-
Notifications
You must be signed in to change notification settings - Fork 14
/
statements.yml
1612 lines (1465 loc) · 55.2 KB
/
statements.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
- theorem: 1
authors: many versions
link: https://github.com/coq-community/qarith-stern-brocot/blob/master/theories/sqrt2.v
comment: One of many proofs
statement: |
Theorem sqrt2_not_rational : forall p q : nat, q <> 0 -> p * p = 2 * (q * q) -> False.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 2
authors: Herman Geuvers et al.
link: https://github.com/coq-community/corn/blob/master/fta/FTA.v#L188
statement: |
Lemma FTA : forall f : CCX, nonConst _ f -> {z : CC | f ! z [=] [0]}.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 3
authors: Milad Niqui
link: https://github.com/coq-community/qarith-stern-brocot/blob/master/theories/Q_denumerable.v
statement: |
Definition same_cardinality (A:Type) (B:Type) :=
{ f : A -> B & { g : B -> A |
forall b,(compose _ _ _ f g) b = (identity B) b /\
forall a,(compose _ _ _ g f) a = (identity A) a } }.
Definition is_denumerable A := same_cardinality A nat.
Theorem Q_is_denumerable: is_denumerable Q.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 3
authors: Daniel Schepler
link: https://github.com/coq-community/topology/blob/master/theories/ZornsLemma/CountableTypes.v
statement: |
Inductive CountableT (X:Type) : Prop :=
| intro_nat_injection: forall f:X->nat, injective f -> CountableT X.
Lemma Q_countable: CountableT Q.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 4
authors: Frédérique Guilhot
link: https://github.com/coq-community/HighSchoolGeometry/blob/master/theories/euclidien_classiques.v
statement: |
Theorem Pythagore :
forall A B C : PO,
orthogonal (vec A B) (vec A C) <->
Rsqr (distance B C) = Rsqr (distance A B) + Rsqr (distance A C) :>R.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- FunctionalExtensionality.functional_extensionality_dep
- classic
- other geometry axioms
- theorem: 4
authors: Gabriel Braun
link: https://github.com/GeoCoq/GeoCoq/blob/master/Tarski_dev/Ch15_lengths.v
comment: A synthetic proof in the context of Tarski's axioms.
statement: |
Lemma pythagoras :
forall
(Tn : Tarski_neutral_dimensionless)
(TnEQD : Tarski_neutral_dimensionless_with_decidable_point_equality Tn),
Tarski_2D TnEQD ->
Tarski_euclidean TnEQD ->
forall
O E E' A B C AC BC AB AC2 BC2
AB2 : Tpoint,
O <> E ->
Per A C B ->
Length O E E' A B AB ->
Length O E E' A C AC ->
Length O E E' B C BC ->
Prod O E E' AC AC AC2 ->
Prod O E E' BC BC BC2 ->
Prod O E E' AB AB AB2 ->
Sum O E E' AC2 BC2 AB2.
reproducibility: last checked December 2022 with Coq 8.16
constructive: hypotheses partially classical
axioms: [Eqdep.Eq_rect_eq.eq_rect_eq]
- theorem: 6
authors: Russell O'Connor
link: https://github.com/coq-community/hydra-battles/blob/master/theories/goedel/
comment: The second theorem assumes the last two Hilbert-Bernays-Loeb derivability conditions.
statement: |
(* in goedel1.v *)
Theorem Goedel'sIncompleteness1st :
wConsistent T ->
exists f : Formula,
~ SysPrf T f /\
~ SysPrf T (notH f) /\ (forall v : nat, ~ In v (freeVarFormula LNN f)).
(* in goedel2.v *)
Hypothesis HBL2 : forall f, SysPrf T (impH (box f) (box (box f))).
Hypothesis HBL3 : forall f g, SysPrf T (impH (box (impH f g)) (impH (box f) (box g))).
Theorem SecondIncompletness :
SysPrf T Con -> Inconsistent LNT T.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 7
authors: Nathanaëlle Courant
link: https://github.com/Ekdohibs/coq-proofs/blob/master/Reciprocity/Reciprocity.v#L1560
statement: |
Theorem Quadratic_reciprocity :
(legendre p q) * (legendre q p) = (-1) ^ (((p - 1) / 2) * ((q - 1) / 2)).
reproducibility: last checked December 2022 with Coq 8.16
constructive: no
axioms: [proof_irrelevance, constructive_definite_description, classic]
- theorem: 10
authors: Laurent Théry
link: https://github.com/math-comp/math-comp/blob/master/mathcomp/solvable/cyclic.v
statement: |
Theorem Euler_exp_totient a n : coprime a n -> a ^ totient n = 1 %[mod n].
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 11
authors: Russell O'Connor
link: https://coq.inria.fr/cocorico/NotFinitePrimes
comment: This statement was formerly in cocorico, compatible with Coq 7.3
statement: |
Theorem ManyPrimes : ~(EX l:(list Prime) | (p:Prime)(In p l)).
reproducibility: old proof compatible with Coq 7.3
constructive: yes
axioms: []
- theorem: 11
authors: Georges Gonthier
link: https://x80.org/rhino-coq/
comment: There are other proofs of this theorem but you can browse this one in your browser with JsCoq.
statement: |
Lemma prime_above m : {p | m < p & prime p}.
reproducibility: last checked December 2022 with Coq 8.16
constructive: yes
axioms: []
- theorem: 13
authors: Jean-François Dufourd
link: https://github.com/coq-contribs/euler-formula/blob/master/Euler3.v
statement: |
(* nc : number of connected components
nv : number of vertices
ne : number of edges
nf : number of faces
nd : number of darts
plf m : m is a planar formation
inv_qhmap : see Euler1.v *)
Theorem Euler_Poincare_criterion: forall m:fmap,
inv_qhmap m -> (plf m <-> (nv m + ne m + nf m - nd m) / 2 = nc m).
reproducibility: as of December 2022, build success with Coq 8.13.2, failure with 8.14.1 (using git tag v8.11.0)
constructive: to be determined
axioms: [Euler3.expf_clos_symm]
- theorem: 14
authors: Jean-Marie Madiot
link: https://github.com/coq-community/coqtail-math/blob/master/Reals/Rzeta2.v
statement: |
Theorem zeta2_pi_2_6 : Rser_cv (fun n => 1 / (n + 1) ^ 2) (PI ^ 2 / 6).
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- classic
- theorem: 15
authors: Luís Cruz-Filipe
link: https://github.com/coq-community/corn/blob/master/ftc/FTC.v#L181
statement: |
Theorem FTC1 : Derivative J pJ G F.
Theorem FTC2 : {c : IR | Feq J (G{-}G0) [-C-]c}.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 15
authors: The Coq development team
link: https://coq.inria.fr/library/Coq.Reals.RiemannInt.html
statement: |
Lemma FTC_Riemann :
forall (f:C1_fun) (a b:R) (pr:Riemann_integrable (derive f (diff0 f)) a b),
RiemannInt pr = f b - f a.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- classic
- theorem: 16
authors: Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub
link: https://github.com/math-comp/Abel/blob/7a85e03fcd1b8d772d592fd53afe753b49f8fe96/theories/abel.v#L1454-L1455
statement: |
Lemma example_not_solvable_by_radicals :
~ solvable_by_radical_poly ('X^5 - 4 *: 'X + 2 : {poly rat}).
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 17
authors: Coqtail team
link: https://github.com/coq-community/coqtail-math/blob/master/Complex/Cexp.v
comment: De Moivre's formula is easily deduced from Euler's formula thanks to e^(n*z)=(e^z)^n.
statement: |
Lemma Cexp_trigo_compat : forall a, Cexp (0 +i a) = cos a +i sin a.
Lemma Cexp_mult : forall a n, Cexp (INC n * a) = (Cexp a) ^ n.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- theorem: 18
authors: Valentin Blot
link: https://github.com/coq-community/corn/blob/master/liouville/Liouville.v
statement: |
Theorem Liouville_theorem2 :
{n : nat | {C : IR | Zero [<] C | forall (x : Q),
(C[*]inj_Q IR (1#Qden x)%Q[^]n) [<=] AbsIR (inj_Q _ x [-] a)}}.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 19
authors: Guillaume Allais, Jean-Marie Madiot
link: https://github.com/coq-community/coqtail-math/blob/master/Arith/Lagrange_four_square.v
comment: Coq extraction produces a program that indeed computes a, b, c, d
statement: |
Theorem lagrange_4_square_theorem : forall n, 0 <= n ->
{ a : _ & { b: _ & { c : _ & { d |
n = a * a + b * b + c * c + d * d } } } }.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 20
authors: Laurent Théry
link: https://github.com/coq-contribs/sum-of-two-square/blob/master/TwoSquares.v#L641
statement: |
Definition sum_of_two_squares :=
fun p => exists a , exists b , p = a * a + b * b.
Theorem two_squares_exists:
forall p, prime p -> p = 2 \/ Zis_mod p 1 4 -> sum_of_two_squares p.
reproducibility: as of December 2022, build success with Coq 8.10.2, failure with 8.11.2 (using git tag v8.10.0)
constructive: yes
axioms: []
- theorem: 20
authors: Laurent Théry
link: https://github.com/thery/twoSquare/blob/master/fermat2.v
comment: proof using gaussian integers and mathcomp
statement: |
Lemma sum2sprime p :
odd p -> prime p -> p \is a sum_of_two_square = (p %% 4 == 1).
reproducibility: last checked December 2022 with Coq 8.16
constructive: yes
axioms: []
- theorem: 22
authors: Pierre-Marie Pédrot
link: https://github.com/coq-community/coqtail-math/blob/master/Reals/Logic/Runcountable.v
statement: |
Theorem R_uncountable : forall (f : nat -> R),
{l : R | forall n, l <> f n}.
Theorem R_uncountable_strong : forall (f : nat -> R) (x y : R),
x < y -> {l : R | forall n, l <> f n & x <= l <= y}.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- theorem: 22
authors: C-CoRN team
link: https://github.com/coq-community/corn/blob/master/reals/RealCount.v#L362
statement: |
Theorem reals_not_countable :
forall (f : nat -> IR), {x :IR | forall n : nat, x [#] (f n)}.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 23
authors: David Delahaye
link: https://github.com/coq-contribs/fermat4/blob/master/Pythagorean.v
statement: |
Lemma pytha_thm3 : forall a b c : Z,
is_pytha a b c -> Zodd a ->
exists p : Z, exists q : Z, exists m : Z,
a = m * (q * q - p * p) /\ b = 2 * m * (p * q) /\
c = m * (p * p + q * q) /\ m >= 0 /\
p >= 0 /\ q > 0 /\ p <= q /\ (rel_prime p q) /\
(distinct_parity p q).
reproducibility: as of December 2022, build success with Coq 8.11.2, failure with 8.12.2 (using git tag v8.10.0)
constructive: no
axioms:
- Coq's axioms for real numbers
- theorem: 25
authors: Hugo Herbelin
link: https://github.com/coq-contribs/schroeder/blob/master/Schroeder.v
statement: |
Theorem Schroeder : A <=_card B -> B <=_card A -> A =_card B.
reproducibility: as of December 2022, build success with Coq 8.16 (using git tag v8.11.0)
constructive: no
axioms:
- classic
- Extensionality_Ensembles
- theorem: 25
authors: Daniel Schepler
link: https://github.com/coq-community/topology/blob/master/theories/ZornsLemma/CSB.v
statement: |
Theorem CSB (X Y : Type) (f : X -> Y) (g : Y -> X) :
injective f ->
injective g ->
exists h : X -> Y, bijective h.
reproducibility: Good (CI)
constructive: no
axioms:
- constructive_definite_description
- classic
- theorem: 26
authors: Guillaume Allais
link: https://coq.inria.fr/library/Coq.Reals.Ratan.html
statement: |
Lemma PI_2_aux : {z : R | 7 / 8 <= z <= 7 / 4 /\ - cos z = 0}.
Definition PI := 2 * proj1_sig PI_2_aux.
Definition PI_tg n := / INR (2 * n + 1).
Lemma exists_PI : {l:R | Un_cv (fun N => sum_f_R0 (tg_alt PI_tg) N) l}.
Definition Alt_PI : R := 4 * (let (a,_) := exist_PI in a).
Theorem Alt_PI_eq : Alt_PI = PI.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- classic
- theorem: 26
authors: Luís Cruz-Filipe
link: https://github.com/coq-community/corn/blob/master/transc/MoreArcTan.v#L553
statement: |
Lemma ArcTan_one : ArcTan One[=]Pi[/]FourNZ.
Lemma arctan_series : forall c : IR,
forall (Hs :
fun_series_convergent_IR
(olor ([--]One) One)
(fun i =>
(([--]One)[^]i[/]nring (S (2*i))
[//] nringS_ap_zero _ (2*i)){**}Fid IR{^}(2*i+1)))
Hc,
FSeries_Sum Hs c Hc[=]ArcTan c.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 27
authors: Frédérique Guilhot
link: https://github.com/coq-community/HighSchoolGeometry/blob/master/theories/angles_vecteurs.v
statement: |
Theorem somme_triangle :
forall A B C : PO,
A <> B :>PO ->
A <> C :>PO ->
B <> C :>PO ->
plus (cons_AV (vec A B) (vec A C))
(plus (cons_AV (vec B C) (vec B A)) (cons_AV (vec C A) (vec C B))) =
image_angle pi :>AV.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- classic
- many geometry axioms
- theorem: 27
authors: Boutry, Gries, Narboux
link: https://github.com/GeoCoq/GeoCoq/blob/master/Meta_theory/Parallel_postulates/parallel_postulates.v
comment: It is shown that the sum of angles is two rights is equivalent to other versions of the parallel postulate
statement: |
Theorem equivalent_postulates_assuming_greenberg_s_axiom :
greenberg_s_axiom ->
all_equiv
(alternate_interior_angles_postulate::
alternative_playfair_s_postulate::
alternative_proclus_postulate::
alternative_strong_parallel_postulate::
consecutive_interior_angles_postulate::
euclid_5::
euclid_s_parallel_postulate::
existential_playfair_s_postulate::
existential_thales_postulate::
inverse_projection_postulate::
midpoint_converse_postulate::
perpendicular_transversal_postulate::
postulate_of_transitivity_of_parallelism::
playfair_s_postulate::
posidonius_postulate::
universal_posidonius_postulate::
postulate_of_existence_of_a_right_lambert_quadrilateral::
postulate_of_existence_of_a_right_saccheri_quadrilateral::
postulate_of_existence_of_a_triangle_whose_angles_sum_to_two_rights::
postulate_of_existence_of_similar_triangles::
postulate_of_parallelism_of_perpendicular_transversals::
postulate_of_right_lambert_quadrilaterals::
postulate_of_right_saccheri_quadrilaterals::
postulate_of_transitivity_of_parallelism::
proclus_postulate::
strong_parallel_postulate::
tarski_s_parallel_postulate::
thales_postulate::
thales_converse_postulate::
triangle_circumscription_principle::
triangle_postulate::
nil).
reproducibility: last checked December 2022 with Coq 8.16
constructive: yes
axioms: [Eqdep.Eq_rect_eq.eq_rect_eq]
- theorem: 28
authors: Magaud and Narboux
link: https://github.com/coq-contribs/projective-geometry/blob/master/Plane/hexamys.v
statement: |
Definition is_hexamy A B C D E F :=
(A<>B / A<>C / A<>D / A<>E / A<>F /
B<>C / B<>D / B<>E / B<>F /
C<>D / C<>E / C<>F /
D<>E / D<>F /
E<>F) /
let a:= inter (line B C) (line E F) in
let b:= inter (line C D) (line F A) in
let c:= inter (line A B) (line D E) in
Col a b c.
Lemma hexamy_prop: pappus_strong -> forall A B C D E F,
(line C D) <> (line A F) ->
(line B C) <> (line E F) ->
(line A B) <> (line D E) ->
(line A C) <> (line E F) ->
(line B F) <> (line C D) ->
is_hexamy A B C D E F -> is_hexamy B A C D E F.
reproducibility: as of December 2022, build success with Coq 8.13.2, failure with 8.14.1 (using git tag v8.10.0)
constructive: no
axioms: [many projective geometry axioms, including decidability of incidence]
- theorem: 29
authors: Benjamin Grégoire, Loïc Pottier, and Laurent Théry
link: https://github.com/coq/coq/blob/master/test-suite/success/Nsatz.v#L376
link_description: Coq's test suite
statement: |
Lemma Feuerbach: forall A B C A1 B1 C1 O A2 B2 C2 O2:point,
forall r r2:R,
X A = 0 -> Y A = 0 -> X B = 1 -> Y B = 0->
middle A B C1 -> middle B C A1 -> middle C A B1 ->
distance2 O A1 = distance2 O B1 ->
distance2 O A1 = distance2 O C1 ->
collinear A B C2 -> orthogonal A B O2 C2 ->
collinear B C A2 -> orthogonal B C O2 A2 ->
collinear A C B2 -> orthogonal A C O2 B2 ->
distance2 O2 A2 = distance2 O2 B2 ->
distance2 O2 A2 = distance2 O2 C2 ->
r^2%Z = distance2 O A1 ->
r2^2%Z = distance2 O2 A2 ->
distance2 O O2 = (r + r2)^2%Z
\/ distance2 O O2 = (r - r2)^2%Z
\/ collinear A B C.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- theorem: 30
authors: Jean-Marie Madiot
link: https://github.com/coq-community/coq-100-theorems/blob/master/ballot.v
statement: |
Theorem bertrand_ballot p q :
let l := filter (fun votes => count_votes votes "A" =? p) (picks (p + q) ["A"; "B"]) in
p >= q ->
(p + q) * List.length (filter (throughout (wins "A" "B")) l) =
(p - q) * List.length (filter (wins "A" "B") l).
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 31
authors: Frédéric Blanqui
link: https://github.com/fblanqui/color/blob/master/Util/Set_/Ramsey.v
link_description: color
statement: |
Theorem ramsey A (W : set A) n (P : Pinf W) B : forall (C : Pf B)
(f : Pcard P (S n) -> elts C), Proper (Pcard_equiv ==> elts_eq) f ->
exists c (Q : Pinf P), forall X : Pcard Q (S n), f (Pcard_subset Q X) = c.
reproducibility: Good (CI)
constructive: no
axioms:
- CoLoR.Util.Logic.DepChoice.dep_choice
- ClassicalEpsilon.constructive_indefinite_description
- Description.constructive_definite_description
- classic
- theorem: 32
authors: Georges Gonthier, Benjamin Werner
link: https://github.com/coq-community/fourcolor/blob/master/theories/fourcolor.v
statement: |
Theorem four_color m : simple_map m -> colorable_with 4 m.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 34
authors: Coqtail
link: https://github.com/coq-community/coqtail-math/blob/master/Reals/Rseries/Rseries_RiemannInt.v
statement: |
Lemma harmonic_series_equiv : (sum_f_R0 (fun n ⇒ / (S n))) ~ (fun n ⇒ ln (S (S n))).
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- classic
- theorem: 35
authors: Luís Cruz-Filipe
link: https://github.com/coq-community/corn/blob/master/ftc/Taylor.v#L355
statement: |
Theorem Taylor : forall e, Zero [<] e -> forall Hb',
{c : IR | Compact (Min_leEq_Max a b) c |
forall Hc, AbsIR (F b Hb'[-]Part _ _ Taylor_aux[-]deriv_Sn c Hc[*] (b[-]a)) [<=] e}.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 37
authors: Frédéric Chardard
link: https://github.com/coq-community/coq-100-theorems/blob/master/cardan_ferrari.v
statement: |
Definition Cardan_Tartaglia_formula:=fun (a1:C) (a2:C) (a3:C) (n:nat) =>
let s:=-a1/3 in
let p:=a2+2*s*a1+3*Cpow s 2 in
let q:=a3+a2*s+a1*Cpow s 2+Cpow s 3 in
let Delta:=(Cpow (q/2) 2)+(Cpow (p/3) 3) in
let alpha : C :=if(Ceq_dec p 0) then (RtoC 0) else (cubicroot (-(q/2)+Csqrt Delta)) in
let beta:=if(Ceq_dec p 0) then -cubicroot q else -(p/3)/alpha in
s+(alpha*Cpow CJ n+beta*Cpow CJ (n+n)).
Theorem Cardan_Tartaglia : forall a1 a2 a3 :C,
let u1:=(Cardan_Tartaglia_formula a1 a2 a3 0) in
let u2:=(Cardan_Tartaglia_formula a1 a2 a3 1) in
let u3:=(Cardan_Tartaglia_formula a1 a2 a3 2) in
forall u:C, (u-u1)*(u-u2)*(u-u3)=Cpow u 3+a1*Cpow u 2+a2*u+a3.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- classic
- theorem: 38
authors: Jean-Marie Madiot
link: https://github.com/coq-community/coq-100-theorems/blob/master/mean.v
comment: using forward-backward induction
statement: |
Theorem geometric_arithmetic_mean (a : nat -> R) (n : nat) :
n <> O ->
(forall i, (i < n)%nat -> 0 <= a i) ->
prod n a <= (sum n a / INR n) ^ n
/\
(prod n a = (sum n a / INR n) ^ n -> forall i, (i < n)%nat -> a i = a O).
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- theorem: 41
authors: Daniel de Rauglaudre
link: https://github.com/roglo/puiseuxth/blob/master/coq/Puiseux.v
statement: |
Theorem puiseux_series_algeb_closed : ∀ (α : Type) (R : ring α) (K : field R),
algeb_closed_field K
→ ∀ pol : polynomial (puiseux_series α),
degree (ps_zerop K) pol ≥ 1
→ ∃ s : puiseux_series α, (ps_pol_apply pol s = 0)%ps.
reproducibility: as of December 2022, build success with Coq 8.16
constructive: no
axioms:
- Puiseux_series.LPO (equivalent to sig_forall_dec)
- theorem: 42
authors: Coqtail
link: https://github.com/coq-community/coqtail-math/blob/master/Reals/Triangular.v
statement: |
Lemma sum_reciprocal_triangular : Rser_cv (fun n => / triangle (S n)) 2.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- theorem: 44
authors: The Coq development team
link: https://coq.inria.fr/library/Coq.Reals.Binomial.html
comment: For the non-constructive type R
statement: |
Lemma binomial :
forall (x y:R) (n:nat),
(x + y) ^ n = sum_f_R0 (fun i:nat => C n i * x ^ i * y ^ (n - i)) n.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- theorem: 44
authors: Laurent Thery & Jose C. Almeida
link: https://github.com/coq-contribs/rsa/blob/master/Binomials.v
comment: For the type nat
statement: |
Theorem exp_Pascal :
forall a b n : nat,
power (a + b) n =
sum_nm n 0 (fun k : nat => binomial n k * (power a (n - k) * power b k)).
reproducibility: last checked December 2022 with Coq 8.16
constructive: yes
axioms: []
- theorem: 44
authors: Jean-Marie Madiot
link: https://github.com/coq-community/coqtail-math/blob/master/Hierarchy/Commutative_ring_binomial.v#L271
comment: For any commutative ring X.
statement: |
Definition newton_sum n a b : X :=
CRsum (fun k => (Nbinomial n k) ** (a ^ k) * (b ^ (n - k))) n.
Theorem Newton : forall n a b, (a + b) ^ n == newton_sum n a b.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 46
authors: Frédéric Chardard
link: https://github.com/coq-community/coq-100-theorems/blob/master/cardan_ferrari.v
comment: For the non-constructive type R
statement: |
Theorem Ferrari_formula: forall (a:C) (b:C) (c:C) (d:C),
let s:=-a/4 in
let p:= b+3*s*a+6*Cpow s 2 in
let q:= c+2*b*s+3*a*Cpow s 2+4*Cpow s 3 in
let r:= d+c*s+b*Cpow s 2+a*Cpow s 3+Cpow s 4 in
let lambda:=Cardan_Tartaglia_formula (-p/2) (-r) (r*p/2-/8*Cpow q 2) 0 in
let A:=Csqrt(2*lambda-p) in
let cond:=(Ceq_dec (2*lambda) p) in
let B:=if cond then (RtoC 0) else (-q/(2*A)) in
let z1:=if cond then Csqrt (binom_solution p r 0)
else binom_solution A (B+lambda) 0 in
let z2:=if cond then -Csqrt (binom_solution p r 0)
else binom_solution A (B+lambda) 1 in
let z3:=if cond then Csqrt (binom_solution p r 1)
else binom_solution (-A) (-B+lambda) 0 in
let z4:=if cond then -Csqrt (binom_solution p r 1)
else binom_solution (-A) (-B+lambda) 1 in
let u1:=z1+s in
let u2:=z2+s in
let u3:=z3+s in
let u4:=z4+s in
forall u:C, (u-u1)*(u-u2)*(u-u3)*(u-u4)=Cpow u 4+a*Cpow u 3+b*Cpow u 2+c*u+d.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- classic
- theorem: 49
authors: Sidi Ould Biha
link: https://github.com/math-comp/math-comp/blob/master/mathcomp/algebra/mxpoly.v#L412
statement: |
Theorem Cayley_Hamilton (R : comRingType) n' (A : 'M[R]_n'.+1) :
horner_mx A (char_poly A) = 0.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 51
authors: unknown (Inria, Microsoft)
link: https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/binomial.v#L52
comment: (c) Copyright 2006-2016 Microsoft Corporation and Inria. Distributed under the terms of CeCILL-B.
statement: |
Theorem Wilson : forall p, p > 1 -> prime p = (p %| ((p.-1)`!).+1).
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 51
authors: Laurent Théry
link: https://github.com/coq-contribs/sum-of-two-square/blob/master/Wilson.v
comment: LGPL licence
statement: |
Theorem wilson: forall p, prime p -> Zis_mod (Zfact (p - 1)) (- 1) p.
reproducibility: see <a href="#20">#20</a>
constructive: yes
axioms: []
- theorem: 52
authors: unknown (Inria, Microsoft)
link: https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/finset.v#L1542
statement: |
Lemma card_powerset (T : finType) (A : {set T}) : #|powerset A| = 2 ^ #|A|.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 52
authors: Pierre Letouzey
link: https://github.com/coq-contribs/fsets/blob/master/PowerSet.v#L214
statement: |
Lemma powerset_cardinal:
forall s, MM.cardinal (powerset s) = two_power (M.cardinal s).
reproducibility: as of December 2022, build success with Coq 8.10.2, failure with 8.11.2 (using git tag v8.10.0)
constructive: yes
axioms: []
- theorem: 53
authors: Sophie Bernard and Laurence Rideau
link: https://github.com/Sobernard/Lindemann/blob/master/LindemannTheorem.v
comment: The concept algebraicOver is from the Mathematical Components library, and the definition of PI is from the Coq standard library.
statement: |
Notation "x 'is_algebraic'" := (algebraicOver QtoC x) (at level 55).
Theorem Pi_trans_by_LB : ~ (RtoC Rtrigo1.PI is_algebraic).
- theorem: 54
authors: Jean-Marie Madiot
link: https://github.com/coq-community/coq-100-theorems/blob/master/konigsberg_bridges.v
statement: |
Theorem konigsberg_bridges :
let E := [(0, 1); (0, 2); (0, 3); (1, 2); (1, 2); (2, 3); (2, 3)] in
forall p, path p -> eulerian E p -> False.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 55
authors: Benjamin Grégoire, Loïc Pottier, and Laurent Théry
link: https://github.com/coq/coq/blob/master/test-suite/success/Nsatz.v#L454
link_description: Coq's test suite
statement: |
Lemma chords: forall O A B C D M:point,
equaldistance O A O B ->
equaldistance O A O C ->
equaldistance O A O D ->
collinear A B M -> collinear C D M ->
scalarproduct A M B = scalarproduct C M D
\/ parallel A B C D.
reproducibility: Good (CI)
constructive: no
axioms:
- ClassicalDedekindReals.sig_forall_dec
- functional_extensionality_dep
- theorem: 56
authors: Sophie Bernard
link: https://github.com/Sobernard/Lindemann/blob/master/LindemannTheorem.v
comment: The concept algebraicOver is from the Mathematical Components library.
statement: |
Notation "x 'is_algebraic'" := (algebraicOver QtoC x) (at level 55).
Theorem HermiteLindemann (x : complexR) :
x != 0 -> x is_algebraic -> ~ ((Cexp x) is_algebraic).
- theorem: 57
authors: Julien Narboux
link: https://github.com/coq-contribs/area-method/blob/master/pythagoras_difference_lemmas.v
statement: |
Definition Py A B C := A**B * A**B + B**C * B**C - A**C * A**C.
Lemma herron_qin : forall A B C,
S A B C * S A B C = 1 / (2*2*2*2) * (Py A B A * Py A C A - Py B A C * Py B A C).
reproducibility: as of December 2022, build success with Coq 8.13.2 and 8.14.1, failure with 8.15.2 and 8.16.0 (using git tag v8.10.0)
constructive: no
axioms:
- classic
- many geometry axioms
- theorem: 58
authors: Pierre Letouzey
link: https://github.com/coq-contribs/fsets/blob/master/PowerSet.v#L261
statement: |
Lemma powerset_k_cardinal : forall s k,
MM.cardinal (powerset_k s k) = binomial (M.cardinal s) k.
reproducibility: see <a href="#52">#52</a>
constructive: yes
axioms: []
- theorem: 59
authors: Avraham Shinnar, Barry Trager
link: https://github.com/IBM/FormalML/blob/b9a36a612c01d6f7e05ae7f68a057d3a4728761d/coq/QLearn/slln.v#L7287
statement: |
Lemma Ash_6_2_5
{Ts:Type} {dom: SigmaAlgebra Ts} {Prts: ProbSpace dom}.
(X : nat -> Ts -> R) (mu : R)
{rv : forall n, RandomVariable dom borel_sa (X n)}
{isfe : forall n, IsFiniteExpectation Prts (X n)} :
(forall n, FiniteExpectation Prts (X n) = mu) ->
iid_rv_collection Prts borel_sa X ->
almost Prts (fun omega => is_lim_seq (fun n => ((rvsum X n) omega)/(INR (S n))) mu).
reproducibility: as of December 2022, build success with Coq 8.12 (use the provided .opam file with an additional coq <= 8.12.1 constraint)
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- relational_choice
- propositional_extensionality
- proof_irrelevance
- functional_extensionality_dep
- eq_rect_eq
- dependent_unique_choice
- constructive_indefinite_description
- constructive_definite_description
- classic
- JMeq_eq
- Extensionality_Ensembles
- theorem: 60
authors: The Coq development team
link: https://coq.inria.fr/library/Coq.ZArith.Znumtheory.html
statement: |
Inductive Zdivide (a b:Z) : Prop :=
Zdivide_intro : forall q:Z, b = q * a -> Zdivide a b.
Notation "( a | b )" := (Zdivide a b) (at level 0) : Z_scope.
Inductive Zis_gcd (a b d:Z) : Prop :=
Zis_gcd_intro :
(d | a) ->
(d | b) ->
(forall x:Z, (x | a) -> (x | b) -> (x | d)) ->
Zis_gcd a b d.
Inductive Bezout (a b d:Z) : Prop :=
Bezout_intro : forall u v:Z, u * a + v * b = d -> Bezout a b d.
Lemma Zis_gcd_bezout : forall a b d:Z, Zis_gcd a b d -> Bezout a b d.
reproducibility: Good (CI)
constructive: yes
axioms: []
- theorem: 61
authors: Julien Narboux
link: https://github.com/coq-contribs/area-method/blob/master/examples_2.v
statement: |
Theorem Ceva :
forall A B C D E F G P : Point,
inter_ll D B C A P ->
inter_ll E A C B P ->
inter_ll F A B C P ->
F <> B ->
D <> C ->
E <> A ->
parallel A F F B ->
parallel B D D C ->
parallel C E E A ->
(A ** F / F ** B) * (B ** D / D ** C) * (C ** E / E ** A) = 1.
reproducibility: see <a href="#57">#57</a>
constructive: no
axioms:
- classic
- many geometry axioms
- theorem: 62
authors: Avraham Shinnar, Barry Trager
link: https://github.com/IBM/FormalML/blob/b9a36a612c01d6f7e05ae7f68a057d3a4728761d/coq/ProbTheory/MartingaleStopped.v#L1404-L1504
comment: <a href="https://formalml.github.io/DSML22/documentation/html/FormalML.ProbTheory.MartingaleStopped.html#optional_stopping_time">Documentation with comments</a>
statement: |
Context
{Ts:Type}
{σ: SigmaAlgebra Ts}
(prts: ProbSpace σ)
(F : nat -> SigmaAlgebra Ts)
{filt:IsFiltration F}
{sub:IsSubAlgebras σ F}
(τ:Ts -> option nat)
{is_stop:IsStoppingTime τ F}
(Y : nat -> Ts -> R)
{rv:forall n, RandomVariable σ borel_sa (Y n)}
{isfe:forall n, IsFiniteExpectation prts (Y n)}
{adapt:IsAdapted borel_sa Y F}
(conditions:
(exists (N:nat),
almost prts (fun ω => match τ ω with
| Some k => (k <= N)%nat
| None => False
end))
\/
(almost prts (fun ω => τ ω <> None)
/\ exists (K:R),
(forall n, almost prts (fun ω => Rabs (Y n ω) < K)))
\/
(Rbar_IsFiniteExpectation
prts
(fun ω => match τ ω with
| Some n => INR n
| None => p_infty
end)
/\ exists (K:R),
forall n, almost prts (fun ω => Rabs (Y (S n) ω - Y n ω) <= K))
).
Theorem optional_stopping_time
{mart:IsMartingale prts eq Y F} :
FiniteExpectation prts (process_under Y τ) = FiniteExpectation prts (Y 0%nat).
Theorem optional_stopping_time_sub
{mart:IsMartingale prts Rle Y F} :
FiniteExpectation prts (process_under Y τ) >= FiniteExpectation prts (Y 0%nat).
Theorem optional_stopping_time_super
{mart:IsMartingale prts Rge Y F} :
FiniteExpectation prts (process_under Y τ) <= FiniteExpectation prts (Y 0%nat).
reproducibility: see <a href="#59">#59</a>
constructive: no
axioms:
- ClassicalDedekindReals.sig_not_dec
- ClassicalDedekindReals.sig_forall_dec
- relational_choice
- propositional_extensionality
- proof_irrelevance
- functional_extensionality_dep
- Eq_rect_eq.eq_rect_eq
- dependent_unique_choice
- constructive_indefinite_description
- constructive_definite_description
- classic
- JMeq_eq
- Ensembles.Extensionality_Ensembles
- theorem: 63
authors: Gilles Kahn, Gerard Huet
link: https://coq.inria.fr/library/Coq.Sets.Powerset.html
comment: Naive Set Theory in Coq
statement: |
Theorem Strict_Rel_is_Strict_Included :
same_relation (Ensemble U) (Strict_Included U)
(Strict_Rel_of (Ensemble U) (Power_set_PO (Full_set U))).
reproducibility: Good (CI)
constructive: no (extensionality)
axioms: [Extensionality_Ensembles]
- theorem: 64
authors: Sylvain Dailler
link: https://github.com/coq-community/coqtail-math/blob/master/Reals/Hopital.v
comment: Many other versions in the file, for example depending on whether the limits are finite or not.
statement: |
Variables f g : R → R.
Variables a b L : R.
Hypothesis Hab : a < b.
Hypotheses (Df : ∀ x, open_interval a b x → derivable_pt f x)
(Dg : ∀ x, open_interval a b x → derivable_pt g x).