diff --git a/CHANGES.txt b/CHANGES.txt index 4891b858..8abcc776 100644 --- a/CHANGES.txt +++ b/CHANGES.txt @@ -1,6 +1,8 @@ -NEXT (TBD) +2.0a5 (2020-05-06) ------------------ -- make `rio_tiler.io.landsat8.tile` return Uint16 data and not float32 +- make `rio_tiler.io.landsat8.tile` return Uint16 data and not float32 (#173) +- `rio_tiler.profiles.img_profiles` item access return `copy` of the items (#177) +- better colormap docs (#176, author @kylebarron) 2.0a4 (2020-04-08) ------------------ diff --git a/README.md b/README.md index 7d300435..3e5910d4 100644 --- a/README.md +++ b/README.md @@ -146,7 +146,7 @@ landsat8.metadata('LC08_L1TP_016037_20170813_20170814_01_RT', pmin=5, pmax=95) The primary purpose for calculating minimum and maximum values of an image is to rescale pixel values from their original range (e.g. 0 to 65,535) to the range used by computer screens (i.e. 0 and 255) through a linear transformation. This will make images look good on display. -#### Working SpatioTemporal Asset Catalog (STAC) +#### Working with SpatioTemporal Asset Catalog (STAC) In rio-tiler v2, we added a `rio_tiler.io.stac` submodule to allow tile/metadata fetching of assets withing a STAC item. diff --git a/docs/v2_migration.md b/docs/v2_migration.md index 5572e54f..9f44fc0c 100644 --- a/docs/v2_migration.md +++ b/docs/v2_migration.md @@ -68,7 +68,7 @@ In *rio_tiler==1* most of the magic was happening in [`rio_tiler.utils._tile_rea To ease the transition we added a `rio_tiler.reader.tile` function. -Note: The new `rio_tiler.reader.part` function enables to perform non-squared data cropping of different. +Note: The new `rio_tiler.reader.part` function enables to perform non-squared data cropping by passing output width and height (instead of just tilesize). ```python # v1 diff --git a/setup.py b/setup.py index 1491a32b..df39fdf2 100644 --- a/setup.py +++ b/setup.py @@ -22,7 +22,7 @@ setup( name="rio-tiler", - version="2.0a4", + version="2.0a5", python_requires=">=3", description=u"""Get mercator tile from CloudOptimized GeoTIFF and other cloud hosted raster such as CBERS-4, Sentinel-2, Sentinel-1 and Landsat-8 AWS PDS""", long_description=readme,