-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscanClass.py
executable file
·139 lines (105 loc) · 5.59 KB
/
scanClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import ROOT
ROOT.gROOT.SetBatch(True)
import numpy
import uproot
import subprocess
ROOT.gSystem.AddIncludePath("-I$COMBINE_BASE/ ")
ROOT.gSystem.Load("$COMBINE_BASE/build/lib/libHiggsAnalysisCombinedLimit.so")
ROOT.gSystem.AddIncludePath("-I$ROOFITSYS/include")
ROOT.gSystem.AddIncludePath("-Iinclude/")
ROOT.RooMsgService.instance().getStream(1).removeTopic(ROOT.RooFit.DataHandling)
ROOT.RooMsgService.instance().getStream(1).removeTopic(ROOT.RooFit.ObjectHandling)
class scanClass():
def __init__(self, config):
self.debug = False
self.tag = config["tag"]
self.selection= config["selection"]
self.modelpath = config["modelpath"]
self.plotpath = config["plotpath"]
self.var = config["var"]
self.weightVar = config["weightVar"]
self.filename = config["filename"]
self.treename = "t"
self.config = config
def getTree(self):
self.file = ROOT.TFile.Open(self.filename)
self.tree = self.file.Get(self.treename)
if not self.tree:
print ("[scanClass.py] BAD TREE!")
return self.tree
def getEfficiency(self, cut_denominator, cut_numerator):
h_denominator = ROOT.TH1F("h_denominator", "", 320, 100, 180)
self.tree.Project(h_denominator.GetName(), self.var, self.weightVar + "*(" + cut_denominator + ")")
h_numerator = ROOT.TH1F("h_numerator", "", 320, 100, 180)
self.tree.Project(h_numerator.GetName(), self.var, self.weightVar + "*(" + cut_numerator + ")")
n_denominator = h_denominator.Integral()
n_numerator = h_numerator.Integral()
efficiency = n_numerator/n_denominator
print (efficiency)
return efficiency
def cleanDir(self): #not used. One can decide to overwrite the output directories when using the same tag
pathCmd = "mkdir -p " + self.modelpath + ";"
pathCmd += "rm " + self.modelpath+ "*;"
pathCmd += "mkdir -p " + self.plotpath + ";"
pathCmd += "rm " + self.plotpath+ "*;"
pathCmd += "cp ./plotting/index.php " + self.plotpath
subprocess.call(pathCmd, shell=True)
def quantiles_to_mva_score(self, n_quantiles, mvaName, selection = ""):
# for given selection, return mva_scores corresponding to each quantile in n_quantiles
# get a numpy array from tree
print("[SCANCLASS] Calculating quantile -> mva score function for %s with %d quantiles" % (mvaName, n_quantiles))
print("[SCANCLASS]", self.selection + selection)
print("[SCANCLASS]", [mvaName])
tree = uproot.open(self.filename)[self.treename]
mva_scores = tree.arrays([mvaName],
cut=self.selection + selection,
library="np")[mvaName]
sorted_mva = numpy.flip(numpy.sort(mva_scores), 0)
quantiles = []
mva = []
for i in range(n_quantiles):
idx = int((float(i+1) / float(n_quantiles)) * len(sorted_mva)) - 1
quantiles.append(float(i+1) / float(n_quantiles))
mva.append(sorted_mva[idx])
return mva, quantiles
def runCombine(self, config):
# perform global fit with combine
combineOption = config["combineOption"]
combineOutName = config["combineOutName"]
cardName = config["cardName"]
outtxtName = config["outtxtName"]
cmdCombine = "#!/bin/sh\n\n"
cmdCombine += "cd " + self.modelpath + ";"
cmdCombine += "combine -M " + combineOption + " -n " + combineOutName + " " + cardName + " -t -1 > " + self.modelpath + outtxtName + ";"
print (cmdCombine)
combineCmdFileName = self.modelpath + "combineCmd_" + combineOutName + ".sh"
combineCmdFile = open(combineCmdFileName,"w")
combineCmdFile.write(cmdCombine)
combineCmdFile.close() #to change file access modes
os.system("chmod u+x %s" % combineCmdFileName)
os.chdir(self.modelpath)
subprocess.call(["./%s" % combineCmdFileName.split("/")[-1]])
if "Significance" in combineOption:
significance = os.popen('grep "Significance:" %s | awk "{print $2}"' % (self.modelpath + outtxtName)).read().split(" ")[-1]
sig_up1sigma = 0
sig_down1sigma = 0
sig_up2sigma = 0
sig_down2sigma = 0
elif "MultiDimFit" in combineOption:
cl = os.popen('grep "r :" %s | awk "{print $2}"' % (self.modelpath + outtxtName)).read().split(" ")[-2]
cl = cl.split("/")
cl_up = cl[1][1:]
cl_down = cl[0][1:]
significance = max(float(cl_up),float(cl_down))
sig_up1sigma = cl_up
sig_down1sigma = cl_down
sig_up2sigma = 0
sig_down2sigma = 0
elif "AsymptoticLimits" in combineOption:
significance = os.popen('grep "Expected 50.0" %s | awk "{print $2}"' % (self.modelpath + outtxtName)).read().split(" ")[-1]
sig_up1sigma = os.popen('grep "Expected 84.0" %s | awk "{print $2}"' % (self.modelpath + outtxtName)).read().split(" ")[-1]
sig_down1sigma = os.popen('grep "Expected 16.0" %s | awk "{print $2}"' % (self.modelpath + outtxtName)).read().split(" ")[-1]
sig_up2sigma = os.popen('grep "Expected 97.5" %s | awk "{print $2}"' % (self.modelpath + outtxtName)).read().split(" ")[-1]
sig_down2sigma = os.popen('grep "Expected 2.5" %s | awk "{print $2}"' % (self.modelpath + outtxtName)).read().split(" ")[-1]
return float(significance), float(sig_up1sigma), float(sig_down1sigma), float(sig_up2sigma), float(sig_down2sigma)