-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathme.weighted.Rd
140 lines (130 loc) · 4.84 KB
/
me.weighted.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
\name{me.weighted}
\alias{me.weighted}
\title{EM algorithm with weights starting with M-step for parameterized Gaussian mixture models}
\description{
Implements the EM algorithm for fitting Gaussian mixture models parameterized by eigenvalue decomposition, when observations have weights, starting with the maximization step.
}
\usage{
me.weighted(data, modelName, z, weights = NULL, prior = NULL,
control = emControl(), Vinv = NULL, warn = NULL, \dots)
}
\arguments{
\item{data}{
A numeric vector, matrix, or data frame of observations.
Categorical variables are not allowed.
If a matrix or data frame, rows correspond to observations and
columns correspond to variables.
}
\item{modelName}{
A character string indicating the model. The help file for
\code{\link{mclustModelNames}} describes the available models.
}
\item{z}{
A matrix whose \code{[i,k]}th entry is an initial estimate of the
conditional probability of the ith observation belonging to
the \emph{k}th component of the mixture.
}
\item{weights}{
A vector of positive weights, where the \code{[i]}th entry is the weight
for the ith observation. If any of the weights are greater than one,
then they are scaled so that the maximum weight is one.
}
\item{prior}{
Specification of a conjugate prior on the means and variances.
See the help file for \code{priorControl} for further information.
The default assumes no prior.
}
\item{control}{
A list of control parameters for EM. The defaults are set by the call
\code{\link{emControl}}.
}
\item{Vinv}{
If the model is to include a noise term, \code{Vinv} is an estimate of the
reciprocal hypervolume of the data region. If set to a negative value
or 0, the model will include a noise term with the reciprocal hypervolume
estimated by the function \code{hypvol}.
The default is not to assume a noise term in the model through the
setting \code{Vinv=NULL}.
}
\item{warn}{
A logical value indicating whether or not certain warnings
(usually related to singularity) should be issued when the
estimation fails. The default is set by \code{warn} using
\code{\link{mclust.options}}.
}
\item{\dots}{
Catches unused arguments in indirect or list calls via \code{do.call}.
}
}
\value{
A list including the following components:
\item{modelName}{
A character string identifying the model (same as the input argument).
}
\item{z}{
A matrix whose \code{[i,k]}th entry is the
conditional probability of the \emph{i}th observation belonging to
the \emph{k}th component of the mixture.
}
\item{parameters}{
\describe{
\item{\code{pro}}{
A vector whose \emph{k}th component is the mixing proportion for
the \emph{k}th component of the mixture model.
If the model includes a Poisson term for noise, there
should be one more mixing proportion than the number
of Gaussian components.
}
\item{\code{mean}}{
The mean for each component. If there is more than one component,
this is a matrix whose kth column is the mean of the \emph{k}th
component of the mixture model.
}
\item{\code{variance}}{
A list of variance parameters for the model.
The components of this list depend on the model
specification. See the help file for \code{\link{mclustVariance}}
for details.
}
\item{\code{Vinv}}{
The estimate of the reciprocal hypervolume of the data region
used in the computation when the input indicates the
addition of a noise component to the model.
}
}
}
\item{loglik}{
The log-likelihood for the estimated mixture model.
}
\item{bic}{
The BIC value for the estimated mixture model.
}
\item{Attributes:}{
\code{"info"} Information on the iteration.\cr
\code{"WARNING"} An appropriate warning if problems are encountered
in the computations.
}
}
\details{This is a more efficient version made available with \pkg{mclust} \eqn{ge 6.1} using Fortran code internally.}
\author{T. Brendan Murphy, Luca Scrucca}
\seealso{
\code{\link{me}},
\code{\link{meE}}, \dots,
\code{\link{meVVV}},
\code{\link{em}},
\code{\link{mstep}},
\code{\link{estep}},
\code{\link{priorControl}},
\code{\link{mclustModelNames}},
\code{\link{mclustVariance}},
\code{\link{mclust.options}}
}
\examples{
w = rexp(nrow(iris))
w = w/mean(w)
c(summary(w), sum = sum(w))
z = unmap(sample(1:3, size = nrow(iris), replace = TRUE))
MEW = me.weighted(data = iris[,-5], modelName = "VVV",
z = z, weights = w)
str(MEW,1)
}