-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathBaudry_etal_2010_JCGS_examples.Rd
61 lines (42 loc) · 1.95 KB
/
Baudry_etal_2010_JCGS_examples.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
\name{Baudry_etal_2010_JCGS_examples}
\alias{Baudry_etal_2010_JCGS_examples}
\alias{ex4.1}
\alias{ex4.2}
\alias{ex4.3}
\alias{ex4.4.1}
\alias{ex4.4.2}
\alias{Test1D}
\docType{data}
\title{Simulated Example Datasets From Baudry et al. (2010)}
\description{
Simulated datasets used in Baudry et al. (2010) to illustrate the proposed mixture components combining method for clustering.
Please see the cited article for a detailed presentation of these datasets. The data frame with name exN.M is presented in Section N.M in the paper.
Test1D (not in the article) has been simulated from a Gaussian mixture distribution in R.
ex4.1 and ex4.2 have been simulated from a Gaussian mixture distribution in R^2.
ex4.3 has been simulated from a mixture of a uniform distribution on a square and a spherical Gaussian distribution in R^2.
ex4.4.1 has been simulated from a Gaussian mixture model in R^2
ex4.4.2 has been simulated from a mixture of two uniform distributions in R^3.
}
\usage{data(Baudry_etal_2010_JCGS_examples)}
\format{
\code{ex4.1} is a data frame with 600 observations on 2 real variables.
\code{ex4.2} is a data frame with 600 observations on 2 real variables.
\code{ex4.3} is a data frame with 200 observations on 2 real variables.
\code{ex4.4.1} is a data frame with 800 observations on 2 real variables.
\code{ex4.4.2} is a data frame with 300 observations on 3 real variables.
\code{Test1D} is a data frame with 200 observations on 1 real variable.
}
\references{
J.-P. Baudry, A. E. Raftery, G. Celeux, K. Lo and R. Gottardo (2010). Combining mixture components for clustering. \emph{Journal of Computational and Graphical Statistics}, 19(2):332-353.
}
\examples{
\donttest{
data(Baudry_etal_2010_JCGS_examples)
output <- clustCombi(data = ex4.4.1)
output # is of class clustCombi
# plots the hierarchy of combined solutions, then some "entropy plots" which
# may help one to select the number of classes
plot(output)
}
}
\keyword{datasets}