forked from CGCookie/retopoflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontour_classes.py
3073 lines (2332 loc) · 132 KB
/
contour_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Copyright (C) 2013 CG Cookie
http://cgcookie.com
Created by Patrick Moore
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
# System imports
import copy
import math
import time
from mathutils import Vector, Quaternion
from mathutils.geometry import intersect_point_line, intersect_line_plane
# Blender imports
import bgl
import blf
import bmesh
import bpy
from bpy_extras.view3d_utils import location_3d_to_region_2d, region_2d_to_vector_3d, region_2d_to_location_3d, region_2d_to_origin_3d
# Common imports
from . import contour_utilities
from .lib import common_utilities, common_drawing
#from development.cgc-retopology import contour_utilities
#Make the addon name and location accessible
AL = common_utilities.AddonLocator()
class ContourCutSeries(object): #TODO: nomenclature consistency. Segment, SegmentCuts, SegmentCutSeries?
def __init__(self, context, raw_points,
segments = 5, #TODO: Rename for nomenclature consistency
ring_segments = 10, #TDOD: nomenclature consistency
cull_factor = 3,
smooth_factor = 5,
feature_factor = 5):
settings = common_utilities.get_settings()
self.seg_lock = False
self.ring_lock = False
self.select = True
self.is_highlighted = False
self.desc = 'CUT SERIES'
self.cuts = []
#if we are bridging to selected geometry in the mesh
#or perhaps if we are extending an existing stroke
self.existing_head = None #these will be type ExistingVertList
self.existing_tail = None
self.raw_screen = [] # raycast -> raw_world
self.raw_world = [] #smoothed -> world_path
self.world_path = [] #the data we use the most
self.backbone = [] #a list of lists of verts, which are generated by cutting between each of the loops in the series
self.knots = [] #feature points detected by RPD algo
self.cut_points = [] #the evenly spaced points along the path
self.cut_point_normals = [] #free normal and face index values from snapping
self.cut_point_seeds = []
self.verts = []
self.edges = []
self.faces = []
self.follow_lines = []
self.follow_vis = []
#toss a bunch of raw pixel data
for i, v in enumerate(raw_points):
if not math.fmod(i, cull_factor):
self.raw_screen.append(v)
####PROCESSIG CONSTANTS###
self.segments = segments
self.ring_segments = ring_segments
self.cull_factor = cull_factor
self.smooth_factor = smooth_factor
self.feature_factor = feature_factor
###DRAWING SETTINGS###
self.line_thickness = settings.line_thick + 1
def do_select(self,settings):
self.select = True
self.highlight(settings)
def deselect(self,settings):
self.select = False
self.unhighlight(settings)
def highlight(self,settings):
self.is_highlighted = True
self.line_thickness = settings.line_thick + 1
def unhighlight(self,settings):
self.is_highlighted = False
self.line_thickness = settings.line_thick
def ray_cast_path(self,context, ob):
region = context.region
rv3d = context.space_data.region_3d
mx = ob.matrix_world
settings = common_utilities.get_settings()
rc = common_utilities.ray_cast_region2d
hits = [rc(region,rv3d,v,ob,settings)[1] for v in self.raw_screen]
self.raw_world = [mx*hit[0] for hit in hits if hit[2] != -1]
if settings.debug > 1:
print('ray_cast_path missed %d/%d points' % (len(self.raw_screen) - len(self.raw_world), len(self.raw_screen)))
def smooth_path(self,context, ob = None):
#clear the world path if need be
self.world_path = []
if ob:
mx = ob.matrix_world
imx = mx.inverted()
if len(self.knots) > 2:
#split the raw
segments = []
for i in range(0,len(self.knots) - 1):
segments.append([self.raw_world[m] for m in range(self.knots[i],self.knots[i+1])])
else:
segments = [[v.copy() for v in self.raw_world]]
for segment in segments:
for n in range(self.smooth_factor - 1):
contour_utilities.relax(segment)
#resnap so we don't loose the surface
if ob:
for i, vert in enumerate(segment):
snap = ob.closest_point_on_mesh(imx * vert)
segment[i] = mx * snap[0]
self.world_path.extend(segment)
#resnap everthing we can to get normals an stuff
#TODO do this the last time on the smooth factor duh
self.snap_to_object(ob)
def snap_to_object(self,ob, raw = True, world = True, cuts = True):
mx = ob.matrix_world
imx = mx.inverted()
if raw and len(self.raw_world):
for i, vert in enumerate(self.raw_world):
snap = ob.closest_point_on_mesh(imx * vert)
self.raw_world[i] = mx * snap[0]
if world and len(self.world_path):
#self.path_normals = []
#self.path_seeds = []
for i, vert in enumerate(self.world_path):
snap = ob.closest_point_on_mesh(imx * vert)
self.world_path[i] = mx * snap[0]
#self.path_normals.append(mx.to_3x3() * snap[1])
#self.path_seeds.append(snap[2])
if cuts and len(self.cut_points):
self.cut_point_normals = []
self.cut_point_seeds = []
for i, vert in enumerate(self.cut_points):
snap = ob.closest_point_on_mesh(imx * vert)
self.cut_points[i] = mx * snap[0]
self.cut_point_normals.append(mx.to_3x3() * snap[1])
self.cut_point_seeds.append(snap[2])
def snap_end_to_existing(self,existing_loop):
#TODO make sure
loop_length = contour_utilities.get_path_length(existing_loop.verts_simple)
thresh = 3 * loop_length/len(existing_loop.verts_simple)
snap_tip = None
snap_tail = None
for v in existing_loop.verts_simple:
tip_v = v - self.raw_world[0]
tail_v = v - self.raw_world[-1]
if tip_v.length < thresh:
snap_tip = existing_loop.verts_simple.index(v)
thresh = tip_v.length
if tail_v.length < thresh:
snap_tail = existing_loop.verts_simple.index(v)
thresh = tail_v.length
if snap_tip:
self.existing_head = existing_loop
v0 = existing_loop.verts_simple[snap_tip]
else:
v0 = self.raw_world[0]
if snap_tail:
self.existing_tail = existing_loop
v1 = existing_loop.verts_simple[snap_tail]
else:
v1 = self.raw_world[-1]
if snap_tip or snap_tail:
self.ring_segments = len(existing_loop.verts_simple)
self.raw_world = contour_utilities.fit_path_to_endpoints(self.raw_world, v0, v1)
def find_knots(self):
'''
uses RPD method to simplify a curve using the diagonal bbox
of the drawn path and the feature factor, which is a property
of the cut path.
'''
if len(self.raw_world):
box_diag = contour_utilities.diagonal_verts(self.raw_world)
error = 1/self.feature_factor * box_diag
self.knots = contour_utilities.simplify_RDP(self.raw_world, error)
def create_cut_nodes(self,context, knots = False):
'''
Creates evenly spaced points along the cut path to generate
contour cuts on.
'''
self.cut_points = []
if self.segments <= 1:
self.cut_points = [self.world_path[0],self.world_path[-1]]
return
path_length = contour_utilities.get_path_length(self.world_path)
if path_length == 0:
self.cut_points = [self.world_path[0], self.world_path[-1]]
return
cut_spacing = path_length/self.segments
if len(self.knots) > 2 and knots:
segments = []
for i in range(0,len(self.knots) - 1):
segments.append(self.world_path[self.knots[i]:self.knots[i+1]+1])
else:
segments = [self.world_path]
for i, segment in enumerate(segments):
segment_length = contour_utilities.get_path_length(segment)
n_segments = math.ceil(segment_length/cut_spacing)
vs = contour_utilities.space_evenly_on_path(segment, [[0,1],[1,2]], n_segments, 0, debug = False)[0]
if i > 0:
self.cut_points.extend(vs[1:len(vs)])
else:
self.cut_points.extend(vs[:len(vs)])
def cuts_on_path(self,context,ob,bme):
settings = common_utilities.get_settings()
self.cuts = []
if not len(self.cut_points) or len(self.cut_points) < 3:
return
rv3d = context.space_data.region_3d
view_z = rv3d.view_rotation * Vector((0,0,1))
for i, loc in enumerate(self.cut_points):
#leave out the first or last if connecting to
#existing geom
if i == 0 and self.existing_head:
continue
if i == len(self.cut_points) -1 and self.existing_tail:
continue
cut = ContourCutLine(0, 0, line_width = settings.line_thick)
cut.seed_face_index = self.cut_point_seeds[i]
cut.plane_pt = loc
if not loc:
print(self.cut_points)
if i == 0:
no1 = self.cut_points[i+1] - self.cut_points[i]
no2 = self.cut_points[i+2] - self.cut_points[i]
elif i == len(self.cut_points) -1:
no1 = self.cut_points[i] - self.cut_points[i-1]
no2 = self.cut_points[i] - self.cut_points[i-2]
else:
no1 = self.cut_points[i] - self.cut_points[i-1]
no2 = self.cut_points[i+1] - self.cut_points[i]
no1.normalize()
no2.normalize()
no = (no1 + no2).normalized()
#make the cut in the view plane
#TODO..this is not always smart!
perp_vec = no.cross(view_z)
final_no = view_z.cross(perp_vec)
final_no.normalize()
cut.plane_no = final_no
cut.cut_object(context, ob, bme)
cut.simplify_cross(self.ring_segments)
if (i == 0 and not self.existing_head) or (i == 1 and self.existing_head):
#make sure the first loop is right handed
curl = contour_utilities.discrete_curl(cut.verts_simple, cut.plane_no)
if curl == None:
# TODO: what should happen here?
pass
elif curl < 0:
#in this case, we reverse the verts and keep the no
#because the no is derived from the drawn path direction
cut.verts.reverse()
cut.verts_simple.reverse()
cut.update_com()
cut.generic_3_axis_from_normal()
self.cuts.append(cut)
if i > 0:
self.align_cut(cut, mode='BEHIND', fine_grain='TRUE')
if self.existing_head:
self.existing_head.align_to_other(self.cuts[0])
if self.existing_tail:
self.existing_tail.align_to_other(self.cuts[-1])
def backbone_from_cuts(self,context,ob,bme):
#TODO: be able to change just one ring
#TODO: cyclic series
#TODO: redistribute backbone when number of cut segments is increased/decreased
#TEMPORARY FIX TO REMOVE BAD CUTS
self.clean_cuts()
self.backbone = []
if len(self.cuts) == 0:
return
for i, cut in enumerate(self.cuts):
pt = cut.verts_simple[0]
snap = ob.closest_point_on_mesh(ob.matrix_world.inverted() * pt)
seed = snap[2]
surface_no = ob.matrix_world.inverted().transposed() * snap[1]
if i == 0:
#shoot a cut out the back
cut_no = surface_no.cross(cut.plane_no)
if self.existing_head:
stop_plane = [self.existing_head.plane_com, self.existing_head.plane_no]
else:
stop_plane = [cut.plane_com, cut.plane_no]
vertebra = contour_utilities.cross_section_seed_direction(bme, ob.matrix_world,
pt,cut_no, seed,
-cut.plane_no,
stop_plane=stop_plane,
max_tests=1000)[0]
if vertebra:
vertebra3d = [ob.matrix_world * v for v in vertebra]
else:
diag = contour_utilities.diagonal_verts(cut.verts_simple)
cast_point = cut.verts_simple[0] - diag * cut.plane_no
cast_sfc = ob.closest_point_on_mesh(ob.matrix_world.inverted() * cast_point)[0]
vertebra3d = [cut.verts_simple[0], cast_sfc]
self.backbone.append(vertebra3d)
elif i == len(self.cuts)-1:
#shoot a cut out the back
cut_no = surface_no.cross(cut.plane_no)
if self.existing_tail:
stop_plane = [self.existing_tail.plane_com, sef.existing_tail.plane_no]
else:
stop_plane = [cut.plane_com, cut.plane_no]
vertebra = contour_utilities.cross_section_seed_direction(bme, ob.matrix_world,
pt,cut_no, seed,
-cut.plane_no,
stop_plane=stop_plane,
max_tests=1000)[0]
if vertebra:
vertebra3d = [ob.matrix_world * v for v in vertebra]
else:
diag = contour_utilities.diagonal_verts(cut.verts_simple)
cast_point = cut.verts_simple[0] - diag * cut.plane_no
cast_sfc = ob.closest_point_on_mesh(ob.matrix_world.inverted() * cast_point)[0]
vertebra3d = [cut.verts_simple[0], cast_sfc]
self.backbone.append(vertebra3d)
else:
#cut backward to reach the other cut
v1 = cut.verts_simple[0] - self.cuts[i-1].verts_simple[0]
cut_no = surface_no.cross(v1)
#alternatively....just use cut.verts_simple[1] - cut.verts_simple[0]
vertebra = contour_utilities.cross_section_seed_direction(bme, ob.matrix_world,
pt,cut_no, seed,
-1 * v1,
stop_plane = [self.cuts[i-1].plane_com, self.cuts[i-1].plane_no],
max_tests=1000)[0]
if vertebra:
vertebra3d = [ob.matrix_world * v for v in vertebra]
else:
cut1 = self.cuts[i+1]
v0 = cut.verts_simple[0]
v1 = cut1.verts_simple[0]
vertebra3d = [v0, v1]
self.backbone.append(vertebra3d)
cut_no = surface_no.cross(cut.plane_no)
vertebra = contour_utilities.cross_section_seed_direction(bme, ob.matrix_world,
pt,cut_no, seed,
cut.plane_no,
stop_plane = [cut.plane_com, cut.plane_no],
max_tests=1000)[0]
if vertebra:
vertebra3d = [ob.matrix_world * v for v in vertebra]
vertebra3d.reverse()
else:
diag = contour_utilities.diagonal_verts(cut.verts_simple)
cast_point = cut.verts_simple[0] + diag * cut.plane_no
cast_sfc = ob.closest_point_on_mesh(ob.matrix_world.inverted() * cast_point)[0]
vertebra3d = [cast_sfc, cut.verts_simple[0]]
self.backbone.append(vertebra3d)
def update_backbone(self,context,ob,bme,cut, insert = False):
'''
update just the segments of the backbone affected by a cut
do this after it has been inserted and aligned or after
it has been transformed
DO NOT USE FOR CUT REMOVAL, remove_cut takes care of it on it's own.
'''
ind = self.cuts.index(cut)
pt = cut.verts_simple[0]
snap = ob.closest_point_on_mesh(ob.matrix_world.inverted() * pt)
seed = snap[2]
surface_no = ob.matrix_world.inverted().transposed() * snap[1]
if ind == 0:
#shoot a cut out the back
cut_no = surface_no.cross(cut.plane_no)
vertebra = contour_utilities.cross_section_seed_direction(bme, ob.matrix_world,
pt,cut_no, seed,
-1 * cut.plane_no,
stop_plane = [cut.plane_com, cut.plane_no],
max_tests=1000)[0]
if vertebra:
vertebra3d = [ob.matrix_world * v for v in vertebra]
else:
diag = contour_utilities.diagonal_verts(self.cuts[0].verts_simple)
cast_point = self.cuts[0].verts_simple[0] - diag * self.cuts[0].plane_no
cast_sfc = ob.closest_point_on_mesh(ob.matrix_world.inverted() * cast_point)[0]
vertebra3d = [cast_sfc, self.cuts[0].verts_simple[0]]
self.backbone.pop(0)
self.backbone.insert(0,vertebra3d)
if ind > 0 and ind < len(self.backbone): #<--- was len(self.cuts)!?
#cut backward to reach the other cut
v1 = cut.verts_simple[0] - self.cuts[ind-1].verts_simple[0]
cut_no = surface_no.cross(v1)
#alternatively....just use cut.verts_simple[1] - cut.verts_simple[0]
vertebra = contour_utilities.cross_section_seed_direction(bme, ob.matrix_world,
pt,cut_no, seed,
-1 * v1,
stop_plane = [self.cuts[ind-1].plane_com, self.cuts[ind-1].plane_no],
max_tests=1000)[0]
if vertebra:
vertebra3d = [ob.matrix_world * v for v in vertebra]
else:
vertebra3d = [cut.verts_simple[0], self.cuts[ind-1].verts_simple[0]]
self.backbone.pop(ind)
self.backbone.insert(ind,vertebra3d)
#foward cut must be updated too
if ind < len(self.cuts) -1:
v1 = self.cuts[ind+1].verts_simple[0] - cut.verts_simple[0]
cut_no = surface_no.cross(v1)
vertebra = contour_utilities.cross_section_seed_direction(bme, ob.matrix_world,
pt,cut_no, seed,
v1,
stop_plane = [self.cuts[ind+1].plane_com, self.cuts[ind+1].plane_no],
max_tests=1000)[0]
if vertebra:
vertebra3d = [ob.matrix_world * v for v in vertebra]
else:
vertebra3d = [cut.verts_simple[0], self.cuts[ind-1].verts_simple[0]]
#the backbone flows opposite direction the cuts
vertebra3d.reverse()
if not insert:
self.backbone.pop(ind + 1)
self.backbone.insert(ind + 1,vertebra3d)
if ind == len(self.cuts) - 1:
cut_no = surface_no.cross(cut.plane_no)
vertebra = contour_utilities.cross_section_seed_direction(bme, ob.matrix_world,
pt,cut_no, seed,
cut.plane_no,
stop_plane = [cut.plane_com, cut.plane_no],
max_tests=1000)[0]
if vertebra:
vertebra3d = [ob.matrix_world * v for v in vertebra]
vertebra3d.reverse()
else:
diag = contour_utilities.diagonal_verts(cut.verts_simple)
cast_point = cut.verts_simple[0] + diag * cut.plane_no
cast_sfc = ob.closest_point_on_mesh(ob.matrix_world.inverted() * cast_point)[0]
vertebra3d = [cast_sfc, cut.verts_simple[0]]
if not insert:
self.backbone.pop()
self.backbone.append(vertebra3d)
def smooth_normals_com(self,context,ob,bme,iterations = 5):
com_path = []
normals = []
for cut in self.cuts:
if not cut.plane_com:
cut.update_com()
com_path.append(cut.plane_com)
for i, com in enumerate(com_path):
if i == 0:
no = com_path[i+1] - com
else:
no = com - com_path[i-1]
no.normalize()
normals.append(no)
for n in range(0,iterations):
for i, no in enumerate(normals):
if i == 0:
print('keep end')
#new_no = .75 * normals[i] + .25 * normals[i+1]
new_no = normals[i]
elif i == len(normals) - 1:
#new_no = .75 * normals[i] + .25 * normals[i-1]
new_no = normals[i]
else:
new_no = 1/3 * (normals[i+1] + normals[i] + normals[i-1])
new_no.normalize()
normals[i] = new_no
for i, cut in enumerate(self.cuts):
cut.plane_no = normals[i]
cut.cut_object(context, ob, bme)
cut.simplify_cross(self.ring_segments)
if i == 0 and self.existing_head:
self.cuts[0].align_to_other(self.existing_head)
if i > 0:
self.align_cut(cut, mode='BEHIND', fine_grain='TRUE')
cut.update_com()
cut.generic_3_axis_from_normal()
def average_normals(self,context,ob,bme):
if self.seg_lock:
self.cut_points = [cut.verts_simple[0] for cut in self.cuts]
avg_normal = Vector((0,0,0))
for i, loc in enumerate(self.cut_points):
if i == 0:
no1 = self.cut_points[i+1] - self.cut_points[i]
no2 = self.cut_points[i+2] - self.cut_points[i]
elif i == len(self.cut_points) -1:
no1 = self.cut_points[i] - self.cut_points[i-1]
no2 = self.cut_points[i] - self.cut_points[i-2]
else:
no1 = self.cut_points[i] - self.cut_points[i-1]
no2 = self.cut_points[i+1] - self.cut_points[i]
no1.normalize()
no2.normalize()
avg_normal = avg_normal + (no1 + no2).normalized()
avg_normal.normalize()
for i, cut in enumerate(self.cuts):
cut.plane_no = avg_normal
cut.cut_object(context, ob, bme)
cut.simplify_cross(self.ring_segments)
if i == 0 and self.existing_head:
self.cuts[0].align_to_other(self.existing_head)
if i > 0:
self.align_cut(cut, mode='BEHIND', fine_grain='TRUE')
cut.update_com()
cut.generic_3_axis_from_normal()
def interpolate_endpoints(self,context,ob,bme,cut1 = None, cut2 = None):
'''
will interpolate normals between the endpoints of the CutSeries
or between two selected cuts
'''
if len(self.cuts) < 3:
print('not valid for interpolation')
return False
if cut1 and cut2 and cut1 in self.cuts and cut2 in self.cuts:
start = self.cuts.index(cut1)
end = self.cuts.index(cut2)
if end < start:
start, end = end, start
else:
start = 0
end = len(self.cuts) - 1
if self.existing_head and not cut1:
no_initial = self.existing_head.plane_no
else:
no_initial = self.cuts[start].plane_no
no_final = self.cuts[end].plane_no
interps = end - start - 1
if self.existing_head:
self.cuts[0].align_to_other(self.existing_head)
if start != 0:
self.align_cut(self.cuts[start], mode='BEHIND', fine_grain='TRUE')
for i in range(0,interps):
print((i+1)/(end-start))
self.cuts[start + i+1].plane_no = no_initial.lerp(no_final, (i+1)/(end-start))
self.cuts[start + i+1].cut_object(context, ob, bme)
self.cuts[start + i+1].simplify_cross(self.ring_segments)
if start + i+1 > 0:
self.align_cut(self.cuts[start + i+1], mode='BEHIND', fine_grain='TRUE')
self.cuts[start + i+1].update_com()
self.align_cut(self.cuts[end-1], mode='BEHIND', fine_grain='TRUE')
self.align_cut(self.cuts[end], mode='BEHIND', fine_grain='TRUE')
def clean_cuts(self):
for cut in self.cuts:
if not len(cut.verts) or not len(cut.verts_simple):
self.cuts.remove(cut)
print('##################################')
print('##################################')
print('tossed a failed cut!')
#TODO, implement some kind of warning or visual reference
def connect_cuts_to_make_mesh(self, ob):
'''
This also takes care of bridging to existing vert loops
At the end..a simple doubles removal solidifies the bridge
Eventually, I will get smart enough to bridge a loop to existing
geom by using the index math, but it's probably an hour chore and
there are other higher priority items at the moment.
'''
total_verts = []
total_edges = []
total_faces = []
#TEMPORARY FIX to TOSS OUT BAD CUTS
self.clean_cuts()
if len(self.cuts) < 2 and not (self.existing_head or self.existing_tail):
print('waiting on other cut lines')
self.verts = []
self.edges = []
self.face = []
self.follow_lines = []
return
imx = ob.matrix_world.inverted()
n_rings = len(self.cuts)
if self.existing_head != None:
n_rings += 1
if self.existing_tail != None:
n_rings += 1
if len(self.cuts):
n_lines = len(self.cuts[0].verts_simple)
elif self.existing_head:
n_lines = len(self.existing_head.verts_simple)
if self.existing_head != None:
for v in self.existing_head.verts_simple:
total_verts.append(imx * v)
#work out the connectivity edges
for i, cut_line in enumerate(self.cuts):
for v in cut_line.verts_simple:
total_verts.append(imx * v)
for ed in cut_line.eds_simple:
total_edges.append((ed[0]+i*n_lines,ed[1]+i*n_lines))
if i < n_rings - 1:
#make connections between loops
for j in range(0,n_lines):
total_edges.append((i*n_lines + j, (i+1)*n_lines + j))
if self.existing_tail != None:
for v in self.existing_tail.verts_simple:
total_verts.append(imx * v)
if len(self.cuts):
cyclic = 0 in self.cuts[0].eds_simple[-1]
elif self.existing_head:
cyclic = 0 in self.existing_head.eds_simple[-1]
elif self.existing_tail:
cyclic = 0 in self.existing_tail.eds_simple[-1]
#work out the connectivity faces:
for j in range(0,n_rings - 1):
for i in range(0,n_lines-1):
ind0 = j * n_lines + i
ind1 = j * n_lines + (i + 1)
ind2 = (j + 1) * n_lines + (i + 1)
ind3 = (j + 1) * n_lines + i
total_faces.append((ind0,ind1,ind2,ind3))
if cyclic:
ind0 = (j + 1) * n_lines - 1
ind1 = j * n_lines + int(math.fmod((j+1)*n_lines, n_lines))
ind2 = ind0 + 1
ind3 = ind0 + n_lines
total_faces.append((ind0,ind1,ind2,ind3))
#assert all(len(cut.verts_simple) == n_lines for cut in self.cuts)
self.follow_lines = []
for i in range(0,n_lines):
tmp_line = []
if self.existing_head:
tmp_line.append(self.existing_head.verts_simple[i])
for cut_line in self.cuts:
tmp_line.append(cut_line.verts_simple[i])
if self.existing_tail:
tmp_line.append(self.existing_tail.verts_simple[i])
self.follow_lines.append(tmp_line)
self.verts = total_verts
self.faces = total_faces
self.edges = total_edges
def update_visibility(self, context, ob):
region = context.region
rv3d = context.space_data.region_3d
#update the individual rings
for cut in self.cuts:
cut.update_visibility(context, ob)
if self.existing_head:
self.existing_head.update_visibility(context, ob)
if self.existing_tail:
self.existing_tail.update_visibility(context, ob)
#update connecting edges between ring
if context.space_data.use_occlude_geometry:
rv3d = context.space_data.region_3d
is_vis = common_utilities.ray_cast_visible
self.follow_vis = [is_vis(vert_list, ob, rv3d) for vert_list in self.follow_lines]
else:
self.follow_vis = [[True]*len(vert_list) for vert_list in self.follow_lines]
def insert_new_cut(self,context, ob, bme, new_cut, search = 5):
'''
attempts to find the best placement for a new cut
the cut should have already calced verts_simple,
plane_pt and plane_com.
in the event that there are no existing cuts in the
segment (eg, a new segment is created by making a single
cut), it will simply add the cut in
if there is only one cut, a simple distance threshold
check is completed. For now, that distnace is 4x the
bounding box diag of the existing cut in the segment
'''
settings = common_utilities.get_settings()
if settings.debug > 1:
print('testing for cut insertion')
print('self.existing_head = ' + str(self.existing_head))
print('len(self.cuts) = %d' % len(self.cuts))
#no cuts, this is a trivial case
if len(self.cuts) == 0 and not self.existing_head:
if settings.debug > 1: print('no cuts and not self.existing_head')
self.cuts.append(new_cut)
self.world_path.append(new_cut.verts_simple[0])
if self.ring_segments != len(new_cut.verts_simple): #TODO: Nomenclature consistency
self.ring_segments = len(new_cut.verts_simple)
self.segments = 1
self.backbone_from_cuts(context, ob, bme)
return True
if (len(self.cuts) == 1 and not self.existing_head) or (self.existing_head and len(self.cuts) == 0):
if settings.debug > 1: print('single cut')
#criteria for extension existing cut to new cut
#A) The distance between the com is < 4 * the bbox diagonal of the existing cut
#B) The angle between the existing cut normal and the line between com's is < 60 deg
cut = self.cuts[0] if self.cuts else self.existing_head
bounds = contour_utilities.bound_box(cut.verts_simple)
diag = 0
for min_max in bounds:
l = min_max[1] - min_max[0]
diag += l * l
diag = diag ** .5
thresh = search * diag #TODO: Come to a decision on how to determine distance
vec_between = new_cut.plane_com - cut.plane_com
vec_dist = vec_between.length
is_dist_large = vec_dist > thresh
#absolute value of dot product between line between com and plane normal
ang = abs(vec_between.normalized().dot(cut.plane_no.normalized()))
is_ang_wide = ang < math.sin(math.pi/3)
if settings.debug > 1:
print('dist = %f, thresh = %f' % (vec_dist,thresh))
print('ang = %f, thresh = %f' % (ang, math.sin(math.pi/3)))
if is_dist_large:
print('distance too far')
print('dist = %f' % vec_dist)
if is_ang_wide:
print('too wide, aim better')
print('ang = %f' % ang)
print('vec_between = ' + str(vec_between.normalized()))
print('cut.plane_no = ' + str(cut.plane_no.normalized()))
if not is_dist_large and not is_ang_wide:
if settings.debug > 1:
print('True: vec_between.length < thresh and ang > math.sin(math.pi/3)')
self.segments += 1
self.cuts.append(new_cut)
#establish path direction, order of drawn cuts
direction = new_cut.plane_com - cut.plane_com
#the original cut has no knowledge of the intended
#cut path
if cut.plane_no.dot(direction) < 0:
cut.plane_no = -1 * cut.plane_no
spin = contour_utilities.discrete_curl(cut.verts_simple,cut.plane_no)
if spin < 0:
cut.verts_simple.reverse()
cut.verts_simple = contour_utilities.list_shift(cut.verts_simple,-1)
if cut.desc != 'EXISTING_VERT_LIST':
cut.verts.reverse()
#TODO: cyclic vs not cyclic
cut.verts = contour_utilities.list_shift(cut.verts,-1)
#neither does the new cut.
if new_cut.plane_no.dot(direction) < 0:
new_cut.plane_no = -1 * new_cut.plane_no
spin = contour_utilities.discrete_curl(new_cut.verts_simple, new_cut.plane_no)
if spin < 0:
new_cut.verts.reverse()
#TODO: Cyclic vs not cyclic
new_cut.verts = contour_utilities.list_shift(new_cut.verts,-1)
#make sure the new cut has the appropriate number of cuts
new_cut.simplify_cross(self.ring_segments)
#align the cut, update the backbone etc
self.align_cut(new_cut, mode = 'BEHIND', fine_grain = True)
self.backbone_from_cuts(context, ob, bme)
#self.update_backbone(context, ob, bme, new_cut, insert = True)
return True
else:
if settings.debug > 1:
print('False: vec_between.length < thresh and ang > math.sin(math.pi/3)')
return False
if self.existing_head and self.cuts:
if settings.debug > 1: print('True: self.existing_head and self.cuts')
A = self.existing_head.plane_com #the center of the head
B = self.cuts[0].plane_com #the first cut
C = intersect_line_plane(A,B,new_cut.plane_com, new_cut.plane_no) #the intersection of a the line between the head and first cut
test1 = self.existing_head.plane_no.dot(C-A) > 0
test2 = self.cuts[0].plane_no.dot(C-B) < 0
if C and test1 and test2:
if settings.debug > 1: print('True: C and test1 and test2')
valid = contour_utilities.point_inside_loop_almost3D(C, new_cut.verts_simple, new_cut.plane_no, new_cut.plane_com, threshold = .01, bbox = True)
if valid:
print('found an intersection between existing head and first loop')
#check the plane normal
if new_cut.plane_no.dot(B-A) < 0:
new_cut.plane_no = -1 * new_cut.plane_no
#check the spin
spin = contour_utilities.discrete_curl(new_cut.verts_simple, new_cut.plane_no)
if spin < 0:
new_cut.verts.reverse()
new_cut.verts = contour_utilities.list_shift(new_cut.verts,-1)
self.cuts.insert(0, new_cut)
self.segments += 1
new_cut.simplify_cross(self.ring_segments)
self.align_cut(new_cut, mode = 'BETWEEN', fine_grain = True)
self.backbone_from_cuts(context, ob, bme)
#self.update_backbone(context, ob, bme, new_cut, insert = True)
return True