-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsymbolic_state.v
402 lines (310 loc) · 10 KB
/
symbolic_state.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
Require Import bbv.Word.
Require Import Nat.
Require Import Coq.NArith.NArith.
Require Import Arith.
Require Import FORVES.constants.
Import Constants.
Require Import FORVES.program.
Import Program.
Require Import FORVES.stack_operation_instructions.
Import StackOpInstrs.
Require Import List.
Import ListNotations.
Module SymbolicState.
(* symbolic stack *)
Inductive sstack_val : Type :=
| Val (val: EVMWord)
| InStackVar (var: nat)
| FreshVar (var: nat).
Definition sstack : Type := list sstack_val.
Definition empty_sstack : sstack := [].
(* Symbolic memory *)
Inductive memory_update (A : Type) : Type :=
| U_MSTORE (offset: A) (value: A)
| U_MSTORE8 (offset: A) (value: A).
Definition memory_updates (A : Type) : Type := list (memory_update A).
Definition smemory : Type := memory_updates sstack_val.
Definition empty_smemory : smemory := [].
(* Symbolic storage *)
Inductive storage_update (A : Type) : Type :=
| U_SSTORE (key: A) (value: A).
Definition storage_updates (A : Type) : Type := list (storage_update A).
Definition sstorage : Type := storage_updates sstack_val.
Definition empty_sstorage : sstorage := [].
Inductive sexternals :=
| SymExts.
Definition empty_sexternals : sexternals := SymExts.
(* Symbolic map: type, constructor, getters and setters *)
Inductive smap_value : Type :=
| SymBasicVal (val: sstack_val)
| SymMETAPUSH (cat val: N)
| SymOp (label : stack_op_instr) (args : list sstack_val)
| SymMLOAD (offset: sstack_val) (smem : smemory)
| SymSLOAD (key: sstack_val) (sstrg : sstorage)
| SymSHA3 (offset: sstack_val) (size: sstack_val) (smem : smemory).
Definition sbinding : Type := nat*smap_value.
Definition sbindings : Type := list sbinding.
Inductive smap := SymMap (maxid : nat) (bindings: sbindings).
Definition get_maxidx_smap (m: smap) :=
match m with
| SymMap maxidx _ => maxidx
end.
Definition get_bindings_smap (m: smap) :=
match m with
| SymMap _ sb => sb
end.
Definition empty_smap : smap := SymMap 0 [].
Definition add_to_smap (sm : smap) (value : smap_value) : prod nat smap :=
match sm with
| SymMap maxidx bindings =>
let sm' := SymMap (S maxidx) ((pair maxidx value)::bindings) in
pair maxidx sm'
end.
Inductive follow_in_smap_ret_t :=
| FollowSmapVal (smv : smap_value) (key: nat) (sb: sbindings).
Definition is_fresh_var_smv (smv: smap_value) :=
match smv with
| SymBasicVal (FreshVar idx) => Some idx
| _ => None
end.
Definition not_basic_value_smv (smv: smap_value) :=
match smv with
| SymBasicVal _ => false
| _ => true
end.
Fixpoint follow_in_smap (sv: sstack_val) (maxidx: nat) (sb: sbindings) : option follow_in_smap_ret_t :=
match sv with
| Val v => Some (FollowSmapVal (SymBasicVal (Val v)) maxidx sb)
| InStackVar n => Some (FollowSmapVal (SymBasicVal (InStackVar n)) maxidx sb)
| FreshVar idx =>
match sb with
| [] => None
| (key,smv)::sb' =>
if key =? idx then
match is_fresh_var_smv smv with
| Some idx' => follow_in_smap (FreshVar idx') key sb'
| None => Some (FollowSmapVal smv key sb')
end
else follow_in_smap sv key sb'
end
end.
(* Symbolic state: type, constructor, getters and setters *)
Inductive sstate :=
| SymExState (instk_height: nat) (sstk: sstack) (smem: smemory) (sstg: sstorage) (sexts : sexternals) (sm: smap).
Definition make_sst (instk_height: nat) (sstk: sstack) (smem: smemory) (sstrg: sstorage) (sexts : sexternals) (sm: smap) : sstate :=
SymExState instk_height sstk smem sstrg sexts sm.
Definition gen_empty_sstate (instk_height: nat) : sstate :=
let ids := seq 0 instk_height in
let sstk := List.map InStackVar ids in
make_sst instk_height sstk empty_smemory empty_sstorage empty_sexternals empty_smap.
Definition get_instk_height_sst (sst: sstate) : nat :=
match sst with
| SymExState instk_height _ _ _ _ _ => instk_height
end.
Definition set_instk_height_sst (sst: sstate) (instk_height : nat) : sstate :=
match sst with
| SymExState _ sstk smem sstrg sexts sm => SymExState instk_height sstk smem sstrg sexts sm
end.
Definition get_stack_sst (sst: sstate) : sstack :=
match sst with
| SymExState _ sstk _ _ _ _ => sstk
end.
Definition set_stack_sst (sst: sstate) (sstk: sstack) : sstate :=
match sst with
| SymExState instk_height _ smem sstrg sexts sm => SymExState instk_height sstk smem sstrg sexts sm
end.
Definition get_memory_sst (sst: sstate) : smemory :=
match sst with
| SymExState _ _ smem _ _ _ => smem
end.
Definition set_memory_sst (sst: sstate) (smem: smemory) : sstate :=
match sst with
| SymExState instk_height sstk _ sstrg sexts sm => SymExState instk_height sstk smem sstrg sexts sm
end.
Definition get_storage_sst (sst : sstate) : sstorage :=
match sst with
| SymExState _ _ _ sstrg _ _ => sstrg
end.
Definition set_storage_sst (sst : sstate) (sstrg: sstorage) : sstate :=
match sst with
| SymExState instk_height sstk smem _ sexts sm => SymExState instk_height sstk smem sstrg sexts sm
end.
Definition get_externals_sst (sst : sstate) : sexternals :=
match sst with
| SymExState _ _ _ _ sexts _ => sexts
end.
Definition set_externals_sst (sst : sstate) (sexts: sexternals) : sstate :=
match sst with
| SymExState instk_height sstk smem sstrg _ sm => SymExState instk_height sstk smem sstrg sexts sm
end.
Definition get_smap_sst (sst : sstate) : smap :=
match sst with
| SymExState _ _ _ _ _ sm => sm
end.
Definition set_smap_sst (sst : sstate) (sm: smap) : sstate :=
match sst with
| SymExState instk_height sstk smem sstrg sexts _ => SymExState instk_height sstk smem sstrg sexts sm
end.
(* Abstraction over memory/storage comparators *)
Definition sstack_val_cmp_type := sstack_val -> sstack_val -> bool.
(* eval offset1 size1 smem1 offset2 size2 smem2 -> bool *)
Definition sha3_cmp_type := sstack_val_cmp_type -> sstack_val -> sstack_val -> smemory -> sstack_val -> sstack_val -> smemory -> bool.
(* eval smem1 smem2 -> bool *)
Definition smemory_cmp_type := sstack_val_cmp_type -> smemory -> smemory -> bool.
(* sstrg1 sstrg2 -> bool *)
Definition sstorage_cmp_type := sstack_val_cmp_type -> sstorage -> sstorage -> bool.
(* Facts *)
Lemma instk_height_preserved_when_updating_stack_sst:
forall sst sstk,
get_instk_height_sst (set_stack_sst sst sstk) = get_instk_height_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma instk_height_preserved_when_updating_smap_sst:
forall sst m,
get_instk_height_sst (set_smap_sst sst m) = get_instk_height_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma instk_height_preserved_when_updating_storage_sst:
forall sst sstrg,
get_instk_height_sst (set_storage_sst sst sstrg) = get_instk_height_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma instk_height_preserved_when_updating_memory_sst:
forall sst smem,
get_instk_height_sst (set_memory_sst sst smem) = get_instk_height_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma smap_preserved_when_updating_stack_sst:
forall sst sstk,
get_smap_sst (set_stack_sst sst sstk) = get_smap_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma smap_preserved_when_updating_storage_sst:
forall sst sstrg,
get_smap_sst (set_storage_sst sst sstrg) = get_smap_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma smap_preserved_when_updating_memory_sst:
forall sst smem,
get_smap_sst (set_memory_sst sst smem) = get_smap_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma smemory_preserved_when_updating_storage_sst:
forall sst sstrg,
get_memory_sst (set_storage_sst sst sstrg) = get_memory_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma smemory_preserved_when_updating_stack_sst:
forall sst sstk,
get_memory_sst (set_stack_sst sst sstk) = get_memory_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma sstorage_preserved_when_updating_stack_sst:
forall sst sstk,
get_storage_sst (set_stack_sst sst sstk) = get_storage_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma sstorage_preserved_when_updating_memory_sst:
forall sst smem,
get_storage_sst (set_memory_sst sst smem) = get_storage_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma sstack_preserved_when_updating_smap_sst:
forall sst m,
get_stack_sst (set_smap_sst sst m) = get_stack_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma smemory_preserved_when_updating_smap_sst:
forall sst m,
get_memory_sst (set_smap_sst sst m) = get_memory_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma sstorage_preserved_when_updating_smap_sst:
forall sst m,
get_storage_sst (set_smap_sst sst m) = get_storage_sst sst.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma set_and_then_get_smap_sst:
forall sst m,
get_smap_sst (set_smap_sst sst m) = m.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma set_and_then_get_stack_sst:
forall sst sstk,
get_stack_sst (set_stack_sst sst sstk) = sstk.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma set_and_then_get_storage_sst:
forall sst sstrg,
get_storage_sst (set_storage_sst sst sstrg) = sstrg.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma set_and_then_get_memory_sst:
forall sst smem,
get_memory_sst (set_memory_sst sst smem) = smem.
Proof.
destruct sst.
reflexivity.
Qed.
Lemma follow_smap_first_match:
forall idx smv sb,
is_fresh_var_smv smv = None ->
follow_in_smap (FreshVar idx) (S idx) ((idx, smv) :: sb ) = Some (FollowSmapVal smv idx sb).
Proof.
intros idx smv sb H_is_fresh_var.
simpl.
rewrite Nat.eqb_refl with (x:=idx).
rewrite H_is_fresh_var.
reflexivity.
Qed.
(* Some (FollowSmapVal (SymBasicVal (Val v)) maxidx sb)
| InStackVar n => Some (FollowSmapVal (SymBasicVal (InStackVar n)) maxidx sb) *)
Lemma follow_smap_V:
forall v idx sb,
follow_in_smap (Val v) idx sb = Some (FollowSmapVal (SymBasicVal (Val v)) idx sb).
Proof.
intros v idx sb.
destruct sb; try reflexivity.
Qed.
Lemma follow_smap_InStackVar:
forall n idx sb,
follow_in_smap (InStackVar n) idx sb = Some (FollowSmapVal (SymBasicVal (InStackVar n)) idx sb).
Proof.
intros n idx sb.
destruct sb; try reflexivity.
Qed.
End SymbolicState.