-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
302 lines (240 loc) · 9.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
import math
import signal
from tqdm import tqdm
from logger import Logger
import time
from logic import term2list2
import random
import numpy as np
interrupt = False
zero_probability = False
def signal_handler(sig, frame):
global interrupt
print("Interrupted!")
interrupt = True
signal.signal(signal.SIGINT, signal.SIG_DFL)
def handle_query(model, query, eps=1e-8):
pos = True
if type(query) is tuple:
pos = query[1]
query = query[0]
ground = model.solve(query)
for k in ground:
if k == query:
p, d = ground[k]
break
if pos:
if p < 0:
print('negative probability query:', query, p)
# if p <= 0:
# print('zero probability query:', query, p)
loss_grad = -1.0 / (p + eps)
loss = -math.log(p + eps)
else:
loss_grad = 1.0 / (1.0 - p + eps)
loss = -math.log(1 - p + eps)
return loss_grad, loss, d
def train(model, optimizer, query, eps=1e-8, use_cuda=False, weights=None):
loss_grad, loss, d = handle_query(model, query, eps)
for k, v in d.items():
if type(k[0]) is str:
name = k[0]
i = tuple(term2list2(k[1]))
grad = loss_grad * v
if weights is not None:
grad = grad * weights
grad = torch.FloatTensor(grad)
if use_cuda:
grad = grad.cuda()
optimizer.backward(name,i,grad)
else:
optimizer.add_param_grad(k,loss_grad*float(v))
return loss
def train_batch(model, optimizer, batch_queries, eps=1e-8, use_cuda=False):
loss = 0
gradients = {}
for query in batch_queries:
loss_grad, q_loss, d = handle_query(model, query, eps)
loss += q_loss
for k, v in d.items():
if type(k[0]) is str:
name = k[0]
i = tuple(term2list2(k[1]))
gradients[(name, i)] = loss_grad * v
else:
optimizer.add_param_grad(k, loss_grad * float(v))
for (name, i), grad in gradients.items():
grad = torch.FloatTensor(grad)
if use_cuda:
grad = grad.cuda()
optimizer.backward(name, i, grad)
optimizer.step()
return loss
def epoch_train_model(model, queries, nr_epochs, optimizer, loss_function=train, validation=None, log_epoch=1,
snapshot_name='model', snapshot_epoch=None, shuffle=True, patience=None):
accumulated_loss = 0
logger = Logger()
start = time.time()
print(
"Training for {} epochs ({} iterations). {}".format(
nr_epochs,
nr_epochs * len(queries),
'With patience of {} epochs.'.format(patience) if patience else 'Without early stopping'
)
)
best_val_acc = 0.0
best_val_epoch = None
best_val_filename = None
for epoch in range(1, nr_epochs + 1):
epoch_start = time.time()
print("Epoch", epoch)
q_indices = list(range(len(queries)))
if shuffle:
random.shuffle(q_indices)
for q in tqdm(q_indices):
q = queries[q]
loss = loss_function(model, optimizer, q)
accumulated_loss += loss
optimizer.step()
optimizer.step_epoch()
if validation is not None:
val_acc = validation(model)
optimizer.clear()
if val_acc > best_val_acc or best_val_epoch is None:
fname = '{}_epoch_{:04d}.mdl'.format(snapshot_name, epoch)
print(
'Validation accuracy improved from {} to {}. Saving new best model to {}'.format(
best_val_acc, val_acc, fname
)
)
best_val_epoch = epoch
best_val_filename = fname
best_val_acc = val_acc
model.save_state(fname)
else:
print('Validation accuracy has not improved since epoch {} ({})'.format(best_val_epoch, best_val_acc))
elif snapshot_name and snapshot_epoch and epoch % snapshot_epoch == 0:
fname = '{}_epoch_{:04d}.mdl'.format(snapshot_name, epoch)
print('Saving model to {}'.format(fname))
best_val_filename = fname
model.save_state(fname)
if epoch % log_epoch == 0:
print('Epoch: ', epoch, '\tAverage Loss: ', accumulated_loss / (len(queries) * log_epoch))
logger.log('time', epoch, time.time() - start)
logger.log('loss', epoch, accumulated_loss / (len(queries) * log_epoch))
for k in model.parameters:
logger.log(str(k), epoch, model.parameters[k])
accumulated_loss = 0
print('Epoch time: ', time.time() - epoch_start)
if validation is not None and patience:
if epoch - best_val_epoch >= patience:
print('Valdiation performance has not improved for {} epochs, early stopping.'.format(patience))
break
if validation is not None:
print(
'Best performance on epoch {}. Weights saved on {}'.format(
best_val_epoch, best_val_filename
)
)
else:
print('Trained for {} epochs. Weights saved on {}'.format(nr_epochs, best_val_filename))
best_val_epoch = nr_epochs
return logger, best_val_epoch, best_val_filename
def train_model(model,queries,nr_epochs,optimizer, loss_function = train, test_iter=1000,test=None,log_iter=100,snapshot_iter=None,snapshot_name='model',shuffle=True):
signal.signal(signal.SIGINT, signal_handler)
i = 1
accumulated_loss = 0
logger = Logger()
start = time.time()
print("Training for {} epochs ({} iterations).".format(nr_epochs,nr_epochs*len(queries)))
# if test is not None:
# logger.log_list(i,test(model))
for epoch in range(nr_epochs):
epoch_start = time.time()
if interrupt:
break
print("Epoch",epoch+1)
q_indices = list(range(len(queries)))
if shuffle:
random.shuffle(q_indices)
for q in q_indices:
q = queries[q]
iter_time = time.time()
if interrupt:
break
loss = loss_function(model, optimizer, q)
accumulated_loss += loss
optimizer.step()
if snapshot_iter and i % snapshot_iter == 0:
fname = '{}_iter_{:06d}.mdl'.format(snapshot_name,i)
print('Writing snapshot to '+fname)
model.save_state(fname)
if i % log_iter == 0:
print('Iteration: ',i,'\tAverage Loss: ',accumulated_loss/log_iter)
logger.log('time',i,iter_time - start)
logger.log('loss',i,accumulated_loss/log_iter)
for k in model.parameters:
logger.log(str(k),i,model.parameters[k])
accumulated_loss = 0
if test is not None and i % test_iter == 0:
logger.log_list(i,test(model))
# Clear all the evaluated values during testing because they may interfere with the training. If
# no_grad has been used during testing and the same query is used for training it may be a problem.
optimizer.clear()
i += 1
optimizer.step_epoch()
print('Epoch time: ',time.time()-epoch_start)
return logger
def batch_train_model(model, queries, nr_epochs, optimizer, loss_function=train_batch, test=None,
snapshot_name=None, shuffle=True, batch_size=64):
signal.signal(signal.SIGINT, signal_handler)
logger = Logger()
start = time.time()
print(
"Training for {} epochs ({} iterations) with batches of {}.".format(
nr_epochs, nr_epochs * len(queries), batch_size
)
)
if test is not None:
logger.log_list(0, test(model))
for epoch in range(1, nr_epochs + 1):
epoch_start = time.time()
if interrupt:
break
print("Epoch", epoch)
n_queries = len(queries)
q_indices = list(range(n_queries))
if shuffle:
random.shuffle(q_indices)
for beg_i in range(0, n_queries, batch_size):
if interrupt:
break
q_batch = [
q
for j, q in enumerate(queries)
if j in q_indices[beg_i:beg_i + batch_size]
]
loss = loss_function(model, optimizer, q_batch)
print(
'Epoch: ', epoch,
'\tBatch Start: ', beg_i,
'\tLoss: ', loss,
'\tAverage Loss: ', loss / len(q_batch)
)
# logger.log('time', i, iter_time - start)
# logger.log('loss', i, loss / log_iter)
# for k in model.parameters:
# logger.log(str(k), i, model.parameters[k])
if snapshot_name:
fname = '{}_epoch_{:04d}.mdl'.format(snapshot_name, epoch)
print('Writing snapshot to ' + fname)
model.save_state(fname)
if test is not None:
logger.log_list(epoch, test(model))
# Clear all the evaluated values during testing because they may interfere with the training. If
# no_grad has been used during testing and the same query is used for training it may be a problem.
optimizer.clear()
optimizer.step_epoch()
print('Epoch time: ', time.time()-epoch_start)
return logger