-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathhcRandomPairs.Rd
47 lines (40 loc) · 1.16 KB
/
hcRandomPairs.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
\name{hcRandomPairs}
\alias{hcRandomPairs}
\alias{randomPairs}
\title{Random hierarchical structure}
\description{Create a hierarchical structure using a random hierarchical partition of the data.}
\usage{
hcRandomPairs(data, seed = NULL, \dots)
}
\arguments{
\item{data}{
A numeric matrix or data frame of observations.
If a matrix or data frame, rows correspond to observations and
columns correspond to variables.
}
\item{seed}{
Optional single value, interpreted as an integer, specifying the seed for random partition.
}
\item{\dots}{
Catches unused arguments in indirect or list calls via \code{do.call}.
}
}
\value{
A numeric two-column matrix in which the \emph{i}th row gives the minimum
index for observations in each of the two clusters merged at the
\emph{i}th stage of a random agglomerative hierarchical clustering.
}
\seealso{
\code{\link{hc}},
\code{\link{hclass}}
\code{\link{hcVVV}}
}
\examples{
data <- iris[,1:4]
randPairs <- hcRandomPairs(data)
str(randPairs)
# start model-based clustering from a random partition
mod <- Mclust(data, initialization = list(hcPairs = randPairs))
summary(mod)
}
\keyword{cluster}