-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcdensE.Rd
128 lines (122 loc) · 4.34 KB
/
cdensE.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
\name{cdensE}
\alias{cdensE}
\alias{cdensV}
\alias{cdensX}
\alias{cdensEII}
\alias{cdensVII}
\alias{cdensEEI}
\alias{cdensVEI}
\alias{cdensEVI}
\alias{cdensVVI}
\alias{cdensEEE}
\alias{cdensEEV}
\alias{cdensVEV}
\alias{cdensVVV}
\alias{cdensEVE}
\alias{cdensEVV}
\alias{cdensVEE}
\alias{cdensVVE}
\alias{cdensXII}
\alias{cdensXXI}
\alias{cdensXXX}
\title{
Component Density for a Parameterized MVN Mixture Model
}
\description{
Computes component densities for points in a parameterized MVN mixture model.
}
\usage{
cdensE(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensV(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensX(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensEII(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensVII(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensEEI(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensVEI(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensEVI(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensVVI(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensEEE(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensEEV(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensVEV(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensVVV(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensEVE(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensEVV(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensVEE(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensVVE(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensXII(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensXXI(data, logarithm = FALSE, parameters, warn = NULL, \dots)
cdensXXX(data, logarithm = FALSE, parameters, warn = NULL, \dots)
}
\arguments{
\item{data}{
A numeric vector, matrix, or data frame of observations.
Categorical variables are not allowed.
If a matrix or data frame, rows correspond to observations and
columns correspond to variables.
}
\item{logarithm}{
A logical value indicating whether or not the logarithm of the
component densities should be returned.
The default is to return the component densities,
obtained from the log component densities by exponentiation.
}
\item{parameters}{
The parameters of the model:
\describe{
\item{\code{mean}}{
The mean for each component. If there is more than one component,
this is a matrix whose kth column is the mean of the \emph{k}th
component of the mixture model.
}
\item{\code{variance}}{
A list of variance parameters for the model.
The components of this list depend on the model
specification. See the help file for \code{\link{mclustVariance}}
for details.
}
\item{\code{pro}}{
Mixing proportions for the components of the mixture.
If the model includes a Poisson term for noise, there
should be one more mixing proportion than the number
of Gaussian components.
}
}
}
\item{warn}{
A logical value indicating whether or not a warning should be issued
when computations fail. The default is \code{warn=FALSE}.
}
\item{\dots}{
Catches unused arguments in indirect or list calls via \code{do.call}.
}
}
\value{
A numeric matrix whose \code{[i,j]}th
entry is the density of observation \emph{i} in component \emph{j}.
The densities are not scaled by mixing proportions.
}
\note{
When one or more component densities are very large in magnitude,
then it may be possible to compute the logarithm of the component
densities but not the component densities themselves due to overflow.
}
\seealso{
\code{\link{cdens}},
\code{\link{dens}},
\code{\link{mclustVariance}},
\code{\link{mstep}},
\code{\link{mclust.options}},
\code{\link{do.call}}.
}
\examples{
\donttest{
z2 <- unmap(hclass(hcVVV(faithful),2)) # initial value for 2 class case
model <- meVVV(data=faithful, z=z2)
cdensVVV(data=faithful, logarithm = TRUE, parameters = model$parameters)
data(cross)
z2 <- unmap(cross[,1])
model <- meEEV(data = cross[,-1], z = z2)
EEVdensities <- cdensEEV( data = cross[,-1], parameters = model$parameters)
cbind(cross[,-1],map(EEVdensities))}
}
\keyword{cluster}