-
Notifications
You must be signed in to change notification settings - Fork 10
/
test.py
63 lines (44 loc) · 1.92 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from util import *
from training import *
def restore_net(idx):
print("Reloading previous model")
net = torch.load(args.model_dir+"model_{0}.pkl".format(idx))
return net
def test(idx,model,reload=False):
if reload:
model = restore_net(idx)
model.eval()
### loading validation dataset
self_built_dataset = util.Dataloader0(args.data_dir+args.testset_name,
args.seq_start,
args.seq_length-args.seq_start,
rot=False)
name_list = self_built_dataset.all_list
trainloader = DataLoader(
self_built_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=4,
drop_last=True)
for iteration,valid_data in enumerate(trainloader,0):
print(iteration)
valid_X,valid_Y = valid_data
valid_X = Variable(valid_X, requires_grad=False).cuda()
output_list = model(valid_X)
for j in range(args.batch_size):
start_time = name_list[iteration*args.batch_size+j][args.seq_start-1]
time_list = [name_list[iteration*args.batch_size+j][i] for i in range(args.seq_start,args.seq_length)]
A = valid_X[j][-1].data.cpu().numpy().reshape(args.img_size,args.img_size)
A = (A+0.5).astype(np.uint8)
A = Image.fromarray(A)
path = args.img_dir+start_time.split("/")[-1]
A.save(path)
for k in range(args.seq_length-args.seq_start):
A = output_list[k][j,0,:,:].data.cpu().numpy().reshape(args.img_size,args.img_size)
A = (A+0.5).astype(np.uint8)
A = Image.fromarray(A)
path = args.img_dir+time_list[k][:-4].split("/")[-1]+"_{}.png".format(k)
A.save(path)
output_list = None
if __name__== "__main__":
test(42,None,reload=True)