-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsspspace.py
629 lines (522 loc) · 25.4 KB
/
sspspace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import numpy as np
from scipy.stats import qmc
from scipy.stats import special_ortho_group
from scipy.optimize import minimize
import warnings
class SSPSpace:
def __init__(self, domain_dim: int, ssp_dim: int, axis_matrix=None, phase_matrix=None,
domain_bounds=None, length_scale=1):
'''
Represents a domain using spatial semantic pointers.
Parameters:
-----------
domain_dim : int
The dimensionality of the domain being represented.
ssp_dim : int
The dimensionality of the spatial semantic pointer vector.
axis_matrix : np.ndarray
A ssp_dim X domain_dim ndarray representing the axis vectors for
the domain.
phase_matrix : np.ndarray
A ssp_dim x domain_dim ndarray representing the frequency
components of the SSP representation.
domain_bounds : np.ndarray
A domain_dim X 2 ndarray giving the lower and upper bounds of the
domain, used in decoding from an ssp to the point it represents.
length_scale : float or np.ndarray
Scales values before encoding.
'''
self.domain_dim = domain_dim
self.ssp_dim = ssp_dim
self.length_scale = length_scale * np.ones((self.domain_dim,1))
if domain_bounds is not None:
assert domain_bounds.shape[0] == domain_dim
self.domain_bounds = domain_bounds
self.decoder_model = None
if (axis_matrix is None) & (phase_matrix is None):
raise RuntimeError("SSP spaces must be defined by either a axis matrix or phase matrix. Use subclasses to construct spaces with predefined axes.")
elif (phase_matrix is None):
assert axis_matrix.shape[0] == ssp_dim, f'Expected ssp_dim {axis_matrix.shape[0]}, got {ssp_dim}.'
assert axis_matrix.shape[1] == domain_dim
self.axis_matrix = axis_matrix
self.phase_matrix = (-1.j*np.log(np.fft.fft(axis_matrix,axis=0))).real
elif (axis_matrix is None):
assert phase_matrix.shape[0] == ssp_dim
assert phase_matrix.shape[1] == domain_dim
self.phase_matrix = phase_matrix
self.axis_matrix = np.fft.ifft(np.exp(1.j*phase_matrix), axis=0).real
def update_lengthscale(self, scale):
'''
Changes the lengthscale being used in the encoding.
'''
if not isinstance(scale, np.ndarray) or scale.size == 1:
self.length_scale = scale * np.ones((self.domain_dim,))
else:
assert scale.size == self.domain_dim
self.length_scale = scale
assert self.length_scale.size == self.domain_dim
### end if
def optimize_lengthscale(self, init_xs, init_ys):
ls_0 = self.length_scale
self.length_scale = np.ones((self.domain_dim,1))
def min_func(length_scale):
init_phis = self.encode(init_xs/ length_scale)
W = np.linalg.pinv(init_phis.T) @ init_ys
mu = np.dot(init_phis.T,W)
diff = init_ys - mu.T
err = np.sum(np.power(diff, 2))
return err
retval = minimize(min_func, x0=ls_0, method='L-BFGS-B', bounds = self.domain_dim*[(1e-8,1e5)])
self.length_scale = retval.x.reshape(-1,1)
def encode(self,x):
'''
Transforms input data into an SSP representation.
Parameters:
-----------
x : np.ndarray
A (num_samples, domain_dim) array representing data to be encoded.
Returns:
--------
data : np.ndarray
A (num_samples, ssp_dim) array of the ssp representation of the data
'''
x = np.atleast_2d(x)
ls_mat = np.atleast_2d(np.diag(1/self.length_scale.flatten()))
assert ls_mat.shape == (self.domain_dim, self.domain_dim), f'Expected Len Scale mat with dimensions {(self.domain_dim, self.domain_dim)}, got {ls_mat.shape}'
scaled_x = x @ ls_mat
data = np.fft.ifft( np.exp( 1.j * self.phase_matrix @ scaled_x.T), axis=0 ).real
return data.T
def encode_and_deriv(self,x):
'''
Returns the ssp representation of the data and the derivative of
the encoding.
Parameters:
-----------
x : np.ndarray
A (num_samples, domain_dim) array representing data to be encoded.
Returns:
--------
data : np.ndarray
A (num_samples, ssp_dim) array of the ssp representation of the
data
grad : np.ndarray
A (num_samples, ssp_dim, domain_dim) array of the ssp representation of the data
'''
x = np.atleast_2d(x)
ls_mat = np.atleast_2d(np.diag(1 / self.length_scale))
scaled_x = x @ ls_mat
data = np.fft.ifft( np.exp( 1.j * self.phase_matrix @ scaled_x.T ), axis=0 ).real
ddata = np.fft.ifft( 1.j * (self.phase_matrix @ ls_mat) @ np.exp( 1.j * self.phase_matrix @ scaled_x.T ), axis=0 ).real
return data.T, ddata.T
def encode_fourier(self,x):
x = np.atleast_2d(x)
ls_mat = np.atleast_2d(np.diag(1/self.length_scale.flatten()))
assert ls_mat.shape == (self.domain_dim, self.domain_dim), f'Expected Len Scale mat with dimensions {(self.domain_dim, self.domain_dim)}, got {ls_mat.shape}'
scaled_x = x @ ls_mat
data = np.exp( 1.j * self.phase_matrix @ scaled_x.T)
return data.T
# def encode_as_SSP(self,x):
# assert x.shape[0] == self.domain_dim
# data = np.fft.ifft( np.exp( 1.j * self.phase_matrix @ x / self.length_scale ), axis=0 ).real
# return SSP(data,self)
def decode(self,ssp,method='from-set',sampling_method='grid',
num_samples =300, samples=None): # other args for specfic methods
'''
Transforms ssp representation back into domain representation.
Parameters:
-----------
ssp : np.ndarray
SSP representation of a data point.
method : {'from-set', 'direct-optim'}
The technique for decoding the ssp. from-set samples the domain
and finds the closest match under the dot product. direct-optim
does an initial coarse sampling and then optimizes the decoded
value starting from the initial best match in the coarse sampling.
sampling_method : {'grid'|'length-scale'|'sobol'}
Evenly distributes samples along the domain axes
num_samples : int
The number of samples along each axis.
Returns:
--------
x : np.ndarray
The decoded point
'''
if (method=='direct-optim') | (method=='from-set'):
if samples is None:
sample_ssps, sample_points = self.get_sample_pts_and_ssps(method=sampling_method,
num_points_per_dim=num_samples)
else:
sample_ssps, sample_points = samples
assert sample_ssps.shape[1] == ssp.shape[1], f'Expected {sample_ssps.shape} dim, got {ssp.shape}'
# unit_ssp = ssp / np.linalg.norm(ssp, axis=1)
unit_ssp = np.zeros(ssp.shape)
for s_idx, s in enumerate(ssp):
if np.linalg.norm(s) < 1e-6:
unit_ssp[s_idx,:] = s
else:
unit_ssp[s_idx,:] = s / np.linalg.norm(s)
if method=='from-set':
sims = sample_ssps @ unit_ssp.T
return sample_points[np.argmax(sims),:]
elif method=='direct-optim':
def min_func(x,target):
x_ssp = self.encode(np.atleast_2d(x))
return -np.inner(x_ssp, target).flatten()
retvals = np.zeros((ssp.shape[0],self.domain_dim))
for s_idx, u_ssp in enumerate(unit_ssp):
x0 = self.decode(np.atleast_2d(u_ssp),
method='from-set',
sampling_method='length-scale',
num_samples=num_samples, samples=samples)
soln = minimize(min_func, x0,
args=(np.atleast_2d(u_ssp),),
method='L-BFGS-B',
bounds=self.domain_bounds)
retvals[s_idx,:] = soln.x
return retvals #soln.x
elif method=='network':
if self.decoder_model is None:
raise Exception('Network not trained for decoding. You must first call train_decoder_net')
return self.decoder_model.predict(ssp)
elif method=='network-optim':
if self.decoder_model is None:
raise Exception('Network not trained for decoding. You must first call train_decoder_net')
x0 = self.decoder_model.predict(ssp)
solns = np.zeros(x0.shape)
for i in range(x0.shape[0]):
def min_func(x,target=ssp[i,:]):
x_ssp = self.encode(np.atleast_2d(x))
return -np.inner(x_ssp, target).flatten()
soln = minimize(min_func, x0[i,:],
method='L-BFGS-B',
bounds=self.domain_bounds)
solns[i,:] = soln.x
return solns
else:
raise NotImplementedError(f'Unrecognized decoding method: {method}')
def clean_up(self,ssp,method='from-set'):
if method=='from-set':
sample_ssps = self.get_sample_ssps(500)
sims = sample_ssps.T @ ssp
return sample_ssps[:,np.argmax(sims)]
else:
x = self.decode(ssp,method)
return self.encode(x)
def get_sample_points(self, samples_per_dim=100, method='length-scale'):
'''
Identifies points in the domain of the SSP encoding that
will be used to determine optimal decoding.
Parameters
----------
method: {'grid'|'length-scale'|'sobol'}
The way to select samples from the domain.
'grid' uniformly spaces samples_per_dim points on the domain
'sobol' decodes using samples_per_dim**data_dim points generated
using a sobol sampling
'length-scale' uses the selected lengthscale to determine the number
of sample points generated per dimension.
Returns
-------
sample_pts : np.ndarray
A (num_samples, domain_dim) array of candiate decoding points.
'''
if self.domain_bounds is None:
bounds = np.vstack([-10*np.ones(self.domain_dim), 10*np.ones(self.domain_dim)]).T
else:
bounds = self.domain_bounds
if method == 'grid':
num_pts_per_dim = [samples_per_dim for _ in range(bounds.shape[0])]
elif method == 'length-scale':
num_pts_per_dim = [2*int(np.ceil((b[1]-b[0])/self.length_scale[b_idx])) for b_idx, b in enumerate(bounds)]
else:
num_pts_per_dim = samples_per_dim
if method=='grid' or method=='length-scale':
xxs = np.meshgrid(*[np.linspace(bounds[i,0],
bounds[i,1],
num_pts_per_dim[i]
) for i in range(self.domain_dim)])
retval = np.array([x.reshape(-1) for x in xxs]).T
assert retval.shape[1] == self.domain_dim, f'Expected {self.domain_dim}d data, got {retval.shape[1]}d data'
return retval
elif method=='sobol':
num_points = np.prod(num_pts_per_dim)
sampler = qmc.Sobol(d=self.domain_dim)
lbounds = bounds[:,0]
ubounds = bounds[:,1]
u_sample_points = sampler.random(num_points)
sample_points = qmc.scale(u_sample_points, lbounds, ubounds).T
elif method=='Rd':
num_points = np.prod(samples_per_dim)
u_sample_points = _Rd_sampling(num_points, self.domain_dim)
lbounds = bounds[:,0]
ubounds = bounds[:,1]
sample_points = qmc.scale(u_sample_points, lbounds, ubounds).T
else:
raise NotImplementedError(f'Sampling method {method} is not implemented')
return sample_points.T
def get_sample_ssps(self,num_points, **kwargs):
sample_points = self.get_sample_points(num_points, **kwargs)
sample_ssps = self.encode(sample_points)
return sample_ssps
def get_sample_pts_and_ssps(self,num_points_per_dim=100, method='grid'):
sample_points = self.get_sample_points(
method=method,
samples_per_dim=num_points_per_dim
)
if method == 'grid':
expected_points = int(num_points_per_dim**(self.domain_dim))
assert sample_points.shape[0] == expected_points, f'Expected {expected_points} samples, got {sample_points.shape[0]}.'
sample_ssps = self.encode(sample_points)
if method == 'grid':
assert sample_ssps.shape[0] == expected_points
return sample_ssps, sample_points
def normalize(self,ssp):
return ssp/np.maximum(np.sqrt(np.sum(ssp**2)), 1e-8)
def make_unitary(self,ssp):
fssp = np.fft.fft(ssp)
fssp = fssp/np.maximum(np.sqrt(fssp.real**2 + fssp.imag**2), 1e-8)
return np.fft.ifft(fssp).real
def make_unitary_fourier(self,fssp):
fssp = fssp/np.maximum(np.sqrt(fssp.real**2 + fssp.imag**2), 1e-8)
return fssp
def identity(self):
s = np.zeros(self.ssp_dim)
s[0] = 1
return s
def bind(self,a,b):
a = np.atleast_2d(a)
b = np.atleast_2d(b)
return np.fft.ifft(np.fft.fft(a, axis=1) * np.fft.fft(b,axis=1), axis=1).real
def invert(self,a):
a = np.atleast_2d(a)
return a[:,-np.arange(self.ssp_dim)]
def similarity_plot(self,ssp,n_grid=100,plot_type='heatmap',ax=None,**kwargs):
import matplotlib.pyplot as plt
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111)
if self.domain_dim == 1:
xs = np.linspace(self.domain_bounds[0,0],self.domain_bounds[0,1], n_grid)
sims = ssp @ self.encode(np.atleast_2d(xs).T).T
im = ax.plot(xs, sims.reshape(-1) )
ax.set_xlim(self.domain_bounds[0,0],self.domain_bounds[0,1])
elif self.domain_dim == 2:
xs = np.linspace(self.domain_bounds[0,0],self.domain_bounds[0,1], n_grid)
ys = np.linspace(self.domain_bounds[1,0],self.domain_bounds[1,1], n_grid)
X,Y = np.meshgrid(xs,ys)
sims = ssp @ self.encode(np.vstack([X.reshape(-1),Y.reshape(-1)]).T).T
if plot_type=='heatmap':
im = ax.pcolormesh(X,Y,sims.reshape(X.shape),**kwargs)
elif plot_type=='contour':
im = ax.contour(X,Y,sims.reshape(X.shape),**kwargs)
elif plot_type=='contourf':
im = ax.contourf(X,Y,sims.reshape(X.shape),**kwargs)
ax.set_xlim(self.domain_bounds[0,0],self.domain_bounds[0,1])
ax.set_ylim(self.domain_bounds[1,0],self.domain_bounds[1,1])
else:
raise NotImplementedError()
return im
def train_decoder_net(self,n_training_pts=200000,n_hidden_units = 8,
learning_rate=1e-3,n_epochs = 20, load_file=True, save_file=True):
import tensorflow as tf
tf.config.set_visible_devices([],'GPU')
import sklearn
from tensorflow import keras
from tensorflow.keras import layers, regularizers
if (type(self).__name__ == 'HexagonalSSPSpace'):
path_name = './saved_decoder_nets/domaindim' + str(self.domain_dim) + '_lenscale' + str(self.length_scale[0]) + '_nscales' + str(self.n_scales) + '_nrotates' + str(self.n_rotates) + '_scale_min' + str(self.scale_min) + '_scalemax' + str(self.scale_max) +'.h5'
else:
#warnings.warn("Cannot load decoder net for non HexagonalSSPSpace class")
load_file = False
save_file=False
if load_file:
try:
self.decoder_model = keras.models.load_model(path_name)
return
except BaseException as be:
print('Error loading decoder:')
print(be)
pass
model = keras.Sequential([
layers.Dense(self.ssp_dim, activation="relu", name="layer1"),# layers.Dropout(.1),
layers.Dense(n_hidden_units, activation="relu", name="layer2"), # kernel_regularizer=regularizers.L1L2(l1=1e-5, l2=1e-4)),
layers.Dense(self.domain_dim, name="output"),
])
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss='mean_squared_error')
sample_ssps, sample_points = self.get_sample_pts_and_ssps(num_points_per_dim=n_training_pts,
method='Rd')
shuffled_ssps, shuffled_pts = sklearn.utils.shuffle(sample_ssps, sample_points)
history = model.fit(shuffled_ssps, shuffled_pts,
epochs=n_epochs,verbose=True, validation_split = 0.1)
if save_file:
model.save(path_name)
self.decoder_model = model
return history
class RandomSSPSpace(SSPSpace):
'''
Creates an SSP space using randomly generated frequency components.
'''
def __init__(self, domain_dim: int, ssp_dim: int, domain_bounds=None, length_scale=1, rng=np.random.default_rng()):
# partial_phases = rng.random.rand(ssp_dim//2,domain_dim)*2*np.pi - np.pi
#partial_phases = rng.random((ssp_dim // 2, domain_dim)) * 2 * np.pi - np.pi
#axis_matrix = _constructaxisfromphases(partial_phases)
def make_good_unitary(dim, eps=1e-3, rng=np.random):
a = rng.rand((dim - 1) // 2)
sign = rng.choice((-1, +1), len(a))
phi = sign * np.pi * (eps + a * (1 - 2 * eps))
assert np.all(np.abs(phi) >= np.pi * eps)
assert np.all(np.abs(phi) <= np.pi * (1 - eps))
fv = np.zeros(dim, dtype='complex64')
fv[0] = 1
fv[1:(dim + 1) // 2] = np.cos(phi) + 1j * np.sin(phi)
fv[-1:dim // 2:-1] = np.conj(fv[1:(dim + 1) // 2])
if dim % 2 == 0:
fv[dim // 2] = 1
assert np.allclose(np.abs(fv), 1)
v = np.fft.ifft(fv)
v = v.real
assert np.allclose(np.fft.fft(v), fv)
assert np.allclose(np.linalg.norm(v), 1)
return v
axis_matrix = np.zeros((ssp_dim,domain_dim))
for i in range(domain_dim):
axis_matrix[:,i] = make_good_unitary(ssp_dim)
super().__init__(domain_dim,
axis_matrix.shape[0],
axis_matrix=axis_matrix,
domain_bounds=domain_bounds,
length_scale=length_scale,
)
class HexagonalSSPSpace(SSPSpace):
'''
Creates an SSP space using the Hexagonal Tiling developed by NS Dumont
(2020)
'''
def __init__(self, domain_dim:int,ssp_dim: int=151, n_rotates:int=5, n_scales:int=5,
scale_min=0.1, scale_max=3,
domain_bounds=None, length_scale=1):
if (n_rotates==5) & (n_scales==5) & (ssp_dim!=151): # user wants to define ssp with total dim, not number of simplex rotates and scales
n_rotates = int(np.sqrt((ssp_dim-1)/(2*(domain_dim+1))))
n_scales = n_rotates
ssp_dim = n_rotates*n_scales*(domain_dim+1)*2 + 1
phases_hex = np.hstack([np.sqrt(1+ 1/domain_dim)*np.identity(domain_dim) - (domain_dim**(-3/2))*(np.sqrt(domain_dim+1) + 1),
(domain_dim**(-1/2))*np.ones((domain_dim,1))]).T
self.grid_basis_dim = domain_dim + 1
self.num_grids = n_rotates*n_scales
self.scale_min = scale_min
self.scale_max = scale_max
self.n_scales = n_scales
self.n_rotates = n_rotates
#scales = scale_max*(np.linspace((scale_min/scale_max)**2,1,n_scales))**(1/domain_dim)
scales = np.linspace(scale_min,scale_max,n_scales)
phases_scaled = np.vstack([phases_hex*i for i in scales])
if (n_rotates==1):
phases_scaled_rotated = phases_scaled
elif (domain_dim==1):
scales = np.linspace(scale_min,scale_max,n_scales+n_rotates)
phases_scaled_rotated = np.vstack([phases_hex*i for i in scales])
elif (domain_dim == 2):
angles = np.linspace(0,2*np.pi/3,n_rotates,endpoint=False)
R_mats = np.stack([np.stack([np.cos(angles), -np.sin(angles)],axis=1),
np.stack([np.sin(angles), np.cos(angles)], axis=1)], axis=1)
phases_scaled_rotated = (R_mats @ phases_scaled.T).transpose(0,2,1).reshape(-1,domain_dim)
else:
R_mats = special_ortho_group.rvs(domain_dim, size=n_rotates, random_state=1)
phases_scaled_rotated = (R_mats @ phases_scaled.T).transpose(0,2,1).reshape(-1,domain_dim)
axis_matrix = _constructaxisfromphases(phases_scaled_rotated)
ssp_dim = axis_matrix.shape[0]
super().__init__(domain_dim,ssp_dim,axis_matrix=axis_matrix,
domain_bounds=domain_bounds,length_scale=length_scale)
def sample_grid_encoders(self, n_neurons):
d = self.ssp_dim
n = self.domain_dim
A = self.phase_matrix
sample_pts = self.get_sample_points(n, method='sobol')
if d % 2 == 0:
N = ((d-2)//2)//(n+1)
else:
N = ((d-1)//2)//(n+1)
sample_pts = self.get_sample_points(n_neurons, method='sobol')
sorts = np.random.randint(0, N, size = n_neurons)
encoders = np.zeros((n_neurons,d))
for i in range(n_neurons):
res = np.zeros(d, dtype=complex)
res[(1 + sorts[i]*(n+1)):(n + 2 + sorts[i]*(n+1)) ] = np.exp( 1.j * A[(1 + sorts[i]*(n+1)):(n + 2 + sorts[i]*(n+1)) ] @ sample_pts[i,:])
res[-(n + 1 + sorts[i]*(n+1)):-(sorts[i]*(n+1)+ (sorts[i]==0))] = np.exp( 1.j * A[-(n + 1 + sorts[i]*(n+1)):-(sorts[i]*(n+1) + (sorts[i]==0))] @ sample_pts[i,:])
encoders[i,:] = np.fft.ifft(res).real
res[0] = 1
if d%2==0:
res[d//2] = 1
return encoders
def _constructaxisfromphases(K):
d = K.shape[0]
F = np.ones((d*2 + 1,K.shape[1]), dtype="complex")
F[0:d,:] = np.exp(1.j*K)
F[-d:,:] = np.flip(np.conj(F[0:d,:]),axis=0)
axes = np.fft.ifft(np.fft.ifftshift(F,axes=0),axis=0).real
return axes
def _get_sub_FourierSSP(n, N, sublen=3):
# Return a matrix, \bar{A}_n
# Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper
# Then
# \bar{A}_n F{S_{total}} = F{S_n}
# i.e. pick out the sub vector in the Fourier domain
tot_len = 2*sublen*N + 1
FA = np.zeros((2*sublen + 1, tot_len))
FA[0:sublen, sublen*n:sublen*(n+1)] = np.eye(sublen)
FA[sublen, sublen*N] = 1
FA[sublen+1:, tot_len - np.arange(sublen*(n+1),sublen*n,-1)] = np.eye(sublen)
return FA
def _get_sub_SSP(n,N,sublen=3):
# Return a matrix, A_n
# Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper
# Then
# A_n S_{total} = S_n
# i.e. pick out the sub vector in the time domain
tot_len = 2*sublen*N + 1
FA = _get_sub_FourierSSP(n,N,sublen=sublen)
W = np.fft.fft(np.eye(tot_len))
invW = np.fft.ifft(np.eye(2*sublen + 1))
A = invW @ np.fft.ifftshift(FA) @ W
return A.real
def _proj_sub_FourierSSP(n,N,sublen=3):
# Return a matrix, \bar{B}_n
# Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper
# Then
# \sum_n \bar{B}_n F{S_{n}} = F{S_{total}}
# i.e. project the sub vector in the Fourier domain such that summing all such projections gives the full vector in Fourier domain
tot_len = 2*sublen*N + 1
FB = np.zeros((2*sublen + 1, tot_len))
FB[0:sublen, sublen*n:sublen*(n+1)] = np.eye(sublen)
FB[sublen, sublen*N] = 1/N # all sub vectors have a "1" zero freq term so scale it so full vector will have 1
FB[sublen+1:, tot_len - np.arange(sublen*(n+1),sublen*n,-1)] = np.eye(sublen)
return FB.T
def _proj_sub_SSP(n,N,sublen=3):
# Return a matrix, B_n
# Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper
# Then
# \sum_n B_n S_{n} = S_{total}
# i.e. project the sub vector in the time domain such that summing all such projections gives the full vector
tot_len = 2*sublen*N + 1
FB = _proj_sub_FourierSSP(n,N,sublen=sublen)
invW = np.fft.ifft(np.eye(tot_len))
W = np.fft.fft(np.eye(2*sublen + 1))
B = invW @ np.fft.ifftshift(FB) @ W
return B.real
def _Rd_sampling(n,d,seed=0.5):
def phi(d):
x=2.0000
for i in range(10):
x = pow(1+x,1/(d+1))
return x
g = phi(d)
alpha = np.zeros(d)
for j in range(d):
alpha[j] = pow(1/g,j+1) %1
z = np.zeros((n, d))
for i in range(n):
z[i] = seed + alpha*(i+1)
z = z %1
return z