-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_convert.py
96 lines (79 loc) · 3.57 KB
/
data_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Example usage: python data_convert.py data/goldpaths-all bc
import json
import sys
import os
assert(len(sys.argv)==3)
data_dir = sys.argv[1]
mode = sys.argv[2]
assert(mode in ['bc', 'dt'])
raw_data_list = []
for filename in os.listdir(data_dir):
with open(os.path.join(data_dir, filename), 'r') as f:
raw_data_list.append(json.load(f))
train_data = []
val_data = []
test_data = []
def clean(s):
clean_toks = ['\n', '\t']
for tok in clean_toks:
s = s.replace(tok, ' ')
return s
for raw_data in raw_data_list:
for task_id in raw_data.keys():
curr_task = raw_data[task_id]
for seq_sample in curr_task['goldActionSequences']:
task_desc = seq_sample['taskDescription']
steps = seq_sample['path']
if len(steps) < 2:
continue
fold = seq_sample['fold']
obs = steps[0]['observation']
action = steps[0]['action']
for i in range(len(steps)-1):
curr_step = steps[i]
next_step = steps[i+1]
score = curr_step['score']
returns_to_go = 1.0 - float(score)
if i != 0:
prev_step = steps[i-1]
prev_action = curr_step['action']
curr_action = next_step['action']
prev_obs = prev_step['observation']
curr_obs = curr_step['observation']
look = curr_step['freelook']
inventory = curr_step['inventory']
if mode == 'bc':
input_str = task_desc + ' </s> ' + curr_obs + ' ' + inventory + ' ' + look + ' </s> <extra_id_0>'\
+ ' </s> ' + prev_action + ' </s> ' + prev_obs + ' </s>'
else:
input_str = task_desc + ' </s> ' + str(returns_to_go) + ' </s> ' + curr_obs + ' ' + inventory + ' ' + look\
+ ' </s> <extra_id_0>' + ' </s> ' + prev_action + ' </s> ' + prev_obs + ' </s>'
label = "<extra_id_0> " + curr_action + ' <extra_id_1>'
else:
curr_action = next_step['action']
curr_obs = curr_step['observation']
look = curr_step['freelook']
inventory = curr_step['inventory']
if mode == 'bc':
input_str = task_desc + ' </s> ' + curr_obs + ' ' + inventory + ' ' + look + ' </s> <extra_id_0>'\
+ ' </s>' + ' </s> ' + '</s>'
else:
input_str = task_desc + ' </s> ' + str(returns_to_go) + ' </s> ' + curr_obs + ' ' + inventory + ' '\
+ look + ' </s> <extra_id_0>' + ' </s>' + ' </s> ' + '</s>'
label = "<extra_id_0> " + curr_action + ' <extra_id_1>'
curr_dat = {'input': clean(input_str), 'target': clean(label)}
if fold == 'train':
train_data.append(curr_dat)
elif fold == 'dev':
val_data.append(curr_dat)
elif fold == 'test':
test_data.append(curr_dat)
with open(f"data/{mode}/sciworld_formatted_train.jsonl", 'w') as f:
for item in train_data:
f.write(json.dumps(item) + "\n")
with open(f"data/{mode}/sciworld_formatted_val.jsonl", 'w') as f:
for item in val_data:
f.write(json.dumps(item) + "\n")
with open(f"data/{mode}/sciworld_formatted_test.jsonl", 'w') as f:
for item in test_data:
f.write(json.dumps(item) + "\n")