Skip to content
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Commit 6d9fbc2

Browse files
luca-scrcran-robot
authored andcommittedMay 20, 2022
version 5.4.10
1 parent cb07b2f commit 6d9fbc2

37 files changed

+222
-161
lines changed
 

‎DESCRIPTION

+4-4
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
Package: mclust
2-
Version: 5.4.9
3-
Date: 2021-12-17
2+
Version: 5.4.10
3+
Date: 2022-05-20
44
Title: Gaussian Mixture Modelling for Model-Based Clustering,
55
Classification, and Density Estimation
66
Description: Gaussian finite mixture models fitted via EM algorithm for
@@ -29,11 +29,11 @@ ByteCompile: true
2929
NeedsCompilation: yes
3030
LazyData: yes
3131
Encoding: UTF-8
32-
Packaged: 2021-12-17 14:26:42 UTC; luca
32+
Packaged: 2022-05-20 07:46:14 UTC; luca
3333
Author: Chris Fraley [aut],
3434
Adrian E. Raftery [aut] (<https://orcid.org/0000-0002-6589-301X>),
3535
Luca Scrucca [aut, cre] (<https://orcid.org/0000-0003-3826-0484>),
3636
Thomas Brendan Murphy [ctb] (<https://orcid.org/0000-0002-5668-7046>),
3737
Michael Fop [ctb] (<https://orcid.org/0000-0003-3936-2757>)
3838
Maintainer: Luca Scrucca <luca.scrucca@unipg.it>
39-
Date/Publication: 2021-12-17 15:10:02 UTC
39+
Date/Publication: 2022-05-20 09:10:02 UTC

‎MD5

+36-36
Original file line numberDiff line numberDiff line change
@@ -1,57 +1,57 @@
1-
3111dbac78536d0757a0b08390d591f2 *DESCRIPTION
1+
2bcb79cd210cf3986b854bf73cc1159b *DESCRIPTION
22
f29893646b89738c493bd22446314bc4 *NAMESPACE
3-
2b1dd2a90efd9be7407bc170bd166548 *NEWS.md
4-
fe5b51db8754d5ca6d32248ca9d4db1b *R/bootstrap.R
3+
50dd1e793f6d30162776f5cd960293ad *NEWS.md
4+
6c7b363cb8374e4df827c1e6394faa5f *R/bootstrap.R
55
eeb0e042ca8bcc1eb2d32da9ef594baf *R/clustCombi.R
6-
97c8d1f45c59c4da2ea7f6db09b68f36 *R/densityMclust.R
6+
dcad5ed0da37959e13faa123a2f6092d *R/densityMclust.R
77
3cbe94a3f3c162d293154dc0a055c9bb *R/gmmhd.R
8-
2dc5411e8512b4da058597e17dd187fe *R/graphics.R
8+
87efc81c862d93c14860f710ad424765 *R/graphics.R
99
ba84097ee321529784cd9c6db5143e77 *R/icl.R
1010
4b9155a000a45bb1f37fd1507c15f172 *R/impute.R
1111
d85f070c21b0742a056b87a9654773d2 *R/mbahc.R
1212
7b5f0026d92006d1a76e09714894f7d9 *R/mclust.R
1313
1c0ad0629bdef87f46a9811aa87011ea *R/mclustaddson.R
14-
3953487293520a00bc4e50a5483726f1 *R/mclustda.R
15-
37f2401aee7a35ce6d7bb0e2ca6839eb *R/mclustdr.R
16-
de7a05949adf6c735f8355bb495b6df5 *R/mclustssc.R
17-
b2216ff923e4a79da4d35b12a4015f6f *R/options.R
14+
13bf69f3940653e4a0de1b2ad1686250 *R/mclustda.R
15+
c5a0f7f8aa99fd7f8bb589ead06084a1 *R/mclustdr.R
16+
91a4d89022263a71f0e88f575a02b913 *R/mclustssc.R
17+
2c029b4f12b6c96982c034098d881bfe *R/options.R
1818
781ff8bea2efa10350791cd781eb4a2d *R/toremove.R
1919
ba0e509dd6446b85a79e6c24e45d59c8 *R/util.R
2020
ce4d61899bfc151f01017ae2a753baee *R/weights.R
21-
ea54da7ad04ea6cf47aad932539d5945 *R/zzz.R
22-
aa315fbfff90cd89ac8637b562a133bc *build/vignette.rds
23-
6fc941eda7a2bcddd64d711015c9d7db *data/Baudry_etal_2010_JCGS_examples.rda
24-
eae098659ecc267feb763f52c0de1a37 *data/EuroUnemployment.rda
25-
fa93433db4115af78edf00264634a412 *data/GvHD.rda
26-
2fbaa53e4f9b0aaa0d415e164883c364 *data/acidity.rda
21+
dce1aa8eed39b0a39cb74e3459ca5a87 *R/zzz.R
22+
243542f34ac9743086dbd93bbae49d91 *build/vignette.rds
23+
a31d931c438fbf3955ff74adfe38df1c *data/Baudry_etal_2010_JCGS_examples.rda
24+
de51cd86cc1795298d6a798209eb65b2 *data/EuroUnemployment.rda
25+
0ebe986448c4eb5974d226d55c6f89a0 *data/GvHD.rda
26+
586338f8f291cd917169b462689f35b6 *data/acidity.rda
2727
dcf0404be80a56cd040ed8cb8da1b428 *data/banknote.txt.gz
28-
6135e56ad3df989ce553eaf5924da9b6 *data/chevron.rda
29-
47be3bcb96ffb22598a9067ecd2701c8 *data/cross.rda
30-
cc529e91ffc45020a05da77f76e9f330 *data/diabetes.rda
31-
9e0bf66683dc263d24e018632136569c *data/thyroid.rda
28+
01367d78c80768963c8ac768ac65e656 *data/chevron.rda
29+
5be42c1e3959457b97735c2358f9c873 *data/cross.rda
30+
87c7d38efa0d818679b6807877c85248 *data/diabetes.rda
31+
9fad7b6a1368003198d262386a4bb43b *data/thyroid.rda
3232
b2a529e265721bcd2cb632d42ec6cc11 *data/wdbc.txt.gz
33-
2e2ce1f6b143173c17b6027c82cf7e7e *data/wreath.rda
33+
61037411e096ba5a4b1de00db01477ee *data/wreath.rda
3434
adc627c8c5c93d652e2b0109376135ac *inst/CITATION
3535
b2f3cb62dc61485b2a6fe6210ebd0d03 *inst/doc/mclust.R
3636
c7680542d4532804d5be21b3684986c7 *inst/doc/mclust.Rmd
37-
48dd50ef41d5d80914f3228dcead2180 *inst/doc/mclust.html
38-
8d39c22f943d32be50a07dcad31bb27c *man/Baudry_etal_2010_JCGS_examples.Rd
37+
f1f40bb4ceead4ea10ff6feb6589a526 *inst/doc/mclust.html
38+
7799d6093880e94a3bed07e6900f7249 *man/Baudry_etal_2010_JCGS_examples.Rd
3939
226b01ed5c258d406de2af5cfade2ba1 *man/BrierScore.Rd
4040
9260d85565aad1fa28e84cd2ca14d23d *man/EuroUnemployment.Rd
4141
0e1b6313cb53d6e937acd55cdded818e *man/GvHD.Rd
42-
1496c9e40a8326f4d922857a9beff127 *man/Mclust.Rd
43-
ed866eb3da5e973d336818b076d3685c *man/MclustBootstrap.Rd
42+
3f8136cfddb07b98461c1c505aea8fe8 *man/Mclust.Rd
43+
ea3ad560361c7274e200e317aca08df1 *man/MclustBootstrap.Rd
4444
6e1ae52a737008b85c9ed1c97a65479a *man/MclustDA.Rd
4545
a6a45328b7d5eaf35c375008599fe18f *man/MclustDR.Rd
46-
82520ec704397fa02b331969088e91be *man/MclustDRsubsel.Rd
46+
b2326163d0cd9784455a55a7c4044c8d *man/MclustDRsubsel.Rd
4747
b8d666ee6dceb9fbad3be67dea8e5c35 *man/MclustSSC.Rd
4848
38f7f5f909ac5e15e37b866ab979e842 *man/acidity.Rd
4949
6c924f5dc94fb10416016d5d027932e3 *man/adjustedRandIndex.Rd
5050
40bf7f2db2b9677c5b9bf7733da4aeac *man/banknote.Rd
5151
840501df1b562d5ba9df4d31c33672c6 *man/bic.Rd
5252
9458a1636740fbd8443308670f153d68 *man/cdens.Rd
5353
00ce09bbbe3b468350de0f9ee5bcbfae *man/cdensE.Rd
54-
3061f14dc3f95151d31f4183ff8f9aec *man/cdfMclust.Rd
54+
3844722391ea73731d1353ecbd726867 *man/cdfMclust.Rd
5555
b0cfe540c4eb91f99f49c2127562cd49 *man/chevron.Rd
5656
342f855aaedba7fe96aaf6a425a77519 *man/clPairs.Rd
5757
63d108fe436518c400eebb43430a5958 *man/classError.Rd
@@ -70,9 +70,9 @@ d8037dbf01147532dabd4fabbce22626 *man/cvMclustDA.Rd
7070
9f86088d9d21126e7cc1ac28d4e5fa6a *man/decomp2sigma.Rd
7171
4175c1b284dbb6b7c5a5da13f32d037e *man/defaultPrior.Rd
7272
2676ec2d5d2b5b82dccc0cbd3c11bc13 *man/dens.Rd
73-
91ec0e3bb8bfa83dc7368653ebd203d6 *man/densityMclust.Rd
74-
266b5b8c466661154f0904ef3d615431 *man/densityMclust.diagnostic.Rd
75-
ec183d2e2f2cee6758cef7445c1f2d33 *man/diabetes.Rd
73+
2138f884fcb775643b142a66d3e5ed00 *man/densityMclust.Rd
74+
1ec97330567ea5ddec41ca6aff43bc90 *man/densityMclust.diagnostic.Rd
75+
ffa2e5d8d84e46efb64589a77dd134a2 *man/diabetes.Rd
7676
92ea0d6609afc260770a66d2ad957f04 *man/dmvnorm.Rd
7777
d8e808a964b5deb680007ae1ee1b5997 *man/dupPartition.Rd
7878
e0d38101ddddf5fd476ec651f2527af5 *man/em.Rd
@@ -100,7 +100,7 @@ cfb07fb48ca73468e3283687cdd54d97 *man/logLik.Mclust.Rd
100100
4e3901ea67e0c125d8e5ac4330df2e38 *man/mapClass.Rd
101101
f1edaf4e08180fa4edad91f6023b58c3 *man/mclust-deprecated.Rd
102102
c2686ac817e8bbb871363f12f143cc1d *man/mclust-internal.Rd
103-
0bc49dba3f3014ad2758c8ea1ff880d0 *man/mclust-package.Rd
103+
ecf47a755069d2b02eb63524defcaadf *man/mclust-package.Rd
104104
dbdb7e3336c3760b23504cb5361bb265 *man/mclust.options.Rd
105105
06f681ededb7169ee1e4dbe256233f4a *man/mclust1Dplot.Rd
106106
0d32e83fa5e8a19883b7189e597e2d08 *man/mclust2Dplot.Rd
@@ -129,32 +129,32 @@ d84812bf9da9c9e76465ae24ae554882 *man/plot.Mclust.Rd
129129
cfb781f6b9fe5bf1d2c8cdf49e1a8c04 *man/plot.MclustDR.Rd
130130
3fd0d79ca9549c14b822845673cad5c1 *man/plot.MclustSSC.Rd
131131
458f2b4c3940e714a015e03e553d364b *man/plot.clustCombi.Rd
132-
ba93777b3a9c268702cdad7a85bbc2f4 *man/plot.densityMclust.Rd
132+
78a23338f16271f0ae9bbb5b7a935c95 *man/plot.densityMclust.Rd
133133
339efd96c69d386b0e4a34094084a486 *man/plot.hc.Rd
134134
67acd4e69e1861bebf51d1f649e775a7 *man/plot.mclustBIC.Rd
135135
640264c2366087d920e4518af50281a7 *man/plot.mclustICL.Rd
136136
f640c08bd9098247a97a44f30c89a4cf *man/predict.Mclust.Rd
137137
79be9849129ebfbdf9c0a6cdfac3d328 *man/predict.MclustDA.Rd
138138
e84b696c5b8eff056814c3cba07bee9f *man/predict.MclustDR.Rd
139139
66b20d05c52e7dc62fcb4971f1b2287b *man/predict.MclustSSC.Rd
140-
bdb1679df5c649df2371270753107cca *man/predict.densityMclust.Rd
140+
691003fbb627468671f5a26fc0759d29 *man/predict.densityMclust.Rd
141141
8384a865dade63acabf451b136217287 *man/priorControl.Rd
142142
1a32c267ea6deb106ae19b6cec847115 *man/randProj.Rd
143143
d9477d3e3d801b783e42d10e37271e05 *man/randomOrthogonalMatrix.Rd
144144
e43a5fead9ef355e3d522ec94e224f66 *man/sigma2decomp.Rd
145145
1ed03f440760a36b9c66bf6c5259f1cb *man/sim.Rd
146146
77797cb68e57027ea316e1b068b9ed63 *man/simE.Rd
147-
63cfca85d2a01ff42db2c501780a8d8f *man/summary.Mclust.Rd
148-
2d9de49152e45c3362bdaf30a242d56c *man/summary.MclustBootstrap.Rd
147+
83eb12323099cbbf0f3e075d10f0be77 *man/summary.Mclust.Rd
148+
91268ae73944bd6d5845911c42142e58 *man/summary.MclustBootstrap.Rd
149149
4a8c675b46da86ca7075999c22e635f4 *man/summary.MclustDA.Rd
150150
103fff818063adef9f3262398342fb0a *man/summary.MclustDR.Rd
151151
fe2f8df16cc881677e427811d2d8a0d9 *man/summary.MclustSSC.Rd
152152
986ecadd060b62810d73fa37ec72dc19 *man/summary.mclustBIC.Rd
153153
35a02e5f739cbc7ced68ce7f232852cf *man/surfacePlot.Rd
154-
f4c0b79cc4812c5ebac9d75ea85239d1 *man/thyroid.Rd
154+
a584277d937587f96f984cbcf4d8a494 *man/thyroid.Rd
155155
16f301b425aebb1ac6b6f0175427dabc *man/uncerPlot.Rd
156156
b76a9e2d21683188dc8bce832e2ec9d1 *man/unmap.Rd
157-
be15964c22ee1ec25420a1352049519a *man/wdbc.Rd
157+
c48dce8f9817012850ce6d6ae81bd136 *man/wdbc.Rd
158158
c1b81d23059192faf2b0fdb40b0bc0d2 *man/wreath.Rd
159159
2a6f9e9e044a78154d3cfda5936d6f48 *src/Makevars
160160
d784799104d2c2350f9350b268761a2b *src/dmvnorm.f

‎NEWS.md

+7
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,10 @@
1+
# mclust 5.4.10
2+
3+
- Updated banner on startup.
4+
- Updated info on man page for datasets `diabetes`, `wdbc`, and `thyroid`.
5+
- Std. error for cross-validation in `cvMclustDA()` uses formula for the weighted standard deviation with weights given by folds size.
6+
- Fix .Rd files.
7+
18
# mclust 5.4.9
29

310
- Added `crimcoords()` to compute discriminant coordinates or crimcoords.

‎R/bootstrap.R

+2-2
Original file line numberDiff line numberDiff line change
@@ -144,8 +144,8 @@ MclustBootstrap <- function(object, nboot = 999, type = c("bs", "wlbs", "pb", "j
144144
max.nonfit = 10*nboot, verbose = interactive(), ...)
145145
{
146146

147-
if(!any(class(object) %in% c("Mclust", "densityMclust")))
148-
stop("object must be of class 'Mclust' or 'densityMclust'")
147+
stopifnot("object must be of class 'Mclust' or 'densityMclust'" =
148+
inherits(object, c("Mclust", "densityMclust")))
149149

150150
if(any(type %in% c("nonpara", "wlb")))
151151
{ type <- gsub("nonpara", "bs", type)

‎R/densityMclust.R

+4-4
Original file line numberDiff line numberDiff line change
@@ -364,8 +364,8 @@ densityMclust.diagnostic <- function(object, type = c("cdf", "qq"),
364364
# Loader C. (1999), Local Regression and Likelihood. New York, Springer,
365365
# pp. 87-90)
366366

367-
if(!any(class(object) == "densityMclust"))
368-
{ stop("first argument must be an object of class 'densityMclust'") }
367+
stopifnot("first argument must be an object of class 'densityMclust'" =
368+
inherits(object, "densityMclust"))
369369
if(object$d > 1)
370370
{ warning("only available for one-dimensional data")
371371
return() }
@@ -442,8 +442,8 @@ cdfMclust <- function(object, data, ngrid = 100, ...)
442442
# data = the data vector
443443
# ngrid = the length of rectangular grid
444444

445-
if(!any(class(object) == "densityMclust"))
446-
{ stop("first argument must be an object of class 'densityMclust'") }
445+
stopifnot("first argument must be an object of class 'densityMclust'" =
446+
inherits(object, "densityMclust"))
447447

448448
if(missing(data))
449449
{ eval.points <- extendrange(object$data, f = 0.1)

‎R/graphics.R

+4-1
Original file line numberDiff line numberDiff line change
@@ -533,7 +533,10 @@ clPairs <- function (data, classification,
533533
{ colors <- rep( "black", l)
534534
warning("more colors needed")
535535
}
536-
if(is.null(cex)) cex <- rep(1, l)
536+
if(is.null(cex)) cex <- 1
537+
if(length(cex) == 1) cex <- rep(cex, l)
538+
cex <- cex[1:l]
539+
537540
grid <- isTRUE(as.logical(grid))
538541

539542
if(d > 2)

‎R/mclustda.R

+7-5
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ summary.MclustDA <- function(object, parameters = FALSE, newdata, newclass, ...)
220220
ce <- mean(class != pred$classification)
221221
brier <- BrierScore(pred$z, class)
222222
tab <- try(table(class, pred$classification))
223-
if(class(tab) == "try-error")
223+
if(inherits(tab, "try-error"))
224224
{ ce <- tab <- NA }
225225
else
226226
{ names(dimnames(tab)) <- c("Class", "Predicted") }
@@ -1041,10 +1041,12 @@ cvMclustDA <- function(object, nfold = 10,
10411041
setTxtProgressBar(pbar, i)
10421042
}
10431043
#
1044-
cv <- apply(metric.cv, 2, function(m)
1045-
sum(m*folds.size)/sum(folds.size))
1046-
se <- apply(metric.cv, 2, function(m)
1047-
sqrt(var(m)/nfold))
1044+
cv <- sapply(1:2, function(m) sum(metric.cv[,m]*folds.size)/sum(folds.size))
1045+
# se <- apply(metric.cv, 2, function(m) sqrt(var(m)/nfold))
1046+
se <- sapply(1:2, function(m)
1047+
sqrt( ( sum( (metric.cv[,m] - cv[m])^2 * folds.size) /
1048+
(sum(folds.size)*(nfold-1)/nfold)) /
1049+
nfold))
10481050
#
10491051
out <- list(classification = class.cv,
10501052
z = prob.cv,

‎R/mclustdr.R

+13-12
Original file line numberDiff line numberDiff line change
@@ -15,10 +15,10 @@ MclustDR <- function(object, lambda = 1,
1515
{
1616
# Dimension reduction for model-based clustering and classification
1717

18-
call <- match.call()
19-
if(!any(class(object) %in% c("Mclust", "MclustDA")))
20-
stop("object must be of class 'Mclust' or 'MclustDA'")
18+
stopifnot("first argument must be an object of class 'Mclust' or 'MclustDA'" =
19+
inherits(object, c("Mclust", "MclustDA")))
2120

21+
call <- match.call()
2222
x <- data.matrix(object$data)
2323
n <- nrow(x)
2424
p <- ncol(x)
@@ -754,9 +754,9 @@ MclustDRsubsel <- function(object, G = 1:9,
754754
# of the search is printed; if 2 a detailed trace info is
755755
# is shown.
756756

757-
if(class(object) != "MclustDR")
758-
stop("Not a 'MclustDR' object")
759-
757+
stopifnot("first argument must be an object of class 'MclustDR'" =
758+
inherits(object, "MclustDR"))
759+
760760
hcUse <- mclust.options("hcUse")
761761
mclust.options("hcUse" = "VARS")
762762
on.exit(mclust.options("hcUse" = hcUse))
@@ -824,8 +824,8 @@ MclustDRsubsel1cycle <- function(object,
824824
{
825825
# Single cycle of subset selection for GMMDR directions based on bayes factors.
826826

827-
if(class(object) != "MclustDR")
828-
stop("Not a 'MclustDR' object")
827+
stopifnot("first argument must be an object of class 'MclustDR'" =
828+
inherits(object, "MclustDR"))
829829

830830
d <- object$numdir
831831
dir <- object$dir[,seq(d),drop=FALSE]
@@ -944,8 +944,8 @@ MclustDRCsubsel1cycle <- function(object,
944944
{
945945
# Single cycle of subset selection for GMMDRC directions based on bayes factors.
946946

947-
if(class(object) != "MclustDR")
948-
stop("Not a 'MclustDR' object")
947+
stopifnot("first argument must be an object of class 'MclustDR'" =
948+
inherits(object, "MclustDR"))
949949

950950
d <- object$numdir
951951
dir <- object$dir[,seq(d),drop=FALSE]
@@ -1049,8 +1049,9 @@ MclustDRrecoverdir <- function(object, data, normalized = TRUE, std = FALSE)
10491049
# directions. This is useful if the directions are obtained from other
10501050
# directions
10511051

1052-
if(!any(class(object) == "MclustDR"))
1053-
stop("object must be of class 'mclustsir'")
1052+
stopifnot("first argument must be an object of class 'MclustDR'" =
1053+
inherits(object, "MclustDR"))
1054+
10541055
if(missing(data)) x <- object$x
10551056
else x <- as.matrix(data)
10561057
x <- scale(x, center=TRUE, scale=FALSE)

‎R/mclustssc.R

+2-2
Original file line numberDiff line numberDiff line change
@@ -53,8 +53,8 @@ MclustSSC <- function(data, class,
5353
c(args, list(modelName = modelNames[m]))),
5454
silent = TRUE)
5555
if(verbose)
56-
{ ipbar <- ipbar+1; setTxtProgressBar(pbar, ipbar) }
57-
if(class(mod) == "try-error") next()
56+
{ ipbar <- ipbar+1; setTxtProgressBar(pbar, ipbar) }
57+
if(inherits(mod, "try-error")) next()
5858
BIC[m] <- mod$bic
5959
if(!is.na(BIC[m]) && BIC[m] >= max(BIC, na.rm = TRUE))
6060
Model <- mod

‎R/options.R

+2-2
Original file line numberDiff line numberDiff line change
@@ -52,10 +52,10 @@ mclust.options <- function(...)
5252
if(length(args) == 0) return(current)
5353
n <- names(args)
5454
if (is.null(n)) stop("options must be given by name")
55-
# changed <- current[n]
55+
changed <- current[n]
5656
current[n] <- args
5757
assign(".mclust", current, envir = asNamespace("mclust"))
58-
# da provare
5958
# assignInNamespace(".mclust", current, ns = asNamespace("mclust"))
59+
# invisible(changed) # bettina suggestion...
6060
invisible(current)
6161
}

‎R/zzz.R

+14-5
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,21 @@ mclustStartupMessage <- function()
77
{
88
# Startup message obtained as
99
# > figlet -f slant MCLUST
10+
# msg <- c(paste0(
11+
# " __ ___________ __ _____________
12+
# / |/ / ____/ / / / / / ___/_ __/
13+
# / /|_/ / / / / / / / /\\__ \\ / /
14+
# / / / / /___/ /___/ /_/ /___/ // /
15+
# /_/ /_/\\____/_____/\\____//____//_/ version ",
16+
#
17+
# Startup message obtained as
18+
# > figlet -f slant mclust
1019
msg <- c(paste0(
11-
" __ ___________ __ _____________
12-
/ |/ / ____/ / / / / / ___/_ __/
13-
/ /|_/ / / / / / / / /\\__ \\ / /
14-
/ / / / /___/ /___/ /_/ /___/ // /
15-
/_/ /_/\\____/_____/\\____//____//_/ version ",
20+
" __ __
21+
____ ___ _____/ /_ _______/ /_
22+
/ __ `__ \\/ ___/ / / / / ___/ __/
23+
/ / / / / / /__/ / /_/ (__ ) /_
24+
/_/ /_/ /_/\\___/_/\\__,_/____/\\__/ version ",
1625
packageVersion("mclust")),
1726
"\nType 'citation(\"mclust\")' for citing this R package in publications.")
1827
return(msg)

‎build/vignette.rds

1 Byte
Binary file not shown.
1 Byte
Binary file not shown.

‎data/EuroUnemployment.rda

-2 Bytes
Binary file not shown.

‎data/GvHD.rda

-2 Bytes
Binary file not shown.

‎data/acidity.rda

-1 Bytes
Binary file not shown.

‎data/chevron.rda

-2 Bytes
Binary file not shown.

‎data/cross.rda

-2 Bytes
Binary file not shown.

‎data/diabetes.rda

-3 Bytes
Binary file not shown.

‎data/thyroid.rda

-2 Bytes
Binary file not shown.

‎data/wreath.rda

0 Bytes
Binary file not shown.

‎inst/doc/mclust.html

+89-52
Large diffs are not rendered by default.

‎man/Baudry_etal_2010_JCGS_examples.Rd

+1-1
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ ex4.4.2 has been simulated from a mixture of two uniform distributions in R^3.
4343

4444
}
4545
\references{
46-
J.-P. Baudry, A. E. Raftery, G. Celeux, K. Lo and R. Gottardo (2010). Combining mixture components for clustering. \emph{Journal of Computational and Graphical Statistics, 19(2):332-353.}
46+
J.-P. Baudry, A. E. Raftery, G. Celeux, K. Lo and R. Gottardo (2010). Combining mixture components for clustering. \emph{Journal of Computational and Graphical Statistics}, 19(2):332-353.
4747
}
4848
\examples{
4949
\donttest{

‎man/Mclust.Rd

+5-4
Original file line numberDiff line numberDiff line change
@@ -73,10 +73,11 @@ Mclust(data, G = NULL, modelNames = NULL,
7373
\item{\code{subset}}{
7474
A logical or numeric vector specifying a subset of the data
7575
to be used in the initial hierarchical clustering phase.
76-
By default no subset is used unless the number of observations exceeds
77-
the value specified by \code{mclust.options("subset")}. Note that to
78-
guarantee exact reproducibility of results a seed must be specified
79-
(see \code{\link{set.seed}}).}
76+
No subset is used unless the number of observations exceeds
77+
the value specified by \code{mclust.options("subset")}, which by
78+
default is set to 2000 (see \code{\link{mclust.options}}).
79+
Note that in this case to guarantee exact reproducibility of results
80+
a seed must be specified (see \code{\link{set.seed}}).}
8081
\item{\code{noise}}{
8182
A logical or numeric vector indicating an initial guess as to
8283
which observations are noise in the data. If numeric the entries

‎man/MclustBootstrap.Rd

+1-1
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ summary(bootClust, what = "se")
7979
summary(bootClust, what = "ci")
8080
8181
data(acidity)
82-
modDens <- densityMclust(acidity)
82+
modDens <- densityMclust(acidity, plot = FALSE)
8383
modDens <- MclustBootstrap(modDens)
8484
summary(modDens, what = "se")
8585
summary(modDens, what = "ci")

‎man/MclustDRsubsel.Rd

+9-9
Original file line numberDiff line numberDiff line change
@@ -29,19 +29,19 @@ MclustDRsubsel(object, G = 1:9,
2929
\item{\dots}{Further arguments passed through \code{\link{Mclust}} or \code{\link{MclustDA}}.}
3030
\item{bic.stop}{A criterion to terminate the search. If maximal BIC difference is less than \code{bic.stop} then the algorithm stops. \cr
3131
Two tipical values are:
32-
\describe{
33-
\item{}{\code{0}: algorithm stops when the BIC difference becomes negative (default)}
34-
\item{}{\code{-Inf}: algorithm continues until all directions have been selected}
35-
}}
32+
\tabular{ll}{
33+
\code{0}: \tab algorithm stops when the BIC difference becomes negative (default);\cr
34+
\code{-Inf}: \tab algorithm continues until all directions have been selected.
35+
}
36+
}
3637
\item{bic.cutoff}{A value specifying how to select simplest ``best'' model within \code{bic.cutoff} from the maximum value achieved. Setting this to \code{0} (default) simply select the model with the largest BIC difference.}
3738
\item{mindir}{An integer value specifying the minimum number of directions to be estimated.}
3839
\item{verbose}{A logical or integer value specifying if and how much detailed information should be reported during the iterations of the algorithm. \cr
3940
Possible values are:
40-
\describe{
41-
\item{}{\code{0} or \code{FALSE}: no trace info is shown;}
42-
\item{}{\code{1} or \code{TRUE}: a trace info is shown at each step of the search;}
43-
\item{}{\code{2}: a more detailed trace info is is shown.}
44-
}
41+
\tabular{ll}{
42+
\code{0} or \code{FALSE}: \tab no trace info is shown;\cr
43+
\code{1} or \code{TRUE}: \tab a trace info is shown at each step of the search;\cr
44+
\code{2}: \tab a more detailed trace info is is shown.}
4545
}
4646
}
4747
\details{

‎man/cdfMclust.Rd

+3-3
Original file line numberDiff line numberDiff line change
@@ -42,8 +42,9 @@ The quantiles are computed using bisection linear search algorithm.
4242
}
4343

4444
\examples{
45+
\donttest{
4546
x <- c(rnorm(100), rnorm(100, 3, 2))
46-
dens <- densityMclust(x)
47+
dens <- densityMclust(x, plot = FALSE)
4748
summary(dens, parameters = TRUE)
4849
cdf <- cdfMclust(dens)
4950
str(cdf)
@@ -54,15 +55,14 @@ points(q, cdfMclust(dens, q)$y, pch = 20, col = "red3")
5455

5556
par(mfrow = c(2,2))
5657
dens.waiting <- densityMclust(faithful$waiting)
57-
plot(dens.waiting)
5858
plot(cdfMclust(dens.waiting), type = "l",
5959
xlab = dens.waiting$varname, ylab = "CDF")
6060
dens.eruptions <- densityMclust(faithful$eruptions)
61-
plot(dens.eruptions)
6261
plot(cdfMclust(dens.eruptions), type = "l",
6362
xlab = dens.eruptions$varname, ylab = "CDF")
6463
par(mfrow = c(1,1))
6564
}
65+
}
6666

6767
\keyword{cluster}
6868
\keyword{dplot}

‎man/densityMclust.Rd

+1-1
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ summary(dens, parameters = TRUE)
6767
plot(dens, what = "BIC", legendArgs = list(x = "topright"))
6868
plot(dens, what = "density", data = faithful$waiting)
6969

70-
dens <- densityMclust(faithful, modelNames = "EEE", G = 3)
70+
dens <- densityMclust(faithful, modelNames = "EEE", G = 3, plot = FALSE)
7171
summary(dens)
7272
summary(dens, parameters = TRUE)
7373
plot(dens, what = "density", data = faithful,

‎man/densityMclust.diagnostic.Rd

+1-1
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ The two diagnostic plots for density estimation in the one-dimensional case are
6464
\examples{
6565
\donttest{
6666
x <- faithful$waiting
67-
dens <- densityMclust(x)
67+
dens <- densityMclust(x, plot = FALSE)
6868
plot(dens, x, what = "diagnostic")
6969
# or
7070
densityMclust.diagnostic(dens, type = "cdf")

‎man/diabetes.Rd

+2-2
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
\alias{diabetes}
33
\docType{data}
44

5-
\title{Diabetes data}
5+
\title{Diabetes Data (flawed)}
66

77
\description{The data set contains three measurements made on 145 non-obese adult patients classified into three groups.}
88

@@ -17,7 +17,7 @@
1717
}
1818
}
1919

20-
\details{This dataset is \emph{not correct} and it is provided here only for backward compatibility. Please refer to the correct version available in package \pkg{rrcov}.}
20+
\details{This dataset is \emph{flawed} (compare with the reference) and it is provided here only for backward compatibility. A 5-variable version of the Reaven and Miller data is available in package \pkg{rrcov}. The \emph{glucose} and \emph{sspg} columns in this datsset are identical to the \emph{fpg} and \emph{insulin} columns, respectively in the \pkg{rrcov} version. The \emph{insulin} column in this dataset differs from the \emph{glucose} column in the \pkg{rrcov} version in one entry: observation 104 has the value 45 in the \emph{insulin} column in this data, and 455 in the corresponding \emph{glucose} column of the \pkg{rrcov} version.}
2121

2222
\source{Reaven, G. M. and Miller, R. G. (1979). An attempt to define the nature of chemical diabetes using a multidimensional analysis. \emph{Diabetologia} 16:17-24.}
2323

‎man/mclust-package.Rd

+2-3
Original file line numberDiff line numberDiff line change
@@ -6,8 +6,6 @@
66
\title{Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation}
77

88
\description{
9-
\if{html}{\figure{logo.png}{options: align="right" alt="logo" width="120"}}
10-
119
Gaussian finite mixture models estimated via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization and dimension reduction.
1210
}
1311

@@ -38,6 +36,7 @@ Fraley C., Raftery A. E., Murphy T. B. and Scrucca L. (2012) mclust Version 4 fo
3836
}
3937

4038
\examples{
39+
\donttest{
4140
# Clustering
4241
mod1 <- Mclust(iris[,1:4])
4342
summary(mod1)
@@ -52,7 +51,7 @@ plot(mod2)
5251
# Density estimation
5352
mod3 <- densityMclust(faithful$waiting)
5453
summary(mod3)
55-
plot(mod3, faithful$waiting)
54+
}
5655
}
5756

5857
\keyword{package}

‎man/plot.densityMclust.Rd

+3-3
Original file line numberDiff line numberDiff line change
@@ -104,13 +104,13 @@ plotDensityMclustd(x, data = NULL, nlevels = 11, levels = NULL,
104104

105105
\examples{
106106
\donttest{
107-
dens <- densityMclust(faithful$waiting)
107+
dens <- densityMclust(faithful$waiting, plot = FALSE)
108108
summary(dens)
109109
summary(dens, parameters = TRUE)
110110
plot(dens, what = "BIC", legendArgs = list(x = "topright"))
111111
plot(dens, what = "density", data = faithful$waiting)
112112

113-
dens <- densityMclust(faithful)
113+
dens <- densityMclust(faithful, plot = FALSE)
114114
summary(dens)
115115
summary(dens, parameters = TRUE)
116116
plot(dens, what = "density", data = faithful,
@@ -120,7 +120,7 @@ plot(dens, what = "density", type = "hdr", prob = seq(0.1, 0.9, by = 0.1))
120120
plot(dens, what = "density", type = "hdr", data = faithful)
121121
plot(dens, what = "density", type = "persp")
122122

123-
dens <- densityMclust(iris[,1:4])
123+
dens <- densityMclust(iris[,1:4], plot = FALSE)
124124
summary(dens, parameters = TRUE)
125125
plot(dens, what = "density", data = iris[,1:4],
126126
col = "slategrey", drawlabels = FALSE, nlevels = 7)

‎man/predict.densityMclust.Rd

+2-2
Original file line numberDiff line numberDiff line change
@@ -37,10 +37,10 @@ Returns a vector or a matrix of densities evaluated at \code{newdata} depending
3737
\examples{
3838
\donttest{
3939
x <- faithful$waiting
40-
dens <- densityMclust(x)
40+
dens <- densityMclust(x, plot = FALSE)
4141
x0 <- seq(50, 100, by = 10)
4242
d0 <- predict(dens, x0)
43-
plot(dens)
43+
plot(dens, what = "density")
4444
points(x0, d0, pch = 20)
4545
}
4646
}

‎man/summary.Mclust.Rd

+3-1
Original file line numberDiff line numberDiff line change
@@ -36,13 +36,15 @@
3636
\seealso{\code{\link{Mclust}}, \code{\link{densityMclust}}.}
3737

3838
\examples{
39+
\donttest{
3940
mod1 = Mclust(iris[,1:4])
4041
summary(mod1)
4142
summary(mod1, parameters = TRUE, classification = FALSE)
4243

43-
mod2 = densityMclust(faithful)
44+
mod2 = densityMclust(faithful, plot = FALSE)
4445
summary(mod2)
4546
summary(mod2, parameters = TRUE)
4647
}
48+
}
4749

4850
\keyword{cluster}

‎man/summary.MclustBootstrap.Rd

+1-1
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ summary(bootClust, what = "se")
3333
summary(bootClust, what = "ci")
3434

3535
data(acidity)
36-
modDens = densityMclust(acidity)
36+
modDens = densityMclust(acidity, plot = FALSE)
3737
modDens = MclustBootstrap(modDens)
3838
summary(modDens, what = "se")
3939
summary(modDens, what = "ci")

‎man/thyroid.Rd

+2-2
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
\alias{thyroid}
33
\docType{data}
44

5-
\title{Thyroid gland data}
5+
\title{UCI Thyroid Gland Data}
66

77
\description{
88
Data on five laboratory tests administered to a sample of 215 patients. The tests are used to predict whether a patient's thyroid can be classified as euthyroidism (normal thyroid gland function), hypothyroidism (underactive thyroid not producing enough thyroid hormone) or hyperthyroidism (overactive thyroid producing and secreting excessive amounts of the free thyroid hormones T3 and/or thyroxine T4). Diagnosis of thyroid operation was based on a complete medical record, including anamnesis, scan, etc.}
@@ -22,7 +22,7 @@ Data on five laboratory tests administered to a sample of 215 patients. The test
2222
2323
}
2424
25-
\source{Thyroid Disease Data Set (\code{new-thyroid.data}, \code{new-thyroid.names}) is available at UCI Machine Learning Repository
25+
\source{One of several databases in the Thyroid Disease Data Set (\code{new-thyroid.data}, \code{new-thyroid.names}) of the UCI Machine Learning Repository
2626
\url{https://archive.ics.uci.edu/ml/datasets/thyroid+disease}. Please note the UCI conditions of use.}
2727
2828
\references{

‎man/wdbc.Rd

+2-2
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
\alias{wdbc}
33
\docType{data}
44

5-
\title{Wisconsin diagnostic breast cancer (WDBC) data}
5+
\title{UCI Wisconsin Diagnostic Breast Cancer Data}
66

77
\description{
88
The data set provides data for 569 patients on 30 features of the cell nuclei obtained from a digitized image of a fine needle aspirate (FNA) of a breast mass. For each patient the cancer was diagnosed as malignant or benign.}
@@ -63,7 +63,7 @@ The recorded features are:
6363
For each feature the recorded values are computed from each image as \code{<feature_name>_mean}, \code{<feature_name>_se}, and \code{<feature_name>_extreme}, for the mean, the standard error, and the mean of the three largest values.
6464
}
6565

66-
\source{Breast Cancer Wisconsin (Diagnostic) Data Set (\code{wdbc.data}, \code{wdbc.names}) is available at UCI Machine Learning Repository
66+
\source{The Breast Cancer Wisconsin (Diagnostic) Data Set (\code{wdbc.data}, \code{wdbc.names}) from the UCI Machine Learning Repository
6767
\url{https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)}. Please note the UCI conditions of use.}
6868

6969
\references{

0 commit comments

Comments
 (0)
Please sign in to comment.