forked from ikostrikov/pytorch-a3c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
84 lines (68 loc) · 2.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import json
import math
import os
import sys
import torch
import torch.nn.functional as F
import torch.optim as optim
from envs import create_atari_env
from torch.autograd import Variable
from torchvision import datasets, transforms
import time
from utils import build_model
from collections import deque
def test(rank, args, shared_model):
try:
torch.manual_seed(args.seed + rank)
env = create_atari_env(args.env_name)
env.seed(args.seed + rank)
model = build_model(env.observation_space.shape[0], env.action_space,
args)
model.eval()
state = env.reset()
state = torch.from_numpy(state)
reward_sum = 0
done = True
start_time = time.time()
log_stream = open(os.path.join('logs', json.dumps(vars(args),
separators=(',',':'))), 'w')
# a quick hack to prevent the agent from stucking
actions = deque(maxlen=100)
episode_length = 0
while True:
episode_length += 1
# Sync with the shared model
if done:
model.load_state_dict(shared_model.state_dict())
cx = Variable(torch.zeros(1, 256), volatile=True)
hx = Variable(torch.zeros(1, 256), volatile=True)
else:
cx = Variable(cx.data, volatile=True)
hx = Variable(hx.data, volatile=True)
value, logit, (hx, cx) = model(
(Variable(state.unsqueeze(0), volatile=True), (hx, cx)))
prob = F.softmax(logit)
action = prob.max(1)[1].data.numpy()
state, reward, done, _ = env.step(action[0, 0])
done = done or episode_length >= args.max_episode_length
reward_sum += reward
# a quick hack to prevent the agent from stucking
actions.append(action[0, 0])
if actions.count(actions[0]) == actions.maxlen:
done = True
if done:
print("Time {}, episode reward {}, episode length {}".format(
time.strftime("%Hh %Mm %Ss",
time.gmtime(time.time() - start_time)),
reward_sum, episode_length))
log_stream.write('{} {}\n'.format(reward_sum, episode_length))
log_stream.flush()
reward_sum = 0
episode_length = 0
actions.clear()
state = env.reset()
time.sleep(60)
state = torch.from_numpy(state)
except KeyboardInterrupt:
print('\ntest process #{} interrupted\n'.format(rank))
log_stream.close()