-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_fofe.py
executable file
·54 lines (44 loc) · 1.27 KB
/
get_fofe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python
import sys
import numpy
import itertools
import pandas as pd
AA = 'ARNDCEQGHILKMFPSTWYV'
ALPHA = 0.999
NGRAM = 3
DATA_ROOT = 'data/fofe/'
FILENAME = 'test.txt'
def load_data():
docs = list()
proteins = list()
with open(DATA_ROOT + FILENAME, 'r') as f:
for line in f:
items = line.split('\t')
prot_id = items[0]
seq = items[1]
docs.append(seq)
proteins.append(prot_id)
return proteins, docs
def convert_data(docs):
bgram = [''.join(item) for item in itertools.product(AA, repeat=NGRAM)]
bgram_index = dict()
for i, s in enumerate(bgram):
bgram_index[s] = i
X = numpy.zeros((len(docs), len(bgram)))
for doc in range(0, len(docs)):
d = docs[doc][:-1]
seq = [d[i:(i + NGRAM)] for i in range(len(d) - NGRAM + 1)]
for word in seq:
X[doc, :] *= ALPHA
col_i = bgram_index[word]
X[doc, col_i] += 1
return X
def main(*args, **kwargs):
proteins, docs = load_data()
X = convert_data(docs)
data = {
'proteins': numpy.array(proteins), 'data': list(X), 'sequence': docs}
df = pd.DataFrame(data)
df.to_pickle(DATA_ROOT + 'test.pkl')
if __name__ == '__main__':
main(*sys.argv)