forked from neelsoumya/rlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfotheoryfunc.R
131 lines (116 loc) · 4.76 KB
/
infotheoryfunc.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env Rscript
# infotheory.R
# =============================================================================
# Namespace-like method: http://stackoverflow.com/questions/1266279/#1319786
# =============================================================================
infotheoryfunc = new.env()
# =============================================================================
# Normalized mutual information
# =============================================================================
# https://stackoverflow.com/questions/21831953/r-package-available-for-adjusted-mutual-information
infotheoryfunc$f_nij <- function(v1, v2, l1, l2) # contingency table n(i,j)=t(i,j)
{
m <- matrix(0, l1, l2)
for (i in 1:length(v1)) {
m[v1[i],v2[i]] <- m[v1[i], v2[i]] + 1
}
m
}
infotheoryfunc$f_emi <- function(s1, s2, l1, l2, n) # expected mutual information
{
s_emi <- 0
for(i in 1:l1) {
for (j in 1:l2) {
min_nij <- max(1, s1[i] + s2[j] - n)
max_nij <- min(s1[i], s2[j])
n.ij <- seq(min_nij, max_nij) # sequence of consecutive numbers
t1 <- (n.ij / n) * log((n.ij * n) / (s1[i] * s2[j]))
t2 <- exp(
lfactorial(s1[i]) + lfactorial(s2[j]) +
lfactorial(n - s1[i]) + lfactorial(n - s2[j]) -
lfactorial(n) -
lfactorial(n.ij) -
lfactorial(s1[i] - n.ij) -
lfactorial(s2[j] - n.ij) -
lfactorial(n - s1[i] - s2[j] + n.ij)
)
emi <- sum(t1 * t2)
s_emi <- s_emi + emi
}
}
return(s_emi)
}
infotheoryfunc$f_nmi_ami <- function(v1, v2)
{
library(infotheo)
s1 <- tabulate(v1);
s2 <- tabulate(v2);
l1 <- length(s1)
l2 <- length(s2)
N <- length(v1)
tij <- infotheoryfunc$f_nij(v1, v2, l1, l2) # contingency table n(i,j)=t(i,j). this would be equivalent with table(v1,v2)
mi <- infotheo::mutinformation(v1, v2) # function for Mutual Information from package infotheo
h1 <- -sum(s1 * log(s1/N)) / N
h2 <- -sum(s2 * log(s2/N)) / N
nmi <- mi / max(h1, h2) # NMI Normalized MI
emi <- infotheoryfunc$f_emi(s1, s2, l1, l2, N) # EMI Expected MI
ami <- (mi - emi)/max(h1, h2) #AMI Adjusted MI
return(c(normalized_mutual_information=nmi,
adjusted_mutual_information=ami))
}
# =============================================================================
# Randomized dependence coefficient
# =============================================================================
# http://papers.nips.cc/paper/5138-the-randomized-dependence-coefficient.pdf
# https://github.com/lopezpaz/randomized_dependence_coefficient/blob/master/code/algorithms.r
# library(acepack)
# library(energy)
# library(kernlab)
# library(minerva)
infotheoryfunc$computeKernelMatrix <- function(sample) {
library(kernlab)
n <- nrow(sample)
Q <- matrix(apply(sample^2, 1, sum), n, n)
distance <- Q + t(Q) - 2 * sample %*% t(sample)
exp(-kernlab::sigest(sample,scale=NULL)[2]*distance)
}
infotheoryfunc$hsic <- function(sampleX, sampleY) {
N <- nrow(as.matrix(sampleX))
K <- infotheoryfunc$computeKernelMatrix(as.matrix(sampleX))
L <- infotheoryfunc$computeKernelMatrix(as.matrix(sampleY))
KH <- K - 1 / N * matrix(apply(K, 2, sum), N, N)
LH <- L - 1 / N * matrix(apply(L, 2, sum), N, N)
1 / N * sum(sum(KH * t(LH)))
}
hsiccop <- function(sampleX, sampleY) {
sampleX <- apply(as.matrix(sampleX), 2, function(u) ecdf(u)(u))
sampleY <- apply(as.matrix(sampleY), 2, function(u) ecdf(u)(u))
infotheoryfunc$hsic(sampleX, sampleY)
}
infotheoryfunc$rdc <- function(x, y, k=20, s=1/6, f=sin) {
# from https://github.com/lopezpaz/randomized_dependence_coefficient/blob/master/code/algorithms.r
x <- cbind(apply(as.matrix(x), 2, function(u) rank(u)/length(u)), 1)
y <- cbind(apply(as.matrix(y), 2, function(u) rank(u)/length(u)), 1)
x <- s / ncol(x) * x %*% matrix(rnorm(ncol(x) * k), ncol(x))
y <- s / ncol(y) * y %*% matrix(rnorm(ncol(y) * k), ncol(y))
cancor(cbind(f(x), 1), cbind(f(y), 1))$cor[1]
}
#infotheoryfunc$rdc_detail <- function(x, y, k=20, s=1/6, f=sin) {
# # RNC, based on the above.
# # *** Not finished. Intent is to try to extract *which* function is best.
# xm <- cbind(apply(as.matrix(x), 2, function(u) rank(u)/length(u)), 1)
# ym <- cbind(apply(as.matrix(y), 2, function(u) rank(u)/length(u)), 1)
# wx <- matrix(rnorm(ncol(xm) * k, 0, s), ncol(xm), k)
# wy <- matrix(rnorm(ncol(ym) * k, 0, s), ncol(ym), k)
# tx <- cbind(f(xm %*% wx), 1)
# ty <- cbind(f(ym %*% wy), 1)
# cc <- cancor(tx, ty)
# list(
# rdc=cc$cor[1],
# f=f,
# xcoef=cc$xcoef[1],
# ycoef=cc$ycoef[1],
# xcenter=cc$xcenter[1],
# ycenter=cc$ycenter[1]
# )
#}