-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathestepE.Rd
126 lines (124 loc) · 3.83 KB
/
estepE.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
\name{estepE}
\alias{estepE}
\alias{estepV}
\alias{estepEII}
\alias{estepVII}
\alias{estepEEI}
\alias{estepVEI}
\alias{estepEVI}
\alias{estepVVI}
\alias{estepEEE}
\alias{estepEEV}
\alias{estepVEV}
\alias{estepVVV}
\alias{estepEVE}
\alias{estepEVV}
\alias{estepVEE}
\alias{estepVVE}
\title{
E-step in the EM algorithm for a parameterized Gaussian mixture model.
}
\description{
Implements the expectation step in the EM algorithm for a
parameterized Gaussian mixture model.
}
\usage{
estepE(data, parameters, warn = NULL, \dots)
estepV(data, parameters, warn = NULL, \dots)
estepEII(data, parameters, warn = NULL, \dots)
estepVII(data, parameters, warn = NULL, \dots)
estepEEI(data, parameters, warn = NULL, \dots)
estepVEI(data, parameters, warn = NULL, \dots)
estepEVI(data, parameters, warn = NULL, \dots)
estepVVI(data, parameters, warn = NULL, \dots)
estepEEE(data, parameters, warn = NULL, \dots)
estepEEV(data, parameters, warn = NULL, \dots)
estepVEV(data, parameters, warn = NULL, \dots)
estepVVV(data, parameters, warn = NULL, \dots)
estepEVE(data, parameters, warn = NULL, \dots)
estepEVV(data, parameters, warn = NULL, \dots)
estepVEE(data, parameters, warn = NULL, \dots)
estepVVE(data, parameters, warn = NULL, \dots)
}
\arguments{
\item{data}{
A numeric vector, matrix, or data frame of observations.
Categorical variables are not allowed.
If a matrix or data frame, rows correspond to observations and
columns correspond to variables.
}
\item{parameters}{
The parameters of the model:
%\itemize{
%\item An argument describing the variance (depends on the model):
\describe{
\item{\code{pro}}{
Mixing proportions for the components of the mixture.
If the model includes a Poisson term for noise, there
should be one more mixing proportion than the number
of Gaussian components.
}
\item{mu}{
The mean for each component. If there is more than one component,
this is a matrix whose columns are the means of the components.
}
\item{\code{variance}}{
A list of variance parameters for the model.
The components of this list depend on the model
specification. See the help file for \code{\link{mclustVariance}}
for details.
}
\item{\code{Vinv}}{
An estimate of the reciprocal hypervolume of the data region.
If not supplied or set to a negative value, the default is
determined by applying function \code{hypvol} to the data.
Used only when \code{pro} includes an additional
mixing proportion for a noise component.
}
}
%}
}
\item{warn}{
A logical value indicating whether or certain warnings should be issued.
The default is given by \code{mclust.options("warn")}.
}
\item{\dots}{
Catches unused arguments in indirect or list calls via \code{do.call}.
}
}
\value{
A list including the following components:
\item{modelName}{
Character string identifying the model.
}
\item{z}{
A matrix whose \code{[i,k]}th entry is the
conditional probability of the \emph{i}th observation belonging to
the \emph{k}th component of the mixture.
}
\item{parameters}{
The input parameters.
}
\item{loglik}{
The logliklihood for the data in the mixture model.
}
\item{Attribute}{
\code{"WARNING"}: An appropriate warning if problems are
encountered in the computations.
}
}
\seealso{
\code{\link{estep}},
\code{\link{em}},
\code{\link{mstep}},
\code{\link{do.call}},
\code{\link{mclustVariance}},
\code{\link{mclust.options}}.
}
\examples{
\donttest{
msEst <- mstepEII(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)
estepEII(data = iris[,-5], parameters = msEst$parameters)}
}
\keyword{cluster}