forked from Vector35/binaryninja-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasedetection.py
326 lines (256 loc) · 12 KB
/
basedetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# coding=utf-8
# Copyright (c) 2015-2024 Vector 35 Inc
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
import os
import ctypes
from typing import Optional, Union, Literal
from dataclasses import dataclass
from .enums import BaseAddressDetectionPOIType, BaseAddressDetectionConfidence, BaseAddressDetectionPOISetting
from .binaryview import BinaryView
from . import _binaryninjacore as core
from . import architecture
@dataclass
class BaseAddressDetectionReason:
"""``class BaseAddressDetectionReason`` is a class that stores information used to understand why a base address
is a candidate. It consists of a pointer, the offset of the point-of-interest that the pointer aligns with, and the
type of point-of-interest (string, function, or data variable)"""
pointer: int
offset: int
type: BaseAddressDetectionPOIType
class BaseAddressDetection:
"""
``class BaseAddressDetection`` is a class that is used to detect candidate base addresses for position-dependent
raw binaries
:Example:
>>> from binaryninja import *
>>> bad = BaseAddressDetection("firmware.bin")
>>> bad.detect_base_address()
True
>>> hex(bad.preferred_base_address)
'0x4000000'
"""
def __init__(self, view: Union[str, os.PathLike, BinaryView]) -> None:
if isinstance(view, str) or isinstance(view, os.PathLike):
view = BinaryView.load(str(view), update_analysis=False)
_handle = core.BNCreateBaseAddressDetection(view.handle)
assert _handle is not None, "core.BNCreateBaseAddressDetection returned None"
self._handle = _handle
self._view_arch = view.arch
self._scores = list()
self._confidence = 0
self._last_tested_base_address = None
def __del__(self):
if core is not None:
core.BNFreeBaseAddressDetection(self._handle)
@property
def scores(self) -> list[tuple[int, int]]:
"""
``scores`` returns a list of candidate base addresses and their scores
.. note:: The score is set to the number of times a pointer pointed to a point-of-interest at that base address
:Example:
>>> from binaryninja import *
>>> bad = BaseAddressDetection("firmware.bin")
>>> bad.detect_base_address()
True
>>> for addr, score in bad.scores:
... print(f"0x{addr:x}: {score}")
...
0x4000000: 7
0x400dc00: 1
0x400d800: 1
0x400cc00: 1
0x400c400: 1
0x400bc00: 1
0x400b800: 1
0x3fffc00: 1
:return: list of tuples containing each base address and score
:rtype: list[tuple[int, int]]
"""
return self._scores
@property
def confidence(self) -> BaseAddressDetectionConfidence:
"""
``confidence`` returns an enum that indicates confidence the preferred candidate base address is correct
:return: confidence of the base address detection results
:rtype: BaseAddressDetectionConfidence
"""
return self._confidence
@property
def last_tested_base_address(self) -> int:
"""
``last_tested_base_address`` returns the last candidate base address that was tested
.. note:: This is useful for situations where the user aborts the analysis and wants to restart from the last \
tested base address by setting the ``low_boundary`` parameter in :py:func:`BaseAddressDetection.detect_base_address`
:return: last candidate base address tested
:rtype: int
"""
return self._last_tested_base_address
@property
def preferred_base_address(self) -> Optional[int]:
"""
``preferred_base_address`` returns the candidate base address which contains the most amount of pointers that
align with discovered points-of-interest in the binary
.. note:: :py:attr:`BaseAddressDetection.confidence` reports a confidence level that the preferred base is correct
.. note:: :py:attr:`BaseAddressDetection.scores` returns a list of the top 10 candidate base addresses and their \
scores and can be used to discover other potential candidates
:return: preferred candidate base address
:rtype: int
"""
if not self._scores:
return None
return self._scores[0][0]
@property
def aborted(self) -> bool:
"""
``aborted`` indicates whether or not base address detection analysis was aborted early
:return: True if the analysis was aborted, False otherwise
:rtype: bool
"""
return core.BNIsBaseAddressDetectionAborted(self._handle)
def detect_base_address(
self,
arch: Optional[Union['architecture.Architecture', str]] = None,
analysis: Optional[Literal["basic", "controlFlow", "full"]] = "full",
min_strlen: Optional[int] = 10,
alignment: Optional[int] = 1024,
low_boundary: Optional[int] = 0,
high_boundary: Optional[int] = 0xFFFFFFFFFFFFFFFF,
poi_analysis: Optional[BaseAddressDetectionPOISetting] = BaseAddressDetectionPOISetting.POIAnalysisAll,
max_pointers: Optional[int] = 128,
) -> bool:
"""
``detect_base_address`` runs initial analysis and attempts to identify candidate base addresses
.. note:: This operation can take a long time to complete depending on the size and complexity of the binary \
and the settings used
:param Architecture arch: CPU architecture of the binary (defaults to using auto-detection)
:param str analysis: analysis mode (``basic``, ``controlFlow``, or ``full``)
:param int min_strlen: minimum length of a string to be considered a point-of-interest
:param int alignment: byte boundary to align the base address to while brute-forcing
:param int low_boundary: lower boundary of the base address range to test
:param int high_boundary: upper boundary of the base address range to test
:param BaseAddressDetectionPOISetting poi_analysis: specifies types of points-of-interest to use for analysis
:param int max_pointers: maximum number of candidate pointers to collect per pointer cluster
:return: True if initial analysis completed with results, False otherwise
:rtype: bool
"""
if isinstance(arch, str):
arch = architecture.Architecture[arch]
if not arch and self._view_arch:
arch = self._view_arch
if analysis not in ["basic", "controlFlow", "full"]:
raise ValueError("invalid analysis setting")
if alignment <= 0:
raise ValueError("alignment must be greater than 0")
if max_pointers < 2:
raise ValueError("max pointers must be at least 2")
if high_boundary < low_boundary:
raise ValueError("upper boundary must be greater than lower boundary")
archname = arch.name if arch else ""
settings = core.BNBaseAddressDetectionSettings(
archname.encode(),
analysis.encode(),
min_strlen,
alignment,
low_boundary,
high_boundary,
poi_analysis,
max_pointers,
)
if not core.BNDetectBaseAddress(self._handle, settings):
return False
max_candidates = 10
scores = (core.BNBaseAddressDetectionScore * max_candidates)()
confidence = core.BaseAddressDetectionConfidenceEnum()
last_base = ctypes.c_ulonglong()
num_candidates = core.BNGetBaseAddressDetectionScores(
self._handle, scores, max_candidates, ctypes.byref(confidence), ctypes.byref(last_base)
)
if num_candidates == 0:
return False
self._scores.clear()
for i in range(num_candidates):
self._scores.append((scores[i].BaseAddress, scores[i].Score))
self._confidence = confidence.value
self._last_tested_base_address = last_base.value
return True
def abort(self) -> None:
"""
``abort`` aborts base address detection analysis
.. note:: ``abort`` does not stop base address detection until after initial analysis has completed and it is \
in the base address enumeration phase
:rtype: None
"""
core.BNAbortBaseAddressDetection(self._handle)
def get_reasons(self, base_address: int) -> list[BaseAddressDetectionReason]:
"""
``get_reasons`` returns a list of reasons that can be used to determine why a base address is a candidate
:param int base_address: base address to get reasons for
:return: list of reasons for the specified base address
:rtype: list[BaseAddressDetectionReason]
"""
count = ctypes.c_size_t()
reasons = core.BNGetBaseAddressDetectionReasons(self._handle, base_address, ctypes.byref(count))
if count.value == 0:
return []
try:
result = list()
for i in range(count.value):
result.append(BaseAddressDetectionReason(reasons[i].Pointer, reasons[i].POIOffset, reasons[i].POIType))
return result
finally:
core.BNFreeBaseAddressDetectionReasons(reasons)
def _get_data_hits_by_type(self, base_address: int, poi_type: int) -> int:
reasons = self.get_reasons(base_address)
if not reasons:
return 0
hits = 0
for reason in reasons:
if reason.type == poi_type:
hits += 1
return hits
def get_string_hits(self, base_address: int) -> int:
"""
``get_string_hits`` returns the number of times a pointer pointed to a string at the specified
base address
.. note:: Data variables are only used as points-of-interest if analysis doesn't discover enough strings and \
functions
:param int base_address: base address to get string hits for
:return: number of string hits for the specified base address
:rtype: int
"""
return self._get_data_hits_by_type(base_address, BaseAddressDetectionPOIType.POIString)
def get_function_hits(self, base_address: int) -> int:
"""
``get_function_hits`` returns the number of times a pointer pointed to a function at the
specified base address
:param int base_address: base address to get function hits for
:return: number of function hits for the specified base address
:rtype: int
"""
return self._get_data_hits_by_type(base_address, BaseAddressDetectionPOIType.POIFunction)
def get_data_hits(self, base_address: int) -> int:
"""
``get_data_hits`` returns the number of times a pointer pointed to a data variable at the
specified base address
:param int base_address: base address to get data hits for
:return: number of data hits for the specified base address
:rtype: int
"""
return self._get_data_hits_by_type(base_address, BaseAddressDetectionPOIType.POIDataVariable)