Skip to content

Latest commit

 

History

History
83 lines (50 loc) · 5.21 KB

README.md

File metadata and controls

83 lines (50 loc) · 5.21 KB

annoFuse: an R Package to annotate, prioritize, and interactively explore putative oncogenic RNA fusions

Gaonkar KS, Marini F, Rathi KS, Jain P, Zhu Y, Chimicles NA, Brown MA, Naqvi AS, Zhang B, Storm PB, Maris JM, Raman P, Resnick AC, Strauch K, Taroni JN, Rokita JL. annoFuse: an R Package to annotate, prioritize, and interactively explore putative oncogenic RNA fusions. BMC Bioinformatics. 2020 Dec 14;21(1):577. doi: 10.1186/s12859-020-03922-7. PMID: 33317447; PMCID: PMC7737294.

R build status

DOI

Using annoFuse, users can filter out fusions known to be artifactual and retained high-quality fusion calls using support of at least one junction read and remove false calls if there is disproportionate spanning fragment support of more than 100 reads compared to the junction read count.

For prioritization, users can capture known as well as putative driver fusions reported in TCGA, or fusions containing gene partners that are known oncogenes, tumor suppressor genes, or COSMIC genes.

Finally, users can also determine recurrent fusions across the cohort and recurrently-fused genes within each histology. By providing a standardized filtering and annotation method from multiple callers (STAR-Fusion and Arriba) users are able to merge, filter and prioritize putative oncogenic fusions across the PBTA.

Getting Started

These instructions will get you a copy of the package up and running on your local machine.

Install package

devtools::install_github("d3b-center/annoFuse", dependencies = TRUE)

Prerequisites for cohort level analysis

  • merge calls from each caller for you cohort and a column annots with additional annotation (eg from FusionAnnotator or caller specific annotation we have used FusionAnnotator in our vignettes)

  • reference folder with a gene genelistreference.txt and fusionreference.txt inst/extdata has reference files we've used in our vignettes. The fusion reference is a compilation of the annotations listed in the table below.

Annotation File Source
pfamID http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/pfamDesc.txt.gz UCSC pfamID Description database
Domain Location http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/ucscGenePfam.txt.gz UCSC pfamID Description database
TCGA fusions https://tumorfusions.org/PanCanFusV2/downloads/pancanfus.txt.gz TumorFusions: an integrative resource for cancer-associated transcript fusions PMID: 29099951
Oncogenes OncoKB - last updated 20240704 https://www.oncokb.org/cancer-genes
Tumor suppressor genes (TSGs) OncoKB - last updated 20240704 https://www.oncokb.org/cancer-genes
Tumor suppressor genes (TSGs) https://bioinfo.uth.edu/TSGene/Human_TSGs.txt?csrt=5027697123997809089 Tumor Suppressor Gene Database 2.0 PMIDs: 23066107, 26590405
Kinases http://kinase.com/human/kinome/tables/Kincat_Hsap.08.02.xls The protein kinase complement of the human genome PMID: 12471243
COSMIC genes https://cancer.sanger.ac.uk/census Catalogue of Somatic Mutations in Cancer
Pediatric-specific oncogenes MYBL1, SNCAIP, FOXR2, TTYH1, TERT doi:10.1073/pnas.1300252110, doi:10.1038/nature11327, doi:10.1016/j.cell.2016.01.015, doi:10.1038/ng.2849, doi:10.1038/ng.3438, doi:10.1002/gcc.22110, doi:10.1016/j.canlet.2014.11.057, doi:10.1007/s11910-017-0722-5
Pediatric-specific TSGs BCOR, QKI doi:10.1016/j.cell.2016.01.015, doi:10.1038/ng.3500
  • expression matrix with GeneSymbol per row and samples as columns

Prerequisites for single sample analysis

Overview of package

Vignette

To browse vignettes

devtools::install_github("d3b-center/annoFuse", build_vignettes=TRUE, dependencies = TRUE)
browseVignettes("annoFuse")

Authors

Krutika S. Gaonkar, Federico Marini, Komal S. Rathi, Jaclyn N. Taroni, Jo Lynne Rokita

How to cite

Krutika S. Gaonkar, Federico Marini, Komal S. Rathi, Payal Jain, Yuankun Zhu, Nicholas A. Chimicles, Miguel A. Brown, Ammar S. Naqvi, Bo Zhang, Phillip B. Storm, John M. Maris, Pichai Raman, Adam C. Resnick, Konstantin Strauch, Jaclyn N. Taroni & Jo Lynne Rokita (2020). annoFuse: an R Package to annotate, prioritize, and interactively explore putative oncogenic RNA fusions. BMC Bioinformatics, 21(1), 577. https://doi.org/10.1186/s12859-020-03922-7

License

This project is licensed under the MIT License