-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathed448.go
411 lines (350 loc) · 12.1 KB
/
ed448.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// Package ed448 implements Ed448 signature scheme as described in RFC-8032.
//
// This package implements two signature variants.
//
// | Scheme Name | Sign Function | Verification | Context |
// |-------------|-------------------|---------------|-------------------|
// | Ed448 | Sign | Verify | Yes, can be empty |
// | Ed448Ph | SignPh | VerifyPh | Yes, can be empty |
// | All above | (PrivateKey).Sign | VerifyAny | As above |
//
// Specific functions for sign and verify are defined. A generic signing
// function for all schemes is available through the crypto.Signer interface,
// which is implemented by the PrivateKey type. A correspond all-in-one
// verification method is provided by the VerifyAny function.
//
// Both schemes require a context string for domain separation. This parameter
// is passed using a SignerOptions struct defined in this package.
//
// References:
//
// - RFC8032: https://rfc-editor.org/rfc/rfc8032.txt
// - EdDSA for more curves: https://eprint.iacr.org/2015/677
// - High-speed high-security signatures: https://doi.org/10.1007/s13389-012-0027-1
package ed448
import (
"bytes"
"crypto"
cryptoRand "crypto/rand"
"crypto/subtle"
"errors"
"fmt"
"io"
"strconv"
"github.com/cloudflare/circl/ecc/goldilocks"
"github.com/cloudflare/circl/internal/sha3"
"github.com/cloudflare/circl/sign"
)
const (
// ContextMaxSize is the maximum length (in bytes) allowed for context.
ContextMaxSize = 255
// PublicKeySize is the length in bytes of Ed448 public keys.
PublicKeySize = 57
// PrivateKeySize is the length in bytes of Ed448 private keys.
PrivateKeySize = 114
// SignatureSize is the length in bytes of signatures.
SignatureSize = 114
// SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032.
SeedSize = 57
)
const (
paramB = 456 / 8 // Size of keys in bytes.
hashSize = 2 * paramB // Size of the hash function's output.
)
// SignerOptions implements crypto.SignerOpts and augments with parameters
// that are specific to the Ed448 signature schemes.
type SignerOptions struct {
// Hash must be crypto.Hash(0) for both Ed448 and Ed448Ph.
crypto.Hash
// Context is an optional domain separation string for signing.
// Its length must be less or equal than 255 bytes.
Context string
// Scheme is an identifier for choosing a signature scheme.
Scheme SchemeID
}
// SchemeID is an identifier for each signature scheme.
type SchemeID uint
const (
ED448 SchemeID = iota
ED448Ph
)
// PublicKey is the type of Ed448 public keys.
type PublicKey []byte
// Equal reports whether pub and x have the same value.
func (pub PublicKey) Equal(x crypto.PublicKey) bool {
xx, ok := x.(PublicKey)
return ok && bytes.Equal(pub, xx)
}
// PrivateKey is the type of Ed448 private keys. It implements crypto.Signer.
type PrivateKey []byte
// Equal reports whether priv and x have the same value.
func (priv PrivateKey) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(PrivateKey)
return ok && subtle.ConstantTimeCompare(priv, xx) == 1
}
// Public returns the PublicKey corresponding to priv.
func (priv PrivateKey) Public() crypto.PublicKey {
publicKey := make([]byte, PublicKeySize)
copy(publicKey, priv[SeedSize:])
return PublicKey(publicKey)
}
// Seed returns the private key seed corresponding to priv. It is provided for
// interoperability with RFC 8032. RFC 8032's private keys correspond to seeds
// in this package.
func (priv PrivateKey) Seed() []byte {
seed := make([]byte, SeedSize)
copy(seed, priv[:SeedSize])
return seed
}
func (priv PrivateKey) Scheme() sign.Scheme { return sch }
func (pub PublicKey) Scheme() sign.Scheme { return sch }
func (priv PrivateKey) MarshalBinary() (data []byte, err error) {
privateKey := make(PrivateKey, PrivateKeySize)
copy(privateKey, priv)
return privateKey, nil
}
func (pub PublicKey) MarshalBinary() (data []byte, err error) {
publicKey := make(PublicKey, PublicKeySize)
copy(publicKey, pub)
return publicKey, nil
}
// Sign creates a signature of a message given a key pair.
// This function supports all the two signature variants defined in RFC-8032,
// namely Ed448 (or pure EdDSA) and Ed448Ph.
// The opts.HashFunc() must return zero to the specify Ed448 variant. This can
// be achieved by passing crypto.Hash(0) as the value for opts.
// Use an Options struct to pass a bool indicating that the ed448Ph variant
// should be used.
// The struct can also be optionally used to pass a context string for signing.
func (priv PrivateKey) Sign(
rand io.Reader,
message []byte,
opts crypto.SignerOpts,
) (signature []byte, err error) {
var ctx string
var scheme SchemeID
if o, ok := opts.(SignerOptions); ok {
ctx = o.Context
scheme = o.Scheme
}
switch true {
case scheme == ED448 && opts.HashFunc() == crypto.Hash(0):
return Sign(priv, message, ctx), nil
case scheme == ED448Ph && opts.HashFunc() == crypto.Hash(0):
return SignPh(priv, message, ctx), nil
default:
return nil, errors.New("ed448: bad hash algorithm")
}
}
// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) {
if rand == nil {
rand = cryptoRand.Reader
}
seed := make(PrivateKey, SeedSize)
if _, err := io.ReadFull(rand, seed); err != nil {
return nil, nil, err
}
privateKey := NewKeyFromSeed(seed)
publicKey := make([]byte, PublicKeySize)
copy(publicKey, privateKey[SeedSize:])
return publicKey, privateKey, nil
}
// NewKeyFromSeed calculates a private key from a seed. It will panic if
// len(seed) is not SeedSize. This function is provided for interoperability
// with RFC 8032. RFC 8032's private keys correspond to seeds in this
// package.
func NewKeyFromSeed(seed []byte) PrivateKey {
privateKey := make([]byte, PrivateKeySize)
newKeyFromSeed(privateKey, seed)
return privateKey
}
func newKeyFromSeed(privateKey, seed []byte) {
if l := len(seed); l != SeedSize {
panic("ed448: bad seed length: " + strconv.Itoa(l))
}
var h [hashSize]byte
H := sha3.NewShake256()
_, _ = H.Write(seed)
_, _ = H.Read(h[:])
s := &goldilocks.Scalar{}
deriveSecretScalar(s, h[:paramB])
copy(privateKey[:SeedSize], seed)
_ = goldilocks.Curve{}.ScalarBaseMult(s).ToBytes(privateKey[SeedSize:])
}
func signAll(signature []byte, privateKey PrivateKey, message, ctx []byte, preHash bool) {
if len(ctx) > ContextMaxSize {
panic(fmt.Errorf("ed448: bad context length: %v", len(ctx)))
}
H := sha3.NewShake256()
var PHM []byte
if preHash {
var h [64]byte
_, _ = H.Write(message)
_, _ = H.Read(h[:])
PHM = h[:]
H.Reset()
} else {
PHM = message
}
// 1. Hash the 57-byte private key using SHAKE256(x, 114).
var h [hashSize]byte
_, _ = H.Write(privateKey[:SeedSize])
_, _ = H.Read(h[:])
s := &goldilocks.Scalar{}
deriveSecretScalar(s, h[:paramB])
prefix := h[paramB:]
// 2. Compute SHAKE256(dom4(F, C) || prefix || PH(M), 114).
var rPM [hashSize]byte
H.Reset()
writeDom(&H, ctx, preHash)
_, _ = H.Write(prefix)
_, _ = H.Write(PHM)
_, _ = H.Read(rPM[:])
// 3. Compute the point [r]B.
r := &goldilocks.Scalar{}
r.FromBytes(rPM[:])
R := (&[paramB]byte{})[:]
if err := (goldilocks.Curve{}.ScalarBaseMult(r).ToBytes(R)); err != nil {
panic(err)
}
// 4. Compute SHAKE256(dom4(F, C) || R || A || PH(M), 114)
var hRAM [hashSize]byte
H.Reset()
writeDom(&H, ctx, preHash)
_, _ = H.Write(R)
_, _ = H.Write(privateKey[SeedSize:])
_, _ = H.Write(PHM)
_, _ = H.Read(hRAM[:])
// 5. Compute S = (r + k * s) mod order.
k := &goldilocks.Scalar{}
k.FromBytes(hRAM[:])
S := &goldilocks.Scalar{}
S.Mul(k, s)
S.Add(S, r)
// 6. The signature is the concatenation of R and S.
copy(signature[:paramB], R[:])
copy(signature[paramB:], S[:])
}
// Sign signs the message with privateKey and returns a signature.
// This function supports the signature variant defined in RFC-8032: Ed448,
// also known as the pure version of EdDSA.
// It will panic if len(privateKey) is not PrivateKeySize.
func Sign(priv PrivateKey, message []byte, ctx string) []byte {
signature := make([]byte, SignatureSize)
signAll(signature, priv, message, []byte(ctx), false)
return signature
}
// SignPh creates a signature of a message given a keypair.
// This function supports the signature variant defined in RFC-8032: Ed448ph,
// meaning it internally hashes the message using SHAKE-256.
// Context could be passed to this function, which length should be no more than
// 255. It can be empty.
func SignPh(priv PrivateKey, message []byte, ctx string) []byte {
signature := make([]byte, SignatureSize)
signAll(signature, priv, message, []byte(ctx), true)
return signature
}
func verify(public PublicKey, message, signature, ctx []byte, preHash bool) bool {
if len(public) != PublicKeySize ||
len(signature) != SignatureSize ||
len(ctx) > ContextMaxSize ||
!isLessThanOrder(signature[paramB:]) {
return false
}
P, err := goldilocks.FromBytes(public)
if err != nil {
return false
}
H := sha3.NewShake256()
var PHM []byte
if preHash {
var h [64]byte
_, _ = H.Write(message)
_, _ = H.Read(h[:])
PHM = h[:]
H.Reset()
} else {
PHM = message
}
var hRAM [hashSize]byte
R := signature[:paramB]
writeDom(&H, ctx, preHash)
_, _ = H.Write(R)
_, _ = H.Write(public)
_, _ = H.Write(PHM)
_, _ = H.Read(hRAM[:])
k := &goldilocks.Scalar{}
k.FromBytes(hRAM[:])
S := &goldilocks.Scalar{}
S.FromBytes(signature[paramB:])
encR := (&[paramB]byte{})[:]
P.Neg()
_ = goldilocks.Curve{}.CombinedMult(S, k, P).ToBytes(encR)
return bytes.Equal(R, encR)
}
// VerifyAny returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports all the two signature variants defined in RFC-8032,
// namely Ed448 (or pure EdDSA) and Ed448Ph.
// The opts.HashFunc() must return zero, this can be achieved by passing
// crypto.Hash(0) as the value for opts.
// Use a SignerOptions struct to pass a context string for signing.
func VerifyAny(public PublicKey, message, signature []byte, opts crypto.SignerOpts) bool {
var ctx string
var scheme SchemeID
if o, ok := opts.(SignerOptions); ok {
ctx = o.Context
scheme = o.Scheme
}
switch true {
case scheme == ED448 && opts.HashFunc() == crypto.Hash(0):
return Verify(public, message, signature, ctx)
case scheme == ED448Ph && opts.HashFunc() == crypto.Hash(0):
return VerifyPh(public, message, signature, ctx)
default:
return false
}
}
// Verify returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports the signature variant defined in RFC-8032: Ed448,
// also known as the pure version of EdDSA.
func Verify(public PublicKey, message, signature []byte, ctx string) bool {
return verify(public, message, signature, []byte(ctx), false)
}
// VerifyPh returns true if the signature is valid. Failure cases are invalid
// signature, or when the public key cannot be decoded.
// This function supports the signature variant defined in RFC-8032: Ed448ph,
// meaning it internally hashes the message using SHAKE-256.
// Context could be passed to this function, which length should be no more than
// 255. It can be empty.
func VerifyPh(public PublicKey, message, signature []byte, ctx string) bool {
return verify(public, message, signature, []byte(ctx), true)
}
func deriveSecretScalar(s *goldilocks.Scalar, h []byte) {
h[0] &= 0xFC // The two least significant bits of the first octet are cleared,
h[paramB-1] = 0x00 // all eight bits the last octet are cleared, and
h[paramB-2] |= 0x80 // the highest bit of the second to last octet is set.
s.FromBytes(h[:paramB])
}
// isLessThanOrder returns true if 0 <= x < order and if the last byte of x is zero.
func isLessThanOrder(x []byte) bool {
order := goldilocks.Curve{}.Order()
i := len(order) - 1
for i > 0 && x[i] == order[i] {
i--
}
return x[paramB-1] == 0 && x[i] < order[i]
}
func writeDom(h io.Writer, ctx []byte, preHash bool) {
dom4 := "SigEd448"
_, _ = h.Write([]byte(dom4))
if preHash {
_, _ = h.Write([]byte{byte(0x01), byte(len(ctx))})
} else {
_, _ = h.Write([]byte{byte(0x00), byte(len(ctx))})
}
_, _ = h.Write(ctx)
}