-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodeling_rodimus.py
618 lines (528 loc) · 22.1 KB
/
modeling_rodimus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import math
import warnings
from typing import List, Optional, Tuple, Union
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
BaseModelOutput,
MaskedLMOutput
)
from transformers.cache_utils import Cache
from modules.cache import HybridCache
from modules.rodimus_flow import RodimusFlow
from modules.rodimus_attention import SlideWindowSharedKeyAttention
from modules.mlp import GLU
from ops.layernorm import RMSNorm
from configuration_rodimus import RodimusConfig
import logging
logger = logging.getLogger(__name__)
try:
from fla.modules import FusedCrossEntropyLoss
except ImportError:
FusedCrossEntropyLoss = None
def _apply_no_weight_decay_on_norm(module):
from ops.layernorm_gated import RMSNorm as RMSNormWithGate
from ops.layernorm_gated import LayerNorm as LayerNormWithGate
if isinstance(module, RMSNorm) or isinstance(module, RMSNormWithGate):
module.weight._no_weight_decay = True
elif isinstance(module, nn.LayerNorm) or isinstance(module, LayerNormWithGate):
module.weight._no_weight_decay = True
module.bias._no_weight_decay = True
def _apply_no_weight_decay_on_embedding(module, lm_head_param=None):
if isinstance(module, nn.Embedding):
if lm_head_param is not None:
if lm_head_param.weight != module.weight:
module.weight._no_weight_decay = True
else:
logger.warning_once(
"Unable to find the lm_head, forcibly set embedding's weight decay to 0.0")
module.weight._no_weight_decay = True
def _set_no_weight_decay(
module: nn.Module,
no_weight_decay_on_bias=True,
no_weight_decay_on_norm=True,
no_weight_decay_on_embedding=False,
):
if no_weight_decay_on_bias:
for n, p in module.named_parameters():
if n.endswith("bias") and p is not None:
p._no_weight_decay = True
if no_weight_decay_on_norm:
module.apply(_apply_no_weight_decay_on_norm)
if no_weight_decay_on_embedding:
lm_head_param = None
for n, p in module.named_parameters():
if n.endswith("lm_head"):
lm_head_param = p
break
module.apply(partial(_apply_no_weight_decay_on_embedding,
lm_head_param=lm_head_param))
def _init_weights(
module: nn.Module,
initializer_range: float = 0.02,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 1,
n_layer: int = 1,
):
if isinstance(module, nn.Linear):
if not getattr(module.weight, "_no_reinit", False):
nn.init.normal_(module.weight, mean=0.0, std=initializer_range)
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
if not getattr(module.weight, "_no_reinit", False):
nn.init.normal_(module.weight, mean=0.0, std=initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * n_layer)
class RodimusTrainedModel(PreTrainedModel):
config_class = RodimusConfig
supports_gradient_checkpointing = True
_no_split_modules = ["RodimusBlock"]
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
if self.config.block_type == "rodimus":
self.num_residuals_per_layer = 1
elif self.config.block_type == "rodimus_plus":
self.num_residuals_per_layer = 3
else:
raise NotImplementedError()
def _init_weights(
self,
module: nn.Module,
):
_init_weights(
module,
initializer_range=self.config.initializer_range,
rescale_prenorm_residual=self.config.rescale_prenorm_residual,
num_residuals_per_layer=self.num_residuals_per_layer,
n_layer=self.config.n_layer
)
class RodimusBlock(nn.Module):
def __init__(
self,
block_type,
d_model,
max_position_embeddings=None,
mixer_cfg={},
attn_cfg={},
norm_epsilon=1e-5,
residual_in_fp32=True,
use_fast_path=True,
use_fused_swiglu=True,
layer_idx=None,
causal=True,
dropout=0.,
activation_dropout=0.,
attention_dropout=0.,
):
super().__init__()
self.block_type = block_type
self.d_model = d_model
self.norm_epsilon = norm_epsilon
self.residual_in_fp32 = residual_in_fp32
self.use_fast_path = use_fast_path
self.use_fused_swiglu = use_fused_swiglu
self.causal = causal
attn_cfg = attn_cfg.copy()
mixer_cfg = mixer_cfg.copy()
self.mixer_norm = RMSNorm(self.d_model, eps=self.norm_epsilon)
self.mixer = RodimusFlow(
d_model, layer_idx=layer_idx, **mixer_cfg,
use_fast_path=use_fast_path, residual_in_fp32=residual_in_fp32,
causal=self.causal,
dropout=dropout,
activation_dropout=activation_dropout,
norm_epsilon=self.norm_epsilon,
)
if self.block_type == "rodimus_plus":
attn_cfg["num_heads"] = d_model // 128 if "num_heads" not in attn_cfg or attn_cfg["num_heads"] is None else attn_cfg["num_heads"]
ffn_expand_ratio = attn_cfg.pop("ffn_expand_ratio", 4/3)
self.attn_norm = RMSNorm(self.d_model, eps=self.norm_epsilon)
self.attn = SlideWindowSharedKeyAttention(
dim=d_model,
**attn_cfg,
layer_idx=layer_idx,
causal=self.causal,
dropout=dropout,
activation_dropout=activation_dropout,
attention_dropout=attention_dropout,
max_position_embeddings=max_position_embeddings,
)
self.ffn_norm = RMSNorm(self.d_model, eps=self.norm_epsilon)
self.ffn = GLU(
d_model, ffn_expand_ratio,
use_fast_path=use_fused_swiglu,
dropout=dropout,
activation_dropout=activation_dropout,
)
def forward(
self,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
):
hidden_states, residual = self.mixer_norm(
hidden_states,
residual=residual,
prenorm=True,
residual_in_fp32=self.residual_in_fp32
)
hidden_states, past_key_values = self.mixer(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
)
if self.block_type == "rodimus_plus":
hidden_states, residual = self.attn_norm(
hidden_states,
residual=residual,
prenorm=True,
residual_in_fp32=self.residual_in_fp32
)
hidden_states, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = self.ffn_norm(
hidden_states,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32
)
hidden_states = self.ffn(hidden_states)
return hidden_states, residual, past_key_values
class RodimusModel(RodimusTrainedModel):
def __init__(
self,
config: RodimusConfig,
causal=True,
):
super().__init__(config)
self.config = config
self.d_model = config.d_model
self.n_layer = config.n_layer
self.vocab_size = config.vocab_size
self.padding_idx = config.pad_token_id
self.norm_epsilon = config.norm_epsilon
self.residual_in_fp32 = config.residual_in_fp32
self.use_fast_path = config.use_fast_path
self.use_fused_swiglu = config.use_fused_swiglu
self.causal = causal
self.max_position_embeddings = config.max_position_embeddings
self.RodimusConfig = config.block_type
self.embeddings = nn.Embedding(
self.vocab_size, self.d_model, padding_idx=self.padding_idx)
if self.config.use_scale_embedding:
mem_size = self.config.mixer_cfg['mem_size'] if 'mem_size' in self.config.mixer_cfg else 64
self.embed_scale = math.sqrt(mem_size)
else:
self.embed_scale = 1.
if self.config.use_norm_embedding:
self.embed_norm = RMSNorm(self.d_model, eps=self.norm_epsilon)
else:
self.embed_norm = None
self.layers = nn.ModuleList([])
for i in range(self.n_layer):
block = RodimusBlock(
self.config.block_type,
self.d_model,
layer_idx=i,
max_position_embeddings=self.max_position_embeddings,
mixer_cfg=self.config.mixer_cfg,
attn_cfg=self.config.attn_cfg,
norm_epsilon=self.norm_epsilon,
residual_in_fp32=self.residual_in_fp32,
use_fast_path=self.use_fast_path,
use_fused_swiglu=self.use_fused_swiglu,
causal=self.causal,
dropout=self.config.dropout,
activation_dropout=self.config.activation_dropout,
attention_dropout=self.config.attention_dropout,
)
self.layers.append(block)
self.norm_f = RMSNorm(self.d_model, eps=self.norm_epsilon)
self.has_ssm = hasattr(self.layers[0], "mixer")
self.has_attn = hasattr(self.layers[0], "attn")
assert self.has_ssm or self.has_attn
_set_no_weight_decay(
self,
no_weight_decay_on_bias=self.config.no_weight_decay_on_bias,
no_weight_decay_on_norm=self.config.no_weight_decay_on_norm,
no_weight_decay_on_embedding=False, # do this at `RodimusForCausalLM`
)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
):
if output_attentions:
warnings.warn(
"`Model` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (
self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if attention_mask is not None:
attention_mask = attention_mask.to(torch.bool)
if attention_mask.dtype == torch.bool:
attention_mask = attention_mask if False in attention_mask else None
else:
attention_mask = attention_mask if 0.0 in attention_mask else None
else:
attention_mask = None
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
inputs_embeds *= self.embed_scale
if self.embed_norm is not None:
inputs_embeds = self.embed_norm(inputs_embeds)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache:
if past_key_values is None: # init states
past_key_values = []
for layer in self.layers:
cache = ()
if self.has_ssm:
cache += layer.mixer.allocate_inference_cache(
hidden_states.size(0))
if self.has_attn:
cache += layer.attn.allocate_inference_cache(
hidden_states.size(0))
past_key_values.append(cache)
if not isinstance(past_key_values, HybridCache):
past_key_values = HybridCache.from_legacy_cache(
past_key_values=past_key_values,
seen_tokens=0,
has_ssm=self.has_ssm,
has_attn=self.has_attn,
)
else:
past_key_values = None
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
residual = None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states, )
if self.gradient_checkpointing and self.training:
hidden_states, residual, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
residual,
attention_mask,
past_key_values,
use_cache,
output_attentions,
)
else:
hidden_states, residual, past_key_values = layer(
hidden_states=hidden_states,
residual=residual,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = self.norm_f(
hidden_states,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32
)
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
if self.causal:
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
else:
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attns
)
class RodimusForCausalLM(RodimusTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(
self,
config: RodimusConfig
):
super().__init__(config)
self.config = config
self.model = RodimusModel(config, causal=True)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
_set_no_weight_decay(
self,
no_weight_decay_on_bias=False,
no_weight_decay_on_norm=False,
no_weight_decay_on_embedding=(
not self.config.tie_word_embeddings) and self.config.no_weight_decay_on_embedding,
)
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, HybridCache):
past_key_values = HybridCache.from_legacy_cache(
past_key_values=past_key_values,
seen_tokens=input_ids.shape[1] - 1,
has_ssm=self.model.has_ssm,
has_attn=self.model.has_attn,
)
# input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
if self.lm_head is not None:
logits = self.lm_head(hidden_states)
else:
logits = hidden_states
logits = logits.float()
loss = None
if labels is not None and logits is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
if FusedCrossEntropyLoss is not None and self.config.use_fused_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Flatten the tokens
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
# output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)