-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchangepoint_module.py
1207 lines (1021 loc) · 39.9 KB
/
changepoint_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Online changepoint detection module
- Basic implementation: suffix 'ba'
- Proposed implementation: suffix 'ps'
- Functions:
Shewhart: shewhart_ba, shewhart_ps
Exponential Weighted Moving Average: ewma_ba, ewma_ps
Two-sided CUSUM: cusum_2s_ba, cusum_2s_ps
Window-Limited CUSUM: cusum_wl_ba, cusum_wl_ps
Voting Windows Changepoint Detection: vwcd
@author: Cleiton Moya de Almeida
"""
import numpy as np
from scipy.stats import shapiro, betabinom
from statsmodels.tsa.stattools import adfuller
import time
verbose = False
# Shapiro-Wilk normality test
# H0: normal distribution
def normality_test(y, alpha):
_, pvalue = shapiro(y)
return pvalue > alpha
# Augmented Dickey-Fuller test for unitary root (non-stationarity)
# H0: the process has a unit root (non-stationary)
def stationarity_test(y, alpha):
adf = adfuller(y)
pvalue = adf[1]
return pvalue < alpha
# Compute the log-pdf for the normal distribution
# Obs.: the scipy built-in function logpdf does not use numpy and so is inneficient
def logpdf(x,loc,scale):
c = 1/np.sqrt(2*np.pi)
y = np.log(c) - np.log(scale) - (1/2)*((x-loc)/scale)**2
return y
# Compute the log-likelihood value for the normal distribution
# Obs.: the scipy built-in function logpdf does not use numpy and so is inneficient
def loglik(x,loc,scale):
n = len(x)
c = 1/np.sqrt(2*np.pi)
y = n*np.log(c/scale) -(1/(2*scale**2))*((x-loc)**2).sum()
return y
def shewhart_ba(y, w, k):
"""
Shewhart - basic implementation
Parameters:
----------
y (numpy array): the input time-series
w (int): estimating window size
k (int): number of standard deviations to consider a change-point
Returns
-------
CP (list): change-points
elapsedTime (float): running-time
"""
# Auxiliary variables
CP = []
lcp = 0
dev = False
Mu0 = []
U = []
L = []
startTime = time.time()
for t, y_t in enumerate(y):
if t >= lcp + w:
if t==lcp+w:
mu0 = y[lcp:t].mean()
s0 = y[lcp:t].std()
if verbose: print(f't={t}: mu0={mu0}, s0={s0}')
# lower and upper control limits
l = mu0 - k*s0
u = mu0 + k*s0
# Shewhart statistic deviation checking
dev = y_t>=u or y_t<=l
if dev:
lcp = t
if verbose: print(f't={t}: Changepoint at t={lcp}')
CP.append(lcp)
dev = False
else:
mu0 = np.nan
l = np.nan
u = np.nan
Mu0.append(mu0)
U.append(u)
L.append(l)
endTime = time.time()
elapsedTime = endTime-startTime
return CP, elapsedTime
def shewhart_ps(y, w, k, rl, ka, alpha_norm, alpha_stat, filt_per, max_var, cs_max):
"""
Shewhart - proposed implementation
Parameters:
----------
y (numpy array): the input time-series
w (int): estimating window size
k (int): number of standard deviations to consider a deviation
rl (int): number of consecutives deviation to consider a change-point
ka (int): number of standard deviations to consider a point-anomaly
alpha_norm (float): Shapyro-Wilker test significance level
alpha_stat (float): ADF test significance level
filt_per (float): outlier filter percentil (first window or not. estab.)
max_var (float): maximum increased variance allowed to consider stab.
cs_max (int); maximum counter for process not stabilized
Returns:
-------
CP (list): change-points
Anom_u (list): upper anomalies
Anom_l (list): lower anomalies
M0_unique (list): estimated mean of the segments
S0_unique (list): estimated standar deviation of the segments
elapsedTime (float): running-time
"""
# Auxiliary variables initialization
CP = [] # changepoint list
Anom_u = [] # up point anomalies list
Anom_l = [] # low point anomalie list
lcp = 0 # last checked point
win_t0 = 0 # learning window t0
Win_period = [] # stabilization/learning windows
c = 0 # statistic deviation counter
ca_u = 0 # up point up counter
ca_l = 0 # low point anomaly counter
cs = 0 # stabilization counter
Mu0 = [] # phase 1 estimated mu0 at each t
M0_unique = [] # phase 1 estimated mu0 after each changepoint
Sigma0 = [] # phase 1 estimated sigma0
S0_unique = [] # phase 1 estimated sigma0 after each changepoint
U = [] # upper control limit at each t
L = [] # lower control limit at each t
startTime = time.time()
for t, y_t in enumerate(y):
if t >= lcp + w:
# At process beginning and after a changepoint,
# check if the process is stable before estimating the parameters
if t==lcp+w:
yw = y[lcp+1:t+1]
# Shapiro-Wiltker test for normality
normality = normality_test(yw, alpha_norm)
# Check if the variance level increasing is acceptable
# If its the first window, accept blindly, but filter possible outliers
# before estimating the mu0, s0
first_window = len(Win_period) == 0
sw = yw.std(ddof=1)
if not first_window:
sa = S0_unique[-1]
dev_var = abs(sw - sa)/sa
var_acept = dev_var <= max_var
else:
var_acept = True
yw = yw[(yw>np.quantile(yw,1-filt_per)) & (yw<np.quantile(yw,filt_per))]
# Stabilization criteria: normality and variance accepted
stab = normality and var_acept
# If process did not stabilize after cs_max, force the stabilization,
# but filter possible outliers to estimate mu0, s0
if stab or cs==cs_max:
if cs==cs_max:
yw = yw[(yw>np.quantile(yw,1-filt_per)) & (yw<np.quantile(yw,filt_per))]
if verbose: print(f"n={t}: Considering process stabilized")
else:
if verbose: print(f"n={t}: Process stabilized")
# Phase 1 parameters estimation
mu0 = yw.mean()
s0 = yw.std(ddof=1)
M0_unique.append(mu0)
S0_unique.append(s0)
Win_period.append((win_t0,t))
if verbose: print(f"n={t}: Estimated mu0={mu0}, sigma0={s0}")
# Beside the non-normality, if the last window was not stationary,
# and now the process is normal and statonary, consider a changepoint
if t != win_t0+w \
and not stationarity_test(y[lcp-w+1:lcp+1], alpha_stat) \
and stationarity_test(y[lcp+1:t+1], alpha_stat) \
and cs!=cs_max:
if verbose: print(f"n={t}: Considering t={t-w} a changepoint")
CP.append(t-w)
cs = 0
else:
if verbose: print(f"n={t}: Process not stabilized, sw={yw.std(ddof=1)}")
lcp=lcp+w
cs = cs+1
# Lower and upper control limits for deviation
u = mu0 + k*s0
l = mu0 - k*s0
# Check for point anomaly (upper and low)
anom_u = y_t >= mu0 + ka*s0
anom_l = y_t <= mu0 - ka*s0
if anom_u:
Anom_u.append(t)
if anom_l:
Anom_l.append(t)
# Check for statistic deviation
dev = abs(y_t-mu0) >= k*s0
if dev:
if anom_u:
ca_u = ca_u+1
elif anom_l:
ca_l = ca_l+1
c = c+1
if c==rl:
win_t0 = t-rl
if verbose: print(f't={t}: Changepoint at t={win_t0}')
CP.append(win_t0)
lcp = win_t0
if ca_u > 0:
Anom_u = Anom_u[:-ca_u]
if ca_l > 0:
Anom_l = Anom_l[:-ca_l]
c = 0
ca_u = 0
ca_l = 0
else:
c = 0
ca_u = 0
ca_l = 0
else:
mu0 = np.nan
s0 = np.nan
l = np.nan
u = np.nan
Mu0.append(mu0)
Sigma0.append(s0)
U.append(u)
L.append(l)
endTime = time.time()
elapsedTime = endTime-startTime
return CP, Anom_u, Anom_l, M0_unique, S0_unique, elapsedTime
def ewma_ba(y, w, kd, lamb):
"""
Exponential Weighted Moving Average (EWMA) - basic implementation
Parameters:
----------
y (numpy array): the input time-series
w (int): estimating window size
kd (int): EWMA 'kd' hyperparameter
lamb (float): EWMA 'lambda' hyperparameter
Returns
-------
CP (list): change-points
elapsedTime (float): running-time
"""
# Auxiliary variables initialization
CP = []
lcp = 0
Mu0 = []
Sigma0 = []
U = []
L = []
Z = []
startTime = time.time()
for t,y_t in enumerate(y):
if t >= lcp + w:
# Phase 1 estimation
if t == lcp+w:
mu0 = np.mean(y[lcp:t])
sigma0 = y[lcp:t].std(ddof=0)
z = mu0# reset the Z statistic
if verbose: print(f't={t}: mu0={mu0}, sigma0={sigma0}')
# Phase 2 statistic and limits estimation
z = lamb*y[t] + (1-lamb)*z
ucl = mu0 + kd*sigma0*np.sqrt((lamb/(2-lamb)))
lcl = mu0 - kd*sigma0*np.sqrt((lamb/(2-lamb)))
# verifica se há dev do moving range
dev = z >ucl or z < lcl
if dev:
lcp = t
if verbose: print(f't={t}: Changepoint at t={lcp}')
CP.append(lcp)
else:
ucl = np.nan
lcl = np.nan
z = np.nan
mu0 = np.nan
sigma0 = np.nan
Z.append(z)
U.append(ucl)
L.append(lcl)
Mu0.append(mu0)
Sigma0.append(sigma0)
endTime = time.time()
elapsedTime = endTime-startTime
Z = np.array(Z)
U = np.array(U)
L = np.array(L)
Mu0 = np.array(Mu0)
Sigma0 = np.array(Sigma0)
return CP, elapsedTime
def ewma_ps(y, w, kd, lamb, rl, ka, alpha_norm, alpha_stat, filt_per, max_var, cs_max):
"""
Exponential Weighted Moving Average (EWMA) - basic implementation
Parameters:
----------
y (numpy array): the input time-series
w (int): estimating window size
kd (int): EWMA 'kd' hyperparameter
lamb (float): EWMA 'lambda' hyperparameter
rl (int): number of consecutives deviation to consider a change-point
ka (int): number of standard deviations to consider a point-anomaly
alpha_norm (float): Shapyro-Wilker test significance level
alpha_stat (float): ADF test significance level
filt_per (float): outlier filter percentil (first window or not. estab.)
max_var (float): maximum increased variance allowed to consider stab.
cs_max (int); maximum counter for process not stabilized
Returns:
-------
CP (list): change-points
Anom_u (list): upper anomalies
Anom_l (list): lower anomalies
M0_unique (list): estimated mean of the segments
S0_unique (list): estimated standar deviation of the segments
elapsedTime (float): running-time
"""
# Auxiliary variables initialization
Z = []
U = []
L = []
CP = []
Anom_u = [] # up point anomalies list
Anom_l = [] # low point anomalie list
Mu0 = []
Sigma0 = []
Win_period = []
M0_unique = [] # phase 1 estimated mu0 after each changepoint
S0_unique = [] # phase 1 estimated sigma0 after each changepoint
z = np.nan
za = np.nan
lcp = 0
win_t0 = 0 # learning window t0
c = 0 # sucessive deviation counter
ca_u = 0 # up point up counter
ca_l = 0 # low point anomaly counter
cs = 0 # stabilization counter
dev = False
stab = False # stabilization indicator variable after
startTime = time.time()
for t, y_t in enumerate(y):
if t >= lcp+w:
if t == lcp+w:
yw = y[lcp+1:t+1]
sw = yw.std(ddof=1)
# Shapiro-Wiltker test for normality
normality = normality_test(yw, alpha_norm)
# Check if the variance level increasing is acceptable
# If its the first window, accept blindly, but filter possible
# outliers before estimating the mu0, sigma0
first_window = len(Win_period) == 0
if not first_window:
sa = S0_unique[-1]
dev_var = abs(sw - sa)/sa
var_acept = dev_var <= max_var
else:
var_acept = True
yw = yw[(yw>np.quantile(yw,1-filt_per)) & (yw<np.quantile(yw,filt_per))]
# Stabilization criteria: normality and variance accepted
stab = normality and var_acept
# If process did not stabilize after cs_max, force the stabilization,
# but filter possible outliers to estimate mu0, sigma0
if stab or cs==cs_max:
if cs==cs_max:
yw = yw[(yw>np.quantile(yw,1-filt_per)) & (yw<np.quantile(yw,filt_per))]
if verbose: print(f"n={t}: Considering process stabilized")
else:
if verbose: print(f"n={t}: Process stabilized")
# Phase 1 parameters estimation
mu0 = yw.mean()
sigma0 = yw.std(ddof=1)
M0_unique.append(mu0)
S0_unique.append(sigma0)
Win_period.append((win_t0,t))
z=mu0
if verbose: print(f"n={t}: Estimated mu0={mu0}, sigma0={sigma0}")
# Beside the non-normality, if the last window was not stationary,
# and now the process is normal and statonary, consider a changepoint
if t != win_t0+w \
and not stationarity_test(y[lcp-w+1:lcp+1], alpha_stat) \
and stationarity_test(y[lcp+1:t+1], alpha_stat) \
and cs!=cs_max:
if verbose: print(f"n={t}: Considering t={t-w} a changepoint")
CP.append(t-w)
cs = 0
else:
if verbose: print(f"n={t}: Process not stabilized, normal={normality}, var_acetp={var_acept}")
lcp=lcp+w
cs = cs+1
# Check for point anomaly (upper and low)
anom_u = y_t >= mu0 + ka*sigma0
anom_l = y_t <= mu0 - ka*sigma0
if anom_u:
Anom_u.append(t)
if anom_l:
Anom_l.append(t)
# EWMA statistic update
za = z
z = lamb*y[t] + (1-lamb)*z
ucl = mu0 + kd*sigma0*np.sqrt((lamb/(2-lamb)))
lcl = mu0 - kd*sigma0*np.sqrt((lamb/(2-lamb)))
# check for statistic deviation
dev = z >ucl or z < lcl
if dev:
c=c+1
if anom_u:
ca_u = ca_u+1
elif anom_l:
ca_l = ca_l+1
# confirms the changepoint and resets the ewma statistic
if c == rl:
win_t0 = t-rl
if verbose: print(f't={t}: Changepoint confirmed at t={win_t0}')
CP.append(win_t0)
lcp = win_t0
if ca_u > 0:
Anom_u = Anom_u[:-ca_u]
if ca_l > 0:
Anom_l = Anom_l[:-ca_l]
c = 0
ca_u = 0
ca_l = 0
Z.append(z)
z = za
else:
c=0
ca_u = 0
ca_l = 0
Z.append(z)
else:
z = np.nan
ucl = np.nan
lcl = np.nan
mu0 = np.nan
sigma0 = np.nan
Z.append(z)
U.append(ucl)
L.append(lcl)
Mu0.append(mu0)
Sigma0.append(sigma0)
endTime = time.time()
elapsedTime = endTime-startTime
Z = np.array(Z)
Mu0 = np.array(Mu0)
Sigma0 = np.array(Sigma0)
return CP, Anom_u, Anom_l, M0_unique, S0_unique, elapsedTime
def cusum_2s_ba(y, w, delta, h):
"""
Two-sided CUSUM - basic implementation
Parameters:
----------
y (numpy array): the input time-series
w (int): estimating window size
delta (int/float): deviation (in terms of sigma0) to detect
h (float): statistic threshold (in terms of sigma0)
Returns
-------
CP (list): change-points
elapsedTime (float): running-time
"""
# Auxiliary variables
U = []
L = []
H = []
CP = []
Mu = []
Sigma = []
Ut = 0
Lt = 0
lcp = 0
startTime = time.time()
for t, y_t in enumerate(y):
if t >= lcp+w:
if Ut is np.nan:
Ut = 0
Lt = 0
# Phase 1 parameters updating
if t==lcp+w:
mu0 = y[lcp:t].mean()
sigma0 = y[lcp:t].std(ddof=0)
Ht = h*sigma0
# Phase 2 CUSUM statitics computing
Ut = Ut + y_t - mu0 - delta*sigma0/2
Ut = np.heaviside(Ut,0)*Ut
Lt = Lt - y_t + mu0 - delta*sigma0/2
Lt = np.heaviside(Lt,0)*Lt
# check for statistic deviation
dev = Ut > Ht or Lt > Ht
if dev:
lcp = t
if verbose: print(f't={t}: Changepoint at t={lcp}')
CP.append(lcp)
dev = False
else:
Ut = np.nan
Lt = np.nan
Ht = np.nan
mu0 = np.nan
sigma0 = np.nan
U.append(Ut)
L.append(Lt)
H.append(Ht)
Mu.append(mu0)
Sigma.append(sigma0)
endTime = time.time()
elapsedTime = endTime-startTime
U = np.array(U)
L = np.array(L)
Mu = np.array(Mu)
Sigma = np.array(Sigma)
return CP, elapsedTime
def cusum_2s_ps(y, w, delta, h, rl, ka, alpha_norm, alpha_stat, filt_per, max_var, cs_max):
"""
Two-sided CUSUM - basic implementation
Parameters:
----------
y (numpy array): the input time-series
w (int): estimating window size
delta (int/float): deviation (in terms of sigma0) to detect
h (float): statistic threshold (in terms of sigma0)
rl (int): number of consecutives deviation to consider a change-point
ka (int): number of standard deviations to consider a point-anomaly
alpha_norm (float): Shapyro-Wilker test significance level
alpha_stat (float): ADF test significance level
filt_per (float): outlier filter percentil (first window or not. estab.)
max_var (float): maximum increased variance allowed to consider stab.
cs_max (int); maximum counter for process not stabilized
Returns:
-------
CP (list): change-points
Anom_u (list): upper anomalies
Anom_l (list): lower anomalies
M0_unique (list): estimated mean of the segments
S0_unique (list): estimated standar deviation of the segments
elapsedTime (float): running-time
"""
# Auxiliary variables initialization
Gu = []
Gl = []
H = []
CP = []
Anom_u = [] # up point anomalies list
Anom_l = [] # low point anomalie list
Mu = []
Sigma = []
Win_period = []
M0_unique = [] # phase 1 estimated mu0 after each changepoint
S0_unique = [] # phase 1 estimated sigma0 after each changepoint
gu = 0
gua = 0
gl = 0
gla = 0
lcp = 0
win_t0 = 0 # learning window t0
c = 0 # sucessive outlier counter
ca_u = 0 # up point up counter
ca_l = 0 # low point anomaly counter
stab = False # stabilization indicator variable after
cs = 0
startTime = time.time()
for t, y_t in enumerate(y):
if t >= lcp+w:
if gu is np.nan:
gu = 0
gl = 0
if t==lcp+w:
# At process beginning and after a changepoint,
# check if the process is stable before estimating the parameters
if t==lcp+w:
yw = y[lcp+1:t+1]
# Shapiro-Wiltker test for normality
normality = normality_test(yw, alpha_norm)
# Check if the variance level increasing is acceptable
# If its the first window, accept blindly, but filter possible outliers
# before estimating the mu0, s0
first_window = len(Win_period) == 0
sw = yw.std(ddof=1)
if not first_window:
sa = S0_unique[-1]
dev_var = abs(sw - sa)/sa
var_acept = dev_var <= max_var
else:
var_acept = True
yw = yw[(yw>np.quantile(yw,1-filt_per)) & (yw<np.quantile(yw,filt_per))]
# Stabilization criteria: normality and variance accepted
stab = normality and var_acept
# If process did not stabilize after cs_max, force the stabilization,
# but filter possible outliers to estimate mu0, s0
if stab or cs==cs_max:
if cs==cs_max:
yw = yw[(yw>np.quantile(yw,1-filt_per)) & (yw<np.quantile(yw,filt_per))]
if verbose: print(f"n={t}: Considering process stabilized")
else:
if verbose: print(f"n={t}: Process stabilized")
# Phase 1 parameters estimation
mu0 = yw.mean()
sigma0 = yw.std(ddof=1)
M0_unique.append(mu0)
S0_unique.append(sigma0)
Win_period.append((win_t0,t))
if verbose: print(f"n={t}: Estimated mu0={mu0}, sigma0={sigma0}")
# Beside the non-normality, if the last window was not stationary,
# and now the process is normal and statonary, consider a changepoint
if t != win_t0+w \
and not stationarity_test(y[lcp-w+1:lcp+1], alpha_stat) \
and stationarity_test(y[lcp+1:t+1], alpha_stat) \
and cs!=cs_max:
if verbose: print(f"n={t}: Considering t={t-w} a changepoint")
CP.append(t-w)
cs = 0
else:
if verbose: print(f"n={t}: Process not stabilized, sw={yw.std(ddof=1)}")
lcp=lcp+w
cs = cs+1
# control limit for deviation
ht = h*sigma0
# CUSUM statistics update
gua = gu
gla = gl
gu = gu + y_t - mu0 - delta*sigma0/2
gu = np.heaviside(gu,0)*gu
gl = gl - y_t + mu0 - delta*sigma0/2
gl = np.heaviside(gl,0)*gl
# Check for point anomaly (upper and low)
anom_u = y_t >= mu0 + ka*sigma0
anom_l = y_t <= mu0 - ka*sigma0
if anom_u:
Anom_u.append(t)
if anom_l:
Anom_l.append(t)
# check for statistic deviation
dev = gu > ht or gl > ht
if dev:
c=c+1
if anom_u:
ca_u = ca_u+1
elif anom_l:
ca_l = ca_l+1
if c == rl: # confirma o changepoint e reinicia o cusum
win_t0 = t-rl
if verbose: print(f't={t}: Changepoint confirmed at t={win_t0}')
CP.append(win_t0)
lcp = win_t0
if ca_u > 0:
Anom_u = Anom_u[:-ca_u]
if ca_l > 0:
Anom_l = Anom_l[:-ca_l]
c = 0
ca_u = 0
ca_l = 0
Gu.append(gu)
Gl.append(gl)
gu = gua
gl = gla
else:
c=0
ca_u = 0
ca_l = 0
Gu.append(gu)
Gl.append(gl)
else:
gu = np.nan
gl = np.nan
ht = np.nan
mu0 = np.nan
sigma0 = np.nan
Gu.append(gu)
Gl.append(gl)
H.append(ht)
Mu.append(mu0)
Sigma.append(sigma0)
endTime = time.time()
elapsedTime = endTime-startTime
Gu = np.array(Gu)
Gl = np.array(Gl)
Mu = np.array(Mu)
Sigma = np.array(Sigma)
return CP, Anom_u, Anom_l, M0_unique, S0_unique, elapsedTime
def cusum_wl_ba(y, w0, w1, h):
"""
Window-limited CUSUM - basic implementation
Parameters:
----------
y (numpy array): the input time-series
w0 (int): pre-change estimating window size
w1 (int): post-change estimating window size
h (float): statistic threshold (in terms of sigma0)
Returns
-------
CP (list): change-points
elapsedTime (float): running-time
"""
# Auxiliary variables
lcp = 0
S1 = []
CP = []
Mu0 = []
Sigma0 = []
Mu1 = []
H = []
St = np.nan
m0 = np.nan
m1 = np.nan
startTime = time.time()
for t, y_t in enumerate(y):
if t >= lcp+w0:
# Phase 1 parameters learning
if t == lcp+w0:
m0 = y[lcp:t].mean()
s0 = y[lcp:t].std(ddof=1)
Ht = h*s0
# Phase 2 parameters earning
m1 = y[t-w1:t].mean()
s1 = y[t-w1:t].std(ddof=1)
# Phase 2 CUSUM statistic computing
if St is np.nan:
St = 0
St = np.heaviside(St,0)*St
St = St + logpdf(y_t, m1, s1) - logpdf(y_t, m0, s0)
# Check for statistic deviation
dev = St > Ht
if dev:
lcp=t
if verbose: print(f'Changepoint at t={t}')
CP.append(t)
dev = False
else:
St = np.nan
m0 = np.nan
s0 = np.nan
m1 = np.nan
s1 = np.nan
Ht = np.nan
S1.append(St)
Mu0.append(m0)
Mu1.append(m1)
Sigma0.append(s0)
H.append(Ht)
endTime = time.time()
elapsedTime = endTime-startTime
Mu0 = np.array(Mu0)
Sigma0 = np.array(Sigma0)
return CP, elapsedTime
def cusum_wl_ps(y, w0, w1, h, rl, k, ka, alpha_norm, alpha_stat, filt_per, max_var, cs_max):
"""
Window-limited CUSUM - basic implementation
Parameters:
----------
y (numpy array): the input time-series
w0 (int): pre-change estimating window size
w1 (int): post-change estimating window size
h (float): statistic threshold (in terms of sigma0)
rl (int): number of consecutives deviation to consider a change-point
ka (int): number of standard deviations to consider a point-anomaly
alpha_norm (float): Shapyro-Wilker test significance level
alpha_stat (float): ADF test significance level
filt_per (float): outlier filter percentil (first window or not. estab.)
max_var (float): maximum increased variance allowed to consider stab.
cs_max (int); maximum counter for process not stabilized
Returns:
-------
CP (list): change-points
Anom_u (list): upper anomalies
Anom_l (list): lower anomalies
M0_unique (list): estimated mean of the segments
S0_unique (list): estimated standar deviation of the segments
elapsedTime (float): running-time
"""
# Auxiliary variables
S = []
H = []
CP = []
Anom_u = [] # up point anomalies list
Anom_l = [] # low point anomalie list
Mu0 = []
Sigma0 = []
Mu1 = []
Win_period = []
M0_unique = [] # phase 1 estimated mu0 after each changepoint
S0_unique = [] # phase 1 estimated sigma0 after each changepoint
st = 0 # CUSUM statistic
Sta = 0 # CUSUM statisitc before deviation
lcp = 0 # last changepoint
win_t0 = 0 # learning window t0
c = 0 # sucessive outlier counter
ca_u = 0 # up point up counter
ca_l = 0 # low point anomaly counter
cs = 0
stab = False # stabilization indicator variable after
startTime = time.time()
for t, y_t in enumerate(y):
if t >= lcp+w0:
#if not dev, update mu:
if t==lcp+w0:
yw = y[lcp+1:t+1]
# Shapiro-Wiltker test for normality
normality = normality_test(yw, alpha_norm)
# Check if the variance level increasing is acceptable
# If its the first window, accept blindly, but filter possible outliers
# before estimating the mu0, s0
first_window = len(Win_period) == 0
sw = yw.std(ddof=1)
if not first_window:
sa = S0_unique[-1]
dev_var = abs(sw - sa)/sa
var_acept = dev_var <= max_var
else:
var_acept = True
yw = yw[(yw>np.quantile(yw,1-filt_per)) & (yw<np.quantile(yw,filt_per))]
# Stabilization criteria: normality and variance accepted
stab = normality and var_acept
# If process did not stabilize after cs_max, force the stabilization,
# but filter possible outliers to estimate mu0, s0
if stab or cs==cs_max:
if cs==cs_max:
yw = yw[(yw>np.quantile(yw,1-filt_per)) & (yw<np.quantile(yw,filt_per))]
if verbose: print(f"n={t}: Considering process stabilized")
else:
if verbose: print(f"n={t}: Process stabilized")
# Phase 1 parameters estimation
mu0 = yw.mean()
sigma0 = yw.std(ddof=1)
M0_unique.append(mu0)
S0_unique.append(sigma0)
Win_period.append((win_t0,t))
if verbose: print(f"n={t}: Estimated mu0={mu0}, sigma0={sigma0}")
# Beside the non-normality, if the last window was not stationary,
# and now the process is normal and statonary, consider a changepoint
if t != win_t0+w0 \
and not stationarity_test(y[lcp-w0+1:lcp+1], alpha_stat) \
and stationarity_test(y[lcp+1:t+1], alpha_stat) \
and cs!=cs_max:
if verbose: print(f"n={t}: Considering t={t-w0} a changepoint")
CP.append(t-w0)
cs = 0
else:
if verbose: print(f"n={t}: Process not stabilized, norm={normality}, var_acept={var_acept}, sw={yw.std(ddof=1)}")
lcp=lcp+w0
cs = cs+1
# control limit for deviation
ht = h*sigma0
# Phase 2 paramters estimation
mu1 = y[t-w1:t].mean()
sigma1 = y[t-w1:t].std(ddof=1)
# CUSUM statistics update
if st is np.nan:
st = 0
Sta = st
st = np.heaviside(st,0)*st
st = st + logpdf(y_t, mu1, sigma1) - logpdf(y_t, mu0, sigma0)
# Check for point anomaly (upper and low)