diff --git a/unfair/scripts/eval.py b/unfair/scripts/eval.py index cbefe8e..0de5dda 100755 --- a/unfair/scripts/eval.py +++ b/unfair/scripts/eval.py @@ -517,15 +517,14 @@ def parse_opened_exp( sender_fairness, flw_to_sender, ) - if category == "background": - # For background flow experiments, also plot each sender's flows over time. - for sender, flws in sender_to_flws.items(): - plot_flows_over_time( - exp, - out_flp[:-4] + f"_flows-from-{sender}.pdf", - {flw: flw_to_pkts[flw] for flw in flws}, - flw_to_cca, - ) + # Plot each sender separately. + for sender, flws in sender_to_flws.items(): + plot_flows_over_time( + exp, + out_flp[:-4] + f"_flows-from-{sender}.pdf", + {flw: flw_to_pkts[flw] for flw in flws}, + flw_to_cca, + ) # Drop packets from before the last flow starts and after the first flow ends. latest_start_time_us = max( @@ -542,7 +541,7 @@ def parse_opened_exp( # Flow class to overall utilization of that flow class. class_to_util = {} # Bottleneck time range to average ratio of flow throughput to maxmin fair rate. - bneck_to_avg_maxmin_ratio = None + bneck_to_maxmin_ratios = None if exp.use_bess: overall_util = get_avg_util(exp.bw_bps, flw_to_pkts) @@ -565,7 +564,7 @@ def parse_opened_exp( # Specific analysis for multibottleneck experiments. if category == "multibottleneck": - bneck_to_avg_maxmin_ratio = calculate_maxmin_ratios( + bneck_to_maxmin_ratios = calculate_maxmin_ratios( params, flw_to_pkts, flw_to_sender, sender_to_flws ) @@ -575,7 +574,7 @@ def parse_opened_exp( get_jfi(flw_to_pkts, sender_fairness, flw_to_sender), overall_util, class_to_util, - bneck_to_avg_maxmin_ratio, + bneck_to_maxmin_ratios, ) # Save the results. @@ -723,7 +722,7 @@ def calculate_maxmin_ratios(params, flw_to_pkts, flw_to_sender, sender_to_flws): # For each bottleneck situation, compare each flow's actual throughput to its # maxmin fair rate. flw_to_last_cutoff_idx = collections.defaultdict(int) - bneck_to_avg_maxmin_ratio = {} + bneck_to_maxmin_ratios = {} for start_s, end_s, _ in bneck_situations: bneck = (start_s, end_s) flw_to_maxmin_ratio = {} @@ -741,10 +740,8 @@ def calculate_maxmin_ratios(params, flw_to_pkts, flw_to_sender, sender_to_flws): maxmin_rate_bps = bneck_to_sender_to_maxminbps[bneck][flw_to_sender[flw]] flw_to_maxmin_ratio[flw] = tpus_bps / maxmin_rate_bps flw_to_last_cutoff_idx[flw] = cutoff_idx + 1 - bneck_to_avg_maxmin_ratio[bneck] = np.average( - list(flw_to_maxmin_ratio.values()) - ) - return bneck_to_avg_maxmin_ratio + bneck_to_maxmin_ratios[bneck] = list(flw_to_maxmin_ratio.values()) + return bneck_to_maxmin_ratios def get_jfi(flw_to_pkts, sender_fairness=False, flw_to_sender=None): @@ -1404,52 +1401,52 @@ def eval_shared(args, our_label, matched): def eval_multibottleneck(args, our_label, matched): """Generate graphs for the multibottleneck flows experiments.""" - bneck_to_avg_maxmin_ratios_disabled = collections.defaultdict(list) - bneck_to_avg_maxmin_ratios_enabled = collections.defaultdict(list) + bneck_to_all_maxmin_ratios_disabled = collections.defaultdict(list) + bneck_to_all_maxmin_ratios_enabled = collections.defaultdict(list) for _, (disabled_results, enabled_results) in matched.items(): ( _, _, _, _, - bneck_to_avg_maxmin_ratio_disabled, + bneck_to_maxmin_ratios_disabled, ) = disabled_results ( _, _, _, _, - bneck_to_avg_maxmin_ratio_enabled, + bneck_to_maxmin_ratios_enabled, ) = enabled_results - assert set(bneck_to_avg_maxmin_ratio_disabled.keys()) == set( - bneck_to_avg_maxmin_ratio_enabled.keys() + assert set(bneck_to_maxmin_ratios_disabled.keys()) == set( + bneck_to_maxmin_ratios_enabled.keys() ), "Bottlenecks do not match between disabled and enabled experiments!" - for bneck, avg_maxmin_ratio in bneck_to_avg_maxmin_ratio_disabled.items(): - bneck_to_avg_maxmin_ratios_disabled[bneck].append(avg_maxmin_ratio) - for bneck, avg_maxmin_ratio in bneck_to_avg_maxmin_ratio_enabled.items(): - bneck_to_avg_maxmin_ratios_enabled[bneck].append(avg_maxmin_ratio) + for bneck, maxmin_ratios in bneck_to_maxmin_ratios_disabled.items(): + bneck_to_all_maxmin_ratios_disabled[bneck].extend(maxmin_ratios) + for bneck, maxmin_ratios in bneck_to_maxmin_ratios_enabled.items(): + bneck_to_all_maxmin_ratios_enabled[bneck].extend(maxmin_ratios) - assert set(bneck_to_avg_maxmin_ratios_disabled.keys()) == set( - bneck_to_avg_maxmin_ratios_enabled.keys() + assert set(bneck_to_all_maxmin_ratios_disabled.keys()) == set( + bneck_to_all_maxmin_ratios_enabled.keys() ) - bnecks = sorted(bneck_to_avg_maxmin_ratios_disabled.keys(), key=lambda x: x[0]) + bnecks = sorted(bneck_to_all_maxmin_ratios_disabled.keys(), key=lambda x: x[0]) - # For each bottleneck disuation, graph a CDF of the avg maxmin ratios across flows. + # For each bottleneck disuation, graph a CDF of the maxmin ratios. for bneck_idx, bneck in enumerate(bnecks): plot_cdf( args, lines=[ - bneck_to_avg_maxmin_ratios_disabled[bneck], - bneck_to_avg_maxmin_ratios_enabled[bneck], + bneck_to_all_maxmin_ratios_disabled[bneck], + bneck_to_all_maxmin_ratios_enabled[bneck], ], labels=["Original", our_label], x_label="Ratio of throughput to maxmin fair rate (ideal = 1)", x_max=( 1.01 * max( - *bneck_to_avg_maxmin_ratios_disabled[bneck], - *bneck_to_avg_maxmin_ratios_enabled[bneck], + *bneck_to_all_maxmin_ratios_disabled[bneck], + *bneck_to_all_maxmin_ratios_enabled[bneck], ) ), filename=f"bneck{bneck_idx}_maxmin_ratio.pdf", @@ -1459,8 +1456,8 @@ def eval_multibottleneck(args, our_label, matched): bneck_to_change = {} for bneck_idx, bneck in enumerate(bnecks): start_s, end_s = bneck - avg_disabled = np.average(bneck_to_avg_maxmin_ratios_disabled[bneck]) - avg_enabled = np.average(bneck_to_avg_maxmin_ratios_enabled[bneck]) + avg_disabled = np.average(bneck_to_all_maxmin_ratios_disabled[bneck]) + avg_enabled = np.average(bneck_to_all_maxmin_ratios_enabled[bneck]) percent_change = (avg_enabled - avg_disabled) / avg_disabled * 100 bneck_to_change[bneck_idx] = { "start_s": start_s,