-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fmix.py
496 lines (415 loc) · 23.8 KB
/
train_fmix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import os
import torch
import numpy as np
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, models
from tqdm import tqdm
# from resnet import ResNet34
from data import GraphemeDataset
from metric import macro_recall_multi, macro_recall_multi_mixup
from data import generate_data_loader
from NET.efficientnet import EfficientNet
import pandas as pd
import gc
import torch.optim
import argparse
from lr_cos_restart import CosineAnnealingLR_with_Restart
from logger import Logger
from mixup import cutmix, mixup, mixup_criterion, mixup_criterion_with_ohem, mixup_criterion_with_focal_loss
from radam import RAdam, AdamW
def get_args():
parser = argparse.ArgumentParser(description="Train program for BELI.")
parser.add_argument('--model', type=str, default='efficientnet-b4')
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--optimizer', type=str, default='ADAM', choices=['SGD', 'ADAM', 'RADAM', 'ADAMW', 'OVER9000'])
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--outdir', type=str, default='models')
parser.add_argument('--gpu_ids', type=str, default='3,4')
parser.add_argument('--log_interval', type=int, default=2000)
# parser.add_argument('--epochs', type=int, default=60)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--csv_path', type=str, default='BengaliData')
parser.add_argument('--feather_data_path', type=str, default='BengaliData/feather128')
parser.add_argument('--resume', type=bool, default=False)
parser.add_argument('--cycle_inter', type=int, default=200)
parser.add_argument('--cycle_num', type=int, default=1)
parser.add_argument('--folds', type=int, default=1)
parser.add_argument('--mixup', type=int, default=0)
parser.add_argument('--fmix', action='store_true')
parser.add_argument('--alpha_cutmix', type=float, default=0.5)
parser.add_argument('--alpha_mixup', type=float, default=0.2)
parser.add_argument('--height', type=int, default=128)
parser.add_argument('--width', type=int, default=128)
parser.add_argument('--finetune', default=1, type=int)
parser.add_argument('--image_mode', type=str, default='gray')
parser.add_argument('--LR_SCHEDULER', type=str, default='COS', choices=['REDUCED', 'COS'])
parser.add_argument('--lr_ratio', type=float, default=0.9)
parser.add_argument('--patience', type=int, default='2')
parser.add_argument('--fmix_alpha', type=float, default=0.5)
# parser.add_argument('--num_workers', type=int, default=8)
args = parser.parse_args()
print(args)
return args
## This function for train is copied from @hanjoonchoe
## We are going to train and track accuracy and then evaluate and track validation accuracy
def train(epoch, train_loader, model, optimizer, criterion, log, args):
model.train()
losses = []
accs = []
acc = 0.0
total = 0.0
running_loss = 0.0
running_acc = 0.0
running_recall = 0.0
recall_grapheme_all = 0.0
recall_vowel_all = 0.0
recall_consonant_all = 0.0
#ohem_percent = .6
# print('straing')
for idx, (inputs, labels1, labels2, labels3) in enumerate(tqdm(train_loader)):
#print('input()', inputs.shape, labels1.shape, labels2.shape, labels3.shape)
if args.mixup:
if 0:#np.random.rand()<0.5:
inputs, labels1, labels2, labels3 = mixup(inputs, labels1, labels2, labels3, args.alpha_mixup)
else:
inputs, labels1, labels2, labels3 = cutmix(inputs, labels1, labels2, labels3, args.alpha_cutmix)
inputs = inputs.cuda() # to(device)
t1_0, t1_1, t1_2 = labels1 # [0], labels1[1], labels1[2]
t2_0, t2_1, t2_2 = labels2 # [0], labels2[1], labels2[2]
t3_0, t3_1, t3_2 = labels3 # [0], labels3[1], labels3[2]
labels1 = (t1_0.cuda(), t1_1.cuda(), t1_2)
labels2 = (t2_0.cuda(), t2_1.cuda(), t2_2)
labels3 = (t3_0.cuda(), t3_1.cuda(), t3_2)
elif args.fmix:
inputs = fmixer(inputs)
inputs = inputs.cuda()
labels1 = labels1.cuda() # to(device)
labels2 = labels2.cuda() # to(device)
labels3 = labels3.cuda() # to(device)
else:
inputs = inputs.cuda() # to(device)
labels1 = labels1.cuda() # to(device)
labels2 = labels2.cuda() # to(device)
labels3 = labels3.cuda() # to(device)
total += len(inputs)
optimizer.zero_grad()
outputs1, outputs2, outputs3 = model(inputs.float())
if args.mixup:
loss1 = mixup_criterion(outputs1, labels1)
loss2 = mixup_criterion(outputs2, labels2) * 2
loss3 = mixup_criterion(outputs3, labels3)
elif args.fmix:
loss1 = fmixer.loss(outputs1, labels1)
loss2 = 2 * fmixer.loss(outputs2, labels2)
loss3 = fmixer.loss(outputs3, labels3)
else:
loss1 = criterion(outputs1, labels1)
loss2 = 2 * criterion(outputs2, labels2)
loss3 = criterion(outputs3, labels3)
running_loss += loss1.item() + loss2.item() + loss3.item()
if args.mixup:
targets1_1, targets1_2, alpha1 = labels1
targets2_1, targets2_2, alpha2 = labels2
targets3_1, targets3_2, alpha3 = labels3
average_recall, recall_grapheme, recall_vowel, recall_consonant = macro_recall_multi_mixup(outputs2, targets2_1, targets2_2, alpha2,
outputs1, targets1_1, targets1_2, alpha1,
outputs3, targets3_1, targets3_2, alpha3)
running_recall += average_recall
recall_grapheme_all += recall_grapheme
recall_vowel_all += recall_vowel
recall_consonant_all += recall_consonant
running_acc += alpha1 * (outputs1.argmax(1) == targets1_1).float().mean() + \
(1 - alpha1) * (outputs1.argmax(1) == targets1_2).float().mean()
running_acc += alpha2 * (outputs2.argmax(1) == targets2_1).float().mean() + \
(1 - alpha2) * (outputs2.argmax(1) == targets2_2).float().mean()
running_acc += alpha3 * (outputs3.argmax(1) == targets3_1).float().mean() + \
(1 - alpha3) * (outputs3.argmax(1) == targets3_2).float().mean()
else:
average_recall, recall_grapheme, recall_vowel, recall_consonant = macro_recall_multi(outputs2, labels2, outputs1, labels1, outputs3, labels3)
running_recall += average_recall
recall_grapheme_all += recall_grapheme
recall_vowel_all += recall_vowel
recall_consonant_all += recall_consonant
running_acc += (outputs1.argmax(1) == labels1).float().mean()
running_acc += (outputs2.argmax(1) == labels2).float().mean()
running_acc += (outputs3.argmax(1) == labels3).float().mean()
(loss1 + loss2 + loss3).backward()
optimizer.step()
optimizer.zero_grad()
#acc = running_acc / total
# scheduler.step()
losses.append(running_loss / len(train_loader))
#accs.append(running_acc / (len(train_loader) * 3))
#log.write(' train epoch : {}\tacc : {:.2f}%\n'.format(epoch, running_acc / (len(train_loader) * 3)))
log.write('train loss : {:.4f}\n'.format(running_loss / len(train_loader)))
# log.write('recall_grapheme: {}\t recall_vowel: {}\t recall_consonant: {}\n'.format(recall_grapheme_all/len(train_loader),
# recall_vowel_all/len(train_loader), recall_consonant_all/len(train_loader)))
# log.write('recall: {}\n'.format(running_recall / len(train_loader)))
# total_train_recall = running_recall / len(train_loader)
torch.cuda.empty_cache()
gc.collect()
# history.loc[epoch, 'train_loss'] = losses[0]
# history.loc[epoch, 'train_acc'] = accs[0].cpu().numpy()
# history.loc[epoch, 'train_recall'] = total_train_recall
return None#total_train_recall
def evaluate(epoch, model, criterion, valid_loader, log):
model.eval()
losses = []
accs = []
recalls = []
acc = 0.0
total = 0.0
# print('epochs {}/{} '.format(epoch+1,epochs))
running_loss = 0.0
running_acc = 0.0
running_recall = 0.0
recall_grapheme_all = 0.0
recall_vowel_all = 0.0
recall_consonant_all = 0.0
with torch.no_grad():
for idx, (inputs, labels1, labels2, labels3) in enumerate(tqdm(valid_loader)):
inputs = inputs.cuda() # to(device)
labels1 = labels1.cuda() # to(device)
labels2 = labels2.cuda() # to(device)
labels3 = labels3.cuda() # to(device)
total += len(inputs)
outputs1, outputs2, outputs3 = model(inputs.float())
loss1 = criterion(outputs1, labels1)
#focal loss for root cls
#loss2 = mixup_criterion_with_focal_loss(outputs2, labels2)
loss2 = 2*criterion(outputs2, labels2)
loss3 = criterion(outputs3, labels3)
running_loss += loss1.item() + loss2.item() + loss3.item()
# running_recall += macro_recall_multi(outputs2, labels2, outputs1, labels1, outputs3, labels3)
# running_acc += (outputs1.argmax(1) == labels1).float().mean()
# running_acc += (outputs2.argmax(1) == labels2).float().mean()
# running_acc += (outputs3.argmax(1) == labels3).float().mean()
# acc = running_acc / total
average_recall, recall_grapheme, recall_vowel, recall_consonant = macro_recall_multi(outputs2, labels2, outputs1, labels1, outputs3, labels3)
running_recall += average_recall
recall_grapheme_all += recall_grapheme
recall_vowel_all += recall_vowel
recall_consonant_all += recall_consonant
running_acc += (outputs1.argmax(1) == labels1).float().mean()
running_acc += (outputs2.argmax(1) == labels2).float().mean()
running_acc += (outputs3.argmax(1) == labels3).float().mean()
acc = running_acc / total
# scheduler.step()
losses.append(running_loss / len(valid_loader))
accs.append(running_acc / (len(valid_loader) * 3))
recalls.append(running_recall / len(valid_loader))
total_recall = running_recall / len(valid_loader) ## No its not Arnold Schwarzenegger movie
log.write('val epoch: {} \tval acc : {:.2f}%\n'.format(epoch, running_acc / (len(valid_loader) * 3)))
log.write('loss : {:.4f}\n'.format(running_loss / len(valid_loader)))
log.write('recall_grapheme:{}\trecall_vowel:{}\trecall_consonant:{}\n'.format(recall_grapheme_all/len(valid_loader),
recall_vowel_all/len(valid_loader), recall_consonant_all/len(valid_loader)))
log.write('recall: {}\n'.format(running_recall / len(valid_loader)))
return total_recall
def Over9000(params, alpha=0.5, k=6, *args, **kwargs):
from opt.ralamb import Ralamb
from opt.lookahead import Lookahead
ralamb = Ralamb(params, *args, **kwargs)
return Lookahead(ralamb, alpha, k)
if __name__ == '__main__':
args = get_args()
if args.fmix:
from FMix.implementations.lightning import FMix
fmixer = FMix(size=(args.height, args.width))
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
log = Logger()
log.open(os.path.join(args.outdir, args.model + '_log.txt'), mode='a')
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_ids
log.write('TRAINING BENGALI\n')
log.write('BATCHS SIZE:%d\n' % args.batch_size)
log.write('OUT DIR:%s\n' % args.outdir)
log.write('MODEL:%s\n' % args.model)
log.write('OPTIMIZER:%s\n' % args.optimizer)
log.write('CYCLE INTER:%d\n' % args.cycle_inter)
log.write('CYCLE NUM:%d\n' % args.cycle_num)
log.write('LR:%f\n' % args.lr)
log.write('MIXUP: %d\n' % args.mixup)
log.write('ALPHA_mixup: %f\n' % args.alpha_mixup)
log.write('ALPHA_cutmix: %f\n' % args.alpha_cutmix)
log.write('height: %d\n' % args.height)
log.write('width: %d\n' % args.width)
log.write('feather_data_path: %s\n' % args.feather_data_path)
log.write('image_mode: %s\n'%args.image_mode)
log.write('schedular: %s\n'%args.LR_SCHEDULER)
log.write('lr_ratio:%s\n'%args.lr_ratio)
log.write('patience: %d\n'%args.patience)
if args.fmix:
log.write('fmix: %s\n'%'1')
log.write('fmix_alpha: %f\n'%args.fmix_alpha)
criterion = nn.CrossEntropyLoss()
batch_size = args.batch_size
## Make sure we are using the GPU . Get CUDA device
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(device)
## Now create the model. Since its greyscale , I have not yet used pretrained model . In Later version ,
##I will make the necessary modification to load pretrained weights for greyscale by summing up the weights over one axis or copying greyscale into three channels
if args.folds == 1:
in_ch = 1 if args.image_mode == 'gray' else 3
in_ch=3
if args.finetune:
if args.model.startswith('efficientnet'):
model = EfficientNet.from_pretrained(args.model, in_channels=in_ch).cuda()
elif args.model.startswith('se'):
from NET.seresnet import se50_32_4d_resnext
model = se50_32_4d_resnext(in_ch=in_ch).cuda()
#
else:
if args.model.startswith('efficientnet'):
model = EfficientNet.from_name(args.model, in_channels=in_ch).cuda()
elif args.model.startswith('se'):
from NET.seresnet import se50_32_4d_resnext
model = se50_32_4d_resnext(pretrained=None, in_ch=in_ch).cuda()
model = nn.DataParallel(model)
#torch.load
#model.load_state_dict(torch.load('seresnext50_0.5_rotate_liner1_radam_cutmix/global_max_recall.pth'))
if args.optimizer == 'ADAM':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)#, weight_decay=1e-3)
elif args.optimizer == 'OVER9000':
optimizer = Over9000(model.parameters(), lr=args.lr)#, weight_decay=1e-3) ## New once
elif args.optimizer == 'RADAM':
optimizer = RAdam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)#, weight_decay=1e-3 )
if args.LR_SCHEDULER == 'COS':
scheduler = CosineAnnealingLR_with_Restart(optimizer,
T_max=args.cycle_inter,
T_mult=1,
model=model,
out_dir='../input/',
take_snapshot=False,
eta_min=0)
elif args.LR_SCHEDULER == 'REDUCED':
#scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', min_lr=1e-7, patience=args.patience, factor=args.lr_ratio)
# DATASET SETUP
csv_path = args.csv_path # 'BengaliData'
feather_data_path = args.feather_data_path # 'BengaliData/feather128'
train_loader, valid_loader = generate_data_loader(csv_path, feather_data_path, args.batch_size, args.height, args.width,
num_workers=8, image_mode=args.image_mode)
## A very simple loop to train for number of epochs it probably can be made more robust to save only the file with best valid loss
# history = pd.DataFrame()
# n_epochs = args.epochs
valid_recall = 0.0
best_valid_recall = 0.0
for num in range(args.cycle_num):
curr_cycle_best_valid_recall = 0.0
for epoch in range(args.cycle_inter):
log.write('\n\nXXXXXXXXXXXXXX--CYCLE NUM: %d CYCLE INTER:%d --XXXXXXXXXXXXXXXXXXX\n' % (num, epoch))
# log.write('CURR NUM:%d CURR INTER:%d\n' % (num, epoch))
log.write('curr lr: %f\n' % optimizer.param_groups[0]['lr'])
torch.cuda.empty_cache()
gc.collect()
train_recall = train(epoch, train_loader, model, optimizer, criterion, log, args)
valid_recall = evaluate(epoch, model, criterion, valid_loader, log)
if valid_recall > curr_cycle_best_valid_recall:
log.write(
f'Curr validation recall has increased from: {curr_cycle_best_valid_recall:.4f} to: {valid_recall:.4f}. Saving curr cycle checkpoint\n')
torch.save(model.state_dict(),
os.path.join(args.outdir,
'current_cycle' + str(
num) + '_max_recall.pth')) ## Saving model weights based on best validation accuracy.
curr_cycle_best_valid_recall = valid_recall
# log.write()
if valid_recall > best_valid_recall:
log.write(
f'Global validation recall has increased from: {best_valid_recall:.4f} to: {valid_recall:.4f}. Saving global checkpoint\n')
torch.save(model.state_dict(),
os.path.join(args.outdir,
'global_max_recall.pth')) ## Saving model weights based on best validation accuracy.
best_valid_recall = valid_recall ## Set the new validation Recall score to compare with next epoch
if args.LR_SCHEDULER == 'COS':
scheduler.step() ## Want to test with fixed learning rate .If you want to use scheduler please uncomment this .
elif args.LR_SCHEDULER == 'REDUCED':
scheduler.step(valid_recall)
torch.save(model.state_dict(),
os.path.join(args.outdir,
'cycle_' + str(args.cycle_num) + '_last.pth'))
# history.to_csv(os.path.join(args.outdir, 'log.txt'), index=False)
else:
from data import load_feather_data
nfold = args.folds
seed = 42
train_df, data_full = load_feather_data(args.csv_path, args.feather_data_path)
train_df['id'] = train_df['image_id'].apply(lambda x: int(x.split('_')[1]))
X, y = train_df[['id', 'grapheme_root', 'vowel_diacritic', 'consonant_diacritic']] \
.values[:, 0], train_df.values[:, 1:]
train_df['fold'] = np.nan
# split data
from iterstrat.ml_stratifiers import MultilabelStratifiedKFold
mskf = MultilabelStratifiedKFold(n_splits=nfold, random_state=seed)
for i, (_, test_index) in enumerate(mskf.split(X, y)):
train_df.iloc[test_index, -1] = i
train_df['fold'] = train_df['fold'].astype('int')
for fold in range(0, nfold):
log.write('#################FOLD:%d##################\n' % fold)
val_csv = train_df[train_df['fold'] == fold]
val_data = data_full[train_df['fold'] == fold]
train_csv = train_df[train_df['fold'] != fold]
train_data = data_full[train_df['fold'] != fold]
train_dataset = GraphemeDataset(train_data, train_csv, args.height, args.width, transform=True)
valid_dataset = GraphemeDataset(val_data, val_csv, args.height, args.width, transform=False)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
num_workers=args.num_workers,
shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size,
num_workers=args.num_workers,
shuffle=False)
model = EfficientNet.from_pretrained(args.model).cuda()
model = nn.DataParallel(model)
if args.optimizer == 'ADAM':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
elif args.optimizer == 'OVER9000':
optimizer = Over9000(model.parameters(), lr=args.lr, weight_decay=1e-3) ## New once
elif args.optimizer == 'RADAM':
optimizer = RAdam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
scheduler = CosineAnnealingLR_with_Restart(optimizer,
T_max=args.cycle_inter,
T_mult=1,
model=model,
out_dir='../input/',
take_snapshot=False,
eta_min=0)
# # DATASET SETUP
# csv_path = args.csv_path # 'BengaliData'
# feather_data_path = args.feather_data_path # 'BengaliData/feather128'
# train_loader, valid_loader = generate_data_loader(csv_path, feather_data_path, batch_size=batch_size,
# num_workers=8)
## A very simple loop to train for number of epochs it probably can be made more robust to save only the file with best valid loss
# history = pd.DataFrame()
# n_epochs = args.epochs
valid_recall = 0.0
best_valid_recall = 0.0
for num in range(args.cycle_num):
curr_cycle_best_valid_recall = 0.0
for epoch in range(args.cycle_inter):
log.write(
'\n\nXXXXXXXXXXXXXX--FOLD:%d CYCLE NUM: %d CYCLE INTER:%d --XXXXXXXXXXXXXXXXXXX\n' % (
fold, num, epoch))
# log.write('CURR NUM:%d CURR INTER:%d\n' % (num, epoch))
log.write('curr lr: %f\n' % optimizer.param_groups[0]['lr'])
torch.cuda.empty_cache()
gc.collect()
train_recall = train(epoch, train_loader, model, optimizer, criterion, log, args)
valid_recall = evaluate(epoch, model, criterion, valid_loader, log)
if valid_recall > curr_cycle_best_valid_recall:
log.write(
f'Fold:{fold:d} curr validation recall has increased from: {curr_cycle_best_valid_recall:.4f} to: {valid_recall:.4f}. Saving curr cycle checkpoint\n')
torch.save(model.state_dict(),
os.path.join(args.outdir,
'Fold_' + str(fold) + '_current_cycle' + str(
num) + '_max_recall.pth')) ## Saving model weights based on best validation accuracy.
curr_cycle_best_valid_recall = valid_recall
# log.write()
if valid_recall > best_valid_recall:
log.write(
f'Fold: {fold:d} global validation recall has increased from: {best_valid_recall:.4f} to: {valid_recall:.4f}. Saving global checkpoint\n')
torch.save(model.state_dict(),
os.path.join(args.outdir,
'Fold_' + str(
fold) + '_global_max_recall.pth')) ## Saving model weights based on best validation accuracy.
best_valid_recall = valid_recall ## Set the new validation Recall score to compare with next epoch
scheduler.step() ## Want to test with fixed learning rate .If you want to use scheduler please uncomment this .