-01-17T18:04:55.851312Z" + "iopub.execute_input": "2024-01-17T23:07:01.826161Z", + "iopub.status.busy": "2024-01-17T23:07:01.825755Z", + "iopub.status.idle": "2024-01-17T23:07:01.832679Z", + "shell.execute_reply": "2024-01-17T23:07:01.832073Z" } }, "outputs": [ @@ -1277,10 +1277,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:04:55.854459Z", - "iopub.status.busy": "2024-01-17T18:04:55.854085Z", - "iopub.status.idle": "2024-01-17T18:04:55.861606Z", - "shell.execute_reply": "2024-01-17T18:04:55.860960Z" + "iopub.execute_input": "2024-01-17T23:07:01.835198Z", + "iopub.status.busy": "2024-01-17T23:07:01.834825Z", + "iopub.status.idle": "2024-01-17T23:07:01.842060Z", + "shell.execute_reply": "2024-01-17T23:07:01.841527Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 0759512f0..b732725e3 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -952,7 +952,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin'}
+Classes: {'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'card_about_to_expire', 'getting_spare_card', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'change_pin', 'visa_or_mastercard'}
 

Let’s view the i-th example in the dataset:

@@ -999,43 +999,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1798,7 +1798,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 4e71fc4dd..9f92665d5 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:00.739310Z", - "iopub.status.busy": "2024-01-17T18:05:00.739115Z", - "iopub.status.idle": "2024-01-17T18:05:03.063769Z", - "shell.execute_reply": "2024-01-17T18:05:03.063206Z" + "iopub.execute_input": "2024-01-17T23:07:06.736514Z", + "iopub.status.busy": "2024-01-17T23:07:06.736135Z", + "iopub.status.idle": "2024-01-17T23:07:09.007449Z", + "shell.execute_reply": "2024-01-17T23:07:09.006832Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cf63fee22bbf401492c9f2f6f74d206a", + "model_id": "735576d8959e46f3826a38708cf752de", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.066797Z", - "iopub.status.busy": "2024-01-17T18:05:03.066295Z", - "iopub.status.idle": "2024-01-17T18:05:03.069771Z", - "shell.execute_reply": "2024-01-17T18:05:03.069245Z" + "iopub.execute_input": "2024-01-17T23:07:09.010579Z", + "iopub.status.busy": "2024-01-17T23:07:09.009974Z", + "iopub.status.idle": "2024-01-17T23:07:09.013430Z", + "shell.execute_reply": "2024-01-17T23:07:09.012886Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.072156Z", - "iopub.status.busy": "2024-01-17T18:05:03.071788Z", - "iopub.status.idle": "2024-01-17T18:05:03.075200Z", - "shell.execute_reply": "2024-01-17T18:05:03.074554Z" + "iopub.execute_input": "2024-01-17T23:07:09.015859Z", + "iopub.status.busy": "2024-01-17T23:07:09.015504Z", + "iopub.status.idle": "2024-01-17T23:07:09.018792Z", + "shell.execute_reply": "2024-01-17T23:07:09.018271Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.077484Z", - "iopub.status.busy": "2024-01-17T18:05:03.077149Z", - "iopub.status.idle": "2024-01-17T18:05:03.143138Z", - "shell.execute_reply": "2024-01-17T18:05:03.142505Z" + "iopub.execute_input": "2024-01-17T23:07:09.021102Z", + "iopub.status.busy": "2024-01-17T23:07:09.020714Z", + "iopub.status.idle": "2024-01-17T23:07:09.058694Z", + "shell.execute_reply": "2024-01-17T23:07:09.058068Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.145703Z", - "iopub.status.busy": "2024-01-17T18:05:03.145221Z", - "iopub.status.idle": "2024-01-17T18:05:03.149435Z", - "shell.execute_reply": "2024-01-17T18:05:03.148814Z" + "iopub.execute_input": "2024-01-17T23:07:09.061088Z", + "iopub.status.busy": "2024-01-17T23:07:09.060763Z", + "iopub.status.idle": "2024-01-17T23:07:09.064868Z", + "shell.execute_reply": "2024-01-17T23:07:09.064298Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'beneficiary_not_allowed', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'change_pin'}\n" + "Classes: {'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'card_about_to_expire', 'getting_spare_card', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'change_pin', 'visa_or_mastercard'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.151986Z", - "iopub.status.busy": "2024-01-17T18:05:03.151547Z", - "iopub.status.idle": "2024-01-17T18:05:03.155066Z", - "shell.execute_reply": "2024-01-17T18:05:03.154495Z" + "iopub.execute_input": "2024-01-17T23:07:09.067157Z", + "iopub.status.busy": "2024-01-17T23:07:09.066816Z", + "iopub.status.idle": "2024-01-17T23:07:09.070335Z", + "shell.execute_reply": "2024-01-17T23:07:09.069700Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:03.157519Z", - "iopub.status.busy": "2024-01-17T18:05:03.157070Z", - "iopub.status.idle": "2024-01-17T18:05:12.348322Z", - "shell.execute_reply": "2024-01-17T18:05:12.347594Z" + "iopub.execute_input": "2024-01-17T23:07:09.072907Z", + "iopub.status.busy": "2024-01-17T23:07:09.072479Z", + "iopub.status.idle": "2024-01-17T23:07:19.691854Z", + "shell.execute_reply": "2024-01-17T23:07:19.691230Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "45ac3af2e1ed4f4c8dfdabe525afe3d2", + "model_id": "eae3f2bc15824aa1945e4a9709a7cb7c", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e185e5cf5c0548fbbc30b1069d606797", + "model_id": "aebe7c43a94b411b875f55c85e5bbf99", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0b94b659172c4c808567a150cf38153c", + "model_id": "ba2d5d53d9a94b1896142b5a30bbd514", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cac01943eb874158907dd23885f1ee1a", + "model_id": "0065750b88fd406396533e490ff9a0ca", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3d414f4be0554dc48490d27044d55d7b", + "model_id": "3b25cf0897af4c389e5bb84dce0e453a", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "696fed9227a24944a318a7e13ec558c1", + "model_id": "116e4a0b97db4d0c884059f25c064c6a", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "48cf8f69b83648bc957e73f69c88e66a", + "model_id": "253f1e63067b4f78a688136462184c85", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:12.351622Z", - "iopub.status.busy": "2024-01-17T18:05:12.351228Z", - "iopub.status.idle": "2024-01-17T18:05:13.520684Z", - "shell.execute_reply": "2024-01-17T18:05:13.519985Z" + "iopub.execute_input": "2024-01-17T23:07:19.695009Z", + "iopub.status.busy": "2024-01-17T23:07:19.694579Z", + "iopub.status.idle": "2024-01-17T23:07:20.868638Z", + "shell.execute_reply": "2024-01-17T23:07:20.867960Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:13.524656Z", - "iopub.status.busy": "2024-01-17T18:05:13.524249Z", - "iopub.status.idle": "2024-01-17T18:05:13.527395Z", - "shell.execute_reply": "2024-01-17T18:05:13.526816Z" + "iopub.execute_input": "2024-01-17T23:07:20.873083Z", + "iopub.status.busy": "2024-01-17T23:07:20.871780Z", + "iopub.status.idle": "2024-01-17T23:07:20.876509Z", + "shell.execute_reply": "2024-01-17T23:07:20.875949Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:13.531364Z", - "iopub.status.busy": "2024-01-17T18:05:13.530212Z", - "iopub.status.idle": "2024-01-17T18:05:14.861750Z", - "shell.execute_reply": "2024-01-17T18:05:14.860991Z" + "iopub.execute_input": "2024-01-17T23:07:20.880805Z", + "iopub.status.busy": "2024-01-17T23:07:20.879680Z", + "iopub.status.idle": "2024-01-17T23:07:22.198191Z", + "shell.execute_reply": "2024-01-17T23:07:22.197409Z" }, "scrolled": true }, @@ -640,10 +640,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.866391Z", - "iopub.status.busy": "2024-01-17T18:05:14.865013Z", - "iopub.status.idle": "2024-01-17T18:05:14.901758Z", - "shell.execute_reply": "2024-01-17T18:05:14.901142Z" + "iopub.execute_input": "2024-01-17T23:07:22.201762Z", + "iopub.status.busy": "2024-01-17T23:07:22.201081Z", + "iopub.status.idle": "2024-01-17T23:07:22.236485Z", + "shell.execute_reply": "2024-01-17T23:07:22.235879Z" }, "scrolled": true }, @@ -808,10 +808,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.906114Z", - "iopub.status.busy": "2024-01-17T18:05:14.904971Z", - "iopub.status.idle": "2024-01-17T18:05:14.917983Z", - "shell.execute_reply": "2024-01-17T18:05:14.917381Z" + "iopub.execute_input": "2024-01-17T23:07:22.239702Z", + "iopub.status.busy": "2024-01-17T23:07:22.239312Z", + "iopub.status.idle": "2024-01-17T23:07:22.249593Z", + "shell.execute_reply": "2024-01-17T23:07:22.249016Z" }, "scrolled": true }, @@ -921,10 +921,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.920990Z", - "iopub.status.busy": "2024-01-17T18:05:14.920788Z", - "iopub.status.idle": "2024-01-17T18:05:14.925853Z", - "shell.execute_reply": "2024-01-17T18:05:14.925068Z" + "iopub.execute_input": "2024-01-17T23:07:22.252711Z", + "iopub.status.busy": "2024-01-17T23:07:22.252340Z", + "iopub.status.idle": "2024-01-17T23:07:22.256985Z", + "shell.execute_reply": "2024-01-17T23:07:22.256523Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.928490Z", - "iopub.status.busy": "2024-01-17T18:05:14.928107Z", - "iopub.status.idle": "2024-01-17T18:05:14.935276Z", - "shell.execute_reply": "2024-01-17T18:05:14.934787Z" + "iopub.execute_input": "2024-01-17T23:07:22.259203Z", + "iopub.status.busy": "2024-01-17T23:07:22.258912Z", + "iopub.status.idle": "2024-01-17T23:07:22.264975Z", + "shell.execute_reply": "2024-01-17T23:07:22.264510Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.937647Z", - "iopub.status.busy": "2024-01-17T18:05:14.937445Z", - "iopub.status.idle": "2024-01-17T18:05:14.945173Z", - "shell.execute_reply": "2024-01-17T18:05:14.944393Z" + "iopub.execute_input": "2024-01-17T23:07:22.267168Z", + "iopub.status.busy": "2024-01-17T23:07:22.266883Z", + "iopub.status.idle": "2024-01-17T23:07:22.272743Z", + "shell.execute_reply": "2024-01-17T23:07:22.272288Z" } }, "outputs": [ @@ -1168,10 +1168,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.947361Z", - "iopub.status.busy": "2024-01-17T18:05:14.947162Z", - "iopub.status.idle": "2024-01-17T18:05:14.953478Z", - "shell.execute_reply": "2024-01-17T18:05:14.952831Z" + "iopub.execute_input": "2024-01-17T23:07:22.274875Z", + "iopub.status.busy": "2024-01-17T23:07:22.274585Z", + "iopub.status.idle": "2024-01-17T23:07:22.280068Z", + "shell.execute_reply": "2024-01-17T23:07:22.279615Z" } }, "outputs": [ @@ -1279,10 +1279,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.955611Z", - "iopub.status.busy": "2024-01-17T18:05:14.955414Z", - "iopub.status.idle": "2024-01-17T18:05:14.965109Z", - "shell.execute_reply": "2024-01-17T18:05:14.964575Z" + "iopub.execute_input": "2024-01-17T23:07:22.282238Z", + "iopub.status.busy": "2024-01-17T23:07:22.281951Z", + "iopub.status.idle": "2024-01-17T23:07:22.290181Z", + "shell.execute_reply": "2024-01-17T23:07:22.289592Z" } }, "outputs": [ @@ -1393,10 +1393,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.967441Z", - "iopub.status.busy": "2024-01-17T18:05:14.967073Z", - "iopub.status.idle": "2024-01-17T18:05:14.972810Z", - "shell.execute_reply": "2024-01-17T18:05:14.972298Z" + "iopub.execute_input": "2024-01-17T23:07:22.292538Z", + "iopub.status.busy": "2024-01-17T23:07:22.292335Z", + "iopub.status.idle": "2024-01-17T23:07:22.475829Z", + "shell.execute_reply": "2024-01-17T23:07:22.475150Z" } }, "outputs": [ @@ -1464,10 +1464,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:14.975149Z", - "iopub.status.busy": "2024-01-17T18:05:14.974766Z", - "iopub.status.idle": "2024-01-17T18:05:15.144852Z", - "shell.execute_reply": "2024-01-17T18:05:15.144184Z" + "iopub.execute_input": "2024-01-17T23:07:22.478452Z", + "iopub.status.busy": "2024-01-17T23:07:22.478023Z", + "iopub.status.idle": "2024-01-17T23:07:22.484232Z", + "shell.execute_reply": "2024-01-17T23:07:22.483639Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:15.147389Z", - "iopub.status.busy": "2024-01-17T18:05:15.147036Z", - "iopub.status.idle": "2024-01-17T18:05:15.151030Z", - "shell.execute_reply": "2024-01-17T18:05:15.150478Z" + "iopub.execute_input": "2024-01-17T23:07:22.486793Z", + "iopub.status.busy": "2024-01-17T23:07:22.486423Z", + "iopub.status.idle": "2024-01-17T23:07:22.490377Z", + "shell.execute_reply": "2024-01-17T23:07:22.489770Z" } }, "outputs": [ @@ -1597,10 +1597,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:15.153611Z", - "iopub.status.busy": "2024-01-17T18:05:15.153229Z", - "iopub.status.idle": "2024-01-17T18:05:15.159064Z", - "shell.execute_reply": "2024-01-17T18:05:15.158439Z" + "iopub.execute_input": "2024-01-17T23:07:22.492585Z", + "iopub.status.busy": "2024-01-17T23:07:22.492384Z", + "iopub.status.idle": "2024-01-17T23:07:22.498186Z", + "shell.execute_reply": "2024-01-17T23:07:22.497549Z" }, "nbsphinx": "hidden" }, @@ -1650,73 +1650,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04bf7ee7a9c34eeeaa4d9b286f8d7f9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_27abf396b79145cd917bff0ccd201c7e", - "placeholder": "​", - "style": "IPY_MODEL_4af4550bfcf047a5b3c8e1e3d3cd4b87", - "value": " 466k/466k [00:00<00:00, 29.4MB/s]" - } - }, - "0753cc2aba574e4da97f9bf330792b5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "075782102ee04e45ac26c0953b93dd10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "093ca90351304fdc8d2445f60be4b830": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0b94b659172c4c808567a150cf38153c": { + "0065750b88fd406396533e490ff9a0ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1731,14 +1665,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a40a416e6a3b4891b9b8d98a976ad7ed", - "IPY_MODEL_631251cb36704a7e85d67bbb798aaeec", - "IPY_MODEL_1f21207692b5457abe47bd5134b48d96" + "IPY_MODEL_c3a4ce2dd9534c0dae13baffc4bd8242", + "IPY_MODEL_a6798e924bf145afa6fb5a4f09ee6212", + "IPY_MODEL_f01c428443be4e759a8006b89c1f9698" ], - "layout": "IPY_MODEL_681e924901d943949a488b29a505cff0" + "layout": "IPY_MODEL_016aa72c5a294f7d8d81a1b8202fd993" } }, - "0fbbf4fdb51b413294041b296f5b2a74": { + "016aa72c5a294f7d8d81a1b8202fd993": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1790,59 +1724,105 @@ "width": null } }, - "13ff262aa4b44a0e8255af196d81fd7d": { + "06bdb1c3f8ce403faee0d760e00db57e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ad72a839c6e047a1827fda170388e992", - "placeholder": "​", - "style": "IPY_MODEL_d44a2401009343aeae443f41faabbafa", - "value": "tokenizer_config.json: 100%" + "layout": "IPY_MODEL_98d9d39b1f014399a851cb3246835792", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b73ee3bd3bc9482f9e9a6daf96958b25", + "value": 665.0 } }, - "156b2e945a6b44ddbdf2da4443a15de5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "0ec758d764544f0c95b7109cd53210d6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1cd9e82053dd4f6e9275c8fa64b04d24": { + "116e4a0b97db4d0c884059f25c064c6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c4d8a52a4a0431d9bf8fa248904a023", + "IPY_MODEL_81190e134e0f4f15b3e4fd3bbe41be0c", + "IPY_MODEL_989066e3c5524adaa8b8a66f2f5ad9e5" + ], + "layout": "IPY_MODEL_3b8bd17f043a430fb0597488d2d6d5f2" } }, - "1e756c095e0949b1a3e12c3fd5657b28": { + "167dfa55e2104cc999179284d62f3179": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1894,70 +1874,46 @@ "width": null } }, - "1ec07e59e71d462894df6ddac86d79db": { + "17086bcb496d418a808e0606b0e2a048": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56eb788d2ed34127ad6946586c6057e4", - "placeholder": "​", - "style": "IPY_MODEL_0753cc2aba574e4da97f9bf330792b5f", - "value": " 391/391 [00:00<00:00, 49.9kB/s]" - } - }, - "1f21207692b5457abe47bd5134b48d96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e55f2cd15ee649ac846a97aaf09d6567", - "placeholder": "​", - "style": "IPY_MODEL_075782102ee04e45ac26c0953b93dd10", - "value": " 665/665 [00:00<00:00, 82.4kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "24800faa4aa049179ae0e1a942a1bdf6": { + "1be99f53fcc64c409edb1ddbd07de2b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f5e134f5de9e4373a4455cf6307bb806", - "placeholder": "​", - "style": "IPY_MODEL_7736ef16b7ec4b909c412b03cfe285dc", - "value": " 29.0/29.0 [00:00<00:00, 3.70kB/s]" + "layout": "IPY_MODEL_b1fbb37072854152a3a3b16caf0ab204", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ba078714339f4da593e623adf2222bd7", + "value": 2211.0 } }, - "27abf396b79145cd917bff0ccd201c7e": { + "1e09d7da26ff491d9d5a848cc7f15be9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2009,7 +1965,7 @@ "width": null } }, - "2a69838d719f4df6a92e28d9ece1f08d": { + "2367326c6c9a474ab889cf6d74faf9aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2045,195 +2001,23 @@ "left": null, "margin": null, "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "33db2753de344f9b9a86f2af38acd19e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_690fccf3b2e142c4aab722075bd4f649", - "placeholder": "​", - "style": "IPY_MODEL_5d8a1655567a40f081ab0f97f931d0fd", - "value": ".gitattributes: 100%" - } - }, - "37196e3822914cc9a99aadf1179c6517": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3b4ab4c5daaf45d7b33c2799316d07cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3d414f4be0554dc48490d27044d55d7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98ec89e168f64dfbafb57d9076bd2975", - "IPY_MODEL_ecd151fdeecb4f5393b6dc51ca91a59e", - "IPY_MODEL_04bf7ee7a9c34eeeaa4d9b286f8d7f9d" - ], - "layout": "IPY_MODEL_7c80669ce4b44eb091bc16d3833d05ef" - } - }, - "45ac3af2e1ed4f4c8dfdabe525afe3d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_33db2753de344f9b9a86f2af38acd19e", - "IPY_MODEL_4ca1fe21051a4502b3b9f11c97612ceb", - "IPY_MODEL_1ec07e59e71d462894df6ddac86d79db" - ], - "layout": "IPY_MODEL_648615497a3f4b90ad7c7b1c678d5f5f" - } - }, - "48cf8f69b83648bc957e73f69c88e66a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_abf34ac7904346f0af3ff73344ab92dd", - "IPY_MODEL_ab6d14ed062546a7bc3a37486ca8e7f2", - "IPY_MODEL_99287ca3d43a478fa3a68b0140e5b6cc" - ], - "layout": "IPY_MODEL_e88376b3ed14410a951ad244ba1c84a3" - } - }, - "4af4550bfcf047a5b3c8e1e3d3cd4b87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4afd2fbb4d864842b5974978b9c8d333": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4ca1fe21051a4502b3b9f11c97612ceb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d4076baf5b434bb2adf7f2348373cb42", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_976b837ca52c4769859ed9e693f46300", - "value": 391.0 + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "553f932b2e7648b68c7c9aa3f3257737": { + "247e42b59dc0445aaaa5f7084dd20cf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2285,23 +2069,44 @@ "width": null } }, - "55be5ce9aa9e4a548b0ad61273477bd1": { + "253f1e63067b4f78a688136462184c85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4efdd1e0ae254291ba5a3223a84bc808", + "IPY_MODEL_5fd1f24864bd4064949a3e592679a012", + "IPY_MODEL_ccb22378b232470890186d60d7e8a7ea" + ], + "layout": "IPY_MODEL_9904071098db436e985611826d978697" + } + }, + "2e0c8591af124e1e862ae0bbee13ab5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "56eb788d2ed34127ad6946586c6057e4": { + "30aa87d3494840c4aa464ef74d9e0db1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2353,22 +2158,74 @@ "width": null } }, - "5d8a1655567a40f081ab0f97f931d0fd": { + "3164b830fbfe43a3b05f9dcada4619b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3dcbe3b63dd44a6ca4dc5a4e53ac44d9", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4ce483df8b44f459c167932952d75d6", + "value": 0.0 + } + }, + "34de74288e484d6392837444b0960b3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ab3108545484488b542fe77f6de60f6", + "placeholder": "​", + "style": "IPY_MODEL_3c9c5368618d46b89d1f97ee8461b90b", + "value": "config.json: 100%" + } + }, + "3b25cf0897af4c389e5bb84dce0e453a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_932c39ca775540ec91faed2d09952439", + "IPY_MODEL_ff6d854ab28e41d9b10ad56ffdd1d632", + "IPY_MODEL_41d630690c6c48ef936615876fa0652c" + ], + "layout": "IPY_MODEL_30aa87d3494840c4aa464ef74d9e0db1" } }, - "601383fd35904b3d948030127529c5b7": { + "3b8bd17f043a430fb0597488d2d6d5f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2420,52 +2277,37 @@ "width": null } }, - "62c627b523ce4d0680d7ef46df4046b2": { + "3c9c5368618d46b89d1f97ee8461b90b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6eb61a2631024a97b38409576940d076", - "placeholder": "​", - "style": "IPY_MODEL_6f7185636dfd445bbcfa590f6f91decd", - "value": " 2.21k/2.21k [00:00<00:00, 288kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "631251cb36704a7e85d67bbb798aaeec": { + "3d7b642ec81c487dab799950929baded": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1e756c095e0949b1a3e12c3fd5657b28", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4afd2fbb4d864842b5974978b9c8d333", - "value": 665.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "648615497a3f4b90ad7c7b1c678d5f5f": { + "3dcbe3b63dd44a6ca4dc5a4e53ac44d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2514,10 +2356,25 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" + } + }, + "3dd0e3791e974382a9f78275796c9be1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "681e924901d943949a488b29a505cff0": { + "3e17f05dde9d401b9fbb2d95c15d1fba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2569,7 +2426,49 @@ "width": null } }, - "68aac3d30f1c485fb01431c3acce067f": { + "41a6a383eaa443cba8c9a8e78ec48ecd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_95b27ef1300348efbc7ad67edd3d9b7a", + "placeholder": "​", + "style": "IPY_MODEL_dae97db7d3c64df7896a80c486b3450f", + "value": " 2.21k/2.21k [00:00<00:00, 299kB/s]" + } + }, + "41d630690c6c48ef936615876fa0652c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_57d3bf10275b4091992aa1a8a28265d8", + "placeholder": "​", + "style": "IPY_MODEL_6504d792bf274abaadea897aedb15878", + "value": " 466k/466k [00:00<00:00, 33.2MB/s]" + } + }, + "431d2da6f0804f3790d3cc8f87036067": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2621,7 +2520,100 @@ "width": null } }, - "690fccf3b2e142c4aab722075bd4f649": { + "43c253f77bd74d59bb9b5eb8c0dad2f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46c6854e27ef4c689e054b875c34f02d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e17f05dde9d401b9fbb2d95c15d1fba", + "placeholder": "​", + "style": "IPY_MODEL_826c4413b0c040c9b8a8c022223e7ab0", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "494ad30da7f845f995cfe5a7b7812ca2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d6c91a6a97947bca8cef6f298aee849", + "placeholder": "​", + "style": "IPY_MODEL_3d7b642ec81c487dab799950929baded", + "value": ".gitattributes: 100%" + } + }, + "49def5d883e3468bb75ff61ae24e8374": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4efdd1e0ae254291ba5a3223a84bc808": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ec758d764544f0c95b7109cd53210d6", + "placeholder": "​", + "style": "IPY_MODEL_2e0c8591af124e1e862ae0bbee13ab5a", + "value": "vocab.txt: 100%" + } + }, + "51b14007f9df43c2ae6ae64965212985": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2673,7 +2665,38 @@ "width": null } }, - "6950f4f6ccd84fec8817d0612d30f52c": { + "5521b2020c564b9892aa36630243ff48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "55a8e271f7084ea88ce61eb6cea457ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "579ddcecd4ad41ff943769c38a61dcc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2725,29 +2748,7 @@ "width": null } }, - "696fed9227a24944a318a7e13ec558c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_13ff262aa4b44a0e8255af196d81fd7d", - "IPY_MODEL_b99461c80ba342a19bb61225b5a1c6ab", - "IPY_MODEL_24800faa4aa049179ae0e1a942a1bdf6" - ], - "layout": "IPY_MODEL_2a69838d719f4df6a92e28d9ece1f08d" - } - }, - "6cdbd6e2878d4ad0a30ac4e4f00206cb": { + "57d3bf10275b4091992aa1a8a28265d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2796,26 +2797,10 @@ "right": null, "top": null, "visibility": null, - "width": "20px" - } - }, - "6df9e8714cf44f9cb0c6adc1e2801a7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "width": null } }, - "6eb61a2631024a97b38409576940d076": { + "5da50ac709c04ceebc042c02d11780bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2867,7 +2852,31 @@ "width": null } }, - "6f7185636dfd445bbcfa590f6f91decd": { + "5fd1f24864bd4064949a3e592679a012": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a59b8ca3d88645ca9287af80e876815b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6985d8eda2514934b005c470e8949eb2", + "value": 231508.0 + } + }, + "6504d792bf274abaadea897aedb15878": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2882,74 +2891,59 @@ "description_width": "" } }, - "705ab5d8864749feba2e94565f234f24": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "653bb2ad40a74c2392bb1d2735dea51e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "7736ef16b7ec4b909c412b03cfe285dc": { + "6985d8eda2514934b005c470e8949eb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7a8a403f88844204b88b6b499f25620b": { + "6a18b3dd9d7049169469a3a4798f15b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2f3f723831e4429ba055d875902387a", + "placeholder": "​", + "style": "IPY_MODEL_c8a57340288d4909ade8e4646100002d", + "value": "" + } + }, + "6baeb4add86f4ccea1fa84f9697170d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3001,7 +2995,28 @@ "width": null } }, - "7c80669ce4b44eb091bc16d3833d05ef": { + "6c4d8a52a4a0431d9bf8fa248904a023": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9174cdb1a46c4b888353513a0a8b4639", + "placeholder": "​", + "style": "IPY_MODEL_7e47396caa2d4e8ba0db916be172b240", + "value": "tokenizer_config.json: 100%" + } + }, + "6cad7a8d33ba491babcc8162595fad2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3053,7 +3068,7 @@ "width": null } }, - "7da1806fce7e4909bc926a3bb7935ad7": { + "6d6c91a6a97947bca8cef6f298aee849": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3105,28 +3120,29 @@ "width": null } }, - "8717845bbc894b72935b209a75bb2f16": { + "735576d8959e46f3826a38708cf752de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e5067484ef674c0380e65aaa243e5a78", - "placeholder": "​", - "style": "IPY_MODEL_d5bd9e0905d947c6b4a03b3be26daf04", - "value": "pytorch_model.bin: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a18b3dd9d7049169469a3a4798f15b9", + "IPY_MODEL_3164b830fbfe43a3b05f9dcada4619b7", + "IPY_MODEL_46c6854e27ef4c689e054b875c34f02d" + ], + "layout": "IPY_MODEL_579ddcecd4ad41ff943769c38a61dcc1" } }, - "8e2803fbb174478d972207388a2cb9ff": { + "741743a689ed408fabb5c8b7ae249ad3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3141,44 +3157,61 @@ "description_width": "" } }, - "90d2e4a16ad541c380a1dff4cfde1f90": { + "7e47396caa2d4e8ba0db916be172b240": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "9407545d118c45a89c4d6605a80d0fff": { + "81190e134e0f4f15b3e4fd3bbe41be0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c3b4b53286594ff5bb5a5fd3d6d3eef3", - "placeholder": "​", - "style": "IPY_MODEL_093ca90351304fdc8d2445f60be4b830", - "value": " 0/0 [00:00<?, ?it/s]" + "layout": "IPY_MODEL_431d2da6f0804f3790d3cc8f87036067", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_971a763adca04a4898d2ea87d1e3b531", + "value": 29.0 + } + }, + "826c4413b0c040c9b8a8c022223e7ab0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "976b837ca52c4769859ed9e693f46300": { + "890e919775c548d29334fc80abf8dd41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3194,7 +3227,59 @@ "description_width": "" } }, - "97a28fb79228459592c99ca4714195d8": { + "8ab3108545484488b542fe77f6de60f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9174cdb1a46c4b888353513a0a8b4639": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3246,73 +3331,7 @@ "width": null } }, - "982f196d95cf48388e934100fe105449": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6cdbd6e2878d4ad0a30ac4e4f00206cb", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_156b2e945a6b44ddbdf2da4443a15de5", - "value": 0.0 - } - }, - "98ec89e168f64dfbafb57d9076bd2975": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_601383fd35904b3d948030127529c5b7", - "placeholder": "​", - "style": "IPY_MODEL_37196e3822914cc9a99aadf1179c6517", - "value": "tokenizer.json: 100%" - } - }, - "99287ca3d43a478fa3a68b0140e5b6cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6950f4f6ccd84fec8817d0612d30f52c", - "placeholder": "​", - "style": "IPY_MODEL_a4b986613dd3460fb27e399d856b5baf", - "value": " 232k/232k [00:00<00:00, 26.4MB/s]" - } - }, - "9b6a79f738174dc4a1d6e6c7665fb9c5": { + "92cc65daed6c4dd6a66605efa7d7c4f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3364,38 +3383,7 @@ "width": null } }, - "9b70999254274e98a23fd7d37ed2000f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a30da11f6f264d78801d7be28ba245f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a40a416e6a3b4891b9b8d98a976ad7ed": { + "932c39ca775540ec91faed2d09952439": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3410,28 +3398,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eaf16cd449ad4d9ba049f1736192243c", + "layout": "IPY_MODEL_1e09d7da26ff491d9d5a848cc7f15be9", "placeholder": "​", - "style": "IPY_MODEL_3b4ab4c5daaf45d7b33c2799316d07cf", - "value": "config.json: 100%" - } - }, - "a4b986613dd3460fb27e399d856b5baf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_741743a689ed408fabb5c8b7ae249ad3", + "value": "tokenizer.json: 100%" } }, - "a92177c88acf40c5ababe4a7a348a09e": { + "95b27ef1300348efbc7ad67edd3d9b7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3483,52 +3456,7 @@ "width": null } }, - "ab6d14ed062546a7bc3a37486ca8e7f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cc2919ce84274a69aae9ff4e90a80906", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_55be5ce9aa9e4a548b0ad61273477bd1", - "value": 231508.0 - } - }, - "abf34ac7904346f0af3ff73344ab92dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0fbbf4fdb51b413294041b296f5b2a74", - "placeholder": "​", - "style": "IPY_MODEL_e797f27a584b45b88287c7dfb530657c", - "value": "vocab.txt: 100%" - } - }, - "ad72a839c6e047a1827fda170388e992": { + "9694ffca6f9a4f48be09b09321d00477": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3580,7 +3508,7 @@ "width": null } }, - "b31ba758e76b4e649b3bc97ebfcfb764": { + "971a763adca04a4898d2ea87d1e3b531": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3596,7 +3524,28 @@ "description_width": "" } }, - "b773da097d5d41d2bd390767173f453b": { + "989066e3c5524adaa8b8a66f2f5ad9e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a369cc74356749659c4fdffbd4415a89", + "placeholder": "​", + "style": "IPY_MODEL_5521b2020c564b9892aa36630243ff48", + "value": " 29.0/29.0 [00:00<00:00, 3.64kB/s]" + } + }, + "98d9d39b1f014399a851cb3246835792": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3648,31 +3597,7 @@ "width": null } }, - "b99461c80ba342a19bb61225b5a1c6ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cb539705caae4b2888bf430cbdae00f9", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b70999254274e98a23fd7d37ed2000f", - "value": 29.0 - } - }, - "c3b4b53286594ff5bb5a5fd3d6d3eef3": { + "9904071098db436e985611826d978697": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3724,50 +3649,7 @@ "width": null } }, - "c44c22e3abfa4e00b6be10158490dcc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_553f932b2e7648b68c7c9aa3f3257737", - "placeholder": "​", - "style": "IPY_MODEL_1cd9e82053dd4f6e9275c8fa64b04d24", - "value": "" - } - }, - "cac01943eb874158907dd23885f1ee1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8717845bbc894b72935b209a75bb2f16", - "IPY_MODEL_d26bd1de66324c479d2abcd64629946d", - "IPY_MODEL_f5732d71a1fa4ad285feb8ad5d719a36" - ], - "layout": "IPY_MODEL_705ab5d8864749feba2e94565f234f24" - } - }, - "cb539705caae4b2888bf430cbdae00f9": { + "a369cc74356749659c4fdffbd4415a89": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3819,7 +3701,7 @@ "width": null } }, - "cc2919ce84274a69aae9ff4e90a80906": { + "a59b8ca3d88645ca9287af80e876815b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3861,39 +3743,17 @@ "object_fit": null, "object_position": null, "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cf63fee22bbf401492c9f2f6f74d206a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c44c22e3abfa4e00b6be10158490dcc5", - "IPY_MODEL_982f196d95cf48388e934100fe105449", - "IPY_MODEL_9407545d118c45a89c4d6605a80d0fff" - ], - "layout": "IPY_MODEL_b773da097d5d41d2bd390767173f453b" + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d26bd1de66324c479d2abcd64629946d": { + "a6798e924bf145afa6fb5a4f09ee6212": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3909,39 +3769,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a92177c88acf40c5ababe4a7a348a09e", + "layout": "IPY_MODEL_6baeb4add86f4ccea1fa84f9697170d3", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_90d2e4a16ad541c380a1dff4cfde1f90", + "style": "IPY_MODEL_890e919775c548d29334fc80abf8dd41", "value": 54245363.0 } }, - "d2af69c7dfa5442bae97f456950de975": { + "aebe7c43a94b411b875f55c85e5bbf99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_68aac3d30f1c485fb01431c3acce067f", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6df9e8714cf44f9cb0c6adc1e2801a7d", - "value": 2211.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e0f7b67a7ef14e7f81bcde4581d41777", + "IPY_MODEL_1be99f53fcc64c409edb1ddbd07de2b0", + "IPY_MODEL_41a6a383eaa443cba8c9a8e78ec48ecd" + ], + "layout": "IPY_MODEL_fe5812eb7c1945458f0517ab7e8b8982" } }, - "d4076baf5b434bb2adf7f2348373cb42": { + "b1fbb37072854152a3a3b16caf0ab204": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3993,37 +3851,39 @@ "width": null } }, - "d44a2401009343aeae443f41faabbafa": { + "b73ee3bd3bc9482f9e9a6daf96958b25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "d5bd9e0905d947c6b4a03b3be26daf04": { + "ba078714339f4da593e623adf2222bd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "e185e5cf5c0548fbbc30b1069d606797": { + "ba2d5d53d9a94b1896142b5a30bbd514": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4038,14 +3898,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_eebfeb338a314755a90465c813e21dc1", - "IPY_MODEL_d2af69c7dfa5442bae97f456950de975", - "IPY_MODEL_62c627b523ce4d0680d7ef46df4046b2" + "IPY_MODEL_34de74288e484d6392837444b0960b3b", + "IPY_MODEL_06bdb1c3f8ce403faee0d760e00db57e", + "IPY_MODEL_c8688c529ee943f0a17f150a07147e22" ], - "layout": "IPY_MODEL_7a8a403f88844204b88b6b499f25620b" + "layout": "IPY_MODEL_92cc65daed6c4dd6a66605efa7d7c4f8" } }, - "e5067484ef674c0380e65aaa243e5a78": { + "c2eb7e0981334b8d9993c8d3ef5a5d69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4097,7 +3957,7 @@ "width": null } }, - "e55f2cd15ee649ac846a97aaf09d6567": { + "c2f3f723831e4429ba055d875902387a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4149,7 +4009,49 @@ "width": null } }, - "e797f27a584b45b88287c7dfb530657c": { + "c3a4ce2dd9534c0dae13baffc4bd8242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_51b14007f9df43c2ae6ae64965212985", + "placeholder": "​", + "style": "IPY_MODEL_3dd0e3791e974382a9f78275796c9be1", + "value": "pytorch_model.bin: 100%" + } + }, + "c8688c529ee943f0a17f150a07147e22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cbef96f2bab2484681f3c8921fa2c6ec", + "placeholder": "​", + "style": "IPY_MODEL_ea74d452fbb34576ab157f19520a727a", + "value": " 665/665 [00:00<00:00, 84.2kB/s]" + } + }, + "c8a57340288d4909ade8e4646100002d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4164,7 +4066,7 @@ "description_width": "" } }, - "e88376b3ed14410a951ad244ba1c84a3": { + "cbef96f2bab2484681f3c8921fa2c6ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4216,83 +4118,80 @@ "width": null } }, - "eaf16cd449ad4d9ba049f1736192243c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "ccb22378b232470890186d60d7e8a7ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_247e42b59dc0445aaaa5f7084dd20cf8", + "placeholder": "​", + "style": "IPY_MODEL_653bb2ad40a74c2392bb1d2735dea51e", + "value": " 232k/232k [00:00<00:00, 27.0MB/s]" + } + }, + "dae97db7d3c64df7896a80c486b3450f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "ecd151fdeecb4f5393b6dc51ca91a59e": { + "e0f7b67a7ef14e7f81bcde4581d41777": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7da1806fce7e4909bc926a3bb7935ad7", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b31ba758e76b4e649b3bc97ebfcfb764", - "value": 466062.0 + "layout": "IPY_MODEL_167dfa55e2104cc999179284d62f3179", + "placeholder": "​", + "style": "IPY_MODEL_49def5d883e3468bb75ff61ae24e8374", + "value": "README.md: 100%" + } + }, + "e4ce483df8b44f459c167932952d75d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eebfeb338a314755a90465c813e21dc1": { + "e98bd145421044fba60d1778da8b0bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4307,13 +4206,74 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9b6a79f738174dc4a1d6e6c7665fb9c5", + "layout": "IPY_MODEL_5da50ac709c04ceebc042c02d11780bb", "placeholder": "​", - "style": "IPY_MODEL_a30da11f6f264d78801d7be28ba245f6", - "value": "README.md: 100%" + "style": "IPY_MODEL_43c253f77bd74d59bb9b5eb8c0dad2f8", + "value": " 391/391 [00:00<00:00, 44.5kB/s]" + } + }, + "ea74d452fbb34576ab157f19520a727a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eae3f2bc15824aa1945e4a9709a7cb7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_494ad30da7f845f995cfe5a7b7812ca2", + "IPY_MODEL_efd392f0de6b42a3b5b343acd7c8211a", + "IPY_MODEL_e98bd145421044fba60d1778da8b0bc6" + ], + "layout": "IPY_MODEL_6cad7a8d33ba491babcc8162595fad2a" + } + }, + "efd392f0de6b42a3b5b343acd7c8211a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9694ffca6f9a4f48be09b09321d00477", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f18d2ca563c44c24a00e3946ef1e6c94", + "value": 391.0 } }, - "f5732d71a1fa4ad285feb8ad5d719a36": { + "f01c428443be4e759a8006b89c1f9698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4328,13 +4288,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_97a28fb79228459592c99ca4714195d8", + "layout": "IPY_MODEL_2367326c6c9a474ab889cf6d74faf9aa", "placeholder": "​", - "style": "IPY_MODEL_8e2803fbb174478d972207388a2cb9ff", - "value": " 54.2M/54.2M [00:00<00:00, 250MB/s]" + "style": "IPY_MODEL_17086bcb496d418a808e0606b0e2a048", + "value": " 54.2M/54.2M [00:01<00:00, 41.9MB/s]" + } + }, + "f18d2ca563c44c24a00e3946ef1e6c94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f5e134f5de9e4373a4455cf6307bb806": { + "fe5812eb7c1945458f0517ab7e8b8982": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4385,6 +4361,30 @@ "visibility": null, "width": null } + }, + "ff6d854ab28e41d9b10ad56ffdd1d632": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c2eb7e0981334b8d9993c8d3ef5a5d69", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_55a8e271f7084ea88ce61eb6cea457ad", + "value": 466062.0 + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.html b/master/tutorials/dataset_health.html index a93bb2c2b..8fda8582e 100644 --- a/master/tutorials/dataset_health.html +++ b/master/tutorials/dataset_health.html @@ -956,6 +956,9 @@

Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Caltech256 🎯 + +Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256) +

@@ -963,9 +966,6 @@

Start of tutorial: Evaluate the health of 8 popular dataset

-
-Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)
-
 -------------------------------------------------------------
 |  Generating a Cleanlab Dataset Health Summary             |
 |   for your dataset with 29,780 examples and 256 classes.  |
@@ -1291,13 +1291,6 @@ 

Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Mnist_test_set 🎯 -

- -
-
-
-
-
 
 Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)
 
@@ -2535,13 +2528,6 @@ 

Start of tutorial: Evaluate the health of 8 popular dataset 🎯 Cifar100_test_set 🎯 -

-
-
-
-
-
-
 
 Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)
 
diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb
index dee038810..b276fa39c 100644
--- a/master/tutorials/dataset_health.ipynb
+++ b/master/tutorials/dataset_health.ipynb
@@ -68,10 +68,10 @@
    "execution_count": 1,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:05:19.808883Z",
-     "iopub.status.busy": "2024-01-17T18:05:19.808324Z",
-     "iopub.status.idle": "2024-01-17T18:05:20.839884Z",
-     "shell.execute_reply": "2024-01-17T18:05:20.839261Z"
+     "iopub.execute_input": "2024-01-17T23:07:27.832889Z",
+     "iopub.status.busy": "2024-01-17T23:07:27.832698Z",
+     "iopub.status.idle": "2024-01-17T23:07:28.833865Z",
+     "shell.execute_reply": "2024-01-17T23:07:28.833240Z"
     },
     "nbsphinx": "hidden"
    },
@@ -83,7 +83,7 @@
     "dependencies = [\"cleanlab\", \"requests\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -108,10 +108,10 @@
    "execution_count": 2,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:05:20.842981Z",
-     "iopub.status.busy": "2024-01-17T18:05:20.842479Z",
-     "iopub.status.idle": "2024-01-17T18:05:20.845564Z",
-     "shell.execute_reply": "2024-01-17T18:05:20.844934Z"
+     "iopub.execute_input": "2024-01-17T23:07:28.836757Z",
+     "iopub.status.busy": "2024-01-17T23:07:28.836298Z",
+     "iopub.status.idle": "2024-01-17T23:07:28.839253Z",
+     "shell.execute_reply": "2024-01-17T23:07:28.838765Z"
     },
     "id": "_UvI80l42iyi"
    },
@@ -201,10 +201,10 @@
    "execution_count": 3,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:05:20.848194Z",
-     "iopub.status.busy": "2024-01-17T18:05:20.847848Z",
-     "iopub.status.idle": "2024-01-17T18:05:20.860567Z",
-     "shell.execute_reply": "2024-01-17T18:05:20.860055Z"
+     "iopub.execute_input": "2024-01-17T23:07:28.841805Z",
+     "iopub.status.busy": "2024-01-17T23:07:28.841328Z",
+     "iopub.status.idle": "2024-01-17T23:07:28.854079Z",
+     "shell.execute_reply": "2024-01-17T23:07:28.853457Z"
     },
     "nbsphinx": "hidden"
    },
@@ -283,10 +283,10 @@
    "execution_count": 4,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:05:20.862951Z",
-     "iopub.status.busy": "2024-01-17T18:05:20.862575Z",
-     "iopub.status.idle": "2024-01-17T18:05:25.011623Z",
-     "shell.execute_reply": "2024-01-17T18:05:25.011065Z"
+     "iopub.execute_input": "2024-01-17T23:07:28.856642Z",
+     "iopub.status.busy": "2024-01-17T23:07:28.856314Z",
+     "iopub.status.idle": "2024-01-17T23:07:31.662775Z",
+     "shell.execute_reply": "2024-01-17T23:07:31.662089Z"
     },
     "id": "dhTHOg8Pyv5G"
    },
@@ -297,6 +297,9 @@
      "text": [
       "\n",
       "🎯 Caltech256 🎯\n",
+      "\n",
+      "\n",
+      "Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)\n",
       "\n"
      ]
     },
@@ -304,9 +307,6 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "\n",
-      "Loaded the 'caltech256' dataset with predicted probabilities of shape (29780, 256)\n",
-      "\n",
       "-------------------------------------------------------------\n",
       "|  Generating a Cleanlab Dataset Health Summary             |\n",
       "|   for your dataset with 29,780 examples and 256 classes.  |\n",
@@ -692,13 +692,7 @@
       "\n",
       "\n",
       "🎯 Mnist_test_set 🎯\n",
-      "\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "\n",
       "\n",
       "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n",
       "\n",
@@ -2182,13 +2176,7 @@
       "\n",
       "\n",
       "🎯 Cifar100_test_set 🎯\n",
-      "\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "\n",
       "\n",
       "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n",
       "\n",
diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html
index a1fa9648c..046a9b1a0 100644
--- a/master/tutorials/faq.html
+++ b/master/tutorials/faq.html
@@ -946,13 +946,13 @@ 

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1453,7 +1453,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 24103a62b..c60bdad38 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:29.575294Z", - "iopub.status.busy": "2024-01-17T18:05:29.575098Z", - "iopub.status.idle": "2024-01-17T18:05:30.601638Z", - "shell.execute_reply": "2024-01-17T18:05:30.600990Z" + "iopub.execute_input": "2024-01-17T23:07:36.495882Z", + "iopub.status.busy": "2024-01-17T23:07:36.495688Z", + "iopub.status.idle": "2024-01-17T23:07:37.512326Z", + "shell.execute_reply": "2024-01-17T23:07:37.511707Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:30.604812Z", - "iopub.status.busy": "2024-01-17T18:05:30.604317Z", - "iopub.status.idle": "2024-01-17T18:05:30.607977Z", - "shell.execute_reply": "2024-01-17T18:05:30.607450Z" + "iopub.execute_input": "2024-01-17T23:07:37.515517Z", + "iopub.status.busy": "2024-01-17T23:07:37.514954Z", + "iopub.status.idle": "2024-01-17T23:07:37.518606Z", + "shell.execute_reply": "2024-01-17T23:07:37.517983Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:30.610519Z", - "iopub.status.busy": "2024-01-17T18:05:30.610067Z", - "iopub.status.idle": "2024-01-17T18:05:32.632789Z", - "shell.execute_reply": "2024-01-17T18:05:32.632102Z" + "iopub.execute_input": "2024-01-17T23:07:37.521046Z", + "iopub.status.busy": "2024-01-17T23:07:37.520609Z", + "iopub.status.idle": "2024-01-17T23:07:39.512127Z", + "shell.execute_reply": "2024-01-17T23:07:39.511435Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.636274Z", - "iopub.status.busy": "2024-01-17T18:05:32.635511Z", - "iopub.status.idle": "2024-01-17T18:05:32.677507Z", - "shell.execute_reply": "2024-01-17T18:05:32.676720Z" + "iopub.execute_input": "2024-01-17T23:07:39.515319Z", + "iopub.status.busy": "2024-01-17T23:07:39.514761Z", + "iopub.status.idle": "2024-01-17T23:07:39.553653Z", + "shell.execute_reply": "2024-01-17T23:07:39.552872Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.680506Z", - "iopub.status.busy": "2024-01-17T18:05:32.680097Z", - "iopub.status.idle": "2024-01-17T18:05:32.719749Z", - "shell.execute_reply": "2024-01-17T18:05:32.719066Z" + "iopub.execute_input": "2024-01-17T23:07:39.556731Z", + "iopub.status.busy": "2024-01-17T23:07:39.556457Z", + "iopub.status.idle": "2024-01-17T23:07:39.590911Z", + "shell.execute_reply": "2024-01-17T23:07:39.590128Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.722770Z", - "iopub.status.busy": "2024-01-17T18:05:32.722366Z", - "iopub.status.idle": "2024-01-17T18:05:32.725463Z", - "shell.execute_reply": "2024-01-17T18:05:32.724891Z" + "iopub.execute_input": "2024-01-17T23:07:39.593846Z", + "iopub.status.busy": "2024-01-17T23:07:39.593576Z", + "iopub.status.idle": "2024-01-17T23:07:39.596849Z", + "shell.execute_reply": "2024-01-17T23:07:39.596247Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.727932Z", - "iopub.status.busy": "2024-01-17T18:05:32.727487Z", - "iopub.status.idle": "2024-01-17T18:05:32.730280Z", - "shell.execute_reply": "2024-01-17T18:05:32.729759Z" + "iopub.execute_input": "2024-01-17T23:07:39.599261Z", + "iopub.status.busy": "2024-01-17T23:07:39.598893Z", + "iopub.status.idle": "2024-01-17T23:07:39.601723Z", + "shell.execute_reply": "2024-01-17T23:07:39.601200Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.732729Z", - "iopub.status.busy": "2024-01-17T18:05:32.732328Z", - "iopub.status.idle": "2024-01-17T18:05:32.759985Z", - "shell.execute_reply": "2024-01-17T18:05:32.759356Z" + "iopub.execute_input": "2024-01-17T23:07:39.604155Z", + "iopub.status.busy": "2024-01-17T23:07:39.603812Z", + "iopub.status.idle": "2024-01-17T23:07:39.631912Z", + "shell.execute_reply": "2024-01-17T23:07:39.631291Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d2907ab9e816444c921cba3edd090d1c", + "model_id": "c8d58b7026a04e969e05f5cbd2b99e14", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1401ba3b9414469b83ae25c9cddabf3", + "model_id": "8fc0f21110364ef8b4a28d24e2bd55e7", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.767178Z", - "iopub.status.busy": "2024-01-17T18:05:32.766941Z", - "iopub.status.idle": "2024-01-17T18:05:32.774377Z", - "shell.execute_reply": "2024-01-17T18:05:32.773883Z" + "iopub.execute_input": "2024-01-17T23:07:39.638587Z", + "iopub.status.busy": "2024-01-17T23:07:39.638170Z", + "iopub.status.idle": "2024-01-17T23:07:39.644966Z", + "shell.execute_reply": "2024-01-17T23:07:39.644435Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.776777Z", - "iopub.status.busy": "2024-01-17T18:05:32.776413Z", - "iopub.status.idle": "2024-01-17T18:05:32.780193Z", - "shell.execute_reply": "2024-01-17T18:05:32.779640Z" + "iopub.execute_input": "2024-01-17T23:07:39.647202Z", + "iopub.status.busy": "2024-01-17T23:07:39.646994Z", + "iopub.status.idle": "2024-01-17T23:07:39.650818Z", + "shell.execute_reply": "2024-01-17T23:07:39.650290Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.782656Z", - "iopub.status.busy": "2024-01-17T18:05:32.782291Z", - "iopub.status.idle": "2024-01-17T18:05:32.789381Z", - "shell.execute_reply": "2024-01-17T18:05:32.788810Z" + "iopub.execute_input": "2024-01-17T23:07:39.653116Z", + "iopub.status.busy": "2024-01-17T23:07:39.652913Z", + "iopub.status.idle": "2024-01-17T23:07:39.659830Z", + "shell.execute_reply": "2024-01-17T23:07:39.659314Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.791749Z", - "iopub.status.busy": "2024-01-17T18:05:32.791389Z", - "iopub.status.idle": "2024-01-17T18:05:32.834263Z", - "shell.execute_reply": "2024-01-17T18:05:32.833469Z" + "iopub.execute_input": "2024-01-17T23:07:39.662042Z", + "iopub.status.busy": "2024-01-17T23:07:39.661827Z", + "iopub.status.idle": "2024-01-17T23:07:39.700248Z", + "shell.execute_reply": "2024-01-17T23:07:39.699558Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.837464Z", - "iopub.status.busy": "2024-01-17T18:05:32.836999Z", - "iopub.status.idle": "2024-01-17T18:05:32.879044Z", - "shell.execute_reply": "2024-01-17T18:05:32.878377Z" + "iopub.execute_input": "2024-01-17T23:07:39.703097Z", + "iopub.status.busy": "2024-01-17T23:07:39.702829Z", + "iopub.status.idle": "2024-01-17T23:07:39.740445Z", + "shell.execute_reply": "2024-01-17T23:07:39.739778Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:32.882160Z", - "iopub.status.busy": "2024-01-17T18:05:32.881824Z", - "iopub.status.idle": "2024-01-17T18:05:33.000399Z", - "shell.execute_reply": "2024-01-17T18:05:32.999631Z" + "iopub.execute_input": "2024-01-17T23:07:39.743730Z", + "iopub.status.busy": "2024-01-17T23:07:39.743262Z", + "iopub.status.idle": "2024-01-17T23:07:39.857929Z", + "shell.execute_reply": "2024-01-17T23:07:39.857221Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:33.003322Z", - "iopub.status.busy": "2024-01-17T18:05:33.003098Z", - "iopub.status.idle": "2024-01-17T18:05:35.514808Z", - "shell.execute_reply": "2024-01-17T18:05:35.514063Z" + "iopub.execute_input": "2024-01-17T23:07:39.860566Z", + "iopub.status.busy": "2024-01-17T23:07:39.860345Z", + "iopub.status.idle": "2024-01-17T23:07:42.349955Z", + "shell.execute_reply": "2024-01-17T23:07:42.349281Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.517610Z", - "iopub.status.busy": "2024-01-17T18:05:35.517166Z", - "iopub.status.idle": "2024-01-17T18:05:35.576901Z", - "shell.execute_reply": "2024-01-17T18:05:35.576188Z" + "iopub.execute_input": "2024-01-17T23:07:42.352843Z", + "iopub.status.busy": "2024-01-17T23:07:42.352472Z", + "iopub.status.idle": "2024-01-17T23:07:42.410242Z", + "shell.execute_reply": "2024-01-17T23:07:42.409702Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "37949d7a", + "id": "78363458", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "dfe41b86", + "id": "d2a5e8b7", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "17100cb9", + "id": "c950fb91", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.579654Z", - "iopub.status.busy": "2024-01-17T18:05:35.579165Z", - "iopub.status.idle": "2024-01-17T18:05:35.693837Z", - "shell.execute_reply": "2024-01-17T18:05:35.692940Z" + "iopub.execute_input": "2024-01-17T23:07:42.412848Z", + "iopub.status.busy": "2024-01-17T23:07:42.412446Z", + "iopub.status.idle": "2024-01-17T23:07:42.526424Z", + "shell.execute_reply": "2024-01-17T23:07:42.525736Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "a03bf6f2", + "id": "8ab3357a", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "6ef2cce4", + "id": "1c9ad48b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.697709Z", - "iopub.status.busy": "2024-01-17T18:05:35.696542Z", - "iopub.status.idle": "2024-01-17T18:05:35.771866Z", - "shell.execute_reply": "2024-01-17T18:05:35.771185Z" + "iopub.execute_input": "2024-01-17T23:07:42.530165Z", + "iopub.status.busy": "2024-01-17T23:07:42.529379Z", + "iopub.status.idle": "2024-01-17T23:07:42.607790Z", + "shell.execute_reply": "2024-01-17T23:07:42.607189Z" } }, "outputs": [ @@ -921,7 +921,7 @@ }, { "cell_type": "markdown", - "id": "8ca4b358", + "id": "4fc657f4", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -932,13 +932,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "66ce860e", + "id": "8fa90df4", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.774640Z", - "iopub.status.busy": "2024-01-17T18:05:35.774188Z", - "iopub.status.idle": "2024-01-17T18:05:35.782861Z", - "shell.execute_reply": "2024-01-17T18:05:35.782309Z" + "iopub.execute_input": "2024-01-17T23:07:42.610437Z", + "iopub.status.busy": "2024-01-17T23:07:42.610059Z", + "iopub.status.idle": "2024-01-17T23:07:42.618357Z", + "shell.execute_reply": "2024-01-17T23:07:42.617793Z" } }, "outputs": [], @@ -1040,7 +1040,7 @@ }, { "cell_type": "markdown", - "id": "5f1c9f23", + "id": "cf99e781", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1055,13 +1055,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "7dce32d6", + "id": "98118892", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.785295Z", - "iopub.status.busy": "2024-01-17T18:05:35.784899Z", - "iopub.status.idle": "2024-01-17T18:05:35.805010Z", - "shell.execute_reply": "2024-01-17T18:05:35.804458Z" + "iopub.execute_input": "2024-01-17T23:07:42.620700Z", + "iopub.status.busy": "2024-01-17T23:07:42.620256Z", + "iopub.status.idle": "2024-01-17T23:07:42.638982Z", + "shell.execute_reply": "2024-01-17T23:07:42.638447Z" } }, "outputs": [ @@ -1104,13 +1104,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "47046a1c", + "id": "e6faf2ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:35.807439Z", - "iopub.status.busy": "2024-01-17T18:05:35.807048Z", - "iopub.status.idle": "2024-01-17T18:05:35.811530Z", - "shell.execute_reply": "2024-01-17T18:05:35.811000Z" + "iopub.execute_input": "2024-01-17T23:07:42.641306Z", + "iopub.status.busy": "2024-01-17T23:07:42.640932Z", + "iopub.status.idle": "2024-01-17T23:07:42.645229Z", + "shell.execute_reply": "2024-01-17T23:07:42.644699Z" } }, "outputs": [ @@ -1205,38 +1205,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2effe8a32eaa4e92abaa5cfd66d81dcb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "36e767e7e95d43ffb851228c4f91edbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4af3a63525c440a4abc52d769e9017dd": { + "01401acd053d494aa90753fa1b8c29ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1288,37 +1257,68 @@ "width": null } }, - "522f0096addf4e0cbafbc1d1348408a1": { + "07a3f5a6aaad401a972197c77e87bf79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "5e22bd91d1694cfd8c3fe6d8d8c39dff": { + "0a9f4395be2b49e484d8a8639bea82b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9cc15f84dcd54b2ca4ee56b56c2a8d26", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_50bbf71c81b94d23aeb3814fd48c052f", + "value": 50.0 + } + }, + "1f5c5a8eafb94b9a9b11d9a2524373d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d62ab3c07fc64753b2a9c29aea8050a2", + "placeholder": "​", + "style": "IPY_MODEL_63793e7ce97b43db816b5f644c926e7f", + "value": "number of examples processed for checking labels: " } }, - "5f05395507ac4367ae64c6ba9a41e376": { + "265276564615465aae7792742a910cf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1370,7 +1370,74 @@ "width": null } }, - "6100ae8ba0d54e21a507da746704062e": { + "381f4ed9e1cc4936a05b827e22b7d226": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4c99538a52524c55b6909964ce7c9d68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5b4c3e45e8848ffbc301b4507e649f1", + "placeholder": "​", + "style": "IPY_MODEL_ad51724cc1d6431d904bb6e18167ea25", + "value": " 10000/? [00:00<00:00, 1165602.49it/s]" + } + }, + "50bbf71c81b94d23aeb3814fd48c052f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "63793e7ce97b43db816b5f644c926e7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8187bd04584f405d9507f19902206d11": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1422,7 +1489,29 @@ "width": null } }, - "63d1a448b6a746f18ee2f037a92ae878": { + "8fc0f21110364ef8b4a28d24e2bd55e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1f5c5a8eafb94b9a9b11d9a2524373d7", + "IPY_MODEL_ce759ae3b428466aa400b60523204cbc", + "IPY_MODEL_4c99538a52524c55b6909964ce7c9d68" + ], + "layout": "IPY_MODEL_8187bd04584f405d9507f19902206d11" + } + }, + "91b32b8f1849447099270e102d55f348": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1437,13 +1526,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a80a6611d34f4705b4f07ebf44d92707", + "layout": "IPY_MODEL_960a5752066f4191bb38b7c279cd71ee", "placeholder": "​", - "style": "IPY_MODEL_2effe8a32eaa4e92abaa5cfd66d81dcb", - "value": " 10000/? [00:00<00:00, 1183093.76it/s]" + "style": "IPY_MODEL_381f4ed9e1cc4936a05b827e22b7d226", + "value": " 10000/? [00:00<00:00, 913831.54it/s]" } }, - "67bf9df6950044db8352f04efbecf277": { + "960a5752066f4191bb38b7c279cd71ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1495,7 +1584,7 @@ "width": null } }, - "69ec8fb5a49d4072a4b0ee16e18334df": { + "9bee374c69a64257bb771b86156bbde2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1510,13 +1599,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5f05395507ac4367ae64c6ba9a41e376", + "layout": "IPY_MODEL_01401acd053d494aa90753fa1b8c29ba", "placeholder": "​", - "style": "IPY_MODEL_522f0096addf4e0cbafbc1d1348408a1", - "value": " 10000/? [00:00<00:00, 948101.00it/s]" + "style": "IPY_MODEL_a813a7209e3749ad8bce32b87d8a1474", + "value": "number of examples processed for estimating thresholds: " } }, - "984a0aef565c492c93122b0c6cd2e272": { + "9cc15f84dcd54b2ca4ee56b56c2a8d26": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1568,23 +1657,37 @@ "width": null } }, - "a60031b8b82f49fbafcdb6359ff9ad02": { + "a813a7209e3749ad8bce32b87d8a1474": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ad51724cc1d6431d904bb6e18167ea25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "a80a6611d34f4705b4f07ebf44d92707": { + "c5b4c3e45e8848ffbc301b4507e649f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1636,53 +1739,53 @@ "width": null } }, - "c481e1fa4e204113b169f35e94dcd64d": { + "c8d58b7026a04e969e05f5cbd2b99e14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6100ae8ba0d54e21a507da746704062e", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a60031b8b82f49fbafcdb6359ff9ad02", - "value": 50.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9bee374c69a64257bb771b86156bbde2", + "IPY_MODEL_0a9f4395be2b49e484d8a8639bea82b5", + "IPY_MODEL_91b32b8f1849447099270e102d55f348" + ], + "layout": "IPY_MODEL_e591d29a3749442799df27c12ffbaf94" } }, - "d2907ab9e816444c921cba3edd090d1c": { + "ce759ae3b428466aa400b60523204cbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e69126c6e0524cfcafeb8b4ee9fa96bc", - "IPY_MODEL_f89f3d1d85684857aa38609ce181730f", - "IPY_MODEL_69ec8fb5a49d4072a4b0ee16e18334df" - ], - "layout": "IPY_MODEL_ee0899a9ff57472586211760d9d7a753" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_265276564615465aae7792742a910cf0", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_07a3f5a6aaad401a972197c77e87bf79", + "value": 50.0 } }, - "e1135200e6bc4c8d898c8dc36eb2cd8e": { + "d62ab3c07fc64753b2a9c29aea8050a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1734,50 +1837,7 @@ "width": null } }, - "e1401ba3b9414469b83ae25c9cddabf3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f7eb91c94209438b8648fd260292716e", - "IPY_MODEL_c481e1fa4e204113b169f35e94dcd64d", - "IPY_MODEL_63d1a448b6a746f18ee2f037a92ae878" - ], - "layout": "IPY_MODEL_e1135200e6bc4c8d898c8dc36eb2cd8e" - } - }, - "e69126c6e0524cfcafeb8b4ee9fa96bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4af3a63525c440a4abc52d769e9017dd", - "placeholder": "​", - "style": "IPY_MODEL_5e22bd91d1694cfd8c3fe6d8d8c39dff", - "value": "number of examples processed for estimating thresholds: " - } - }, - "ee0899a9ff57472586211760d9d7a753": { + "e591d29a3749442799df27c12ffbaf94": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1828,66 +1888,6 @@ "visibility": null, "width": null } - }, - "ee272707d3f34718a00e655664ab8731": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f7eb91c94209438b8648fd260292716e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_67bf9df6950044db8352f04efbecf277", - "placeholder": "​", - "style": "IPY_MODEL_ee272707d3f34718a00e655664ab8731", - "value": "number of examples processed for checking labels: " - } - }, - "f89f3d1d85684857aa38609ce181730f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_984a0aef565c492c93122b0c6cd2e272", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36e767e7e95d43ffb851228c4f91edbe", - "value": 50.0 - } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 533d95455..e0e73013f 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -888,25 +888,25 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1269,16 +1269,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 9.04it/s]
+
2%|▎ | 1/40 [00:00&lt;00:03, 9.97it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.04it/s]
+
2%|▎ | 1/40 [00:00<00:03, 9.97it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.04it/s]

+

2%|▎ | 1/40 [00:00<00:03, 9.97it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 42.57it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 48.20it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 42.57it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 48.20it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 42.57it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 48.20it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 57.36it/s]
+
42%|████▎ | 17/40 [00:00&lt;00:00, 60.18it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 57.36it/s]
+
42%|████▎ | 17/40 [00:00<00:00, 60.18it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 57.36it/s]

+

42%|████▎ | 17/40 [00:00<00:00, 60.18it/s]

-
60%|██████ | 24/40 [00:00&lt;00:00, 64.11it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 65.74it/s]

</pre>

-
60%|██████ | 24/40 [00:00<00:00, 64.11it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]

end{sphinxVerbatim}

-

60%|██████ | 24/40 [00:00<00:00, 64.11it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]

-
80%|████████ | 32/40 [00:00&lt;00:00, 68.31it/s]
+
82%|████████▎ | 33/40 [00:00&lt;00:00, 69.32it/s]

</pre>

-
80%|████████ | 32/40 [00:00<00:00, 68.31it/s]
+
82%|████████▎ | 33/40 [00:00<00:00, 69.32it/s]

end{sphinxVerbatim}

-

80%|████████ | 32/40 [00:00<00:00, 68.31it/s]

+

82%|████████▎ | 33/40 [00:00<00:00, 69.32it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 62.78it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 62.65it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 62.78it/s]
+
100%|██████████| 40/40 [00:00<00:00, 62.65it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 62.78it/s]

+

100%|██████████| 40/40 [00:00<00:00, 62.65it/s]

-
5%|▌ | 2/40 [00:00&lt;00:01, 19.18it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 18.01it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:01, 19.18it/s]
+
5%|▌ | 2/40 [00:00<00:02, 18.01it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:01, 19.18it/s]

+

5%|▌ | 2/40 [00:00<00:02, 18.01it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 52.54it/s]
+
25%|██▌ | 10/40 [00:00&lt;00:00, 50.14it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 52.54it/s]
+
25%|██▌ | 10/40 [00:00<00:00, 50.14it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 52.54it/s]

+

25%|██▌ | 10/40 [00:00<00:00, 50.14it/s]

-
45%|████▌ | 18/40 [00:00&lt;00:00, 63.06it/s]
+
45%|████▌ | 18/40 [00:00&lt;00:00, 60.51it/s]

</pre>

-
45%|████▌ | 18/40 [00:00<00:00, 63.06it/s]
+
45%|████▌ | 18/40 [00:00<00:00, 60.51it/s]

end{sphinxVerbatim}

-

45%|████▌ | 18/40 [00:00<00:00, 63.06it/s]

+

45%|████▌ | 18/40 [00:00<00:00, 60.51it/s]

-
65%|██████▌ | 26/40 [00:00&lt;00:00, 68.34it/s]
+
62%|██████▎ | 25/40 [00:00&lt;00:00, 62.34it/s]

</pre>

-
65%|██████▌ | 26/40 [00:00<00:00, 68.34it/s]
+
62%|██████▎ | 25/40 [00:00<00:00, 62.34it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 26/40 [00:00<00:00, 68.34it/s]

+

62%|██████▎ | 25/40 [00:00<00:00, 62.34it/s]

-
85%|████████▌ | 34/40 [00:00&lt;00:00, 71.92it/s]
+
82%|████████▎ | 33/40 [00:00&lt;00:00, 67.31it/s]

</pre>

-
85%|████████▌ | 34/40 [00:00<00:00, 71.92it/s]
+
82%|████████▎ | 33/40 [00:00<00:00, 67.31it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 34/40 [00:00<00:00, 71.92it/s]

+

82%|████████▎ | 33/40 [00:00<00:00, 67.31it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 65.99it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 63.76it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 65.99it/s]
+
100%|██████████| 40/40 [00:00<00:00, 63.76it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 65.99it/s]

+

100%|██████████| 40/40 [00:00<00:00, 63.76it/s]

@@ -1665,16 +1665,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
5%|▌ | 2/40 [00:00&lt;00:01, 19.17it/s]
+
8%|▊ | 3/40 [00:00&lt;00:01, 25.95it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:01, 19.17it/s]
+
8%|▊ | 3/40 [00:00<00:01, 25.95it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:01, 19.17it/s]

+

8%|▊ | 3/40 [00:00<00:01, 25.95it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 47.23it/s]
+
28%|██▊ | 11/40 [00:00&lt;00:00, 53.82it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 47.23it/s]
+
28%|██▊ | 11/40 [00:00<00:00, 53.82it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 47.23it/s]

+

28%|██▊ | 11/40 [00:00<00:00, 53.82it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 59.67it/s]
+
48%|████▊ | 19/40 [00:00&lt;00:00, 63.69it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 59.67it/s]
+
48%|████▊ | 19/40 [00:00<00:00, 63.69it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 59.67it/s]

+

48%|████▊ | 19/40 [00:00<00:00, 63.69it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 65.28it/s]
+
65%|██████▌ | 26/40 [00:00&lt;00:00, 64.34it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 65.28it/s]
+
65%|██████▌ | 26/40 [00:00<00:00, 64.34it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 65.28it/s]

+

65%|██████▌ | 26/40 [00:00<00:00, 64.34it/s]

-
82%|████████▎ | 33/40 [00:00&lt;00:00, 68.98it/s]
+
82%|████████▎ | 33/40 [00:00&lt;00:00, 65.40it/s]

</pre>

-
82%|████████▎ | 33/40 [00:00<00:00, 68.98it/s]
+
82%|████████▎ | 33/40 [00:00<00:00, 65.40it/s]

end{sphinxVerbatim}

-

82%|████████▎ | 33/40 [00:00<00:00, 68.98it/s]

+

82%|████████▎ | 33/40 [00:00<00:00, 65.40it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 62.09it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 64.01it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 62.09it/s]
+
100%|██████████| 40/40 [00:00<00:00, 64.01it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 62.09it/s]

+

100%|██████████| 40/40 [00:00<00:00, 64.01it/s]

-
2%|▎ | 1/40 [00:00&lt;00:05, 7.50it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 17.33it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:05, 7.50it/s]
+
5%|▌ | 2/40 [00:00<00:02, 17.33it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:05, 7.50it/s]

+

5%|▌ | 2/40 [00:00<00:02, 17.33it/s]

-
22%|██▎ | 9/40 [00:00&lt;00:00, 43.21it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 43.06it/s]

</pre>

-
22%|██▎ | 9/40 [00:00<00:00, 43.21it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 43.06it/s]

end{sphinxVerbatim}

-

22%|██▎ | 9/40 [00:00<00:00, 43.21it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 43.06it/s]

-
42%|████▎ | 17/40 [00:00&lt;00:00, 56.82it/s]
+
40%|████ | 16/40 [00:00&lt;00:00, 52.93it/s]

</pre>

-
42%|████▎ | 17/40 [00:00<00:00, 56.82it/s]
+
40%|████ | 16/40 [00:00<00:00, 52.93it/s]

end{sphinxVerbatim}

-

42%|████▎ | 17/40 [00:00<00:00, 56.82it/s]

+

40%|████ | 16/40 [00:00<00:00, 52.93it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 63.54it/s]
+
57%|█████▊ | 23/40 [00:00&lt;00:00, 57.07it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 63.54it/s]
+
57%|█████▊ | 23/40 [00:00<00:00, 57.07it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 63.54it/s]

+

57%|█████▊ | 23/40 [00:00<00:00, 57.07it/s]

-
82%|████████▎ | 33/40 [00:00&lt;00:00, 68.22it/s]
+
78%|███████▊ | 31/40 [00:00&lt;00:00, 62.51it/s]

</pre>

-
82%|████████▎ | 33/40 [00:00<00:00, 68.22it/s]
+
78%|███████▊ | 31/40 [00:00<00:00, 62.51it/s]

end{sphinxVerbatim}

-

82%|████████▎ | 33/40 [00:00<00:00, 68.22it/s]

+

78%|███████▊ | 31/40 [00:00<00:00, 62.51it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 61.30it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 59.78it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 61.30it/s]
+
100%|██████████| 40/40 [00:00<00:00, 59.78it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 61.30it/s]

+

100%|██████████| 40/40 [00:00<00:00, 59.78it/s]

@@ -2061,16 +2061,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
5%|▌ | 2/40 [00:00&lt;00:02, 17.49it/s]
+
8%|▊ | 3/40 [00:00&lt;00:01, 27.26it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 17.49it/s]
+
8%|▊ | 3/40 [00:00<00:01, 27.26it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 17.49it/s]

+

8%|▊ | 3/40 [00:00<00:01, 27.26it/s]

-
25%|██▌ | 10/40 [00:00&lt;00:00, 50.44it/s]
+
28%|██▊ | 11/40 [00:00&lt;00:00, 55.24it/s]

</pre>

-
25%|██▌ | 10/40 [00:00<00:00, 50.44it/s]
+
28%|██▊ | 11/40 [00:00<00:00, 55.24it/s]

end{sphinxVerbatim}

-

25%|██▌ | 10/40 [00:00<00:00, 50.44it/s]

+

28%|██▊ | 11/40 [00:00<00:00, 55.24it/s]

-
45%|████▌ | 18/40 [00:00&lt;00:00, 60.96it/s]
+
48%|████▊ | 19/40 [00:00&lt;00:00, 64.49it/s]

</pre>

-
45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]
+
48%|████▊ | 19/40 [00:00<00:00, 64.49it/s]

end{sphinxVerbatim}

-

45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]

+

48%|████▊ | 19/40 [00:00<00:00, 64.49it/s]

-
62%|██████▎ | 25/40 [00:00&lt;00:00, 63.96it/s]
+
68%|██████▊ | 27/40 [00:00&lt;00:00, 69.00it/s]

</pre>

-
62%|██████▎ | 25/40 [00:00<00:00, 63.96it/s]
+
68%|██████▊ | 27/40 [00:00<00:00, 69.00it/s]

end{sphinxVerbatim}

-

62%|██████▎ | 25/40 [00:00<00:00, 63.96it/s]

+

68%|██████▊ | 27/40 [00:00<00:00, 69.00it/s]

-
82%|████████▎ | 33/40 [00:00&lt;00:00, 67.69it/s]
+
90%|█████████ | 36/40 [00:00&lt;00:00, 73.84it/s]

</pre>

-
82%|████████▎ | 33/40 [00:00<00:00, 67.69it/s]
+
90%|█████████ | 36/40 [00:00<00:00, 73.84it/s]

end{sphinxVerbatim}

-

82%|████████▎ | 33/40 [00:00<00:00, 67.69it/s]

+

90%|█████████ | 36/40 [00:00<00:00, 73.84it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 63.32it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 67.59it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 63.32it/s]
+
100%|██████████| 40/40 [00:00<00:00, 67.59it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 63.32it/s]

+

100%|██████████| 40/40 [00:00<00:00, 67.59it/s]

-
2%|▎ | 1/40 [00:00&lt;00:04, 9.55it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 19.00it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.55it/s]
+
5%|▌ | 2/40 [00:00<00:02, 19.00it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.55it/s]

+

5%|▌ | 2/40 [00:00<00:02, 19.00it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 44.04it/s]
+
25%|██▌ | 10/40 [00:00&lt;00:00, 52.63it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 44.04it/s]
+
25%|██▌ | 10/40 [00:00<00:00, 52.63it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 44.04it/s]

+

25%|██▌ | 10/40 [00:00<00:00, 52.63it/s]

-
38%|███▊ | 15/40 [00:00&lt;00:00, 54.25it/s]
+
45%|████▌ | 18/40 [00:00&lt;00:00, 63.02it/s]

</pre>

-
38%|███▊ | 15/40 [00:00<00:00, 54.25it/s]
+
45%|████▌ | 18/40 [00:00<00:00, 63.02it/s]

end{sphinxVerbatim}

-

38%|███▊ | 15/40 [00:00<00:00, 54.25it/s]

+

45%|████▌ | 18/40 [00:00<00:00, 63.02it/s]

-
57%|█████▊ | 23/40 [00:00&lt;00:00, 62.12it/s]
+
65%|██████▌ | 26/40 [00:00&lt;00:00, 68.31it/s]

</pre>

-
57%|█████▊ | 23/40 [00:00<00:00, 62.12it/s]
+
65%|██████▌ | 26/40 [00:00<00:00, 68.31it/s]

end{sphinxVerbatim}

-

57%|█████▊ | 23/40 [00:00<00:00, 62.12it/s]

+

65%|██████▌ | 26/40 [00:00<00:00, 68.31it/s]

-
78%|███████▊ | 31/40 [00:00&lt;00:00, 67.11it/s]
+
88%|████████▊ | 35/40 [00:00&lt;00:00, 73.71it/s]

</pre>

-
78%|███████▊ | 31/40 [00:00<00:00, 67.11it/s]
+
88%|████████▊ | 35/40 [00:00<00:00, 73.71it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 31/40 [00:00<00:00, 67.11it/s]

- - -
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
98%|█████████▊| 39/40 [00:00&lt;00:00, 69.06it/s]
-

</pre>

-
-
-
98%|█████████▊| 39/40 [00:00<00:00, 69.06it/s]
-

end{sphinxVerbatim}

-
-
-
-

98%|█████████▊| 39/40 [00:00<00:00, 69.06it/s]

+

88%|████████▊ | 35/40 [00:00<00:00, 73.71it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 60.60it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 67.51it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 60.60it/s]
+
100%|██████████| 40/40 [00:00<00:00, 67.51it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 60.60it/s]

+

100%|██████████| 40/40 [00:00<00:00, 67.51it/s]

-
+
@@ -3279,35 +3253,35 @@

Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -3457,7 +3431,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index e02fa69d1..fbad8e084 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:41.067246Z", - "iopub.status.busy": "2024-01-17T18:05:41.067031Z", - "iopub.status.idle": "2024-01-17T18:05:43.291099Z", - "shell.execute_reply": "2024-01-17T18:05:43.290418Z" + "iopub.execute_input": "2024-01-17T23:07:47.931457Z", + "iopub.status.busy": "2024-01-17T23:07:47.931264Z", + "iopub.status.idle": "2024-01-17T23:07:50.035403Z", + "shell.execute_reply": "2024-01-17T23:07:50.034793Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:43.294169Z", - "iopub.status.busy": "2024-01-17T18:05:43.293669Z", - "iopub.status.idle": "2024-01-17T18:05:43.297424Z", - "shell.execute_reply": "2024-01-17T18:05:43.296885Z" + "iopub.execute_input": "2024-01-17T23:07:50.038356Z", + "iopub.status.busy": "2024-01-17T23:07:50.037866Z", + "iopub.status.idle": "2024-01-17T23:07:50.041629Z", + "shell.execute_reply": "2024-01-17T23:07:50.041029Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:43.299869Z", - "iopub.status.busy": "2024-01-17T18:05:43.299508Z", - "iopub.status.idle": "2024-01-17T18:05:45.744718Z", - "shell.execute_reply": "2024-01-17T18:05:45.744111Z" + "iopub.execute_input": "2024-01-17T23:07:50.043951Z", + "iopub.status.busy": "2024-01-17T23:07:50.043515Z", + "iopub.status.idle": "2024-01-17T23:07:53.352869Z", + "shell.execute_reply": "2024-01-17T23:07:53.352216Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9218ba50145b4c1abb05285d39489f7b", + "model_id": "79ccb0a1555b42b5a881bd1c68892db9", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "411e7b1250d04fceabc4a56d3aa7c5ba", + "model_id": "3b8311a276a84a2b810f57fb87ac7a1c", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34ddbf7efb384ee4960a77089187f278", + "model_id": "19d4a001660c44e8a52d8d2f5e1ea989", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "13b1818046c2493686e01a759bad0eef", + "model_id": "7ce4749d923744c09bd675ee944baaad", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:45.747577Z", - "iopub.status.busy": "2024-01-17T18:05:45.747182Z", - "iopub.status.idle": "2024-01-17T18:05:45.751308Z", - "shell.execute_reply": "2024-01-17T18:05:45.750698Z" + "iopub.execute_input": "2024-01-17T23:07:53.355203Z", + "iopub.status.busy": "2024-01-17T23:07:53.354998Z", + "iopub.status.idle": "2024-01-17T23:07:53.359311Z", + "shell.execute_reply": "2024-01-17T23:07:53.358704Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:45.753514Z", - "iopub.status.busy": "2024-01-17T18:05:45.753224Z", - "iopub.status.idle": "2024-01-17T18:05:58.059408Z", - "shell.execute_reply": "2024-01-17T18:05:58.058802Z" + "iopub.execute_input": "2024-01-17T23:07:53.361599Z", + "iopub.status.busy": "2024-01-17T23:07:53.361259Z", + "iopub.status.idle": "2024-01-17T23:08:05.481673Z", + "shell.execute_reply": "2024-01-17T23:08:05.480925Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "76f30844c4444b9cb566e2bb926b7b40", + "model_id": "cf1bbec90cc743c19c044238bc5cd410", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:05:58.062215Z", - "iopub.status.busy": "2024-01-17T18:05:58.061961Z", - "iopub.status.idle": "2024-01-17T18:06:20.156233Z", - "shell.execute_reply": "2024-01-17T18:06:20.155534Z" + "iopub.execute_input": "2024-01-17T23:08:05.484696Z", + "iopub.status.busy": "2024-01-17T23:08:05.484433Z", + "iopub.status.idle": "2024-01-17T23:08:26.795293Z", + "shell.execute_reply": "2024-01-17T23:08:26.794657Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.159472Z", - "iopub.status.busy": "2024-01-17T18:06:20.159075Z", - "iopub.status.idle": "2024-01-17T18:06:20.164287Z", - "shell.execute_reply": "2024-01-17T18:06:20.163771Z" + "iopub.execute_input": "2024-01-17T23:08:26.798340Z", + "iopub.status.busy": "2024-01-17T23:08:26.797902Z", + "iopub.status.idle": "2024-01-17T23:08:26.804100Z", + "shell.execute_reply": "2024-01-17T23:08:26.803564Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.166658Z", - "iopub.status.busy": "2024-01-17T18:06:20.166314Z", - "iopub.status.idle": "2024-01-17T18:06:20.170443Z", - "shell.execute_reply": "2024-01-17T18:06:20.169973Z" + "iopub.execute_input": "2024-01-17T23:08:26.806531Z", + "iopub.status.busy": "2024-01-17T23:08:26.806178Z", + "iopub.status.idle": "2024-01-17T23:08:26.810192Z", + "shell.execute_reply": "2024-01-17T23:08:26.809670Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.172709Z", - "iopub.status.busy": "2024-01-17T18:06:20.172347Z", - "iopub.status.idle": "2024-01-17T18:06:20.181874Z", - "shell.execute_reply": "2024-01-17T18:06:20.181379Z" + "iopub.execute_input": "2024-01-17T23:08:26.812487Z", + "iopub.status.busy": "2024-01-17T23:08:26.812126Z", + "iopub.status.idle": "2024-01-17T23:08:26.821683Z", + "shell.execute_reply": "2024-01-17T23:08:26.821162Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.184367Z", - "iopub.status.busy": "2024-01-17T18:06:20.183884Z", - "iopub.status.idle": "2024-01-17T18:06:20.214975Z", - "shell.execute_reply": "2024-01-17T18:06:20.214272Z" + "iopub.execute_input": "2024-01-17T23:08:26.823908Z", + "iopub.status.busy": "2024-01-17T23:08:26.823540Z", + "iopub.status.idle": "2024-01-17T23:08:26.852714Z", + "shell.execute_reply": "2024-01-17T23:08:26.852213Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:20.218114Z", - "iopub.status.busy": "2024-01-17T18:06:20.217484Z", - "iopub.status.idle": "2024-01-17T18:06:52.341728Z", - "shell.execute_reply": "2024-01-17T18:06:52.340867Z" + "iopub.execute_input": "2024-01-17T23:08:26.855055Z", + "iopub.status.busy": "2024-01-17T23:08:26.854682Z", + "iopub.status.idle": "2024-01-17T23:08:57.530989Z", + "shell.execute_reply": "2024-01-17T23:08:57.530120Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.896\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.560\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.667\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.349\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.04it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.97it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.57it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 48.20it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 57.36it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 60.18it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 24/40 [00:00<00:00, 64.11it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 65.74it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 68.31it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 69.32it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.78it/s]" + "100%|██████████| 40/40 [00:00<00:00, 62.65it/s]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.18it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.01it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 52.54it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 50.14it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 63.06it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 60.51it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 68.34it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 62.34it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 71.92it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 67.31it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.99it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.76it/s]" ] }, { @@ -882,14 +882,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.738\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.550\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.632\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.337\n", "Computing feature embeddings ...\n" ] }, @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:01, 19.17it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 25.95it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 47.23it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 53.82it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.67it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 63.69it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 65.28it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 64.34it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.98it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 65.40it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 62.09it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.01it/s]" ] }, { @@ -976,7 +976,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 7.50it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.33it/s]" ] }, { @@ -984,7 +984,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 43.21it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 43.06it/s]" ] }, { @@ -992,7 +992,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 56.82it/s]" + " 40%|████ | 16/40 [00:00<00:00, 52.93it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.54it/s]" + " 57%|█████▊ | 23/40 [00:00<00:00, 57.07it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 68.22it/s]" + " 78%|███████▊ | 31/40 [00:00<00:00, 62.51it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 61.30it/s]" + "100%|██████████| 40/40 [00:00<00:00, 59.78it/s]" ] }, { @@ -1038,14 +1038,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.767\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.749\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.551\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.346\n", "Computing feature embeddings ...\n" ] }, @@ -1062,7 +1062,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.49it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 27.26it/s]" ] }, { @@ -1070,7 +1070,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.44it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 55.24it/s]" ] }, { @@ -1078,7 +1078,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 64.49it/s]" ] }, { @@ -1086,7 +1086,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 63.96it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 69.00it/s]" ] }, { @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 67.69it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 73.84it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 63.32it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.59it/s]" ] }, { @@ -1132,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.55it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 19.00it/s]" ] }, { @@ -1140,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 44.04it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 52.63it/s]" ] }, { @@ -1148,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 54.25it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 63.02it/s]" ] }, { @@ -1156,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 62.12it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 68.31it/s]" ] }, { @@ -1164,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 67.11it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 73.71it/s]" ] }, { @@ -1172,15 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 39/40 [00:00<00:00, 69.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.60it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.51it/s]" ] }, { @@ -1257,10 +1249,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:52.344865Z", - "iopub.status.busy": "2024-01-17T18:06:52.344261Z", - "iopub.status.idle": "2024-01-17T18:06:52.360939Z", - "shell.execute_reply": "2024-01-17T18:06:52.360351Z" + "iopub.execute_input": "2024-01-17T23:08:57.533946Z", + "iopub.status.busy": "2024-01-17T23:08:57.533629Z", + "iopub.status.idle": "2024-01-17T23:08:57.550228Z", + "shell.execute_reply": "2024-01-17T23:08:57.549699Z" } }, "outputs": [], @@ -1285,10 +1277,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:52.364131Z", - "iopub.status.busy": "2024-01-17T18:06:52.363638Z", - "iopub.status.idle": "2024-01-17T18:06:52.849592Z", - "shell.execute_reply": "2024-01-17T18:06:52.848859Z" + "iopub.execute_input": "2024-01-17T23:08:57.552782Z", + "iopub.status.busy": "2024-01-17T23:08:57.552226Z", + "iopub.status.idle": "2024-01-17T23:08:57.986311Z", + "shell.execute_reply": "2024-01-17T23:08:57.985707Z" } }, "outputs": [], @@ -1308,10 +1300,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:06:52.852535Z", - "iopub.status.busy": "2024-01-17T18:06:52.852301Z", - "iopub.status.idle": "2024-01-17T18:10:13.364394Z", - "shell.execute_reply": "2024-01-17T18:10:13.363707Z" + "iopub.execute_input": "2024-01-17T23:08:57.989260Z", + "iopub.status.busy": "2024-01-17T23:08:57.988841Z", + "iopub.status.idle": "2024-01-17T23:12:17.592442Z", + "shell.execute_reply": "2024-01-17T23:12:17.591804Z" } }, "outputs": [ @@ -1350,7 +1342,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4788f80918f340f199482171f3731dd8", + "model_id": "c1f8c848d7954850a757e5e8fa83f920", "version_major": 2, "version_minor": 0 }, @@ -1389,10 +1381,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.367055Z", - "iopub.status.busy": "2024-01-17T18:10:13.366655Z", - "iopub.status.idle": "2024-01-17T18:10:13.890209Z", - "shell.execute_reply": "2024-01-17T18:10:13.889535Z" + "iopub.execute_input": "2024-01-17T23:12:17.595341Z", + "iopub.status.busy": "2024-01-17T23:12:17.594687Z", + "iopub.status.idle": "2024-01-17T23:12:18.109017Z", + "shell.execute_reply": "2024-01-17T23:12:18.108362Z" } }, "outputs": [ @@ -1604,10 +1596,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.893666Z", - "iopub.status.busy": "2024-01-17T18:10:13.893098Z", - "iopub.status.idle": "2024-01-17T18:10:13.957139Z", - "shell.execute_reply": "2024-01-17T18:10:13.956469Z" + "iopub.execute_input": "2024-01-17T23:12:18.112328Z", + "iopub.status.busy": "2024-01-17T23:12:18.111889Z", + "iopub.status.idle": "2024-01-17T23:12:18.175100Z", + "shell.execute_reply": "2024-01-17T23:12:18.174534Z" } }, "outputs": [ @@ -1711,10 +1703,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.959807Z", - "iopub.status.busy": "2024-01-17T18:10:13.959450Z", - "iopub.status.idle": "2024-01-17T18:10:13.968741Z", - "shell.execute_reply": "2024-01-17T18:10:13.968232Z" + "iopub.execute_input": "2024-01-17T23:12:18.177637Z", + "iopub.status.busy": "2024-01-17T23:12:18.177428Z", + "iopub.status.idle": "2024-01-17T23:12:18.186532Z", + "shell.execute_reply": "2024-01-17T23:12:18.185876Z" } }, "outputs": [ @@ -1844,10 +1836,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.971381Z", - "iopub.status.busy": "2024-01-17T18:10:13.970900Z", - "iopub.status.idle": "2024-01-17T18:10:13.976151Z", - "shell.execute_reply": "2024-01-17T18:10:13.975669Z" + "iopub.execute_input": "2024-01-17T23:12:18.188808Z", + "iopub.status.busy": "2024-01-17T23:12:18.188604Z", + "iopub.status.idle": "2024-01-17T23:12:18.193610Z", + "shell.execute_reply": "2024-01-17T23:12:18.193087Z" }, "nbsphinx": "hidden" }, @@ -1893,10 +1885,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:13.978642Z", - "iopub.status.busy": "2024-01-17T18:10:13.978133Z", - "iopub.status.idle": "2024-01-17T18:10:14.471555Z", - "shell.execute_reply": "2024-01-17T18:10:14.470916Z" + "iopub.execute_input": "2024-01-17T23:12:18.195809Z", + "iopub.status.busy": "2024-01-17T23:12:18.195608Z", + "iopub.status.idle": "2024-01-17T23:12:18.652330Z", + "shell.execute_reply": "2024-01-17T23:12:18.651636Z" } }, "outputs": [ @@ -1931,10 +1923,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.474235Z", - "iopub.status.busy": "2024-01-17T18:10:14.473823Z", - "iopub.status.idle": "2024-01-17T18:10:14.482948Z", - "shell.execute_reply": "2024-01-17T18:10:14.482455Z" + "iopub.execute_input": "2024-01-17T23:12:18.655261Z", + "iopub.status.busy": "2024-01-17T23:12:18.654743Z", + "iopub.status.idle": "2024-01-17T23:12:18.663764Z", + "shell.execute_reply": "2024-01-17T23:12:18.663258Z" } }, "outputs": [ @@ -2101,10 +2093,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.485528Z", - "iopub.status.busy": "2024-01-17T18:10:14.485164Z", - "iopub.status.idle": "2024-01-17T18:10:14.492848Z", - "shell.execute_reply": "2024-01-17T18:10:14.492364Z" + "iopub.execute_input": "2024-01-17T23:12:18.666187Z", + "iopub.status.busy": "2024-01-17T23:12:18.665737Z", + "iopub.status.idle": "2024-01-17T23:12:18.674326Z", + "shell.execute_reply": "2024-01-17T23:12:18.673700Z" }, "nbsphinx": "hidden" }, @@ -2180,10 +2172,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.496054Z", - "iopub.status.busy": "2024-01-17T18:10:14.495663Z", - "iopub.status.idle": "2024-01-17T18:10:14.964665Z", - "shell.execute_reply": "2024-01-17T18:10:14.963989Z" + "iopub.execute_input": "2024-01-17T23:12:18.676786Z", + "iopub.status.busy": "2024-01-17T23:12:18.676313Z", + "iopub.status.idle": "2024-01-17T23:12:19.151323Z", + "shell.execute_reply": "2024-01-17T23:12:19.150735Z" } }, "outputs": [ @@ -2220,10 +2212,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.967054Z", - "iopub.status.busy": "2024-01-17T18:10:14.966847Z", - "iopub.status.idle": "2024-01-17T18:10:14.982866Z", - "shell.execute_reply": "2024-01-17T18:10:14.982341Z" + "iopub.execute_input": "2024-01-17T23:12:19.153906Z", + "iopub.status.busy": "2024-01-17T23:12:19.153526Z", + "iopub.status.idle": "2024-01-17T23:12:19.169696Z", + "shell.execute_reply": "2024-01-17T23:12:19.169068Z" } }, "outputs": [ @@ -2380,10 +2372,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.985211Z", - "iopub.status.busy": "2024-01-17T18:10:14.984998Z", - "iopub.status.idle": "2024-01-17T18:10:14.990999Z", - "shell.execute_reply": "2024-01-17T18:10:14.990478Z" + "iopub.execute_input": "2024-01-17T23:12:19.172357Z", + "iopub.status.busy": "2024-01-17T23:12:19.172040Z", + "iopub.status.idle": "2024-01-17T23:12:19.178064Z", + "shell.execute_reply": "2024-01-17T23:12:19.177456Z" }, "nbsphinx": "hidden" }, @@ -2428,10 +2420,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:14.993471Z", - "iopub.status.busy": "2024-01-17T18:10:14.993012Z", - "iopub.status.idle": "2024-01-17T18:10:15.582338Z", - "shell.execute_reply": "2024-01-17T18:10:15.581670Z" + "iopub.execute_input": "2024-01-17T23:12:19.180611Z", + "iopub.status.busy": "2024-01-17T23:12:19.180056Z", + "iopub.status.idle": "2024-01-17T23:12:19.840971Z", + "shell.execute_reply": "2024-01-17T23:12:19.840346Z" } }, "outputs": [ @@ -2513,10 +2505,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.585070Z", - "iopub.status.busy": "2024-01-17T18:10:15.584860Z", - "iopub.status.idle": "2024-01-17T18:10:15.594353Z", - "shell.execute_reply": "2024-01-17T18:10:15.593626Z" + "iopub.execute_input": "2024-01-17T23:12:19.844161Z", + "iopub.status.busy": "2024-01-17T23:12:19.843784Z", + "iopub.status.idle": "2024-01-17T23:12:19.853652Z", + "shell.execute_reply": "2024-01-17T23:12:19.853100Z" } }, "outputs": [ @@ -2541,47 +2533,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2644,10 +2636,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.597141Z", - "iopub.status.busy": "2024-01-17T18:10:15.596921Z", - "iopub.status.idle": "2024-01-17T18:10:15.602211Z", - "shell.execute_reply": "2024-01-17T18:10:15.601473Z" + "iopub.execute_input": "2024-01-17T23:12:19.856574Z", + "iopub.status.busy": "2024-01-17T23:12:19.856209Z", + "iopub.status.idle": "2024-01-17T23:12:19.862408Z", + "shell.execute_reply": "2024-01-17T23:12:19.861843Z" }, "nbsphinx": "hidden" }, @@ -2684,10 +2676,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.604750Z", - "iopub.status.busy": "2024-01-17T18:10:15.604550Z", - "iopub.status.idle": "2024-01-17T18:10:15.778107Z", - "shell.execute_reply": "2024-01-17T18:10:15.777326Z" + "iopub.execute_input": "2024-01-17T23:12:19.865248Z", + "iopub.status.busy": "2024-01-17T23:12:19.864885Z", + "iopub.status.idle": "2024-01-17T23:12:20.064339Z", + "shell.execute_reply": "2024-01-17T23:12:20.063776Z" } }, "outputs": [ @@ -2729,10 +2721,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.781004Z", - "iopub.status.busy": "2024-01-17T18:10:15.780794Z", - "iopub.status.idle": "2024-01-17T18:10:15.789706Z", - "shell.execute_reply": "2024-01-17T18:10:15.788980Z" + "iopub.execute_input": "2024-01-17T23:12:20.066913Z", + "iopub.status.busy": "2024-01-17T23:12:20.066523Z", + "iopub.status.idle": "2024-01-17T23:12:20.074947Z", + "shell.execute_reply": "2024-01-17T23:12:20.074451Z" } }, "outputs": [ @@ -2818,10 +2810,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.792222Z", - "iopub.status.busy": "2024-01-17T18:10:15.791846Z", - "iopub.status.idle": "2024-01-17T18:10:15.991891Z", - "shell.execute_reply": "2024-01-17T18:10:15.991225Z" + "iopub.execute_input": "2024-01-17T23:12:20.077342Z", + "iopub.status.busy": "2024-01-17T23:12:20.076942Z", + "iopub.status.idle": "2024-01-17T23:12:20.273417Z", + "shell.execute_reply": "2024-01-17T23:12:20.272758Z" } }, "outputs": [ @@ -2861,10 +2853,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:15.994477Z", - "iopub.status.busy": "2024-01-17T18:10:15.994081Z", - "iopub.status.idle": "2024-01-17T18:10:15.998830Z", - "shell.execute_reply": "2024-01-17T18:10:15.998287Z" + "iopub.execute_input": "2024-01-17T23:12:20.275994Z", + "iopub.status.busy": "2024-01-17T23:12:20.275783Z", + "iopub.status.idle": "2024-01-17T23:12:20.280537Z", + "shell.execute_reply": "2024-01-17T23:12:20.280012Z" }, "nbsphinx": "hidden" }, @@ -2901,39 +2893,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0422f06140e1429bb9df4d5e22a01ac2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "06b2bf8222ef4b6db00a974dc321d1d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "09b79e0723394c75a9295ba283a8fd52": { + "0397c83a64194b3e8f302bed7a8d9f8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2948,13 +2908,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6c248b337d0c458ead2d440b3472437f", + "layout": "IPY_MODEL_e6236cd92f06491a83ea7c38bf31a7e7", "placeholder": "​", - "style": "IPY_MODEL_0ddd9623827d4a419d5c51467297b6bd", - "value": " 60000/0 [00:00<00:00, 817475.64 examples/s]" + "style": "IPY_MODEL_2bfaa3482cd24c6f8a7f4c4e881e2ca7", + "value": "Generating train split: " } }, - "0a024c8dbb214427b3250ba948806841": { + "045208935e1f4bd6a391b26b3983d049": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2970,31 +2930,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_19629acb9010471ba50b5b29e00183c6", - "max": 1.0, + "layout": "IPY_MODEL_7b8800a4904440598f0e45fab5fbd35a", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f72cf07726314106aaa73a8aa0dbb3d9", - "value": 1.0 - } - }, - "0d884ce3ab3b4e51bd48a78309442fe2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_98fe2af32bbc4615b9fd39e09236fd2f", + "value": 60000.0 } }, - "0ddd9623827d4a419d5c51467297b6bd": { + "06760201f05c4000afc116288d98641b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3009,53 +2953,28 @@ "description_width": "" } }, - "1236cf2a98e4455b930f467d1e95e56f": { + "0a530e5055f0497090b37f9ec22dadae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a649432ed8c04a3b87f55c6e1cbc806d", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6616b30d88f3472290070dde94c3d289", - "value": 60000.0 - } - }, - "13b1818046c2493686e01a759bad0eef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3dd51d9190ef4190bd322c16bed1fb06", - "IPY_MODEL_5c339eb01faf4cf5a621c0edb6c44b68", - "IPY_MODEL_cf40c5cc5c3e42069f474bc592b94779" - ], - "layout": "IPY_MODEL_5d82cde87f5c4f48b90eca1c0c7219d2" + "layout": "IPY_MODEL_3bf8c457de024516a37553baea232c37", + "placeholder": "​", + "style": "IPY_MODEL_1ed5c49b1ddb4b7dbf0853bcd1a3778a", + "value": "Downloading data: 100%" } }, - "13e232e4e5e148d8a3faa3c2f89ea970": { + "0c58d5d607b74c128d2fed5574d2b2f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3107,7 +3026,7 @@ "width": null } }, - "14970ee75a2d4d2b84651021085a0bab": { + "179264665b3d4da192240f1ac09ac5e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3122,37 +3041,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2dbb0555cbba41679ae0e974d1f96ac2", + "layout": "IPY_MODEL_c3549b4dff2849a49f4c582646e80469", "placeholder": "​", - "style": "IPY_MODEL_94474ce5fa7c49859fb2ba027b64aef7", - "value": "Computing checksums: 100%" + "style": "IPY_MODEL_99d94d93be9e48819c0c81e7e63b86e8", + "value": "Map (num_proc=4): 100%" } }, - "18e94be5479c4f7bade2bb296c771679": { + "19d4a001660c44e8a52d8d2f5e1ea989": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cf90eb9f6391477bbf013ddee2032497", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9af6f90090b44f5a994f4d2ef2c28c38", - "value": 2.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0397c83a64194b3e8f302bed7a8d9f8c", + "IPY_MODEL_231dea10656441a1a0519b295f0d7bfd", + "IPY_MODEL_84270cee9acd46f7b5711cc0cb1d1790" + ], + "layout": "IPY_MODEL_80393a3a390947c29ad3e5befeee9f1a" } }, - "19629acb9010471ba50b5b29e00183c6": { + "1a9050a96ba840b1981a446cc79d9a2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3201,25 +3118,62 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "1e1ecba39033420591ada0b76d527bf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "1a99e1fffc83437580ec94981db5304f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "20170352b29c453e997c9a95c3a33b80": { + "1c435eee98164c94875a24dc9213ab07": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3271,7 +3225,22 @@ "width": null } }, - "25cccd29d96c4634a04b0cb4c0ae7a99": { + "1ed5c49b1ddb4b7dbf0853bcd1a3778a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "231dea10656441a1a0519b295f0d7bfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3287,58 +3256,61 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_adfa225ec8f64e7880afb3cb066db908", - "max": 60000.0, + "layout": "IPY_MODEL_f2f5ea97fde04ab1992313b89ce1e044", + "max": 1.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f7614c62ca994b079963f2061f90aec2", - "value": 60000.0 + "style": "IPY_MODEL_995e09d244bd49bd8d7ac45836ec79f9", + "value": 1.0 } }, - "293d1b710eea4f9fa017893a7a977f6d": { + "2bfaa3482cd24c6f8a7f4c4e881e2ca7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_14970ee75a2d4d2b84651021085a0bab", - "IPY_MODEL_18e94be5479c4f7bade2bb296c771679", - "IPY_MODEL_41a78828843c457294fc38e7f334ef9a" - ], - "layout": "IPY_MODEL_819ad8fec46043248eb022c81bb1b5b6" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "2b8505492b124436bf13b9605b3b7dd8": { + "2f977c6c9def44e5a688a578fdbe8f46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e9f3c1977bc4cc18ccf7c0091220fdd", - "placeholder": "​", - "style": "IPY_MODEL_a8a2c7b2b22842f5be552d65b32d2f6c", - "value": " 60000/60000 [00:12<00:00, 6511.95 examples/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "38f79432d4ea43f3ad8e5a6a05b9cfd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2dbb0555cbba41679ae0e974d1f96ac2": { + "39cced6b09354583a41a423a7f3697f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3390,50 +3362,59 @@ "width": null } }, - "34ddbf7efb384ee4960a77089187f278": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "3b5c42a953034dfbb32825a03164a0f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_daf93e367bcd41009e494ece90f80fde", - "IPY_MODEL_0a024c8dbb214427b3250ba948806841", - "IPY_MODEL_09b79e0723394c75a9295ba283a8fd52" - ], - "layout": "IPY_MODEL_e57d19b9905849f58864c0e2ae9f2c73" - } - }, - "3dd51d9190ef4190bd322c16bed1fb06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_67575008a0c84c898646dedc03acf942", - "placeholder": "​", - "style": "IPY_MODEL_fe2e11a13fdb46e8b74279e56b89a038", - "value": "Generating test split: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "411e7b1250d04fceabc4a56d3aa7c5ba": { + "3b8311a276a84a2b810f57fb87ac7a1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3448,35 +3429,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5fc122f493644e7ca3b284b5bf922da7", - "IPY_MODEL_6af063d78a0b4668bb022ad287881b3a", - "IPY_MODEL_6a561cf815bc411bbf8042951da94f0f" + "IPY_MODEL_0a530e5055f0497090b37f9ec22dadae", + "IPY_MODEL_4975b121fca840d69ee14918cd0d217d", + "IPY_MODEL_fd2ab6faeeeb4055bbcc5fe64bac125d" ], - "layout": "IPY_MODEL_8388e5c0bcdd44658f6c1d9fe032adde" - } - }, - "41a78828843c457294fc38e7f334ef9a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_20170352b29c453e997c9a95c3a33b80", - "placeholder": "​", - "style": "IPY_MODEL_af1dd8d8ecef45a48f86fa83500577b4", - "value": " 2/2 [00:00<00:00, 346.19it/s]" + "layout": "IPY_MODEL_94881b422b624471974fef993ac1b9e3" } }, - "43118ea6bbea4a20b0f36f67ad05ec28": { + "3bf8c457de024516a37553baea232c37": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3528,29 +3488,83 @@ "width": null } }, - "4788f80918f340f199482171f3731dd8": { + "3dceb99795994c2c9faef0d8437d26df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3f168cb3d1c94b1ba4a217cd6467dbc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d80873115a3d48b4a783d8a26120c697", - "IPY_MODEL_1236cf2a98e4455b930f467d1e95e56f", - "IPY_MODEL_56ab71b0a1ee4eb8b1ab047505bc017c" - ], - "layout": "IPY_MODEL_b950eeaac0b8423fbc3d696ee313e0f7" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c58d5d607b74c128d2fed5574d2b2f0", + "placeholder": "​", + "style": "IPY_MODEL_481f7c373c054bd1a8ed7c673293ca90", + "value": " 30.9M/30.9M [00:01<00:00, 16.7MB/s]" + } + }, + "406fe6cbb9a34dca80a0ecaff800df90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1a9050a96ba840b1981a446cc79d9a2a", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_38f79432d4ea43f3ad8e5a6a05b9cfd7", + "value": 2.0 + } + }, + "41327ec0739e4dcd957c5ee2898e050a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "56ab71b0a1ee4eb8b1ab047505bc017c": { + "44346c7bc1cf426680dd5db30374b0c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3565,13 +3579,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_13e232e4e5e148d8a3faa3c2f89ea970", + "layout": "IPY_MODEL_a392060d75f04f79b300b2254520405a", "placeholder": "​", - "style": "IPY_MODEL_59b669434d304300ae56a27d14f49bf5", - "value": " 60000/60000 [00:34<00:00, 1771.33it/s]" + "style": "IPY_MODEL_2f977c6c9def44e5a688a578fdbe8f46", + "value": "Computing checksums: 100%" } }, - "58930589e42646c7a4adf4cd6bcd6371": { + "44d4dca1913340ce8b9c507cd312f8c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3623,7 +3637,46 @@ "width": null } }, - "59b669434d304300ae56a27d14f49bf5": { + "481f7c373c054bd1a8ed7c673293ca90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4975b121fca840d69ee14918cd0d217d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b5c42a953034dfbb32825a03164a0f7", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9fafe542e2ed4c18aab17f4dc9200a15", + "value": 5175617.0 + } + }, + "4ece4d1132ab47b39c47d91a5c14bc90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3638,7 +3691,7 @@ "description_width": "" } }, - "5a1b5f56c91c4c2aa69d687eae32d787": { + "4f39a6854c894be9b84b9424dc291601": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3690,31 +3743,44 @@ "width": null } }, - "5c339eb01faf4cf5a621c0edb6c44b68": { + "522cf4a497fa4a07ae98cbe1f5c211c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "57b755a1482c49a2be45568b6bdd0f3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ae038169fdbf4ff78f655a94650c3c2b", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d884ce3ab3b4e51bd48a78309442fe2", - "value": 1.0 + "layout": "IPY_MODEL_c83a7ea94765464f9172b04328ecf7cb", + "placeholder": "​", + "style": "IPY_MODEL_9ae996a06a074f598ffdd1896fc06e5f", + "value": " 60000/60000 [00:34<00:00, 1762.24it/s]" } }, - "5d82cde87f5c4f48b90eca1c0c7219d2": { + "58928fb735cd44a8ab6e8c0edf078872": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3766,44 +3832,31 @@ "width": null } }, - "5fc122f493644e7ca3b284b5bf922da7": { + "59a3fa3e95574a8b814d146dfed3c4b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fd329fbe811246e8a0566112ee0206c9", - "placeholder": "​", - "style": "IPY_MODEL_fdd50d7c13524c3c882b9c849c0fb910", - "value": "Downloading data: 100%" - } - }, - "6616b30d88f3472290070dde94c3d289": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "layout": "IPY_MODEL_5e5f26489aa44b649b2a01102f0c989a", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_522cf4a497fa4a07ae98cbe1f5c211c0", + "value": 1.0 } }, - "67575008a0c84c898646dedc03acf942": { + "5e5f26489aa44b649b2a01102f0c989a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3852,10 +3905,10 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "6a561cf815bc411bbf8042951da94f0f": { + "6f35b4075f004e12901e63c69bb0356a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3870,13 +3923,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_85537fd6b7504ad187504946935cc321", + "layout": "IPY_MODEL_8e7dbb79e5a543c7885714426be3c75c", "placeholder": "​", - "style": "IPY_MODEL_8b814b38f0104752b04bd4a5310bb6b1", - "value": " 5.18M/5.18M [00:00<00:00, 52.6MB/s]" + "style": "IPY_MODEL_e9e90e1e28aa4e3588e479ab25012fbf", + "value": " 60000/60000 [00:12<00:00, 5989.87 examples/s]" } }, - "6af063d78a0b4668bb022ad287881b3a": { + "748f41179a3a40d5bfb7a4edfe8d13ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3892,15 +3945,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_58930589e42646c7a4adf4cd6bcd6371", - "max": 5175617.0, + "layout": "IPY_MODEL_e35a74ec5bd6445e96da7f49abfe6c0c", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0422f06140e1429bb9df4d5e22a01ac2", - "value": 5175617.0 + "style": "IPY_MODEL_41327ec0739e4dcd957c5ee2898e050a", + "value": 60000.0 + } + }, + "79ccb0a1555b42b5a881bd1c68892db9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a776487ef584aacb78e7a4c24fc20f0", + "IPY_MODEL_f9341d1dc6404c1194db44e60a6c230e", + "IPY_MODEL_3f168cb3d1c94b1ba4a217cd6467dbc6" + ], + "layout": "IPY_MODEL_1c435eee98164c94875a24dc9213ab07" } }, - "6c248b337d0c458ead2d440b3472437f": { + "7b8800a4904440598f0e45fab5fbd35a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3952,7 +4027,7 @@ "width": null } }, - "76f30844c4444b9cb566e2bb926b7b40": { + "7ce4749d923744c09bd675ee944baaad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3967,14 +4042,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fc146736a7804106a33260d3a605aae1", - "IPY_MODEL_25cccd29d96c4634a04b0cb4c0ae7a99", - "IPY_MODEL_2b8505492b124436bf13b9605b3b7dd8" + "IPY_MODEL_fba3a6dbeac647a58b86ca3c2387dea1", + "IPY_MODEL_59a3fa3e95574a8b814d146dfed3c4b7", + "IPY_MODEL_9122abc397764bf2888a6ee466622011" ], - "layout": "IPY_MODEL_da553b2e323e4d9e9a3dfc9c117bcd77" + "layout": "IPY_MODEL_857bf7c092c443779ed47daba1a805c1" } }, - "78bbe03efe744a16b7517c70dee50f2a": { + "80393a3a390947c29ad3e5befeee9f1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4026,7 +4101,7 @@ "width": null } }, - "7d62cb9c305943eab8fadf60d62315d0": { + "80ebd1685921401db08c4590b9baa83c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4041,59 +4116,28 @@ "description_width": "" } }, - "819ad8fec46043248eb022c81bb1b5b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "84270cee9acd46f7b5711cc0cb1d1790": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eac75786bd0747edbc8069694b24a47f", + "placeholder": "​", + "style": "IPY_MODEL_c200da24b8d24af2a8729220de3fc9f5", + "value": " 60000/0 [00:00<00:00, 822434.05 examples/s]" } }, - "8388e5c0bcdd44658f6c1d9fe032adde": { + "857bf7c092c443779ed47daba1a805c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4145,7 +4189,28 @@ "width": null } }, - "85537fd6b7504ad187504946935cc321": { + "8a776487ef584aacb78e7a4c24fc20f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be2fb1d47c9b4ddca4f55cd862ed528f", + "placeholder": "​", + "style": "IPY_MODEL_9f3c94882ba84a3188e74bcaadb84860", + "value": "Downloading data: 100%" + } + }, + "8e7dbb79e5a543c7885714426be3c75c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4197,58 +4262,29 @@ "width": null } }, - "886d87adc7e14bb181d14fe73356712c": { + "8f5c519e8d9d42d7a8b129396063163d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ecec36d46b93457e812be0045f430615", - "placeholder": "​", - "style": "IPY_MODEL_92480a4d5aa542e4b3c245d5eaef0719", - "value": " 30.9M/30.9M [00:00<00:00, 54.1MB/s]" - } - }, - "8a59d3978538419bb1a7ae4f2c634c57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8b814b38f0104752b04bd4a5310bb6b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44346c7bc1cf426680dd5db30374b0c0", + "IPY_MODEL_406fe6cbb9a34dca80a0ecaff800df90", + "IPY_MODEL_8f6e5f7512ee4ff7ad72e4cc5dca9461" + ], + "layout": "IPY_MODEL_58928fb735cd44a8ab6e8c0edf078872" } }, - "8ec077adf7584cd58c173b40862ef286": { + "8f6e5f7512ee4ff7ad72e4cc5dca9461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4263,81 +4299,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d080bdb537ff418c9cc35048f6e03b22", + "layout": "IPY_MODEL_e5a47d68a2cd473f951c59fcf76d01f1", "placeholder": "​", - "style": "IPY_MODEL_7d62cb9c305943eab8fadf60d62315d0", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_4ece4d1132ab47b39c47d91a5c14bc90", + "value": " 2/2 [00:00<00:00, 299.27it/s]" } }, - "9218ba50145b4c1abb05285d39489f7b": { + "9122abc397764bf2888a6ee466622011": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8ec077adf7584cd58c173b40862ef286", - "IPY_MODEL_dc3e760d54c94143afafcc4928690c1e", - "IPY_MODEL_886d87adc7e14bb181d14fe73356712c" - ], - "layout": "IPY_MODEL_43118ea6bbea4a20b0f36f67ad05ec28" - } - }, - "92480a4d5aa542e4b3c245d5eaef0719": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "94474ce5fa7c49859fb2ba027b64aef7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9af6f90090b44f5a994f4d2ef2c28c38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44d4dca1913340ce8b9c507cd312f8c9", + "placeholder": "​", + "style": "IPY_MODEL_3dceb99795994c2c9faef0d8437d26df", + "value": " 10000/0 [00:00<00:00, 481500.65 examples/s]" } }, - "9e9f3c1977bc4cc18ccf7c0091220fdd": { + "94881b422b624471974fef993ac1b9e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4389,7 +4378,7 @@ "width": null } }, - "a649432ed8c04a3b87f55c6e1cbc806d": { + "9531113f8f814de2b0a6e754c456bf1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4441,22 +4430,7 @@ "width": null } }, - "a8a2c7b2b22842f5be552d65b32d2f6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "adfa225ec8f64e7880afb3cb066db908": { + "9700769e28304398b3004f50582ae2ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4508,59 +4482,39 @@ "width": null } }, - "ae038169fdbf4ff78f655a94650c3c2b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "98fe2af32bbc4615b9fd39e09236fd2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "995e09d244bd49bd8d7ac45836ec79f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "af1dd8d8ecef45a48f86fa83500577b4": { + "99d94d93be9e48819c0c81e7e63b86e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4575,59 +4529,68 @@ "description_width": "" } }, - "b950eeaac0b8423fbc3d696ee313e0f7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "9ae996a06a074f598ffdd1896fc06e5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d080255b4c84e7c91b438dd5562134b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9f3c94882ba84a3188e74bcaadb84860": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9fafe542e2ed4c18aab17f4dc9200a15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c8c2dd564bcd47159c5d7da2cd990067": { + "a392060d75f04f79b300b2254520405a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4679,22 +4642,23 @@ "width": null } }, - "cee108b3a0fc446daf791fcfa739d5f9": { + "b36fa317529346c8837fe628e9b58225": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "cf40c5cc5c3e42069f474bc592b94779": { + "b94cbe2658d747a2b3051c57bb7a1145": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4709,13 +4673,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c8c2dd564bcd47159c5d7da2cd990067", + "layout": "IPY_MODEL_1a99e1fffc83437580ec94981db5304f", "placeholder": "​", - "style": "IPY_MODEL_cee108b3a0fc446daf791fcfa739d5f9", - "value": " 10000/0 [00:00<00:00, 518981.42 examples/s]" + "style": "IPY_MODEL_06760201f05c4000afc116288d98641b", + "value": "100%" } }, - "cf90eb9f6391477bbf013ddee2032497": { + "be2fb1d47c9b4ddca4f55cd862ed528f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4767,7 +4731,44 @@ "width": null } }, - "d0382716c80644e3ba550bc5ed756161": { + "c1f8c848d7954850a757e5e8fa83f920": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b94cbe2658d747a2b3051c57bb7a1145", + "IPY_MODEL_748f41179a3a40d5bfb7a4edfe8d13ff", + "IPY_MODEL_57b755a1482c49a2be45568b6bdd0f3e" + ], + "layout": "IPY_MODEL_4f39a6854c894be9b84b9424dc291601" + } + }, + "c200da24b8d24af2a8729220de3fc9f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c3549b4dff2849a49f4c582646e80469": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4819,7 +4820,7 @@ "width": null } }, - "d080bdb537ff418c9cc35048f6e03b22": { + "c83a7ea94765464f9172b04328ecf7cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4871,28 +4872,29 @@ "width": null } }, - "d80873115a3d48b4a783d8a26120c697": { + "cf1bbec90cc743c19c044238bc5cd410": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a1b5f56c91c4c2aa69d687eae32d787", - "placeholder": "​", - "style": "IPY_MODEL_de829f78730844509bffcc9f0cf8f531", - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_179264665b3d4da192240f1ac09ac5e5", + "IPY_MODEL_045208935e1f4bd6a391b26b3983d049", + "IPY_MODEL_6f35b4075f004e12901e63c69bb0356a" + ], + "layout": "IPY_MODEL_39cced6b09354583a41a423a7f3697f2" } }, - "da553b2e323e4d9e9a3dfc9c117bcd77": { + "e35a74ec5bd6445e96da7f49abfe6c0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4944,67 +4946,7 @@ "width": null } }, - "daf93e367bcd41009e494ece90f80fde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d0382716c80644e3ba550bc5ed756161", - "placeholder": "​", - "style": "IPY_MODEL_1e1ecba39033420591ada0b76d527bf1", - "value": "Generating train split: " - } - }, - "dc3e760d54c94143afafcc4928690c1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_78bbe03efe744a16b7517c70dee50f2a", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_06b2bf8222ef4b6db00a974dc321d1d2", - "value": 30931277.0 - } - }, - "de829f78730844509bffcc9f0cf8f531": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e57d19b9905849f58864c0e2ae9f2c73": { + "e5a47d68a2cd473f951c59fcf76d01f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5056,7 +4998,7 @@ "width": null } }, - "ecec36d46b93457e812be0045f430615": { + "e6236cd92f06491a83ea7c38bf31a7e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5108,60 +5050,74 @@ "width": null } }, - "f72cf07726314106aaa73a8aa0dbb3d9": { + "e9e90e1e28aa4e3588e479ab25012fbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f7614c62ca994b079963f2061f90aec2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "eac75786bd0747edbc8069694b24a47f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fc146736a7804106a33260d3a605aae1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fcad613391c24914b64a652e2c514fcb", - "placeholder": "​", - "style": "IPY_MODEL_8a59d3978538419bb1a7ae4f2c634c57", - "value": "Map (num_proc=4): 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fcad613391c24914b64a652e2c514fcb": { + "f21c6c99bca84e06b8d1299f3b53db6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5213,7 +5169,7 @@ "width": null } }, - "fd329fbe811246e8a0566112ee0206c9": { + "f2f5ea97fde04ab1992313b89ce1e044": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5262,37 +5218,73 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "fdd50d7c13524c3c882b9c849c0fb910": { + "f9341d1dc6404c1194db44e60a6c230e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f21c6c99bca84e06b8d1299f3b53db6d", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b36fa317529346c8837fe628e9b58225", + "value": 30931277.0 } }, - "fe2e11a13fdb46e8b74279e56b89a038": { + "fba3a6dbeac647a58b86ca3c2387dea1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9531113f8f814de2b0a6e754c456bf1f", + "placeholder": "​", + "style": "IPY_MODEL_9d080255b4c84e7c91b438dd5562134b", + "value": "Generating test split: " + } + }, + "fd2ab6faeeeb4055bbcc5fe64bac125d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9700769e28304398b3004f50582ae2ae", + "placeholder": "​", + "style": "IPY_MODEL_80ebd1685921401db08c4590b9baa83c", + "value": " 5.18M/5.18M [00:00<00:00, 38.7MB/s]" } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index f96a2b6cb..36e58d2a0 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:21.766507Z", - "iopub.status.busy": "2024-01-17T18:10:21.766309Z", - "iopub.status.idle": "2024-01-17T18:10:22.883924Z", - "shell.execute_reply": "2024-01-17T18:10:22.882998Z" + "iopub.execute_input": "2024-01-17T23:12:25.645173Z", + "iopub.status.busy": "2024-01-17T23:12:25.644719Z", + "iopub.status.idle": "2024-01-17T23:12:26.712765Z", + "shell.execute_reply": "2024-01-17T23:12:26.712142Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:22.886848Z", - "iopub.status.busy": "2024-01-17T18:10:22.886478Z", - "iopub.status.idle": "2024-01-17T18:10:23.166976Z", - "shell.execute_reply": "2024-01-17T18:10:23.166265Z" + "iopub.execute_input": "2024-01-17T23:12:26.715639Z", + "iopub.status.busy": "2024-01-17T23:12:26.715237Z", + "iopub.status.idle": "2024-01-17T23:12:26.981319Z", + "shell.execute_reply": "2024-01-17T23:12:26.980689Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:23.170233Z", - "iopub.status.busy": "2024-01-17T18:10:23.169703Z", - "iopub.status.idle": "2024-01-17T18:10:23.182165Z", - "shell.execute_reply": "2024-01-17T18:10:23.181510Z" + "iopub.execute_input": "2024-01-17T23:12:26.984263Z", + "iopub.status.busy": "2024-01-17T23:12:26.983847Z", + "iopub.status.idle": "2024-01-17T23:12:26.995890Z", + "shell.execute_reply": "2024-01-17T23:12:26.995368Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:23.184824Z", - "iopub.status.busy": "2024-01-17T18:10:23.184445Z", - "iopub.status.idle": "2024-01-17T18:10:23.391408Z", - "shell.execute_reply": "2024-01-17T18:10:23.390738Z" + "iopub.execute_input": "2024-01-17T23:12:26.998151Z", + "iopub.status.busy": "2024-01-17T23:12:26.997887Z", + "iopub.status.idle": "2024-01-17T23:12:27.219836Z", + "shell.execute_reply": "2024-01-17T23:12:27.219174Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:23.394226Z", - "iopub.status.busy": "2024-01-17T18:10:23.393866Z", - "iopub.status.idle": "2024-01-17T18:10:23.421258Z", - "shell.execute_reply": "2024-01-17T18:10:23.420553Z" + "iopub.execute_input": "2024-01-17T23:12:27.222804Z", + "iopub.status.busy": "2024-01-17T23:12:27.222337Z", + "iopub.status.idle": "2024-01-17T23:12:27.249283Z", + "shell.execute_reply": "2024-01-17T23:12:27.248679Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:23.423997Z", - "iopub.status.busy": "2024-01-17T18:10:23.423593Z", - "iopub.status.idle": "2024-01-17T18:10:24.787226Z", - "shell.execute_reply": "2024-01-17T18:10:24.786489Z" + "iopub.execute_input": "2024-01-17T23:12:27.251883Z", + "iopub.status.busy": "2024-01-17T23:12:27.251444Z", + "iopub.status.idle": "2024-01-17T23:12:28.555194Z", + "shell.execute_reply": "2024-01-17T23:12:28.554473Z" } }, "outputs": [ @@ -473,10 +473,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:24.790031Z", - "iopub.status.busy": "2024-01-17T18:10:24.789628Z", - "iopub.status.idle": "2024-01-17T18:10:24.814871Z", - "shell.execute_reply": "2024-01-17T18:10:24.814207Z" + "iopub.execute_input": "2024-01-17T23:12:28.558034Z", + "iopub.status.busy": "2024-01-17T23:12:28.557654Z", + "iopub.status.idle": "2024-01-17T23:12:28.582599Z", + "shell.execute_reply": "2024-01-17T23:12:28.581962Z" }, "scrolled": true }, @@ -641,10 +641,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:24.817303Z", - "iopub.status.busy": "2024-01-17T18:10:24.816930Z", - "iopub.status.idle": "2024-01-17T18:10:25.718347Z", - "shell.execute_reply": "2024-01-17T18:10:25.717676Z" + "iopub.execute_input": "2024-01-17T23:12:28.584982Z", + "iopub.status.busy": "2024-01-17T23:12:28.584634Z", + "iopub.status.idle": "2024-01-17T23:12:29.463581Z", + "shell.execute_reply": "2024-01-17T23:12:29.462958Z" }, "id": "AaHC5MRKjruT" }, @@ -763,10 +763,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:25.721086Z", - "iopub.status.busy": "2024-01-17T18:10:25.720678Z", - "iopub.status.idle": "2024-01-17T18:10:25.735438Z", - "shell.execute_reply": "2024-01-17T18:10:25.734893Z" + "iopub.execute_input": "2024-01-17T23:12:29.466240Z", + "iopub.status.busy": "2024-01-17T23:12:29.465885Z", + "iopub.status.idle": "2024-01-17T23:12:29.480184Z", + "shell.execute_reply": "2024-01-17T23:12:29.479506Z" }, "id": "Wy27rvyhjruU" }, @@ -815,10 +815,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:25.738066Z", - "iopub.status.busy": "2024-01-17T18:10:25.737688Z", - "iopub.status.idle": "2024-01-17T18:10:25.834468Z", - "shell.execute_reply": "2024-01-17T18:10:25.833833Z" + "iopub.execute_input": "2024-01-17T23:12:29.482535Z", + "iopub.status.busy": "2024-01-17T23:12:29.482170Z", + "iopub.status.idle": "2024-01-17T23:12:29.563194Z", + "shell.execute_reply": "2024-01-17T23:12:29.562462Z" }, "id": "Db8YHnyVjruU" }, @@ -925,10 +925,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:25.837117Z", - "iopub.status.busy": "2024-01-17T18:10:25.836764Z", - "iopub.status.idle": "2024-01-17T18:10:26.040217Z", - "shell.execute_reply": "2024-01-17T18:10:26.039537Z" + "iopub.execute_input": "2024-01-17T23:12:29.565726Z", + "iopub.status.busy": "2024-01-17T23:12:29.565468Z", + "iopub.status.idle": "2024-01-17T23:12:29.770924Z", + "shell.execute_reply": "2024-01-17T23:12:29.770408Z" }, "id": "iJqAHuS2jruV" }, @@ -965,10 +965,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.042998Z", - "iopub.status.busy": "2024-01-17T18:10:26.042584Z", - "iopub.status.idle": "2024-01-17T18:10:26.060028Z", - "shell.execute_reply": "2024-01-17T18:10:26.059516Z" + "iopub.execute_input": "2024-01-17T23:12:29.773611Z", + "iopub.status.busy": "2024-01-17T23:12:29.773086Z", + "iopub.status.idle": "2024-01-17T23:12:29.790463Z", + "shell.execute_reply": "2024-01-17T23:12:29.789935Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1030,10 +1030,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.062644Z", - "iopub.status.busy": "2024-01-17T18:10:26.062148Z", - "iopub.status.idle": "2024-01-17T18:10:26.072694Z", - "shell.execute_reply": "2024-01-17T18:10:26.072095Z" + "iopub.execute_input": "2024-01-17T23:12:29.792922Z", + "iopub.status.busy": "2024-01-17T23:12:29.792556Z", + "iopub.status.idle": "2024-01-17T23:12:29.802644Z", + "shell.execute_reply": "2024-01-17T23:12:29.802136Z" }, "id": "0lonvOYvjruV" }, @@ -1180,10 +1180,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.075434Z", - "iopub.status.busy": "2024-01-17T18:10:26.074917Z", - "iopub.status.idle": "2024-01-17T18:10:26.191355Z", - "shell.execute_reply": "2024-01-17T18:10:26.190725Z" + "iopub.execute_input": "2024-01-17T23:12:29.805003Z", + "iopub.status.busy": "2024-01-17T23:12:29.804543Z", + "iopub.status.idle": "2024-01-17T23:12:29.898840Z", + "shell.execute_reply": "2024-01-17T23:12:29.898192Z" }, "id": "MfqTCa3kjruV" }, @@ -1264,10 +1264,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.194148Z", - "iopub.status.busy": "2024-01-17T18:10:26.193847Z", - "iopub.status.idle": "2024-01-17T18:10:26.344135Z", - "shell.execute_reply": "2024-01-17T18:10:26.343417Z" + "iopub.execute_input": "2024-01-17T23:12:29.901475Z", + "iopub.status.busy": "2024-01-17T23:12:29.901217Z", + "iopub.status.idle": "2024-01-17T23:12:30.040827Z", + "shell.execute_reply": "2024-01-17T23:12:30.040112Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1327,10 +1327,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.347074Z", - "iopub.status.busy": "2024-01-17T18:10:26.346637Z", - "iopub.status.idle": "2024-01-17T18:10:26.350908Z", - "shell.execute_reply": "2024-01-17T18:10:26.350355Z" + "iopub.execute_input": "2024-01-17T23:12:30.043470Z", + "iopub.status.busy": "2024-01-17T23:12:30.043221Z", + "iopub.status.idle": "2024-01-17T23:12:30.047307Z", + "shell.execute_reply": "2024-01-17T23:12:30.046685Z" }, "id": "0rXP3ZPWjruW" }, @@ -1368,10 +1368,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.353694Z", - "iopub.status.busy": "2024-01-17T18:10:26.352956Z", - "iopub.status.idle": "2024-01-17T18:10:26.358205Z", - "shell.execute_reply": "2024-01-17T18:10:26.357689Z" + "iopub.execute_input": "2024-01-17T23:12:30.049676Z", + "iopub.status.busy": "2024-01-17T23:12:30.049240Z", + "iopub.status.idle": "2024-01-17T23:12:30.053883Z", + "shell.execute_reply": "2024-01-17T23:12:30.053284Z" }, "id": "-iRPe8KXjruW" }, @@ -1426,10 +1426,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.360522Z", - "iopub.status.busy": "2024-01-17T18:10:26.360138Z", - "iopub.status.idle": "2024-01-17T18:10:26.400534Z", - "shell.execute_reply": "2024-01-17T18:10:26.399805Z" + "iopub.execute_input": "2024-01-17T23:12:30.056405Z", + "iopub.status.busy": "2024-01-17T23:12:30.055960Z", + "iopub.status.idle": "2024-01-17T23:12:30.095504Z", + "shell.execute_reply": "2024-01-17T23:12:30.094989Z" }, "id": "ZpipUliyjruW" }, @@ -1480,10 +1480,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.403784Z", - "iopub.status.busy": "2024-01-17T18:10:26.403295Z", - "iopub.status.idle": "2024-01-17T18:10:26.450103Z", - "shell.execute_reply": "2024-01-17T18:10:26.449493Z" + "iopub.execute_input": "2024-01-17T23:12:30.097960Z", + "iopub.status.busy": "2024-01-17T23:12:30.097577Z", + "iopub.status.idle": "2024-01-17T23:12:30.144004Z", + "shell.execute_reply": "2024-01-17T23:12:30.143423Z" }, "id": "SLq-3q4xjruX" }, @@ -1552,10 +1552,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.452754Z", - "iopub.status.busy": "2024-01-17T18:10:26.452361Z", - "iopub.status.idle": "2024-01-17T18:10:26.564403Z", - "shell.execute_reply": "2024-01-17T18:10:26.563611Z" + "iopub.execute_input": "2024-01-17T23:12:30.146635Z", + "iopub.status.busy": "2024-01-17T23:12:30.146169Z", + "iopub.status.idle": "2024-01-17T23:12:30.252527Z", + "shell.execute_reply": "2024-01-17T23:12:30.251862Z" }, "id": "g5LHhhuqFbXK" }, @@ -1587,10 +1587,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.567555Z", - "iopub.status.busy": "2024-01-17T18:10:26.567278Z", - "iopub.status.idle": "2024-01-17T18:10:26.680006Z", - "shell.execute_reply": "2024-01-17T18:10:26.679288Z" + "iopub.execute_input": "2024-01-17T23:12:30.255773Z", + "iopub.status.busy": "2024-01-17T23:12:30.255280Z", + "iopub.status.idle": "2024-01-17T23:12:30.355493Z", + "shell.execute_reply": "2024-01-17T23:12:30.354791Z" }, "id": "p7w8F8ezBcet" }, @@ -1647,10 +1647,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.682699Z", - "iopub.status.busy": "2024-01-17T18:10:26.682408Z", - "iopub.status.idle": "2024-01-17T18:10:26.885900Z", - "shell.execute_reply": "2024-01-17T18:10:26.885214Z" + "iopub.execute_input": "2024-01-17T23:12:30.358291Z", + "iopub.status.busy": "2024-01-17T23:12:30.358031Z", + "iopub.status.idle": "2024-01-17T23:12:30.561214Z", + "shell.execute_reply": "2024-01-17T23:12:30.560494Z" }, "id": "WETRL74tE_sU" }, @@ -1685,10 +1685,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:26.888642Z", - "iopub.status.busy": "2024-01-17T18:10:26.888408Z", - "iopub.status.idle": "2024-01-17T18:10:27.119260Z", - "shell.execute_reply": "2024-01-17T18:10:27.118551Z" + "iopub.execute_input": "2024-01-17T23:12:30.563781Z", + "iopub.status.busy": "2024-01-17T23:12:30.563569Z", + "iopub.status.idle": "2024-01-17T23:12:30.778738Z", + "shell.execute_reply": "2024-01-17T23:12:30.778106Z" }, "id": "kCfdx2gOLmXS" }, @@ -1850,10 +1850,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:27.121834Z", - "iopub.status.busy": "2024-01-17T18:10:27.121615Z", - "iopub.status.idle": "2024-01-17T18:10:27.128106Z", - "shell.execute_reply": "2024-01-17T18:10:27.127583Z" + "iopub.execute_input": "2024-01-17T23:12:30.781569Z", + "iopub.status.busy": "2024-01-17T23:12:30.781097Z", + "iopub.status.idle": "2024-01-17T23:12:30.787611Z", + "shell.execute_reply": "2024-01-17T23:12:30.787090Z" }, "id": "-uogYRWFYnuu" }, @@ -1907,10 +1907,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:27.130325Z", - "iopub.status.busy": "2024-01-17T18:10:27.130128Z", - "iopub.status.idle": "2024-01-17T18:10:27.340313Z", - "shell.execute_reply": "2024-01-17T18:10:27.339598Z" + "iopub.execute_input": "2024-01-17T23:12:30.789959Z", + "iopub.status.busy": "2024-01-17T23:12:30.789573Z", + "iopub.status.idle": "2024-01-17T23:12:30.995874Z", + "shell.execute_reply": "2024-01-17T23:12:30.995216Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1957,10 +1957,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:27.342786Z", - "iopub.status.busy": "2024-01-17T18:10:27.342557Z", - "iopub.status.idle": "2024-01-17T18:10:28.416510Z", - "shell.execute_reply": "2024-01-17T18:10:28.415789Z" + "iopub.execute_input": "2024-01-17T23:12:30.998644Z", + "iopub.status.busy": "2024-01-17T23:12:30.998256Z", + "iopub.status.idle": "2024-01-17T23:12:32.077472Z", + "shell.execute_reply": "2024-01-17T23:12:32.076842Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index cfe891b73..7aab0ca60 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:34.066939Z", - "iopub.status.busy": "2024-01-17T18:10:34.066726Z", - "iopub.status.idle": "2024-01-17T18:10:35.107469Z", - "shell.execute_reply": "2024-01-17T18:10:35.106848Z" + "iopub.execute_input": "2024-01-17T23:12:37.119091Z", + "iopub.status.busy": "2024-01-17T23:12:37.118893Z", + "iopub.status.idle": "2024-01-17T23:12:38.145112Z", + "shell.execute_reply": "2024-01-17T23:12:38.144486Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.110492Z", - "iopub.status.busy": "2024-01-17T18:10:35.110165Z", - "iopub.status.idle": "2024-01-17T18:10:35.113533Z", - "shell.execute_reply": "2024-01-17T18:10:35.112907Z" + "iopub.execute_input": "2024-01-17T23:12:38.148219Z", + "iopub.status.busy": "2024-01-17T23:12:38.147778Z", + "iopub.status.idle": "2024-01-17T23:12:38.151072Z", + "shell.execute_reply": "2024-01-17T23:12:38.150569Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.116141Z", - "iopub.status.busy": "2024-01-17T18:10:35.115710Z", - "iopub.status.idle": "2024-01-17T18:10:35.124258Z", - "shell.execute_reply": "2024-01-17T18:10:35.123628Z" + "iopub.execute_input": "2024-01-17T23:12:38.153453Z", + "iopub.status.busy": "2024-01-17T23:12:38.153123Z", + "iopub.status.idle": "2024-01-17T23:12:38.161595Z", + "shell.execute_reply": "2024-01-17T23:12:38.160994Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.126617Z", - "iopub.status.busy": "2024-01-17T18:10:35.126181Z", - "iopub.status.idle": "2024-01-17T18:10:35.174782Z", - "shell.execute_reply": "2024-01-17T18:10:35.174277Z" + "iopub.execute_input": "2024-01-17T23:12:38.163930Z", + "iopub.status.busy": "2024-01-17T23:12:38.163445Z", + "iopub.status.idle": "2024-01-17T23:12:38.215430Z", + "shell.execute_reply": "2024-01-17T23:12:38.214906Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.177183Z", - "iopub.status.busy": "2024-01-17T18:10:35.176965Z", - "iopub.status.idle": "2024-01-17T18:10:35.196729Z", - "shell.execute_reply": "2024-01-17T18:10:35.196205Z" + "iopub.execute_input": "2024-01-17T23:12:38.217958Z", + "iopub.status.busy": "2024-01-17T23:12:38.217555Z", + "iopub.status.idle": "2024-01-17T23:12:38.236753Z", + "shell.execute_reply": "2024-01-17T23:12:38.236121Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.199192Z", - "iopub.status.busy": "2024-01-17T18:10:35.198837Z", - "iopub.status.idle": "2024-01-17T18:10:35.202844Z", - "shell.execute_reply": "2024-01-17T18:10:35.202255Z" + "iopub.execute_input": "2024-01-17T23:12:38.239132Z", + "iopub.status.busy": "2024-01-17T23:12:38.238775Z", + "iopub.status.idle": "2024-01-17T23:12:38.242790Z", + "shell.execute_reply": "2024-01-17T23:12:38.242281Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.205415Z", - "iopub.status.busy": "2024-01-17T18:10:35.204931Z", - "iopub.status.idle": "2024-01-17T18:10:35.232341Z", - "shell.execute_reply": "2024-01-17T18:10:35.231693Z" + "iopub.execute_input": "2024-01-17T23:12:38.245093Z", + "iopub.status.busy": "2024-01-17T23:12:38.244847Z", + "iopub.status.idle": "2024-01-17T23:12:38.275707Z", + "shell.execute_reply": "2024-01-17T23:12:38.275228Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.234865Z", - "iopub.status.busy": "2024-01-17T18:10:35.234654Z", - "iopub.status.idle": "2024-01-17T18:10:35.262331Z", - "shell.execute_reply": "2024-01-17T18:10:35.261831Z" + "iopub.execute_input": "2024-01-17T23:12:38.277989Z", + "iopub.status.busy": "2024-01-17T23:12:38.277604Z", + "iopub.status.idle": "2024-01-17T23:12:38.304773Z", + "shell.execute_reply": "2024-01-17T23:12:38.304291Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:35.264679Z", - "iopub.status.busy": "2024-01-17T18:10:35.264478Z", - "iopub.status.idle": "2024-01-17T18:10:36.634552Z", - "shell.execute_reply": "2024-01-17T18:10:36.633890Z" + "iopub.execute_input": "2024-01-17T23:12:38.307191Z", + "iopub.status.busy": "2024-01-17T23:12:38.306725Z", + "iopub.status.idle": "2024-01-17T23:12:39.660035Z", + "shell.execute_reply": "2024-01-17T23:12:39.659311Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.637556Z", - "iopub.status.busy": "2024-01-17T18:10:36.637138Z", - "iopub.status.idle": "2024-01-17T18:10:36.644742Z", - "shell.execute_reply": "2024-01-17T18:10:36.644122Z" + "iopub.execute_input": "2024-01-17T23:12:39.663258Z", + "iopub.status.busy": "2024-01-17T23:12:39.662839Z", + "iopub.status.idle": "2024-01-17T23:12:39.670307Z", + "shell.execute_reply": "2024-01-17T23:12:39.669734Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.647074Z", - "iopub.status.busy": "2024-01-17T18:10:36.646869Z", - "iopub.status.idle": "2024-01-17T18:10:36.661069Z", - "shell.execute_reply": "2024-01-17T18:10:36.660517Z" + "iopub.execute_input": "2024-01-17T23:12:39.672727Z", + "iopub.status.busy": "2024-01-17T23:12:39.672379Z", + "iopub.status.idle": "2024-01-17T23:12:39.686172Z", + "shell.execute_reply": "2024-01-17T23:12:39.685544Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.663330Z", - "iopub.status.busy": "2024-01-17T18:10:36.663130Z", - "iopub.status.idle": "2024-01-17T18:10:36.670332Z", - "shell.execute_reply": "2024-01-17T18:10:36.669799Z" + "iopub.execute_input": "2024-01-17T23:12:39.688633Z", + "iopub.status.busy": "2024-01-17T23:12:39.688179Z", + "iopub.status.idle": "2024-01-17T23:12:39.694998Z", + "shell.execute_reply": "2024-01-17T23:12:39.694392Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.672921Z", - "iopub.status.busy": "2024-01-17T18:10:36.672547Z", - "iopub.status.idle": "2024-01-17T18:10:36.675600Z", - "shell.execute_reply": "2024-01-17T18:10:36.675078Z" + "iopub.execute_input": "2024-01-17T23:12:39.697375Z", + "iopub.status.busy": "2024-01-17T23:12:39.696998Z", + "iopub.status.idle": "2024-01-17T23:12:39.699962Z", + "shell.execute_reply": "2024-01-17T23:12:39.699338Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.677889Z", - "iopub.status.busy": "2024-01-17T18:10:36.677688Z", - "iopub.status.idle": "2024-01-17T18:10:36.682112Z", - "shell.execute_reply": "2024-01-17T18:10:36.681569Z" + "iopub.execute_input": "2024-01-17T23:12:39.702455Z", + "iopub.status.busy": "2024-01-17T23:12:39.702117Z", + "iopub.status.idle": "2024-01-17T23:12:39.706331Z", + "shell.execute_reply": "2024-01-17T23:12:39.705698Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.684614Z", - "iopub.status.busy": "2024-01-17T18:10:36.684230Z", - "iopub.status.idle": "2024-01-17T18:10:36.687195Z", - "shell.execute_reply": "2024-01-17T18:10:36.686658Z" + "iopub.execute_input": "2024-01-17T23:12:39.708839Z", + "iopub.status.busy": "2024-01-17T23:12:39.708410Z", + "iopub.status.idle": "2024-01-17T23:12:39.711306Z", + "shell.execute_reply": "2024-01-17T23:12:39.710774Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.689699Z", - "iopub.status.busy": "2024-01-17T18:10:36.689303Z", - "iopub.status.idle": "2024-01-17T18:10:36.693988Z", - "shell.execute_reply": "2024-01-17T18:10:36.693350Z" + "iopub.execute_input": "2024-01-17T23:12:39.713686Z", + "iopub.status.busy": "2024-01-17T23:12:39.713257Z", + "iopub.status.idle": "2024-01-17T23:12:39.717980Z", + "shell.execute_reply": "2024-01-17T23:12:39.717452Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.696492Z", - "iopub.status.busy": "2024-01-17T18:10:36.696127Z", - "iopub.status.idle": "2024-01-17T18:10:36.730677Z", - "shell.execute_reply": "2024-01-17T18:10:36.730063Z" + "iopub.execute_input": "2024-01-17T23:12:39.720498Z", + "iopub.status.busy": "2024-01-17T23:12:39.720135Z", + "iopub.status.idle": "2024-01-17T23:12:39.753497Z", + "shell.execute_reply": "2024-01-17T23:12:39.753003Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:36.733736Z", - "iopub.status.busy": "2024-01-17T18:10:36.733290Z", - "iopub.status.idle": "2024-01-17T18:10:36.739015Z", - "shell.execute_reply": "2024-01-17T18:10:36.738419Z" + "iopub.execute_input": "2024-01-17T23:12:39.755769Z", + "iopub.status.busy": "2024-01-17T23:12:39.755564Z", + "iopub.status.idle": "2024-01-17T23:12:39.760459Z", + "shell.execute_reply": "2024-01-17T23:12:39.759917Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 345c02d68..870f9da70 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:41.555662Z", - "iopub.status.busy": "2024-01-17T18:10:41.555447Z", - "iopub.status.idle": "2024-01-17T18:10:42.641450Z", - "shell.execute_reply": "2024-01-17T18:10:42.640766Z" + "iopub.execute_input": "2024-01-17T23:12:45.381897Z", + "iopub.status.busy": "2024-01-17T23:12:45.381706Z", + "iopub.status.idle": "2024-01-17T23:12:46.455370Z", + "shell.execute_reply": "2024-01-17T23:12:46.454763Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:42.644299Z", - "iopub.status.busy": "2024-01-17T18:10:42.643939Z", - "iopub.status.idle": "2024-01-17T18:10:42.934236Z", - "shell.execute_reply": "2024-01-17T18:10:42.933614Z" + "iopub.execute_input": "2024-01-17T23:12:46.458206Z", + "iopub.status.busy": "2024-01-17T23:12:46.457873Z", + "iopub.status.idle": "2024-01-17T23:12:46.742282Z", + "shell.execute_reply": "2024-01-17T23:12:46.741647Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:42.937365Z", - "iopub.status.busy": "2024-01-17T18:10:42.936893Z", - "iopub.status.idle": "2024-01-17T18:10:42.950979Z", - "shell.execute_reply": "2024-01-17T18:10:42.950488Z" + "iopub.execute_input": "2024-01-17T23:12:46.745006Z", + "iopub.status.busy": "2024-01-17T23:12:46.744797Z", + "iopub.status.idle": "2024-01-17T23:12:46.758584Z", + "shell.execute_reply": "2024-01-17T23:12:46.758067Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:42.953251Z", - "iopub.status.busy": "2024-01-17T18:10:42.953039Z", - "iopub.status.idle": "2024-01-17T18:10:45.626467Z", - "shell.execute_reply": "2024-01-17T18:10:45.625783Z" + "iopub.execute_input": "2024-01-17T23:12:46.761055Z", + "iopub.status.busy": "2024-01-17T23:12:46.760585Z", + "iopub.status.idle": "2024-01-17T23:12:49.437361Z", + "shell.execute_reply": "2024-01-17T23:12:49.436698Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:45.629098Z", - "iopub.status.busy": "2024-01-17T18:10:45.628708Z", - "iopub.status.idle": "2024-01-17T18:10:47.211836Z", - "shell.execute_reply": "2024-01-17T18:10:47.211233Z" + "iopub.execute_input": "2024-01-17T23:12:49.440037Z", + "iopub.status.busy": "2024-01-17T23:12:49.439727Z", + "iopub.status.idle": "2024-01-17T23:12:51.019074Z", + "shell.execute_reply": "2024-01-17T23:12:51.018452Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:47.214903Z", - "iopub.status.busy": "2024-01-17T18:10:47.214448Z", - "iopub.status.idle": "2024-01-17T18:10:47.220079Z", - "shell.execute_reply": "2024-01-17T18:10:47.219546Z" + "iopub.execute_input": "2024-01-17T23:12:51.021987Z", + "iopub.status.busy": "2024-01-17T23:12:51.021563Z", + "iopub.status.idle": "2024-01-17T23:12:51.026386Z", + "shell.execute_reply": "2024-01-17T23:12:51.025743Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:47.222591Z", - "iopub.status.busy": "2024-01-17T18:10:47.222214Z", - "iopub.status.idle": "2024-01-17T18:10:48.654551Z", - "shell.execute_reply": "2024-01-17T18:10:48.653628Z" + "iopub.execute_input": "2024-01-17T23:12:51.028795Z", + "iopub.status.busy": "2024-01-17T23:12:51.028423Z", + "iopub.status.idle": "2024-01-17T23:12:52.362154Z", + "shell.execute_reply": "2024-01-17T23:12:52.361435Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:48.658404Z", - "iopub.status.busy": "2024-01-17T18:10:48.657649Z", - "iopub.status.idle": "2024-01-17T18:10:51.504151Z", - "shell.execute_reply": "2024-01-17T18:10:51.503505Z" + "iopub.execute_input": "2024-01-17T23:12:52.365370Z", + "iopub.status.busy": "2024-01-17T23:12:52.364687Z", + "iopub.status.idle": "2024-01-17T23:12:55.189939Z", + "shell.execute_reply": "2024-01-17T23:12:55.189338Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:51.506885Z", - "iopub.status.busy": "2024-01-17T18:10:51.506474Z", - "iopub.status.idle": "2024-01-17T18:10:51.511559Z", - "shell.execute_reply": "2024-01-17T18:10:51.510930Z" + "iopub.execute_input": "2024-01-17T23:12:55.192359Z", + "iopub.status.busy": "2024-01-17T23:12:55.192152Z", + "iopub.status.idle": "2024-01-17T23:12:55.197237Z", + "shell.execute_reply": "2024-01-17T23:12:55.196716Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:51.514207Z", - "iopub.status.busy": "2024-01-17T18:10:51.513861Z", - "iopub.status.idle": "2024-01-17T18:10:51.518178Z", - "shell.execute_reply": "2024-01-17T18:10:51.517551Z" + "iopub.execute_input": "2024-01-17T23:12:55.199466Z", + "iopub.status.busy": "2024-01-17T23:12:55.199269Z", + "iopub.status.idle": "2024-01-17T23:12:55.203414Z", + "shell.execute_reply": "2024-01-17T23:12:55.202885Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:51.520433Z", - "iopub.status.busy": "2024-01-17T18:10:51.520221Z", - "iopub.status.idle": "2024-01-17T18:10:51.523664Z", - "shell.execute_reply": "2024-01-17T18:10:51.523119Z" + "iopub.execute_input": "2024-01-17T23:12:55.205569Z", + "iopub.status.busy": "2024-01-17T23:12:55.205370Z", + "iopub.status.idle": "2024-01-17T23:12:55.208734Z", + "shell.execute_reply": "2024-01-17T23:12:55.208218Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index dbc911529..8bd932980 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:56.270011Z", - "iopub.status.busy": "2024-01-17T18:10:56.269487Z", - "iopub.status.idle": "2024-01-17T18:10:57.381241Z", - "shell.execute_reply": "2024-01-17T18:10:57.380625Z" + "iopub.execute_input": "2024-01-17T23:13:00.015965Z", + "iopub.status.busy": "2024-01-17T23:13:00.015766Z", + "iopub.status.idle": "2024-01-17T23:13:01.088856Z", + "shell.execute_reply": "2024-01-17T23:13:01.088251Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:57.384088Z", - "iopub.status.busy": "2024-01-17T18:10:57.383700Z", - "iopub.status.idle": "2024-01-17T18:10:58.753470Z", - "shell.execute_reply": "2024-01-17T18:10:58.752605Z" + "iopub.execute_input": "2024-01-17T23:13:01.091695Z", + "iopub.status.busy": "2024-01-17T23:13:01.091313Z", + "iopub.status.idle": "2024-01-17T23:13:02.386388Z", + "shell.execute_reply": "2024-01-17T23:13:02.385615Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:58.756374Z", - "iopub.status.busy": "2024-01-17T18:10:58.756152Z", - "iopub.status.idle": "2024-01-17T18:10:58.759433Z", - "shell.execute_reply": "2024-01-17T18:10:58.758883Z" + "iopub.execute_input": "2024-01-17T23:13:02.389277Z", + "iopub.status.busy": "2024-01-17T23:13:02.388865Z", + "iopub.status.idle": "2024-01-17T23:13:02.392078Z", + "shell.execute_reply": "2024-01-17T23:13:02.391529Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:58.761637Z", - "iopub.status.busy": "2024-01-17T18:10:58.761440Z", - "iopub.status.idle": "2024-01-17T18:10:58.766806Z", - "shell.execute_reply": "2024-01-17T18:10:58.766335Z" + "iopub.execute_input": "2024-01-17T23:13:02.394243Z", + "iopub.status.busy": "2024-01-17T23:13:02.394041Z", + "iopub.status.idle": "2024-01-17T23:13:02.399439Z", + "shell.execute_reply": "2024-01-17T23:13:02.398974Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:58.768917Z", - "iopub.status.busy": "2024-01-17T18:10:58.768711Z", - "iopub.status.idle": "2024-01-17T18:10:59.379953Z", - "shell.execute_reply": "2024-01-17T18:10:59.379277Z" + "iopub.execute_input": "2024-01-17T23:13:02.401585Z", + "iopub.status.busy": "2024-01-17T23:13:02.401389Z", + "iopub.status.idle": "2024-01-17T23:13:03.000882Z", + "shell.execute_reply": "2024-01-17T23:13:03.000200Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:59.383016Z", - "iopub.status.busy": "2024-01-17T18:10:59.382511Z", - "iopub.status.idle": "2024-01-17T18:10:59.388670Z", - "shell.execute_reply": "2024-01-17T18:10:59.388096Z" + "iopub.execute_input": "2024-01-17T23:13:03.004104Z", + "iopub.status.busy": "2024-01-17T23:13:03.003684Z", + "iopub.status.idle": "2024-01-17T23:13:03.009713Z", + "shell.execute_reply": "2024-01-17T23:13:03.009212Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:59.391089Z", - "iopub.status.busy": "2024-01-17T18:10:59.390893Z", - "iopub.status.idle": "2024-01-17T18:10:59.394956Z", - "shell.execute_reply": "2024-01-17T18:10:59.394468Z" + "iopub.execute_input": "2024-01-17T23:13:03.011996Z", + "iopub.status.busy": "2024-01-17T23:13:03.011640Z", + "iopub.status.idle": "2024-01-17T23:13:03.015800Z", + "shell.execute_reply": "2024-01-17T23:13:03.015298Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:10:59.397137Z", - "iopub.status.busy": "2024-01-17T18:10:59.396930Z", - "iopub.status.idle": "2024-01-17T18:11:00.095222Z", - "shell.execute_reply": "2024-01-17T18:11:00.094559Z" + "iopub.execute_input": "2024-01-17T23:13:03.018314Z", + "iopub.status.busy": "2024-01-17T23:13:03.017851Z", + "iopub.status.idle": "2024-01-17T23:13:03.630150Z", + "shell.execute_reply": "2024-01-17T23:13:03.629427Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.098096Z", - "iopub.status.busy": "2024-01-17T18:11:00.097682Z", - "iopub.status.idle": "2024-01-17T18:11:00.189490Z", - "shell.execute_reply": "2024-01-17T18:11:00.188840Z" + "iopub.execute_input": "2024-01-17T23:13:03.632920Z", + "iopub.status.busy": "2024-01-17T23:13:03.632509Z", + "iopub.status.idle": "2024-01-17T23:13:03.740338Z", + "shell.execute_reply": "2024-01-17T23:13:03.739687Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.192112Z", - "iopub.status.busy": "2024-01-17T18:11:00.191749Z", - "iopub.status.idle": "2024-01-17T18:11:00.196425Z", - "shell.execute_reply": "2024-01-17T18:11:00.195812Z" + "iopub.execute_input": "2024-01-17T23:13:03.742826Z", + "iopub.status.busy": "2024-01-17T23:13:03.742438Z", + "iopub.status.idle": "2024-01-17T23:13:03.746983Z", + "shell.execute_reply": "2024-01-17T23:13:03.746385Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.198699Z", - "iopub.status.busy": "2024-01-17T18:11:00.198356Z", - "iopub.status.idle": "2024-01-17T18:11:00.573742Z", - "shell.execute_reply": "2024-01-17T18:11:00.573082Z" + "iopub.execute_input": "2024-01-17T23:13:03.749393Z", + "iopub.status.busy": "2024-01-17T23:13:03.749035Z", + "iopub.status.idle": "2024-01-17T23:13:04.126430Z", + "shell.execute_reply": "2024-01-17T23:13:04.125638Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.576878Z", - "iopub.status.busy": "2024-01-17T18:11:00.576638Z", - "iopub.status.idle": "2024-01-17T18:11:00.916426Z", - "shell.execute_reply": "2024-01-17T18:11:00.915786Z" + "iopub.execute_input": "2024-01-17T23:13:04.129102Z", + "iopub.status.busy": "2024-01-17T23:13:04.128646Z", + "iopub.status.idle": "2024-01-17T23:13:04.466798Z", + "shell.execute_reply": "2024-01-17T23:13:04.466140Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:00.919738Z", - "iopub.status.busy": "2024-01-17T18:11:00.919345Z", - "iopub.status.idle": "2024-01-17T18:11:01.302132Z", - "shell.execute_reply": "2024-01-17T18:11:01.301169Z" + "iopub.execute_input": "2024-01-17T23:13:04.469970Z", + "iopub.status.busy": "2024-01-17T23:13:04.469557Z", + "iopub.status.idle": "2024-01-17T23:13:04.855437Z", + "shell.execute_reply": "2024-01-17T23:13:04.854746Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:01.305447Z", - "iopub.status.busy": "2024-01-17T18:11:01.305205Z", - "iopub.status.idle": "2024-01-17T18:11:01.743265Z", - "shell.execute_reply": "2024-01-17T18:11:01.742611Z" + "iopub.execute_input": "2024-01-17T23:13:04.858407Z", + "iopub.status.busy": "2024-01-17T23:13:04.858151Z", + "iopub.status.idle": "2024-01-17T23:13:05.320000Z", + "shell.execute_reply": "2024-01-17T23:13:05.319330Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:01.747782Z", - "iopub.status.busy": "2024-01-17T18:11:01.747564Z", - "iopub.status.idle": "2024-01-17T18:11:02.177235Z", - "shell.execute_reply": "2024-01-17T18:11:02.176546Z" + "iopub.execute_input": "2024-01-17T23:13:05.324336Z", + "iopub.status.busy": "2024-01-17T23:13:05.323918Z", + "iopub.status.idle": "2024-01-17T23:13:05.792579Z", + "shell.execute_reply": "2024-01-17T23:13:05.791924Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:02.180504Z", - "iopub.status.busy": "2024-01-17T18:11:02.180026Z", - "iopub.status.idle": "2024-01-17T18:11:02.496037Z", - "shell.execute_reply": "2024-01-17T18:11:02.495341Z" + "iopub.execute_input": "2024-01-17T23:13:05.795897Z", + "iopub.status.busy": "2024-01-17T23:13:05.795682Z", + "iopub.status.idle": "2024-01-17T23:13:06.121035Z", + "shell.execute_reply": "2024-01-17T23:13:06.120426Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:02.499471Z", - "iopub.status.busy": "2024-01-17T18:11:02.498870Z", - "iopub.status.idle": "2024-01-17T18:11:02.702199Z", - "shell.execute_reply": "2024-01-17T18:11:02.701491Z" + "iopub.execute_input": "2024-01-17T23:13:06.123681Z", + "iopub.status.busy": "2024-01-17T23:13:06.123465Z", + "iopub.status.idle": "2024-01-17T23:13:06.322246Z", + "shell.execute_reply": "2024-01-17T23:13:06.321624Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:02.704604Z", - "iopub.status.busy": "2024-01-17T18:11:02.704393Z", - "iopub.status.idle": "2024-01-17T18:11:02.709155Z", - "shell.execute_reply": "2024-01-17T18:11:02.708516Z" + "iopub.execute_input": "2024-01-17T23:13:06.325012Z", + "iopub.status.busy": "2024-01-17T23:13:06.324597Z", + "iopub.status.idle": "2024-01-17T23:13:06.328427Z", + "shell.execute_reply": "2024-01-17T23:13:06.327899Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 5fc43cf36..cd1b146fd 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -940,7 +940,7 @@

2. Pre-process the Cifar10 dataset

-
+
@@ -1306,7 +1306,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 4968673b9..bd88b2fad 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:05.142211Z", - "iopub.status.busy": "2024-01-17T18:11:05.141650Z", - "iopub.status.idle": "2024-01-17T18:11:07.187769Z", - "shell.execute_reply": "2024-01-17T18:11:07.187028Z" + "iopub.execute_input": "2024-01-17T23:13:08.406000Z", + "iopub.status.busy": "2024-01-17T23:13:08.405789Z", + "iopub.status.idle": "2024-01-17T23:13:10.340846Z", + "shell.execute_reply": "2024-01-17T23:13:10.340212Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:07.191099Z", - "iopub.status.busy": "2024-01-17T18:11:07.190494Z", - "iopub.status.idle": "2024-01-17T18:11:07.529231Z", - "shell.execute_reply": "2024-01-17T18:11:07.528438Z" + "iopub.execute_input": "2024-01-17T23:13:10.343878Z", + "iopub.status.busy": "2024-01-17T23:13:10.343422Z", + "iopub.status.idle": "2024-01-17T23:13:10.660493Z", + "shell.execute_reply": "2024-01-17T23:13:10.659800Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:07.532317Z", - "iopub.status.busy": "2024-01-17T18:11:07.531754Z", - "iopub.status.idle": "2024-01-17T18:11:07.536174Z", - "shell.execute_reply": "2024-01-17T18:11:07.535550Z" + "iopub.execute_input": "2024-01-17T23:13:10.663317Z", + "iopub.status.busy": "2024-01-17T23:13:10.663104Z", + "iopub.status.idle": "2024-01-17T23:13:10.667300Z", + "shell.execute_reply": "2024-01-17T23:13:10.666820Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:07.538835Z", - "iopub.status.busy": "2024-01-17T18:11:07.538474Z", - "iopub.status.idle": "2024-01-17T18:11:11.753022Z", - "shell.execute_reply": "2024-01-17T18:11:11.752366Z" + "iopub.execute_input": "2024-01-17T23:13:10.669596Z", + "iopub.status.busy": "2024-01-17T23:13:10.669232Z", + "iopub.status.idle": "2024-01-17T23:13:14.971485Z", + "shell.execute_reply": "2024-01-17T23:13:14.970803Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94ffd2c8ec814e019f2b36b808770db9", + "model_id": "6047426b013f47c49a17843cd40c0b2e", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:11.755600Z", - "iopub.status.busy": "2024-01-17T18:11:11.755226Z", - "iopub.status.idle": "2024-01-17T18:11:11.762083Z", - "shell.execute_reply": "2024-01-17T18:11:11.759899Z" + "iopub.execute_input": "2024-01-17T23:13:14.974264Z", + "iopub.status.busy": "2024-01-17T23:13:14.973841Z", + "iopub.status.idle": "2024-01-17T23:13:14.978950Z", + "shell.execute_reply": "2024-01-17T23:13:14.978415Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:11.764664Z", - "iopub.status.busy": "2024-01-17T18:11:11.764465Z", - "iopub.status.idle": "2024-01-17T18:11:12.328987Z", - "shell.execute_reply": "2024-01-17T18:11:12.328323Z" + "iopub.execute_input": "2024-01-17T23:13:14.981395Z", + "iopub.status.busy": "2024-01-17T23:13:14.980946Z", + "iopub.status.idle": "2024-01-17T23:13:15.518999Z", + "shell.execute_reply": "2024-01-17T23:13:15.518328Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:12.331547Z", - "iopub.status.busy": "2024-01-17T18:11:12.331336Z", - "iopub.status.idle": "2024-01-17T18:11:12.972317Z", - "shell.execute_reply": "2024-01-17T18:11:12.971642Z" + "iopub.execute_input": "2024-01-17T23:13:15.521673Z", + "iopub.status.busy": "2024-01-17T23:13:15.521449Z", + "iopub.status.idle": "2024-01-17T23:13:16.161297Z", + "shell.execute_reply": "2024-01-17T23:13:16.160609Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:12.974776Z", - "iopub.status.busy": "2024-01-17T18:11:12.974562Z", - "iopub.status.idle": "2024-01-17T18:11:12.978442Z", - "shell.execute_reply": "2024-01-17T18:11:12.977910Z" + "iopub.execute_input": "2024-01-17T23:13:16.164039Z", + "iopub.status.busy": "2024-01-17T23:13:16.163636Z", + "iopub.status.idle": "2024-01-17T23:13:16.167332Z", + "shell.execute_reply": "2024-01-17T23:13:16.166795Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:12.980858Z", - "iopub.status.busy": "2024-01-17T18:11:12.980485Z", - "iopub.status.idle": "2024-01-17T18:11:25.431905Z", - "shell.execute_reply": "2024-01-17T18:11:25.431175Z" + "iopub.execute_input": "2024-01-17T23:13:16.169667Z", + "iopub.status.busy": "2024-01-17T23:13:16.169312Z", + "iopub.status.idle": "2024-01-17T23:13:28.179162Z", + "shell.execute_reply": "2024-01-17T23:13:28.178540Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:25.434666Z", - "iopub.status.busy": "2024-01-17T18:11:25.434434Z", - "iopub.status.idle": "2024-01-17T18:11:26.998669Z", - "shell.execute_reply": "2024-01-17T18:11:26.997927Z" + "iopub.execute_input": "2024-01-17T23:13:28.182004Z", + "iopub.status.busy": "2024-01-17T23:13:28.181558Z", + "iopub.status.idle": "2024-01-17T23:13:29.717779Z", + "shell.execute_reply": "2024-01-17T23:13:29.716989Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:27.001780Z", - "iopub.status.busy": "2024-01-17T18:11:27.001137Z", - "iopub.status.idle": "2024-01-17T18:11:27.269493Z", - "shell.execute_reply": "2024-01-17T18:11:27.268620Z" + "iopub.execute_input": "2024-01-17T23:13:29.720707Z", + "iopub.status.busy": "2024-01-17T23:13:29.720296Z", + "iopub.status.idle": "2024-01-17T23:13:29.954475Z", + "shell.execute_reply": "2024-01-17T23:13:29.953698Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:27.272731Z", - "iopub.status.busy": "2024-01-17T18:11:27.272064Z", - "iopub.status.idle": "2024-01-17T18:11:27.957611Z", - "shell.execute_reply": "2024-01-17T18:11:27.956708Z" + "iopub.execute_input": "2024-01-17T23:13:29.957342Z", + "iopub.status.busy": "2024-01-17T23:13:29.957131Z", + "iopub.status.idle": "2024-01-17T23:13:30.610677Z", + "shell.execute_reply": "2024-01-17T23:13:30.610003Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:27.961024Z", - "iopub.status.busy": "2024-01-17T18:11:27.960734Z", - "iopub.status.idle": "2024-01-17T18:11:28.481913Z", - "shell.execute_reply": "2024-01-17T18:11:28.481164Z" + "iopub.execute_input": "2024-01-17T23:13:30.613503Z", + "iopub.status.busy": "2024-01-17T23:13:30.613295Z", + "iopub.status.idle": "2024-01-17T23:13:31.091930Z", + "shell.execute_reply": "2024-01-17T23:13:31.091231Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:28.485267Z", - "iopub.status.busy": "2024-01-17T18:11:28.484715Z", - "iopub.status.idle": "2024-01-17T18:11:28.738717Z", - "shell.execute_reply": "2024-01-17T18:11:28.737951Z" + "iopub.execute_input": "2024-01-17T23:13:31.094432Z", + "iopub.status.busy": "2024-01-17T23:13:31.094207Z", + "iopub.status.idle": "2024-01-17T23:13:31.340997Z", + "shell.execute_reply": "2024-01-17T23:13:31.340291Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:28.742501Z", - "iopub.status.busy": "2024-01-17T18:11:28.741853Z", - "iopub.status.idle": "2024-01-17T18:11:28.828263Z", - "shell.execute_reply": "2024-01-17T18:11:28.827679Z" + "iopub.execute_input": "2024-01-17T23:13:31.344339Z", + "iopub.status.busy": "2024-01-17T23:13:31.343982Z", + "iopub.status.idle": "2024-01-17T23:13:31.429054Z", + "shell.execute_reply": "2024-01-17T23:13:31.428488Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:11:28.831018Z", - "iopub.status.busy": "2024-01-17T18:11:28.830693Z", - "iopub.status.idle": "2024-01-17T18:12:06.785768Z", - "shell.execute_reply": "2024-01-17T18:12:06.784990Z" + "iopub.execute_input": "2024-01-17T23:13:31.431988Z", + "iopub.status.busy": "2024-01-17T23:13:31.431565Z", + "iopub.status.idle": "2024-01-17T23:14:09.484257Z", + "shell.execute_reply": "2024-01-17T23:14:09.483536Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:06.788676Z", - "iopub.status.busy": "2024-01-17T18:12:06.788248Z", - "iopub.status.idle": "2024-01-17T18:12:08.033479Z", - "shell.execute_reply": "2024-01-17T18:12:08.032852Z" + "iopub.execute_input": "2024-01-17T23:14:09.487213Z", + "iopub.status.busy": "2024-01-17T23:14:09.486711Z", + "iopub.status.idle": "2024-01-17T23:14:10.689009Z", + "shell.execute_reply": "2024-01-17T23:14:10.688273Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:08.036962Z", - "iopub.status.busy": "2024-01-17T18:12:08.036208Z", - "iopub.status.idle": "2024-01-17T18:12:08.232791Z", - "shell.execute_reply": "2024-01-17T18:12:08.232181Z" + "iopub.execute_input": "2024-01-17T23:14:10.692325Z", + "iopub.status.busy": "2024-01-17T23:14:10.691749Z", + "iopub.status.idle": "2024-01-17T23:14:10.883450Z", + "shell.execute_reply": "2024-01-17T23:14:10.882715Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:08.235701Z", - "iopub.status.busy": "2024-01-17T18:12:08.235355Z", - "iopub.status.idle": "2024-01-17T18:12:08.238889Z", - "shell.execute_reply": "2024-01-17T18:12:08.238378Z" + "iopub.execute_input": "2024-01-17T23:14:10.886396Z", + "iopub.status.busy": "2024-01-17T23:14:10.886034Z", + "iopub.status.idle": "2024-01-17T23:14:10.889447Z", + "shell.execute_reply": "2024-01-17T23:14:10.888823Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:08.241261Z", - "iopub.status.busy": "2024-01-17T18:12:08.241030Z", - "iopub.status.idle": "2024-01-17T18:12:08.250335Z", - "shell.execute_reply": "2024-01-17T18:12:08.249660Z" + "iopub.execute_input": "2024-01-17T23:14:10.891982Z", + "iopub.status.busy": "2024-01-17T23:14:10.891602Z", + "iopub.status.idle": "2024-01-17T23:14:10.900135Z", + "shell.execute_reply": "2024-01-17T23:14:10.899657Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "44fda716909e43628352ea6c49c2ff41": { + "2f9ad96375eb43b79434c86af5089657": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1069,132 +1069,105 @@ "width": null } }, - "4acca3f4f43345808ed1160cde907360": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "3115519043034972b905b0c53494f868": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a13d518f6ab14929a70a4234ad51590d", + "placeholder": "​", + "style": "IPY_MODEL_f57e4dbd7d6c44deadc2f7b94af1255d", + "value": "100%" } }, - "4b5c786cd0e44554a0b38a7e4e5e83b0": { + "3802f1bde2bf44b184140a42223935a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "6a7a1a6e1cd0483ba26f35bf8df07850": { + "3919f9bbffe84644b5c28740e1b586f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "79cb6e9a3ba74463934eec2b0b276fa5": { + "549fd896bf6d492d98bc17a3cadcec46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ecae7d3da8404315949ba1e79252c7e9", - "placeholder": "​", - "style": "IPY_MODEL_9cfcbc6781604ce8bf02eff15dd91a94", - "value": "100%" + "layout": "IPY_MODEL_e2da266fb3f04ca79e2519f380d7a53a", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3919f9bbffe84644b5c28740e1b586f4", + "value": 170498071.0 } }, - "888ff16121af4053a4f316377395b6e9": { + "6047426b013f47c49a17843cd40c0b2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_44fda716909e43628352ea6c49c2ff41", - "placeholder": "​", - "style": "IPY_MODEL_6a7a1a6e1cd0483ba26f35bf8df07850", - "value": " 170498071/170498071 [00:01<00:00, 113387794.23it/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3115519043034972b905b0c53494f868", + "IPY_MODEL_549fd896bf6d492d98bc17a3cadcec46", + "IPY_MODEL_a16534c9be87478dbdc9bfae4ae7566b" + ], + "layout": "IPY_MODEL_c2c04344033844fca8dd2955e2dce8d8" } }, - "8a1ccbf8e4d1474ca5594d36a574b20a": { + "a13d518f6ab14929a70a4234ad51590d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1246,68 +1219,80 @@ "width": null } }, - "94ffd2c8ec814e019f2b36b808770db9": { + "a16534c9be87478dbdc9bfae4ae7566b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_79cb6e9a3ba74463934eec2b0b276fa5", - "IPY_MODEL_a012aefd9d514d26aacefc9b267c3824", - "IPY_MODEL_888ff16121af4053a4f316377395b6e9" - ], - "layout": "IPY_MODEL_8a1ccbf8e4d1474ca5594d36a574b20a" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2f9ad96375eb43b79434c86af5089657", + "placeholder": "​", + "style": "IPY_MODEL_3802f1bde2bf44b184140a42223935a4", + "value": " 170498071/170498071 [00:01<00:00, 97316208.25it/s]" } }, - "9cfcbc6781604ce8bf02eff15dd91a94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "c2c04344033844fca8dd2955e2dce8d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a012aefd9d514d26aacefc9b267c3824": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4acca3f4f43345808ed1160cde907360", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4b5c786cd0e44554a0b38a7e4e5e83b0", - "value": 170498071.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ecae7d3da8404315949ba1e79252c7e9": { + "e2da266fb3f04ca79e2519f380d7a53a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1358,6 +1343,21 @@ "visibility": null, "width": null } + }, + "f57e4dbd7d6c44deadc2f7b94af1255d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index eafa96774..3de0c3413 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:12.975780Z", - "iopub.status.busy": "2024-01-17T18:12:12.975329Z", - "iopub.status.idle": "2024-01-17T18:12:14.087240Z", - "shell.execute_reply": "2024-01-17T18:12:14.086667Z" + "iopub.execute_input": "2024-01-17T23:14:15.960182Z", + "iopub.status.busy": "2024-01-17T23:14:15.959654Z", + "iopub.status.idle": "2024-01-17T23:14:17.062152Z", + "shell.execute_reply": "2024-01-17T23:14:17.061449Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.090216Z", - "iopub.status.busy": "2024-01-17T18:12:14.089748Z", - "iopub.status.idle": "2024-01-17T18:12:14.105993Z", - "shell.execute_reply": "2024-01-17T18:12:14.105493Z" + "iopub.execute_input": "2024-01-17T23:14:17.065102Z", + "iopub.status.busy": "2024-01-17T23:14:17.064826Z", + "iopub.status.idle": "2024-01-17T23:14:17.081276Z", + "shell.execute_reply": "2024-01-17T23:14:17.080798Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.108511Z", - "iopub.status.busy": "2024-01-17T18:12:14.108131Z", - "iopub.status.idle": "2024-01-17T18:12:14.111275Z", - "shell.execute_reply": "2024-01-17T18:12:14.110730Z" + "iopub.execute_input": "2024-01-17T23:14:17.083754Z", + "iopub.status.busy": "2024-01-17T23:14:17.083378Z", + "iopub.status.idle": "2024-01-17T23:14:17.086439Z", + "shell.execute_reply": "2024-01-17T23:14:17.085896Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.113627Z", - "iopub.status.busy": "2024-01-17T18:12:14.113255Z", - "iopub.status.idle": "2024-01-17T18:12:14.211397Z", - "shell.execute_reply": "2024-01-17T18:12:14.210759Z" + "iopub.execute_input": "2024-01-17T23:14:17.088732Z", + "iopub.status.busy": "2024-01-17T23:14:17.088379Z", + "iopub.status.idle": "2024-01-17T23:14:17.163683Z", + "shell.execute_reply": "2024-01-17T23:14:17.163047Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.214337Z", - "iopub.status.busy": "2024-01-17T18:12:14.213937Z", - "iopub.status.idle": "2024-01-17T18:12:14.499529Z", - "shell.execute_reply": "2024-01-17T18:12:14.498832Z" + "iopub.execute_input": "2024-01-17T23:14:17.166444Z", + "iopub.status.busy": "2024-01-17T23:14:17.166096Z", + "iopub.status.idle": "2024-01-17T23:14:17.450591Z", + "shell.execute_reply": "2024-01-17T23:14:17.449863Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.502466Z", - "iopub.status.busy": "2024-01-17T18:12:14.502090Z", - "iopub.status.idle": "2024-01-17T18:12:14.756785Z", - "shell.execute_reply": "2024-01-17T18:12:14.756135Z" + "iopub.execute_input": "2024-01-17T23:14:17.453500Z", + "iopub.status.busy": "2024-01-17T23:14:17.453276Z", + "iopub.status.idle": "2024-01-17T23:14:17.712310Z", + "shell.execute_reply": "2024-01-17T23:14:17.711570Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.759685Z", - "iopub.status.busy": "2024-01-17T18:12:14.759113Z", - "iopub.status.idle": "2024-01-17T18:12:14.763916Z", - "shell.execute_reply": "2024-01-17T18:12:14.763292Z" + "iopub.execute_input": "2024-01-17T23:14:17.715207Z", + "iopub.status.busy": "2024-01-17T23:14:17.714563Z", + "iopub.status.idle": "2024-01-17T23:14:17.719694Z", + "shell.execute_reply": "2024-01-17T23:14:17.719140Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.766230Z", - "iopub.status.busy": "2024-01-17T18:12:14.766027Z", - "iopub.status.idle": "2024-01-17T18:12:14.772493Z", - "shell.execute_reply": "2024-01-17T18:12:14.771995Z" + "iopub.execute_input": "2024-01-17T23:14:17.722020Z", + "iopub.status.busy": "2024-01-17T23:14:17.721636Z", + "iopub.status.idle": "2024-01-17T23:14:17.727795Z", + "shell.execute_reply": "2024-01-17T23:14:17.727294Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.774939Z", - "iopub.status.busy": "2024-01-17T18:12:14.774604Z", - "iopub.status.idle": "2024-01-17T18:12:14.777371Z", - "shell.execute_reply": "2024-01-17T18:12:14.776796Z" + "iopub.execute_input": "2024-01-17T23:14:17.730435Z", + "iopub.status.busy": "2024-01-17T23:14:17.729964Z", + "iopub.status.idle": "2024-01-17T23:14:17.732895Z", + "shell.execute_reply": "2024-01-17T23:14:17.732419Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:14.779648Z", - "iopub.status.busy": "2024-01-17T18:12:14.779287Z", - "iopub.status.idle": "2024-01-17T18:12:24.954125Z", - "shell.execute_reply": "2024-01-17T18:12:24.953475Z" + "iopub.execute_input": "2024-01-17T23:14:17.735253Z", + "iopub.status.busy": "2024-01-17T23:14:17.734894Z", + "iopub.status.idle": "2024-01-17T23:14:27.746313Z", + "shell.execute_reply": "2024-01-17T23:14:27.745534Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.957367Z", - "iopub.status.busy": "2024-01-17T18:12:24.956688Z", - "iopub.status.idle": "2024-01-17T18:12:24.964247Z", - "shell.execute_reply": "2024-01-17T18:12:24.963650Z" + "iopub.execute_input": "2024-01-17T23:14:27.749932Z", + "iopub.status.busy": "2024-01-17T23:14:27.749187Z", + "iopub.status.idle": "2024-01-17T23:14:27.757016Z", + "shell.execute_reply": "2024-01-17T23:14:27.756392Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.966582Z", - "iopub.status.busy": "2024-01-17T18:12:24.966381Z", - "iopub.status.idle": "2024-01-17T18:12:24.970309Z", - "shell.execute_reply": "2024-01-17T18:12:24.969793Z" + "iopub.execute_input": "2024-01-17T23:14:27.759616Z", + "iopub.status.busy": "2024-01-17T23:14:27.759241Z", + "iopub.status.idle": "2024-01-17T23:14:27.763155Z", + "shell.execute_reply": "2024-01-17T23:14:27.762627Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.972387Z", - "iopub.status.busy": "2024-01-17T18:12:24.972195Z", - "iopub.status.idle": "2024-01-17T18:12:24.976119Z", - "shell.execute_reply": "2024-01-17T18:12:24.975605Z" + "iopub.execute_input": "2024-01-17T23:14:27.765475Z", + "iopub.status.busy": "2024-01-17T23:14:27.765102Z", + "iopub.status.idle": "2024-01-17T23:14:27.768912Z", + "shell.execute_reply": "2024-01-17T23:14:27.768381Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.978399Z", - "iopub.status.busy": "2024-01-17T18:12:24.978063Z", - "iopub.status.idle": "2024-01-17T18:12:24.981351Z", - "shell.execute_reply": "2024-01-17T18:12:24.980720Z" + "iopub.execute_input": "2024-01-17T23:14:27.771349Z", + "iopub.status.busy": "2024-01-17T23:14:27.770935Z", + "iopub.status.idle": "2024-01-17T23:14:27.774415Z", + "shell.execute_reply": "2024-01-17T23:14:27.773861Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.983590Z", - "iopub.status.busy": "2024-01-17T18:12:24.983226Z", - "iopub.status.idle": "2024-01-17T18:12:24.991687Z", - "shell.execute_reply": "2024-01-17T18:12:24.991176Z" + "iopub.execute_input": "2024-01-17T23:14:27.776712Z", + "iopub.status.busy": "2024-01-17T23:14:27.776344Z", + "iopub.status.idle": "2024-01-17T23:14:27.785189Z", + "shell.execute_reply": "2024-01-17T23:14:27.784641Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:24.993898Z", - "iopub.status.busy": "2024-01-17T18:12:24.993700Z", - "iopub.status.idle": "2024-01-17T18:12:25.140874Z", - "shell.execute_reply": "2024-01-17T18:12:25.140179Z" + "iopub.execute_input": "2024-01-17T23:14:27.787704Z", + "iopub.status.busy": "2024-01-17T23:14:27.787338Z", + "iopub.status.idle": "2024-01-17T23:14:27.937319Z", + "shell.execute_reply": "2024-01-17T23:14:27.936622Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:25.143690Z", - "iopub.status.busy": "2024-01-17T18:12:25.143247Z", - "iopub.status.idle": "2024-01-17T18:12:25.277016Z", - "shell.execute_reply": "2024-01-17T18:12:25.276372Z" + "iopub.execute_input": "2024-01-17T23:14:27.940162Z", + "iopub.status.busy": "2024-01-17T23:14:27.939715Z", + "iopub.status.idle": "2024-01-17T23:14:28.073020Z", + "shell.execute_reply": "2024-01-17T23:14:28.072323Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:25.280112Z", - "iopub.status.busy": "2024-01-17T18:12:25.279620Z", - "iopub.status.idle": "2024-01-17T18:12:25.869524Z", - "shell.execute_reply": "2024-01-17T18:12:25.868796Z" + "iopub.execute_input": "2024-01-17T23:14:28.075914Z", + "iopub.status.busy": "2024-01-17T23:14:28.075472Z", + "iopub.status.idle": "2024-01-17T23:14:28.663372Z", + "shell.execute_reply": "2024-01-17T23:14:28.662637Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:25.872698Z", - "iopub.status.busy": "2024-01-17T18:12:25.872237Z", - "iopub.status.idle": "2024-01-17T18:12:25.955671Z", - "shell.execute_reply": "2024-01-17T18:12:25.954697Z" + "iopub.execute_input": "2024-01-17T23:14:28.666533Z", + "iopub.status.busy": "2024-01-17T23:14:28.666263Z", + "iopub.status.idle": "2024-01-17T23:14:28.748208Z", + "shell.execute_reply": "2024-01-17T23:14:28.747515Z" } }, "outputs": [ @@ -1055,10 +1055,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:25.958459Z", - "iopub.status.busy": "2024-01-17T18:12:25.958243Z", - "iopub.status.idle": "2024-01-17T18:12:25.968660Z", - "shell.execute_reply": "2024-01-17T18:12:25.968158Z" + "iopub.execute_input": "2024-01-17T23:14:28.750983Z", + "iopub.status.busy": "2024-01-17T23:14:28.750598Z", + "iopub.status.idle": "2024-01-17T23:14:28.760804Z", + "shell.execute_reply": "2024-01-17T23:14:28.760302Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 78b66cb67..2dcfe8748 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -969,13 +969,13 @@

3. Use cleanlab to find label issues

-
+
-
+
-
0%| | 17362/4997817 [00:00&lt;00:28, 173608.58it/s]
+
0%| | 16923/4997817 [00:00&lt;00:29, 169217.65it/s]

</pre>

-
0%| | 17362/4997817 [00:00<00:28, 173608.58it/s]
+
0%| | 16923/4997817 [00:00<00:29, 169217.65it/s]

end{sphinxVerbatim}

-

0%| | 17362/4997817 [00:00<00:28, 173608.58it/s]

+

0%| | 16923/4997817 [00:00<00:29, 169217.65it/s]

-
1%| | 34895/4997817 [00:00&lt;00:28, 174610.72it/s]
+
1%| | 33993/4997817 [00:00&lt;00:29, 170085.88it/s]

</pre>

-
1%| | 34895/4997817 [00:00<00:28, 174610.72it/s]
+
1%| | 33993/4997817 [00:00<00:29, 170085.88it/s]

end{sphinxVerbatim}

-

1%| | 34895/4997817 [00:00<00:28, 174610.72it/s]

+

1%| | 33993/4997817 [00:00<00:29, 170085.88it/s]

-
1%| | 52475/4997817 [00:00&lt;00:28, 175150.77it/s]
+
1%| | 51002/4997817 [00:00&lt;00:29, 169503.62it/s]

</pre>

-
1%| | 52475/4997817 [00:00<00:28, 175150.77it/s]
+
1%| | 51002/4997817 [00:00<00:29, 169503.62it/s]

end{sphinxVerbatim}

-

1%| | 52475/4997817 [00:00<00:28, 175150.77it/s]

+

1%| | 51002/4997817 [00:00<00:29, 169503.62it/s]

-
1%|▏ | 69991/4997817 [00:00&lt;00:28, 173938.91it/s]
+
1%|▏ | 68012/4997817 [00:00&lt;00:29, 169735.92it/s]

</pre>

-
1%|▏ | 69991/4997817 [00:00<00:28, 173938.91it/s]
+
1%|▏ | 68012/4997817 [00:00<00:29, 169735.92it/s]

end{sphinxVerbatim}

-

1%|▏ | 69991/4997817 [00:00<00:28, 173938.91it/s]

+

1%|▏ | 68012/4997817 [00:00<00:29, 169735.92it/s]

-
2%|▏ | 87813/4997817 [00:00&lt;00:27, 175471.95it/s]
+
2%|▏ | 84993/4997817 [00:00&lt;00:28, 169759.89it/s]

</pre>

-
2%|▏ | 87813/4997817 [00:00<00:27, 175471.95it/s]
+
2%|▏ | 84993/4997817 [00:00<00:28, 169759.89it/s]

end{sphinxVerbatim}

-

2%|▏ | 87813/4997817 [00:00<00:27, 175471.95it/s]

+

2%|▏ | 84993/4997817 [00:00<00:28, 169759.89it/s]

-
2%|▏ | 105688/4997817 [00:00&lt;00:27, 176578.81it/s]
+
2%|▏ | 101970/4997817 [00:00&lt;00:28, 169628.61it/s]

</pre>

-
2%|▏ | 105688/4997817 [00:00<00:27, 176578.81it/s]
+
2%|▏ | 101970/4997817 [00:00<00:28, 169628.61it/s]

end{sphinxVerbatim}

-

2%|▏ | 105688/4997817 [00:00<00:27, 176578.81it/s]

+

2%|▏ | 101970/4997817 [00:00<00:28, 169628.61it/s]

-
2%|▏ | 123543/4997817 [00:00&lt;00:27, 177216.89it/s]
+
2%|▏ | 118944/4997817 [00:00&lt;00:28, 169663.19it/s]

</pre>

-
2%|▏ | 123543/4997817 [00:00<00:27, 177216.89it/s]
+
2%|▏ | 118944/4997817 [00:00<00:28, 169663.19it/s]

end{sphinxVerbatim}

-

2%|▏ | 123543/4997817 [00:00<00:27, 177216.89it/s]

+

2%|▏ | 118944/4997817 [00:00<00:28, 169663.19it/s]

-
3%|▎ | 141289/4997817 [00:00&lt;00:27, 177290.20it/s]
+
3%|▎ | 135911/4997817 [00:00&lt;00:29, 163001.52it/s]

</pre>

-
3%|▎ | 141289/4997817 [00:00<00:27, 177290.20it/s]
+
3%|▎ | 135911/4997817 [00:00<00:29, 163001.52it/s]

end{sphinxVerbatim}

-

3%|▎ | 141289/4997817 [00:00<00:27, 177290.20it/s]

+

3%|▎ | 135911/4997817 [00:00<00:29, 163001.52it/s]

-
3%|▎ | 159076/4997817 [00:00&lt;00:27, 177466.31it/s]
+
3%|▎ | 152918/4997817 [00:00&lt;00:29, 165147.19it/s]

</pre>

-
3%|▎ | 159076/4997817 [00:00<00:27, 177466.31it/s]
+
3%|▎ | 152918/4997817 [00:00<00:29, 165147.19it/s]

end{sphinxVerbatim}

-

3%|▎ | 159076/4997817 [00:00<00:27, 177466.31it/s]

+

3%|▎ | 152918/4997817 [00:00<00:29, 165147.19it/s]

-
4%|▎ | 176918/4997817 [00:01&lt;00:27, 177754.44it/s]
+
3%|▎ | 169974/4997817 [00:01&lt;00:28, 166782.07it/s]

</pre>

-
4%|▎ | 176918/4997817 [00:01<00:27, 177754.44it/s]
+
3%|▎ | 169974/4997817 [00:01<00:28, 166782.07it/s]

end{sphinxVerbatim}

-

4%|▎ | 176918/4997817 [00:01<00:27, 177754.44it/s]

+

3%|▎ | 169974/4997817 [00:01<00:28, 166782.07it/s]

-
4%|▍ | 194876/4997817 [00:01&lt;00:26, 178308.24it/s]
+
4%|▎ | 187064/4997817 [00:01&lt;00:28, 168021.67it/s]

</pre>

-
4%|▍ | 194876/4997817 [00:01<00:26, 178308.24it/s]
+
4%|▎ | 187064/4997817 [00:01<00:28, 168021.67it/s]

end{sphinxVerbatim}

-

4%|▍ | 194876/4997817 [00:01<00:26, 178308.24it/s]

+

4%|▎ | 187064/4997817 [00:01<00:28, 168021.67it/s]

-
4%|▍ | 212708/4997817 [00:01&lt;00:26, 178223.48it/s]
+
4%|▍ | 204038/4997817 [00:01&lt;00:28, 168537.30it/s]

</pre>

-
4%|▍ | 212708/4997817 [00:01<00:26, 178223.48it/s]
+
4%|▍ | 204038/4997817 [00:01<00:28, 168537.30it/s]

end{sphinxVerbatim}

-

4%|▍ | 212708/4997817 [00:01<00:26, 178223.48it/s]

+

4%|▍ | 204038/4997817 [00:01<00:28, 168537.30it/s]

-
5%|▍ | 230531/4997817 [00:01&lt;00:26, 178136.92it/s]
+
4%|▍ | 220938/4997817 [00:01&lt;00:28, 168672.47it/s]

</pre>

-
5%|▍ | 230531/4997817 [00:01<00:26, 178136.92it/s]
+
4%|▍ | 220938/4997817 [00:01<00:28, 168672.47it/s]

end{sphinxVerbatim}

-

5%|▍ | 230531/4997817 [00:01<00:26, 178136.92it/s]

+

4%|▍ | 220938/4997817 [00:01<00:28, 168672.47it/s]

-
5%|▍ | 248505/4997817 [00:01&lt;00:26, 178619.00it/s]
+
5%|▍ | 238130/4997817 [00:01&lt;00:28, 169647.75it/s]

</pre>

-
5%|▍ | 248505/4997817 [00:01<00:26, 178619.00it/s]
+
5%|▍ | 238130/4997817 [00:01<00:28, 169647.75it/s]

end{sphinxVerbatim}

-

5%|▍ | 248505/4997817 [00:01<00:26, 178619.00it/s]

+

5%|▍ | 238130/4997817 [00:01<00:28, 169647.75it/s]

-
5%|▌ | 266377/4997817 [00:01&lt;00:26, 178647.43it/s]
+
5%|▌ | 255262/4997817 [00:01&lt;00:27, 170147.90it/s]

</pre>

-
5%|▌ | 266377/4997817 [00:01<00:26, 178647.43it/s]
+
5%|▌ | 255262/4997817 [00:01<00:27, 170147.90it/s]

end{sphinxVerbatim}

-

5%|▌ | 266377/4997817 [00:01<00:26, 178647.43it/s]

+

5%|▌ | 255262/4997817 [00:01<00:27, 170147.90it/s]

-
6%|▌ | 284425/4997817 [00:01&lt;00:26, 179193.60it/s]
+
5%|▌ | 272284/4997817 [00:01&lt;00:27, 170019.26it/s]

</pre>

-
6%|▌ | 284425/4997817 [00:01<00:26, 179193.60it/s]
+
5%|▌ | 272284/4997817 [00:01<00:27, 170019.26it/s]

end{sphinxVerbatim}

-

6%|▌ | 284425/4997817 [00:01<00:26, 179193.60it/s]

+

5%|▌ | 272284/4997817 [00:01<00:27, 170019.26it/s]

-
6%|▌ | 302378/4997817 [00:01&lt;00:26, 179290.92it/s]
+
6%|▌ | 289291/4997817 [00:01&lt;00:27, 169797.69it/s]

</pre>

-
6%|▌ | 302378/4997817 [00:01<00:26, 179290.92it/s]
+
6%|▌ | 289291/4997817 [00:01<00:27, 169797.69it/s]

end{sphinxVerbatim}

-

6%|▌ | 302378/4997817 [00:01<00:26, 179290.92it/s]

+

6%|▌ | 289291/4997817 [00:01<00:27, 169797.69it/s]

-
6%|▋ | 320347/4997817 [00:01&lt;00:26, 179407.53it/s]
+
6%|▌ | 306465/4997817 [00:01&lt;00:27, 170377.22it/s]

</pre>

-
6%|▋ | 320347/4997817 [00:01<00:26, 179407.53it/s]
+
6%|▌ | 306465/4997817 [00:01<00:27, 170377.22it/s]

end{sphinxVerbatim}

-

6%|▋ | 320347/4997817 [00:01<00:26, 179407.53it/s]

+

6%|▌ | 306465/4997817 [00:01<00:27, 170377.22it/s]

-
7%|▋ | 338297/4997817 [00:01&lt;00:25, 179431.36it/s]
+
6%|▋ | 323703/4997817 [00:01&lt;00:27, 170975.52it/s]

</pre>

-
7%|▋ | 338297/4997817 [00:01<00:25, 179431.36it/s]
+
6%|▋ | 323703/4997817 [00:01<00:27, 170975.52it/s]

end{sphinxVerbatim}

-

7%|▋ | 338297/4997817 [00:01<00:25, 179431.36it/s]

+

6%|▋ | 323703/4997817 [00:01<00:27, 170975.52it/s]

-
7%|▋ | 356241/4997817 [00:02&lt;00:25, 179348.77it/s]
+
7%|▋ | 340851/4997817 [00:02&lt;00:27, 171125.25it/s]

</pre>

-
7%|▋ | 356241/4997817 [00:02<00:25, 179348.77it/s]
+
7%|▋ | 340851/4997817 [00:02<00:27, 171125.25it/s]

end{sphinxVerbatim}

-

7%|▋ | 356241/4997817 [00:02<00:25, 179348.77it/s]

+

7%|▋ | 340851/4997817 [00:02<00:27, 171125.25it/s]

-
7%|▋ | 374208/4997817 [00:02&lt;00:25, 179441.48it/s]
+
7%|▋ | 357965/4997817 [00:02&lt;00:27, 170735.16it/s]

</pre>

-
7%|▋ | 374208/4997817 [00:02<00:25, 179441.48it/s]
+
7%|▋ | 357965/4997817 [00:02<00:27, 170735.16it/s]

end{sphinxVerbatim}

-

7%|▋ | 374208/4997817 [00:02<00:25, 179441.48it/s]

+

7%|▋ | 357965/4997817 [00:02<00:27, 170735.16it/s]

-
8%|▊ | 392153/4997817 [00:02&lt;00:26, 175413.81it/s]
+
8%|▊ | 375079/4997817 [00:02&lt;00:27, 170854.49it/s]

</pre>

-
8%|▊ | 392153/4997817 [00:02<00:26, 175413.81it/s]
+
8%|▊ | 375079/4997817 [00:02<00:27, 170854.49it/s]

end{sphinxVerbatim}

-

8%|▊ | 392153/4997817 [00:02<00:26, 175413.81it/s]

+

8%|▊ | 375079/4997817 [00:02<00:27, 170854.49it/s]

-
8%|▊ | 410009/4997817 [00:02&lt;00:26, 176338.11it/s]
+
8%|▊ | 392275/4997817 [00:02&lt;00:26, 171182.95it/s]

</pre>

-
8%|▊ | 410009/4997817 [00:02<00:26, 176338.11it/s]
+
8%|▊ | 392275/4997817 [00:02<00:26, 171182.95it/s]

end{sphinxVerbatim}

-

8%|▊ | 410009/4997817 [00:02<00:26, 176338.11it/s]

+

8%|▊ | 392275/4997817 [00:02<00:26, 171182.95it/s]

-
9%|▊ | 427853/4997817 [00:02&lt;00:25, 176958.47it/s]
+
8%|▊ | 409485/4997817 [00:02&lt;00:26, 171454.31it/s]

</pre>

-
9%|▊ | 427853/4997817 [00:02<00:25, 176958.47it/s]
+
8%|▊ | 409485/4997817 [00:02<00:26, 171454.31it/s]

end{sphinxVerbatim}

-

9%|▊ | 427853/4997817 [00:02<00:25, 176958.47it/s]

+

8%|▊ | 409485/4997817 [00:02<00:26, 171454.31it/s]

-
9%|▉ | 445826/4997817 [00:02&lt;00:25, 177779.06it/s]
+
9%|▊ | 426631/4997817 [00:02&lt;00:26, 171181.61it/s]

</pre>

-
9%|▉ | 445826/4997817 [00:02<00:25, 177779.06it/s]
+
9%|▊ | 426631/4997817 [00:02<00:26, 171181.61it/s]

end{sphinxVerbatim}

-

9%|▉ | 445826/4997817 [00:02<00:25, 177779.06it/s]

+

9%|▊ | 426631/4997817 [00:02<00:26, 171181.61it/s]

-
9%|▉ | 463613/4997817 [00:02&lt;00:25, 177528.30it/s]
+
9%|▉ | 443750/4997817 [00:02&lt;00:26, 170479.76it/s]

</pre>

-
9%|▉ | 463613/4997817 [00:02<00:25, 177528.30it/s]
+
9%|▉ | 443750/4997817 [00:02<00:26, 170479.76it/s]

end{sphinxVerbatim}

-

9%|▉ | 463613/4997817 [00:02<00:25, 177528.30it/s]

+

9%|▉ | 443750/4997817 [00:02<00:26, 170479.76it/s]

-
10%|▉ | 481507/4997817 [00:02&lt;00:25, 177946.35it/s]
+
9%|▉ | 460916/4997817 [00:02&lt;00:26, 170828.33it/s]

</pre>

-
10%|▉ | 481507/4997817 [00:02<00:25, 177946.35it/s]
+
9%|▉ | 460916/4997817 [00:02<00:26, 170828.33it/s]

end{sphinxVerbatim}

-

10%|▉ | 481507/4997817 [00:02<00:25, 177946.35it/s]

+

9%|▉ | 460916/4997817 [00:02<00:26, 170828.33it/s]

-
10%|▉ | 499307/4997817 [00:02&lt;00:25, 177661.06it/s]
+
10%|▉ | 478000/4997817 [00:02&lt;00:27, 167094.77it/s]

</pre>

-
10%|▉ | 499307/4997817 [00:02<00:25, 177661.06it/s]
+
10%|▉ | 478000/4997817 [00:02<00:27, 167094.77it/s]

end{sphinxVerbatim}

-

10%|▉ | 499307/4997817 [00:02<00:25, 177661.06it/s]

+

10%|▉ | 478000/4997817 [00:02<00:27, 167094.77it/s]

-
10%|█ | 517142/4997817 [00:02&lt;00:25, 177861.59it/s]
+
10%|▉ | 495446/4997817 [00:02&lt;00:26, 169263.15it/s]

</pre>

-
10%|█ | 517142/4997817 [00:02<00:25, 177861.59it/s]
+
10%|▉ | 495446/4997817 [00:02<00:26, 169263.15it/s]

end{sphinxVerbatim}

-

10%|█ | 517142/4997817 [00:02<00:25, 177861.59it/s]

+

10%|▉ | 495446/4997817 [00:02<00:26, 169263.15it/s]

-
11%|█ | 535037/4997817 [00:03&lt;00:25, 178184.28it/s]
+
10%|█ | 512890/4997817 [00:03&lt;00:26, 170794.12it/s]

</pre>

-
11%|█ | 535037/4997817 [00:03<00:25, 178184.28it/s]
+
10%|█ | 512890/4997817 [00:03<00:26, 170794.12it/s]

end{sphinxVerbatim}

-

11%|█ | 535037/4997817 [00:03<00:25, 178184.28it/s]

+

10%|█ | 512890/4997817 [00:03<00:26, 170794.12it/s]

-
11%|█ | 552923/4997817 [00:03&lt;00:24, 178382.09it/s]
+
11%|█ | 530383/4997817 [00:03&lt;00:25, 172020.72it/s]

</pre>

-
11%|█ | 552923/4997817 [00:03<00:24, 178382.09it/s]
+
11%|█ | 530383/4997817 [00:03<00:25, 172020.72it/s]

end{sphinxVerbatim}

-

11%|█ | 552923/4997817 [00:03<00:24, 178382.09it/s]

+

11%|█ | 530383/4997817 [00:03<00:25, 172020.72it/s]

-
11%|█▏ | 570763/4997817 [00:03&lt;00:25, 171086.58it/s]
+
11%|█ | 547934/4997817 [00:03&lt;00:25, 173058.88it/s]

</pre>

-
11%|█▏ | 570763/4997817 [00:03<00:25, 171086.58it/s]
+
11%|█ | 547934/4997817 [00:03<00:25, 173058.88it/s]

end{sphinxVerbatim}

-

11%|█▏ | 570763/4997817 [00:03<00:25, 171086.58it/s]

+

11%|█ | 547934/4997817 [00:03<00:25, 173058.88it/s]

-
12%|█▏ | 588402/4997817 [00:03&lt;00:25, 172627.47it/s]
+
11%|█▏ | 565248/4997817 [00:03&lt;00:25, 171739.41it/s]

</pre>

-
12%|█▏ | 588402/4997817 [00:03<00:25, 172627.47it/s]
+
11%|█▏ | 565248/4997817 [00:03<00:25, 171739.41it/s]

end{sphinxVerbatim}

-

12%|█▏ | 588402/4997817 [00:03<00:25, 172627.47it/s]

+

11%|█▏ | 565248/4997817 [00:03<00:25, 171739.41it/s]

-
12%|█▏ | 606160/4997817 [00:03&lt;00:25, 174079.34it/s]
+
12%|█▏ | 582430/4997817 [00:03&lt;00:25, 171635.25it/s]

</pre>

-
12%|█▏ | 606160/4997817 [00:03<00:25, 174079.34it/s]
+
12%|█▏ | 582430/4997817 [00:03<00:25, 171635.25it/s]

end{sphinxVerbatim}

-

12%|█▏ | 606160/4997817 [00:03<00:25, 174079.34it/s]

+

12%|█▏ | 582430/4997817 [00:03<00:25, 171635.25it/s]

-
12%|█▏ | 623955/4997817 [00:03&lt;00:24, 175220.83it/s]
+
12%|█▏ | 599599/4997817 [00:03&lt;00:25, 171434.03it/s]

</pre>

-
12%|█▏ | 623955/4997817 [00:03<00:24, 175220.83it/s]
+
12%|█▏ | 599599/4997817 [00:03<00:25, 171434.03it/s]

end{sphinxVerbatim}

-

12%|█▏ | 623955/4997817 [00:03<00:24, 175220.83it/s]

+

12%|█▏ | 599599/4997817 [00:03<00:25, 171434.03it/s]

-
13%|█▎ | 641860/4997817 [00:03&lt;00:24, 176352.97it/s]
+
12%|█▏ | 616746/4997817 [00:03&lt;00:25, 171242.34it/s]

</pre>

-
13%|█▎ | 641860/4997817 [00:03<00:24, 176352.97it/s]
+
12%|█▏ | 616746/4997817 [00:03<00:25, 171242.34it/s]

end{sphinxVerbatim}

-

13%|█▎ | 641860/4997817 [00:03<00:24, 176352.97it/s]

+

12%|█▏ | 616746/4997817 [00:03<00:25, 171242.34it/s]

-
13%|█▎ | 659728/4997817 [00:03&lt;00:24, 177041.83it/s]
+
13%|█▎ | 633873/4997817 [00:03&lt;00:25, 171131.74it/s]

</pre>

-
13%|█▎ | 659728/4997817 [00:03<00:24, 177041.83it/s]
+
13%|█▎ | 633873/4997817 [00:03<00:25, 171131.74it/s]

end{sphinxVerbatim}

-

13%|█▎ | 659728/4997817 [00:03<00:24, 177041.83it/s]

+

13%|█▎ | 633873/4997817 [00:03<00:25, 171131.74it/s]

-
14%|█▎ | 677498/4997817 [00:03&lt;00:24, 177235.53it/s]
+
13%|█▎ | 650988/4997817 [00:03&lt;00:25, 167888.38it/s]

</pre>

-
14%|█▎ | 677498/4997817 [00:03<00:24, 177235.53it/s]
+
13%|█▎ | 650988/4997817 [00:03<00:25, 167888.38it/s]

end{sphinxVerbatim}

-

14%|█▎ | 677498/4997817 [00:03<00:24, 177235.53it/s]

+

13%|█▎ | 650988/4997817 [00:03<00:25, 167888.38it/s]

-
14%|█▍ | 695298/4997817 [00:03&lt;00:24, 177460.17it/s]
+
13%|█▎ | 667980/4997817 [00:03&lt;00:25, 168487.13it/s]

</pre>

-
14%|█▍ | 695298/4997817 [00:03<00:24, 177460.17it/s]
+
13%|█▎ | 667980/4997817 [00:03<00:25, 168487.13it/s]

end{sphinxVerbatim}

-

14%|█▍ | 695298/4997817 [00:03<00:24, 177460.17it/s]

+

13%|█▎ | 667980/4997817 [00:03<00:25, 168487.13it/s]

-
14%|█▍ | 713108/4997817 [00:04&lt;00:24, 177648.89it/s]
+
14%|█▎ | 685095/4997817 [00:04&lt;00:25, 169274.32it/s]

</pre>

-
14%|█▍ | 713108/4997817 [00:04<00:24, 177648.89it/s]
+
14%|█▎ | 685095/4997817 [00:04<00:25, 169274.32it/s]

end{sphinxVerbatim}

-

14%|█▍ | 713108/4997817 [00:04<00:24, 177648.89it/s]

+

14%|█▎ | 685095/4997817 [00:04<00:25, 169274.32it/s]

-
15%|█▍ | 731013/4997817 [00:04&lt;00:23, 178065.71it/s]
+
14%|█▍ | 702365/4997817 [00:04&lt;00:25, 170291.66it/s]

</pre>

-
15%|█▍ | 731013/4997817 [00:04<00:23, 178065.71it/s]
+
14%|█▍ | 702365/4997817 [00:04<00:25, 170291.66it/s]

end{sphinxVerbatim}

-

15%|█▍ | 731013/4997817 [00:04<00:23, 178065.71it/s]

+

14%|█▍ | 702365/4997817 [00:04<00:25, 170291.66it/s]

-
15%|█▍ | 748824/4997817 [00:04&lt;00:23, 177652.38it/s]
+
14%|█▍ | 719508/4997817 [00:04&lt;00:25, 170628.16it/s]

</pre>

-
15%|█▍ | 748824/4997817 [00:04<00:23, 177652.38it/s]
+
14%|█▍ | 719508/4997817 [00:04<00:25, 170628.16it/s]

end{sphinxVerbatim}

-

15%|█▍ | 748824/4997817 [00:04<00:23, 177652.38it/s]

+

14%|█▍ | 719508/4997817 [00:04<00:25, 170628.16it/s]

-
15%|█▌ | 766599/4997817 [00:04&lt;00:23, 177677.08it/s]
+
15%|█▍ | 736576/4997817 [00:04&lt;00:25, 169810.36it/s]

</pre>

-
15%|█▌ | 766599/4997817 [00:04<00:23, 177677.08it/s]
+
15%|█▍ | 736576/4997817 [00:04<00:25, 169810.36it/s]

end{sphinxVerbatim}

-

15%|█▌ | 766599/4997817 [00:04<00:23, 177677.08it/s]

+

15%|█▍ | 736576/4997817 [00:04<00:25, 169810.36it/s]

-
16%|█▌ | 784420/4997817 [00:04&lt;00:23, 177831.64it/s]
+
15%|█▌ | 753562/4997817 [00:04&lt;00:24, 169771.99it/s]

</pre>

-
16%|█▌ | 784420/4997817 [00:04<00:23, 177831.64it/s]
+
15%|█▌ | 753562/4997817 [00:04<00:24, 169771.99it/s]

end{sphinxVerbatim}

-

16%|█▌ | 784420/4997817 [00:04<00:23, 177831.64it/s]

+

15%|█▌ | 753562/4997817 [00:04<00:24, 169771.99it/s]

-
16%|█▌ | 802279/4997817 [00:04&lt;00:23, 178056.61it/s]
+
15%|█▌ | 770715/4997817 [00:04&lt;00:24, 170294.50it/s]

</pre>

-
16%|█▌ | 802279/4997817 [00:04<00:23, 178056.61it/s]
+
15%|█▌ | 770715/4997817 [00:04<00:24, 170294.50it/s]

end{sphinxVerbatim}

-

16%|█▌ | 802279/4997817 [00:04<00:23, 178056.61it/s]

+

15%|█▌ | 770715/4997817 [00:04<00:24, 170294.50it/s]

-
16%|█▋ | 820264/4997817 [00:04&lt;00:23, 178591.12it/s]
+
16%|█▌ | 787747/4997817 [00:04&lt;00:24, 169972.43it/s]

</pre>

-
16%|█▋ | 820264/4997817 [00:04<00:23, 178591.12it/s]
+
16%|█▌ | 787747/4997817 [00:04<00:24, 169972.43it/s]

end{sphinxVerbatim}

-

16%|█▋ | 820264/4997817 [00:04<00:23, 178591.12it/s]

+

16%|█▌ | 787747/4997817 [00:04<00:24, 169972.43it/s]

-
17%|█▋ | 838197/4997817 [00:04&lt;00:23, 178808.60it/s]
+
16%|█▌ | 804872/4997817 [00:04&lt;00:24, 170350.25it/s]

</pre>

-
17%|█▋ | 838197/4997817 [00:04<00:23, 178808.60it/s]
+
16%|█▌ | 804872/4997817 [00:04<00:24, 170350.25it/s]

end{sphinxVerbatim}

-

17%|█▋ | 838197/4997817 [00:04<00:23, 178808.60it/s]

+

16%|█▌ | 804872/4997817 [00:04<00:24, 170350.25it/s]

-
17%|█▋ | 856111/4997817 [00:04&lt;00:23, 178905.08it/s]
+
16%|█▋ | 821909/4997817 [00:04&lt;00:24, 170342.59it/s]

</pre>

-
17%|█▋ | 856111/4997817 [00:04<00:23, 178905.08it/s]
+
16%|█▋ | 821909/4997817 [00:04<00:24, 170342.59it/s]

end{sphinxVerbatim}

-

17%|█▋ | 856111/4997817 [00:04<00:23, 178905.08it/s]

+

16%|█▋ | 821909/4997817 [00:04<00:24, 170342.59it/s]

-
17%|█▋ | 874002/4997817 [00:04&lt;00:23, 178854.94it/s]
+
17%|█▋ | 838945/4997817 [00:04&lt;00:24, 170326.57it/s]

</pre>

-
17%|█▋ | 874002/4997817 [00:04<00:23, 178854.94it/s]
+
17%|█▋ | 838945/4997817 [00:04<00:24, 170326.57it/s]

end{sphinxVerbatim}

-

17%|█▋ | 874002/4997817 [00:04<00:23, 178854.94it/s]

+

17%|█▋ | 838945/4997817 [00:04<00:24, 170326.57it/s]

-
18%|█▊ | 891888/4997817 [00:05&lt;00:22, 178769.86it/s]
+
17%|█▋ | 856345/4997817 [00:05&lt;00:24, 171423.84it/s]

</pre>

-
18%|█▊ | 891888/4997817 [00:05<00:22, 178769.86it/s]
+
17%|█▋ | 856345/4997817 [00:05<00:24, 171423.84it/s]

end{sphinxVerbatim}

-

18%|█▊ | 891888/4997817 [00:05<00:22, 178769.86it/s]

+

17%|█▋ | 856345/4997817 [00:05<00:24, 171423.84it/s]

-
18%|█▊ | 909766/4997817 [00:05&lt;00:22, 177999.88it/s]
+
17%|█▋ | 873794/4997817 [00:05&lt;00:23, 172340.75it/s]

</pre>

-
18%|█▊ | 909766/4997817 [00:05<00:22, 177999.88it/s]
+
17%|█▋ | 873794/4997817 [00:05<00:23, 172340.75it/s]

end{sphinxVerbatim}

-

18%|█▊ | 909766/4997817 [00:05<00:22, 177999.88it/s]

+

17%|█▋ | 873794/4997817 [00:05<00:23, 172340.75it/s]

-
19%|█▊ | 927567/4997817 [00:05&lt;00:23, 175332.09it/s]
+
18%|█▊ | 891355/4997817 [00:05&lt;00:23, 173318.17it/s]

</pre>

-
19%|█▊ | 927567/4997817 [00:05<00:23, 175332.09it/s]
+
18%|█▊ | 891355/4997817 [00:05<00:23, 173318.17it/s]

end{sphinxVerbatim}

-

19%|█▊ | 927567/4997817 [00:05<00:23, 175332.09it/s]

+

18%|█▊ | 891355/4997817 [00:05<00:23, 173318.17it/s]

-
19%|█▉ | 945109/4997817 [00:05&lt;00:23, 172027.61it/s]
+
18%|█▊ | 908761/4997817 [00:05&lt;00:23, 173536.69it/s]

</pre>

-
19%|█▉ | 945109/4997817 [00:05<00:23, 172027.61it/s]
+
18%|█▊ | 908761/4997817 [00:05<00:23, 173536.69it/s]

end{sphinxVerbatim}

-

19%|█▉ | 945109/4997817 [00:05<00:23, 172027.61it/s]

+

18%|█▊ | 908761/4997817 [00:05<00:23, 173536.69it/s]

-
19%|█▉ | 962858/4997817 [00:05&lt;00:23, 173626.11it/s]
+
19%|█▊ | 926115/4997817 [00:05&lt;00:23, 173374.72it/s]

</pre>

-
19%|█▉ | 962858/4997817 [00:05<00:23, 173626.11it/s]
+
19%|█▊ | 926115/4997817 [00:05<00:23, 173374.72it/s]

end{sphinxVerbatim}

-

19%|█▉ | 962858/4997817 [00:05<00:23, 173626.11it/s]

+

19%|█▊ | 926115/4997817 [00:05<00:23, 173374.72it/s]

-
20%|█▉ | 980440/4997817 [00:05&lt;00:23, 174271.59it/s]
+
19%|█▉ | 943534/4997817 [00:05&lt;00:23, 173615.78it/s]

</pre>

-
20%|█▉ | 980440/4997817 [00:05<00:23, 174271.59it/s]
+
19%|█▉ | 943534/4997817 [00:05<00:23, 173615.78it/s]

end{sphinxVerbatim}

-

20%|█▉ | 980440/4997817 [00:05<00:23, 174271.59it/s]

+

19%|█▉ | 943534/4997817 [00:05<00:23, 173615.78it/s]

-
20%|█▉ | 998071/4997817 [00:05&lt;00:22, 174873.76it/s]
+
19%|█▉ | 960987/4997817 [00:05&lt;00:23, 173888.18it/s]

</pre>

-
20%|█▉ | 998071/4997817 [00:05<00:22, 174873.76it/s]
+
19%|█▉ | 960987/4997817 [00:05<00:23, 173888.18it/s]

end{sphinxVerbatim}

-

20%|█▉ | 998071/4997817 [00:05<00:22, 174873.76it/s]

+

19%|█▉ | 960987/4997817 [00:05<00:23, 173888.18it/s]

-
20%|██ | 1015609/4997817 [00:05&lt;00:22, 175019.90it/s]
+
20%|█▉ | 978376/4997817 [00:05&lt;00:23, 173759.83it/s]

</pre>

-
20%|██ | 1015609/4997817 [00:05<00:22, 175019.90it/s]
+
20%|█▉ | 978376/4997817 [00:05<00:23, 173759.83it/s]

end{sphinxVerbatim}

-

20%|██ | 1015609/4997817 [00:05<00:22, 175019.90it/s]

+

20%|█▉ | 978376/4997817 [00:05<00:23, 173759.83it/s]

-
21%|██ | 1033146/4997817 [00:05&lt;00:22, 175119.66it/s]
+
20%|█▉ | 995883/4997817 [00:05&lt;00:22, 174150.86it/s]

</pre>

-
21%|██ | 1033146/4997817 [00:05<00:22, 175119.66it/s]
+
20%|█▉ | 995883/4997817 [00:05<00:22, 174150.86it/s]

end{sphinxVerbatim}

-

21%|██ | 1033146/4997817 [00:05<00:22, 175119.66it/s]

+

20%|█▉ | 995883/4997817 [00:05<00:22, 174150.86it/s]

-
21%|██ | 1050707/4997817 [00:05&lt;00:22, 175263.37it/s]
+
20%|██ | 1013363/4997817 [00:05&lt;00:22, 174342.29it/s]

</pre>

-
21%|██ | 1050707/4997817 [00:05<00:22, 175263.37it/s]
+
20%|██ | 1013363/4997817 [00:05<00:22, 174342.29it/s]

end{sphinxVerbatim}

-

21%|██ | 1050707/4997817 [00:05<00:22, 175263.37it/s]

+

20%|██ | 1013363/4997817 [00:05<00:22, 174342.29it/s]

-
21%|██▏ | 1068310/4997817 [00:06&lt;00:22, 175489.78it/s]
+
21%|██ | 1030818/4997817 [00:06&lt;00:22, 174402.88it/s]

</pre>

-
21%|██▏ | 1068310/4997817 [00:06<00:22, 175489.78it/s]
+
21%|██ | 1030818/4997817 [00:06<00:22, 174402.88it/s]

end{sphinxVerbatim}

-

21%|██▏ | 1068310/4997817 [00:06<00:22, 175489.78it/s]

+

21%|██ | 1030818/4997817 [00:06<00:22, 174402.88it/s]

-
22%|██▏ | 1086006/4997817 [00:06&lt;00:22, 175925.40it/s]
+
21%|██ | 1048303/4997817 [00:06&lt;00:22, 174534.90it/s]

</pre>

-
22%|██▏ | 1086006/4997817 [00:06<00:22, 175925.40it/s]
+
21%|██ | 1048303/4997817 [00:06<00:22, 174534.90it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1086006/4997817 [00:06<00:22, 175925.40it/s]

+

21%|██ | 1048303/4997817 [00:06<00:22, 174534.90it/s]

-
22%|██▏ | 1103856/4997817 [00:06&lt;00:22, 176693.74it/s]
+
21%|██▏ | 1065757/4997817 [00:06&lt;00:22, 174515.39it/s]

</pre>

-
22%|██▏ | 1103856/4997817 [00:06<00:22, 176693.74it/s]
+
21%|██▏ | 1065757/4997817 [00:06<00:22, 174515.39it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1103856/4997817 [00:06<00:22, 176693.74it/s]

+

21%|██▏ | 1065757/4997817 [00:06<00:22, 174515.39it/s]

-
22%|██▏ | 1121527/4997817 [00:06&lt;00:21, 176653.73it/s]
+
22%|██▏ | 1083209/4997817 [00:06&lt;00:22, 174141.01it/s]

</pre>

-
22%|██▏ | 1121527/4997817 [00:06<00:21, 176653.73it/s]
+
22%|██▏ | 1083209/4997817 [00:06<00:22, 174141.01it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1121527/4997817 [00:06<00:21, 176653.73it/s]

+

22%|██▏ | 1083209/4997817 [00:06<00:22, 174141.01it/s]

-
23%|██▎ | 1139194/4997817 [00:06&lt;00:21, 175610.49it/s]
+
22%|██▏ | 1100652/4997817 [00:06&lt;00:22, 174222.63it/s]

</pre>

-
23%|██▎ | 1139194/4997817 [00:06<00:21, 175610.49it/s]
+
22%|██▏ | 1100652/4997817 [00:06<00:22, 174222.63it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1139194/4997817 [00:06<00:21, 175610.49it/s]

+

22%|██▏ | 1100652/4997817 [00:06<00:22, 174222.63it/s]

-
23%|██▎ | 1156758/4997817 [00:06&lt;00:21, 175340.14it/s]
+
22%|██▏ | 1118075/4997817 [00:06&lt;00:22, 173614.04it/s]

</pre>

-
23%|██▎ | 1156758/4997817 [00:06<00:21, 175340.14it/s]
+
22%|██▏ | 1118075/4997817 [00:06<00:22, 173614.04it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1156758/4997817 [00:06<00:21, 175340.14it/s]

+

22%|██▏ | 1118075/4997817 [00:06<00:22, 173614.04it/s]

-
23%|██▎ | 1174423/4997817 [00:06&lt;00:21, 175726.52it/s]
+
23%|██▎ | 1135437/4997817 [00:06&lt;00:22, 173273.09it/s]

</pre>

-
23%|██▎ | 1174423/4997817 [00:06<00:21, 175726.52it/s]
+
23%|██▎ | 1135437/4997817 [00:06<00:22, 173273.09it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1174423/4997817 [00:06<00:21, 175726.52it/s]

+

23%|██▎ | 1135437/4997817 [00:06<00:22, 173273.09it/s]

-
24%|██▍ | 1192038/4997817 [00:06&lt;00:21, 175849.70it/s]
+
23%|██▎ | 1152765/4997817 [00:06&lt;00:22, 173078.85it/s]

</pre>

-
24%|██▍ | 1192038/4997817 [00:06<00:21, 175849.70it/s]
+
23%|██▎ | 1152765/4997817 [00:06<00:22, 173078.85it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1192038/4997817 [00:06<00:21, 175849.70it/s]

+

23%|██▎ | 1152765/4997817 [00:06<00:22, 173078.85it/s]

-
24%|██▍ | 1209681/4997817 [00:06&lt;00:21, 176020.95it/s]
+
23%|██▎ | 1170074/4997817 [00:06&lt;00:22, 172769.04it/s]

</pre>

-
24%|██▍ | 1209681/4997817 [00:06<00:21, 176020.95it/s]
+
23%|██▎ | 1170074/4997817 [00:06<00:22, 172769.04it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1209681/4997817 [00:06<00:21, 176020.95it/s]

+

23%|██▎ | 1170074/4997817 [00:06<00:22, 172769.04it/s]

-
25%|██▍ | 1227284/4997817 [00:06&lt;00:21, 175879.77it/s]
+
24%|██▍ | 1187352/4997817 [00:06&lt;00:22, 166605.50it/s]

</pre>

-
25%|██▍ | 1227284/4997817 [00:06<00:21, 175879.77it/s]
+
24%|██▍ | 1187352/4997817 [00:06<00:22, 166605.50it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1227284/4997817 [00:06<00:21, 175879.77it/s]

+

24%|██▍ | 1187352/4997817 [00:06<00:22, 166605.50it/s]

-
25%|██▍ | 1244924/4997817 [00:07&lt;00:21, 176033.24it/s]
+
24%|██▍ | 1204651/4997817 [00:07&lt;00:22, 168465.26it/s]

</pre>

-
25%|██▍ | 1244924/4997817 [00:07<00:21, 176033.24it/s]
+
24%|██▍ | 1204651/4997817 [00:07<00:22, 168465.26it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1244924/4997817 [00:07<00:21, 176033.24it/s]

+

24%|██▍ | 1204651/4997817 [00:07<00:22, 168465.26it/s]

-
25%|██▌ | 1262528/4997817 [00:07&lt;00:21, 175800.45it/s]
+
24%|██▍ | 1221930/4997817 [00:07&lt;00:22, 169735.51it/s]

</pre>

-
25%|██▌ | 1262528/4997817 [00:07<00:21, 175800.45it/s]
+
24%|██▍ | 1221930/4997817 [00:07<00:22, 169735.51it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1262528/4997817 [00:07<00:21, 175800.45it/s]

+

24%|██▍ | 1221930/4997817 [00:07<00:22, 169735.51it/s]

-
26%|██▌ | 1280128/4997817 [00:07&lt;00:21, 175857.50it/s]
+
25%|██▍ | 1239241/4997817 [00:07&lt;00:22, 170729.82it/s]

</pre>

-
26%|██▌ | 1280128/4997817 [00:07<00:21, 175857.50it/s]
+
25%|██▍ | 1239241/4997817 [00:07<00:22, 170729.82it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1280128/4997817 [00:07<00:21, 175857.50it/s]

+

25%|██▍ | 1239241/4997817 [00:07<00:22, 170729.82it/s]

-
26%|██▌ | 1297844/4997817 [00:07&lt;00:20, 176243.66it/s]
+
25%|██▌ | 1256336/4997817 [00:07&lt;00:21, 170593.49it/s]

</pre>

-
26%|██▌ | 1297844/4997817 [00:07<00:20, 176243.66it/s]
+
25%|██▌ | 1256336/4997817 [00:07<00:21, 170593.49it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1297844/4997817 [00:07<00:20, 176243.66it/s]

+

25%|██▌ | 1256336/4997817 [00:07<00:21, 170593.49it/s]

-
26%|██▋ | 1315598/4997817 [00:07&lt;00:20, 176628.10it/s]
+
25%|██▌ | 1273736/4997817 [00:07&lt;00:21, 171604.75it/s]

</pre>

-
26%|██▋ | 1315598/4997817 [00:07<00:20, 176628.10it/s]
+
25%|██▌ | 1273736/4997817 [00:07<00:21, 171604.75it/s]

end{sphinxVerbatim}

-

26%|██▋ | 1315598/4997817 [00:07<00:20, 176628.10it/s]

+

25%|██▌ | 1273736/4997817 [00:07<00:21, 171604.75it/s]

-
27%|██▋ | 1333326/4997817 [00:07&lt;00:20, 176821.58it/s]
+
26%|██▌ | 1291095/4997817 [00:07&lt;00:21, 172192.76it/s]

</pre>

-
27%|██▋ | 1333326/4997817 [00:07<00:20, 176821.58it/s]
+
26%|██▌ | 1291095/4997817 [00:07<00:21, 172192.76it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1333326/4997817 [00:07<00:20, 176821.58it/s]

+

26%|██▌ | 1291095/4997817 [00:07<00:21, 172192.76it/s]

-
27%|██▋ | 1351011/4997817 [00:07&lt;00:20, 176827.24it/s]
+
26%|██▌ | 1308323/4997817 [00:07&lt;00:21, 171512.26it/s]

</pre>

-
27%|██▋ | 1351011/4997817 [00:07<00:20, 176827.24it/s]
+
26%|██▌ | 1308323/4997817 [00:07<00:21, 171512.26it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1351011/4997817 [00:07<00:20, 176827.24it/s]

+

26%|██▌ | 1308323/4997817 [00:07<00:21, 171512.26it/s]

-
27%|██▋ | 1368694/4997817 [00:07&lt;00:20, 176802.46it/s]
+
27%|██▋ | 1325481/4997817 [00:07&lt;00:21, 170300.82it/s]

</pre>

-
27%|██▋ | 1368694/4997817 [00:07<00:20, 176802.46it/s]
+
27%|██▋ | 1325481/4997817 [00:07<00:21, 170300.82it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1368694/4997817 [00:07<00:20, 176802.46it/s]

+

27%|██▋ | 1325481/4997817 [00:07<00:21, 170300.82it/s]

-
28%|██▊ | 1386390/4997817 [00:07&lt;00:20, 176847.35it/s]
+
27%|██▋ | 1342592/4997817 [00:07&lt;00:21, 170538.44it/s]

</pre>

-
28%|██▊ | 1386390/4997817 [00:07<00:20, 176847.35it/s]
+
27%|██▋ | 1342592/4997817 [00:07<00:21, 170538.44it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1386390/4997817 [00:07<00:20, 176847.35it/s]

+

27%|██▋ | 1342592/4997817 [00:07<00:21, 170538.44it/s]

-
28%|██▊ | 1404075/4997817 [00:07&lt;00:20, 176737.99it/s]
+
27%|██▋ | 1359667/4997817 [00:07&lt;00:21, 170596.95it/s]

</pre>

-
28%|██▊ | 1404075/4997817 [00:07<00:20, 176737.99it/s]
+
27%|██▋ | 1359667/4997817 [00:07<00:21, 170596.95it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1404075/4997817 [00:07<00:20, 176737.99it/s]

+

27%|██▋ | 1359667/4997817 [00:07<00:21, 170596.95it/s]

-
28%|██▊ | 1421749/4997817 [00:08&lt;00:20, 176144.34it/s]
+
28%|██▊ | 1376730/4997817 [00:08&lt;00:21, 170584.52it/s]

</pre>

-
28%|██▊ | 1421749/4997817 [00:08<00:20, 176144.34it/s]
+
28%|██▊ | 1376730/4997817 [00:08<00:21, 170584.52it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1421749/4997817 [00:08<00:20, 176144.34it/s]

+

28%|██▊ | 1376730/4997817 [00:08<00:21, 170584.52it/s]

-
29%|██▉ | 1439364/4997817 [00:08&lt;00:20, 175538.08it/s]
+
28%|██▊ | 1393808/4997817 [00:08&lt;00:21, 170640.10it/s]

</pre>

-
29%|██▉ | 1439364/4997817 [00:08<00:20, 175538.08it/s]
+
28%|██▊ | 1393808/4997817 [00:08<00:21, 170640.10it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1439364/4997817 [00:08<00:20, 175538.08it/s]

+

28%|██▊ | 1393808/4997817 [00:08<00:21, 170640.10it/s]

-
29%|██▉ | 1456919/4997817 [00:08&lt;00:20, 175153.28it/s]
+
28%|██▊ | 1410890/4997817 [00:08&lt;00:21, 170689.62it/s]

</pre>

-
29%|██▉ | 1456919/4997817 [00:08<00:20, 175153.28it/s]
+
28%|██▊ | 1410890/4997817 [00:08<00:21, 170689.62it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1456919/4997817 [00:08<00:20, 175153.28it/s]

+

28%|██▊ | 1410890/4997817 [00:08<00:21, 170689.62it/s]

-
30%|██▉ | 1474435/4997817 [00:08&lt;00:20, 170969.49it/s]
+
29%|██▊ | 1428041/4997817 [00:08&lt;00:20, 170932.83it/s]

</pre>

-
30%|██▉ | 1474435/4997817 [00:08<00:20, 170969.49it/s]
+
29%|██▊ | 1428041/4997817 [00:08<00:20, 170932.83it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1474435/4997817 [00:08<00:20, 170969.49it/s]

+

29%|██▊ | 1428041/4997817 [00:08<00:20, 170932.83it/s]

-
30%|██▉ | 1491823/4997817 [00:08&lt;00:20, 171820.74it/s]
+
29%|██▉ | 1445136/4997817 [00:08&lt;00:20, 170912.74it/s]

</pre>

-
30%|██▉ | 1491823/4997817 [00:08<00:20, 171820.74it/s]
+
29%|██▉ | 1445136/4997817 [00:08<00:20, 170912.74it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1491823/4997817 [00:08<00:20, 171820.74it/s]

+

29%|██▉ | 1445136/4997817 [00:08<00:20, 170912.74it/s]

-
30%|███ | 1509255/4997817 [00:08&lt;00:20, 172556.44it/s]
+
29%|██▉ | 1462229/4997817 [00:08&lt;00:20, 170913.08it/s]

</pre>

-
30%|███ | 1509255/4997817 [00:08<00:20, 172556.44it/s]
+
29%|██▉ | 1462229/4997817 [00:08<00:20, 170913.08it/s]

end{sphinxVerbatim}

-

30%|███ | 1509255/4997817 [00:08<00:20, 172556.44it/s]

+

29%|██▉ | 1462229/4997817 [00:08<00:20, 170913.08it/s]

-
31%|███ | 1526644/4997817 [00:08&lt;00:20, 172949.51it/s]
+
30%|██▉ | 1479321/4997817 [00:08&lt;00:20, 170499.01it/s]

</pre>

-
31%|███ | 1526644/4997817 [00:08<00:20, 172949.51it/s]
+
30%|██▉ | 1479321/4997817 [00:08<00:20, 170499.01it/s]

end{sphinxVerbatim}

-

31%|███ | 1526644/4997817 [00:08<00:20, 172949.51it/s]

+

30%|██▉ | 1479321/4997817 [00:08<00:20, 170499.01it/s]

-
31%|███ | 1544068/4997817 [00:08&lt;00:19, 173330.43it/s]
+
30%|██▉ | 1496372/4997817 [00:08&lt;00:20, 170482.52it/s]

</pre>

-
31%|███ | 1544068/4997817 [00:08<00:19, 173330.43it/s]
+
30%|██▉ | 1496372/4997817 [00:08<00:20, 170482.52it/s]

end{sphinxVerbatim}

-

31%|███ | 1544068/4997817 [00:08<00:19, 173330.43it/s]

+

30%|██▉ | 1496372/4997817 [00:08<00:20, 170482.52it/s]

-
31%|███ | 1561511/4997817 [00:08&lt;00:19, 173656.01it/s]
+
30%|███ | 1513421/4997817 [00:08&lt;00:20, 170395.25it/s]

</pre>

-
31%|███ | 1561511/4997817 [00:08<00:19, 173656.01it/s]
+
30%|███ | 1513421/4997817 [00:08<00:20, 170395.25it/s]

end{sphinxVerbatim}

-

31%|███ | 1561511/4997817 [00:08<00:19, 173656.01it/s]

+

30%|███ | 1513421/4997817 [00:08<00:20, 170395.25it/s]

-
32%|███▏ | 1578882/4997817 [00:08&lt;00:19, 173600.68it/s]
+
31%|███ | 1530461/4997817 [00:08&lt;00:20, 167319.27it/s]

</pre>

-
32%|███▏ | 1578882/4997817 [00:08<00:19, 173600.68it/s]
+
31%|███ | 1530461/4997817 [00:08<00:20, 167319.27it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1578882/4997817 [00:08<00:19, 173600.68it/s]

+

31%|███ | 1530461/4997817 [00:08<00:20, 167319.27it/s]

-
32%|███▏ | 1596246/4997817 [00:09&lt;00:19, 173421.86it/s]
+
31%|███ | 1547481/4997817 [00:09&lt;00:20, 168168.22it/s]

</pre>

-
32%|███▏ | 1596246/4997817 [00:09<00:19, 173421.86it/s]
+
31%|███ | 1547481/4997817 [00:09<00:20, 168168.22it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1596246/4997817 [00:09<00:19, 173421.86it/s]

+

31%|███ | 1547481/4997817 [00:09<00:20, 168168.22it/s]

-
32%|███▏ | 1613759/4997817 [00:09&lt;00:19, 173930.01it/s]
+
31%|███▏ | 1564657/4997817 [00:09&lt;00:20, 169231.06it/s]

</pre>

-
32%|███▏ | 1613759/4997817 [00:09<00:19, 173930.01it/s]
+
31%|███▏ | 1564657/4997817 [00:09<00:20, 169231.06it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1613759/4997817 [00:09<00:19, 173930.01it/s]

+

31%|███▏ | 1564657/4997817 [00:09<00:20, 169231.06it/s]

-
33%|███▎ | 1631217/4997817 [00:09&lt;00:19, 174122.33it/s]
+
32%|███▏ | 1581588/4997817 [00:09&lt;00:20, 169022.41it/s]

</pre>

-
33%|███▎ | 1631217/4997817 [00:09<00:19, 174122.33it/s]
+
32%|███▏ | 1581588/4997817 [00:09<00:20, 169022.41it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1631217/4997817 [00:09<00:19, 174122.33it/s]

+

32%|███▏ | 1581588/4997817 [00:09<00:20, 169022.41it/s]

-
33%|███▎ | 1648631/4997817 [00:09&lt;00:19, 170877.37it/s]
+
32%|███▏ | 1598553/4997817 [00:09&lt;00:20, 169205.69it/s]

</pre>

-
33%|███▎ | 1648631/4997817 [00:09<00:19, 170877.37it/s]
+
32%|███▏ | 1598553/4997817 [00:09<00:20, 169205.69it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1648631/4997817 [00:09<00:19, 170877.37it/s]

+

32%|███▏ | 1598553/4997817 [00:09<00:20, 169205.69it/s]

-
33%|███▎ | 1666045/4997817 [00:09&lt;00:19, 171838.32it/s]
+
32%|███▏ | 1615478/4997817 [00:09&lt;00:20, 168976.78it/s]

</pre>

-
33%|███▎ | 1666045/4997817 [00:09<00:19, 171838.32it/s]
+
32%|███▏ | 1615478/4997817 [00:09<00:20, 168976.78it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1666045/4997817 [00:09<00:19, 171838.32it/s]

+

32%|███▏ | 1615478/4997817 [00:09<00:20, 168976.78it/s]

-
34%|███▎ | 1683650/4997817 [00:09&lt;00:19, 173084.46it/s]
+
33%|███▎ | 1632488/4997817 [00:09&lt;00:19, 169311.06it/s]

</pre>

-
34%|███▎ | 1683650/4997817 [00:09<00:19, 173084.46it/s]
+
33%|███▎ | 1632488/4997817 [00:09<00:19, 169311.06it/s]

end{sphinxVerbatim}

-

34%|███▎ | 1683650/4997817 [00:09<00:19, 173084.46it/s]

+

33%|███▎ | 1632488/4997817 [00:09<00:19, 169311.06it/s]

-
34%|███▍ | 1701219/4997817 [00:09&lt;00:18, 173858.01it/s]
+
33%|███▎ | 1649496/4997817 [00:09&lt;00:19, 169537.42it/s]

</pre>

-
34%|███▍ | 1701219/4997817 [00:09<00:18, 173858.01it/s]
+
33%|███▎ | 1649496/4997817 [00:09<00:19, 169537.42it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1701219/4997817 [00:09<00:18, 173858.01it/s]

+

33%|███▎ | 1649496/4997817 [00:09<00:19, 169537.42it/s]

-
34%|███▍ | 1718873/4997817 [00:09&lt;00:18, 174654.48it/s]
+
33%|███▎ | 1666516/4997817 [00:09&lt;00:19, 169734.29it/s]

</pre>

-
34%|███▍ | 1718873/4997817 [00:09<00:18, 174654.48it/s]
+
33%|███▎ | 1666516/4997817 [00:09<00:19, 169734.29it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1718873/4997817 [00:09<00:18, 174654.48it/s]

+

33%|███▎ | 1666516/4997817 [00:09<00:19, 169734.29it/s]

-
35%|███▍ | 1736344/4997817 [00:09&lt;00:18, 174622.09it/s]
+
34%|███▎ | 1683770/4997817 [00:09&lt;00:19, 170570.66it/s]

</pre>

-
35%|███▍ | 1736344/4997817 [00:09<00:18, 174622.09it/s]
+
34%|███▎ | 1683770/4997817 [00:09<00:19, 170570.66it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1736344/4997817 [00:09<00:18, 174622.09it/s]

+

34%|███▎ | 1683770/4997817 [00:09<00:19, 170570.66it/s]

-
35%|███▌ | 1753942/4997817 [00:09&lt;00:18, 175023.95it/s]
+
34%|███▍ | 1700828/4997817 [00:09&lt;00:19, 170107.59it/s]

</pre>

-
35%|███▌ | 1753942/4997817 [00:09<00:18, 175023.95it/s]
+
34%|███▍ | 1700828/4997817 [00:09<00:19, 170107.59it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1753942/4997817 [00:09<00:18, 175023.95it/s]

+

34%|███▍ | 1700828/4997817 [00:09<00:19, 170107.59it/s]

-
35%|███▌ | 1771448/4997817 [00:10&lt;00:18, 174993.57it/s]
+
34%|███▍ | 1718095/4997817 [00:10&lt;00:19, 170870.72it/s]

</pre>

-
35%|███▌ | 1771448/4997817 [00:10<00:18, 174993.57it/s]
+
34%|███▍ | 1718095/4997817 [00:10<00:19, 170870.72it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1771448/4997817 [00:10<00:18, 174993.57it/s]

+

34%|███▍ | 1718095/4997817 [00:10<00:19, 170870.72it/s]

-
36%|███▌ | 1788950/4997817 [00:10&lt;00:18, 174751.67it/s]
+
35%|███▍ | 1735554/4997817 [00:10&lt;00:18, 171982.68it/s]

</pre>

-
36%|███▌ | 1788950/4997817 [00:10<00:18, 174751.67it/s]
+
35%|███▍ | 1735554/4997817 [00:10<00:18, 171982.68it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1788950/4997817 [00:10<00:18, 174751.67it/s]

+

35%|███▍ | 1735554/4997817 [00:10<00:18, 171982.68it/s]

-
36%|███▌ | 1806535/4997817 [00:10&lt;00:18, 175076.18it/s]
+
35%|███▌ | 1752844/4997817 [00:10&lt;00:18, 172253.27it/s]

</pre>

-
36%|███▌ | 1806535/4997817 [00:10<00:18, 175076.18it/s]
+
35%|███▌ | 1752844/4997817 [00:10<00:18, 172253.27it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1806535/4997817 [00:10<00:18, 175076.18it/s]

+

35%|███▌ | 1752844/4997817 [00:10<00:18, 172253.27it/s]

-
36%|███▋ | 1824044/4997817 [00:10&lt;00:18, 174947.92it/s]
+
35%|███▌ | 1770192/4997817 [00:10&lt;00:18, 172616.19it/s]

</pre>

-
36%|███▋ | 1824044/4997817 [00:10<00:18, 174947.92it/s]
+
35%|███▌ | 1770192/4997817 [00:10<00:18, 172616.19it/s]

end{sphinxVerbatim}

-

36%|███▋ | 1824044/4997817 [00:10<00:18, 174947.92it/s]

+

35%|███▌ | 1770192/4997817 [00:10<00:18, 172616.19it/s]

-
37%|███▋ | 1841882/4997817 [00:10&lt;00:17, 175973.50it/s]
+
36%|███▌ | 1787471/4997817 [00:10&lt;00:18, 172664.15it/s]

</pre>

-
37%|███▋ | 1841882/4997817 [00:10<00:17, 175973.50it/s]
+
36%|███▌ | 1787471/4997817 [00:10<00:18, 172664.15it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1841882/4997817 [00:10<00:17, 175973.50it/s]

+

36%|███▌ | 1787471/4997817 [00:10<00:18, 172664.15it/s]

-
37%|███▋ | 1859592/4997817 [00:10&lt;00:17, 176306.73it/s]
+
36%|███▌ | 1804738/4997817 [00:10&lt;00:18, 172460.42it/s]

</pre>

-
37%|███▋ | 1859592/4997817 [00:10<00:17, 176306.73it/s]
+
36%|███▌ | 1804738/4997817 [00:10<00:18, 172460.42it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1859592/4997817 [00:10<00:17, 176306.73it/s]

+

36%|███▌ | 1804738/4997817 [00:10<00:18, 172460.42it/s]

-
38%|███▊ | 1877279/4997817 [00:10&lt;00:17, 176473.74it/s]
+
36%|███▋ | 1822303/4997817 [00:10&lt;00:18, 173414.99it/s]

</pre>

-
38%|███▊ | 1877279/4997817 [00:10<00:17, 176473.74it/s]
+
36%|███▋ | 1822303/4997817 [00:10<00:18, 173414.99it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1877279/4997817 [00:10<00:17, 176473.74it/s]

+

36%|███▋ | 1822303/4997817 [00:10<00:18, 173414.99it/s]

-
38%|███▊ | 1894943/4997817 [00:10&lt;00:17, 176520.23it/s]
+
37%|███▋ | 1839775/4997817 [00:10&lt;00:18, 173804.36it/s]

</pre>

-
38%|███▊ | 1894943/4997817 [00:10<00:17, 176520.23it/s]
+
37%|███▋ | 1839775/4997817 [00:10<00:18, 173804.36it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1894943/4997817 [00:10<00:17, 176520.23it/s]

+

37%|███▋ | 1839775/4997817 [00:10<00:18, 173804.36it/s]

-
38%|███▊ | 1912596/4997817 [00:10&lt;00:17, 176219.44it/s]
+
37%|███▋ | 1857168/4997817 [00:10&lt;00:18, 173839.96it/s]

</pre>

-
38%|███▊ | 1912596/4997817 [00:10<00:17, 176219.44it/s]
+
37%|███▋ | 1857168/4997817 [00:10<00:18, 173839.96it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1912596/4997817 [00:10<00:17, 176219.44it/s]

+

37%|███▋ | 1857168/4997817 [00:10<00:18, 173839.96it/s]

-
39%|███▊ | 1930263/4997817 [00:10&lt;00:17, 176352.95it/s]
+
38%|███▊ | 1874674/4997817 [00:10&lt;00:17, 174204.13it/s]

</pre>

-
39%|███▊ | 1930263/4997817 [00:10<00:17, 176352.95it/s]
+
38%|███▊ | 1874674/4997817 [00:10<00:17, 174204.13it/s]

end{sphinxVerbatim}

-

39%|███▊ | 1930263/4997817 [00:10<00:17, 176352.95it/s]

+

38%|███▊ | 1874674/4997817 [00:10<00:17, 174204.13it/s]

-
39%|███▉ | 1947942/4997817 [00:11&lt;00:17, 176481.33it/s]
+
38%|███▊ | 1892095/4997817 [00:11&lt;00:17, 173973.19it/s]

</pre>

-
39%|███▉ | 1947942/4997817 [00:11<00:17, 176481.33it/s]
+
38%|███▊ | 1892095/4997817 [00:11<00:17, 173973.19it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1947942/4997817 [00:11<00:17, 176481.33it/s]

+

38%|███▊ | 1892095/4997817 [00:11<00:17, 173973.19it/s]

-
39%|███▉ | 1965591/4997817 [00:11&lt;00:17, 175961.68it/s]
+
38%|███▊ | 1909493/4997817 [00:11&lt;00:17, 173652.09it/s]

</pre>

-
39%|███▉ | 1965591/4997817 [00:11<00:17, 175961.68it/s]
+
38%|███▊ | 1909493/4997817 [00:11<00:17, 173652.09it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1965591/4997817 [00:11<00:17, 175961.68it/s]

+

38%|███▊ | 1909493/4997817 [00:11<00:17, 173652.09it/s]

-
40%|███▉ | 1983188/4997817 [00:11&lt;00:17, 175748.07it/s]
+
39%|███▊ | 1926956/4997817 [00:11&lt;00:17, 173942.04it/s]

</pre>

-
40%|███▉ | 1983188/4997817 [00:11<00:17, 175748.07it/s]
+
39%|███▊ | 1926956/4997817 [00:11<00:17, 173942.04it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1983188/4997817 [00:11<00:17, 175748.07it/s]

+

39%|███▊ | 1926956/4997817 [00:11<00:17, 173942.04it/s]

-
40%|████ | 2000787/4997817 [00:11&lt;00:17, 175815.61it/s]
+
39%|███▉ | 1944351/4997817 [00:11&lt;00:17, 173676.68it/s]

</pre>

-
40%|████ | 2000787/4997817 [00:11<00:17, 175815.61it/s]
+
39%|███▉ | 1944351/4997817 [00:11<00:17, 173676.68it/s]

end{sphinxVerbatim}

-

40%|████ | 2000787/4997817 [00:11<00:17, 175815.61it/s]

+

39%|███▉ | 1944351/4997817 [00:11<00:17, 173676.68it/s]

-
40%|████ | 2018369/4997817 [00:11&lt;00:17, 168730.26it/s]
+
39%|███▉ | 1961719/4997817 [00:11&lt;00:17, 173544.32it/s]

</pre>

-
40%|████ | 2018369/4997817 [00:11<00:17, 168730.26it/s]
+
39%|███▉ | 1961719/4997817 [00:11<00:17, 173544.32it/s]

end{sphinxVerbatim}

-

40%|████ | 2018369/4997817 [00:11<00:17, 168730.26it/s]

+

39%|███▉ | 1961719/4997817 [00:11<00:17, 173544.32it/s]

-
41%|████ | 2035840/4997817 [00:11&lt;00:17, 170467.93it/s]
+
40%|███▉ | 1979205/4997817 [00:11&lt;00:17, 173936.66it/s]

</pre>

-
41%|████ | 2035840/4997817 [00:11<00:17, 170467.93it/s]
+
40%|███▉ | 1979205/4997817 [00:11<00:17, 173936.66it/s]

end{sphinxVerbatim}

-

41%|████ | 2035840/4997817 [00:11<00:17, 170467.93it/s]

+

40%|███▉ | 1979205/4997817 [00:11<00:17, 173936.66it/s]

-
41%|████ | 2053380/4997817 [00:11&lt;00:17, 171912.16it/s]
+
40%|███▉ | 1996632/4997817 [00:11&lt;00:17, 174033.21it/s]

</pre>

-
41%|████ | 2053380/4997817 [00:11<00:17, 171912.16it/s]
+
40%|███▉ | 1996632/4997817 [00:11<00:17, 174033.21it/s]

end{sphinxVerbatim}

-

41%|████ | 2053380/4997817 [00:11<00:17, 171912.16it/s]

+

40%|███▉ | 1996632/4997817 [00:11<00:17, 174033.21it/s]

-
41%|████▏ | 2070874/4997817 [00:11&lt;00:16, 172804.36it/s]
+
40%|████ | 2014036/4997817 [00:11&lt;00:17, 173984.33it/s]

</pre>

-
41%|████▏ | 2070874/4997817 [00:11<00:16, 172804.36it/s]
+
40%|████ | 2014036/4997817 [00:11<00:17, 173984.33it/s]

end{sphinxVerbatim}

-

41%|████▏ | 2070874/4997817 [00:11<00:16, 172804.36it/s]

+

40%|████ | 2014036/4997817 [00:11<00:17, 173984.33it/s]

-
42%|████▏ | 2088397/4997817 [00:11&lt;00:16, 173519.94it/s]
+
41%|████ | 2031435/4997817 [00:11&lt;00:17, 173931.39it/s]

</pre>

-
42%|████▏ | 2088397/4997817 [00:11<00:16, 173519.94it/s]
+
41%|████ | 2031435/4997817 [00:11<00:17, 173931.39it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2088397/4997817 [00:11<00:16, 173519.94it/s]

+

41%|████ | 2031435/4997817 [00:11<00:17, 173931.39it/s]

-
42%|████▏ | 2105931/4997817 [00:11&lt;00:16, 174057.90it/s]
+
41%|████ | 2048829/4997817 [00:11&lt;00:16, 173817.50it/s]

</pre>

-
42%|████▏ | 2105931/4997817 [00:11<00:16, 174057.90it/s]
+
41%|████ | 2048829/4997817 [00:11<00:16, 173817.50it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2105931/4997817 [00:11<00:16, 174057.90it/s]

+

41%|████ | 2048829/4997817 [00:11<00:16, 173817.50it/s]

-
42%|████▏ | 2123526/4997817 [00:12&lt;00:16, 174619.28it/s]
+
41%|████▏ | 2066211/4997817 [00:12&lt;00:16, 173089.88it/s]

</pre>

-
42%|████▏ | 2123526/4997817 [00:12<00:16, 174619.28it/s]
+
41%|████▏ | 2066211/4997817 [00:12<00:16, 173089.88it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2123526/4997817 [00:12<00:16, 174619.28it/s]

+

41%|████▏ | 2066211/4997817 [00:12<00:16, 173089.88it/s]

-
43%|████▎ | 2140999/4997817 [00:12&lt;00:16, 174636.87it/s]
+
42%|████▏ | 2083521/4997817 [00:12&lt;00:16, 173048.80it/s]

</pre>

-
43%|████▎ | 2140999/4997817 [00:12<00:16, 174636.87it/s]
+
42%|████▏ | 2083521/4997817 [00:12<00:16, 173048.80it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2140999/4997817 [00:12<00:16, 174636.87it/s]

+

42%|████▏ | 2083521/4997817 [00:12<00:16, 173048.80it/s]

-
43%|████▎ | 2158470/4997817 [00:12&lt;00:16, 174638.99it/s]
+
42%|████▏ | 2100866/4997817 [00:12&lt;00:16, 173165.42it/s]

</pre>

-
43%|████▎ | 2158470/4997817 [00:12<00:16, 174638.99it/s]
+
42%|████▏ | 2100866/4997817 [00:12<00:16, 173165.42it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2158470/4997817 [00:12<00:16, 174638.99it/s]

+

42%|████▏ | 2100866/4997817 [00:12<00:16, 173165.42it/s]

-
44%|████▎ | 2175968/4997817 [00:12&lt;00:16, 174737.78it/s]
+
42%|████▏ | 2118183/4997817 [00:12&lt;00:16, 173142.49it/s]

</pre>

-
44%|████▎ | 2175968/4997817 [00:12<00:16, 174737.78it/s]
+
42%|████▏ | 2118183/4997817 [00:12<00:16, 173142.49it/s]

end{sphinxVerbatim}

-

44%|████▎ | 2175968/4997817 [00:12<00:16, 174737.78it/s]

+

42%|████▏ | 2118183/4997817 [00:12<00:16, 173142.49it/s]

-
44%|████▍ | 2193446/4997817 [00:12&lt;00:16, 174633.60it/s]
+
43%|████▎ | 2135542/4997817 [00:12&lt;00:16, 173274.37it/s]

</pre>

-
44%|████▍ | 2193446/4997817 [00:12<00:16, 174633.60it/s]
+
43%|████▎ | 2135542/4997817 [00:12<00:16, 173274.37it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2193446/4997817 [00:12<00:16, 174633.60it/s]

+

43%|████▎ | 2135542/4997817 [00:12<00:16, 173274.37it/s]

-
44%|████▍ | 2211104/4997817 [00:12&lt;00:15, 175212.99it/s]
+
43%|████▎ | 2152870/4997817 [00:12&lt;00:16, 172932.60it/s]

</pre>

-
44%|████▍ | 2211104/4997817 [00:12<00:15, 175212.99it/s]
+
43%|████▎ | 2152870/4997817 [00:12<00:16, 172932.60it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2211104/4997817 [00:12<00:15, 175212.99it/s]

+

43%|████▎ | 2152870/4997817 [00:12<00:16, 172932.60it/s]

-
45%|████▍ | 2228891/4997817 [00:12&lt;00:15, 176005.69it/s]
+
43%|████▎ | 2170164/4997817 [00:12&lt;00:16, 172786.75it/s]

</pre>

-
45%|████▍ | 2228891/4997817 [00:12<00:15, 176005.69it/s]
+
43%|████▎ | 2170164/4997817 [00:12<00:16, 172786.75it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2228891/4997817 [00:12<00:15, 176005.69it/s]

+

43%|████▎ | 2170164/4997817 [00:12<00:16, 172786.75it/s]

-
45%|████▍ | 2246705/4997817 [00:12&lt;00:15, 176642.54it/s]
+
44%|████▍ | 2187443/4997817 [00:12&lt;00:16, 172758.80it/s]

</pre>

-
45%|████▍ | 2246705/4997817 [00:12<00:15, 176642.54it/s]
+
44%|████▍ | 2187443/4997817 [00:12<00:16, 172758.80it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2246705/4997817 [00:12<00:15, 176642.54it/s]

+

44%|████▍ | 2187443/4997817 [00:12<00:16, 172758.80it/s]

-
45%|████▌ | 2264371/4997817 [00:12&lt;00:15, 176477.26it/s]
+
44%|████▍ | 2204719/4997817 [00:12&lt;00:16, 172489.32it/s]

</pre>

-
45%|████▌ | 2264371/4997817 [00:12<00:15, 176477.26it/s]
+
44%|████▍ | 2204719/4997817 [00:12<00:16, 172489.32it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2264371/4997817 [00:12<00:15, 176477.26it/s]

+

44%|████▍ | 2204719/4997817 [00:12<00:16, 172489.32it/s]

-
46%|████▌ | 2282020/4997817 [00:12&lt;00:15, 176270.92it/s]
+
44%|████▍ | 2221969/4997817 [00:12&lt;00:16, 172209.27it/s]

</pre>

-
46%|████▌ | 2282020/4997817 [00:12<00:15, 176270.92it/s]
+
44%|████▍ | 2221969/4997817 [00:12<00:16, 172209.27it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2282020/4997817 [00:12<00:15, 176270.92it/s]

+

44%|████▍ | 2221969/4997817 [00:12<00:16, 172209.27it/s]

-
46%|████▌ | 2299648/4997817 [00:13&lt;00:15, 176268.65it/s]
+
45%|████▍ | 2239236/4997817 [00:13&lt;00:16, 172342.87it/s]

</pre>

-
46%|████▌ | 2299648/4997817 [00:13<00:15, 176268.65it/s]
+
45%|████▍ | 2239236/4997817 [00:13<00:16, 172342.87it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2299648/4997817 [00:13<00:15, 176268.65it/s]

+

45%|████▍ | 2239236/4997817 [00:13<00:16, 172342.87it/s]

-
46%|████▋ | 2317443/4997817 [00:13&lt;00:15, 176769.77it/s]
+
45%|████▌ | 2256471/4997817 [00:13&lt;00:15, 171712.51it/s]

</pre>

-
46%|████▋ | 2317443/4997817 [00:13<00:15, 176769.77it/s]
+
45%|████▌ | 2256471/4997817 [00:13<00:15, 171712.51it/s]

end{sphinxVerbatim}

-

46%|████▋ | 2317443/4997817 [00:13<00:15, 176769.77it/s]

+

45%|████▌ | 2256471/4997817 [00:13<00:15, 171712.51it/s]

-
47%|████▋ | 2335287/4997817 [00:13&lt;00:15, 177266.82it/s]
+
45%|████▌ | 2273643/4997817 [00:13&lt;00:15, 171115.35it/s]

</pre>

-
47%|████▋ | 2335287/4997817 [00:13<00:15, 177266.82it/s]
+
45%|████▌ | 2273643/4997817 [00:13<00:15, 171115.35it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2335287/4997817 [00:13<00:15, 177266.82it/s]

+

45%|████▌ | 2273643/4997817 [00:13<00:15, 171115.35it/s]

-
47%|████▋ | 2353014/4997817 [00:13&lt;00:14, 177237.67it/s]
+
46%|████▌ | 2290884/4997817 [00:13&lt;00:15, 171500.07it/s]

</pre>

-
47%|████▋ | 2353014/4997817 [00:13<00:14, 177237.67it/s]
+
46%|████▌ | 2290884/4997817 [00:13<00:15, 171500.07it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2353014/4997817 [00:13<00:14, 177237.67it/s]

+

46%|████▌ | 2290884/4997817 [00:13<00:15, 171500.07it/s]

-
47%|████▋ | 2370811/4997817 [00:13&lt;00:14, 177454.13it/s]
+
46%|████▌ | 2308082/4997817 [00:13&lt;00:15, 171641.01it/s]

</pre>

-
47%|████▋ | 2370811/4997817 [00:13<00:14, 177454.13it/s]
+
46%|████▌ | 2308082/4997817 [00:13<00:15, 171641.01it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2370811/4997817 [00:13<00:14, 177454.13it/s]

+

46%|████▌ | 2308082/4997817 [00:13<00:15, 171641.01it/s]

-
48%|████▊ | 2388644/4997817 [00:13&lt;00:14, 177713.67it/s]
+
47%|████▋ | 2325509/4997817 [00:13&lt;00:15, 172425.40it/s]

</pre>

-
48%|████▊ | 2388644/4997817 [00:13<00:14, 177713.67it/s]
+
47%|████▋ | 2325509/4997817 [00:13<00:15, 172425.40it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2388644/4997817 [00:13<00:14, 177713.67it/s]

+

47%|████▋ | 2325509/4997817 [00:13<00:15, 172425.40it/s]

-
48%|████▊ | 2406515/4997817 [00:13&lt;00:14, 178008.59it/s]
+
47%|████▋ | 2342779/4997817 [00:13&lt;00:15, 172505.46it/s]

</pre>

-
48%|████▊ | 2406515/4997817 [00:13<00:14, 178008.59it/s]
+
47%|████▋ | 2342779/4997817 [00:13<00:15, 172505.46it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2406515/4997817 [00:13<00:14, 178008.59it/s]

+

47%|████▋ | 2342779/4997817 [00:13<00:15, 172505.46it/s]

-
49%|████▊ | 2424382/4997817 [00:13&lt;00:14, 178202.69it/s]
+
47%|████▋ | 2360266/4997817 [00:13&lt;00:15, 173212.74it/s]

</pre>

-
49%|████▊ | 2424382/4997817 [00:13<00:14, 178202.69it/s]
+
47%|████▋ | 2360266/4997817 [00:13<00:15, 173212.74it/s]

end{sphinxVerbatim}

-

49%|████▊ | 2424382/4997817 [00:13<00:14, 178202.69it/s]

+

47%|████▋ | 2360266/4997817 [00:13<00:15, 173212.74it/s]

-
49%|████▉ | 2442203/4997817 [00:13&lt;00:14, 176953.39it/s]
+
48%|████▊ | 2377746/4997817 [00:13&lt;00:15, 173684.69it/s]

</pre>

-
49%|████▉ | 2442203/4997817 [00:13<00:14, 176953.39it/s]
+
48%|████▊ | 2377746/4997817 [00:13<00:15, 173684.69it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2442203/4997817 [00:13<00:14, 176953.39it/s]

+

48%|████▊ | 2377746/4997817 [00:13<00:15, 173684.69it/s]

-
49%|████▉ | 2460064/4997817 [00:13&lt;00:14, 177445.01it/s]
+
48%|████▊ | 2395275/4997817 [00:13&lt;00:14, 174160.30it/s]

</pre>

-
49%|████▉ | 2460064/4997817 [00:13<00:14, 177445.01it/s]
+
48%|████▊ | 2395275/4997817 [00:13<00:14, 174160.30it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2460064/4997817 [00:13<00:14, 177445.01it/s]

+

48%|████▊ | 2395275/4997817 [00:13<00:14, 174160.30it/s]

-
50%|████▉ | 2478011/4997817 [00:14&lt;00:14, 178046.47it/s]
+
48%|████▊ | 2412692/4997817 [00:14&lt;00:14, 173545.01it/s]

</pre>

-
50%|████▉ | 2478011/4997817 [00:14<00:14, 178046.47it/s]
+
48%|████▊ | 2412692/4997817 [00:14<00:14, 173545.01it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2478011/4997817 [00:14<00:14, 178046.47it/s]

+

48%|████▊ | 2412692/4997817 [00:14<00:14, 173545.01it/s]

-
50%|████▉ | 2495859/4997817 [00:14&lt;00:14, 178170.66it/s]
+
49%|████▊ | 2430069/4997817 [00:14&lt;00:14, 173608.65it/s]

</pre>

-
50%|████▉ | 2495859/4997817 [00:14<00:14, 178170.66it/s]
+
49%|████▊ | 2430069/4997817 [00:14<00:14, 173608.65it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2495859/4997817 [00:14<00:14, 178170.66it/s]

+

49%|████▊ | 2430069/4997817 [00:14<00:14, 173608.65it/s]

-
50%|█████ | 2513719/4997817 [00:14&lt;00:13, 178294.71it/s]
+
49%|████▉ | 2447462/4997817 [00:14&lt;00:14, 173701.94it/s]

</pre>

-
50%|█████ | 2513719/4997817 [00:14<00:13, 178294.71it/s]
+
49%|████▉ | 2447462/4997817 [00:14<00:14, 173701.94it/s]

end{sphinxVerbatim}

-

50%|█████ | 2513719/4997817 [00:14<00:13, 178294.71it/s]

+

49%|████▉ | 2447462/4997817 [00:14<00:14, 173701.94it/s]

-
51%|█████ | 2531550/4997817 [00:14&lt;00:13, 177984.78it/s]
+
49%|████▉ | 2464833/4997817 [00:14&lt;00:14, 173310.39it/s]

</pre>

-
51%|█████ | 2531550/4997817 [00:14<00:13, 177984.78it/s]
+
49%|████▉ | 2464833/4997817 [00:14<00:14, 173310.39it/s]

end{sphinxVerbatim}

-

51%|█████ | 2531550/4997817 [00:14<00:13, 177984.78it/s]

+

49%|████▉ | 2464833/4997817 [00:14<00:14, 173310.39it/s]

-
51%|█████ | 2549350/4997817 [00:14&lt;00:13, 177765.45it/s]
+
50%|████▉ | 2482165/4997817 [00:14&lt;00:14, 172931.85it/s]

</pre>

-
51%|█████ | 2549350/4997817 [00:14<00:13, 177765.45it/s]
+
50%|████▉ | 2482165/4997817 [00:14<00:14, 172931.85it/s]

end{sphinxVerbatim}

-

51%|█████ | 2549350/4997817 [00:14<00:13, 177765.45it/s]

+

50%|████▉ | 2482165/4997817 [00:14<00:14, 172931.85it/s]

-
51%|█████▏ | 2567127/4997817 [00:14&lt;00:13, 177467.75it/s]
+
50%|█████ | 2499563/4997817 [00:14&lt;00:14, 173242.08it/s]

</pre>

-
51%|█████▏ | 2567127/4997817 [00:14<00:13, 177467.75it/s]
+
50%|█████ | 2499563/4997817 [00:14<00:14, 173242.08it/s]

end{sphinxVerbatim}

-

51%|█████▏ | 2567127/4997817 [00:14<00:13, 177467.75it/s]

+

50%|█████ | 2499563/4997817 [00:14<00:14, 173242.08it/s]

-
52%|█████▏ | 2584875/4997817 [00:14&lt;00:13, 177135.41it/s]
+
50%|█████ | 2516888/4997817 [00:14&lt;00:14, 173011.66it/s]

</pre>

-
52%|█████▏ | 2584875/4997817 [00:14<00:13, 177135.41it/s]
+
50%|█████ | 2516888/4997817 [00:14<00:14, 173011.66it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2584875/4997817 [00:14<00:13, 177135.41it/s]

+

50%|█████ | 2516888/4997817 [00:14<00:14, 173011.66it/s]

-
52%|█████▏ | 2602589/4997817 [00:14&lt;00:13, 176761.69it/s]
+
51%|█████ | 2534190/4997817 [00:14&lt;00:14, 172835.54it/s]

</pre>

-
52%|█████▏ | 2602589/4997817 [00:14<00:13, 176761.69it/s]
+
51%|█████ | 2534190/4997817 [00:14<00:14, 172835.54it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2602589/4997817 [00:14<00:13, 176761.69it/s]

+

51%|█████ | 2534190/4997817 [00:14<00:14, 172835.54it/s]

-
52%|█████▏ | 2620266/4997817 [00:14&lt;00:13, 176400.10it/s]
+
51%|█████ | 2551474/4997817 [00:14&lt;00:14, 172684.40it/s]

</pre>

-
52%|█████▏ | 2620266/4997817 [00:14<00:13, 176400.10it/s]
+
51%|█████ | 2551474/4997817 [00:14<00:14, 172684.40it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2620266/4997817 [00:14<00:13, 176400.10it/s]

+

51%|█████ | 2551474/4997817 [00:14<00:14, 172684.40it/s]

-
53%|█████▎ | 2637907/4997817 [00:14&lt;00:13, 176353.99it/s]
+
51%|█████▏ | 2568743/4997817 [00:14&lt;00:14, 171725.95it/s]

</pre>

-
53%|█████▎ | 2637907/4997817 [00:14<00:13, 176353.99it/s]
+
51%|█████▏ | 2568743/4997817 [00:14<00:14, 171725.95it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2637907/4997817 [00:14<00:13, 176353.99it/s]

+

51%|█████▏ | 2568743/4997817 [00:14<00:14, 171725.95it/s]

-
53%|█████▎ | 2655543/4997817 [00:15&lt;00:13, 175946.08it/s]
+
52%|█████▏ | 2586056/4997817 [00:15&lt;00:14, 172142.42it/s]

</pre>

-
53%|█████▎ | 2655543/4997817 [00:15<00:13, 175946.08it/s]
+
52%|█████▏ | 2586056/4997817 [00:15<00:14, 172142.42it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2655543/4997817 [00:15<00:13, 175946.08it/s]

+

52%|█████▏ | 2586056/4997817 [00:15<00:14, 172142.42it/s]

-
53%|█████▎ | 2673138/4997817 [00:15&lt;00:13, 175874.49it/s]
+
52%|█████▏ | 2603272/4997817 [00:15&lt;00:13, 172009.73it/s]

</pre>

-
53%|█████▎ | 2673138/4997817 [00:15<00:13, 175874.49it/s]
+
52%|█████▏ | 2603272/4997817 [00:15<00:13, 172009.73it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2673138/4997817 [00:15<00:13, 175874.49it/s]

+

52%|█████▏ | 2603272/4997817 [00:15<00:13, 172009.73it/s]

-
54%|█████▍ | 2690726/4997817 [00:15&lt;00:13, 175848.48it/s]
+
52%|█████▏ | 2620507/4997817 [00:15&lt;00:13, 172106.86it/s]

</pre>

-
54%|█████▍ | 2690726/4997817 [00:15<00:13, 175848.48it/s]
+
52%|█████▏ | 2620507/4997817 [00:15<00:13, 172106.86it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2690726/4997817 [00:15<00:13, 175848.48it/s]

+

52%|█████▏ | 2620507/4997817 [00:15<00:13, 172106.86it/s]

-
54%|█████▍ | 2708319/4997817 [00:15&lt;00:13, 175869.29it/s]
+
53%|█████▎ | 2637748/4997817 [00:15&lt;00:13, 172193.71it/s]

</pre>

-
54%|█████▍ | 2708319/4997817 [00:15<00:13, 175869.29it/s]
+
53%|█████▎ | 2637748/4997817 [00:15<00:13, 172193.71it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2708319/4997817 [00:15<00:13, 175869.29it/s]

+

53%|█████▎ | 2637748/4997817 [00:15<00:13, 172193.71it/s]

-
55%|█████▍ | 2725906/4997817 [00:15&lt;00:13, 170165.16it/s]
+
53%|█████▎ | 2655228/4997817 [00:15&lt;00:13, 172969.91it/s]

</pre>

-
55%|█████▍ | 2725906/4997817 [00:15<00:13, 170165.16it/s]
+
53%|█████▎ | 2655228/4997817 [00:15<00:13, 172969.91it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2725906/4997817 [00:15<00:13, 170165.16it/s]

+

53%|█████▎ | 2655228/4997817 [00:15<00:13, 172969.91it/s]

-
55%|█████▍ | 2743530/4997817 [00:15&lt;00:13, 171941.91it/s]
+
53%|█████▎ | 2672594/4997817 [00:15&lt;00:13, 173172.78it/s]

</pre>

-
55%|█████▍ | 2743530/4997817 [00:15<00:13, 171941.91it/s]
+
53%|█████▎ | 2672594/4997817 [00:15<00:13, 173172.78it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2743530/4997817 [00:15<00:13, 171941.91it/s]

+

53%|█████▎ | 2672594/4997817 [00:15<00:13, 173172.78it/s]

-
55%|█████▌ | 2761055/4997817 [00:15&lt;00:12, 172913.09it/s]
+
54%|█████▍ | 2689912/4997817 [00:15&lt;00:13, 172973.25it/s]

</pre>

-
55%|█████▌ | 2761055/4997817 [00:15<00:12, 172913.09it/s]
+
54%|█████▍ | 2689912/4997817 [00:15<00:13, 172973.25it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2761055/4997817 [00:15<00:12, 172913.09it/s]

+

54%|█████▍ | 2689912/4997817 [00:15<00:13, 172973.25it/s]

-
56%|█████▌ | 2778599/4997817 [00:15&lt;00:12, 173657.51it/s]
+
54%|█████▍ | 2707210/4997817 [00:15&lt;00:13, 172673.04it/s]

</pre>

-
56%|█████▌ | 2778599/4997817 [00:15<00:12, 173657.51it/s]
+
54%|█████▍ | 2707210/4997817 [00:15<00:13, 172673.04it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2778599/4997817 [00:15<00:12, 173657.51it/s]

+

54%|█████▍ | 2707210/4997817 [00:15<00:13, 172673.04it/s]

-
56%|█████▌ | 2796132/4997817 [00:15&lt;00:12, 174152.13it/s]
+
55%|█████▍ | 2724649/4997817 [00:15&lt;00:13, 173183.95it/s]

</pre>

-
56%|█████▌ | 2796132/4997817 [00:15<00:12, 174152.13it/s]
+
55%|█████▍ | 2724649/4997817 [00:15<00:13, 173183.95it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2796132/4997817 [00:15<00:12, 174152.13it/s]

+

55%|█████▍ | 2724649/4997817 [00:15<00:13, 173183.95it/s]

-
56%|█████▋ | 2813713/4997817 [00:15&lt;00:12, 174642.51it/s]
+
55%|█████▍ | 2742045/4997817 [00:15&lt;00:13, 173411.99it/s]

</pre>

-
56%|█████▋ | 2813713/4997817 [00:15<00:12, 174642.51it/s]
+
55%|█████▍ | 2742045/4997817 [00:15<00:13, 173411.99it/s]

end{sphinxVerbatim}

-

56%|█████▋ | 2813713/4997817 [00:15<00:12, 174642.51it/s]

+

55%|█████▍ | 2742045/4997817 [00:15<00:13, 173411.99it/s]

-
57%|█████▋ | 2831215/4997817 [00:16&lt;00:12, 174751.85it/s]
+
55%|█████▌ | 2759387/4997817 [00:16&lt;00:12, 172797.03it/s]

</pre>

-
57%|█████▋ | 2831215/4997817 [00:16<00:12, 174751.85it/s]
+
55%|█████▌ | 2759387/4997817 [00:16<00:12, 172797.03it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2831215/4997817 [00:16<00:12, 174751.85it/s]

+

55%|█████▌ | 2759387/4997817 [00:16<00:12, 172797.03it/s]

-
57%|█████▋ | 2848781/4997817 [00:16&lt;00:12, 175020.18it/s]
+
56%|█████▌ | 2776675/4997817 [00:16&lt;00:12, 172818.44it/s]

</pre>

-
57%|█████▋ | 2848781/4997817 [00:16<00:12, 175020.18it/s]
+
56%|█████▌ | 2776675/4997817 [00:16<00:12, 172818.44it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2848781/4997817 [00:16<00:12, 175020.18it/s]

+

56%|█████▌ | 2776675/4997817 [00:16<00:12, 172818.44it/s]

-
57%|█████▋ | 2866288/4997817 [00:16&lt;00:12, 174922.90it/s]
+
56%|█████▌ | 2793958/4997817 [00:16&lt;00:12, 172443.43it/s]

</pre>

-
57%|█████▋ | 2866288/4997817 [00:16<00:12, 174922.90it/s]
+
56%|█████▌ | 2793958/4997817 [00:16<00:12, 172443.43it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2866288/4997817 [00:16<00:12, 174922.90it/s]

+

56%|█████▌ | 2793958/4997817 [00:16<00:12, 172443.43it/s]

-
58%|█████▊ | 2883784/4997817 [00:16&lt;00:12, 174867.39it/s]
+
56%|█████▌ | 2811203/4997817 [00:16&lt;00:12, 172181.49it/s]

</pre>

-
58%|█████▊ | 2883784/4997817 [00:16<00:12, 174867.39it/s]
+
56%|█████▌ | 2811203/4997817 [00:16<00:12, 172181.49it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2883784/4997817 [00:16<00:12, 174867.39it/s]

+

56%|█████▌ | 2811203/4997817 [00:16<00:12, 172181.49it/s]

-
58%|█████▊ | 2901274/4997817 [00:16&lt;00:12, 174518.53it/s]
+
57%|█████▋ | 2828422/4997817 [00:16&lt;00:12, 171875.31it/s]

</pre>

-
58%|█████▊ | 2901274/4997817 [00:16<00:12, 174518.53it/s]
+
57%|█████▋ | 2828422/4997817 [00:16<00:12, 171875.31it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2901274/4997817 [00:16<00:12, 174518.53it/s]

+

57%|█████▋ | 2828422/4997817 [00:16<00:12, 171875.31it/s]

-
58%|█████▊ | 2918784/4997817 [00:16&lt;00:11, 174687.97it/s]
+
57%|█████▋ | 2845610/4997817 [00:16&lt;00:12, 171605.12it/s]

</pre>

-
58%|█████▊ | 2918784/4997817 [00:16<00:11, 174687.97it/s]
+
57%|█████▋ | 2845610/4997817 [00:16<00:12, 171605.12it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2918784/4997817 [00:16<00:11, 174687.97it/s]

+

57%|█████▋ | 2845610/4997817 [00:16<00:12, 171605.12it/s]

-
59%|█████▉ | 2936508/4997817 [00:16&lt;00:11, 175446.36it/s]
+
57%|█████▋ | 2862771/4997817 [00:16&lt;00:12, 171158.71it/s]

</pre>

-
59%|█████▉ | 2936508/4997817 [00:16<00:11, 175446.36it/s]
+
57%|█████▋ | 2862771/4997817 [00:16<00:12, 171158.71it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2936508/4997817 [00:16<00:11, 175446.36it/s]

+

57%|█████▋ | 2862771/4997817 [00:16<00:12, 171158.71it/s]

-
59%|█████▉ | 2954190/4997817 [00:16&lt;00:11, 175855.21it/s]
+
58%|█████▊ | 2880043/4997817 [00:16&lt;00:12, 171620.59it/s]

</pre>

-
59%|█████▉ | 2954190/4997817 [00:16<00:11, 175855.21it/s]
+
58%|█████▊ | 2880043/4997817 [00:16<00:12, 171620.59it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2954190/4997817 [00:16<00:11, 175855.21it/s]

+

58%|█████▊ | 2880043/4997817 [00:16<00:12, 171620.59it/s]

-
59%|█████▉ | 2971867/4997817 [00:16&lt;00:11, 176126.05it/s]
+
58%|█████▊ | 2897206/4997817 [00:16&lt;00:12, 171545.78it/s]

</pre>

-
59%|█████▉ | 2971867/4997817 [00:16<00:11, 176126.05it/s]
+
58%|█████▊ | 2897206/4997817 [00:16<00:12, 171545.78it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2971867/4997817 [00:16<00:11, 176126.05it/s]

+

58%|█████▊ | 2897206/4997817 [00:16<00:12, 171545.78it/s]

-
60%|█████▉ | 2989607/4997817 [00:16&lt;00:11, 176504.50it/s]
+
58%|█████▊ | 2914479/4997817 [00:16&lt;00:12, 171897.64it/s]

</pre>

-
60%|█████▉ | 2989607/4997817 [00:16<00:11, 176504.50it/s]
+
58%|█████▊ | 2914479/4997817 [00:16<00:12, 171897.64it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2989607/4997817 [00:16<00:11, 176504.50it/s]

+

58%|█████▊ | 2914479/4997817 [00:16<00:12, 171897.64it/s]

-
60%|██████ | 3007465/4997817 [00:17&lt;00:11, 177122.98it/s]
+
59%|█████▊ | 2931670/4997817 [00:17&lt;00:12, 171468.11it/s]

</pre>

-
60%|██████ | 3007465/4997817 [00:17<00:11, 177122.98it/s]
+
59%|█████▊ | 2931670/4997817 [00:17<00:12, 171468.11it/s]

end{sphinxVerbatim}

-

60%|██████ | 3007465/4997817 [00:17<00:11, 177122.98it/s]

+

59%|█████▊ | 2931670/4997817 [00:17<00:12, 171468.11it/s]

-
61%|██████ | 3025371/4997817 [00:17&lt;00:11, 177699.75it/s]
+
59%|█████▉ | 2948818/4997817 [00:17&lt;00:12, 164907.42it/s]

</pre>

-
61%|██████ | 3025371/4997817 [00:17<00:11, 177699.75it/s]
+
59%|█████▉ | 2948818/4997817 [00:17<00:12, 164907.42it/s]

end{sphinxVerbatim}

-

61%|██████ | 3025371/4997817 [00:17<00:11, 177699.75it/s]

+

59%|█████▉ | 2948818/4997817 [00:17<00:12, 164907.42it/s]

-
61%|██████ | 3043142/4997817 [00:17&lt;00:11, 177526.55it/s]
+
59%|█████▉ | 2965819/4997817 [00:17&lt;00:12, 166389.56it/s]

</pre>

-
61%|██████ | 3043142/4997817 [00:17<00:11, 177526.55it/s]
+
59%|█████▉ | 2965819/4997817 [00:17<00:12, 166389.56it/s]

end{sphinxVerbatim}

-

61%|██████ | 3043142/4997817 [00:17<00:11, 177526.55it/s]

+

59%|█████▉ | 2965819/4997817 [00:17<00:12, 166389.56it/s]

-
61%|██████ | 3060895/4997817 [00:17&lt;00:10, 177261.36it/s]
+
60%|█████▉ | 2983140/4997817 [00:17&lt;00:11, 168389.32it/s]

</pre>

-
61%|██████ | 3060895/4997817 [00:17<00:10, 177261.36it/s]
+
60%|█████▉ | 2983140/4997817 [00:17<00:11, 168389.32it/s]

end{sphinxVerbatim}

-

61%|██████ | 3060895/4997817 [00:17<00:10, 177261.36it/s]

+

60%|█████▉ | 2983140/4997817 [00:17<00:11, 168389.32it/s]

-
62%|██████▏ | 3078730/4997817 [00:17&lt;00:10, 177583.27it/s]
+
60%|██████ | 3000413/4997817 [00:17&lt;00:11, 169668.46it/s]

</pre>

-
62%|██████▏ | 3078730/4997817 [00:17<00:10, 177583.27it/s]
+
60%|██████ | 3000413/4997817 [00:17<00:11, 169668.46it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3078730/4997817 [00:17<00:10, 177583.27it/s]

+

60%|██████ | 3000413/4997817 [00:17<00:11, 169668.46it/s]

-
62%|██████▏ | 3096489/4997817 [00:17&lt;00:10, 173439.53it/s]
+
60%|██████ | 3017703/4997817 [00:17&lt;00:11, 170624.06it/s]

</pre>

-
62%|██████▏ | 3096489/4997817 [00:17<00:10, 173439.53it/s]
+
60%|██████ | 3017703/4997817 [00:17<00:11, 170624.06it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3096489/4997817 [00:17<00:10, 173439.53it/s]

+

60%|██████ | 3017703/4997817 [00:17<00:11, 170624.06it/s]

-
62%|██████▏ | 3114319/4997817 [00:17&lt;00:10, 174869.70it/s]
+
61%|██████ | 3034960/4997817 [00:17&lt;00:11, 171201.38it/s]

</pre>

-
62%|██████▏ | 3114319/4997817 [00:17<00:10, 174869.70it/s]
+
61%|██████ | 3034960/4997817 [00:17<00:11, 171201.38it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3114319/4997817 [00:17<00:10, 174869.70it/s]

+

61%|██████ | 3034960/4997817 [00:17<00:11, 171201.38it/s]

-
63%|██████▎ | 3132167/4997817 [00:17&lt;00:10, 175934.19it/s]
+
61%|██████ | 3052094/4997817 [00:17&lt;00:11, 171123.09it/s]

</pre>

-
63%|██████▎ | 3132167/4997817 [00:17<00:10, 175934.19it/s]
+
61%|██████ | 3052094/4997817 [00:17<00:11, 171123.09it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3132167/4997817 [00:17<00:10, 175934.19it/s]

+

61%|██████ | 3052094/4997817 [00:17<00:11, 171123.09it/s]

-
63%|██████▎ | 3150036/4997817 [00:17&lt;00:10, 176751.52it/s]
+
61%|██████▏ | 3069455/4997817 [00:17&lt;00:11, 171864.37it/s]

</pre>

-
63%|██████▎ | 3150036/4997817 [00:17<00:10, 176751.52it/s]
+
61%|██████▏ | 3069455/4997817 [00:17<00:11, 171864.37it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3150036/4997817 [00:17<00:10, 176751.52it/s]

+

61%|██████▏ | 3069455/4997817 [00:17<00:11, 171864.37it/s]

-
63%|██████▎ | 3167884/4997817 [00:18&lt;00:10, 177263.84it/s]
+
62%|██████▏ | 3086755/4997817 [00:18&lt;00:11, 172200.09it/s]

</pre>

-
63%|██████▎ | 3167884/4997817 [00:18<00:10, 177263.84it/s]
+
62%|██████▏ | 3086755/4997817 [00:18<00:11, 172200.09it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3167884/4997817 [00:18<00:10, 177263.84it/s]

+

62%|██████▏ | 3086755/4997817 [00:18<00:11, 172200.09it/s]

-
64%|██████▎ | 3185698/4997817 [00:18&lt;00:10, 177523.48it/s]
+
62%|██████▏ | 3104106/4997817 [00:18&lt;00:10, 172590.10it/s]

</pre>

-
64%|██████▎ | 3185698/4997817 [00:18<00:10, 177523.48it/s]
+
62%|██████▏ | 3104106/4997817 [00:18<00:10, 172590.10it/s]

end{sphinxVerbatim}

-

64%|██████▎ | 3185698/4997817 [00:18<00:10, 177523.48it/s]

+

62%|██████▏ | 3104106/4997817 [00:18<00:10, 172590.10it/s]

-
64%|██████▍ | 3203568/4997817 [00:18&lt;00:10, 177872.39it/s]
+
62%|██████▏ | 3121414/4997817 [00:18&lt;00:10, 172732.84it/s]

</pre>

-
64%|██████▍ | 3203568/4997817 [00:18<00:10, 177872.39it/s]
+
62%|██████▏ | 3121414/4997817 [00:18<00:10, 172732.84it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3203568/4997817 [00:18<00:10, 177872.39it/s]

+

62%|██████▏ | 3121414/4997817 [00:18<00:10, 172732.84it/s]

-
64%|██████▍ | 3221360/4997817 [00:18&lt;00:09, 177711.90it/s]
+
63%|██████▎ | 3138690/4997817 [00:18&lt;00:10, 172414.93it/s]

</pre>

-
64%|██████▍ | 3221360/4997817 [00:18<00:09, 177711.90it/s]
+
63%|██████▎ | 3138690/4997817 [00:18<00:10, 172414.93it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3221360/4997817 [00:18<00:09, 177711.90it/s]

+

63%|██████▎ | 3138690/4997817 [00:18<00:10, 172414.93it/s]

-
65%|██████▍ | 3239134/4997817 [00:18&lt;00:09, 177577.15it/s]
+
63%|██████▎ | 3155966/4997817 [00:18&lt;00:10, 172513.49it/s]

</pre>

-
65%|██████▍ | 3239134/4997817 [00:18<00:09, 177577.15it/s]
+
63%|██████▎ | 3155966/4997817 [00:18<00:10, 172513.49it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3239134/4997817 [00:18<00:09, 177577.15it/s]

+

63%|██████▎ | 3155966/4997817 [00:18<00:10, 172513.49it/s]

-
65%|██████▌ | 3256894/4997817 [00:18&lt;00:09, 176368.10it/s]
+
63%|██████▎ | 3173316/4997817 [00:18&lt;00:10, 172807.21it/s]

</pre>

-
65%|██████▌ | 3256894/4997817 [00:18<00:09, 176368.10it/s]
+
63%|██████▎ | 3173316/4997817 [00:18<00:10, 172807.21it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3256894/4997817 [00:18<00:09, 176368.10it/s]

+

63%|██████▎ | 3173316/4997817 [00:18<00:10, 172807.21it/s]

-
66%|██████▌ | 3274697/4997817 [00:18&lt;00:09, 176860.96it/s]
+
64%|██████▍ | 3190786/4997817 [00:18&lt;00:10, 173371.43it/s]

</pre>

-
66%|██████▌ | 3274697/4997817 [00:18<00:09, 176860.96it/s]
+
64%|██████▍ | 3190786/4997817 [00:18<00:10, 173371.43it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3274697/4997817 [00:18<00:09, 176860.96it/s]

+

64%|██████▍ | 3190786/4997817 [00:18<00:10, 173371.43it/s]

-
66%|██████▌ | 3292438/4997817 [00:18&lt;00:09, 177021.85it/s]
+
64%|██████▍ | 3208124/4997817 [00:18&lt;00:10, 173368.22it/s]

</pre>

-
66%|██████▌ | 3292438/4997817 [00:18<00:09, 177021.85it/s]
+
64%|██████▍ | 3208124/4997817 [00:18<00:10, 173368.22it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3292438/4997817 [00:18<00:09, 177021.85it/s]

+

64%|██████▍ | 3208124/4997817 [00:18<00:10, 173368.22it/s]

-
66%|██████▌ | 3310162/4997817 [00:18&lt;00:09, 177081.84it/s]
+
65%|██████▍ | 3225462/4997817 [00:18&lt;00:10, 173291.90it/s]

</pre>

-
66%|██████▌ | 3310162/4997817 [00:18<00:09, 177081.84it/s]
+
65%|██████▍ | 3225462/4997817 [00:18<00:10, 173291.90it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3310162/4997817 [00:18<00:09, 177081.84it/s]

+

65%|██████▍ | 3225462/4997817 [00:18<00:10, 173291.90it/s]

-
67%|██████▋ | 3327911/4997817 [00:18&lt;00:09, 177201.04it/s]
+
65%|██████▍ | 3242799/4997817 [00:18&lt;00:10, 173312.39it/s]

</pre>

-
67%|██████▋ | 3327911/4997817 [00:18<00:09, 177201.04it/s]
+
65%|██████▍ | 3242799/4997817 [00:18<00:10, 173312.39it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3327911/4997817 [00:18<00:09, 177201.04it/s]

+

65%|██████▍ | 3242799/4997817 [00:18<00:10, 173312.39it/s]

-
67%|██████▋ | 3345632/4997817 [00:19&lt;00:09, 177070.11it/s]
+
65%|██████▌ | 3260131/4997817 [00:19&lt;00:10, 173229.77it/s]

</pre>

-
67%|██████▋ | 3345632/4997817 [00:19<00:09, 177070.11it/s]
+
65%|██████▌ | 3260131/4997817 [00:19<00:10, 173229.77it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3345632/4997817 [00:19<00:09, 177070.11it/s]

+

65%|██████▌ | 3260131/4997817 [00:19<00:10, 173229.77it/s]

-
67%|██████▋ | 3363340/4997817 [00:19&lt;00:09, 176560.09it/s]
+
66%|██████▌ | 3277459/4997817 [00:19&lt;00:09, 173241.78it/s]

</pre>

-
67%|██████▋ | 3363340/4997817 [00:19<00:09, 176560.09it/s]
+
66%|██████▌ | 3277459/4997817 [00:19<00:09, 173241.78it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3363340/4997817 [00:19<00:09, 176560.09it/s]

+

66%|██████▌ | 3277459/4997817 [00:19<00:09, 173241.78it/s]

-
68%|██████▊ | 3380997/4997817 [00:19&lt;00:09, 176297.50it/s]
+
66%|██████▌ | 3294784/4997817 [00:19&lt;00:10, 168720.26it/s]

</pre>

-
68%|██████▊ | 3380997/4997817 [00:19<00:09, 176297.50it/s]
+
66%|██████▌ | 3294784/4997817 [00:19<00:10, 168720.26it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3380997/4997817 [00:19<00:09, 176297.50it/s]

+

66%|██████▌ | 3294784/4997817 [00:19<00:10, 168720.26it/s]

-
68%|██████▊ | 3398628/4997817 [00:19&lt;00:09, 175923.15it/s]
+
66%|██████▋ | 3311836/4997817 [00:19&lt;00:09, 169246.65it/s]

</pre>

-
68%|██████▊ | 3398628/4997817 [00:19<00:09, 175923.15it/s]
+
66%|██████▋ | 3311836/4997817 [00:19<00:09, 169246.65it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3398628/4997817 [00:19<00:09, 175923.15it/s]

+

66%|██████▋ | 3311836/4997817 [00:19<00:09, 169246.65it/s]

-
68%|██████▊ | 3416444/4997817 [00:19&lt;00:08, 176583.41it/s]
+
67%|██████▋ | 3329185/4997817 [00:19&lt;00:09, 170499.74it/s]

</pre>

-
68%|██████▊ | 3416444/4997817 [00:19<00:08, 176583.41it/s]
+
67%|██████▋ | 3329185/4997817 [00:19<00:09, 170499.74it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3416444/4997817 [00:19<00:08, 176583.41it/s]

+

67%|██████▋ | 3329185/4997817 [00:19<00:09, 170499.74it/s]

-
69%|██████▊ | 3434103/4997817 [00:19&lt;00:08, 176134.50it/s]
+
67%|██████▋ | 3346525/4997817 [00:19&lt;00:09, 171358.37it/s]

</pre>

-
69%|██████▊ | 3434103/4997817 [00:19<00:08, 176134.50it/s]
+
67%|██████▋ | 3346525/4997817 [00:19<00:09, 171358.37it/s]

end{sphinxVerbatim}

-

69%|██████▊ | 3434103/4997817 [00:19<00:08, 176134.50it/s]

+

67%|██████▋ | 3346525/4997817 [00:19<00:09, 171358.37it/s]

-
69%|██████▉ | 3451738/4997817 [00:19&lt;00:08, 176195.20it/s]
+
67%|██████▋ | 3363981/4997817 [00:19&lt;00:09, 172310.29it/s]

</pre>

-
69%|██████▉ | 3451738/4997817 [00:19<00:08, 176195.20it/s]
+
67%|██████▋ | 3363981/4997817 [00:19<00:09, 172310.29it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3451738/4997817 [00:19<00:08, 176195.20it/s]

+

67%|██████▋ | 3363981/4997817 [00:19<00:09, 172310.29it/s]

-
69%|██████▉ | 3469358/4997817 [00:19&lt;00:08, 176027.78it/s]
+
68%|██████▊ | 3381408/4997817 [00:19&lt;00:09, 172891.73it/s]

</pre>

-
69%|██████▉ | 3469358/4997817 [00:19<00:08, 176027.78it/s]
+
68%|██████▊ | 3381408/4997817 [00:19<00:09, 172891.73it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3469358/4997817 [00:19<00:08, 176027.78it/s]

+

68%|██████▊ | 3381408/4997817 [00:19<00:09, 172891.73it/s]

-
70%|██████▉ | 3486962/4997817 [00:19&lt;00:08, 175916.89it/s]
+
68%|██████▊ | 3398883/4997817 [00:19&lt;00:09, 173444.12it/s]

</pre>

-
70%|██████▉ | 3486962/4997817 [00:19<00:08, 175916.89it/s]
+
68%|██████▊ | 3398883/4997817 [00:19<00:09, 173444.12it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3486962/4997817 [00:19<00:08, 175916.89it/s]

+

68%|██████▊ | 3398883/4997817 [00:19<00:09, 173444.12it/s]

-
70%|███████ | 3504554/4997817 [00:19&lt;00:08, 175282.26it/s]
+
68%|██████▊ | 3416395/4997817 [00:19&lt;00:09, 173944.67it/s]

</pre>

-
70%|███████ | 3504554/4997817 [00:19<00:08, 175282.26it/s]
+
68%|██████▊ | 3416395/4997817 [00:19<00:09, 173944.67it/s]

end{sphinxVerbatim}

-

70%|███████ | 3504554/4997817 [00:19<00:08, 175282.26it/s]

+

68%|██████▊ | 3416395/4997817 [00:19<00:09, 173944.67it/s]

-
70%|███████ | 3522083/4997817 [00:20&lt;00:08, 175175.68it/s]
+
69%|██████▊ | 3433866/4997817 [00:20&lt;00:08, 174170.71it/s]

</pre>

-
70%|███████ | 3522083/4997817 [00:20<00:08, 175175.68it/s]
+
69%|██████▊ | 3433866/4997817 [00:20<00:08, 174170.71it/s]

end{sphinxVerbatim}

-

70%|███████ | 3522083/4997817 [00:20<00:08, 175175.68it/s]

+

69%|██████▊ | 3433866/4997817 [00:20<00:08, 174170.71it/s]

-
71%|███████ | 3539798/4997817 [00:20&lt;00:08, 175762.45it/s]
+
69%|██████▉ | 3451295/4997817 [00:20&lt;00:08, 174202.78it/s]

</pre>

-
71%|███████ | 3539798/4997817 [00:20<00:08, 175762.45it/s]
+
69%|██████▉ | 3451295/4997817 [00:20<00:08, 174202.78it/s]

end{sphinxVerbatim}

-

71%|███████ | 3539798/4997817 [00:20<00:08, 175762.45it/s]

+

69%|██████▉ | 3451295/4997817 [00:20<00:08, 174202.78it/s]

-
71%|███████ | 3557423/4997817 [00:20&lt;00:08, 175905.54it/s]
+
69%|██████▉ | 3468717/4997817 [00:20&lt;00:08, 173871.49it/s]

</pre>

-
71%|███████ | 3557423/4997817 [00:20<00:08, 175905.54it/s]
+
69%|██████▉ | 3468717/4997817 [00:20<00:08, 173871.49it/s]

end{sphinxVerbatim}

-

71%|███████ | 3557423/4997817 [00:20<00:08, 175905.54it/s]

+

69%|██████▉ | 3468717/4997817 [00:20<00:08, 173871.49it/s]

-
72%|███████▏ | 3575120/4997817 [00:20&lt;00:08, 176219.37it/s]
+
70%|██████▉ | 3486106/4997817 [00:20&lt;00:08, 173730.48it/s]

</pre>

-
72%|███████▏ | 3575120/4997817 [00:20<00:08, 176219.37it/s]
+
70%|██████▉ | 3486106/4997817 [00:20<00:08, 173730.48it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3575120/4997817 [00:20<00:08, 176219.37it/s]

+

70%|██████▉ | 3486106/4997817 [00:20<00:08, 173730.48it/s]

-
72%|███████▏ | 3592743/4997817 [00:20&lt;00:07, 176124.71it/s]
+
70%|███████ | 3503480/4997817 [00:20&lt;00:08, 173576.14it/s]

</pre>

-
72%|███████▏ | 3592743/4997817 [00:20<00:07, 176124.71it/s]
+
70%|███████ | 3503480/4997817 [00:20<00:08, 173576.14it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3592743/4997817 [00:20<00:07, 176124.71it/s]

+

70%|███████ | 3503480/4997817 [00:20<00:08, 173576.14it/s]

-
72%|███████▏ | 3610402/4997817 [00:20&lt;00:07, 176260.53it/s]
+
70%|███████ | 3520839/4997817 [00:20&lt;00:08, 172430.10it/s]

</pre>

-
72%|███████▏ | 3610402/4997817 [00:20<00:07, 176260.53it/s]
+
70%|███████ | 3520839/4997817 [00:20<00:08, 172430.10it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3610402/4997817 [00:20<00:07, 176260.53it/s]

+

70%|███████ | 3520839/4997817 [00:20<00:08, 172430.10it/s]

-
73%|███████▎ | 3628029/4997817 [00:20&lt;00:07, 176148.24it/s]
+
71%|███████ | 3538084/4997817 [00:20&lt;00:08, 172099.73it/s]

</pre>

-
73%|███████▎ | 3628029/4997817 [00:20<00:07, 176148.24it/s]
+
71%|███████ | 3538084/4997817 [00:20<00:08, 172099.73it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3628029/4997817 [00:20<00:07, 176148.24it/s]

+

71%|███████ | 3538084/4997817 [00:20<00:08, 172099.73it/s]

-
73%|███████▎ | 3645692/4997817 [00:20&lt;00:07, 176289.26it/s]
+
71%|███████ | 3555296/4997817 [00:20&lt;00:08, 171901.03it/s]

</pre>

-
73%|███████▎ | 3645692/4997817 [00:20<00:07, 176289.26it/s]
+
71%|███████ | 3555296/4997817 [00:20<00:08, 171901.03it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3645692/4997817 [00:20<00:07, 176289.26it/s]

+

71%|███████ | 3555296/4997817 [00:20<00:08, 171901.03it/s]

-
73%|███████▎ | 3663322/4997817 [00:20&lt;00:07, 176222.00it/s]
+
71%|███████▏ | 3572487/4997817 [00:20&lt;00:08, 171608.38it/s]

</pre>

-
73%|███████▎ | 3663322/4997817 [00:20<00:07, 176222.00it/s]
+
71%|███████▏ | 3572487/4997817 [00:20<00:08, 171608.38it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3663322/4997817 [00:20<00:07, 176222.00it/s]

+

71%|███████▏ | 3572487/4997817 [00:20<00:08, 171608.38it/s]

-
74%|███████▎ | 3680980/4997817 [00:20&lt;00:07, 176324.07it/s]
+
72%|███████▏ | 3589757/4997817 [00:20&lt;00:08, 171930.02it/s]

</pre>

-
74%|███████▎ | 3680980/4997817 [00:20<00:07, 176324.07it/s]
+
72%|███████▏ | 3589757/4997817 [00:20<00:08, 171930.02it/s]

end{sphinxVerbatim}

-

74%|███████▎ | 3680980/4997817 [00:20<00:07, 176324.07it/s]

+

72%|███████▏ | 3589757/4997817 [00:20<00:08, 171930.02it/s]

-
74%|███████▍ | 3698735/4997817 [00:21&lt;00:07, 176687.64it/s]
+
72%|███████▏ | 3606959/4997817 [00:21&lt;00:08, 171954.77it/s]

</pre>

-
74%|███████▍ | 3698735/4997817 [00:21<00:07, 176687.64it/s]
+
72%|███████▏ | 3606959/4997817 [00:21<00:08, 171954.77it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3698735/4997817 [00:21<00:07, 176687.64it/s]

+

72%|███████▏ | 3606959/4997817 [00:21<00:08, 171954.77it/s]

-
74%|███████▍ | 3716404/4997817 [00:21&lt;00:07, 176628.29it/s]
+
73%|███████▎ | 3624245/4997817 [00:21&lt;00:07, 172222.71it/s]

</pre>

-
74%|███████▍ | 3716404/4997817 [00:21<00:07, 176628.29it/s]
+
73%|███████▎ | 3624245/4997817 [00:21<00:07, 172222.71it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3716404/4997817 [00:21<00:07, 176628.29it/s]

+

73%|███████▎ | 3624245/4997817 [00:21<00:07, 172222.71it/s]

-
75%|███████▍ | 3734091/4997817 [00:21&lt;00:07, 176697.15it/s]
+
73%|███████▎ | 3641468/4997817 [00:21&lt;00:08, 165178.06it/s]

</pre>

-
75%|███████▍ | 3734091/4997817 [00:21<00:07, 176697.15it/s]
+
73%|███████▎ | 3641468/4997817 [00:21<00:08, 165178.06it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3734091/4997817 [00:21<00:07, 176697.15it/s]

+

73%|███████▎ | 3641468/4997817 [00:21<00:08, 165178.06it/s]

-
75%|███████▌ | 3751761/4997817 [00:21&lt;00:07, 176640.21it/s]
+
73%|███████▎ | 3658590/4997817 [00:21&lt;00:08, 166933.37it/s]

</pre>

-
75%|███████▌ | 3751761/4997817 [00:21<00:07, 176640.21it/s]
+
73%|███████▎ | 3658590/4997817 [00:21<00:08, 166933.37it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3751761/4997817 [00:21<00:07, 176640.21it/s]

+

73%|███████▎ | 3658590/4997817 [00:21<00:08, 166933.37it/s]

-
75%|███████▌ | 3769457/4997817 [00:21&lt;00:06, 176732.49it/s]
+
74%|███████▎ | 3675846/4997817 [00:21&lt;00:07, 168580.91it/s]

</pre>

-
75%|███████▌ | 3769457/4997817 [00:21<00:06, 176732.49it/s]
+
74%|███████▎ | 3675846/4997817 [00:21<00:07, 168580.91it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3769457/4997817 [00:21<00:06, 176732.49it/s]

+

74%|███████▎ | 3675846/4997817 [00:21<00:07, 168580.91it/s]

-
76%|███████▌ | 3787209/4997817 [00:21&lt;00:06, 176965.92it/s]
+
74%|███████▍ | 3692949/4997817 [00:21&lt;00:07, 169301.80it/s]

</pre>

-
76%|███████▌ | 3787209/4997817 [00:21<00:06, 176965.92it/s]
+
74%|███████▍ | 3692949/4997817 [00:21<00:07, 169301.80it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3787209/4997817 [00:21<00:06, 176965.92it/s]

+

74%|███████▍ | 3692949/4997817 [00:21<00:07, 169301.80it/s]

-
76%|███████▌ | 3804906/4997817 [00:21&lt;00:06, 176115.13it/s]
+
74%|███████▍ | 3710095/4997817 [00:21&lt;00:07, 169941.03it/s]

</pre>

-
76%|███████▌ | 3804906/4997817 [00:21<00:06, 176115.13it/s]
+
74%|███████▍ | 3710095/4997817 [00:21<00:07, 169941.03it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3804906/4997817 [00:21<00:06, 176115.13it/s]

+

74%|███████▍ | 3710095/4997817 [00:21<00:07, 169941.03it/s]

-
76%|███████▋ | 3822589/4997817 [00:21&lt;00:06, 176324.35it/s]
+
75%|███████▍ | 3727212/4997817 [00:21&lt;00:07, 170305.46it/s]

</pre>

-
76%|███████▋ | 3822589/4997817 [00:21<00:06, 176324.35it/s]
+
75%|███████▍ | 3727212/4997817 [00:21<00:07, 170305.46it/s]

end{sphinxVerbatim}

-

76%|███████▋ | 3822589/4997817 [00:21<00:06, 176324.35it/s]

+

75%|███████▍ | 3727212/4997817 [00:21<00:07, 170305.46it/s]

-
77%|███████▋ | 3840267/4997817 [00:21&lt;00:06, 176456.98it/s]
+
75%|███████▍ | 3744383/4997817 [00:21&lt;00:07, 170721.03it/s]

</pre>

-
77%|███████▋ | 3840267/4997817 [00:21<00:06, 176456.98it/s]
+
75%|███████▍ | 3744383/4997817 [00:21<00:07, 170721.03it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3840267/4997817 [00:21<00:06, 176456.98it/s]

+

75%|███████▍ | 3744383/4997817 [00:21<00:07, 170721.03it/s]

-
77%|███████▋ | 3857949/4997817 [00:21&lt;00:06, 176561.33it/s]
+
75%|███████▌ | 3761585/4997817 [00:21&lt;00:07, 171106.29it/s]

</pre>

-
77%|███████▋ | 3857949/4997817 [00:21<00:06, 176561.33it/s]
+
75%|███████▌ | 3761585/4997817 [00:21<00:07, 171106.29it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3857949/4997817 [00:21<00:06, 176561.33it/s]

+

75%|███████▌ | 3761585/4997817 [00:21<00:07, 171106.29it/s]

-
78%|███████▊ | 3875608/4997817 [00:22&lt;00:06, 176566.31it/s]
+
76%|███████▌ | 3778703/4997817 [00:22&lt;00:07, 171043.71it/s]

</pre>

-
78%|███████▊ | 3875608/4997817 [00:22<00:06, 176566.31it/s]
+
76%|███████▌ | 3778703/4997817 [00:22<00:07, 171043.71it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3875608/4997817 [00:22<00:06, 176566.31it/s]

+

76%|███████▌ | 3778703/4997817 [00:22<00:07, 171043.71it/s]

-
78%|███████▊ | 3893265/4997817 [00:22&lt;00:06, 176410.01it/s]
+
76%|███████▌ | 3795890/4997817 [00:22&lt;00:07, 171287.44it/s]

</pre>

-
78%|███████▊ | 3893265/4997817 [00:22<00:06, 176410.01it/s]
+
76%|███████▌ | 3795890/4997817 [00:22<00:07, 171287.44it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3893265/4997817 [00:22<00:06, 176410.01it/s]

+

76%|███████▌ | 3795890/4997817 [00:22<00:07, 171287.44it/s]

-
78%|███████▊ | 3910907/4997817 [00:22&lt;00:06, 176281.59it/s]
+
76%|███████▋ | 3813023/4997817 [00:22&lt;00:06, 170783.59it/s]

</pre>

-
78%|███████▊ | 3910907/4997817 [00:22<00:06, 176281.59it/s]
+
76%|███████▋ | 3813023/4997817 [00:22<00:06, 170783.59it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3910907/4997817 [00:22<00:06, 176281.59it/s]

+

76%|███████▋ | 3813023/4997817 [00:22<00:06, 170783.59it/s]

-
79%|███████▊ | 3928536/4997817 [00:22&lt;00:06, 176164.37it/s]
+
77%|███████▋ | 3830175/4997817 [00:22&lt;00:06, 171001.66it/s]

</pre>

-
79%|███████▊ | 3928536/4997817 [00:22<00:06, 176164.37it/s]
+
77%|███████▋ | 3830175/4997817 [00:22<00:06, 171001.66it/s]

end{sphinxVerbatim}

-

79%|███████▊ | 3928536/4997817 [00:22<00:06, 176164.37it/s]

+

77%|███████▋ | 3830175/4997817 [00:22<00:06, 171001.66it/s]

-
79%|███████▉ | 3946173/4997817 [00:22&lt;00:05, 176221.61it/s]
+
77%|███████▋ | 3847278/4997817 [00:22&lt;00:06, 170875.44it/s]

</pre>

-
79%|███████▉ | 3946173/4997817 [00:22<00:05, 176221.61it/s]
+
77%|███████▋ | 3847278/4997817 [00:22<00:06, 170875.44it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3946173/4997817 [00:22<00:05, 176221.61it/s]

+

77%|███████▋ | 3847278/4997817 [00:22<00:06, 170875.44it/s]

-
79%|███████▉ | 3963796/4997817 [00:22&lt;00:05, 175821.79it/s]
+
77%|███████▋ | 3864410/4997817 [00:22&lt;00:06, 171005.16it/s]

</pre>

-
79%|███████▉ | 3963796/4997817 [00:22<00:05, 175821.79it/s]
+
77%|███████▋ | 3864410/4997817 [00:22<00:06, 171005.16it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3963796/4997817 [00:22<00:05, 175821.79it/s]

+

77%|███████▋ | 3864410/4997817 [00:22<00:06, 171005.16it/s]

-
80%|███████▉ | 3981379/4997817 [00:22&lt;00:05, 175679.25it/s]
+
78%|███████▊ | 3881633/4997817 [00:22&lt;00:06, 171370.89it/s]

</pre>

-
80%|███████▉ | 3981379/4997817 [00:22<00:05, 175679.25it/s]
+
78%|███████▊ | 3881633/4997817 [00:22<00:06, 171370.89it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3981379/4997817 [00:22<00:05, 175679.25it/s]

+

78%|███████▊ | 3881633/4997817 [00:22<00:06, 171370.89it/s]

-
80%|████████ | 3999029/4997817 [00:22&lt;00:05, 175919.84it/s]
+
78%|███████▊ | 3898771/4997817 [00:22&lt;00:06, 170584.23it/s]

</pre>

-
80%|████████ | 3999029/4997817 [00:22<00:05, 175919.84it/s]
+
78%|███████▊ | 3898771/4997817 [00:22<00:06, 170584.23it/s]

end{sphinxVerbatim}

-

80%|████████ | 3999029/4997817 [00:22<00:05, 175919.84it/s]

+

78%|███████▊ | 3898771/4997817 [00:22<00:06, 170584.23it/s]

-
80%|████████ | 4016746/4997817 [00:22&lt;00:05, 176291.45it/s]
+
78%|███████▊ | 3915831/4997817 [00:22&lt;00:06, 169965.52it/s]

</pre>

-
80%|████████ | 4016746/4997817 [00:22<00:05, 176291.45it/s]
+
78%|███████▊ | 3915831/4997817 [00:22<00:06, 169965.52it/s]

end{sphinxVerbatim}

-

80%|████████ | 4016746/4997817 [00:22<00:05, 176291.45it/s]

+

78%|███████▊ | 3915831/4997817 [00:22<00:06, 169965.52it/s]

-
81%|████████ | 4034376/4997817 [00:22&lt;00:05, 176165.06it/s]
+
79%|███████▊ | 3932869/4997817 [00:22&lt;00:06, 170087.91it/s]

</pre>

-
81%|████████ | 4034376/4997817 [00:22<00:05, 176165.06it/s]
+
79%|███████▊ | 3932869/4997817 [00:22<00:06, 170087.91it/s]

end{sphinxVerbatim}

-

81%|████████ | 4034376/4997817 [00:22<00:05, 176165.06it/s]

+

79%|███████▊ | 3932869/4997817 [00:22<00:06, 170087.91it/s]

-
81%|████████ | 4051993/4997817 [00:23&lt;00:05, 176084.45it/s]
+
79%|███████▉ | 3949879/4997817 [00:23&lt;00:06, 169990.31it/s]

</pre>

-
81%|████████ | 4051993/4997817 [00:23<00:05, 176084.45it/s]
+
79%|███████▉ | 3949879/4997817 [00:23<00:06, 169990.31it/s]

end{sphinxVerbatim}

-

81%|████████ | 4051993/4997817 [00:23<00:05, 176084.45it/s]

+

79%|███████▉ | 3949879/4997817 [00:23<00:06, 169990.31it/s]

-
81%|████████▏ | 4069602/4997817 [00:23&lt;00:05, 175885.63it/s]
+
79%|███████▉ | 3966879/4997817 [00:23&lt;00:06, 169949.51it/s]

</pre>

-
81%|████████▏ | 4069602/4997817 [00:23<00:05, 175885.63it/s]
+
79%|███████▉ | 3966879/4997817 [00:23<00:06, 169949.51it/s]

end{sphinxVerbatim}

-

81%|████████▏ | 4069602/4997817 [00:23<00:05, 175885.63it/s]

+

79%|███████▉ | 3966879/4997817 [00:23<00:06, 169949.51it/s]

-
82%|████████▏ | 4087191/4997817 [00:23&lt;00:05, 175394.53it/s]
+
80%|███████▉ | 3983875/4997817 [00:23&lt;00:05, 169772.79it/s]

</pre>

-
82%|████████▏ | 4087191/4997817 [00:23<00:05, 175394.53it/s]
+
80%|███████▉ | 3983875/4997817 [00:23<00:05, 169772.79it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4087191/4997817 [00:23<00:05, 175394.53it/s]

+

80%|███████▉ | 3983875/4997817 [00:23<00:05, 169772.79it/s]

-
82%|████████▏ | 4104731/4997817 [00:23&lt;00:05, 175012.49it/s]
+
80%|████████ | 4000853/4997817 [00:23&lt;00:05, 169718.68it/s]

</pre>

-
82%|████████▏ | 4104731/4997817 [00:23<00:05, 175012.49it/s]
+
80%|████████ | 4000853/4997817 [00:23<00:05, 169718.68it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4104731/4997817 [00:23<00:05, 175012.49it/s]

+

80%|████████ | 4000853/4997817 [00:23<00:05, 169718.68it/s]

-
82%|████████▏ | 4122236/4997817 [00:23&lt;00:05, 175020.26it/s]
+
80%|████████ | 4017853/4997817 [00:23&lt;00:05, 169799.69it/s]

</pre>

-
82%|████████▏ | 4122236/4997817 [00:23<00:05, 175020.26it/s]
+
80%|████████ | 4017853/4997817 [00:23<00:05, 169799.69it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4122236/4997817 [00:23<00:05, 175020.26it/s]

+

80%|████████ | 4017853/4997817 [00:23<00:05, 169799.69it/s]

-
83%|████████▎ | 4139739/4997817 [00:23&lt;00:04, 174861.56it/s]
+
81%|████████ | 4034999/4997817 [00:23&lt;00:05, 170291.45it/s]

</pre>

-
83%|████████▎ | 4139739/4997817 [00:23<00:04, 174861.56it/s]
+
81%|████████ | 4034999/4997817 [00:23<00:05, 170291.45it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4139739/4997817 [00:23<00:04, 174861.56it/s]

+

81%|████████ | 4034999/4997817 [00:23<00:05, 170291.45it/s]

-
83%|████████▎ | 4157233/4997817 [00:23&lt;00:04, 174879.84it/s]
+
81%|████████ | 4052095/4997817 [00:23&lt;00:05, 170489.07it/s]

</pre>

-
83%|████████▎ | 4157233/4997817 [00:23<00:04, 174879.84it/s]
+
81%|████████ | 4052095/4997817 [00:23<00:05, 170489.07it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4157233/4997817 [00:23<00:04, 174879.84it/s]

+

81%|████████ | 4052095/4997817 [00:23<00:05, 170489.07it/s]

-
84%|████████▎ | 4174722/4997817 [00:23&lt;00:04, 167593.86it/s]
+
81%|████████▏ | 4069145/4997817 [00:23&lt;00:05, 170353.71it/s]

</pre>

-
84%|████████▎ | 4174722/4997817 [00:23<00:04, 167593.86it/s]
+
81%|████████▏ | 4069145/4997817 [00:23<00:05, 170353.71it/s]

end{sphinxVerbatim}

-

84%|████████▎ | 4174722/4997817 [00:23<00:04, 167593.86it/s]

+

81%|████████▏ | 4069145/4997817 [00:23<00:05, 170353.71it/s]

-
84%|████████▍ | 4192083/4997817 [00:23&lt;00:04, 169341.24it/s]
+
82%|████████▏ | 4086208/4997817 [00:23&lt;00:05, 170433.51it/s]

</pre>

-
84%|████████▍ | 4192083/4997817 [00:23<00:04, 169341.24it/s]
+
82%|████████▏ | 4086208/4997817 [00:23<00:05, 170433.51it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4192083/4997817 [00:23<00:04, 169341.24it/s]

+

82%|████████▏ | 4086208/4997817 [00:23<00:05, 170433.51it/s]

-
84%|████████▍ | 4209474/4997817 [00:23&lt;00:04, 170677.23it/s]
+
82%|████████▏ | 4103252/4997817 [00:23&lt;00:05, 169878.09it/s]

</pre>

-
84%|████████▍ | 4209474/4997817 [00:23<00:04, 170677.23it/s]
+
82%|████████▏ | 4103252/4997817 [00:23<00:05, 169878.09it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4209474/4997817 [00:23<00:04, 170677.23it/s]

+

82%|████████▏ | 4103252/4997817 [00:23<00:05, 169878.09it/s]

-
85%|████████▍ | 4226976/4997817 [00:24&lt;00:04, 171956.01it/s]
+
82%|████████▏ | 4120406/4997817 [00:24&lt;00:05, 170373.48it/s]

</pre>

-
85%|████████▍ | 4226976/4997817 [00:24<00:04, 171956.01it/s]
+
82%|████████▏ | 4120406/4997817 [00:24<00:05, 170373.48it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4226976/4997817 [00:24<00:04, 171956.01it/s]

+

82%|████████▏ | 4120406/4997817 [00:24<00:05, 170373.48it/s]

-
85%|████████▍ | 4244411/4997817 [00:24&lt;00:04, 172661.73it/s]
+
83%|████████▎ | 4137520/4997817 [00:24&lt;00:05, 170600.48it/s]

</pre>

-
85%|████████▍ | 4244411/4997817 [00:24<00:04, 172661.73it/s]
+
83%|████████▎ | 4137520/4997817 [00:24<00:05, 170600.48it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4244411/4997817 [00:24<00:04, 172661.73it/s]

+

83%|████████▎ | 4137520/4997817 [00:24<00:05, 170600.48it/s]

-
85%|████████▌ | 4261828/4997817 [00:24&lt;00:04, 173107.14it/s]
+
83%|████████▎ | 4154679/4997817 [00:24&lt;00:04, 170894.40it/s]

</pre>

-
85%|████████▌ | 4261828/4997817 [00:24<00:04, 173107.14it/s]
+
83%|████████▎ | 4154679/4997817 [00:24<00:04, 170894.40it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4261828/4997817 [00:24<00:04, 173107.14it/s]

+

83%|████████▎ | 4154679/4997817 [00:24<00:04, 170894.40it/s]

-
86%|████████▌ | 4279356/4997817 [00:24&lt;00:04, 173752.22it/s]
+
83%|████████▎ | 4171769/4997817 [00:24&lt;00:04, 170333.58it/s]

</pre>

-
86%|████████▌ | 4279356/4997817 [00:24<00:04, 173752.22it/s]
+
83%|████████▎ | 4171769/4997817 [00:24<00:04, 170333.58it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4279356/4997817 [00:24<00:04, 173752.22it/s]

+

83%|████████▎ | 4171769/4997817 [00:24<00:04, 170333.58it/s]

-
86%|████████▌ | 4296896/4997817 [00:24&lt;00:04, 174242.38it/s]
+
84%|████████▍ | 4188803/4997817 [00:24&lt;00:04, 169923.43it/s]

</pre>

-
86%|████████▌ | 4296896/4997817 [00:24<00:04, 174242.38it/s]
+
84%|████████▍ | 4188803/4997817 [00:24<00:04, 169923.43it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4296896/4997817 [00:24<00:04, 174242.38it/s]

+

84%|████████▍ | 4188803/4997817 [00:24<00:04, 169923.43it/s]

-
86%|████████▋ | 4314328/4997817 [00:24&lt;00:03, 173327.93it/s]
+
84%|████████▍ | 4205796/4997817 [00:24&lt;00:04, 169523.93it/s]

</pre>

-
86%|████████▋ | 4314328/4997817 [00:24<00:03, 173327.93it/s]
+
84%|████████▍ | 4205796/4997817 [00:24<00:04, 169523.93it/s]

end{sphinxVerbatim}

-

86%|████████▋ | 4314328/4997817 [00:24<00:03, 173327.93it/s]

+

84%|████████▍ | 4205796/4997817 [00:24<00:04, 169523.93it/s]

-
87%|████████▋ | 4331919/4997817 [00:24&lt;00:03, 174094.65it/s]
+
84%|████████▍ | 4222817/4997817 [00:24&lt;00:04, 169724.32it/s]

</pre>

-
87%|████████▋ | 4331919/4997817 [00:24<00:03, 174094.65it/s]
+
84%|████████▍ | 4222817/4997817 [00:24<00:04, 169724.32it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4331919/4997817 [00:24<00:03, 174094.65it/s]

+

84%|████████▍ | 4222817/4997817 [00:24<00:04, 169724.32it/s]

-
87%|████████▋ | 4349427/4997817 [00:24&lt;00:03, 174384.04it/s]
+
85%|████████▍ | 4239790/4997817 [00:24&lt;00:04, 169579.63it/s]

</pre>

-
87%|████████▋ | 4349427/4997817 [00:24<00:03, 174384.04it/s]
+
85%|████████▍ | 4239790/4997817 [00:24<00:04, 169579.63it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4349427/4997817 [00:24<00:03, 174384.04it/s]

+

85%|████████▍ | 4239790/4997817 [00:24<00:04, 169579.63it/s]

-
87%|████████▋ | 4367051/4997817 [00:24&lt;00:03, 174935.33it/s]
+
85%|████████▌ | 4256818/4997817 [00:24&lt;00:04, 169786.18it/s]

</pre>

-
87%|████████▋ | 4367051/4997817 [00:24<00:03, 174935.33it/s]
+
85%|████████▌ | 4256818/4997817 [00:24<00:04, 169786.18it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4367051/4997817 [00:24<00:03, 174935.33it/s]

+

85%|████████▌ | 4256818/4997817 [00:24<00:04, 169786.18it/s]

-
88%|████████▊ | 4384595/4997817 [00:24&lt;00:03, 175083.73it/s]
+
86%|████████▌ | 4273871/4997817 [00:24&lt;00:04, 170006.16it/s]

</pre>

-
88%|████████▊ | 4384595/4997817 [00:24<00:03, 175083.73it/s]
+
86%|████████▌ | 4273871/4997817 [00:24<00:04, 170006.16it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4384595/4997817 [00:24<00:03, 175083.73it/s]

+

86%|████████▌ | 4273871/4997817 [00:24<00:04, 170006.16it/s]

-
88%|████████▊ | 4402158/4997817 [00:25&lt;00:03, 175244.18it/s]
+
86%|████████▌ | 4291017/4997817 [00:25&lt;00:04, 170438.96it/s]

</pre>

-
88%|████████▊ | 4402158/4997817 [00:25<00:03, 175244.18it/s]
+
86%|████████▌ | 4291017/4997817 [00:25<00:04, 170438.96it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4402158/4997817 [00:25<00:03, 175244.18it/s]

+

86%|████████▌ | 4291017/4997817 [00:25<00:04, 170438.96it/s]

-
88%|████████▊ | 4419786/4997817 [00:25&lt;00:03, 175552.04it/s]
+
86%|████████▌ | 4308086/4997817 [00:25&lt;00:04, 170511.81it/s]

</pre>

-
88%|████████▊ | 4419786/4997817 [00:25<00:03, 175552.04it/s]
+
86%|████████▌ | 4308086/4997817 [00:25<00:04, 170511.81it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4419786/4997817 [00:25<00:03, 175552.04it/s]

+

86%|████████▌ | 4308086/4997817 [00:25<00:04, 170511.81it/s]

-
89%|████████▉ | 4437371/4997817 [00:25&lt;00:03, 175636.52it/s]
+
87%|████████▋ | 4325138/4997817 [00:25&lt;00:03, 169547.73it/s]

</pre>

-
89%|████████▉ | 4437371/4997817 [00:25<00:03, 175636.52it/s]
+
87%|████████▋ | 4325138/4997817 [00:25<00:03, 169547.73it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4437371/4997817 [00:25<00:03, 175636.52it/s]

+

87%|████████▋ | 4325138/4997817 [00:25<00:03, 169547.73it/s]

-
89%|████████▉ | 4455003/4997817 [00:25&lt;00:03, 175837.48it/s]
+
87%|████████▋ | 4342095/4997817 [00:25&lt;00:04, 163414.55it/s]

</pre>

-
89%|████████▉ | 4455003/4997817 [00:25<00:03, 175837.48it/s]
+
87%|████████▋ | 4342095/4997817 [00:25<00:04, 163414.55it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4455003/4997817 [00:25<00:03, 175837.48it/s]

+

87%|████████▋ | 4342095/4997817 [00:25<00:04, 163414.55it/s]

-
89%|████████▉ | 4472798/4997817 [00:25&lt;00:02, 176468.40it/s]
+
87%|████████▋ | 4359299/4997817 [00:25&lt;00:03, 165924.16it/s]

</pre>

-
89%|████████▉ | 4472798/4997817 [00:25<00:02, 176468.40it/s]
+
87%|████████▋ | 4359299/4997817 [00:25<00:03, 165924.16it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4472798/4997817 [00:25<00:02, 176468.40it/s]

+

87%|████████▋ | 4359299/4997817 [00:25<00:03, 165924.16it/s]

-
90%|████████▉ | 4490560/4997817 [00:25&lt;00:02, 176808.91it/s]
+
88%|████████▊ | 4376343/4997817 [00:25&lt;00:03, 167246.68it/s]

</pre>

-
90%|████████▉ | 4490560/4997817 [00:25<00:02, 176808.91it/s]
+
88%|████████▊ | 4376343/4997817 [00:25<00:03, 167246.68it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4490560/4997817 [00:25<00:02, 176808.91it/s]

+

88%|████████▊ | 4376343/4997817 [00:25<00:03, 167246.68it/s]

-
90%|█████████ | 4508294/4997817 [00:25&lt;00:02, 176965.60it/s]
+
88%|████████▊ | 4393409/4997817 [00:25&lt;00:03, 168254.06it/s]

</pre>

-
90%|█████████ | 4508294/4997817 [00:25<00:02, 176965.60it/s]
+
88%|████████▊ | 4393409/4997817 [00:25<00:03, 168254.06it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4508294/4997817 [00:25<00:02, 176965.60it/s]

+

88%|████████▊ | 4393409/4997817 [00:25<00:03, 168254.06it/s]

-
91%|█████████ | 4525991/4997817 [00:25&lt;00:02, 176542.13it/s]
+
88%|████████▊ | 4410560/4997817 [00:25&lt;00:03, 169219.14it/s]

</pre>

-
91%|█████████ | 4525991/4997817 [00:25<00:02, 176542.13it/s]
+
88%|████████▊ | 4410560/4997817 [00:25<00:03, 169219.14it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4525991/4997817 [00:25<00:02, 176542.13it/s]

+

88%|████████▊ | 4410560/4997817 [00:25<00:03, 169219.14it/s]

-
91%|█████████ | 4543710/4997817 [00:25&lt;00:02, 176732.28it/s]
+
89%|████████▊ | 4427598/4997817 [00:25&lt;00:03, 169562.46it/s]

</pre>

-
91%|█████████ | 4543710/4997817 [00:25<00:02, 176732.28it/s]
+
89%|████████▊ | 4427598/4997817 [00:25<00:03, 169562.46it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4543710/4997817 [00:25<00:02, 176732.28it/s]

+

89%|████████▊ | 4427598/4997817 [00:25<00:03, 169562.46it/s]

-
91%|█████████▏| 4561463/4997817 [00:25&lt;00:02, 176966.16it/s]
+
89%|████████▉ | 4444705/4997817 [00:25&lt;00:03, 170009.98it/s]

</pre>

-
91%|█████████▏| 4561463/4997817 [00:25<00:02, 176966.16it/s]
+
89%|████████▉ | 4444705/4997817 [00:25<00:03, 170009.98it/s]

end{sphinxVerbatim}

-

91%|█████████▏| 4561463/4997817 [00:25<00:02, 176966.16it/s]

+

89%|████████▉ | 4444705/4997817 [00:25<00:03, 170009.98it/s]

-
92%|█████████▏| 4579245/4997817 [00:26&lt;00:02, 177220.61it/s]
+
89%|████████▉ | 4461912/4997817 [00:26&lt;00:03, 170621.62it/s]

</pre>

-
92%|█████████▏| 4579245/4997817 [00:26<00:02, 177220.61it/s]
+
89%|████████▉ | 4461912/4997817 [00:26<00:03, 170621.62it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4579245/4997817 [00:26<00:02, 177220.61it/s]

+

89%|████████▉ | 4461912/4997817 [00:26<00:03, 170621.62it/s]

-
92%|█████████▏| 4597064/4997817 [00:26&lt;00:02, 177506.60it/s]
+
90%|████████▉ | 4478981/4997817 [00:26&lt;00:03, 170378.09it/s]

</pre>

-
92%|█████████▏| 4597064/4997817 [00:26<00:02, 177506.60it/s]
+
90%|████████▉ | 4478981/4997817 [00:26<00:03, 170378.09it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4597064/4997817 [00:26<00:02, 177506.60it/s]

+

90%|████████▉ | 4478981/4997817 [00:26<00:03, 170378.09it/s]

-
92%|█████████▏| 4614841/4997817 [00:26&lt;00:02, 177581.31it/s]
+
90%|████████▉ | 4496051/4997817 [00:26&lt;00:02, 170472.86it/s]

</pre>

-
92%|█████████▏| 4614841/4997817 [00:26<00:02, 177581.31it/s]
+
90%|████████▉ | 4496051/4997817 [00:26<00:02, 170472.86it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4614841/4997817 [00:26<00:02, 177581.31it/s]

+

90%|████████▉ | 4496051/4997817 [00:26<00:02, 170472.86it/s]

-
93%|█████████▎| 4632600/4997817 [00:26&lt;00:02, 177414.75it/s]
+
90%|█████████ | 4513109/4997817 [00:26&lt;00:02, 170500.24it/s]

</pre>

-
93%|█████████▎| 4632600/4997817 [00:26<00:02, 177414.75it/s]
+
90%|█████████ | 4513109/4997817 [00:26<00:02, 170500.24it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4632600/4997817 [00:26<00:02, 177414.75it/s]

+

90%|█████████ | 4513109/4997817 [00:26<00:02, 170500.24it/s]

-
93%|█████████▎| 4650342/4997817 [00:26&lt;00:01, 176810.52it/s]
+
91%|█████████ | 4530422/4997817 [00:26&lt;00:02, 171284.56it/s]

</pre>

-
93%|█████████▎| 4650342/4997817 [00:26<00:01, 176810.52it/s]
+
91%|█████████ | 4530422/4997817 [00:26<00:02, 171284.56it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4650342/4997817 [00:26<00:01, 176810.52it/s]

+

91%|█████████ | 4530422/4997817 [00:26<00:02, 171284.56it/s]

-
93%|█████████▎| 4668024/4997817 [00:26&lt;00:02, 163789.41it/s]
+
91%|█████████ | 4547617/4997817 [00:26&lt;00:02, 171480.12it/s]

</pre>

-
93%|█████████▎| 4668024/4997817 [00:26<00:02, 163789.41it/s]
+
91%|█████████ | 4547617/4997817 [00:26<00:02, 171480.12it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4668024/4997817 [00:26<00:02, 163789.41it/s]

+

91%|█████████ | 4547617/4997817 [00:26<00:02, 171480.12it/s]

-
94%|█████████▍| 4685720/4997817 [00:26&lt;00:01, 167519.88it/s]
+
91%|█████████▏| 4564863/4997817 [00:26&lt;00:02, 171770.24it/s]

</pre>

-
94%|█████████▍| 4685720/4997817 [00:26<00:01, 167519.88it/s]
+
91%|█████████▏| 4564863/4997817 [00:26<00:02, 171770.24it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4685720/4997817 [00:26<00:01, 167519.88it/s]

+

91%|█████████▏| 4564863/4997817 [00:26<00:02, 171770.24it/s]

-
94%|█████████▍| 4703228/4997817 [00:26&lt;00:01, 169696.70it/s]
+
92%|█████████▏| 4582041/4997817 [00:26&lt;00:02, 171252.29it/s]

</pre>

-
94%|█████████▍| 4703228/4997817 [00:26<00:01, 169696.70it/s]
+
92%|█████████▏| 4582041/4997817 [00:26<00:02, 171252.29it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4703228/4997817 [00:26<00:01, 169696.70it/s]

+

92%|█████████▏| 4582041/4997817 [00:26<00:02, 171252.29it/s]

-
94%|█████████▍| 4720997/4997817 [00:26&lt;00:01, 172024.75it/s]
+
92%|█████████▏| 4599168/4997817 [00:26&lt;00:02, 170751.33it/s]

</pre>

-
94%|█████████▍| 4720997/4997817 [00:26<00:01, 172024.75it/s]
+
92%|█████████▏| 4599168/4997817 [00:26<00:02, 170751.33it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4720997/4997817 [00:26<00:01, 172024.75it/s]

+

92%|█████████▏| 4599168/4997817 [00:26<00:02, 170751.33it/s]

-
95%|█████████▍| 4738747/4997817 [00:26&lt;00:01, 173631.53it/s]
+
92%|█████████▏| 4616245/4997817 [00:26&lt;00:02, 170236.58it/s]

</pre>

-
95%|█████████▍| 4738747/4997817 [00:26<00:01, 173631.53it/s]
+
92%|█████████▏| 4616245/4997817 [00:26<00:02, 170236.58it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4738747/4997817 [00:26<00:01, 173631.53it/s]

+

92%|█████████▏| 4616245/4997817 [00:26<00:02, 170236.58it/s]

-
95%|█████████▌| 4756401/4997817 [00:27&lt;00:01, 174489.53it/s]
+
93%|█████████▎| 4633367/4997817 [00:27&lt;00:02, 170526.11it/s]

</pre>

-
95%|█████████▌| 4756401/4997817 [00:27<00:01, 174489.53it/s]
+
93%|█████████▎| 4633367/4997817 [00:27<00:02, 170526.11it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4756401/4997817 [00:27<00:01, 174489.53it/s]

+

93%|█████████▎| 4633367/4997817 [00:27<00:02, 170526.11it/s]

-
96%|█████████▌| 4774026/4997817 [00:27&lt;00:01, 175007.15it/s]
+
93%|█████████▎| 4650476/4997817 [00:27&lt;00:02, 170690.98it/s]

</pre>

-
96%|█████████▌| 4774026/4997817 [00:27<00:01, 175007.15it/s]
+
93%|█████████▎| 4650476/4997817 [00:27<00:02, 170690.98it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4774026/4997817 [00:27<00:01, 175007.15it/s]

+

93%|█████████▎| 4650476/4997817 [00:27<00:02, 170690.98it/s]

-
96%|█████████▌| 4791625/4997817 [00:27&lt;00:01, 175295.19it/s]
+
93%|█████████▎| 4667696/4997817 [00:27&lt;00:01, 171138.38it/s]

</pre>

-
96%|█████████▌| 4791625/4997817 [00:27<00:01, 175295.19it/s]
+
93%|█████████▎| 4667696/4997817 [00:27<00:01, 171138.38it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4791625/4997817 [00:27<00:01, 175295.19it/s]

+

93%|█████████▎| 4667696/4997817 [00:27<00:01, 171138.38it/s]

-
96%|█████████▌| 4809276/4997817 [00:27&lt;00:01, 175653.18it/s]
+
94%|█████████▎| 4684811/4997817 [00:27&lt;00:01, 166416.31it/s]

</pre>

-
96%|█████████▌| 4809276/4997817 [00:27<00:01, 175653.18it/s]
+
94%|█████████▎| 4684811/4997817 [00:27<00:01, 166416.31it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4809276/4997817 [00:27<00:01, 175653.18it/s]

+

94%|█████████▎| 4684811/4997817 [00:27<00:01, 166416.31it/s]

-
97%|█████████▋| 4827007/4997817 [00:27&lt;00:00, 176143.70it/s]
+
94%|█████████▍| 4702063/4997817 [00:27&lt;00:01, 168205.75it/s]

</pre>

-
97%|█████████▋| 4827007/4997817 [00:27<00:00, 176143.70it/s]
+
94%|█████████▍| 4702063/4997817 [00:27<00:01, 168205.75it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4827007/4997817 [00:27<00:00, 176143.70it/s]

+

94%|█████████▍| 4702063/4997817 [00:27<00:01, 168205.75it/s]

-
97%|█████████▋| 4844714/4997817 [00:27&lt;00:00, 176418.08it/s]
+
94%|█████████▍| 4719283/4997817 [00:27&lt;00:01, 169383.99it/s]

</pre>

-
97%|█████████▋| 4844714/4997817 [00:27<00:00, 176418.08it/s]
+
94%|█████████▍| 4719283/4997817 [00:27<00:01, 169383.99it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4844714/4997817 [00:27<00:00, 176418.08it/s]

+

94%|█████████▍| 4719283/4997817 [00:27<00:01, 169383.99it/s]

-
97%|█████████▋| 4862493/4997817 [00:27&lt;00:00, 176823.46it/s]
+
95%|█████████▍| 4736314/4997817 [00:27&lt;00:01, 169655.39it/s]

</pre>

-
97%|█████████▋| 4862493/4997817 [00:27<00:00, 176823.46it/s]
+
95%|█████████▍| 4736314/4997817 [00:27<00:01, 169655.39it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4862493/4997817 [00:27<00:00, 176823.46it/s]

+

95%|█████████▍| 4736314/4997817 [00:27<00:01, 169655.39it/s]

-
98%|█████████▊| 4880182/4997817 [00:27&lt;00:00, 176751.65it/s]
+
95%|█████████▌| 4753543/4997817 [00:27&lt;00:01, 170435.52it/s]

</pre>

-
98%|█████████▊| 4880182/4997817 [00:27<00:00, 176751.65it/s]
+
95%|█████████▌| 4753543/4997817 [00:27<00:01, 170435.52it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4880182/4997817 [00:27<00:00, 176751.65it/s]

+

95%|█████████▌| 4753543/4997817 [00:27<00:01, 170435.52it/s]

-
98%|█████████▊| 4897903/4997817 [00:27&lt;00:00, 176884.36it/s]
+
95%|█████████▌| 4770597/4997817 [00:27&lt;00:01, 170424.55it/s]

</pre>

-
98%|█████████▊| 4897903/4997817 [00:27<00:00, 176884.36it/s]
+
95%|█████████▌| 4770597/4997817 [00:27<00:01, 170424.55it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4897903/4997817 [00:27<00:00, 176884.36it/s]

+

95%|█████████▌| 4770597/4997817 [00:27<00:01, 170424.55it/s]

-
98%|█████████▊| 4915661/4997817 [00:27&lt;00:00, 177087.36it/s]
+
96%|█████████▌| 4787647/4997817 [00:27&lt;00:01, 170176.12it/s]

</pre>

-
98%|█████████▊| 4915661/4997817 [00:27<00:00, 177087.36it/s]
+
96%|█████████▌| 4787647/4997817 [00:27<00:01, 170176.12it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4915661/4997817 [00:27<00:00, 177087.36it/s]

+

96%|█████████▌| 4787647/4997817 [00:27<00:01, 170176.12it/s]

-
99%|█████████▊| 4933428/4997817 [00:28&lt;00:00, 177258.92it/s]
+
96%|█████████▌| 4804723/4997817 [00:28&lt;00:01, 170346.92it/s]

</pre>

-
99%|█████████▊| 4933428/4997817 [00:28<00:00, 177258.92it/s]
+
96%|█████████▌| 4804723/4997817 [00:28<00:01, 170346.92it/s]

end{sphinxVerbatim}

-

99%|█████████▊| 4933428/4997817 [00:28<00:00, 177258.92it/s]

+

96%|█████████▌| 4804723/4997817 [00:28<00:01, 170346.92it/s]

-
99%|█████████▉| 4951156/4997817 [00:28&lt;00:00, 177082.23it/s]
+
96%|█████████▋| 4821848/4997817 [00:28&lt;00:01, 170613.16it/s]

</pre>

-
99%|█████████▉| 4951156/4997817 [00:28<00:00, 177082.23it/s]
+
96%|█████████▋| 4821848/4997817 [00:28<00:01, 170613.16it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4951156/4997817 [00:28<00:00, 177082.23it/s]

+

96%|█████████▋| 4821848/4997817 [00:28<00:01, 170613.16it/s]

-
99%|█████████▉| 4968913/4997817 [00:28&lt;00:00, 177225.04it/s]
+
97%|█████████▋| 4838912/4997817 [00:28&lt;00:00, 170004.32it/s]

</pre>

-
99%|█████████▉| 4968913/4997817 [00:28<00:00, 177225.04it/s]
+
97%|█████████▋| 4838912/4997817 [00:28<00:00, 170004.32it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4968913/4997817 [00:28<00:00, 177225.04it/s]

+

97%|█████████▋| 4838912/4997817 [00:28<00:00, 170004.32it/s]

+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
97%|█████████▋| 4856169/4997817 [00:28&lt;00:00, 170767.84it/s]
+

</pre>

+
+
+
97%|█████████▋| 4856169/4997817 [00:28<00:00, 170767.84it/s]
+

end{sphinxVerbatim}

+
+
+
+

97%|█████████▋| 4856169/4997817 [00:28<00:00, 170767.84it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4873248/4997817 [00:28&lt;00:00, 170274.10it/s]
+

</pre>

+
+
+
98%|█████████▊| 4873248/4997817 [00:28<00:00, 170274.10it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4873248/4997817 [00:28<00:00, 170274.10it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4890277/4997817 [00:28&lt;00:00, 170191.72it/s]
+

</pre>

+
+
+
98%|█████████▊| 4890277/4997817 [00:28<00:00, 170191.72it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4890277/4997817 [00:28<00:00, 170191.72it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4907298/4997817 [00:28&lt;00:00, 170155.86it/s]
+

</pre>

+
+
+
98%|█████████▊| 4907298/4997817 [00:28<00:00, 170155.86it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4907298/4997817 [00:28<00:00, 170155.86it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▊| 4924593/4997817 [00:28&lt;00:00, 170988.03it/s]
+

</pre>

+
+
+
99%|█████████▊| 4924593/4997817 [00:28<00:00, 170988.03it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▊| 4924593/4997817 [00:28<00:00, 170988.03it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▉| 4941723/4997817 [00:28&lt;00:00, 171077.12it/s]
+

</pre>

+
+
+
99%|█████████▉| 4941723/4997817 [00:28<00:00, 171077.12it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▉| 4941723/4997817 [00:28<00:00, 171077.12it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▉| 4958832/4997817 [00:28&lt;00:00, 170246.67it/s]
+

</pre>

+
+
+
99%|█████████▉| 4958832/4997817 [00:28<00:00, 170246.67it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▉| 4958832/4997817 [00:28<00:00, 170246.67it/s]

+
+
+
+
+
+
+
+
+
+
100%|█████████▉| 4975925/4997817 [00:29&lt;00:00, 170448.66it/s]
+

</pre>

+
+
+
100%|█████████▉| 4975925/4997817 [00:29<00:00, 170448.66it/s]
+

end{sphinxVerbatim}

+
+
+
+

100%|█████████▉| 4975925/4997817 [00:29<00:00, 170448.66it/s]

-
100%|█████████▉| 4986697/4997817 [00:28&lt;00:00, 177405.38it/s]
+
100%|█████████▉| 4992971/4997817 [00:29&lt;00:00, 170315.59it/s]

</pre>

-
100%|█████████▉| 4986697/4997817 [00:28<00:00, 177405.38it/s]
+
100%|█████████▉| 4992971/4997817 [00:29<00:00, 170315.59it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4986697/4997817 [00:28<00:00, 177405.38it/s]

+

100%|█████████▉| 4992971/4997817 [00:29<00:00, 170315.59it/s]

-
100%|██████████| 4997817/4997817 [00:28&lt;00:00, 175774.30it/s]
+
100%|██████████| 4997817/4997817 [00:29&lt;00:00, 171134.52it/s]

</pre>

-
100%|██████████| 4997817/4997817 [00:28<00:00, 175774.30it/s]
+
100%|██████████| 4997817/4997817 [00:29<00:00, 171134.52it/s]

end{sphinxVerbatim}

-

100%|██████████| 4997817/4997817 [00:28<00:00, 175774.30it/s]

+

100%|██████████| 4997817/4997817 [00:29<00:00, 171134.52it/s]

-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -8733,7 +8932,7 @@

Get label quality scores -{"state": {"cdcc7203a1d34765831634720bdbf052": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "254221792aff42ce82df1c22b6a17fe7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "92db28b2f6594a47bbecaa39c185f8fd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cdcc7203a1d34765831634720bdbf052", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_254221792aff42ce82df1c22b6a17fe7", "value": 30.0}}, "813659abd0ae4858b70121d8e5e42c7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1cf620e1d88a4e37b2d34ea1fb5e1535": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7daa21d4a2364d38ad2a974e382c6322": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_813659abd0ae4858b70121d8e5e42c7a", "placeholder": "\u200b", "style": "IPY_MODEL_1cf620e1d88a4e37b2d34ea1fb5e1535", "value": "number of examples processed for estimating thresholds: 100%"}}, "2cef6291580545a795374bc03a6013f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1ed919af8e7844faabecb7a8dd47f285": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fbe3025786e94c99ab6c633251923c57": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2cef6291580545a795374bc03a6013f9", "placeholder": "\u200b", "style": "IPY_MODEL_1ed919af8e7844faabecb7a8dd47f285", "value": " 30/30 [00:00<00:00, 414.89it/s]"}}, "f26f2446131342a1b208ddec0b71c771": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec615bcedf144713a74c0755f4d4a017": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7daa21d4a2364d38ad2a974e382c6322", "IPY_MODEL_92db28b2f6594a47bbecaa39c185f8fd", "IPY_MODEL_fbe3025786e94c99ab6c633251923c57"], "layout": "IPY_MODEL_f26f2446131342a1b208ddec0b71c771"}}, "587d5b941fbc465faf4eb95923831929": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70503413664647f98537eb6ceb24c397": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ef63b67382614e458109cee4652d44da": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_587d5b941fbc465faf4eb95923831929", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_70503413664647f98537eb6ceb24c397", "value": 30.0}}, "9c7f519c6e4e43a983bbd8764c156460": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6422f763cda64280af2c3e65257aeadf": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "660cb6ce052f47b4b6cbe492bceef787": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9c7f519c6e4e43a983bbd8764c156460", "placeholder": "\u200b", "style": "IPY_MODEL_6422f763cda64280af2c3e65257aeadf", "value": "number of examples processed for checking labels: 100%"}}, "e77f234650f04aceb92afed644f9afbf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab4466bce4fc4e29a5451793442f63f0": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d603c968a93c4cc180f3f615cff5aa17": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e77f234650f04aceb92afed644f9afbf", "placeholder": "\u200b", "style": "IPY_MODEL_ab4466bce4fc4e29a5451793442f63f0", "value": " 30/30 [00:39<00:00, 1.18s/it]"}}, "2c30e1b3212d44fcb51934e93bf256f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6cb19a81c2a486b82141204a442d67b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_660cb6ce052f47b4b6cbe492bceef787", "IPY_MODEL_ef63b67382614e458109cee4652d44da", "IPY_MODEL_d603c968a93c4cc180f3f615cff5aa17"], "layout": "IPY_MODEL_2c30e1b3212d44fcb51934e93bf256f4"}}, "1772cf6eace14f4f8a042982d8d016a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6493300865974b87a00b6d58ce9d45d3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e065034c12da4de986d452fa8e88a13a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1772cf6eace14f4f8a042982d8d016a8", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6493300865974b87a00b6d58ce9d45d3", "value": 30.0}}, "7b875172cd764fa9ab4b1d7fdcd93b46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d5158c48b6d4e3587ff508936ad7386": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "464b5bb258bd409ab318e6ecab337861": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7b875172cd764fa9ab4b1d7fdcd93b46", "placeholder": "\u200b", "style": "IPY_MODEL_3d5158c48b6d4e3587ff508936ad7386", "value": "images processed using softmin: 100%"}}, "1a4a06ef208a4aea96192270ec7fb84a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98e1388d51f34102aacc21ba7bc431eb": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4109ef68aa164157869d8efce1002420": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1a4a06ef208a4aea96192270ec7fb84a", "placeholder": "\u200b", "style": "IPY_MODEL_98e1388d51f34102aacc21ba7bc431eb", "value": " 30/30 [00:01<00:00, 23.76it/s]"}}, "a4c1ccb6ff5b40f5b2a9448cc2d9a89d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7dceb22a611b4605b26d5be95c8f7516": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_464b5bb258bd409ab318e6ecab337861", "IPY_MODEL_e065034c12da4de986d452fa8e88a13a", "IPY_MODEL_4109ef68aa164157869d8efce1002420"], "layout": "IPY_MODEL_a4c1ccb6ff5b40f5b2a9448cc2d9a89d"}}}, "version_major": 2, "version_minor": 0} +{"state": {"fcc677509e4047feacf1ee2612eb3bf6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d9bd9df2ade4a83ab6231049c45a53b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1c9e243742194e9f93f1f1d0f4ade627": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fcc677509e4047feacf1ee2612eb3bf6", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2d9bd9df2ade4a83ab6231049c45a53b", "value": 30.0}}, "68e0315ddeeb47aaa3eed64bc0a781bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0d493b322dc419dbe87e7a6b2af79ce": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "579262aaf92e43c8b403d67fcdbb69de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_68e0315ddeeb47aaa3eed64bc0a781bb", "placeholder": "\u200b", "style": "IPY_MODEL_c0d493b322dc419dbe87e7a6b2af79ce", "value": "number of examples processed for estimating thresholds: 100%"}}, "11f01422601b4fbfb274288e4cabc8dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "337a4acbdc614129ab2ee0180f730c19": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f8958214798d4aaea3392a34c1132c86": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_11f01422601b4fbfb274288e4cabc8dd", "placeholder": "\u200b", "style": "IPY_MODEL_337a4acbdc614129ab2ee0180f730c19", "value": " 30/30 [00:00<00:00, 415.09it/s]"}}, "e66280fc5b9544d3b2997f0895b86556": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4fea53dd3c354db89dbd413a514598b1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_579262aaf92e43c8b403d67fcdbb69de", "IPY_MODEL_1c9e243742194e9f93f1f1d0f4ade627", "IPY_MODEL_f8958214798d4aaea3392a34c1132c86"], "layout": "IPY_MODEL_e66280fc5b9544d3b2997f0895b86556"}}, "3eedef9a02374d1e96abed5e91673616": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbeae6affcaf40c7b85b3a80bc472488": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6c0f1a6b8b0941eb890e179ab021fa32": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3eedef9a02374d1e96abed5e91673616", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bbeae6affcaf40c7b85b3a80bc472488", "value": 30.0}}, "1a11c07d013c43bb8d5c2a9a9f51b77c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25a7aae549ff4d1fa03ce9aa556d8fc3": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "540cfd5273004c949a94947f00084b1e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1a11c07d013c43bb8d5c2a9a9f51b77c", "placeholder": "\u200b", "style": "IPY_MODEL_25a7aae549ff4d1fa03ce9aa556d8fc3", "value": "number of examples processed for checking labels: 100%"}}, "c2042fce4b7149fbb89d176082a3c94f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "851b95992b3f4ad4a8670c0230fcd73f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e15b5be74c0c4d29bdfda502583c695b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c2042fce4b7149fbb89d176082a3c94f", "placeholder": "\u200b", "style": "IPY_MODEL_851b95992b3f4ad4a8670c0230fcd73f", "value": " 30/30 [00:34<00:00, 1.15s/it]"}}, "606e484d407447bcb09578773cd22d5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3addf8ea78984dc3bf5ed29c07556bb9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_540cfd5273004c949a94947f00084b1e", "IPY_MODEL_6c0f1a6b8b0941eb890e179ab021fa32", "IPY_MODEL_e15b5be74c0c4d29bdfda502583c695b"], "layout": "IPY_MODEL_606e484d407447bcb09578773cd22d5d"}}, "2641df8a6b10468c84fd7d0cf8fe4b7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "017b88b766dd4b1eb6d2b1e38318808d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a29c9371170a4cf195f0623a90a22046": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2641df8a6b10468c84fd7d0cf8fe4b7f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_017b88b766dd4b1eb6d2b1e38318808d", "value": 30.0}}, "75f17e33a67d4d759b4cd9037c2e49dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc529557e2e64fcba50b373e9f823e42": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ba97605c2b714aaeae151edc68655c4e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_75f17e33a67d4d759b4cd9037c2e49dc", "placeholder": "\u200b", "style": "IPY_MODEL_dc529557e2e64fcba50b373e9f823e42", "value": "images processed using softmin: 100%"}}, "bc89283dc7174f93b8b234407daf2a1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dacdbf7e5c0a4c5a8b089b152056890c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b75dd4684dc541648d9d07c71d611dde": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bc89283dc7174f93b8b234407daf2a1d", "placeholder": "\u200b", "style": "IPY_MODEL_dacdbf7e5c0a4c5a8b089b152056890c", "value": " 30/30 [00:01<00:00, 23.70it/s]"}}, "3bf0e062325848e38433cfd0a1c1e64e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f014168fa4346d1a5243faf468a81d2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ba97605c2b714aaeae151edc68655c4e", "IPY_MODEL_a29c9371170a4cf195f0623a90a22046", "IPY_MODEL_b75dd4684dc541648d9d07c71d611dde"], "layout": "IPY_MODEL_3bf0e062325848e38433cfd0a1c1e64e"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 277db8411..6376839e6 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:31.125213Z", - "iopub.status.busy": "2024-01-17T18:12:31.124971Z", - "iopub.status.idle": "2024-01-17T18:12:32.801405Z", - "shell.execute_reply": "2024-01-17T18:12:32.800636Z" + "iopub.execute_input": "2024-01-17T23:14:34.017881Z", + "iopub.status.busy": "2024-01-17T23:14:34.017503Z", + "iopub.status.idle": "2024-01-17T23:14:36.066016Z", + "shell.execute_reply": "2024-01-17T23:14:36.065243Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:12:32.804526Z", - "iopub.status.busy": "2024-01-17T18:12:32.804011Z", - "iopub.status.idle": "2024-01-17T18:13:26.043168Z", - "shell.execute_reply": "2024-01-17T18:13:26.042378Z" + "iopub.execute_input": "2024-01-17T23:14:36.068785Z", + "iopub.status.busy": "2024-01-17T23:14:36.068574Z", + "iopub.status.idle": "2024-01-17T23:15:29.432226Z", + "shell.execute_reply": "2024-01-17T23:15:29.431512Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:26.046070Z", - "iopub.status.busy": "2024-01-17T18:13:26.045857Z", - "iopub.status.idle": "2024-01-17T18:13:27.779303Z", - "shell.execute_reply": "2024-01-17T18:13:27.778617Z" + "iopub.execute_input": "2024-01-17T23:15:29.435338Z", + "iopub.status.busy": "2024-01-17T23:15:29.434915Z", + "iopub.status.idle": "2024-01-17T23:15:30.460838Z", + "shell.execute_reply": "2024-01-17T23:15:30.460233Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.782397Z", - "iopub.status.busy": "2024-01-17T18:13:27.781842Z", - "iopub.status.idle": "2024-01-17T18:13:27.785561Z", - "shell.execute_reply": "2024-01-17T18:13:27.784975Z" + "iopub.execute_input": "2024-01-17T23:15:30.463806Z", + "iopub.status.busy": "2024-01-17T23:15:30.463391Z", + "iopub.status.idle": "2024-01-17T23:15:30.467069Z", + "shell.execute_reply": "2024-01-17T23:15:30.466497Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.787782Z", - "iopub.status.busy": "2024-01-17T18:13:27.787576Z", - "iopub.status.idle": "2024-01-17T18:13:27.791812Z", - "shell.execute_reply": "2024-01-17T18:13:27.791287Z" + "iopub.execute_input": "2024-01-17T23:15:30.469583Z", + "iopub.status.busy": "2024-01-17T23:15:30.469112Z", + "iopub.status.idle": "2024-01-17T23:15:30.473211Z", + "shell.execute_reply": "2024-01-17T23:15:30.472586Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.794277Z", - "iopub.status.busy": "2024-01-17T18:13:27.793928Z", - "iopub.status.idle": "2024-01-17T18:13:27.797585Z", - "shell.execute_reply": "2024-01-17T18:13:27.797052Z" + "iopub.execute_input": "2024-01-17T23:15:30.475590Z", + "iopub.status.busy": "2024-01-17T23:15:30.475289Z", + "iopub.status.idle": "2024-01-17T23:15:30.479220Z", + "shell.execute_reply": "2024-01-17T23:15:30.478614Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.799879Z", - "iopub.status.busy": "2024-01-17T18:13:27.799457Z", - "iopub.status.idle": "2024-01-17T18:13:27.802639Z", - "shell.execute_reply": "2024-01-17T18:13:27.802012Z" + "iopub.execute_input": "2024-01-17T23:15:30.481531Z", + "iopub.status.busy": "2024-01-17T23:15:30.481169Z", + "iopub.status.idle": "2024-01-17T23:15:30.484282Z", + "shell.execute_reply": "2024-01-17T23:15:30.483769Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:13:27.804808Z", - "iopub.status.busy": "2024-01-17T18:13:27.804477Z", - "iopub.status.idle": "2024-01-17T18:14:55.334560Z", - "shell.execute_reply": "2024-01-17T18:14:55.333875Z" + "iopub.execute_input": "2024-01-17T23:15:30.486493Z", + "iopub.status.busy": "2024-01-17T23:15:30.486198Z", + "iopub.status.idle": "2024-01-17T23:16:54.759811Z", + "shell.execute_reply": "2024-01-17T23:16:54.759104Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ec615bcedf144713a74c0755f4d4a017", + "model_id": "4fea53dd3c354db89dbd413a514598b1", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b6cb19a81c2a486b82141204a442d67b", + "model_id": "3addf8ea78984dc3bf5ed29c07556bb9", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:14:55.337672Z", - "iopub.status.busy": "2024-01-17T18:14:55.337209Z", - "iopub.status.idle": "2024-01-17T18:14:56.101511Z", - "shell.execute_reply": "2024-01-17T18:14:56.100932Z" + "iopub.execute_input": "2024-01-17T23:16:54.762950Z", + "iopub.status.busy": "2024-01-17T23:16:54.762598Z", + "iopub.status.idle": "2024-01-17T23:16:55.528775Z", + "shell.execute_reply": "2024-01-17T23:16:55.528081Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:14:56.104021Z", - "iopub.status.busy": "2024-01-17T18:14:56.103660Z", - "iopub.status.idle": "2024-01-17T18:14:58.199350Z", - "shell.execute_reply": "2024-01-17T18:14:58.198693Z" + "iopub.execute_input": "2024-01-17T23:16:55.531668Z", + "iopub.status.busy": "2024-01-17T23:16:55.531169Z", + "iopub.status.idle": "2024-01-17T23:16:57.626271Z", + "shell.execute_reply": "2024-01-17T23:16:57.625582Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:14:58.202064Z", - "iopub.status.busy": "2024-01-17T18:14:58.201668Z", - "iopub.status.idle": "2024-01-17T18:15:26.871400Z", - "shell.execute_reply": "2024-01-17T18:15:26.870736Z" + "iopub.execute_input": "2024-01-17T23:16:57.628737Z", + "iopub.status.busy": "2024-01-17T23:16:57.628517Z", + "iopub.status.idle": "2024-01-17T23:17:27.065044Z", + "shell.execute_reply": "2024-01-17T23:17:27.064412Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17362/4997817 [00:00<00:28, 173608.58it/s]" + " 0%| | 16923/4997817 [00:00<00:29, 169217.65it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34895/4997817 [00:00<00:28, 174610.72it/s]" + " 1%| | 33993/4997817 [00:00<00:29, 170085.88it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 52475/4997817 [00:00<00:28, 175150.77it/s]" + " 1%| | 51002/4997817 [00:00<00:29, 169503.62it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 69991/4997817 [00:00<00:28, 173938.91it/s]" + " 1%|▏ | 68012/4997817 [00:00<00:29, 169735.92it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 87813/4997817 [00:00<00:27, 175471.95it/s]" + " 2%|▏ | 84993/4997817 [00:00<00:28, 169759.89it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 105688/4997817 [00:00<00:27, 176578.81it/s]" + " 2%|▏ | 101970/4997817 [00:00<00:28, 169628.61it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 123543/4997817 [00:00<00:27, 177216.89it/s]" + " 2%|▏ | 118944/4997817 [00:00<00:28, 169663.19it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 141289/4997817 [00:00<00:27, 177290.20it/s]" + " 3%|▎ | 135911/4997817 [00:00<00:29, 163001.52it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 159076/4997817 [00:00<00:27, 177466.31it/s]" + " 3%|▎ | 152918/4997817 [00:00<00:29, 165147.19it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 176918/4997817 [00:01<00:27, 177754.44it/s]" + " 3%|▎ | 169974/4997817 [00:01<00:28, 166782.07it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 194876/4997817 [00:01<00:26, 178308.24it/s]" + " 4%|▎ | 187064/4997817 [00:01<00:28, 168021.67it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 212708/4997817 [00:01<00:26, 178223.48it/s]" + " 4%|▍ | 204038/4997817 [00:01<00:28, 168537.30it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 230531/4997817 [00:01<00:26, 178136.92it/s]" + " 4%|▍ | 220938/4997817 [00:01<00:28, 168672.47it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 248505/4997817 [00:01<00:26, 178619.00it/s]" + " 5%|▍ | 238130/4997817 [00:01<00:28, 169647.75it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 266377/4997817 [00:01<00:26, 178647.43it/s]" + " 5%|▌ | 255262/4997817 [00:01<00:27, 170147.90it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 284425/4997817 [00:01<00:26, 179193.60it/s]" + " 5%|▌ | 272284/4997817 [00:01<00:27, 170019.26it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 302378/4997817 [00:01<00:26, 179290.92it/s]" + " 6%|▌ | 289291/4997817 [00:01<00:27, 169797.69it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 320347/4997817 [00:01<00:26, 179407.53it/s]" + " 6%|▌ | 306465/4997817 [00:01<00:27, 170377.22it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 338297/4997817 [00:01<00:25, 179431.36it/s]" + " 6%|▋ | 323703/4997817 [00:01<00:27, 170975.52it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 356241/4997817 [00:02<00:25, 179348.77it/s]" + " 7%|▋ | 340851/4997817 [00:02<00:27, 171125.25it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 374208/4997817 [00:02<00:25, 179441.48it/s]" + " 7%|▋ | 357965/4997817 [00:02<00:27, 170735.16it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 392153/4997817 [00:02<00:26, 175413.81it/s]" + " 8%|▊ | 375079/4997817 [00:02<00:27, 170854.49it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 410009/4997817 [00:02<00:26, 176338.11it/s]" + " 8%|▊ | 392275/4997817 [00:02<00:26, 171182.95it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 427853/4997817 [00:02<00:25, 176958.47it/s]" + " 8%|▊ | 409485/4997817 [00:02<00:26, 171454.31it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 445826/4997817 [00:02<00:25, 177779.06it/s]" + " 9%|▊ | 426631/4997817 [00:02<00:26, 171181.61it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 463613/4997817 [00:02<00:25, 177528.30it/s]" + " 9%|▉ | 443750/4997817 [00:02<00:26, 170479.76it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 481507/4997817 [00:02<00:25, 177946.35it/s]" + " 9%|▉ | 460916/4997817 [00:02<00:26, 170828.33it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 499307/4997817 [00:02<00:25, 177661.06it/s]" + " 10%|▉ | 478000/4997817 [00:02<00:27, 167094.77it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 517142/4997817 [00:02<00:25, 177861.59it/s]" + " 10%|▉ | 495446/4997817 [00:02<00:26, 169263.15it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 535037/4997817 [00:03<00:25, 178184.28it/s]" + " 10%|█ | 512890/4997817 [00:03<00:26, 170794.12it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 552923/4997817 [00:03<00:24, 178382.09it/s]" + " 11%|█ | 530383/4997817 [00:03<00:25, 172020.72it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 570763/4997817 [00:03<00:25, 171086.58it/s]" + " 11%|█ | 547934/4997817 [00:03<00:25, 173058.88it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 588402/4997817 [00:03<00:25, 172627.47it/s]" + " 11%|█▏ | 565248/4997817 [00:03<00:25, 171739.41it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 606160/4997817 [00:03<00:25, 174079.34it/s]" + " 12%|█▏ | 582430/4997817 [00:03<00:25, 171635.25it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 623955/4997817 [00:03<00:24, 175220.83it/s]" + " 12%|█▏ | 599599/4997817 [00:03<00:25, 171434.03it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 641860/4997817 [00:03<00:24, 176352.97it/s]" + " 12%|█▏ | 616746/4997817 [00:03<00:25, 171242.34it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659728/4997817 [00:03<00:24, 177041.83it/s]" + " 13%|█▎ | 633873/4997817 [00:03<00:25, 171131.74it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 677498/4997817 [00:03<00:24, 177235.53it/s]" + " 13%|█▎ | 650988/4997817 [00:03<00:25, 167888.38it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 695298/4997817 [00:03<00:24, 177460.17it/s]" + " 13%|█▎ | 667980/4997817 [00:03<00:25, 168487.13it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 713108/4997817 [00:04<00:24, 177648.89it/s]" + " 14%|█▎ | 685095/4997817 [00:04<00:25, 169274.32it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 731013/4997817 [00:04<00:23, 178065.71it/s]" + " 14%|█▍ | 702365/4997817 [00:04<00:25, 170291.66it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 748824/4997817 [00:04<00:23, 177652.38it/s]" + " 14%|█▍ | 719508/4997817 [00:04<00:25, 170628.16it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 766599/4997817 [00:04<00:23, 177677.08it/s]" + " 15%|█▍ | 736576/4997817 [00:04<00:25, 169810.36it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 784420/4997817 [00:04<00:23, 177831.64it/s]" + " 15%|█▌ | 753562/4997817 [00:04<00:24, 169771.99it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 802279/4997817 [00:04<00:23, 178056.61it/s]" + " 15%|█▌ | 770715/4997817 [00:04<00:24, 170294.50it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 820264/4997817 [00:04<00:23, 178591.12it/s]" + " 16%|█▌ | 787747/4997817 [00:04<00:24, 169972.43it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 838197/4997817 [00:04<00:23, 178808.60it/s]" + " 16%|█▌ | 804872/4997817 [00:04<00:24, 170350.25it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 856111/4997817 [00:04<00:23, 178905.08it/s]" + " 16%|█▋ | 821909/4997817 [00:04<00:24, 170342.59it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 874002/4997817 [00:04<00:23, 178854.94it/s]" + " 17%|█▋ | 838945/4997817 [00:04<00:24, 170326.57it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 891888/4997817 [00:05<00:22, 178769.86it/s]" + " 17%|█▋ | 856345/4997817 [00:05<00:24, 171423.84it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 909766/4997817 [00:05<00:22, 177999.88it/s]" + " 17%|█▋ | 873794/4997817 [00:05<00:23, 172340.75it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 927567/4997817 [00:05<00:23, 175332.09it/s]" + " 18%|█▊ | 891355/4997817 [00:05<00:23, 173318.17it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 945109/4997817 [00:05<00:23, 172027.61it/s]" + " 18%|█▊ | 908761/4997817 [00:05<00:23, 173536.69it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 962858/4997817 [00:05<00:23, 173626.11it/s]" + " 19%|█▊ | 926115/4997817 [00:05<00:23, 173374.72it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 980440/4997817 [00:05<00:23, 174271.59it/s]" + " 19%|█▉ | 943534/4997817 [00:05<00:23, 173615.78it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 998071/4997817 [00:05<00:22, 174873.76it/s]" + " 19%|█▉ | 960987/4997817 [00:05<00:23, 173888.18it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1015609/4997817 [00:05<00:22, 175019.90it/s]" + " 20%|█▉ | 978376/4997817 [00:05<00:23, 173759.83it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1033146/4997817 [00:05<00:22, 175119.66it/s]" + " 20%|█▉ | 995883/4997817 [00:05<00:22, 174150.86it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1050707/4997817 [00:05<00:22, 175263.37it/s]" + " 20%|██ | 1013363/4997817 [00:05<00:22, 174342.29it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1068310/4997817 [00:06<00:22, 175489.78it/s]" + " 21%|██ | 1030818/4997817 [00:06<00:22, 174402.88it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1086006/4997817 [00:06<00:22, 175925.40it/s]" + " 21%|██ | 1048303/4997817 [00:06<00:22, 174534.90it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1103856/4997817 [00:06<00:22, 176693.74it/s]" + " 21%|██▏ | 1065757/4997817 [00:06<00:22, 174515.39it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1121527/4997817 [00:06<00:21, 176653.73it/s]" + " 22%|██▏ | 1083209/4997817 [00:06<00:22, 174141.01it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1139194/4997817 [00:06<00:21, 175610.49it/s]" + " 22%|██▏ | 1100652/4997817 [00:06<00:22, 174222.63it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1156758/4997817 [00:06<00:21, 175340.14it/s]" + " 22%|██▏ | 1118075/4997817 [00:06<00:22, 173614.04it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1174423/4997817 [00:06<00:21, 175726.52it/s]" + " 23%|██▎ | 1135437/4997817 [00:06<00:22, 173273.09it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1192038/4997817 [00:06<00:21, 175849.70it/s]" + " 23%|██▎ | 1152765/4997817 [00:06<00:22, 173078.85it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1209681/4997817 [00:06<00:21, 176020.95it/s]" + " 23%|██▎ | 1170074/4997817 [00:06<00:22, 172769.04it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227284/4997817 [00:06<00:21, 175879.77it/s]" + " 24%|██▍ | 1187352/4997817 [00:06<00:22, 166605.50it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1244924/4997817 [00:07<00:21, 176033.24it/s]" + " 24%|██▍ | 1204651/4997817 [00:07<00:22, 168465.26it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1262528/4997817 [00:07<00:21, 175800.45it/s]" + " 24%|██▍ | 1221930/4997817 [00:07<00:22, 169735.51it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1280128/4997817 [00:07<00:21, 175857.50it/s]" + " 25%|██▍ | 1239241/4997817 [00:07<00:22, 170729.82it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1297844/4997817 [00:07<00:20, 176243.66it/s]" + " 25%|██▌ | 1256336/4997817 [00:07<00:21, 170593.49it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1315598/4997817 [00:07<00:20, 176628.10it/s]" + " 25%|██▌ | 1273736/4997817 [00:07<00:21, 171604.75it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1333326/4997817 [00:07<00:20, 176821.58it/s]" + " 26%|██▌ | 1291095/4997817 [00:07<00:21, 172192.76it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1351011/4997817 [00:07<00:20, 176827.24it/s]" + " 26%|██▌ | 1308323/4997817 [00:07<00:21, 171512.26it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1368694/4997817 [00:07<00:20, 176802.46it/s]" + " 27%|██▋ | 1325481/4997817 [00:07<00:21, 170300.82it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1386390/4997817 [00:07<00:20, 176847.35it/s]" + " 27%|██▋ | 1342592/4997817 [00:07<00:21, 170538.44it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1404075/4997817 [00:07<00:20, 176737.99it/s]" + " 27%|██▋ | 1359667/4997817 [00:07<00:21, 170596.95it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1421749/4997817 [00:08<00:20, 176144.34it/s]" + " 28%|██▊ | 1376730/4997817 [00:08<00:21, 170584.52it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1439364/4997817 [00:08<00:20, 175538.08it/s]" + " 28%|██▊ | 1393808/4997817 [00:08<00:21, 170640.10it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1456919/4997817 [00:08<00:20, 175153.28it/s]" + " 28%|██▊ | 1410890/4997817 [00:08<00:21, 170689.62it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1474435/4997817 [00:08<00:20, 170969.49it/s]" + " 29%|██▊ | 1428041/4997817 [00:08<00:20, 170932.83it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1491823/4997817 [00:08<00:20, 171820.74it/s]" + " 29%|██▉ | 1445136/4997817 [00:08<00:20, 170912.74it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1509255/4997817 [00:08<00:20, 172556.44it/s]" + " 29%|██▉ | 1462229/4997817 [00:08<00:20, 170913.08it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1526644/4997817 [00:08<00:20, 172949.51it/s]" + " 30%|██▉ | 1479321/4997817 [00:08<00:20, 170499.01it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1544068/4997817 [00:08<00:19, 173330.43it/s]" + " 30%|██▉ | 1496372/4997817 [00:08<00:20, 170482.52it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1561511/4997817 [00:08<00:19, 173656.01it/s]" + " 30%|███ | 1513421/4997817 [00:08<00:20, 170395.25it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1578882/4997817 [00:08<00:19, 173600.68it/s]" + " 31%|███ | 1530461/4997817 [00:08<00:20, 167319.27it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1596246/4997817 [00:09<00:19, 173421.86it/s]" + " 31%|███ | 1547481/4997817 [00:09<00:20, 168168.22it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1613759/4997817 [00:09<00:19, 173930.01it/s]" + " 31%|███▏ | 1564657/4997817 [00:09<00:20, 169231.06it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1631217/4997817 [00:09<00:19, 174122.33it/s]" + " 32%|███▏ | 1581588/4997817 [00:09<00:20, 169022.41it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1648631/4997817 [00:09<00:19, 170877.37it/s]" + " 32%|███▏ | 1598553/4997817 [00:09<00:20, 169205.69it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1666045/4997817 [00:09<00:19, 171838.32it/s]" + " 32%|███▏ | 1615478/4997817 [00:09<00:20, 168976.78it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1683650/4997817 [00:09<00:19, 173084.46it/s]" + " 33%|███▎ | 1632488/4997817 [00:09<00:19, 169311.06it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1701219/4997817 [00:09<00:18, 173858.01it/s]" + " 33%|███▎ | 1649496/4997817 [00:09<00:19, 169537.42it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1718873/4997817 [00:09<00:18, 174654.48it/s]" + " 33%|███▎ | 1666516/4997817 [00:09<00:19, 169734.29it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1736344/4997817 [00:09<00:18, 174622.09it/s]" + " 34%|███▎ | 1683770/4997817 [00:09<00:19, 170570.66it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1753942/4997817 [00:09<00:18, 175023.95it/s]" + " 34%|███▍ | 1700828/4997817 [00:09<00:19, 170107.59it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1771448/4997817 [00:10<00:18, 174993.57it/s]" + " 34%|███▍ | 1718095/4997817 [00:10<00:19, 170870.72it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1788950/4997817 [00:10<00:18, 174751.67it/s]" + " 35%|███▍ | 1735554/4997817 [00:10<00:18, 171982.68it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1806535/4997817 [00:10<00:18, 175076.18it/s]" + " 35%|███▌ | 1752844/4997817 [00:10<00:18, 172253.27it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1824044/4997817 [00:10<00:18, 174947.92it/s]" + " 35%|███▌ | 1770192/4997817 [00:10<00:18, 172616.19it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1841882/4997817 [00:10<00:17, 175973.50it/s]" + " 36%|███▌ | 1787471/4997817 [00:10<00:18, 172664.15it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1859592/4997817 [00:10<00:17, 176306.73it/s]" + " 36%|███▌ | 1804738/4997817 [00:10<00:18, 172460.42it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1877279/4997817 [00:10<00:17, 176473.74it/s]" + " 36%|███▋ | 1822303/4997817 [00:10<00:18, 173414.99it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1894943/4997817 [00:10<00:17, 176520.23it/s]" + " 37%|███▋ | 1839775/4997817 [00:10<00:18, 173804.36it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1912596/4997817 [00:10<00:17, 176219.44it/s]" + " 37%|███▋ | 1857168/4997817 [00:10<00:18, 173839.96it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1930263/4997817 [00:10<00:17, 176352.95it/s]" + " 38%|███▊ | 1874674/4997817 [00:10<00:17, 174204.13it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1947942/4997817 [00:11<00:17, 176481.33it/s]" + " 38%|███▊ | 1892095/4997817 [00:11<00:17, 173973.19it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1965591/4997817 [00:11<00:17, 175961.68it/s]" + " 38%|███▊ | 1909493/4997817 [00:11<00:17, 173652.09it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1983188/4997817 [00:11<00:17, 175748.07it/s]" + " 39%|███▊ | 1926956/4997817 [00:11<00:17, 173942.04it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2000787/4997817 [00:11<00:17, 175815.61it/s]" + " 39%|███▉ | 1944351/4997817 [00:11<00:17, 173676.68it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2018369/4997817 [00:11<00:17, 168730.26it/s]" + " 39%|███▉ | 1961719/4997817 [00:11<00:17, 173544.32it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2035840/4997817 [00:11<00:17, 170467.93it/s]" + " 40%|███▉ | 1979205/4997817 [00:11<00:17, 173936.66it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2053380/4997817 [00:11<00:17, 171912.16it/s]" + " 40%|███▉ | 1996632/4997817 [00:11<00:17, 174033.21it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2070874/4997817 [00:11<00:16, 172804.36it/s]" + " 40%|████ | 2014036/4997817 [00:11<00:17, 173984.33it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2088397/4997817 [00:11<00:16, 173519.94it/s]" + " 41%|████ | 2031435/4997817 [00:11<00:17, 173931.39it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2105931/4997817 [00:11<00:16, 174057.90it/s]" + " 41%|████ | 2048829/4997817 [00:11<00:16, 173817.50it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2123526/4997817 [00:12<00:16, 174619.28it/s]" + " 41%|████▏ | 2066211/4997817 [00:12<00:16, 173089.88it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2140999/4997817 [00:12<00:16, 174636.87it/s]" + " 42%|████▏ | 2083521/4997817 [00:12<00:16, 173048.80it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2158470/4997817 [00:12<00:16, 174638.99it/s]" + " 42%|████▏ | 2100866/4997817 [00:12<00:16, 173165.42it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2175968/4997817 [00:12<00:16, 174737.78it/s]" + " 42%|████▏ | 2118183/4997817 [00:12<00:16, 173142.49it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2193446/4997817 [00:12<00:16, 174633.60it/s]" + " 43%|████▎ | 2135542/4997817 [00:12<00:16, 173274.37it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2211104/4997817 [00:12<00:15, 175212.99it/s]" + " 43%|████▎ | 2152870/4997817 [00:12<00:16, 172932.60it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2228891/4997817 [00:12<00:15, 176005.69it/s]" + " 43%|████▎ | 2170164/4997817 [00:12<00:16, 172786.75it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246705/4997817 [00:12<00:15, 176642.54it/s]" + " 44%|████▍ | 2187443/4997817 [00:12<00:16, 172758.80it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2264371/4997817 [00:12<00:15, 176477.26it/s]" + " 44%|████▍ | 2204719/4997817 [00:12<00:16, 172489.32it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2282020/4997817 [00:12<00:15, 176270.92it/s]" + " 44%|████▍ | 2221969/4997817 [00:12<00:16, 172209.27it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2299648/4997817 [00:13<00:15, 176268.65it/s]" + " 45%|████▍ | 2239236/4997817 [00:13<00:16, 172342.87it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2317443/4997817 [00:13<00:15, 176769.77it/s]" + " 45%|████▌ | 2256471/4997817 [00:13<00:15, 171712.51it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2335287/4997817 [00:13<00:15, 177266.82it/s]" + " 45%|████▌ | 2273643/4997817 [00:13<00:15, 171115.35it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2353014/4997817 [00:13<00:14, 177237.67it/s]" + " 46%|████▌ | 2290884/4997817 [00:13<00:15, 171500.07it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2370811/4997817 [00:13<00:14, 177454.13it/s]" + " 46%|████▌ | 2308082/4997817 [00:13<00:15, 171641.01it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2388644/4997817 [00:13<00:14, 177713.67it/s]" + " 47%|████▋ | 2325509/4997817 [00:13<00:15, 172425.40it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2406515/4997817 [00:13<00:14, 178008.59it/s]" + " 47%|████▋ | 2342779/4997817 [00:13<00:15, 172505.46it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2424382/4997817 [00:13<00:14, 178202.69it/s]" + " 47%|████▋ | 2360266/4997817 [00:13<00:15, 173212.74it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2442203/4997817 [00:13<00:14, 176953.39it/s]" + " 48%|████▊ | 2377746/4997817 [00:13<00:15, 173684.69it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2460064/4997817 [00:13<00:14, 177445.01it/s]" + " 48%|████▊ | 2395275/4997817 [00:13<00:14, 174160.30it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2478011/4997817 [00:14<00:14, 178046.47it/s]" + " 48%|████▊ | 2412692/4997817 [00:14<00:14, 173545.01it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2495859/4997817 [00:14<00:14, 178170.66it/s]" + " 49%|████▊ | 2430069/4997817 [00:14<00:14, 173608.65it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2513719/4997817 [00:14<00:13, 178294.71it/s]" + " 49%|████▉ | 2447462/4997817 [00:14<00:14, 173701.94it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2531550/4997817 [00:14<00:13, 177984.78it/s]" + " 49%|████▉ | 2464833/4997817 [00:14<00:14, 173310.39it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2549350/4997817 [00:14<00:13, 177765.45it/s]" + " 50%|████▉ | 2482165/4997817 [00:14<00:14, 172931.85it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2567127/4997817 [00:14<00:13, 177467.75it/s]" + " 50%|█████ | 2499563/4997817 [00:14<00:14, 173242.08it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2584875/4997817 [00:14<00:13, 177135.41it/s]" + " 50%|█████ | 2516888/4997817 [00:14<00:14, 173011.66it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2602589/4997817 [00:14<00:13, 176761.69it/s]" + " 51%|█████ | 2534190/4997817 [00:14<00:14, 172835.54it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2620266/4997817 [00:14<00:13, 176400.10it/s]" + " 51%|█████ | 2551474/4997817 [00:14<00:14, 172684.40it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2637907/4997817 [00:14<00:13, 176353.99it/s]" + " 51%|█████▏ | 2568743/4997817 [00:14<00:14, 171725.95it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2655543/4997817 [00:15<00:13, 175946.08it/s]" + " 52%|█████▏ | 2586056/4997817 [00:15<00:14, 172142.42it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2673138/4997817 [00:15<00:13, 175874.49it/s]" + " 52%|█████▏ | 2603272/4997817 [00:15<00:13, 172009.73it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2690726/4997817 [00:15<00:13, 175848.48it/s]" + " 52%|█████▏ | 2620507/4997817 [00:15<00:13, 172106.86it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2708319/4997817 [00:15<00:13, 175869.29it/s]" + " 53%|█████▎ | 2637748/4997817 [00:15<00:13, 172193.71it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2725906/4997817 [00:15<00:13, 170165.16it/s]" + " 53%|█████▎ | 2655228/4997817 [00:15<00:13, 172969.91it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2743530/4997817 [00:15<00:13, 171941.91it/s]" + " 53%|█████▎ | 2672594/4997817 [00:15<00:13, 173172.78it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2761055/4997817 [00:15<00:12, 172913.09it/s]" + " 54%|█████▍ | 2689912/4997817 [00:15<00:13, 172973.25it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2778599/4997817 [00:15<00:12, 173657.51it/s]" + " 54%|█████▍ | 2707210/4997817 [00:15<00:13, 172673.04it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2796132/4997817 [00:15<00:12, 174152.13it/s]" + " 55%|█████▍ | 2724649/4997817 [00:15<00:13, 173183.95it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2813713/4997817 [00:15<00:12, 174642.51it/s]" + " 55%|█████▍ | 2742045/4997817 [00:15<00:13, 173411.99it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2831215/4997817 [00:16<00:12, 174751.85it/s]" + " 55%|█████▌ | 2759387/4997817 [00:16<00:12, 172797.03it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2848781/4997817 [00:16<00:12, 175020.18it/s]" + " 56%|█████▌ | 2776675/4997817 [00:16<00:12, 172818.44it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2866288/4997817 [00:16<00:12, 174922.90it/s]" + " 56%|█████▌ | 2793958/4997817 [00:16<00:12, 172443.43it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2883784/4997817 [00:16<00:12, 174867.39it/s]" + " 56%|█████▌ | 2811203/4997817 [00:16<00:12, 172181.49it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2901274/4997817 [00:16<00:12, 174518.53it/s]" + " 57%|█████▋ | 2828422/4997817 [00:16<00:12, 171875.31it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2918784/4997817 [00:16<00:11, 174687.97it/s]" + " 57%|█████▋ | 2845610/4997817 [00:16<00:12, 171605.12it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2936508/4997817 [00:16<00:11, 175446.36it/s]" + " 57%|█████▋ | 2862771/4997817 [00:16<00:12, 171158.71it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2954190/4997817 [00:16<00:11, 175855.21it/s]" + " 58%|█████▊ | 2880043/4997817 [00:16<00:12, 171620.59it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2971867/4997817 [00:16<00:11, 176126.05it/s]" + " 58%|█████▊ | 2897206/4997817 [00:16<00:12, 171545.78it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2989607/4997817 [00:16<00:11, 176504.50it/s]" + " 58%|█████▊ | 2914479/4997817 [00:16<00:12, 171897.64it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3007465/4997817 [00:17<00:11, 177122.98it/s]" + " 59%|█████▊ | 2931670/4997817 [00:17<00:12, 171468.11it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3025371/4997817 [00:17<00:11, 177699.75it/s]" + " 59%|█████▉ | 2948818/4997817 [00:17<00:12, 164907.42it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3043142/4997817 [00:17<00:11, 177526.55it/s]" + " 59%|█████▉ | 2965819/4997817 [00:17<00:12, 166389.56it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3060895/4997817 [00:17<00:10, 177261.36it/s]" + " 60%|█████▉ | 2983140/4997817 [00:17<00:11, 168389.32it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3078730/4997817 [00:17<00:10, 177583.27it/s]" + " 60%|██████ | 3000413/4997817 [00:17<00:11, 169668.46it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3096489/4997817 [00:17<00:10, 173439.53it/s]" + " 60%|██████ | 3017703/4997817 [00:17<00:11, 170624.06it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3114319/4997817 [00:17<00:10, 174869.70it/s]" + " 61%|██████ | 3034960/4997817 [00:17<00:11, 171201.38it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3132167/4997817 [00:17<00:10, 175934.19it/s]" + " 61%|██████ | 3052094/4997817 [00:17<00:11, 171123.09it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3150036/4997817 [00:17<00:10, 176751.52it/s]" + " 61%|██████▏ | 3069455/4997817 [00:17<00:11, 171864.37it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3167884/4997817 [00:18<00:10, 177263.84it/s]" + " 62%|██████▏ | 3086755/4997817 [00:18<00:11, 172200.09it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3185698/4997817 [00:18<00:10, 177523.48it/s]" + " 62%|██████▏ | 3104106/4997817 [00:18<00:10, 172590.10it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3203568/4997817 [00:18<00:10, 177872.39it/s]" + " 62%|██████▏ | 3121414/4997817 [00:18<00:10, 172732.84it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3221360/4997817 [00:18<00:09, 177711.90it/s]" + " 63%|██████▎ | 3138690/4997817 [00:18<00:10, 172414.93it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3239134/4997817 [00:18<00:09, 177577.15it/s]" + " 63%|██████▎ | 3155966/4997817 [00:18<00:10, 172513.49it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3256894/4997817 [00:18<00:09, 176368.10it/s]" + " 63%|██████▎ | 3173316/4997817 [00:18<00:10, 172807.21it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3274697/4997817 [00:18<00:09, 176860.96it/s]" + " 64%|██████▍ | 3190786/4997817 [00:18<00:10, 173371.43it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3292438/4997817 [00:18<00:09, 177021.85it/s]" + " 64%|██████▍ | 3208124/4997817 [00:18<00:10, 173368.22it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3310162/4997817 [00:18<00:09, 177081.84it/s]" + " 65%|██████▍ | 3225462/4997817 [00:18<00:10, 173291.90it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3327911/4997817 [00:18<00:09, 177201.04it/s]" + " 65%|██████▍ | 3242799/4997817 [00:18<00:10, 173312.39it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3345632/4997817 [00:19<00:09, 177070.11it/s]" + " 65%|██████▌ | 3260131/4997817 [00:19<00:10, 173229.77it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3363340/4997817 [00:19<00:09, 176560.09it/s]" + " 66%|██████▌ | 3277459/4997817 [00:19<00:09, 173241.78it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3380997/4997817 [00:19<00:09, 176297.50it/s]" + " 66%|██████▌ | 3294784/4997817 [00:19<00:10, 168720.26it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3398628/4997817 [00:19<00:09, 175923.15it/s]" + " 66%|██████▋ | 3311836/4997817 [00:19<00:09, 169246.65it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3416444/4997817 [00:19<00:08, 176583.41it/s]" + " 67%|██████▋ | 3329185/4997817 [00:19<00:09, 170499.74it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3434103/4997817 [00:19<00:08, 176134.50it/s]" + " 67%|██████▋ | 3346525/4997817 [00:19<00:09, 171358.37it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3451738/4997817 [00:19<00:08, 176195.20it/s]" + " 67%|██████▋ | 3363981/4997817 [00:19<00:09, 172310.29it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3469358/4997817 [00:19<00:08, 176027.78it/s]" + " 68%|██████▊ | 3381408/4997817 [00:19<00:09, 172891.73it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3486962/4997817 [00:19<00:08, 175916.89it/s]" + " 68%|██████▊ | 3398883/4997817 [00:19<00:09, 173444.12it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3504554/4997817 [00:19<00:08, 175282.26it/s]" + " 68%|██████▊ | 3416395/4997817 [00:19<00:09, 173944.67it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3522083/4997817 [00:20<00:08, 175175.68it/s]" + " 69%|██████▊ | 3433866/4997817 [00:20<00:08, 174170.71it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3539798/4997817 [00:20<00:08, 175762.45it/s]" + " 69%|██████▉ | 3451295/4997817 [00:20<00:08, 174202.78it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3557423/4997817 [00:20<00:08, 175905.54it/s]" + " 69%|██████▉ | 3468717/4997817 [00:20<00:08, 173871.49it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3575120/4997817 [00:20<00:08, 176219.37it/s]" + " 70%|██████▉ | 3486106/4997817 [00:20<00:08, 173730.48it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3592743/4997817 [00:20<00:07, 176124.71it/s]" + " 70%|███████ | 3503480/4997817 [00:20<00:08, 173576.14it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3610402/4997817 [00:20<00:07, 176260.53it/s]" + " 70%|███████ | 3520839/4997817 [00:20<00:08, 172430.10it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3628029/4997817 [00:20<00:07, 176148.24it/s]" + " 71%|███████ | 3538084/4997817 [00:20<00:08, 172099.73it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3645692/4997817 [00:20<00:07, 176289.26it/s]" + " 71%|███████ | 3555296/4997817 [00:20<00:08, 171901.03it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3663322/4997817 [00:20<00:07, 176222.00it/s]" + " 71%|███████▏ | 3572487/4997817 [00:20<00:08, 171608.38it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3680980/4997817 [00:20<00:07, 176324.07it/s]" + " 72%|███████▏ | 3589757/4997817 [00:20<00:08, 171930.02it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3698735/4997817 [00:21<00:07, 176687.64it/s]" + " 72%|███████▏ | 3606959/4997817 [00:21<00:08, 171954.77it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3716404/4997817 [00:21<00:07, 176628.29it/s]" + " 73%|███████▎ | 3624245/4997817 [00:21<00:07, 172222.71it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3734091/4997817 [00:21<00:07, 176697.15it/s]" + " 73%|███████▎ | 3641468/4997817 [00:21<00:08, 165178.06it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3751761/4997817 [00:21<00:07, 176640.21it/s]" + " 73%|███████▎ | 3658590/4997817 [00:21<00:08, 166933.37it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3769457/4997817 [00:21<00:06, 176732.49it/s]" + " 74%|███████▎ | 3675846/4997817 [00:21<00:07, 168580.91it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3787209/4997817 [00:21<00:06, 176965.92it/s]" + " 74%|███████▍ | 3692949/4997817 [00:21<00:07, 169301.80it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3804906/4997817 [00:21<00:06, 176115.13it/s]" + " 74%|███████▍ | 3710095/4997817 [00:21<00:07, 169941.03it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3822589/4997817 [00:21<00:06, 176324.35it/s]" + " 75%|███████▍ | 3727212/4997817 [00:21<00:07, 170305.46it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3840267/4997817 [00:21<00:06, 176456.98it/s]" + " 75%|███████▍ | 3744383/4997817 [00:21<00:07, 170721.03it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3857949/4997817 [00:21<00:06, 176561.33it/s]" + " 75%|███████▌ | 3761585/4997817 [00:21<00:07, 171106.29it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3875608/4997817 [00:22<00:06, 176566.31it/s]" + " 76%|███████▌ | 3778703/4997817 [00:22<00:07, 171043.71it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3893265/4997817 [00:22<00:06, 176410.01it/s]" + " 76%|███████▌ | 3795890/4997817 [00:22<00:07, 171287.44it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3910907/4997817 [00:22<00:06, 176281.59it/s]" + " 76%|███████▋ | 3813023/4997817 [00:22<00:06, 170783.59it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▊ | 3928536/4997817 [00:22<00:06, 176164.37it/s]" + " 77%|███████▋ | 3830175/4997817 [00:22<00:06, 171001.66it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3946173/4997817 [00:22<00:05, 176221.61it/s]" + " 77%|███████▋ | 3847278/4997817 [00:22<00:06, 170875.44it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3963796/4997817 [00:22<00:05, 175821.79it/s]" + " 77%|███████▋ | 3864410/4997817 [00:22<00:06, 171005.16it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3981379/4997817 [00:22<00:05, 175679.25it/s]" + " 78%|███████▊ | 3881633/4997817 [00:22<00:06, 171370.89it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 3999029/4997817 [00:22<00:05, 175919.84it/s]" + " 78%|███████▊ | 3898771/4997817 [00:22<00:06, 170584.23it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4016746/4997817 [00:22<00:05, 176291.45it/s]" + " 78%|███████▊ | 3915831/4997817 [00:22<00:06, 169965.52it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4034376/4997817 [00:22<00:05, 176165.06it/s]" + " 79%|███████▊ | 3932869/4997817 [00:22<00:06, 170087.91it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4051993/4997817 [00:23<00:05, 176084.45it/s]" + " 79%|███████▉ | 3949879/4997817 [00:23<00:06, 169990.31it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4069602/4997817 [00:23<00:05, 175885.63it/s]" + " 79%|███████▉ | 3966879/4997817 [00:23<00:06, 169949.51it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4087191/4997817 [00:23<00:05, 175394.53it/s]" + " 80%|███████▉ | 3983875/4997817 [00:23<00:05, 169772.79it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4104731/4997817 [00:23<00:05, 175012.49it/s]" + " 80%|████████ | 4000853/4997817 [00:23<00:05, 169718.68it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4122236/4997817 [00:23<00:05, 175020.26it/s]" + " 80%|████████ | 4017853/4997817 [00:23<00:05, 169799.69it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4139739/4997817 [00:23<00:04, 174861.56it/s]" + " 81%|████████ | 4034999/4997817 [00:23<00:05, 170291.45it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4157233/4997817 [00:23<00:04, 174879.84it/s]" + " 81%|████████ | 4052095/4997817 [00:23<00:05, 170489.07it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4174722/4997817 [00:23<00:04, 167593.86it/s]" + " 81%|████████▏ | 4069145/4997817 [00:23<00:05, 170353.71it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4192083/4997817 [00:23<00:04, 169341.24it/s]" + " 82%|████████▏ | 4086208/4997817 [00:23<00:05, 170433.51it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4209474/4997817 [00:23<00:04, 170677.23it/s]" + " 82%|████████▏ | 4103252/4997817 [00:23<00:05, 169878.09it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4226976/4997817 [00:24<00:04, 171956.01it/s]" + " 82%|████████▏ | 4120406/4997817 [00:24<00:05, 170373.48it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4244411/4997817 [00:24<00:04, 172661.73it/s]" + " 83%|████████▎ | 4137520/4997817 [00:24<00:05, 170600.48it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4261828/4997817 [00:24<00:04, 173107.14it/s]" + " 83%|████████▎ | 4154679/4997817 [00:24<00:04, 170894.40it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4279356/4997817 [00:24<00:04, 173752.22it/s]" + " 83%|████████▎ | 4171769/4997817 [00:24<00:04, 170333.58it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4296896/4997817 [00:24<00:04, 174242.38it/s]" + " 84%|████████▍ | 4188803/4997817 [00:24<00:04, 169923.43it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4314328/4997817 [00:24<00:03, 173327.93it/s]" + " 84%|████████▍ | 4205796/4997817 [00:24<00:04, 169523.93it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4331919/4997817 [00:24<00:03, 174094.65it/s]" + " 84%|████████▍ | 4222817/4997817 [00:24<00:04, 169724.32it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4349427/4997817 [00:24<00:03, 174384.04it/s]" + " 85%|████████▍ | 4239790/4997817 [00:24<00:04, 169579.63it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4367051/4997817 [00:24<00:03, 174935.33it/s]" + " 85%|████████▌ | 4256818/4997817 [00:24<00:04, 169786.18it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4384595/4997817 [00:24<00:03, 175083.73it/s]" + " 86%|████████▌ | 4273871/4997817 [00:24<00:04, 170006.16it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4402158/4997817 [00:25<00:03, 175244.18it/s]" + " 86%|████████▌ | 4291017/4997817 [00:25<00:04, 170438.96it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4419786/4997817 [00:25<00:03, 175552.04it/s]" + " 86%|████████▌ | 4308086/4997817 [00:25<00:04, 170511.81it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4437371/4997817 [00:25<00:03, 175636.52it/s]" + " 87%|████████▋ | 4325138/4997817 [00:25<00:03, 169547.73it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4455003/4997817 [00:25<00:03, 175837.48it/s]" + " 87%|████████▋ | 4342095/4997817 [00:25<00:04, 163414.55it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4472798/4997817 [00:25<00:02, 176468.40it/s]" + " 87%|████████▋ | 4359299/4997817 [00:25<00:03, 165924.16it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4490560/4997817 [00:25<00:02, 176808.91it/s]" + " 88%|████████▊ | 4376343/4997817 [00:25<00:03, 167246.68it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4508294/4997817 [00:25<00:02, 176965.60it/s]" + " 88%|████████▊ | 4393409/4997817 [00:25<00:03, 168254.06it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4525991/4997817 [00:25<00:02, 176542.13it/s]" + " 88%|████████▊ | 4410560/4997817 [00:25<00:03, 169219.14it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4543710/4997817 [00:25<00:02, 176732.28it/s]" + " 89%|████████▊ | 4427598/4997817 [00:25<00:03, 169562.46it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 4561463/4997817 [00:25<00:02, 176966.16it/s]" + " 89%|████████▉ | 4444705/4997817 [00:25<00:03, 170009.98it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4579245/4997817 [00:26<00:02, 177220.61it/s]" + " 89%|████████▉ | 4461912/4997817 [00:26<00:03, 170621.62it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4597064/4997817 [00:26<00:02, 177506.60it/s]" + " 90%|████████▉ | 4478981/4997817 [00:26<00:03, 170378.09it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4614841/4997817 [00:26<00:02, 177581.31it/s]" + " 90%|████████▉ | 4496051/4997817 [00:26<00:02, 170472.86it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4632600/4997817 [00:26<00:02, 177414.75it/s]" + " 90%|█████████ | 4513109/4997817 [00:26<00:02, 170500.24it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4650342/4997817 [00:26<00:01, 176810.52it/s]" + " 91%|█████████ | 4530422/4997817 [00:26<00:02, 171284.56it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4668024/4997817 [00:26<00:02, 163789.41it/s]" + " 91%|█████████ | 4547617/4997817 [00:26<00:02, 171480.12it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4685720/4997817 [00:26<00:01, 167519.88it/s]" + " 91%|█████████▏| 4564863/4997817 [00:26<00:02, 171770.24it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4703228/4997817 [00:26<00:01, 169696.70it/s]" + " 92%|█████████▏| 4582041/4997817 [00:26<00:02, 171252.29it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4720997/4997817 [00:26<00:01, 172024.75it/s]" + " 92%|█████████▏| 4599168/4997817 [00:26<00:02, 170751.33it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4738747/4997817 [00:26<00:01, 173631.53it/s]" + " 92%|█████████▏| 4616245/4997817 [00:26<00:02, 170236.58it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4756401/4997817 [00:27<00:01, 174489.53it/s]" + " 93%|█████████▎| 4633367/4997817 [00:27<00:02, 170526.11it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4774026/4997817 [00:27<00:01, 175007.15it/s]" + " 93%|█████████▎| 4650476/4997817 [00:27<00:02, 170690.98it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4791625/4997817 [00:27<00:01, 175295.19it/s]" + " 93%|█████████▎| 4667696/4997817 [00:27<00:01, 171138.38it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4809276/4997817 [00:27<00:01, 175653.18it/s]" + " 94%|█████████▎| 4684811/4997817 [00:27<00:01, 166416.31it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4827007/4997817 [00:27<00:00, 176143.70it/s]" + " 94%|█████████▍| 4702063/4997817 [00:27<00:01, 168205.75it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4844714/4997817 [00:27<00:00, 176418.08it/s]" + " 94%|█████████▍| 4719283/4997817 [00:27<00:01, 169383.99it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4862493/4997817 [00:27<00:00, 176823.46it/s]" + " 95%|█████████▍| 4736314/4997817 [00:27<00:01, 169655.39it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4880182/4997817 [00:27<00:00, 176751.65it/s]" + " 95%|█████████▌| 4753543/4997817 [00:27<00:01, 170435.52it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4897903/4997817 [00:27<00:00, 176884.36it/s]" + " 95%|█████████▌| 4770597/4997817 [00:27<00:01, 170424.55it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4915661/4997817 [00:27<00:00, 177087.36it/s]" + " 96%|█████████▌| 4787647/4997817 [00:27<00:01, 170176.12it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4933428/4997817 [00:28<00:00, 177258.92it/s]" + " 96%|█████████▌| 4804723/4997817 [00:28<00:01, 170346.92it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4951156/4997817 [00:28<00:00, 177082.23it/s]" + " 96%|█████████▋| 4821848/4997817 [00:28<00:01, 170613.16it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4968913/4997817 [00:28<00:00, 177225.04it/s]" + " 97%|█████████▋| 4838912/4997817 [00:28<00:00, 170004.32it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4986697/4997817 [00:28<00:00, 177405.38it/s]" + " 97%|█████████▋| 4856169/4997817 [00:28<00:00, 170767.84it/s]" ] }, { @@ -2802,7 +2802,71 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:28<00:00, 175774.30it/s]" + " 98%|█████████▊| 4873248/4997817 [00:28<00:00, 170274.10it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4890277/4997817 [00:28<00:00, 170191.72it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4907298/4997817 [00:28<00:00, 170155.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4924593/4997817 [00:28<00:00, 170988.03it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4941723/4997817 [00:28<00:00, 171077.12it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4958832/4997817 [00:28<00:00, 170246.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4975925/4997817 [00:29<00:00, 170448.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4992971/4997817 [00:29<00:00, 170315.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:29<00:00, 171134.52it/s]" ] }, { @@ -3041,10 +3105,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:26.873997Z", - "iopub.status.busy": "2024-01-17T18:15:26.873608Z", - "iopub.status.idle": "2024-01-17T18:15:34.500725Z", - "shell.execute_reply": "2024-01-17T18:15:34.500119Z" + "iopub.execute_input": "2024-01-17T23:17:27.067514Z", + "iopub.status.busy": "2024-01-17T23:17:27.067292Z", + "iopub.status.idle": "2024-01-17T23:17:33.987753Z", + "shell.execute_reply": "2024-01-17T23:17:33.987100Z" } }, "outputs": [], @@ -3058,10 +3122,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:34.503481Z", - "iopub.status.busy": "2024-01-17T18:15:34.503250Z", - "iopub.status.idle": "2024-01-17T18:15:37.645465Z", - "shell.execute_reply": "2024-01-17T18:15:37.644802Z" + "iopub.execute_input": "2024-01-17T23:17:33.990761Z", + "iopub.status.busy": "2024-01-17T23:17:33.990234Z", + "iopub.status.idle": "2024-01-17T23:17:37.063049Z", + "shell.execute_reply": "2024-01-17T23:17:37.062361Z" } }, "outputs": [ @@ -3130,17 +3194,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:37.648166Z", - "iopub.status.busy": "2024-01-17T18:15:37.647687Z", - "iopub.status.idle": "2024-01-17T18:15:38.942832Z", - "shell.execute_reply": "2024-01-17T18:15:38.942205Z" + "iopub.execute_input": "2024-01-17T23:17:37.065626Z", + "iopub.status.busy": "2024-01-17T23:17:37.065237Z", + "iopub.status.idle": "2024-01-17T23:17:38.361596Z", + "shell.execute_reply": "2024-01-17T23:17:38.360967Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7dceb22a611b4605b26d5be95c8f7516", + "model_id": "3f014168fa4346d1a5243faf468a81d2", "version_major": 2, "version_minor": 0 }, @@ -3170,10 +3234,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:38.945502Z", - "iopub.status.busy": "2024-01-17T18:15:38.945301Z", - "iopub.status.idle": "2024-01-17T18:15:39.161394Z", - "shell.execute_reply": "2024-01-17T18:15:39.160716Z" + "iopub.execute_input": "2024-01-17T23:17:38.364721Z", + "iopub.status.busy": "2024-01-17T23:17:38.364114Z", + "iopub.status.idle": "2024-01-17T23:17:38.581707Z", + "shell.execute_reply": "2024-01-17T23:17:38.581139Z" } }, "outputs": [], @@ -3187,10 +3251,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:39.164077Z", - "iopub.status.busy": "2024-01-17T18:15:39.163834Z", - "iopub.status.idle": "2024-01-17T18:15:43.933619Z", - "shell.execute_reply": "2024-01-17T18:15:43.932997Z" + "iopub.execute_input": "2024-01-17T23:17:38.584628Z", + "iopub.status.busy": "2024-01-17T23:17:38.584131Z", + "iopub.status.idle": "2024-01-17T23:17:43.223493Z", + "shell.execute_reply": "2024-01-17T23:17:43.222781Z" } }, "outputs": [ @@ -3263,10 +3327,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:43.935930Z", - "iopub.status.busy": "2024-01-17T18:15:43.935733Z", - "iopub.status.idle": "2024-01-17T18:15:43.992260Z", - "shell.execute_reply": "2024-01-17T18:15:43.991692Z" + "iopub.execute_input": "2024-01-17T23:17:43.226244Z", + "iopub.status.busy": "2024-01-17T23:17:43.225777Z", + "iopub.status.idle": "2024-01-17T23:17:43.282179Z", + "shell.execute_reply": "2024-01-17T23:17:43.281446Z" }, "nbsphinx": "hidden" }, @@ -3310,7 +3374,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1772cf6eace14f4f8a042982d8d016a8": { + "017b88b766dd4b1eb6d2b1e38318808d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "11f01422601b4fbfb274288e4cabc8dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3362,7 +3442,7 @@ "width": null } }, - "1a4a06ef208a4aea96192270ec7fb84a": { + "1a11c07d013c43bb8d5c2a9a9f51b77c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3414,22 +3494,31 @@ "width": null } }, - "1cf620e1d88a4e37b2d34ea1fb5e1535": { + "1c9e243742194e9f93f1f1d0f4ade627": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fcc677509e4047feacf1ee2612eb3bf6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d9bd9df2ade4a83ab6231049c45a53b", + "value": 30.0 } }, - "1ed919af8e7844faabecb7a8dd47f285": { + "25a7aae549ff4d1fa03ce9aa556d8fc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3444,23 +3533,7 @@ "description_width": "" } }, - "254221792aff42ce82df1c22b6a17fe7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c30e1b3212d44fcb51934e93bf256f4": { + "2641df8a6b10468c84fd7d0cf8fe4b7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3512,7 +3585,60 @@ "width": null } }, - "2cef6291580545a795374bc03a6013f9": { + "2d9bd9df2ade4a83ab6231049c45a53b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "337a4acbdc614129ab2ee0180f730c19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3addf8ea78984dc3bf5ed29c07556bb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_540cfd5273004c949a94947f00084b1e", + "IPY_MODEL_6c0f1a6b8b0941eb890e179ab021fa32", + "IPY_MODEL_e15b5be74c0c4d29bdfda502583c695b" + ], + "layout": "IPY_MODEL_606e484d407447bcb09578773cd22d5d" + } + }, + "3bf0e062325848e38433cfd0a1c1e64e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3564,64 +3690,7 @@ "width": null } }, - "3d5158c48b6d4e3587ff508936ad7386": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4109ef68aa164157869d8efce1002420": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1a4a06ef208a4aea96192270ec7fb84a", - "placeholder": "​", - "style": "IPY_MODEL_98e1388d51f34102aacc21ba7bc431eb", - "value": " 30/30 [00:01<00:00, 23.76it/s]" - } - }, - "464b5bb258bd409ab318e6ecab337861": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7b875172cd764fa9ab4b1d7fdcd93b46", - "placeholder": "​", - "style": "IPY_MODEL_3d5158c48b6d4e3587ff508936ad7386", - "value": "images processed using softmin: 100%" - } - }, - "587d5b941fbc465faf4eb95923831929": { + "3eedef9a02374d1e96abed5e91673616": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3673,38 +3742,51 @@ "width": null } }, - "6422f763cda64280af2c3e65257aeadf": { + "3f014168fa4346d1a5243faf468a81d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba97605c2b714aaeae151edc68655c4e", + "IPY_MODEL_a29c9371170a4cf195f0623a90a22046", + "IPY_MODEL_b75dd4684dc541648d9d07c71d611dde" + ], + "layout": "IPY_MODEL_3bf0e062325848e38433cfd0a1c1e64e" } }, - "6493300865974b87a00b6d58ce9d45d3": { + "4fea53dd3c354db89dbd413a514598b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_579262aaf92e43c8b403d67fcdbb69de", + "IPY_MODEL_1c9e243742194e9f93f1f1d0f4ade627", + "IPY_MODEL_f8958214798d4aaea3392a34c1132c86" + ], + "layout": "IPY_MODEL_e66280fc5b9544d3b2997f0895b86556" } }, - "660cb6ce052f47b4b6cbe492bceef787": { + "540cfd5273004c949a94947f00084b1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3719,29 +3801,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9c7f519c6e4e43a983bbd8764c156460", + "layout": "IPY_MODEL_1a11c07d013c43bb8d5c2a9a9f51b77c", "placeholder": "​", - "style": "IPY_MODEL_6422f763cda64280af2c3e65257aeadf", + "style": "IPY_MODEL_25a7aae549ff4d1fa03ce9aa556d8fc3", "value": "number of examples processed for checking labels: 100%" } }, - "70503413664647f98537eb6ceb24c397": { + "579262aaf92e43c8b403d67fcdbb69de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68e0315ddeeb47aaa3eed64bc0a781bb", + "placeholder": "​", + "style": "IPY_MODEL_c0d493b322dc419dbe87e7a6b2af79ce", + "value": "number of examples processed for estimating thresholds: 100%" } }, - "7b875172cd764fa9ab4b1d7fdcd93b46": { + "606e484d407447bcb09578773cd22d5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3793,50 +3880,7 @@ "width": null } }, - "7daa21d4a2364d38ad2a974e382c6322": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_813659abd0ae4858b70121d8e5e42c7a", - "placeholder": "​", - "style": "IPY_MODEL_1cf620e1d88a4e37b2d34ea1fb5e1535", - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "7dceb22a611b4605b26d5be95c8f7516": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_464b5bb258bd409ab318e6ecab337861", - "IPY_MODEL_e065034c12da4de986d452fa8e88a13a", - "IPY_MODEL_4109ef68aa164157869d8efce1002420" - ], - "layout": "IPY_MODEL_a4c1ccb6ff5b40f5b2a9448cc2d9a89d" - } - }, - "813659abd0ae4858b70121d8e5e42c7a": { + "68e0315ddeeb47aaa3eed64bc0a781bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3888,7 +3932,7 @@ "width": null } }, - "92db28b2f6594a47bbecaa39c185f8fd": { + "6c0f1a6b8b0941eb890e179ab021fa32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3904,30 +3948,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cdcc7203a1d34765831634720bdbf052", + "layout": "IPY_MODEL_3eedef9a02374d1e96abed5e91673616", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_254221792aff42ce82df1c22b6a17fe7", + "style": "IPY_MODEL_bbeae6affcaf40c7b85b3a80bc472488", "value": 30.0 } }, - "98e1388d51f34102aacc21ba7bc431eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9c7f519c6e4e43a983bbd8764c156460": { + "75f17e33a67d4d759b4cd9037c2e49dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3979,7 +4008,104 @@ "width": null } }, - "a4c1ccb6ff5b40f5b2a9448cc2d9a89d": { + "851b95992b3f4ad4a8670c0230fcd73f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a29c9371170a4cf195f0623a90a22046": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2641df8a6b10468c84fd7d0cf8fe4b7f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_017b88b766dd4b1eb6d2b1e38318808d", + "value": 30.0 + } + }, + "b75dd4684dc541648d9d07c71d611dde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bc89283dc7174f93b8b234407daf2a1d", + "placeholder": "​", + "style": "IPY_MODEL_dacdbf7e5c0a4c5a8b089b152056890c", + "value": " 30/30 [00:01<00:00, 23.70it/s]" + } + }, + "ba97605c2b714aaeae151edc68655c4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_75f17e33a67d4d759b4cd9037c2e49dc", + "placeholder": "​", + "style": "IPY_MODEL_dc529557e2e64fcba50b373e9f823e42", + "value": "images processed using softmin: 100%" + } + }, + "bbeae6affcaf40c7b85b3a80bc472488": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bc89283dc7174f93b8b234407daf2a1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4031,7 +4157,7 @@ "width": null } }, - "ab4466bce4fc4e29a5451793442f63f0": { + "c0d493b322dc419dbe87e7a6b2af79ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4046,29 +4172,7 @@ "description_width": "" } }, - "b6cb19a81c2a486b82141204a442d67b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_660cb6ce052f47b4b6cbe492bceef787", - "IPY_MODEL_ef63b67382614e458109cee4652d44da", - "IPY_MODEL_d603c968a93c4cc180f3f615cff5aa17" - ], - "layout": "IPY_MODEL_2c30e1b3212d44fcb51934e93bf256f4" - } - }, - "cdcc7203a1d34765831634720bdbf052": { + "c2042fce4b7149fbb89d176082a3c94f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4120,52 +4224,58 @@ "width": null } }, - "d603c968a93c4cc180f3f615cff5aa17": { + "dacdbf7e5c0a4c5a8b089b152056890c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e77f234650f04aceb92afed644f9afbf", - "placeholder": "​", - "style": "IPY_MODEL_ab4466bce4fc4e29a5451793442f63f0", - "value": " 30/30 [00:39<00:00, 1.18s/it]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e065034c12da4de986d452fa8e88a13a": { + "dc529557e2e64fcba50b373e9f823e42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e15b5be74c0c4d29bdfda502583c695b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1772cf6eace14f4f8a042982d8d016a8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6493300865974b87a00b6d58ce9d45d3", - "value": 30.0 + "layout": "IPY_MODEL_c2042fce4b7149fbb89d176082a3c94f", + "placeholder": "​", + "style": "IPY_MODEL_851b95992b3f4ad4a8670c0230fcd73f", + "value": " 30/30 [00:34<00:00, 1.15s/it]" } }, - "e77f234650f04aceb92afed644f9afbf": { + "e66280fc5b9544d3b2997f0895b86556": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4217,53 +4327,28 @@ "width": null } }, - "ec615bcedf144713a74c0755f4d4a017": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7daa21d4a2364d38ad2a974e382c6322", - "IPY_MODEL_92db28b2f6594a47bbecaa39c185f8fd", - "IPY_MODEL_fbe3025786e94c99ab6c633251923c57" - ], - "layout": "IPY_MODEL_f26f2446131342a1b208ddec0b71c771" - } - }, - "ef63b67382614e458109cee4652d44da": { + "f8958214798d4aaea3392a34c1132c86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_587d5b941fbc465faf4eb95923831929", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_70503413664647f98537eb6ceb24c397", - "value": 30.0 + "layout": "IPY_MODEL_11f01422601b4fbfb274288e4cabc8dd", + "placeholder": "​", + "style": "IPY_MODEL_337a4acbdc614129ab2ee0180f730c19", + "value": " 30/30 [00:00<00:00, 415.09it/s]" } }, - "f26f2446131342a1b208ddec0b71c771": { + "fcc677509e4047feacf1ee2612eb3bf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4314,27 +4399,6 @@ "visibility": null, "width": null } - }, - "fbe3025786e94c99ab6c633251923c57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2cef6291580545a795374bc03a6013f9", - "placeholder": "​", - "style": "IPY_MODEL_1ed919af8e7844faabecb7a8dd47f285", - "value": " 30/30 [00:00<00:00, 414.89it/s]" - } } }, "version_major": 2, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 5466270db..17bc8ee87 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:48.780485Z", - "iopub.status.busy": "2024-01-17T18:15:48.780288Z", - "iopub.status.idle": "2024-01-17T18:15:49.889722Z", - "shell.execute_reply": "2024-01-17T18:15:49.889148Z" + "iopub.execute_input": "2024-01-17T23:17:47.734952Z", + "iopub.status.busy": "2024-01-17T23:17:47.734771Z", + "iopub.status.idle": "2024-01-17T23:17:48.739120Z", + "shell.execute_reply": "2024-01-17T23:17:48.738432Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.892898Z", - "iopub.status.busy": "2024-01-17T18:15:49.892481Z", - "iopub.status.idle": "2024-01-17T18:15:49.912635Z", - "shell.execute_reply": "2024-01-17T18:15:49.912039Z" + "iopub.execute_input": "2024-01-17T23:17:48.742367Z", + "iopub.status.busy": "2024-01-17T23:17:48.741768Z", + "iopub.status.idle": "2024-01-17T23:17:48.758449Z", + "shell.execute_reply": "2024-01-17T23:17:48.757950Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.915208Z", - "iopub.status.busy": "2024-01-17T18:15:49.914856Z", - "iopub.status.idle": "2024-01-17T18:15:49.961568Z", - "shell.execute_reply": "2024-01-17T18:15:49.960846Z" + "iopub.execute_input": "2024-01-17T23:17:48.760735Z", + "iopub.status.busy": "2024-01-17T23:17:48.760537Z", + "iopub.status.idle": "2024-01-17T23:17:48.800098Z", + "shell.execute_reply": "2024-01-17T23:17:48.799507Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.964144Z", - "iopub.status.busy": "2024-01-17T18:15:49.963669Z", - "iopub.status.idle": "2024-01-17T18:15:49.967418Z", - "shell.execute_reply": "2024-01-17T18:15:49.966851Z" + "iopub.execute_input": "2024-01-17T23:17:48.802608Z", + "iopub.status.busy": "2024-01-17T23:17:48.802234Z", + "iopub.status.idle": "2024-01-17T23:17:48.805857Z", + "shell.execute_reply": "2024-01-17T23:17:48.805334Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.969921Z", - "iopub.status.busy": "2024-01-17T18:15:49.969441Z", - "iopub.status.idle": "2024-01-17T18:15:49.978117Z", - "shell.execute_reply": "2024-01-17T18:15:49.977519Z" + "iopub.execute_input": "2024-01-17T23:17:48.808362Z", + "iopub.status.busy": "2024-01-17T23:17:48.807900Z", + "iopub.status.idle": "2024-01-17T23:17:48.817003Z", + "shell.execute_reply": "2024-01-17T23:17:48.816545Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.980561Z", - "iopub.status.busy": "2024-01-17T18:15:49.980192Z", - "iopub.status.idle": "2024-01-17T18:15:49.983567Z", - "shell.execute_reply": "2024-01-17T18:15:49.983071Z" + "iopub.execute_input": "2024-01-17T23:17:48.819529Z", + "iopub.status.busy": "2024-01-17T23:17:48.819050Z", + "iopub.status.idle": "2024-01-17T23:17:48.821755Z", + "shell.execute_reply": "2024-01-17T23:17:48.821267Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:49.985926Z", - "iopub.status.busy": "2024-01-17T18:15:49.985561Z", - "iopub.status.idle": "2024-01-17T18:15:50.575769Z", - "shell.execute_reply": "2024-01-17T18:15:50.575063Z" + "iopub.execute_input": "2024-01-17T23:17:48.824069Z", + "iopub.status.busy": "2024-01-17T23:17:48.823696Z", + "iopub.status.idle": "2024-01-17T23:17:49.401999Z", + "shell.execute_reply": "2024-01-17T23:17:49.401363Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:50.578728Z", - "iopub.status.busy": "2024-01-17T18:15:50.578362Z", - "iopub.status.idle": "2024-01-17T18:15:51.817403Z", - "shell.execute_reply": "2024-01-17T18:15:51.816705Z" + "iopub.execute_input": "2024-01-17T23:17:49.404884Z", + "iopub.status.busy": "2024-01-17T23:17:49.404494Z", + "iopub.status.idle": "2024-01-17T23:17:50.628963Z", + "shell.execute_reply": "2024-01-17T23:17:50.628183Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.820386Z", - "iopub.status.busy": "2024-01-17T18:15:51.819691Z", - "iopub.status.idle": "2024-01-17T18:15:51.829994Z", - "shell.execute_reply": "2024-01-17T18:15:51.829415Z" + "iopub.execute_input": "2024-01-17T23:17:50.632065Z", + "iopub.status.busy": "2024-01-17T23:17:50.631351Z", + "iopub.status.idle": "2024-01-17T23:17:50.641752Z", + "shell.execute_reply": "2024-01-17T23:17:50.641138Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.832550Z", - "iopub.status.busy": "2024-01-17T18:15:51.832105Z", - "iopub.status.idle": "2024-01-17T18:15:51.836560Z", - "shell.execute_reply": "2024-01-17T18:15:51.835934Z" + "iopub.execute_input": "2024-01-17T23:17:50.644372Z", + "iopub.status.busy": "2024-01-17T23:17:50.643967Z", + "iopub.status.idle": "2024-01-17T23:17:50.648354Z", + "shell.execute_reply": "2024-01-17T23:17:50.647831Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.839202Z", - "iopub.status.busy": "2024-01-17T18:15:51.838732Z", - "iopub.status.idle": "2024-01-17T18:15:51.847634Z", - "shell.execute_reply": "2024-01-17T18:15:51.847116Z" + "iopub.execute_input": "2024-01-17T23:17:50.650701Z", + "iopub.status.busy": "2024-01-17T23:17:50.650342Z", + "iopub.status.idle": "2024-01-17T23:17:50.659466Z", + "shell.execute_reply": "2024-01-17T23:17:50.658916Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.849889Z", - "iopub.status.busy": "2024-01-17T18:15:51.849543Z", - "iopub.status.idle": "2024-01-17T18:15:51.974011Z", - "shell.execute_reply": "2024-01-17T18:15:51.973351Z" + "iopub.execute_input": "2024-01-17T23:17:50.662055Z", + "iopub.status.busy": "2024-01-17T23:17:50.661674Z", + "iopub.status.idle": "2024-01-17T23:17:50.784615Z", + "shell.execute_reply": "2024-01-17T23:17:50.783929Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.976584Z", - "iopub.status.busy": "2024-01-17T18:15:51.976090Z", - "iopub.status.idle": "2024-01-17T18:15:51.979227Z", - "shell.execute_reply": "2024-01-17T18:15:51.978616Z" + "iopub.execute_input": "2024-01-17T23:17:50.787531Z", + "iopub.status.busy": "2024-01-17T23:17:50.787142Z", + "iopub.status.idle": "2024-01-17T23:17:50.790141Z", + "shell.execute_reply": "2024-01-17T23:17:50.789587Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:51.981454Z", - "iopub.status.busy": "2024-01-17T18:15:51.981098Z", - "iopub.status.idle": "2024-01-17T18:15:53.416387Z", - "shell.execute_reply": "2024-01-17T18:15:53.415644Z" + "iopub.execute_input": "2024-01-17T23:17:50.792562Z", + "iopub.status.busy": "2024-01-17T23:17:50.792169Z", + "iopub.status.idle": "2024-01-17T23:17:52.221345Z", + "shell.execute_reply": "2024-01-17T23:17:52.220630Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:53.419589Z", - "iopub.status.busy": "2024-01-17T18:15:53.419145Z", - "iopub.status.idle": "2024-01-17T18:15:53.433267Z", - "shell.execute_reply": "2024-01-17T18:15:53.432699Z" + "iopub.execute_input": "2024-01-17T23:17:52.224659Z", + "iopub.status.busy": "2024-01-17T23:17:52.224238Z", + "iopub.status.idle": "2024-01-17T23:17:52.238083Z", + "shell.execute_reply": "2024-01-17T23:17:52.237541Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:53.435679Z", - "iopub.status.busy": "2024-01-17T18:15:53.435296Z", - "iopub.status.idle": "2024-01-17T18:15:53.480212Z", - "shell.execute_reply": "2024-01-17T18:15:53.479691Z" + "iopub.execute_input": "2024-01-17T23:17:52.240512Z", + "iopub.status.busy": "2024-01-17T23:17:52.240154Z", + "iopub.status.idle": "2024-01-17T23:17:52.269107Z", + "shell.execute_reply": "2024-01-17T23:17:52.268431Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 3a0f039fa..742b1f6ae 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -978,7 +978,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire'}
+Classes: {'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin'}
 

Let’s print the first example in the train set.

diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index af64e12b3..c78dd02a5 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:15:58.681081Z", - "iopub.status.busy": "2024-01-17T18:15:58.680544Z", - "iopub.status.idle": "2024-01-17T18:16:00.775060Z", - "shell.execute_reply": "2024-01-17T18:16:00.774440Z" + "iopub.execute_input": "2024-01-17T23:17:57.742875Z", + "iopub.status.busy": "2024-01-17T23:17:57.742428Z", + "iopub.status.idle": "2024-01-17T23:17:59.830312Z", + "shell.execute_reply": "2024-01-17T23:17:59.829658Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.778036Z", - "iopub.status.busy": "2024-01-17T18:16:00.777514Z", - "iopub.status.idle": "2024-01-17T18:16:00.781173Z", - "shell.execute_reply": "2024-01-17T18:16:00.780639Z" + "iopub.execute_input": "2024-01-17T23:17:59.833303Z", + "iopub.status.busy": "2024-01-17T23:17:59.832848Z", + "iopub.status.idle": "2024-01-17T23:17:59.836479Z", + "shell.execute_reply": "2024-01-17T23:17:59.835915Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.783257Z", - "iopub.status.busy": "2024-01-17T18:16:00.782964Z", - "iopub.status.idle": "2024-01-17T18:16:00.786185Z", - "shell.execute_reply": "2024-01-17T18:16:00.785673Z" + "iopub.execute_input": "2024-01-17T23:17:59.838723Z", + "iopub.status.busy": "2024-01-17T23:17:59.838522Z", + "iopub.status.idle": "2024-01-17T23:17:59.842419Z", + "shell.execute_reply": "2024-01-17T23:17:59.841936Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.788633Z", - "iopub.status.busy": "2024-01-17T18:16:00.788231Z", - "iopub.status.idle": "2024-01-17T18:16:00.838714Z", - "shell.execute_reply": "2024-01-17T18:16:00.838154Z" + "iopub.execute_input": "2024-01-17T23:17:59.844709Z", + "iopub.status.busy": "2024-01-17T23:17:59.844354Z", + "iopub.status.idle": "2024-01-17T23:17:59.883168Z", + "shell.execute_reply": "2024-01-17T23:17:59.882480Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.840975Z", - "iopub.status.busy": "2024-01-17T18:16:00.840666Z", - "iopub.status.idle": "2024-01-17T18:16:00.844276Z", - "shell.execute_reply": "2024-01-17T18:16:00.843733Z" + "iopub.execute_input": "2024-01-17T23:17:59.885656Z", + "iopub.status.busy": "2024-01-17T23:17:59.885435Z", + "iopub.status.idle": "2024-01-17T23:17:59.889383Z", + "shell.execute_reply": "2024-01-17T23:17:59.888880Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.846573Z", - "iopub.status.busy": "2024-01-17T18:16:00.846282Z", - "iopub.status.idle": "2024-01-17T18:16:00.849977Z", - "shell.execute_reply": "2024-01-17T18:16:00.849375Z" + "iopub.execute_input": "2024-01-17T23:17:59.891833Z", + "iopub.status.busy": "2024-01-17T23:17:59.891353Z", + "iopub.status.idle": "2024-01-17T23:17:59.895138Z", + "shell.execute_reply": "2024-01-17T23:17:59.894518Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire'}\n" + "Classes: {'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.852267Z", - "iopub.status.busy": "2024-01-17T18:16:00.851974Z", - "iopub.status.idle": "2024-01-17T18:16:00.855468Z", - "shell.execute_reply": "2024-01-17T18:16:00.854975Z" + "iopub.execute_input": "2024-01-17T23:17:59.897309Z", + "iopub.status.busy": "2024-01-17T23:17:59.897107Z", + "iopub.status.idle": "2024-01-17T23:17:59.901064Z", + "shell.execute_reply": "2024-01-17T23:17:59.900538Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.857729Z", - "iopub.status.busy": "2024-01-17T18:16:00.857390Z", - "iopub.status.idle": "2024-01-17T18:16:00.860942Z", - "shell.execute_reply": "2024-01-17T18:16:00.860317Z" + "iopub.execute_input": "2024-01-17T23:17:59.903420Z", + "iopub.status.busy": "2024-01-17T23:17:59.903221Z", + "iopub.status.idle": "2024-01-17T23:17:59.907092Z", + "shell.execute_reply": "2024-01-17T23:17:59.906454Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:00.863348Z", - "iopub.status.busy": "2024-01-17T18:16:00.862895Z", - "iopub.status.idle": "2024-01-17T18:16:09.532434Z", - "shell.execute_reply": "2024-01-17T18:16:09.531800Z" + "iopub.execute_input": "2024-01-17T23:17:59.909625Z", + "iopub.status.busy": "2024-01-17T23:17:59.909179Z", + "iopub.status.idle": "2024-01-17T23:18:08.513069Z", + "shell.execute_reply": "2024-01-17T23:18:08.512429Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:09.535736Z", - "iopub.status.busy": "2024-01-17T18:16:09.535212Z", - "iopub.status.idle": "2024-01-17T18:16:09.538358Z", - "shell.execute_reply": "2024-01-17T18:16:09.537737Z" + "iopub.execute_input": "2024-01-17T23:18:08.516221Z", + "iopub.status.busy": "2024-01-17T23:18:08.516011Z", + "iopub.status.idle": "2024-01-17T23:18:08.519002Z", + "shell.execute_reply": "2024-01-17T23:18:08.518428Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:09.540756Z", - "iopub.status.busy": "2024-01-17T18:16:09.540303Z", - "iopub.status.idle": "2024-01-17T18:16:09.543296Z", - "shell.execute_reply": "2024-01-17T18:16:09.542675Z" + "iopub.execute_input": "2024-01-17T23:18:08.521479Z", + "iopub.status.busy": "2024-01-17T23:18:08.521036Z", + "iopub.status.idle": "2024-01-17T23:18:08.524037Z", + "shell.execute_reply": "2024-01-17T23:18:08.523424Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:09.545603Z", - "iopub.status.busy": "2024-01-17T18:16:09.545232Z", - "iopub.status.idle": "2024-01-17T18:16:11.774377Z", - "shell.execute_reply": "2024-01-17T18:16:11.773545Z" + "iopub.execute_input": "2024-01-17T23:18:08.526322Z", + "iopub.status.busy": "2024-01-17T23:18:08.525946Z", + "iopub.status.idle": "2024-01-17T23:18:10.782125Z", + "shell.execute_reply": "2024-01-17T23:18:10.781246Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.777880Z", - "iopub.status.busy": "2024-01-17T18:16:11.777134Z", - "iopub.status.idle": "2024-01-17T18:16:11.785059Z", - "shell.execute_reply": "2024-01-17T18:16:11.784473Z" + "iopub.execute_input": "2024-01-17T23:18:10.785663Z", + "iopub.status.busy": "2024-01-17T23:18:10.784971Z", + "iopub.status.idle": "2024-01-17T23:18:10.793126Z", + "shell.execute_reply": "2024-01-17T23:18:10.792564Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.787623Z", - "iopub.status.busy": "2024-01-17T18:16:11.787145Z", - "iopub.status.idle": "2024-01-17T18:16:11.791785Z", - "shell.execute_reply": "2024-01-17T18:16:11.791195Z" + "iopub.execute_input": "2024-01-17T23:18:10.795673Z", + "iopub.status.busy": "2024-01-17T23:18:10.795173Z", + "iopub.status.idle": "2024-01-17T23:18:10.799534Z", + "shell.execute_reply": "2024-01-17T23:18:10.799023Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.794363Z", - "iopub.status.busy": "2024-01-17T18:16:11.793879Z", - "iopub.status.idle": "2024-01-17T18:16:11.797824Z", - "shell.execute_reply": "2024-01-17T18:16:11.797308Z" + "iopub.execute_input": "2024-01-17T23:18:10.801761Z", + "iopub.status.busy": "2024-01-17T23:18:10.801399Z", + "iopub.status.idle": "2024-01-17T23:18:10.804803Z", + "shell.execute_reply": "2024-01-17T23:18:10.804175Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.800118Z", - "iopub.status.busy": "2024-01-17T18:16:11.799769Z", - "iopub.status.idle": "2024-01-17T18:16:11.802932Z", - "shell.execute_reply": "2024-01-17T18:16:11.802404Z" + "iopub.execute_input": "2024-01-17T23:18:10.807088Z", + "iopub.status.busy": "2024-01-17T23:18:10.806776Z", + "iopub.status.idle": "2024-01-17T23:18:10.809992Z", + "shell.execute_reply": "2024-01-17T23:18:10.809457Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.805206Z", - "iopub.status.busy": "2024-01-17T18:16:11.804854Z", - "iopub.status.idle": "2024-01-17T18:16:11.812281Z", - "shell.execute_reply": "2024-01-17T18:16:11.811672Z" + "iopub.execute_input": "2024-01-17T23:18:10.812343Z", + "iopub.status.busy": "2024-01-17T23:18:10.811976Z", + "iopub.status.idle": "2024-01-17T23:18:10.818970Z", + "shell.execute_reply": "2024-01-17T23:18:10.818388Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:11.814814Z", - "iopub.status.busy": "2024-01-17T18:16:11.814358Z", - "iopub.status.idle": "2024-01-17T18:16:12.075466Z", - "shell.execute_reply": "2024-01-17T18:16:12.074804Z" + "iopub.execute_input": "2024-01-17T23:18:10.821471Z", + "iopub.status.busy": "2024-01-17T23:18:10.821021Z", + "iopub.status.idle": "2024-01-17T23:18:11.086279Z", + "shell.execute_reply": "2024-01-17T23:18:11.085605Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:12.079661Z", - "iopub.status.busy": "2024-01-17T18:16:12.078502Z", - "iopub.status.idle": "2024-01-17T18:16:12.366162Z", - "shell.execute_reply": "2024-01-17T18:16:12.365485Z" + "iopub.execute_input": "2024-01-17T23:18:11.089474Z", + "iopub.status.busy": "2024-01-17T23:18:11.089026Z", + "iopub.status.idle": "2024-01-17T23:18:11.370620Z", + "shell.execute_reply": "2024-01-17T23:18:11.369959Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-01-17T18:16:12.370837Z", - "iopub.status.busy": "2024-01-17T18:16:12.369694Z", - "iopub.status.idle": "2024-01-17T18:16:12.375305Z", - "shell.execute_reply": "2024-01-17T18:16:12.374713Z" + "iopub.execute_input": "2024-01-17T23:18:11.373903Z", + "iopub.status.busy": "2024-01-17T23:18:11.373450Z", + "iopub.status.idle": "2024-01-17T23:18:11.377667Z", + "shell.execute_reply": "2024-01-17T23:18:11.377072Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 3eea17820..0f3ff954f 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -871,7 +871,7 @@

1. Install required dependencies and download data
---2024-01-17 18:16:17--  https://data.deepai.org/conll2003.zip
+--2024-01-17 23:18:16--  https://data.deepai.org/conll2003.zip
 Resolving data.deepai.org (data.deepai.org)...
 
@@ -880,9 +880,24 @@

1. Install required dependencies and download data
-169.150.236.99, 2400:52e0:1a00::718:1
-Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... connected.
-HTTP request sent, awaiting response... 200 OK
+185.93.1.244, 2400:52e0:1a00::871:1
+Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.
+
+ +
+
+
+
+
+HTTP request sent, awaiting response...
+
+
+
+
+
+
+
+200 OK
 Length: 982975 (960K) [application/zip]
 Saving to: ‘conll2003.zip’
@@ -903,25 +918,25 @@

1. Install required dependencies and download data
-

conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.07s

+

conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.1s

-

2024-01-17 18:16:17 (14.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-17 23:18:17 (6.54 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists </pre>

-

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.07s

+

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

-

2024-01-17 18:16:17 (14.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-17 23:18:17 (6.54 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

-

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.07s

+

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.1s

-

2024-01-17 18:16:17 (14.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-01-17 23:18:17 (6.54 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists

-
-
-
-
-
+--2024-01-17 23:18:17--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz
+Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.49, 52.216.244.132, 52.217.89.156, ...
+Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.49|:443... connected.
 HTTP request sent, awaiting response...
 
@@ -980,26 +988,23 @@

1. Install required dependencies and download data
-

pred_probs.npz 96%[==================&gt; ] 15.71M 56.8MB/s -pred_probs.npz 100%[===================&gt;] 16.26M 58.4MB/s in 0.3s

+

pred_probs.npz 100%[===================&gt;] 16.26M –.-KB/s in 0.1s

-

2024-01-17 18:16:18 (58.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-17 23:18:17 (134 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

</pre>

-

pred_probs.npz 96%[==================> ] 15.71M 56.8MB/s -pred_probs.npz 100%[===================>] 16.26M 58.4MB/s in 0.3s

+

pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s

-

2024-01-17 18:16:18 (58.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-17 23:18:17 (134 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

end{sphinxVerbatim}

-

pred_probs.npz 96%[==================> ] 15.71M 56.8MB/s -pred_probs.npz 100%[===================>] 16.26M 58.4MB/s in 0.3s

+

pred_probs.npz 100%[===================>] 16.26M –.-KB/s in 0.1s

-

2024-01-17 18:16:18 (58.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-01-17 23:18:17 (134 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

[3]:
diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
index 8f1cbce7d..8126f8625 100644
--- a/master/tutorials/token_classification.ipynb
+++ b/master/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
    "id": "ae8a08e0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:17.683980Z",
-     "iopub.status.busy": "2024-01-17T18:16:17.683539Z",
-     "iopub.status.idle": "2024-01-17T18:16:18.840240Z",
-     "shell.execute_reply": "2024-01-17T18:16:18.839548Z"
+     "iopub.execute_input": "2024-01-17T23:18:16.631328Z",
+     "iopub.status.busy": "2024-01-17T23:18:16.631138Z",
+     "iopub.status.idle": "2024-01-17T23:18:17.707067Z",
+     "shell.execute_reply": "2024-01-17T23:18:17.706406Z"
     }
    },
    "outputs": [
@@ -86,7 +86,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-01-17 18:16:17--  https://data.deepai.org/conll2003.zip\r\n",
+      "--2024-01-17 23:18:16--  https://data.deepai.org/conll2003.zip\r\n",
       "Resolving data.deepai.org (data.deepai.org)... "
      ]
     },
@@ -94,9 +94,22 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "169.150.236.99, 2400:52e0:1a00::718:1\r\n",
-      "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... connected.\r\n",
-      "HTTP request sent, awaiting response... 200 OK\r\n",
+      "185.93.1.244, 2400:52e0:1a00::871:1\r\n",
+      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "HTTP request sent, awaiting response... "
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "200 OK\r\n",
       "Length: 982975 (960K) [application/zip]\r\n",
       "Saving to: ‘conll2003.zip’\r\n",
       "\r\n",
@@ -109,9 +122,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.07s   \r\n",
+      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.1s    \r\n",
       "\r\n",
-      "2024-01-17 18:16:17 (14.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+      "2024-01-17 23:18:17 (6.54 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
       "\r\n",
       "mkdir: cannot create directory ‘data’: File exists\r\n"
      ]
@@ -131,15 +144,9 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-01-17 18:16:18--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
-      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.69.41, 52.216.35.73, 3.5.25.134, ...\r\n",
-      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.69.41|:443... connected.\r\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "--2024-01-17 23:18:17--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.195.49, 52.216.244.132, 52.217.89.156, ...\r\n",
+      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.195.49|:443... connected.\r\n",
       "HTTP request sent, awaiting response... "
      ]
     },
@@ -160,10 +167,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz       96%[==================> ]  15.71M  56.8MB/s               \r",
-      "pred_probs.npz      100%[===================>]  16.26M  58.4MB/s    in 0.3s    \r\n",
+      "pred_probs.npz      100%[===================>]  16.26M  --.-KB/s    in 0.1s    \r\n",
       "\r\n",
-      "2024-01-17 18:16:18 (58.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+      "2024-01-17 23:18:17 (134 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
       "\r\n"
      ]
     }
@@ -180,10 +186,10 @@
    "id": "439b0305",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:18.843321Z",
-     "iopub.status.busy": "2024-01-17T18:16:18.842924Z",
-     "iopub.status.idle": "2024-01-17T18:16:19.868315Z",
-     "shell.execute_reply": "2024-01-17T18:16:19.867697Z"
+     "iopub.execute_input": "2024-01-17T23:18:17.709578Z",
+     "iopub.status.busy": "2024-01-17T23:18:17.709371Z",
+     "iopub.status.idle": "2024-01-17T23:18:18.727351Z",
+     "shell.execute_reply": "2024-01-17T23:18:18.726727Z"
     },
     "nbsphinx": "hidden"
    },
@@ -194,7 +200,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@89866d53b4074a0103c737ad28c80123f03973de\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@93154314109f77e58265574da2ab08503d0fd5a2\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -220,10 +226,10 @@
    "id": "a1349304",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:19.871321Z",
-     "iopub.status.busy": "2024-01-17T18:16:19.870738Z",
-     "iopub.status.idle": "2024-01-17T18:16:19.874378Z",
-     "shell.execute_reply": "2024-01-17T18:16:19.873888Z"
+     "iopub.execute_input": "2024-01-17T23:18:18.730451Z",
+     "iopub.status.busy": "2024-01-17T23:18:18.729940Z",
+     "iopub.status.idle": "2024-01-17T23:18:18.733621Z",
+     "shell.execute_reply": "2024-01-17T23:18:18.733015Z"
     }
    },
    "outputs": [],
@@ -273,10 +279,10 @@
    "id": "ab9d59a0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:19.876654Z",
-     "iopub.status.busy": "2024-01-17T18:16:19.876350Z",
-     "iopub.status.idle": "2024-01-17T18:16:19.879488Z",
-     "shell.execute_reply": "2024-01-17T18:16:19.878934Z"
+     "iopub.execute_input": "2024-01-17T23:18:18.735946Z",
+     "iopub.status.busy": "2024-01-17T23:18:18.735620Z",
+     "iopub.status.idle": "2024-01-17T23:18:18.739293Z",
+     "shell.execute_reply": "2024-01-17T23:18:18.738779Z"
     },
     "nbsphinx": "hidden"
    },
@@ -294,10 +300,10 @@
    "id": "519cb80c",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:19.881736Z",
-     "iopub.status.busy": "2024-01-17T18:16:19.881370Z",
-     "iopub.status.idle": "2024-01-17T18:16:27.772463Z",
-     "shell.execute_reply": "2024-01-17T18:16:27.771773Z"
+     "iopub.execute_input": "2024-01-17T23:18:18.741545Z",
+     "iopub.status.busy": "2024-01-17T23:18:18.741197Z",
+     "iopub.status.idle": "2024-01-17T23:18:26.628775Z",
+     "shell.execute_reply": "2024-01-17T23:18:26.628162Z"
     }
    },
    "outputs": [],
@@ -371,10 +377,10 @@
    "id": "202f1526",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:27.775590Z",
-     "iopub.status.busy": "2024-01-17T18:16:27.775061Z",
-     "iopub.status.idle": "2024-01-17T18:16:27.781127Z",
-     "shell.execute_reply": "2024-01-17T18:16:27.780571Z"
+     "iopub.execute_input": "2024-01-17T23:18:26.631735Z",
+     "iopub.status.busy": "2024-01-17T23:18:26.631355Z",
+     "iopub.status.idle": "2024-01-17T23:18:26.637292Z",
+     "shell.execute_reply": "2024-01-17T23:18:26.636788Z"
     },
     "nbsphinx": "hidden"
    },
@@ -414,10 +420,10 @@
    "id": "a4381f03",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:27.783496Z",
-     "iopub.status.busy": "2024-01-17T18:16:27.783123Z",
-     "iopub.status.idle": "2024-01-17T18:16:28.214355Z",
-     "shell.execute_reply": "2024-01-17T18:16:28.213734Z"
+     "iopub.execute_input": "2024-01-17T23:18:26.639706Z",
+     "iopub.status.busy": "2024-01-17T23:18:26.639338Z",
+     "iopub.status.idle": "2024-01-17T23:18:27.069318Z",
+     "shell.execute_reply": "2024-01-17T23:18:27.068667Z"
     }
    },
    "outputs": [],
@@ -454,10 +460,10 @@
    "id": "7842e4a3",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:28.217259Z",
-     "iopub.status.busy": "2024-01-17T18:16:28.216794Z",
-     "iopub.status.idle": "2024-01-17T18:16:28.223233Z",
-     "shell.execute_reply": "2024-01-17T18:16:28.222714Z"
+     "iopub.execute_input": "2024-01-17T23:18:27.072250Z",
+     "iopub.status.busy": "2024-01-17T23:18:27.071829Z",
+     "iopub.status.idle": "2024-01-17T23:18:27.078274Z",
+     "shell.execute_reply": "2024-01-17T23:18:27.077724Z"
     }
    },
    "outputs": [
@@ -529,10 +535,10 @@
    "id": "2c2ad9ad",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:28.225511Z",
-     "iopub.status.busy": "2024-01-17T18:16:28.225305Z",
-     "iopub.status.idle": "2024-01-17T18:16:30.205162Z",
-     "shell.execute_reply": "2024-01-17T18:16:30.204242Z"
+     "iopub.execute_input": "2024-01-17T23:18:27.080782Z",
+     "iopub.status.busy": "2024-01-17T23:18:27.080396Z",
+     "iopub.status.idle": "2024-01-17T23:18:29.029614Z",
+     "shell.execute_reply": "2024-01-17T23:18:29.028849Z"
     }
    },
    "outputs": [],
@@ -554,10 +560,10 @@
    "id": "95dc7268",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:30.208772Z",
-     "iopub.status.busy": "2024-01-17T18:16:30.207942Z",
-     "iopub.status.idle": "2024-01-17T18:16:30.215461Z",
-     "shell.execute_reply": "2024-01-17T18:16:30.214886Z"
+     "iopub.execute_input": "2024-01-17T23:18:29.033316Z",
+     "iopub.status.busy": "2024-01-17T23:18:29.032451Z",
+     "iopub.status.idle": "2024-01-17T23:18:29.039639Z",
+     "shell.execute_reply": "2024-01-17T23:18:29.038988Z"
     }
    },
    "outputs": [
@@ -593,10 +599,10 @@
    "id": "e13de188",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:30.218139Z",
-     "iopub.status.busy": "2024-01-17T18:16:30.217665Z",
-     "iopub.status.idle": "2024-01-17T18:16:30.243112Z",
-     "shell.execute_reply": "2024-01-17T18:16:30.242491Z"
+     "iopub.execute_input": "2024-01-17T23:18:29.042085Z",
+     "iopub.status.busy": "2024-01-17T23:18:29.041709Z",
+     "iopub.status.idle": "2024-01-17T23:18:29.066441Z",
+     "shell.execute_reply": "2024-01-17T23:18:29.065766Z"
     }
    },
    "outputs": [
@@ -774,10 +780,10 @@
    "id": "e4a006bd",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:30.245621Z",
-     "iopub.status.busy": "2024-01-17T18:16:30.245250Z",
-     "iopub.status.idle": "2024-01-17T18:16:30.277918Z",
-     "shell.execute_reply": "2024-01-17T18:16:30.277281Z"
+     "iopub.execute_input": "2024-01-17T23:18:29.068812Z",
+     "iopub.status.busy": "2024-01-17T23:18:29.068604Z",
+     "iopub.status.idle": "2024-01-17T23:18:29.100697Z",
+     "shell.execute_reply": "2024-01-17T23:18:29.099970Z"
     }
    },
    "outputs": [
@@ -879,10 +885,10 @@
    "id": "c8f4e163",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:30.280522Z",
-     "iopub.status.busy": "2024-01-17T18:16:30.280142Z",
-     "iopub.status.idle": "2024-01-17T18:16:30.291143Z",
-     "shell.execute_reply": "2024-01-17T18:16:30.290517Z"
+     "iopub.execute_input": "2024-01-17T23:18:29.103479Z",
+     "iopub.status.busy": "2024-01-17T23:18:29.103200Z",
+     "iopub.status.idle": "2024-01-17T23:18:29.112931Z",
+     "shell.execute_reply": "2024-01-17T23:18:29.112353Z"
     }
    },
    "outputs": [
@@ -956,10 +962,10 @@
    "id": "db0b5179",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:30.293427Z",
-     "iopub.status.busy": "2024-01-17T18:16:30.293061Z",
-     "iopub.status.idle": "2024-01-17T18:16:32.143940Z",
-     "shell.execute_reply": "2024-01-17T18:16:32.143364Z"
+     "iopub.execute_input": "2024-01-17T23:18:29.115284Z",
+     "iopub.status.busy": "2024-01-17T23:18:29.115081Z",
+     "iopub.status.idle": "2024-01-17T23:18:30.973062Z",
+     "shell.execute_reply": "2024-01-17T23:18:30.972404Z"
     }
    },
    "outputs": [
@@ -1131,10 +1137,10 @@
    "id": "a18795eb",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-01-17T18:16:32.146497Z",
-     "iopub.status.busy": "2024-01-17T18:16:32.146092Z",
-     "iopub.status.idle": "2024-01-17T18:16:32.150481Z",
-     "shell.execute_reply": "2024-01-17T18:16:32.149957Z"
+     "iopub.execute_input": "2024-01-17T23:18:30.975447Z",
+     "iopub.status.busy": "2024-01-17T23:18:30.975239Z",
+     "iopub.status.idle": "2024-01-17T23:18:30.979718Z",
+     "shell.execute_reply": "2024-01-17T23:18:30.979194Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/versioning.js b/versioning.js
index 2fbc445e2..3a1c28d3b 100644
--- a/versioning.js
+++ b/versioning.js
@@ -1,4 +1,4 @@
 var Version = {
   version_number: "v2.5.0",
-  commit_hash: "89866d53b4074a0103c737ad28c80123f03973de",
+  commit_hash: "93154314109f77e58265574da2ab08503d0fd5a2",
 };
\ No newline at end of file