-
Notifications
You must be signed in to change notification settings - Fork 21
/
app.py
55 lines (45 loc) · 2.02 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Heavily based on https://docs.streamlit.io/develop/tutorials/llms/build-conversational-apps
import json
import streamlit as st
from cloudflare import Cloudflare
st.title("Workers AI Text Generation Hackathon Helper")
# Set Cloudflare API key from Streamlit secrets
client = Cloudflare(api_token=st.secrets["CLOUDFLARE_API_TOKEN"])
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
with client.workers.ai.with_streaming_response.run(
account_id=st.secrets["CLOUDFLARE_ACCOUNT_ID"],
model_name="@cf/meta/llama-3.1-8b-instruct",
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
) as response:
# The response is an EventSource object that looks like so
# data: {"response": "Hello "}
# data: {"response": ", "}
# data: {"response": "World!"}
# data: [DONE]
# Create a token iterator
def iter_tokens(r):
for line in r.iter_lines():
if line.startswith("data: ") and not line.endswith("[DONE]"):
entry = json.loads(line.replace("data: ", ""))
yield entry["response"]
completion = st.write_stream(iter_tokens(response))
st.session_state.messages.append({"role": "assistant", "content": completion})