-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdatasets.py
245 lines (218 loc) · 9.94 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
class Dataset:
def __init__(self, labels):
self.labels = {}
self.mapping = {}
for label_id, label in labels.items():
if type(label) is tuple:
self.labels[label_id] = (label[0], label[1], label_id) if len(label) > 1 else (label[0], (0, 0, 0))
else:
self.labels[label_id] = (label, (0, 0, 0))
if len(label) > 2:
for source_id in label[2]:
self.mapping[source_id] = label_id
if len(self.mapping) == 0:
self.mapping = {label: label for label in labels}
def get_label_color(self, label_id, bgr=False):
if bgr:
return self.labels[label_id][1][::-1] if label_id in self.labels else None
else:
return self.labels[label_id][1] if label_id in self.labels else None
def get_label_ids(self):
return self.labels.keys()
def get_label_name(self, label_id):
return self.labels[label_id][0] if label_id in self.labels else None
def get_mapped_id(self, source_id):
return self.mapping[source_id] if source_id in self.mapping else None
DATASETS = dict()
DATASETS['CropAndWeed'] = Dataset({
0: ('Soil', (0, 0, 0)),
1: ('Maize', (255, 0, 0)),
2: ('Maize two-leaf stage', (234, 0, 0)),
3: ('Maize four-leaf stage', (212, 0, 0)),
4: ('Maize six-leaf stage', (191, 0, 0)),
5: ('Maize eight-leaf stage', (170, 0, 0)),
6: ('Maize max', (149, 0, 0)),
7: ('Sugar beet', (255, 85, 0)),
8: ('Sugar beet two-leaf stage', (234, 78, 0)),
9: ('Sugar beet four-leaf stage', (212, 71, 0)),
10: ('Sugar beet six-leaf stage', (191, 64, 0)),
11: ('Sugar beet eight-leaf stage', (170, 57, 0)),
12: ('Sugar beet Max', (149, 50, 0)),
13: ('Pea', (255, 170, 0)),
14: ('Courgette', (255, 255, 0)),
15: ('Pumpkins', (170, 255, 0)),
16: ('Radish', (85, 255, 0)),
17: ('Asparagus', (0, 255, 0)),
18: ('Potato', (0, 255, 85)),
19: ('Flat leaf parsley', (0, 255, 170)),
20: ('Curly leaf parsley', (0, 255, 255)),
21: ('Cowslip', (0, 170, 255)),
22: ('Poppy', (0, 85, 255)),
23: ('Hemp', (0, 0, 255)),
24: ('Sunflower', (85, 0, 255)),
25: ('Sage', (170, 0, 255)),
26: ('Common bean', (255, 0, 255)),
27: ('Faba bean', (255, 0, 170)),
28: ('Clover', (255, 0, 85)),
29: ('Hybrid goosefoot', (255, 188, 178)),
30: ('Black-bindweed', (255, 207, 178)),
31: ('Cockspur grass', (255, 226, 178)),
32: ('Red-root amaranth', (255, 245, 178)),
33: ('White goosefoot', (245, 255, 178)),
34: ('Thorn apple', (226, 255, 178)),
35: ('Potato weed', (207, 255, 178)),
36: ('German chamomile', (188, 255, 178)),
37: ('Saltbush', (178, 255, 188)),
38: ('Creeping thistle', (178, 255, 207)),
39: ('Field milk thistle', (178, 255, 226)),
40: ('Purslane', (178, 255, 245)),
41: ('Black nightshade', (178, 245, 255)),
42: ('Mercuries', (178, 226, 255)),
43: ('Spurge', (178, 207, 255)),
44: ('Pale persicaria', (178, 188, 255)),
45: ('Geraniums', (188, 178, 255)),
46: ('Cleavers', (207, 178, 255)),
47: ('Whitetop', (226, 178, 255)),
48: ('Meadow-grass', (245, 178, 255)),
49: ('Frosted orach', (255, 178, 245)),
50: ('Black horehound', (255, 178, 226)),
51: ('Shepherds purse', (255, 178, 207)),
52: ('Field bindweed', (255, 178, 188)),
53: ('Common mugwort', (255, 194, 178)),
54: ('Hedge mustard', (255, 213, 178)),
55: ('Groundsel', (255, 219, 178)),
56: ('Speedwell', (255, 232, 178)),
57: ('Broadleaf plantain', (255, 238, 178)),
58: ('White ball-mustard', (255, 251, 178)),
59: ('Peppermint', (255, 212, 0)),
60: ('Field pennycress', (239, 255, 178)),
61: ('Corn spurry', (233, 255, 178)),
62: ('Purple crabgrass', (220, 255, 178)),
63: ('Common fumitory', (214, 255, 178)),
64: ('Ivy-leaved speedwell', (201, 255, 178)),
65: ('Annual meadow grass', (195, 255, 178)),
66: ('Redshank', (182, 255, 178)),
67: ('Common hemp-nettle', (178, 255, 194)),
68: ('Rough meadow-grass', (178, 255, 200)),
69: ('Green bristlegrass', (178, 255, 213)),
70: ('Small geranium', (178, 255, 220)),
71: ('Cornflower', (178, 255, 232)),
72: ('Common corn-cockle', (178, 255, 238)),
73: ('Creeping crowfoot', (178, 255, 251)),
74: ('Wall barley', (178, 239, 255)),
75: ('Annual fescue', (178, 233, 255)),
76: ('Purple dead-nettle', (178, 220, 255)),
77: ('Ribwort plantain', (178, 214, 255)),
78: ('Pineappleweed', (178, 201, 255)),
79: ('Common chickweed', (178, 195, 255)),
80: ('Hedge mustard', (178, 182, 255)),
81: ('Soft brome', (194, 178, 255)),
82: ('Wild pansy', (200, 178, 255)),
83: ('Yellow rocket', (213, 178, 255)),
84: ('Common wild oat', (219, 178, 255)),
85: ('Red poppy', (232, 178, 255)),
86: ('Rye brome', (238, 178, 255)),
87: ('Knotgrass', (251, 178, 255)),
88: ('Prickly lettuce', (255, 178, 239)),
89: ('Copse-bindweed', (255, 178, 233)),
90: ('Manyseeds', (255, 178, 220)),
91: ('Common buckwheat', (255, 178, 214)),
92: ('Chives', (212, 255, 0)),
93: ('Garlic', (127, 255, 0)),
94: ('Soybean', (42, 255, 0)),
95: ('Wild carrot', (244, 255, 0)),
96: ('Field mustard', (159, 255, 0)),
97: ('Giant fennel', (74, 255, 0)),
98: ('Common horsetail', (10, 255, 0)),
99: ('Common dandelion', (202, 255, 0)),
255: ('Vegetation', (128, 128, 128))})
DATASETS['Fine24'] = Dataset({
0: ('Maize', (255, 0, 0), [1, 2, 3, 4, 5, 6]),
1: ('Sugar beet', (255, 85, 0), [7, 8, 9, 10, 11, 12]),
2: ('Soy', (42, 255, 0), [94]),
3: ('Sunflower', (85, 0, 255), [24]),
4: ('Potato', (0, 255, 85), [18]),
5: ('Pea', (255, 170, 0), [13]),
6: ('Bean', (255, 0, 170), [26, 27]),
7: ('Pumpkin', (170, 255, 0), [15]),
8: ('Grasses', (255, 226, 178), [31, 48, 62, 65, 68, 69, 74, 75, 81, 84, 86]),
9: ('Amaranth', (255, 245, 178), [32]),
10: ('Goosefoot', (226, 255, 178), [29, 33, 37, 49]),
11: ('Knotweed', (255, 207, 178), [30, 44, 66, 87, 89, 91]),
12: ('Corn spurry', (233, 255, 178), [61]),
13: ('Chickweed', (178, 195, 255), [79]),
14: ('Solanales', (226, 255, 178), [34, 41, 52]),
15: ('Potato weed', (207, 255, 178), [35]),
16: ('Chamomile', (188, 255, 178), [36, 78]),
17: ('Thistle', (178, 255, 207), [38, 39, 71, 72, 88]),
18: ('Mercuries', (178, 226, 255), [42]),
19: ('Geranium', (188, 178, 255), [45, 70]),
20: ('Crucifer', (239, 255, 178), [47, 51, 54, 58, 60, 80, 83, 96]),
21: ('Poppy', (214, 255, 178), [22, 63, 85]),
22: ('Plantago', (255, 232, 178), [56, 57, 64, 77]),
23: ('Labiate', (255, 212, 0), [50, 59, 67, 76])})
DATASETS['CropsOrWeed9'] = Dataset({
0: ('Maize', (255, 0, 0), [1, 2, 3, 4, 5, 6]),
1: ('Sugar beet', (255, 85, 0), [7, 8, 9, 10, 11, 12]),
2: ('Soy', (42, 255, 0), [94]),
3: ('Sunflower', (85, 0, 255), [24]),
4: ('Potato', (0, 255, 85), [18]),
5: ('Pea', (255, 170, 0), [13]),
6: ('Bean', (255, 0, 170), [26, 27]),
7: ('Pumpkin', (170, 255, 0), [15]),
8: ('Weed', (128, 255, 192),
[31, 48, 62, 65, 68, 69, 74, 75, 81, 84, 86, 32, 29, 33, 37, 49, 30, 44, 66, 87, 89, 91, 61, 79, 34, 41, 52, 35,
36, 78, 38, 39, 71, 72, 88, 42, 45, 70, 47, 51, 54, 58, 60, 80, 83, 96, 22, 63, 85, 56, 57, 64, 77, 50, 59, 67,
76])})
DATASETS['Maize2'] = Dataset({
0: ('Maize', (255, 0, 0), [1, 2, 3, 4, 5, 6]),
1: ('Other', (128, 255, 192), [*range(7, 100)])})
DATASETS['Maize1'] = Dataset({
0: ('Maize', (255, 0, 0), [1, 2, 3, 4, 5, 6])})
DATASETS['SugarBeet2'] = Dataset({
0: ('Sugar beet', (255, 85, 0), [7, 8, 9, 10, 11, 12]),
1: ('Other', (128, 255, 192), [*range(1, 7)] + [*range(13, 100)])})
DATASETS['SugarBeet1'] = Dataset({
0: ('Sugar beet', (255, 85, 0), [7, 8, 9, 10, 11, 12])})
DATASETS['Soy2'] = Dataset({
0: ('Soy', (42, 255, 0), [94]),
1: ('Other', (128, 255, 192), [*range(1, 94)] + [*range(95, 100)])})
DATASETS['Soy1'] = Dataset({
0: ('Soy', (42, 255, 0), [94])})
DATASETS['Sunflower2'] = Dataset({
0: ('Sunflower', (85, 0, 255), [24]),
1: ('Other', (128, 255, 192), [*range(1, 24)] + [*range(25, 100)])})
DATASETS['Sunflower1'] = Dataset({
0: ('Sunflower', (85, 0, 255), [24])})
DATASETS['Potato2'] = Dataset({
0: ('Potato', (0, 255, 85), [18]),
1: ('Other', (128, 255, 192), [*range(1, 18)] + [*range(19, 100)])})
DATASETS['Potato1'] = Dataset({
0: ('Potato', (0, 255, 85), [18])})
DATASETS['Pea2'] = Dataset({
0: ('Pea', (255, 170, 0), [13]),
1: ('Other', (128, 255, 192), [*range(1, 13)] + [*range(14, 100)])})
DATASETS['Pea1'] = Dataset({
0: ('Pea', (255, 170, 0), [13])})
DATASETS['Bean2'] = Dataset({
0: ('Bean', (255, 0, 170), [26, 27]),
1: ('Other', (128, 255, 192), [*range(1, 26)] + [*range(28, 100)])})
DATASETS['Bean1'] = Dataset({
0: ('Bean', (255, 0, 170), [26, 27])})
DATASETS['Pumpkin2'] = Dataset({
0: ('Pumpkin', (170, 255, 0), [15]),
1: ('Other', (128, 255, 192), [*range(1, 15)] + [*range(16, 100)])})
DATASETS['Pumpkin1'] = Dataset({
0: ('Pumpkin', (170, 255, 0), [15])})
DATASETS['CropOrWeed2'] = Dataset({
0: ('Crop', (0, 255, 0), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 94, 24, 18, 13, 26, 27, 15]),
1: ('Weed', (128, 255, 192),
[31, 48, 62, 65, 68, 69, 74, 75, 81, 84, 86, 32, 29, 33, 37, 49, 30, 44, 66, 87, 89, 91, 61, 79, 34, 41, 52, 35,
36, 78, 38, 39, 71, 72, 88, 42, 45, 70, 47, 51, 54, 58, 60, 80, 83, 96, 22, 63, 85, 56, 57, 64, 77, 50, 59, 67,
76])})
DATASETS['Coarse1'] = Dataset({
0: ('Vegetation', (255, 0, 0),
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 255])})