-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathplot.MclustSSC.Rd
65 lines (50 loc) · 1.77 KB
/
plot.MclustSSC.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
\name{plot.MclustSSC}
\alias{plot.MclustSSC}
\title{Plotting method for MclustSSC semi-supervised classification}
\description{
Plots for semi-supervised classification based on Gaussian finite mixture models.
}
\usage{
\method{plot}{MclustSSC}(x, what = c("BIC", "classification", "uncertainty"), \dots)
}
\arguments{
\item{x}{
An object of class \code{'MclustSSC'} resulting from a call to \code{\link{MclustSSC}}.
}
\item{what}{
A string specifying the type of graph requested. Available choices are:
\describe{
\item{\code{"BIC"} =}{plot of BIC values used for model selection, i.e. for choosing the model class covariances.}
\item{\code{"classification"} =}{a plot of data with points marked based on the known and the predicted classification.}
\item{\code{"uncertainty"} =}{a plot of classification uncertainty.}
}
If not specified, in interactive sessions a menu of choices is proposed.
}
\item{\dots}{further arguments passed to or from other methods. See \code{\link{plot.Mclust}}.}
}
%\value{}
%\details{}
\author{Luca Scrucca}
\seealso{
\code{\link{MclustSSC}}
}
\examples{
X <- iris[,1:4]
class <- iris$Species
# randomly remove class labels
set.seed(123)
class[sample(1:length(class), size = 120)] <- NA
table(class, useNA = "ifany")
clPairs(X, ifelse(is.na(class), 0, class),
symbols = c(0, 16, 17, 18), colors = c("grey", 4, 2, 3),
main = "Partially classified data")
# Fit semi-supervised classification model
mod_SSC <- MclustSSC(X, class)
summary(mod_SSC, parameters = TRUE)
pred_SSC <- predict(mod_SSC)
table(Predicted = pred_SSC$classification, Actual = class, useNA = "ifany")
plot(mod_SSC, what = "BIC")
plot(mod_SSC, what = "classification")
plot(mod_SSC, what = "uncertainty")
}
\keyword{multivariate}