-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_kgat.py
383 lines (299 loc) · 15 KB
/
main_kgat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import sys
import random
from time import time
import pandas as pd
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
from model.KGAT import KGAT
from parser.parser_kgat import *
from utils.log_helper import *
from utils.metrics import *
from utils.model_helper import *
from data_loader.loader_kgat import DataLoaderKGAT
import pickle
def evaluate(model, dataloader, Ks, device):
test_batch_size = dataloader.test_batch_size
train_user_dict = dataloader.train_user_dict
test_user_dict = dataloader.test_user_dict
model.eval()
user_ids = list(test_user_dict.keys())
user_ids_batches = [user_ids[i: i + test_batch_size] for i in range(0, len(user_ids), test_batch_size)]
user_ids_batches = [torch.LongTensor(d) for d in user_ids_batches]
n_items = dataloader.n_items
item_ids = torch.arange(n_items, dtype=torch.long).to(device)
cf_scores = []
metric_names = ['precision', 'recall', 'ndcg']
metrics_dict = {k: {m: [] for m in metric_names} for k in Ks}
with tqdm(total=len(user_ids_batches), desc='Evaluating Iteration') as pbar:
for batch_user_ids in user_ids_batches:
batch_user_ids = batch_user_ids.to(device)
with torch.no_grad():
batch_scores = model(batch_user_ids, item_ids, mode='predict') # (n_batch_users, n_items)
batch_scores = batch_scores.cpu()
batch_metrics = calc_metrics_at_k(batch_scores, train_user_dict, test_user_dict, batch_user_ids.cpu().numpy(), item_ids.cpu().numpy(), Ks)
cf_scores.append(batch_scores.numpy())
for k in Ks:
for m in metric_names:
metrics_dict[k][m].append(batch_metrics[k][m])
pbar.update(1)
cf_scores = np.concatenate(cf_scores, axis=0)
for k in Ks:
for m in metric_names:
metrics_dict[k][m] = np.concatenate(metrics_dict[k][m]).mean()
return cf_scores, metrics_dict
def train(args):
# seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
log_save_id = create_log_id(args.save_dir)
logging_config(folder=args.save_dir, name='log{:d}'.format(log_save_id), no_console=False)
logging.info(args)
# GPU / CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load data
data = DataLoaderKGAT(args, logging)
if args.use_pretrain == 1:
user_pre_embed = torch.tensor(data.user_pre_embed)
item_pre_embed = torch.tensor(data.item_pre_embed)
else:
user_pre_embed, item_pre_embed = None, None
# construct model & optimizer
model = KGAT(args, data.n_users, data.n_entities, data.n_relations, data.A_in, user_pre_embed, item_pre_embed)
if args.use_pretrain == 2:
model = load_model(model, args.pretrain_model_path)
model.to(device)
logging.info(model)
cf_optimizer = optim.Adam(model.parameters(), lr=args.lr)
kg_optimizer = optim.Adam(model.parameters(), lr=args.lr)
# initialize metrics
best_epoch = -1
best_recall = 0
Ks = eval(args.Ks)
k_min = min(Ks)
k_max = max(Ks)
epoch_list = []
metrics_list = {k: {'precision': [], 'recall': [], 'ndcg': []} for k in Ks}
# train model
for epoch in range(1, args.n_epoch + 1):
time0 = time()
model.train()
# train cf
time1 = time()
cf_total_loss = 0
n_cf_batch = data.n_cf_train // data.cf_batch_size + 1
for iter in range(1, n_cf_batch + 1):
time2 = time()
cf_batch_user, cf_batch_pos_item, cf_batch_neg_item = data.generate_cf_batch(data.train_user_dict, data.cf_batch_size)
cf_batch_user = cf_batch_user.to(device)
cf_batch_pos_item = cf_batch_pos_item.to(device)
cf_batch_neg_item = cf_batch_neg_item.to(device)
cf_batch_loss = model(cf_batch_user, cf_batch_pos_item, cf_batch_neg_item, mode='train_cf')
if np.isnan(cf_batch_loss.cpu().detach().numpy()):
logging.info('ERROR (CF Training): Epoch {:04d} Iter {:04d} / {:04d} Loss is nan.'.format(epoch, iter, n_cf_batch))
sys.exit()
cf_batch_loss.backward()
cf_optimizer.step()
cf_optimizer.zero_grad()
cf_total_loss += cf_batch_loss.item()
if (iter % args.cf_print_every) == 0:
logging.info('CF Training: Epoch {:04d} Iter {:04d} / {:04d} | Time {:.1f}s | Iter Loss {:.4f} | Iter Mean Loss {:.4f}'.format(epoch, iter, n_cf_batch, time() - time2, cf_batch_loss.item(), cf_total_loss / iter))
logging.info('CF Training: Epoch {:04d} Total Iter {:04d} | Total Time {:.1f}s | Iter Mean Loss {:.4f}'.format(epoch, n_cf_batch, time() - time1, cf_total_loss / n_cf_batch))
# train kg
time3 = time()
kg_total_loss = 0
n_kg_batch = data.n_kg_train // data.kg_batch_size + 1
for iter in range(1, n_kg_batch + 1):
time4 = time()
kg_batch_head, kg_batch_relation, kg_batch_pos_tail, kg_batch_neg_tail = data.generate_kg_batch(data.train_kg_dict, data.kg_batch_size, data.n_users_entities)
kg_batch_head = kg_batch_head.to(device)
kg_batch_relation = kg_batch_relation.to(device)
kg_batch_pos_tail = kg_batch_pos_tail.to(device)
kg_batch_neg_tail = kg_batch_neg_tail.to(device)
kg_batch_loss = model(kg_batch_head, kg_batch_relation, kg_batch_pos_tail, kg_batch_neg_tail, mode='train_kg')
if np.isnan(kg_batch_loss.cpu().detach().numpy()):
logging.info('ERROR (KG Training): Epoch {:04d} Iter {:04d} / {:04d} Loss is nan.'.format(epoch, iter, n_kg_batch))
sys.exit()
kg_batch_loss.backward()
kg_optimizer.step()
kg_optimizer.zero_grad()
kg_total_loss += kg_batch_loss.item()
if (iter % args.kg_print_every) == 0:
logging.info('KG Training: Epoch {:04d} Iter {:04d} / {:04d} | Time {:.1f}s | Iter Loss {:.4f} | Iter Mean Loss {:.4f}'.format(epoch, iter, n_kg_batch, time() - time4, kg_batch_loss.item(), kg_total_loss / iter))
logging.info('KG Training: Epoch {:04d} Total Iter {:04d} | Total Time {:.1f}s | Iter Mean Loss {:.4f}'.format(epoch, n_kg_batch, time() - time3, kg_total_loss / n_kg_batch))
# update attention
time5 = time()
h_list = data.h_list.to(device)
t_list = data.t_list.to(device)
r_list = data.r_list.to(device)
relations = list(data.laplacian_dict.keys())
model(h_list, t_list, r_list, relations, mode='update_att')
logging.info('Update Attention: Epoch {:04d} | Total Time {:.1f}s'.format(epoch, time() - time5))
logging.info('CF + KG Training: Epoch {:04d} | Total Time {:.1f}s'.format(epoch, time() - time0))
# evaluate cf
if (epoch % args.evaluate_every) == 0 or epoch == args.n_epoch:
time6 = time()
_, metrics_dict = evaluate(model, data, Ks, device)
logging.info('CF Evaluation: Epoch {:04d} | Total Time {:.1f}s | Precision [{:.4f}, {:.4f}], Recall [{:.4f}, {:.4f}], NDCG [{:.4f}, {:.4f}]'.format(
epoch, time() - time6, metrics_dict[k_min]['precision'], metrics_dict[k_max]['precision'], metrics_dict[k_min]['recall'], metrics_dict[k_max]['recall'], metrics_dict[k_min]['ndcg'], metrics_dict[k_max]['ndcg']))
epoch_list.append(epoch)
for k in Ks:
for m in ['precision', 'recall', 'ndcg']:
metrics_list[k][m].append(metrics_dict[k][m])
best_recall, should_stop = early_stopping(metrics_list[k_min]['recall'], args.stopping_steps)
if should_stop:
break
if metrics_list[k_min]['recall'].index(best_recall) == len(epoch_list) - 1:
save_model(model, args.save_dir, epoch, best_epoch)
logging.info('Save model on epoch {:04d}!'.format(epoch))
best_epoch = epoch
# save metrics
metrics_df = [epoch_list]
metrics_cols = ['epoch_idx']
for k in Ks:
for m in ['precision', 'recall', 'ndcg']:
metrics_df.append(metrics_list[k][m])
metrics_cols.append('{}@{}'.format(m, k))
metrics_df = pd.DataFrame(metrics_df).transpose()
metrics_df.columns = metrics_cols
metrics_df.to_csv(args.save_dir + '/metrics.tsv', sep='\t', index=False)
# print best metrics
best_metrics = metrics_df.loc[metrics_df['epoch_idx'] == best_epoch].iloc[0].to_dict()
logging.info('Best CF Evaluation: Epoch {:04d} | Precision [{:.4f}, {:.4f}], Recall [{:.4f}, {:.4f}], NDCG [{:.4f}, {:.4f}]'.format(
int(best_metrics['epoch_idx']), best_metrics['precision@{}'.format(k_min)], best_metrics['precision@{}'.format(k_max)], best_metrics['recall@{}'.format(k_min)], best_metrics['recall@{}'.format(k_max)], best_metrics['ndcg@{}'.format(k_min)], best_metrics['ndcg@{}'.format(k_max)]))
def predict(args):
# GPU / CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load data
if args.loader_pickle == "None":
print("constructing new data!")
with open("Bookflip_dataloader_new.pkl", "wb") as f:
data = DataLoaderKGAT(args,logging)
pickle.dump(data, f)
print("dumped pickle!")
else:
with open(args.loader_pickle, "rb") as f:
print("bringing the data loader from pickle")
data = pickle.load(f)
print("loaded pickle")
# load model
model = KGAT(args, data.n_users, data.n_entities, data.n_relations)
model = load_model(model, args.pretrain_model_path)
model.to(device)
# predict
Ks = eval(args.Ks)
k_min = min(Ks)
k_max = max(Ks)
cf_scores, metrics_dict = evaluate(model, data, Ks, device)
np.save(args.save_dir + 'cf_scores.npy', cf_scores)
print('CF Evaluation: Precision [{:.4f}, {:.4f}], Recall [{:.4f}, {:.4f}], NDCG [{:.4f}, {:.4f}]'.format(
metrics_dict[k_min]['precision'], metrics_dict[k_max]['precision'], metrics_dict[k_min]['recall'], metrics_dict[k_max]['recall'], metrics_dict[k_min]['ndcg'], metrics_dict[k_max]['ndcg']))
def recommand(arg,user_ids):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load data
if args.loader_pickle == "None":
print("constructing new data!")
with open("Bookflip_dataloader_new.pkl", "wb") as f:
data = DataLoaderKGAT(args,logging)
pickle.dump(data, f)
print("dumped pickle!")
else:
with open(args.loader_pickle, "rb") as f:
print("bringing the data loader from pickle")
data = pickle.load(f)
print("loaded pickle")
model = KGAT(args, data.n_users, data.n_entities, data.n_relations)
model = load_model(model, args.pretrain_model_path)
model.to(device)
# evaluate부분
# test_batch_size = data.test_batch_size
train_user_dict = data.train_user_dict
# test_user_dict = data.test_user_dict
model.eval()
n_items = data.n_items
item_ids = torch.arange(n_items, dtype=torch.long).to(device)
cf_scores = []
remap_user_ids = [user_id+data.n_entities for user_id in user_ids]
# item_ids => remap_user_ids : 유저 유사성
with torch.no_grad():
batch_scores = model(remap_user_ids, item_ids, mode='predict')
batch_scores = batch_scores.cpu()
# test_pos_item_binary = np.zeros([len(user_ids), len(item_ids)], dtype=np.float32)
for idx, u in enumerate(remap_user_ids):
try:
train_pos_item_list = train_user_dict[u]
# test_pos_item_list = test_user_dict[u]
except:
continue
batch_scores[idx][train_pos_item_list] = -np.inf # 학습 단계의 아이템을 추천해주지않기위해 -무한대 처리 해버림
# test_pos_item_binary[idx][test_pos_item_list] = 1 # 테스트 단계에서 정답 아이템
try:
_, rank_indices = torch.sort(batch_scores.cuda(), descending=True) # try to speed up the sorting process
except:
_, rank_indices = torch.sort(batch_scores, descending=True)
rank_indices = rank_indices.cpu()
return rank_indices
def recommand_user(arg,user_ids):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load data
if args.loader_pickle == "None":
print("constructing new data!")
with open("Bookflip_dataloader_new.pkl", "wb") as f:
data = DataLoaderKGAT(args,logging)
pickle.dump(data, f)
print("dumped pickle!")
else:
with open(args.loader_pickle, "rb") as f:
print("bringing the data loader from pickle")
data = pickle.load(f)
print("loaded pickle")
model = KGAT(args, data.n_users, data.n_entities, data.n_relations)
model = load_model(model, args.pretrain_model_path)
model.to(device)
train_user_dict = data.train_user_dict
model.eval()
n_items = data.n_items
item_ids = torch.arange(n_items, dtype=torch.long).to(device)
cf_scores = []
remap_user_ids = [user_id+data.n_entities for user_id in user_ids]
# item_ids => remap_user_ids : 유저 유사성
with torch.no_grad():
user_batch_scores = model(remap_user_ids, mode='recommand_user')
# print(train_user_dict)
# for idx, u in enumerate(remap_user_ids):
# train_pos_item_list = train_user_dict[u]
# print(train_pos_item_list)
# # test_pos_item_list = test_user_dict[u]
# user_batch_scores[idx][train_pos_item_list] = -np.inf # 학습 단계의 아이템을 추천해주지않기위해 -무한대 처리 해버림
# # test_pos_item_binary[idx][test_pos_item_list] = 1 # 테스트 단계에서 정답 아이템
try:
_, rank_indices = torch.sort(user_batch_scores.cuda(), descending=True) # try to speed up the sorting process
except:
_, rank_indices = torch.sort(user_batch_scores, descending=True)
rank_indices = rank_indices.cpu()
return rank_indices
def get_ids_from_remap_ids(remap_id_values, file_path):
remap_id_values = remap_id_values.tolist()
df = pd.read_csv(file_path)
id_values = []
remap_id_values = remap_id_values[0][:10]
for remap_id_value in remap_id_values:
result_row = df[df['remap_id'] == remap_id_value]
if not result_row.empty:
id_values.append(result_row['id'].values[0])
else:
id_values.append(None)
return id_values
def user_id_to_int(user_id, file_path = "user_list.csv"):
df = pd.read_csv(file_path)
return int(df[df['id']==user_id]['remap_id'])
if __name__ == '__main__':
args = parse_kgat_args()
user_id = input("유저 아이디를 입력해주세요!")
rank_indices = recommand(args,[user_id_to_int(user_id)])
user_rank_indices = recommand_user(args, [user_id_to_int(user_id)])
print("추천 책 ID: ", get_ids_from_remap_ids(rank_indices, 'item_list.csv'))
print("추천 유저 ID: ",get_ids_from_remap_ids(user_rank_indices, 'user_list.csv'))