-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
204 lines (175 loc) · 7.61 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import time, os, json, math, logging
import numpy as np
import torch
from torch.utils.data import DataLoader
import dgl
# from deepspeed.ops.adam import FusedAdam as AdamW
from torch.optim import AdamW
from accelerate import Accelerator
from accelerate.logging import get_logger
from transformers import (
set_seed,
get_scheduler,
)
from arguments import prepare_args
from data.graph_dataset import load_dataset
from data.preprocess_data import UniformEncoder
from modeling import Model, build_tokenizer
from utils import print_args, accelerate_train, print_with_rank
# get args
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = prepare_args()
# start accelerator
set_seed(args.seed)
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
# print and save args in the main process
print_args(args, accelerator)
if accelerator.is_main_process:
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
with open(os.path.join(args.output_dir, "args.json"), "w") as f:
json.dump(args.dict(), f, indent=2)
# prepare logger
logger = get_logger(__name__)
logging.basicConfig(
format="[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
# used in collate function
node_type_embedding = torch.load(args.node_type_embedding)
encoder = UniformEncoder(args)
encoder.initializer()
def collate_fn(instances):
input_ids, loss_mask, node_ids, edge_index = [], [], [], []
for instance in instances:
if 'node_ids' in instance.keys():
features = encoder.encode_graph(instance)
else:
features = encoder.encode_text(instance)
if features is not None:
input_ids.append(features['input_ids'])
loss_mask.append(features['loss_mask'])
node_ids.append(features.get('node_ids', None))
edge_index.append(features.get('edge_index', None))
n = len(input_ids)
# batch graphs
if 'node_ids' in instances[0].keys():
graphs = []
for i in range(n):
edges = torch.LongTensor(edge_index[i]).t().contiguous()
g = dgl.graph((edges[0,:], edges[1,:]), num_nodes=len(node_ids[i]))
g.ndata['x'] = node_type_embedding[torch.tensor(node_ids[i])]
graphs.append(g)
batch = dgl.batch(graphs)
# edge_index is changed, features remain the same
# batch.ndata['x']: (sum(num_nodes), d_embed)
# batch.edges(): (2, sum(num_edges))
else:
batch = None
result_batch = {
'g': batch,
'graph_embedding': batch.ndata['x'],
'batch_num_nodes': batch.batch_num_nodes()
} if batch else {}
loss_mask = torch.tensor(loss_mask).long()
# dynamic padding
last_one_pos = (loss_mask == 1).long().cumsum(dim=1).argmax(dim=1)
# get last non-padding position
max_pos = last_one_pos.max().item() + 1
result_batch['loss_mask'] = loss_mask.float()[:, 1:max_pos].contiguous()
input_ids = torch.tensor(input_ids).long()
result_batch['input_ids'] = input_ids[:, :max_pos - 1].contiguous()
result_batch['labels'] = input_ids[:, 1:max_pos].contiguous()
return result_batch
def main():
t0 = time.time()
# set seed
set_seed(args.seed)
# load dataset
if args.mode == 'pt':
train_dataset, valid_dataset = load_dataset(args, accelerator)
else:
train_dataset, valid_dataset, train_dataset_ft, valid_dataset_ft = load_dataset(args, accelerator)
t1 = time.time()
logger.info(f"Dataset loading time: {t1 - t0:.2f}s")
# load model
tokenizer = build_tokenizer(args)
model = Model(args, len(tokenizer))
# print(model.lm.device)
t2 = time.time()
logger.info(f"model loading time: {t2 - t1:.2f}s")
# dataloader
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=collate_fn,
batch_size=args.per_device_train_batch_size, pin_memory=True
)
valid_dataloader = DataLoader(
valid_dataset, collate_fn=collate_fn,
batch_size=args.per_device_eval_batch_size, pin_memory=True
)
if args.mode == 'ft':
train_dataloader_ft = DataLoader(
train_dataset_ft, shuffle=True, collate_fn=collate_fn,
batch_size=args.per_device_train_batch_size, pin_memory=True
)
valid_dataloader_ft = DataLoader(
valid_dataset_ft, collate_fn=collate_fn,
batch_size=args.per_device_eval_batch_size, pin_memory=True
)
else:
train_dataloader_ft, valid_dataloader_ft = None, None
# if finetuning, train all params, else only pretrain GNN and adapter
if args.mode == 'ft':
trained_params = model.parameters()
elif args.mode == 'pt':
trained_params = [p for p in model.gnn.parameters()] + [p for p in model.adapter.parameters()]
else:
raise NotImplementedError()
optimizer = AdamW(
trained_params,
weight_decay=args.weight_decay,
lr=args.learning_rate,
betas=(0.9, 0.95),
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) + (len(train_dataloader_ft) if args.mode == 'ft' else 0) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
logger.info(f"{'=='*100}\nbefore accelerator preparation: [dataloader: {len(train_dataloader)}][epochs: {args.num_train_epochs}][total steps: {args.max_train_steps}]\n{'=='*100}")
if torch.cuda.is_available():
model, train_dataloader, valid_dataloader, optimizer, lr_scheduler = accelerator.prepare(
model, train_dataloader, valid_dataloader, optimizer, lr_scheduler
)
if args.mode == 'ft':
train_dataloader_ft, valid_dataloader_ft = accelerator.prepare(train_dataloader_ft, valid_dataloader_ft)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) + (len(train_dataloader_ft) if args.mode == 'ft' else 0) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterward we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
logger.info(f"{'=='*100}\nafter accelerator preparation: [dataloader: {len(train_dataloader)}][epochs: {args.num_train_epochs}][total steps: {args.max_train_steps}]\n{'=='*100}")
# Train!
accelerate_train(accelerator,
model,
train_dataloader,
valid_dataloader,
train_dataloader_ft,
valid_dataloader_ft,
optimizer,
lr_scheduler,
tokenizer,
len(train_dataset),
args)
if __name__ == "__main__":
main()