-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
118 lines (91 loc) · 4.35 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""Evaluates the model"""
import argparse
import logging
import os
import numpy as np
import torch
from torch.autograd import Variable
import utils
import model.model as model_params
import model.data_loader as data_loader
def parseArgs():
parser = argparse.ArgumentParser()
parser.add_argument('--train', default='data/vctk/speaker1/vctk-speaker1-train.4.16000.8192.4096.h5', help="Train data path")
parser.add_argument('--val', default='data/vctk/speaker1/vctk-speaker1-val.4.16000.8192.4096.h5', help="Val data path")
parser.add_argument('--model_dir', default='experiments/base_model', help="Directory containing params.json")
parser.add_argument('--restore_file', default=None,
help="Optional, name of the file in --model_dir containing weights to reload before \
training") # 'best' or 'train'
parser.add_argument('--debug', action='store_true', help='Debug mode')
return parser.parse_args()
def evaluate(model, loss_fn, dataloader, metrics, params):
"""Evaluate the model on `num_steps` batches.
Args:
model: (torch.nn.Module) the neural network
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches data
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
# set model to evaluation mode
model.eval()
# summary for current eval loop
summ = []
# compute metrics over the dataset
for data_batch, labels_batch in dataloader:
# move to GPU if available
if params.cuda:
data_batch, labels_batch = data_batch.cuda(async=True), labels_batch.cuda(async=True)
# fetch the next evaluation batch
data_batch, labels_batch = Variable(data_batch), Variable(labels_batch)
# compute model output
output_batch = model(data_batch)
loss = loss_fn(output_batch, labels_batch)
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = output_batch.data.cpu().numpy()
labels_batch = labels_batch.data.cpu().numpy()
# compute all metrics on this batch
summary_batch = {metric: metrics[metric](output_batch, labels_batch)
for metric in metrics}
summary_batch['loss'] = loss.data.item()
summ.append(summary_batch)
# compute mean of all metrics in summary
metrics_mean = {metric:np.mean([x[metric] for x in summ]) for metric in summ[0]}
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in metrics_mean.items())
logging.info("- Eval metrics : " + metrics_string)
return metrics_mean
if __name__ == '__main__':
"""
Evaluate the model on the test set.
"""
# Load the parameters
args = parser.parse_args()
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# use GPU if available
params.cuda = torch.cuda.is_available() # use GPU is available
# Set the random seed for reproducible experiments
torch.manual_seed(230)
if params.cuda: torch.cuda.manual_seed(230)
# Get the logger
utils.set_logger(os.path.join(args.model_dir, 'evaluate.log'))
# Create the input data pipeline
logging.info("Creating the dataset...")
# fetch dataloaders
dataloaders = data_loader.fetch_dataloader(['test'], args.data_paths, params)
test_dl = dataloaders['test']
logging.info("- done.")
# Define the model
model = get_model(params, val_dl).cuda()
model = model.cuda() if params.cuda else model
loss_fn = model_params.loss_fn
metrics = model_params.metrics
logging.info("Starting evaluation")
# Reload weights from the saved file
utils.load_checkpoint(os.path.join(args.model_dir, args.restore_file + '.pth.tar'), model)
# Evaluate
test_metrics = evaluate(model, loss_fn, test_dl, metrics, params)
save_path = os.path.join(args.model_dir, "metrics_test_{}.json".format(args.restore_file))
utils.save_dict_to_json(test_metrics, save_path)