-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_next_level_training.py
executable file
·94 lines (80 loc) · 2.41 KB
/
gen_next_level_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python
import numpy
from utils import (
shuffle, train_val_test_split, get_gene_ontology)
import sys
import os
import random
import pandas as pd
LAMBDA = 24
DATA_ROOT = 'data/fofe/'
CUR_LEVEL = 'level_1/'
NEXT_LEVEL = 'level_2/'
go = get_gene_ontology()
def get_go_set(go_id):
go_set = set()
q = deque()
q.append(go_id)
while len(q) > 0:
g_id = q.popleft()
go_set.add(g_id)
for ch_id in go[g_id]['children']:
q.append(ch_id)
return go_set
def get_subtree_set(go_id):
node = go[go_id]
if 'go_set' in node:
return node['go_set']
go_set = set()
go_set.add(go_id)
for ch_id in node['children']:
if ch_id not in go_set:
go_set |= get_subtree_set(ch_id)
node['go_set'] = go_set
return go_set
def load_data(parent_id, go_id):
df = pd.read_pickle(DATA_ROOT + NEXT_LEVEL + 'data/' + go_id + '.pkl')
return df
def main(*args, **kwargs):
if len(args) < 3:
raise Exception('Please provide parent id and go id')
parent_id = args[1]
go_id = args[2]
if len(args) == 4:
level = int(args[3])
global CUR_LEVEL
global NEXT_LEVEL
CUR_LEVEL = 'level_' + str(level) + '/'
NEXT_LEVEL = 'level_' + str(level + 1) + '/'
df = load_data(parent_id, go_id)
go_node = go[go_id]
for ch_id in go_node['children']:
ch_set = get_subtree_set(ch_id)
positives = list()
negatives = list()
for i in df.index:
pos = False
for g_id in df['gos'][i]:
if g_id in ch_set:
pos = True
break
if pos:
positives.append(i)
else:
negatives.append(i)
n = min(len(positives), len(negatives))
if n > 0:
shuffle(positives)
shuffle(negatives)
positives = positives[:n]
negatives = negatives[:n]
filename = DATA_ROOT + NEXT_LEVEL + go_id + '/' + ch_id + '.pkl'
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
labels = [0] * n + [1] * n
index = negatives + positives
new_df = df.reindex(index)
new_df['labels'] = pd.Series(labels, index=new_df.index)
new_df.to_pickle(filename)
if __name__ == '__main__':
main(*sys.argv)