forked from kimiyoung/transformer-xl
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
718 lines (623 loc) · 33.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# coding: utf-8
import argparse
import itertools
import logging
import math
import os
import random
import sys
import time
from typing import Optional, List
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
import wandb
from pytorch_lamb import Lamb, log_lamb_rs
from torch.nn.parallel import DistributedDataParallel
import globals as g # global state current run, shared between modules
import util
from data_utils import get_lm_corpus, LMOrderedIterator
from eval import evaluate, sample_text
from fp16_opt import FP16_Module, FP16_Optimizer
from log import log_tb, logging_setup, log_sample, timeit
from lr_finder import LRFinder
from mem_transformer import MemTransformerLM
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
parser.add_argument('--logdir', type=str, default='/tmp/default', help="where logs and events go")
parser.add_argument('--run_name', type=str, default='txl', help="name of run")
parser.add_argument('--data', type=str, default='../data/wikitext-103',
help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='wt103',
choices=['wt103', 'lm1b', 'enwik8', 'text8', 'wt2', 'wiki', 'wt103-normal', 'git'],
help='dataset name')
parser.add_argument('--n_layer', type=int, default=12,
help='number of total layers')
parser.add_argument('--freeze_below', type=int, default=0,
help='dont adjust layers below this layer')
parser.add_argument('--n_head', type=int, default=10,
help='number of heads')
parser.add_argument('--d_head', type=int, default=50,
help='head dimension')
parser.add_argument('--d_embed', type=int, default=-1,
help='embedding dimension')
parser.add_argument('--d_model', type=int, default=500,
help='model dimension')
parser.add_argument('--d_inner', type=int, default=1000,
help='inner dimension in FF')
parser.add_argument('--dropout', type=float, default=0.0,
help='global dropout rate')
parser.add_argument('--dropatt', type=float, default=0.0,
help='attention probability dropout rate')
parser.add_argument('--init', default='normal', type=str,
help='parameter initializer to use.')
parser.add_argument('--emb_init', default='normal', type=str,
help='parameter initializer to use.')
parser.add_argument('--init_range', type=float, default=0.1,
help='parameters initialized by U(-init_range, init_range)')
parser.add_argument('--emb_init_range', type=float, default=0.01,
help='parameters initialized by U(-init_range, init_range)')
parser.add_argument('--init_std', type=float, default=0.02,
help='parameters initialized by N(0, init_std)')
parser.add_argument('--proj_init_std', type=float, default=0.01,
help='parameters initialized by N(0, init_std)')
parser.add_argument('--optim', default='adam', type=str,
choices=['adam', 'sgd', 'adagrad', 'lamb'],
help='optimizer to use.')
parser.add_argument('--lr', type=float, default=0.00025,
help='initial learning rate (0.00025|5 for adam|sgd)')
parser.add_argument('--mom', type=float, default=0.0,
help='momentum for sgd')
parser.add_argument('--wd', type=float, default=0,
help='weight decay for adam|lamb)')
parser.add_argument('--scheduler', default='cosine', type=str,
choices=['cosine', 'inv_sqrt', 'dev_perf', 'constant', 'finder'],
help='lr scheduler to use.')
parser.add_argument('--warmup_tokens', type=float, default=0,
help='upper epoch limit')
parser.add_argument('--decay_rate', type=float, default=0.5,
help='decay factor when ReduceLROnPlateau is used')
parser.add_argument('--lr_min', type=float, default=0.0,
help='minimum learning rate during annealing')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--clip_nonemb', action='store_true',
help='only clip the gradient of non-embedding params')
parser.add_argument('--max_tokens', type=int, default=1.8e9, help='upper epoch limit affecting LR schedule')
parser.add_argument('--batch_size', type=int, default=60,
help='batch size')
parser.add_argument('--tgt_len', type=int, default=70,
help='number of tokens to predict')
parser.add_argument('--eval_tgt_len', type=int, default=50,
help='number of tokens to predict for evaluation')
parser.add_argument('--ext_len', type=int, default=0,
help='length of the extended context')
parser.add_argument('--mem_len', type=int, default=0,
help='length of the retained previous heads')
parser.add_argument('--not_tied', action='store_true',
help='do not tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--adaptive', action='store_true',
help='use adaptive softmax')
parser.add_argument('--div_val', type=int, default=1,
help='divident value for adapative input and softmax')
parser.add_argument('--pre_lnorm', action='store_true',
help='apply LayerNorm to the input instead of the output')
parser.add_argument('--log_interval', type=int, default=200,
help='logging interval in number of steps')
parser.add_argument('--retune_interval', type=int, default=5,
help='how often to retune parameters')
parser.add_argument('--verbose_log_steps', type=int, default=60,
help='do logging at every step for this many steps at the start of training')
parser.add_argument('--eval_interval', type=int, default=4000,
help='evaluation interval in number of steps')
parser.add_argument('--checkpoint_each_epoch', type=int, default=0,
help='whether to save checkpoint at each epoch')
parser.add_argument('--checkpoint_at_end', type=int, default=0,
help='whether to checkpoint things at the end of training')
parser.add_argument('--checkpoint', type=str, default='',
help='checkpoint file to use to restore training')
parser.add_argument('--checkpoint_secondary', type=str, default='',
help='second checkpoint to restore (for hybrid model)')
parser.add_argument('--skip_files', type=float, default=0,
help='how many files skip in the first epoch')
parser.add_argument('--optim_state_dict', type=str, default='',
help='checkpoint (state_dict) of optimizer')
parser.add_argument('--restart', action='store_true',
help='restart training from the saved checkpoint')
parser.add_argument('--restart_dir', type=str, default='',
help='restart dir')
parser.add_argument('--same_length', action='store_true',
help='use the same attn length for all tokens')
parser.add_argument('--attn_type', type=int, default=0,
help='attention type. 0 for ours, 1 for Shaw et al,'
'2 for Vaswani et al, 3 for Al Rfou et al.')
parser.add_argument('--clamp_len', type=int, default=-1,
help='use the same pos embeddings after clamp_len')
parser.add_argument('--eta_min', type=float, default=0.0,
help='min learning rate for cosine scheduler')
parser.add_argument('--gpu0_bsz', type=int, default=-1,
help='batch size on gpu 0')
parser.add_argument('--max_eval_steps', type=int, default=-1,
help='max eval steps')
parser.add_argument('--sample_softmax', type=int, default=-1,
help='number of samples in sampled softmax')
parser.add_argument('--patience', type=int, default=0,
help='patience')
parser.add_argument('--finetune_v2', action='store_true',
help='finetune v2')
parser.add_argument('--finetune_v3', action='store_true',
help='finetune v3')
parser.add_argument('--num_gpu', type=int, default=1,
help="number of gpus (used to make sure # tokens is correct)")
parser.add_argument('--bpe', action='store_true', default=False,
help="Use BPE instead of traditional vocabulary.")
parser.add_argument('--fp16', action='store_true',
help='Run in fp16 mode.')
parser.add_argument('--static_loss_scale', type=float, default=1,
help='Static loss scale, positive power of 2 values can '
'improve fp16 convergence.')
parser.add_argument('--dynamic_loss_scale', action='store_true',
help='Use dynamic loss scaling. If supplied, this argument'
' supersedes --static-loss-scale.')
# distributed training flags
parser.add_argument('--local', action='store_true', help='Run local training instead of distrbuted.')
parser.add_argument('--dist_url', default='env://', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist_backend', default='nccl', type=str, help='distributed backend')
parser.add_argument('--local_rank', default=0, type=int,
help='Used for multi-process training. Can either be manually set ' +
'or automatically set by using \'python -m multiproc\'.')
# infra flags
parser.add_argument('--skip_auto_shutdown', action='store_true',
help='skip shutdown at the end of training or failure')
parser.add_argument('--auto_shutdown_success_delay_mins', default=10, type=int,
help='how long to wait until shutting down on success')
parser.add_argument('--auto_shutdown_failure_delay_mins', default=60, type=int,
help='how long to wait before shutting down on error')
# testing flags
parser.add_argument('--test', type=str, default='', help='run test')
parser.add_argument('--valid_custom', type=str, default=None,
help='url to custom valid file')
def parse_args(cmd_args=sys.argv[1:]):
args = parser.parse_args(cmd_args)
args.tied = not args.not_tied
if args.d_embed < 0:
args.d_embed = args.d_model
assert args.ext_len >= 0, 'extended context length must be non-negative'
# adaptive softmax / embedding
g.cutoffs, g.tie_projs = [], [False]
if args.adaptive:
assert args.dataset in ['wt103', 'lm1b', 'wt2', 'wiki', 'git']
if args.dataset in ('wt103', 'wt2', 'wiki', 'git'):
if args.bpe:
g.cutoffs = [5000, 10000, 40000]
else:
g.cutoffs = [20000, 40000, 200000]
g.tie_projs += [True] * len(g.cutoffs)
elif args.dataset == 'lm1b':
g.cutoffs = [60000, 100000, 640000]
g.tie_projs += [False] * len(g.cutoffs)
return args
def data_setup():
"""Sets up logging, random seeds and corpus"""
# global variables
# Set the random seed manually for reproducibility.
random.seed(g.args.seed)
np.random.seed(g.args.seed)
torch.manual_seed(g.args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(g.args.seed)
torch.cuda.set_device(g.args.local_rank)
g.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
###############################################################################
# Load data
###############################################################################
g.corpus = get_lm_corpus(g.args.data, g.args.dataset, use_bpe=g.args.bpe, valid_custom=g.args.valid_custom)
g.ntokens = len(g.corpus.vocab)
g.va_iter, g.te_iter = [
g.corpus.get_dist_iterator(split, bsz=g.args.batch_size * 2, bptt=g.args.tgt_len, rank=util.get_global_rank(),
max_rank=util.get_world_size(),
device=g.device, ext_len=g.args.ext_len)
for split in ('valid', 'test')
]
if g.args.valid_custom:
g.va_custom_iter = g.corpus.get_dist_iterator('valid_custom', bsz=g.args.batch_size * 2, bptt=g.args.tgt_len,
rank=util.get_global_rank(), max_rank=util.get_world_size(),
device=g.device, ext_len=g.args.ext_len)
###############################################################################
# Build the model
###############################################################################
def init_weight(weight):
if g.args.init == 'uniform':
nn.init.uniform_(weight, -g.args.init_range, g.args.init_range)
elif g.args.init == 'normal':
nn.init.normal_(weight, 0.0, g.args.init_std)
def init_bias(bias):
nn.init.constant_(bias, 0.0)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
if hasattr(m, 'weight') and m.weight is not None:
init_weight(m.weight)
if hasattr(m, 'bias') and m.bias is not None:
init_bias(m.bias)
elif classname.find('AdaptiveEmbedding') != -1:
if hasattr(m, 'emb_projs'):
for i in range(len(m.emb_projs)):
if m.emb_projs[i] is not None:
nn.init.normal_(m.emb_projs[i], 0.0, g.args.proj_init_std)
elif classname.find('Embedding') != -1:
if hasattr(m, 'weight'):
init_weight(m.weight)
elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
init_weight(m.cluster_weight)
if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
init_bias(m.cluster_bias)
if hasattr(m, 'out_projs'):
for i in range(len(m.out_projs)):
if m.out_projs[i] is not None:
nn.init.normal_(m.out_projs[i], 0.0, g.args.proj_init_std)
elif classname.find('LayerNorm') != -1:
if hasattr(m, 'weight'):
nn.init.normal_(m.weight, 1.0, g.args.init_std)
if hasattr(m, 'bias') and m.bias is not None:
init_bias(m.bias)
elif classname.find('TransformerLM') != -1:
if hasattr(m, 'r_emb'):
init_weight(m.r_emb)
if hasattr(m, 'r_w_bias'):
init_weight(m.r_w_bias)
if hasattr(m, 'r_r_bias'):
init_weight(m.r_r_bias)
if hasattr(m, 'r_bias'):
init_bias(m.r_bias)
###############################################################################
# Training code
###############################################################################
def evaluate_and_log(model: torch.nn.Module, eval_iter, split: str, generate_text: bool = True,
reset_mems_interval: int = None):
args = g.args
state = g.state
optimizer = g.state.optimizer
eval_start_time = time.time()
model_to_reset = util.unwrap_model(model)
# If the model does not use memory at all, make the ext_len longer.
# Otherwise, make the mem_len longer and keep the ext_len the same.
if g.args.mem_len == 0:
model_to_reset.reset_length(
args.eval_tgt_len, args.ext_len + args.tgt_len - args.eval_tgt_len, args.mem_len)
else:
model_to_reset.reset_length(
args.eval_tgt_len, args.ext_len, args.mem_len + args.tgt_len - args.eval_tgt_len)
# Calculate metrics
ret = evaluate(model, eval_iter, split, args.max_eval_steps, reset_mems_interval=reset_mems_interval)
total_loss, accuracy_top1, accuracy_top5, MRR, total_len = \
ret["total_loss"], ret["accuracy_top1"], ret["accuracy_top5"], ret["MRR_top5"], ret["total_len"]
if generate_text and util.get_global_rank() == 0:
# Get samples
_, unconditional_sample = sample_text(model, length=1000)
context, conditional_sample = sample_text(model, length=1000, conditional_files=["test/data/git/train.py"])
# Log it
log_sample("", unconditional_sample, "uncond")
log_sample(context, conditional_sample, "cond")
# Switch back to the training mode
model_to_reset.reset_length(args.tgt_len, args.ext_len, args.mem_len)
model.train()
# Log all the things.
loss = total_loss / total_len
mean_loss = util.dist_mean(loss)
mean_accuracy_top1 = util.dist_mean(accuracy_top1)
mean_accuracy_top5 = util.dist_mean(accuracy_top5)
mean_MRR = util.dist_mean(MRR)
g.logger.info('-' * 100)
log_str = (f'| Eval {g.state.train_step // args.eval_interval:3d} at step {g.state.train_step:>8d} | '
f'time: {time.time() - eval_start_time:5.2f}s '
f'| {split} loss {loss:5.2f}')
log_tb(f'learning/{split}_loss', mean_loss)
if args.dataset in ['enwik8', 'text8']:
log_str += f' | bpc {loss / math.log(2):9.5f}'
log_tb(f'learning/{split}_bpc', mean_loss / math.log(2))
elif args.dataset == 'git':
log_str += f' | accuracy@1 {accuracy_top1:.2f} ' \
f'| accuracy@5 {accuracy_top5:.2f} ' \
f'| MRR@5 {MRR:.2f}'
log_tb(f'learning/{split}_acc@1', mean_accuracy_top1)
log_tb(f'learning/{split}_acc@5', mean_accuracy_top5)
log_tb(f'learning/{split}_MRR@5', mean_MRR)
else:
log_str += f' | {split} ppl {math.exp(loss):9.3f}'
log_tb(f'learning/{split}_ppl', math.exp(mean_loss))
g.logger.info(log_str)
g.logger.info('-' * 100)
# Update checkpoint if validation loss improved.
if split == 'val' and (not state.best_val_loss or mean_loss < state.best_val_loss):
g.logger.info('Saving checkpoint for new best loss')
util.dist_save_checkpoint(model, optimizer, args.logdir, suffix='best')
state.best_val_loss = mean_loss
# This function wraps creation code that needs to run both during intial setup and during checkpoint restore
def optimizer_setup(state):
model = state.model
if state.args.optim.lower() == 'sgd':
optimizer = optim.SGD(g.state.model.parameters(), lr=state.args.lr, momentum=state.args.mom)
elif state.args.optim.lower() == 'lamb':
optimizer = Lamb(model.parameters(), lr=state.args.lr, weight_decay=state.args.wd)
else:
assert state.args.optim.lower() == 'adam'
optimizer = optim.Adam(model.parameters(), lr=state.args.lr, weight_decay=state.args.wd)
state.optimizer = optimizer
class TrainState(util.FrozenClass):
model: Optional[nn.Module] = None
optimizer: Optional[torch.optim.Adam] = None
args: Optional[argparse.Namespace] = None
mems: Optional[List] = None
tr_iter: Optional[LMOrderedIterator] = None
scheduler: Optional[optim.lr_scheduler.CosineAnnealingLR] = None
train_step: int = 0
last_epoch: int = 0
last_log_step: int = 0
token_count: int = 0 # number of tokens that have been consumed by the model training
best_val_loss: Optional[float] = None
partial_epoch: bool = False
def __init__(self, args):
self.args = args
self._freeze()
def main_loop():
util.cancel_shutdown()
losses = []
args = g.args
if not args.local:
g.logger.info(f'Distributed initializing process group with '
f'{args.dist_backend}, {args.dist_url}, {util.get_world_size()}')
dist.init_process_group(backend=args.dist_backend,
init_method=args.dist_url,
world_size=util.get_world_size())
assert (util.get_world_size() == dist.get_world_size())
g.logger.info(f"Distributed: success ({args.local_rank}/{dist.get_world_size()})")
g.logger.info("creating new model")
g.state = TrainState(args)
g.state.model = MemTransformerLM(g.ntokens, args.n_layer, args.n_head, args.d_model,
args.d_head, args.d_inner, args.dropout, args.dropatt,
tie_weight=args.tied, d_embed=args.d_embed, div_val=args.div_val,
tie_projs=g.tie_projs, pre_lnorm=args.pre_lnorm, tgt_len=args.tgt_len,
ext_len=args.ext_len, mem_len=args.mem_len, cutoffs=g.cutoffs,
same_length=args.same_length, attn_type=args.attn_type,
clamp_len=args.clamp_len, sample_softmax=args.sample_softmax, freeze_below=args.freeze_below)
g.state.model.to(g.device)
optimizer_setup(g.state)
if args.checkpoint:
if args.checkpoint_secondary:
g.logger.info(f"restoring extra checkpoint")
util.restore_from_checkpoint(g.state.model, g.state.optimizer, args.checkpoint_secondary, args.optim_state_dict)
g.logger.info(f"Restoring model from {args.checkpoint}" +
f" and optimizer from {args.optim_state_dict}" if args.optim_state_dict else "")
util.restore_from_checkpoint(g.state.model, g.state.optimizer, args.checkpoint, args.optim_state_dict)
else:
g.state.model.apply(weights_init)
# ensure embedding init is not overridden by out_layer in case of weight sharing
g.state.model.word_emb.apply(weights_init)
model: MemTransformerLM = g.state.model
optimizer = g.state.optimizer
if g.state.args.fp16:
model = FP16_Module(model)
optimizer = FP16_Optimizer(optimizer, static_loss_scale=g.state.args.static_loss_scale,
dynamic_loss_scale=g.state.args.dynamic_loss_scale,
dynamic_loss_args={'init_scale': 2 ** 16}, verbose=False)
# log model info
# n_all_param = sum([p.nelement() for p in model.parameters()])
# log_tb('sizes/params', n_all_param)
# n_nonemb_param = sum([p.nelement() for p in model.layers.parameters()])
# log_tb('sizes/non_emb_params', n_nonemb_param)
# g.logger.info('params %s non_emb_params %s', n_all_param, n_nonemb_param)
# scheduler
if args.scheduler == 'cosine':
# Divide by 1e6 for numerical stability.
g.state.scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.max_tokens // 1e6,
eta_min=args.eta_min)
elif args.scheduler == 'finder':
g.state.scheduler: LRFinder = LRFinder(optimizer, args.max_tokens, init_value=args.lr / 1e3)
else:
assert args.scheduler == 'constant'
g.state.scheduler = util.NoOp()
# Setup distributed model
if args.local:
model = nn.DataParallel(model, dim=1)
else:
# Uncomment find_unused_parameters and upgrade to torch 1.1 for adaptive embedding.
model = DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank) # , find_unused_parameters=True)
if util.get_global_rank() == 0:
if not args.test:
wandb.config.update(vars(args))
# wandb.watch(model)
g.event_writer.add_text('args', str(args)) # TODO: replace with log_tb
accumulated_loss = 0
# At any point you can hit Ctrl + C to break out of training early.
try:
for epoch in itertools.count(start=g.state.last_epoch):
print(f"epoch -- {epoch}, token_count -- {g.state.token_count}")
model.train()
log_tb('sizes/batch_size', args.batch_size)
log_tb('sizes/seq_size', args.tgt_len)
if g.state.partial_epoch:
# reuse previously loaded tr_iter and states
assert g.state.tr_iter is not None
assert g.state.mems is not None
else:
g.state.tr_iter = g.corpus.get_dist_iterator('train', rank=util.get_global_rank(),
max_rank=util.get_world_size(),
bsz=args.batch_size, bptt=args.tgt_len, device=g.device,
ext_len=args.ext_len, skip_files=g.args.skip_files)
g.state.mems = tuple()
g.state.last_epoch = epoch
log_start_time = time.time()
tokens_per_epoch = 0
for batch, (data, target, seq_len) in enumerate(g.state.tr_iter):
# assert seq_len == data.shape[0]
# for i in range(1, data.shape[0]):
# assert torch.all(torch.eq(data[i], target[i - 1]))
# break
# print(g.state.token_count, data)
if g.state.train_step % args.eval_interval == 0:
evaluate_and_log(model, g.va_iter, 'val_short-mem-1', generate_text=False, reset_mems_interval=1)
evaluate_and_log(model, g.va_iter, 'val_short-mem-2', generate_text=False, reset_mems_interval=2)
evaluate_and_log(model, g.va_iter, 'val_short-mem-3', generate_text=False, reset_mems_interval=3)
evaluate_and_log(model, g.va_iter, 'val')
if g.va_custom_iter:
evaluate_and_log(g.state.model, g.va_custom_iter, g.args.valid_custom, generate_text=False)
batch_total = torch.tensor(data.shape[1]).to(g.device)
if args.local: # TODO(y): factor out (need way to see if dist was inited)
batch_total = batch_total.sum()
else:
batch_total = util.dist_sum_tensor(batch_total) # global batch size
batch_total = util.toscalar(batch_total)
should_log = (g.state.train_step < args.verbose_log_steps) or \
(g.state.train_step + 1) % args.log_interval == 0
model.zero_grad()
ret = model(data, target, *g.state.mems)
loss, g.state.mems = ret[0], ret[1:]
loss: torch.Tensor = loss.float().mean().type_as(loss)
with timeit('backwards', noop=not should_log):
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
loss0 = util.toscalar(loss)
util.record('loss', loss0)
util.record('params', torch.sum(util.flat_param(model)).item())
losses.append(loss0)
accumulated_loss += loss0
if args.fp16:
optimizer.clip_master_grads(args.clip)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
# step-wise learning rate annealing
if hasattr(optimizer, 'overflow') and optimizer.overflow:
g.logger.info("skipped iteration")
else:
if args.scheduler in ['cosine', 'constant', 'dev_perf']:
# linear warmup stage
if g.state.token_count < args.warmup_tokens:
curr_lr = args.lr * float(g.state.token_count) / args.warmup_tokens
optimizer.param_groups[0]['lr'] = curr_lr
elif args.scheduler == 'cosine':
# Divide by 1e6 for numerical stability.
g.state.scheduler.step(g.state.token_count // 1000 // 1000)
else:
g.state.scheduler.step(g.state.token_count)
optimizer.step()
g.state.train_step += 1
consumed_tokens = data.shape[0] * data.shape[1]
world_size = int(os.environ.get("WORLD_SIZE", "8"))
if world_size > 8: # correction factor for multiple machines
consumed_tokens = consumed_tokens * (world_size//8)
tokens_per_epoch += consumed_tokens
g.state.token_count += consumed_tokens
g.token_count = g.state.token_count
if g.state.token_count >= args.max_tokens:
g.state.partial_epoch = True
raise StopIteration # break out of parent train loop
if should_log:
elapsed_time = time.time() - log_start_time
elapsed_steps = g.state.train_step - g.state.last_log_step
# compute average loss over last logging interval
cur_loss = accumulated_loss / elapsed_steps
cur_loss_mean = util.dist_mean(cur_loss)
log_str = f'| epoch {epoch:3d} step {g.state.train_step:>8d} ' \
f'| {batch:>6d} batches ' \
f'| lr {optimizer.param_groups[0]["lr"]:.3g} ' \
f'| ms/batch {elapsed_time * 1000 / elapsed_steps:5.2f} ' \
f'| loss {cur_loss:5.2f}'
if args.dataset in ['enwik8', 'text8']:
log_str += f' | bpc {cur_loss / math.log(2):9.5f}'
else:
log_str += f' | ppl {math.exp(cur_loss):9.3f}'
g.logger.info(log_str)
log_tb('learning/epoch', epoch)
log_tb('_loss', cur_loss_mean) # the most important thing
log_tb('learning/loss', cur_loss_mean)
log_tb('learning/ppl', math.exp(cur_loss_mean))
# currently step timings are not synchronized in multi-machine
# case (see #4). Can add torch.distributed.barrier() to get
# more accurate timings, but this may add slowness.
log_tb('times/step', 1000 * elapsed_time / elapsed_steps)
current_lr = optimizer.param_groups[0]['lr']
log_tb('learning/lr', current_lr)
# 32 is the "canonical" batch size
linear_scaling_factor = batch_total / 32 # TODO(y): merge logic from master
log_tb('learning/base_lr', current_lr / linear_scaling_factor)
if args.optim == 'lamb':
log_lamb_rs(optimizer, g.event_writer, g.state.token_count)
time_per_batch = elapsed_time / elapsed_steps
time_per_sample = time_per_batch / args.batch_size
time_per_token = time_per_sample / args.tgt_len
log_tb('times/batches_per_sec', 1 / time_per_batch)
log_tb('times/samples_per_sec', 1 / time_per_sample)
log_tb('times/tokens_per_sec', 1 / time_per_token)
if str(g.device) == 'cuda':
log_tb("memory/allocated_gb", torch.cuda.memory_allocated() / 1e9)
log_tb("memory/max_allocated_gb", torch.cuda.max_memory_allocated() / 1e9)
log_tb("memory/cached_gb", torch.cuda.memory_cached() / 1e9)
log_tb("memory/max_cached_gb", torch.cuda.max_memory_cached() / 1e9)
accumulated_loss = 0
log_start_time = time.time()
g.state.last_log_step = g.state.train_step
if args.checkpoint_each_epoch:
g.logger.info(f'Saving checkpoint for epoch {epoch}')
util.dist_save_checkpoint(model, optimizer, args.logdir, suffix=f'{epoch}')
if tokens_per_epoch == 0:
logging.info("Zero tokens in last epoch, breaking")
break
g.state.partial_epoch = False
except KeyboardInterrupt:
g.logger.info('-' * 100)
g.logger.info('Exiting from training early')
except StopIteration:
pass
return losses
if __name__ == '__main__':
g.args = parse_args()
if g.args.test:
eval(f'test_{g.args.test}()')
sys.exit(0)
try:
logging_setup()
data_setup()
main_loop()
# Eval one more time.
evaluate_and_log(g.state.model, g.va_iter, 'val')
if g.va_custom_iter:
evaluate_and_log(g.state.model, g.va_custom_iter, g.args.valid_custom, generate_text=False)
torch.distributed.barrier() # need synchronize before next model reading
# Load the best saved model.
model_file = os.path.join(g.args.logdir, 'model-best.pt')
g.logger.info("Loading best checkpoint")
if os.path.exists(model_file):
with open(model_file, 'rb') as model_f:
with timeit('load'):
if g.args.local:
g.state.model = torch.load(model_f)
else:
g.state.model = torch.load(model_f, map_location=lambda storage, loc: storage.cuda(
g.args.local_rank))
g.state.model = DistributedDataParallel(
g.state.model,
device_ids=[g.args.local_rank],
output_device=g.args.local_rank)
else:
g.logger.warn('no model file, using current model for loss')
# Run on test data.
evaluate_and_log(g.state.model, g.te_iter, 'test')
if not g.args.skip_auto_shutdown and g.args.local_rank == 0 and not g.args.local:
os.system(f'sudo shutdown -h -P +{g.args.auto_shutdown_success_delay_mins}')
except Exception as e:
import traceback
traceback.print_exc(file=sys.stdout)
# Logger automatically picks up exc info from context.
g.logger.exception('Failed')
# in case of exception, wait 2 hours before shutting down
if not g.args.skip_auto_shutdown and not g.args.local:
os.system(f'sudo shutdown -h -P +{g.args.auto_shutdown_failure_delay_mins}')