forked from jiupinjia/stylized-neural-painting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
painter.py
475 lines (351 loc) · 17.9 KB
/
painter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import os
import cv2
import random
import utils
import loss
from networks import *
import morphology
import renderer
import torch
# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class PainterBase():
def __init__(self, args):
self.args = args
self.rderr = renderer.Renderer(renderer=args.renderer,
CANVAS_WIDTH=args.canvas_size, canvas_color=args.canvas_color)
# define G
self.net_G = define_G(rdrr=self.rderr, netG=args.net_G).to(device)
# define some other vars to record the training states
self.x_ctt = None
self.x_color = None
self.x_alpha = None
self.G_pred_foreground = None
self.G_pred_alpha = None
self.G_final_pred_canvas = torch.zeros(
[1, 3, self.net_G.out_size, self.net_G.out_size]).to(device)
self.G_loss = torch.tensor(0.0)
self.step_id = 0
self.anchor_id = 0
self.renderer_checkpoint_dir = args.renderer_checkpoint_dir
self.output_dir = args.output_dir
self.lr = args.lr
# define the loss functions
self._pxl_loss = loss.PixelLoss(p=1)
self._sinkhorn_loss = loss.SinkhornLoss(epsilon=0.01, niter=5, normalize=False)
# some other vars to be initialized in child classes
self.input_aspect_ratio = None
self.img_path = None
self.img_batch = None
self.img_ = None
self.final_rendered_images = None
self.m_grid = None
self.m_strokes_per_block = None
if os.path.exists(self.output_dir) is False:
os.mkdir(self.output_dir)
def _load_checkpoint(self):
# load renderer G
if os.path.exists((os.path.join(
self.renderer_checkpoint_dir, 'last_ckpt.pt'))):
print('loading renderer from pre-trained checkpoint...')
# load the entire checkpoint
checkpoint = torch.load(os.path.join(self.renderer_checkpoint_dir, 'last_ckpt.pt'),
map_location=None if torch.cuda.is_available() else device)
# update net_G states
self.net_G.load_state_dict(checkpoint['model_G_state_dict'])
self.net_G.to(device)
self.net_G.eval()
else:
print('pre-trained renderer does not exist...')
exit()
def _compute_acc(self):
target = self.img_batch.detach()
canvas = self.G_pred_canvas.detach()
psnr = utils.cpt_batch_psnr(canvas, target, PIXEL_MAX=1.0)
return psnr
def _save_stroke_params(self, v):
d_shape = self.rderr.d_shape
d_color = self.rderr.d_color
d_alpha = self.rderr.d_alpha
x_ctt = v[:, :, 0:d_shape]
x_color = v[:, :, d_shape:d_shape+d_color]
x_alpha = v[:, :, d_shape+d_color:d_shape+d_color+d_alpha]
print('saving stroke parameters...')
file_name = os.path.join(
self.output_dir, self.img_path.split('/')[-1][:-4])
np.savez(file_name + '_strokes.npz', x_ctt=x_ctt,
x_color=x_color, x_alpha=x_alpha)
def _shuffle_strokes_and_reshape(self, v):
grid_idx = list(range(self.m_grid ** 2))
random.shuffle(grid_idx)
v = v[grid_idx, :, :]
v = np.reshape(np.transpose(v, [1,0,2]), [-1, self.rderr.d])
v = np.expand_dims(v, axis=0)
return v
def _render(self, v, save_jpgs=True, save_video=True):
v = v[0,:,:]
if self.args.keep_aspect_ratio:
if self.input_aspect_ratio < 1:
out_h = int(self.args.canvas_size * self.input_aspect_ratio)
out_w = self.args.canvas_size
else:
out_h = self.args.canvas_size
out_w = int(self.args.canvas_size / self.input_aspect_ratio)
else:
out_h = self.args.canvas_size
out_w = self.args.canvas_size
file_name = os.path.join(
self.output_dir, self.img_path.split('/')[-1][:-4])
if save_video:
video_writer = cv2.VideoWriter(
file_name + '_animated.mp4', cv2.VideoWriter_fourcc(*'MP4V'), 40,
(out_w, out_h))
print('rendering canvas...')
self.rderr.create_empty_canvas()
for i in range(v.shape[0]): # for each stroke
self.rderr.stroke_params = v[i, :]
if self.rderr.check_stroke():
self.rderr.draw_stroke()
this_frame = self.rderr.canvas
this_frame = cv2.resize(this_frame, (out_w, out_h), cv2.INTER_AREA)
if save_jpgs:
plt.imsave(file_name + '_rendered_stroke_' + str((i+1)).zfill(4) +
'.png', this_frame)
if save_video:
video_writer.write((this_frame[:,:,::-1] * 255.).astype(np.uint8))
if save_jpgs:
print('saving input photo...')
out_img = cv2.resize(self.img_, (out_w, out_h), cv2.INTER_AREA)
plt.imsave(file_name + '_input.png', out_img)
final_rendered_image = np.copy(this_frame)
if save_jpgs:
print('saving final rendered result...')
plt.imsave(file_name + '_final.png', final_rendered_image)
return final_rendered_image
def _normalize_strokes(self, v):
v = np.array(v.detach().cpu())
if self.rderr.renderer in ['watercolor', 'markerpen']:
# x0, y0, x1, y1, x2, y2, radius0, radius2, ...
xs = np.array([0, 4])
ys = np.array([1, 5])
rs = np.array([6, 7])
elif self.rderr.renderer in ['oilpaintbrush', 'rectangle']:
# xc, yc, w, h, theta ...
xs = np.array([0])
ys = np.array([1])
rs = np.array([2, 3])
else:
raise NotImplementedError('renderer [%s] is not implemented' % self.rderr.renderer)
for y_id in range(self.m_grid):
for x_id in range(self.m_grid):
y_bias = y_id / self.m_grid
x_bias = x_id / self.m_grid
v[y_id * self.m_grid + x_id, :, ys] = \
y_bias + v[y_id * self.m_grid + x_id, :, ys] / self.m_grid
v[y_id * self.m_grid + x_id, :, xs] = \
x_bias + v[y_id * self.m_grid + x_id, :, xs] / self.m_grid
v[y_id * self.m_grid + x_id, :, rs] /= self.m_grid
return v
def initialize_params(self):
self.x_ctt = np.random.rand(
self.m_grid*self.m_grid, self.m_strokes_per_block,
self.rderr.d_shape).astype(np.float32)
self.x_ctt = torch.tensor(self.x_ctt).to(device)
self.x_color = np.random.rand(
self.m_grid*self.m_grid, self.m_strokes_per_block,
self.rderr.d_color).astype(np.float32)
self.x_color = torch.tensor(self.x_color).to(device)
self.x_alpha = np.random.rand(
self.m_grid*self.m_grid, self.m_strokes_per_block,
self.rderr.d_alpha).astype(np.float32)
self.x_alpha = torch.tensor(self.x_alpha).to(device)
def stroke_sampler(self, anchor_id):
if anchor_id == self.m_strokes_per_block:
return
err_maps = torch.sum(
torch.abs(self.img_batch - self.G_final_pred_canvas),
dim=1, keepdim=True).detach()
for i in range(self.m_grid*self.m_grid):
this_err_map = err_maps[i,0,:,:].cpu().numpy()
ks = int(this_err_map.shape[0] / 8)
this_err_map = cv2.blur(this_err_map, (ks, ks))
this_err_map = this_err_map ** 4
this_img = self.img_batch[i, :, :, :].detach().permute([1, 2, 0]).cpu().numpy()
self.rderr.random_stroke_params_sampler(
err_map=this_err_map, img=this_img)
self.x_ctt.data[i, anchor_id, :] = torch.tensor(
self.rderr.stroke_params[0:self.rderr.d_shape])
self.x_color.data[i, anchor_id, :] = torch.tensor(
self.rderr.stroke_params[self.rderr.d_shape:self.rderr.d_shape+self.rderr.d_color])
self.x_alpha.data[i, anchor_id, :] = torch.tensor(self.rderr.stroke_params[-1])
def _backward_x(self):
self.G_loss = 0
self.G_loss += self.args.beta_L1 * self._pxl_loss(
canvas=self.G_final_pred_canvas, gt=self.img_batch)
if self.args.with_ot_loss:
self.G_loss += self.args.beta_ot * self._sinkhorn_loss(
self.G_final_pred_canvas, self.img_batch)
self.G_loss.backward()
def _forward_pass(self):
self.x = torch.cat([self.x_ctt, self.x_color, self.x_alpha], dim=-1)
v = torch.reshape(self.x[:, 0:self.anchor_id+1, :],
[self.m_grid*self.m_grid*(self.anchor_id+1), -1, 1, 1])
self.G_pred_foregrounds, self.G_pred_alphas = self.net_G(v)
self.G_pred_foregrounds = morphology.Dilation2d(m=1)(self.G_pred_foregrounds)
self.G_pred_alphas = morphology.Erosion2d(m=1)(self.G_pred_alphas)
self.G_pred_foregrounds = torch.reshape(
self.G_pred_foregrounds, [self.m_grid*self.m_grid, self.anchor_id+1, 3,
self.net_G.out_size, self.net_G.out_size])
self.G_pred_alphas = torch.reshape(
self.G_pred_alphas, [self.m_grid*self.m_grid, self.anchor_id+1, 3,
self.net_G.out_size, self.net_G.out_size])
for i in range(self.anchor_id+1):
G_pred_foreground = self.G_pred_foregrounds[:, i]
G_pred_alpha = self.G_pred_alphas[:, i]
self.G_pred_canvas = G_pred_foreground * G_pred_alpha \
+ self.G_pred_canvas * (1 - G_pred_alpha)
self.G_final_pred_canvas = self.G_pred_canvas
class Painter(PainterBase):
def __init__(self, args):
super(Painter, self).__init__(args=args)
self.m_grid = args.m_grid
self.max_m_strokes = args.max_m_strokes
self.img_path = args.img_path
self.img_ = cv2.imread(args.img_path, cv2.IMREAD_COLOR)
self.img_ = cv2.cvtColor(self.img_, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.
self.input_aspect_ratio = self.img_.shape[0] / self.img_.shape[1]
self.img_ = cv2.resize(self.img_, (self.net_G.out_size * args.m_grid,
self.net_G.out_size * args.m_grid), cv2.INTER_AREA)
self.m_strokes_per_block = int(args.max_m_strokes / (args.m_grid * args.m_grid))
self.img_batch = utils.img2patches(self.img_, args.m_grid, self.net_G.out_size).to(device)
self.final_rendered_images = None
def _drawing_step_states(self):
acc = self._compute_acc().item()
print('iteration step %d, G_loss: %.5f, step_psnr: %.5f, strokes: %d / %d'
% (self.step_id, self.G_loss.item(), acc,
(self.anchor_id+1)*self.m_grid*self.m_grid,
self.max_m_strokes))
vis2 = utils.patches2img(self.G_final_pred_canvas, self.m_grid).clip(min=0, max=1)
if self.args.disable_preview:
pass
else:
cv2.namedWindow('G_pred', cv2.WINDOW_NORMAL)
cv2.namedWindow('input', cv2.WINDOW_NORMAL)
cv2.imshow('G_pred', vis2[:,:,::-1])
cv2.imshow('input', self.img_[:, :, ::-1])
cv2.waitKey(1)
class ProgressivePainter(PainterBase):
def __init__(self, args):
super(ProgressivePainter, self).__init__(args=args)
self.max_divide = args.max_divide
self.max_m_strokes = args.max_m_strokes
self.m_strokes_per_block = self.stroke_parser()
self.m_grid = 1
self.img_path = args.img_path
self.img_ = cv2.imread(args.img_path, cv2.IMREAD_COLOR)
self.img_ = cv2.cvtColor(self.img_, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.
self.input_aspect_ratio = self.img_.shape[0] / self.img_.shape[1]
self.img_ = cv2.resize(self.img_, (self.net_G.out_size * args.max_divide,
self.net_G.out_size * args.max_divide), cv2.INTER_AREA)
def stroke_parser(self):
total_blocks = 0
for i in range(0, self.max_divide + 1):
total_blocks += i ** 2
return int(self.max_m_strokes / total_blocks)
def _drawing_step_states(self):
acc = self._compute_acc().item()
print('iteration step %d, G_loss: %.5f, step_acc: %.5f, grid_scale: %d / %d, strokes: %d / %d'
% (self.step_id, self.G_loss.item(), acc,
self.m_grid, self.max_divide,
self.anchor_id + 1, self.m_strokes_per_block))
vis2 = utils.patches2img(self.G_final_pred_canvas, self.m_grid).clip(min=0, max=1)
if self.args.disable_preview:
pass
else:
cv2.namedWindow('G_pred', cv2.WINDOW_NORMAL)
cv2.namedWindow('input', cv2.WINDOW_NORMAL)
cv2.imshow('G_pred', vis2[:,:,::-1])
cv2.imshow('input', self.img_[:, :, ::-1])
cv2.waitKey(1)
class NeuralStyleTransfer(PainterBase):
def __init__(self, args):
super(NeuralStyleTransfer, self).__init__(args=args)
self.args = args
self._style_loss = loss.VGGStyleLoss(transfer_mode=args.transfer_mode, resize=True)
print('loading pre-generated vector file...')
if os.path.exists(args.vector_file) is False:
exit('vector file does not exist, pls check --vector_file, or run demo.py fist')
else:
npzfile = np.load(args.vector_file)
self.x_ctt = torch.tensor(npzfile['x_ctt']).to(device)
self.x_color = torch.tensor(npzfile['x_color']).to(device)
self.x_alpha = torch.tensor(npzfile['x_alpha']).to(device)
self.m_grid = int(np.sqrt(self.x_ctt.shape[0]))
self.anchor_id = self.x_ctt.shape[1] - 1
img_ = cv2.imread(args.content_img_path, cv2.IMREAD_COLOR)
img_ = cv2.cvtColor(img_, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.
self.input_aspect_ratio = img_.shape[0] / img_.shape[1]
self.img_ = cv2.resize(img_, (self.net_G.out_size*self.m_grid,
self.net_G.out_size*self.m_grid), cv2.INTER_AREA)
self.img_batch = utils.img2patches(self.img_, self.m_grid, self.net_G.out_size).to(device)
style_img = cv2.imread(args.style_img_path, cv2.IMREAD_COLOR)
self.style_img_ = cv2.cvtColor(style_img, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.
self.style_img = cv2.blur(cv2.resize(self.style_img_, (128, 128)), (2, 2))
self.style_img = torch.tensor(self.style_img).permute([2, 0, 1]).unsqueeze(0).to(device)
self.content_img_path = args.content_img_path
self.img_path = args.content_img_path
self.style_img_path = args.style_img_path
def _style_transfer_step_states(self):
acc = self._compute_acc().item()
print('running style transfer... iteration step %d, G_loss: %.5f, step_psnr: %.5f'
% (self.step_id, self.G_loss.item(), acc))
vis2 = utils.patches2img(self.G_final_pred_canvas, self.m_grid).clip(min=0, max=1)
if self.args.disable_preview:
pass
else:
cv2.namedWindow('G_pred', cv2.WINDOW_NORMAL)
cv2.namedWindow('input', cv2.WINDOW_NORMAL)
cv2.namedWindow('style_img', cv2.WINDOW_NORMAL)
cv2.imshow('G_pred', vis2[:,:,::-1])
cv2.imshow('input', self.img_[:, :, ::-1])
cv2.imshow('style_img', self.style_img_[:, :, ::-1])
cv2.waitKey(1)
def _backward_x_sty(self):
canvas = utils.patches2img(
self.G_final_pred_canvas, self.m_grid, to_numpy=False).to(device)
self.G_loss = self.args.beta_L1 * self._pxl_loss(
canvas=self.G_final_pred_canvas, gt=self.img_batch, ignore_color=True)
self.G_loss += self.args.beta_sty * self._style_loss(canvas, self.style_img)
self.G_loss.backward()
def _render_on_grids(self, v):
rendered_imgs = []
self.rderr.create_empty_canvas()
grid_idx = list(range(self.m_grid ** 2))
random.shuffle(grid_idx)
for j in range(v.shape[1]): # for each group of stroke
for i in range(len(grid_idx)): # for each random patch
self.rderr.stroke_params = v[grid_idx[i], j, :]
if self.rderr.check_stroke():
self.rderr.draw_stroke()
rendered_imgs.append(self.rderr.canvas)
return rendered_imgs
def _save_style_transfer_images(self, final_rendered_image):
if self.args.keep_aspect_ratio:
if self.input_aspect_ratio < 1:
out_h = int(self.args.canvas_size * self.input_aspect_ratio)
out_w = self.args.canvas_size
else:
out_h = self.args.canvas_size
out_w = int(self.args.canvas_size / self.input_aspect_ratio)
else:
out_h = self.args.canvas_size
out_w = self.args.canvas_size
print('saving style transfer results...')
file_dir = os.path.join(
self.output_dir, self.content_img_path.split('/')[-1][:-4])
out_img = cv2.resize(self.style_img_, (out_w, out_h), cv2.INTER_AREA)
plt.imsave(file_dir + '_style_img_' +
self.style_img_path.split('/')[-1][:-4] + '.png', out_img)
out_img = cv2.resize(final_rendered_image, (out_w, out_h), cv2.INTER_AREA)
plt.imsave(file_dir + '_style_transfer_' +
self.style_img_path.split('/')[-1][:-4] + '.png', out_img)