-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvalid_symbolic_state.v
920 lines (821 loc) · 28.3 KB
/
valid_symbolic_state.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
Require Import Arith.
Require Import Nat.
Require Import Bool.
Require Import bbv.Word.
Require Import Coq.NArith.NArith.
Require Import List.
Import ListNotations.
Require Import Coq.Logic.FunctionalExtensionality.
Require Import FORVES.constants.
Import Constants.
Require Import FORVES.program.
Import Program.
Require Import FORVES.execution_state.
Import ExecutionState.
Require Import FORVES.stack_operation_instructions.
Import StackOpInstrs.
Require Import FORVES.misc.
Import Misc.
Require Import FORVES.symbolic_state.
Import SymbolicState.
Module ValidSymbolicState.
Definition valid_sstack_value (instk_height: nat) (maxidx: nat) (value : sstack_val) : Prop :=
match value with
| Val _ => True
| InStackVar n => n < instk_height
| FreshVar idx => idx < maxidx
end.
(* All InStackVar in the sstack are smaller than instk_height and all the
FreshVar in the sstack are less than maxidx *)
Fixpoint valid_sstack (instk_height: nat) (maxidx: nat) (sstk : sstack) : Prop :=
match sstk with
| [] => True
| sv::sstk' => valid_sstack_value instk_height maxidx sv /\ valid_sstack instk_height maxidx sstk'
end.
Definition valid_smemory_update (instk_height: nat) (maxidx: nat) (u : memory_update sstack_val) : Prop :=
match u with
| U_MSTORE _ offset value | U_MSTORE8 _ offset value => valid_sstack_value instk_height maxidx offset /\ valid_sstack_value instk_height maxidx value
end.
Fixpoint valid_smemory (instk_height: nat) (maxidx: nat) (smem : smemory) : Prop :=
match smem with
| [] => True
| u::smem' => valid_smemory_update instk_height maxidx u /\ valid_smemory instk_height maxidx smem'
end.
Definition valid_sstorage_update (instk_height: nat) (maxidx: nat) (u : storage_update sstack_val) : Prop :=
match u with
| U_SSTORE _ offset value => valid_sstack_value instk_height maxidx offset /\ valid_sstack_value instk_height maxidx value
end.
Fixpoint valid_sstorage (instk_height: nat) (maxidx: nat) (sstrg : sstorage) : Prop :=
match sstrg with
| [] => True
| u::sstrg' => valid_sstorage_update instk_height maxidx u /\ valid_sstorage instk_height maxidx sstrg'
end.
Definition valid_stack_op_instr (instk_height: nat) (maxidx: nat) (ops: stack_op_instr_map) (label: stack_op_instr) (args: list sstack_val): Prop :=
match (ops label) with
| OpImp nargs _ _ _ => length args = nargs /\ valid_sstack instk_height maxidx args
end.
Definition valid_smap_value (instk_height: nat) (maxidx: nat) (ops: stack_op_instr_map) (value: smap_value) : Prop :=
match value with
| SymBasicVal v => valid_sstack_value instk_height maxidx v
| SymMETAPUSH _ _ => True
| SymOp label args => valid_stack_op_instr instk_height maxidx ops label args
| SymMLOAD offset smem => valid_sstack_value instk_height maxidx offset /\ valid_smemory instk_height maxidx smem
| SymSLOAD key sstrg => valid_sstack_value instk_height maxidx key /\ valid_sstorage instk_height maxidx sstrg
| SymSHA3 offset size smem => valid_sstack_value instk_height maxidx offset /\ valid_sstack_value instk_height maxidx size /\ valid_smemory instk_height maxidx smem
end.
(* all keys defined *)
Fixpoint valid_bindings (instk_height: nat) (maxid: nat) (sb: sbindings) (ops: stack_op_instr_map): Prop :=
match sb with
| [] => maxid = 0
| (idx,value)::sb' => maxid = (S idx) /\ valid_smap_value instk_height idx ops value /\ valid_bindings instk_height idx sb' ops
end.
(*
(* MaxIDX is > any fresh variable in the map *)
Fixpoint fresh_var_gt_map (idx: nat) (sb: sbindings) : Prop :=
match sb with
| nil => True
| (k,v)::sb' => idx > k /\ fresh_var_gt_map idx sb'
end.
(* Fresh variables in a map are strictly decreasing *)
Fixpoint strictly_decreasing_map (sb: sbindings) : Prop :=
match sb with
| [] => True
| (var1, e1)::sb' => match sb' with
| [] => True
| (var2, e2)::_ => var1 > var2 /\ strictly_decreasing_map sb'
end
end.*)
Definition valid_smap (instk_height: nat) (maxidx: nat) (sb: sbindings) (ops: stack_op_instr_map): Prop :=
valid_bindings instk_height maxidx sb ops.
Definition valid_sstate (sst: sstate) (ops: stack_op_instr_map): Prop :=
let instk_height := get_instk_height_sst sst in
let sstk := get_stack_sst sst in
let smem := get_memory_sst sst in
let sstrg := get_storage_sst sst in
let m := get_smap_sst sst in
let maxidx := get_maxidx_smap m in
let sb := get_bindings_smap m in
valid_smap instk_height maxidx sb ops /\
valid_sstack instk_height maxidx sstk /\
valid_smemory instk_height maxidx smem /\
valid_sstorage instk_height maxidx sstrg.
(*Lemma fresh_var_gt_map_maxidx_S:
forall sb maxidx,
fresh_var_gt_map maxidx sb ->
fresh_var_gt_map (S maxidx) sb.
Proof.
induction sb as [|v sb' IHsm'].
- auto.
- intros.
unfold fresh_var_gt_map in H.
fold fresh_var_gt_map in H.
destruct v as [k kvalue].
destruct H.
unfold fresh_var_gt_map.
fold fresh_var_gt_map.
split.
+ auto.
+ apply IHsm'.
apply H0.
Qed.*)
Lemma valid_sstack_app:
forall instk_height maxidx l1 l2,
valid_sstack instk_height maxidx l1 ->
valid_sstack instk_height maxidx l2 ->
valid_sstack instk_height maxidx (l1++l2).
Proof.
intros instk_height maxidx.
induction l1 as [|sv l1' IHl1'].
- intros l2 H_l1 H_l2.
simpl.
apply H_l2.
- intros l2 H_l1 H_l2.
simpl in H_l1.
destruct H_l1 as [H_l1_0 H_l1_1].
simpl.
split.
+ apply H_l1_0.
+ apply IHl1'.
* apply H_l1_1.
* apply H_l2.
Qed.
Lemma valid_sstack_app1:
forall instk_height maxidx l1 l2,
valid_sstack instk_height maxidx (l1++l2) ->
valid_sstack instk_height maxidx l1 /\
valid_sstack instk_height maxidx l2.
Proof.
intros instk_height maxidx.
induction l1 as [|sv l1' IHl1'].
- intros l2 H_l1_l2.
simpl.
simpl in H_l1_l2.
split.
+ apply I.
+ apply H_l1_l2.
- intros l2 H_l1_l2.
simpl in H_l1_l2.
destruct H_l1_l2 as [H_sv H_l1'_l2].
simpl.
pose proof (IHl1' l2 H_l1'_l2) as [IHl1'_0 IHl1'_1].
split.
+ split.
* apply H_sv.
* apply IHl1'_0.
+ apply IHl1'_1.
Qed.
Lemma valid_sstack_value_S_maxidx:
forall instk_height maxidx sv,
valid_sstack_value instk_height maxidx sv ->
valid_sstack_value instk_height (S maxidx) sv.
Proof.
intros instk_height maxidx sv H_valid_sv.
destruct sv; simpl; try auto.
Qed.
Lemma valid_sstack_value_S_instk_height:
forall instk_height maxidx sv,
valid_sstack_value instk_height maxidx sv ->
valid_sstack_value (S instk_height) maxidx sv.
Proof.
intros instk_height maxidx sv H_valid_sv.
destruct sv; simpl; try auto.
Qed.
Lemma valid_sstack_S_maxidx:
forall instk_height maxidx l,
valid_sstack instk_height maxidx l ->
valid_sstack instk_height (S maxidx) l.
Proof.
intros instk_height maxidx.
induction l as [|sv l' IHl'].
- intuition.
- simpl.
intros H_l.
destruct H_l as [H_l_0 H_l_1].
split.
+ apply valid_sstack_value_S_maxidx. apply H_l_0.
+ apply IHl'. apply H_l_1.
Qed.
Lemma valid_sstack_S_instk_height:
forall instk_height maxidx l,
valid_sstack instk_height maxidx l ->
valid_sstack (S instk_height) maxidx l.
Proof.
intros instk_height maxidx.
induction l as [|sv l' IHl'].
- intuition.
- simpl.
intros H_l.
destruct H_l as [H_l_0 H_l_1].
split.
+ apply valid_sstack_value_S_instk_height. apply H_l_0.
+ apply IHl'. apply H_l_1.
Qed.
Lemma valid_empty_sstate:
forall k ops, valid_sstate (gen_empty_sstate k) ops.
Proof.
intros k ops.
unfold valid_sstate.
split; split.
(*+ unfold valid_smap.
simpl.
auto.
+ simpl.
auto.*)
+ simpl.
induction k as [|k' IHsk'].
* simpl.
apply I.
* rewrite seq_S.
rewrite List.map_app.
apply valid_sstack_app.
** apply valid_sstack_S_instk_height.
apply IHsk'.
** simpl. intuition.
+ simpl.
intuition.
Qed.
Lemma add_to_smap_valid_smap:
forall instk_height idx m m' smv ops,
valid_smap instk_height (get_maxidx_smap m) (get_bindings_smap m) ops ->
valid_smap_value instk_height (get_maxidx_smap m) ops smv ->
add_to_smap m smv = (idx, m') ->
valid_smap instk_height (get_maxidx_smap m') (get_bindings_smap m') ops.
Proof.
intros instk_height idx m m' smv ops H_valid_m H_valid_smv H_add.
destruct m as [maxidx sb] eqn:E_m.
destruct m' as [maxidx' sb'] eqn:E_m'.
unfold valid_smap in H_valid_m.
(*destruct H_valid_m as [H_valid_m_0 [H_valid_m_1 H_valid_m_2]].*)
(*destruct H_valid_m as [H_valid_m_0 [H_valid_m_1 H_valid_m_2]].*)
assert(H_add' := H_add).
simpl in H_add'.
injection H_add' as H_maxidx H_maxidx' H_sb'.
unfold valid_smap.
rewrite <- H_sb'.
simpl.
split.
* intuition.
* simpl in H_valid_smv.
split.
** apply H_valid_smv.
** simpl in H_valid_m.
apply H_valid_m.
Qed.
Lemma add_to_smap_valid_sstack:
forall instk_height idx m m' smv sstk ops,
valid_sstack instk_height (get_maxidx_smap m) sstk ->
valid_smap_value instk_height (get_maxidx_smap m) ops smv ->
add_to_smap m smv = (idx, m') ->
valid_sstack instk_height (get_maxidx_smap m') sstk.
Proof.
intros instk_height idx m m' smv sstk ops H_valid_sstk H_valid_smv H_add_to_map.
destruct m as [maxid sb] eqn:E_m.
destruct m' as [maxid' sb'] eqn:E_m'.
assert (H_add_to_map' := H_add_to_map).
unfold add_to_smap in H_add_to_map'.
injection H_add_to_map' as H_maxid H_maxid' H_sb'.
simpl.
simpl in H_valid_sstk.
simpl in H_valid_smv.
rewrite <- H_maxid'.
apply valid_sstack_S_maxidx.
apply H_valid_sstk.
Qed.
Lemma add_to_smap_valid_sstack_value:
forall instk_height idx m m' smv sv ops,
valid_sstack_value instk_height (get_maxidx_smap m) sv ->
valid_smap_value instk_height (get_maxidx_smap m) ops smv ->
add_to_smap m smv = (idx, m') ->
valid_sstack_value instk_height (get_maxidx_smap m') sv.
Proof.
intros instk_height idx m m' smv sv ops H_valid_sv H_valid_smv H_add_to_smap.
destruct m as [maxid sb] eqn:E_m.
destruct m' as [maxid' sb'] eqn:E_m'.
simpl.
simpl in H_valid_sv.
simpl in H_valid_smv.
simpl in H_add_to_smap.
injection H_add_to_smap as H_maxidx H_maxidx' H_sb'.
rewrite <- H_maxidx'.
apply valid_sstack_value_S_maxidx.
apply H_valid_sv.
Qed.
(*
Lemma valid_sbinings_S_maxidx:
forall instk_height maxidx ops u sb,
valid_bindings instk_height maxidx (u::sb) ops ->
valid_bindings instk_height (S maxidx) (u::sb) ops.
Proof.
intros instk_height maxidx ops u.
induction sb as [|x sb' IHsb'].
- intros H_valid_bs.
simpl.
intros H_maxidx.
destruct u.
simpl in H_maxidx.
destruct maxidx; try discriminate.
simpl.
*)
Lemma valid_smemory_update_S_maxidx:
forall instk_height maxidx u,
valid_smemory_update instk_height maxidx u ->
valid_smemory_update instk_height (S maxidx) u.
Proof.
intros instk_height maxidx u H_valid_u.
destruct u as [offset value|offset value].
- simpl.
simpl in H_valid_u.
destruct H_valid_u as [H_valid_u_0 H_valid_u_1].
split.
+ apply valid_sstack_value_S_maxidx.
apply H_valid_u_0.
+ apply valid_sstack_value_S_maxidx.
apply H_valid_u_1.
- simpl.
simpl in H_valid_u.
destruct H_valid_u as [H_valid_u_0 H_valid_u_1].
split.
+ apply valid_sstack_value_S_maxidx.
apply H_valid_u_0.
+ apply valid_sstack_value_S_maxidx.
apply H_valid_u_1.
Qed.
Lemma valid_smemory_S_maxidx:
forall instk_height maxidx smem,
valid_smemory instk_height maxidx smem ->
valid_smemory instk_height (S maxidx) smem.
Proof.
intros instk_height maxidx.
induction smem as [|u smem' IHsmem'].
- auto.
- simpl.
intro H_valid_smem.
destruct H_valid_smem as [H_valid_smem_0 H_valid_smem_1].
split.
+ apply valid_smemory_update_S_maxidx.
apply H_valid_smem_0.
+ apply IHsmem'.
apply H_valid_smem_1.
Qed.
Lemma valid_sstorage_update_S_maxidx:
forall instk_height maxidx u,
valid_sstorage_update instk_height maxidx u ->
valid_sstorage_update instk_height (S maxidx) u.
Proof.
intros instk_height maxidx u H_valid_u.
destruct u as [offset value].
simpl.
simpl in H_valid_u.
destruct H_valid_u as [H_valid_u_0 H_valid_u_1].
split.
+ apply valid_sstack_value_S_maxidx.
apply H_valid_u_0.
+ apply valid_sstack_value_S_maxidx.
apply H_valid_u_1.
Qed.
Lemma valid_sstorage_S_maxidx:
forall instk_height maxidx sstrg,
valid_sstorage instk_height maxidx sstrg ->
valid_sstorage instk_height (S maxidx) sstrg.
Proof.
intros instk_height maxidx.
induction sstrg as [|u sstrg' IHsstrg'].
- auto.
- simpl.
intro H_valid_sstrg.
destruct H_valid_sstrg as [H_valid_sstrg_0 H_valid_sstrg_1].
split.
+ apply valid_sstorage_update_S_maxidx.
apply H_valid_sstrg_0.
+ apply IHsstrg'.
apply H_valid_sstrg_1.
Qed.
Lemma add_to_smap_valid_smemory:
forall instk_height idx m m' smv smem ops,
valid_smemory instk_height (get_maxidx_smap m) smem ->
valid_smap_value instk_height (get_maxidx_smap m) ops smv ->
add_to_smap m smv = (idx, m') ->
valid_smemory instk_height (get_maxidx_smap m') smem.
Proof.
intros instk_height idx m m' smv smem ops H_valid_smem H_valid_smv H_add_to_map.
destruct m as [maxid sb] eqn:E_m.
destruct m' as [maxid' sb'] eqn:E_m'.
assert (H_add_to_map' := H_add_to_map).
unfold add_to_smap in H_add_to_map'.
injection H_add_to_map' as H_maxid H_maxid' H_sb'.
rewrite <- H_sb'.
simpl.
rewrite <- H_maxid'.
apply valid_smemory_S_maxidx.
simpl in H_valid_smem.
apply H_valid_smem.
Qed.
Lemma add_to_smap_valid_sstorage:
forall instk_height idx m m' smv sstrg ops,
valid_sstorage instk_height (get_maxidx_smap m) sstrg ->
valid_smap_value instk_height (get_maxidx_smap m) ops smv ->
add_to_smap m smv = (idx, m') ->
valid_sstorage instk_height (get_maxidx_smap m') sstrg.
Proof.
intros instk_height idx m m' smv sstrg ops H_valid_sstrg H_valid_smv H_add_to_map.
destruct m as [maxid sb] eqn:E_m.
destruct m' as [maxid' sb'] eqn:E_m'.
assert (H_add_to_map' := H_add_to_map).
unfold add_to_smap in H_add_to_map'.
injection H_add_to_map' as H_maxid H_maxid' H_sb'.
rewrite <- H_sb'.
simpl.
rewrite <- H_maxid'.
apply valid_sstorage_S_maxidx.
simpl in H_valid_sstrg.
apply H_valid_sstrg.
Qed.
Lemma add_to_map_valid_sstate:
forall sst idx m smv ops,
valid_sstate sst ops ->
valid_smap_value (get_instk_height_sst sst) (get_maxidx_smap (get_smap_sst sst)) ops smv ->
(idx,m) = add_to_smap (get_smap_sst sst) smv ->
valid_sstate (set_smap_sst sst m) ops.
Proof.
intros sst idx m smv ops.
unfold valid_sstate.
rewrite set_and_then_get_smap_sst.
rewrite instk_height_preserved_when_updating_smap_sst.
rewrite sstack_preserved_when_updating_smap_sst.
rewrite smemory_preserved_when_updating_smap_sst.
rewrite sstorage_preserved_when_updating_smap_sst.
intros H_valid_sst H_valid_smap_value H_add_to_smap.
destruct H_valid_sst as [H_valid_sst_0 [H_valid_sst_1 [H_valid_sst_2 H_valid_sst_3]]].
split.
(* The case of smap *)
- symmetry in H_add_to_smap.
pose proof (add_to_smap_valid_smap (get_instk_height_sst sst) idx (get_smap_sst sst) m smv ops H_valid_sst_0 H_valid_smap_value H_add_to_smap) as H_add_to_smap_valid_smap.
apply H_add_to_smap_valid_smap.
- split.
(* The case of ssstack *)
+ symmetry in H_add_to_smap.
pose proof (add_to_smap_valid_sstack (get_instk_height_sst sst) idx (get_smap_sst sst) m smv (get_stack_sst sst) ops H_valid_sst_1 H_valid_smap_value H_add_to_smap) as H_add_to_smap_valid_sstack.
apply H_add_to_smap_valid_sstack.
+ split.
(* The case of smemory *)
* symmetry in H_add_to_smap.
pose proof (add_to_smap_valid_smemory (get_instk_height_sst sst) idx (get_smap_sst sst) m smv (get_memory_sst sst) ops H_valid_sst_2 H_valid_smap_value H_add_to_smap) as H_add_to_smap_valid_smemory.
apply H_add_to_smap_valid_smemory.
(* The case of sstorage *)
* symmetry in H_add_to_smap.
pose proof (add_to_smap_valid_sstorage (get_instk_height_sst sst) idx (get_smap_sst sst) m smv (get_storage_sst sst) ops H_valid_sst_3 H_valid_smap_value H_add_to_smap) as H_add_to_smap_valid_sstorage.
apply H_add_to_smap_valid_sstorage.
Qed.
(* when adding a value of the map, it key is smaller that maxidx of th enew map *)
Lemma add_to_smap_key_lt_maxidx:
forall m m' key smv,
(key,m') = add_to_smap m smv ->
key < get_maxidx_smap m'.
Proof.
intros m m' key smv H_add_to_smap.
destruct m as [maxid sb].
simpl in H_add_to_smap.
injection H_add_to_smap as H_maxid H_m'.
rewrite H_m'.
simpl.
rewrite H_maxid.
apply Nat.lt_succ_diag_r.
Qed.
Lemma valid_follow_in_smap:
forall sb sv instk_height maxidx ops smv maxidx' sb',
valid_sstack_value instk_height maxidx sv ->
valid_bindings instk_height maxidx sb ops ->
follow_in_smap sv maxidx sb = Some (FollowSmapVal smv maxidx' sb') ->
valid_smap_value instk_height maxidx' ops smv /\
valid_bindings instk_height maxidx' sb' ops /\
(not_basic_value_smv smv = true -> maxidx > maxidx').
Proof.
induction sb as [|p sb'' IHsb''].
- intros sv instk_height maxidx ops smv maxidx' sb' H_valid_sv H_valid_sb H_follow.
destruct sv eqn:E_sv.
+ simpl in H_valid_sv.
simpl in H_valid_sb.
simpl in H_follow.
injection H_follow as H_smv H_maxidx' H_sb'.
rewrite <- H_sb'.
rewrite <- H_smv.
rewrite <- H_maxidx'.
simpl.
split; try intuition.
+ simpl in H_valid_sv.
simpl in H_valid_sb.
simpl in H_follow.
injection H_follow as H_smv H_maxidx' H_sb'.
rewrite <- H_sb'.
rewrite <- H_smv.
rewrite <- H_maxidx'.
simpl.
split; try intuition.
+ discriminate.
- intros sv instk_height maxidx ops smv maxidx' sb' H_valid_sv H_valid_sb H_follow.
destruct sv eqn:E_sv.
+ simpl in H_valid_sv.
simpl in H_valid_sb.
simpl in H_follow.
injection H_follow as H_smv H_maxidx' H_sb'.
rewrite <- H_sb'.
rewrite <- H_smv.
rewrite <- H_maxidx'.
simpl.
split; try intuition.
+ simpl in H_valid_sv.
simpl in H_valid_sb.
simpl in H_follow.
injection H_follow as H_smv H_maxidx' H_sb'.
rewrite <- H_sb'.
rewrite <- H_smv.
rewrite <- H_maxidx'.
simpl.
split; try intuition.
+ destruct p as [idx value] eqn:E_p.
simpl in H_valid_sv.
simpl in H_valid_sb.
simpl in H_follow.
destruct H_valid_sb as [H_valid_sb_0 [H_valid_sb_1 H_valid_sb_2]].
destruct (idx =? var) eqn:E_n_var.
* destruct (is_fresh_var_smv value) as [idx'|] eqn:E_is_fresh_var_value.
** destruct value eqn:E_value; try discriminate.
destruct val; try discriminate.
simpl in E_is_fresh_var_value.
injection E_is_fresh_var_value as E_is_fresh_var_value.
simpl in H_valid_sb_1.
rewrite E_is_fresh_var_value in H_valid_sb_1.
assert(H_valid_sstack_value_FreshVar_idx': valid_sstack_value instk_height idx (FreshVar idx')). intuition.
pose proof (IHsb'' (FreshVar idx') instk_height idx ops smv maxidx' sb' H_valid_sstack_value_FreshVar_idx' H_valid_sb_2 H_follow) as IHsb''_0.
intuition.
** injection H_follow as H_value H_idx H_sb''.
rewrite <- H_idx.
rewrite <- H_sb''.
rewrite <- H_value.
split.
*** apply H_valid_sb_1.
*** split.
***** apply H_valid_sb_2.
***** intro H_not_basic_value.
destruct value; try intuition.
* apply Nat.eqb_neq in E_n_var.
assert(H_valid_sstack_value_FreshVar_idx': valid_sstack_value instk_height idx (FreshVar var)). simpl. intuition.
pose proof (IHsb'' (FreshVar var) instk_height idx ops smv maxidx' sb' H_valid_sstack_value_FreshVar_idx' H_valid_sb_2 H_follow) as IHsb''_0.
intuition.
Qed.
Lemma follow_in_smap_suc:
forall sb sv instk_height maxidx ops,
valid_sstack_value instk_height maxidx sv ->
valid_bindings instk_height maxidx sb ops ->
exists smv maxidx' sb',
follow_in_smap sv maxidx sb = Some (FollowSmapVal smv maxidx' sb') /\
is_fresh_var_smv smv = None.
Proof.
induction sb as [| p sb' IHsb'].
- intros sv instk_height maxidx ops H_valid_sv H_valid_bs.
destruct sv eqn:E_sv.
+ simpl. exists (SymBasicVal (Val val)). exists maxidx. exists [].
split; try reflexivity.
+ simpl. exists (SymBasicVal (InStackVar var)). exists maxidx. exists [].
split; try reflexivity.
+ simpl in H_valid_bs.
simpl in H_valid_sv.
intuition.
- intros sv instk_height maxidx ops H_valid_sv H_valid_bs.
destruct sv eqn:E_sv.
+ simpl. exists (SymBasicVal (Val val)). exists maxidx. exists (p :: sb'). split; try reflexivity.
+ simpl. exists (SymBasicVal (InStackVar var)). exists maxidx. exists (p :: sb'). split; try reflexivity.
+ destruct p as [key value].
simpl in H_valid_bs.
destruct H_valid_bs as [H_valid_bs_0 [H_valid_bs_1 H_valid_bs_2]].
simpl in H_valid_sv.
simpl.
destruct (key =? var) eqn:E_key_var.
* destruct (is_fresh_var_smv value) as [idx'|] eqn:E_is_fresh_var_smv_value.
** apply IHsb' with (instk_height:=instk_height)(ops:=ops).
*** simpl.
destruct value; try discriminate.
simpl in E_is_fresh_var_smv_value.
destruct val; try discriminate.
injection E_is_fresh_var_smv_value as E_is_fresh_var_smv_value.
simpl in H_valid_bs_1.
intuition.
*** apply H_valid_bs_2.
** exists value. exists key. exists sb'.
split; try reflexivity.
apply E_is_fresh_var_smv_value.
* apply IHsb' with (instk_height:=instk_height)(ops:=ops).
** simpl.
apply Nat.eqb_neq in E_key_var. intuition.
** apply H_valid_bs_2.
Qed.
(* Elements (using nth_error) of a valid sstack are also valid *)
Lemma valid_sstack_nth:
forall instk_height maxidx sstk sv k,
valid_sstack instk_height maxidx sstk ->
nth_error sstk k = Some sv ->
valid_sstack_value instk_height maxidx sv.
Proof.
intros instk_height maxidx sstk sv.
revert sstk.
induction sstk as [|a sstk' IHsstk'].
- intros. destruct k; discriminate.
- intros k H_valid_sstk H_nth.
destruct k as [|k'].
+ simpl in H_nth.
injection H_nth as H_nth.
rewrite <- H_nth.
simpl in H_valid_sstk.
destruct H_valid_sstk as [H_valid_a _].
apply H_valid_a.
+ simpl in H_nth.
simpl in H_valid_sstk.
destruct H_valid_sstk as [_ H_valid_sstk'].
apply IHsstk' with (k:=k').
apply H_valid_sstk'.
apply H_nth.
Qed.
(* firstn of a valid sstack is valid *)
Lemma valid_sstack_firstn:
forall instk_height maxidx sstk k,
valid_sstack instk_height maxidx sstk ->
valid_sstack instk_height maxidx (firstn k sstk).
Proof.
intros instk_height maxidx.
induction sstk as [|a sstk' IHsstk'].
- intros; destruct k; reflexivity.
- intros k H_valid_sstk.
destruct k as [|k'].
+ reflexivity.
+ simpl in H_valid_sstk.
destruct H_valid_sstk as [H_valid_a H_valid_sstk'].
simpl.
split.
* apply H_valid_a.
* apply IHsstk'.
apply H_valid_sstk'.
Qed.
(* skipn of a valid sstack is valid *)
Lemma valid_sstack_skipn:
forall instk_height maxidx sstk k,
valid_sstack instk_height maxidx sstk ->
valid_sstack instk_height maxidx (skipn k sstk).
Proof.
intros instk_height maxidx.
induction sstk as [|a sstk' IHsstk'].
- intros; destruct k; reflexivity.
- intros k H_valid_sstk.
simpl in H_valid_sstk.
destruct H_valid_sstk as [H_valid_a H_valid_sstk'].
destruct k as [|k'].
+ simpl.
split.
* apply H_valid_a.
* apply H_valid_sstk'.
+ simpl.
apply IHsstk'.
apply H_valid_sstk'.
Qed.
(* sv::sstk is valid when sv and sstk are valid *)
Lemma valid_sstack_cons:
forall instk_height maxidx sstk sv,
valid_sstack instk_height maxidx sstk ->
valid_sstack_value instk_height maxidx sv ->
valid_sstack instk_height maxidx (sv::sstk).
Proof.
intros instk_height maxidx sskt sv H_valid_sstk H_valid_sv.
simpl.
split.
- apply H_valid_sv.
- apply H_valid_sstk.
Qed.
(* a memory update is valid when its ofsset and value are valid *)
Lemma valid_smemory_update_ov:
forall instk_height maxidx soffset svalue,
valid_sstack_value instk_height maxidx soffset ->
valid_sstack_value instk_height maxidx svalue ->
valid_smemory_update instk_height maxidx (U_MSTORE sstack_val soffset svalue) /\
valid_smemory_update instk_height maxidx (U_MSTORE8 sstack_val soffset svalue).
Proof.
intros instk_height maxidx soffset svalue H_valid_offset H_valid_value.
unfold valid_smemory_update.
intuition.
Qed.
(* a memory is still valid when extended with a valid update *)
Lemma valid_smemory_when_extended_with_valid_update:
forall instk_height maxidx u smem,
valid_smemory_update instk_height maxidx u ->
valid_smemory instk_height maxidx smem ->
valid_smemory instk_height maxidx (u::smem).
Proof.
intros instk_height maxidx u smem H_valid_u H_valid_smem.
simpl.
intuition.
Qed.
(* a storage update is valid when its key and value are valid *)
Lemma valid_sstorage_update_kv:
forall instk_height maxidx skey svalue,
valid_sstack_value instk_height maxidx skey ->
valid_sstack_value instk_height maxidx svalue ->
valid_sstorage_update instk_height maxidx (U_SSTORE sstack_val skey svalue).
Proof.
intros instk_height maxidx soffset svalue H_valid_skey H_valid_value.
unfold valid_sstorage_update.
intuition.
Qed.
(* a storage is still valid when extended with a valid update *)
Lemma valid_sstorage_when_extended_with_valid_update:
forall instk_height maxidx u sstrg,
valid_sstorage_update instk_height maxidx u ->
valid_sstorage instk_height maxidx sstrg ->
valid_sstorage instk_height maxidx (u::sstrg).
Proof.
intros instk_height maxidx u sstrg H_valid_u H_valid_sstrg.
simpl.
intuition.
Qed.
(* FreshVar idx is valid when idx < maxidx *)
Lemma valid_sstack_val_freshvar:
forall instk_height maxidx idx,
idx < maxidx ->
valid_sstack_value instk_height maxidx (FreshVar idx).
Proof.
intros instk_height maxidx idx H_id_lt_maxid.
simpl.
apply H_id_lt_maxid.
Qed.
(* Lemmas about generation of valid smap values *)
Lemma metapush_valid_smv:
forall instk_height maxidx ops cat v,
valid_smap_value instk_height maxidx ops (SymMETAPUSH cat v).
Proof.
intros.
reflexivity.
Qed.
Lemma op_instr_valid_smv:
forall instk_height maxidx ops label nargs args f H1 H2,
valid_sstack instk_height maxidx args ->
ops label = OpImp nargs f H1 H2 ->
length args = nargs ->
valid_smap_value instk_height maxidx ops (SymOp label args).
Proof.
intros instk_height maxidx ops label nargs args f H1 H2 H_valid_args H_label H_len.
simpl.
unfold valid_stack_op_instr.
rewrite H_label.
split.
- apply H_len.
- apply H_valid_args.
Qed.
(* a memory update is valid when its key and value are valid *)
Lemma sha3_smv:
forall instk_height maxidx ops smem soffset ssize,
valid_smemory instk_height maxidx smem -> (* The memory is valid *)
valid_sstack_value instk_height maxidx soffset ->
valid_sstack_value instk_height maxidx ssize ->
valid_smap_value instk_height maxidx ops (SymSHA3 soffset ssize smem).
Proof.
intros instk_height maxidx ops smem soffset ssize H_valid_smem H_valid_soffset H_valid_ssize.
unfold valid_smap_value.
split.
- apply H_valid_soffset.
- split.
+ apply H_valid_ssize.
+ apply H_valid_smem.
Qed.
Lemma symsload_valid_smv:
forall instk_height maxidx skey sstrg ops,
valid_sstack_value instk_height maxidx skey ->
valid_sstorage instk_height maxidx sstrg ->
valid_smap_value instk_height maxidx ops (SymSLOAD skey sstrg).
Proof.
intros instk_height maxidx skey sstrg ops H_valid_skey H_valid_sstrg.
simpl.
intuition.
Qed.
Lemma empty_sstrg_is_valid:
forall instk_height maxidx,
valid_sstorage instk_height maxidx empty_sstorage.
Proof.
intros.
simpl.
apply I.
Qed.
Lemma valid_sstack_val_freshvar_Sn_n:
forall instk_height idx,
valid_sstack_value instk_height (S idx) (FreshVar idx).
Proof.
intros instk_height idx.
simpl.
intuition.
Qed.
Lemma valid_sstack_val_lt_stklen:
forall i instk_height maxidx,
i < instk_height ->
valid_sstack_value instk_height maxidx (InStackVar i).
Proof.
intros i instk_height maxidz H_i_lt_stkh.
unfold valid_sstack_value.
apply H_i_lt_stkh.
Qed.
End ValidSymbolicState.